DOE Office of Scientific and Technical Information (OSTI.GOV)
Veigl, Martina L.; Morgan, William F.; Schwartz, Jeffrey L.
The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigeneticmore » mechanisms and early nutrition and bystander effects. This report shows the agenda and abstracts for this symposium.« less
Natural radiation environment III. [Lead Abstract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gesell, T.F.; Lowder, W.M.
1980-01-01
Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Matthew A.; Ramakrishnan, Narayani
In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate those individuals who must receive medical attention. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation the cellular machinery is modified. For example: large-scale changes occur in the gene expression profiles involving a broad variety of cellular pathways after a wide range of both low dose (<10 cGy) and high dose (>10 cGy) ionizing radiation exposures. Symposium 12 was organized to address a wide range of biological effects using the latestmore » technologies. To address current models following ionizing radiation exposure, methods in biodosimetry and dose effects the symposia featured a general overview titled “Model Systems and Current Approaches in Biodosimetry” by Matthew A. Coleman, from Lawrence Livermore National Laboratory and a talk entitled “Brief Overview of Biodosimetry Projects in the NIH Rad/Nuc Program” by Dr. Narayani Ramakrishnan, National Institute of Allergy and Infectious Diseases. These two talk set the tone for issues in data and model integration as well as addressing the national need for robust technologies for biological dosimetry. The report continues with more description of the presentations, along with the agenda and abstracts of the papers presented.« less
Bréchignac, François; Oughton, Deborah; Mays, Claire; Barnthouse, Lawrence; Beasley, James C; Bonisoli-Alquati, Andrea; Bradshaw, Clare; Brown, Justin; Dray, Stéphane; Geras'kin, Stanislav; Glenn, Travis; Higley, Kathy; Ishida, Ken; Kapustka, Lawrence; Kautsky, Ulrik; Kuhne, Wendy; Lynch, Michael; Mappes, Tapio; Mihok, Steve; Møller, Anders P; Mothersill, Carmel; Mousseau, Timothy A; Otaki, Joji M; Pryakhin, Evgeny; Rhodes, Olin E; Salbu, Brit; Strand, Per; Tsukada, Hirofumi
2016-07-01
This paper reports the output of a consensus symposium organized by the International Union of Radioecology in November 2015. The symposium gathered an academically diverse group of 30 scientists to consider the still debated ecological impact of radiation on populations and ecosystems. Stimulated by the Chernobyl and Fukushima disasters' accidental contamination of the environment, there is increasing interest in developing environmental radiation protection frameworks. Scientific research conducted in a variety of laboratory and field settings has improved our knowledge of the effects of ionizing radiation on the environment. However, the results from such studies sometimes appear contradictory and there is disagreement about the implications for risk assessment. The Symposium discussions therefore focused on issues that might lead to different interpretations of the results, such as laboratory versus field approaches, organism versus population and ecosystemic inference strategies, dose estimation approaches and their significance under chronic exposure conditions. The participating scientists, from across the spectrum of disciplines and research areas, extending also beyond the traditional radioecology community, successfully developed a constructive spirit directed at understanding discrepancies. From the discussions, the group has derived seven consensus statements related to environmental protection against radiation, which are supplemented with some recommendations. Each of these statements is contextualized and discussed in view of contributing to the orientation and integration of future research, the results of which should yield better consensus on the ecological impact of radiation and consolidate suitable approaches for efficient radiological protection of the environment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Meeting report: the 5th International expert symposium in Fukushima on radiation and health.
Saenko, Vladimir A; Thomas, Geraldine A; Yamashita, Shunichi
2017-01-18
The symposium entitled "Chernobyl +30, Fukushima +5: Lessons and Solutions for Fukushima's Thyroid Question" was held in September, 2016 in Fukushima. The aim of the Symposium was to revisit and recapitulate evidence from the studies in Chernobyl in order to share multidisciplinary opinions and views on the likely reason for the high rate of thyroid cancer detected by the Thyroid Ultrasound Examination program in Fukushima Prefecture. The high prevalence of thyroid cancer in young individuals causes concerns among Fukushima residents and the general public that it might be due to putative radiation exposure from the Fukushima Daiichi Nuclear Power Plant accident. Twenty-six experts from Japan and abroad, including participants affiliated with international organizations, reviewed the results of radiation epidemiology investigations in Chernobyl, presented clinical experience of diagnosis, treatment and follow-up of patients with radiation-related thyroid cancer, and scrutinized the findings on thyroid cancer in Fukushima. Conclusions drawn at the symposium included understanding that in contrast to Chernobyl, doses to the public from the accident in Fukushima were too low to give rise to a discernible excess risk for thyroid cancer. The high detection rate of thyroid cancer and benign abnormalities resulted from the use of highly sensitive ultrasound equipment and sophisticated protocol of examination used in the Thyroid Ultrasound Examination, and therefore not attributable to radiation. Coordinated efforts will be necessary to avoid overdiagnosis and overtreatment, which may carry its own health disbenefits. Clear communication to the screening participants and their families is recommended in regard to why the examination is being conducted and to explain the likely outcomes and risks, including the means and options for treatment if a thyroid disorder is detected.
Bréchignac, François; Oughton, Deborah; Mays, Claire; Barnthouse, Lawrence; Beasley, James C.; Bonisoli-Alquati, Andrea; Bradshaw, Clare; Brown, Justin; Dray, Stéphane; Geras’kin, Stanislav; Glenn, Travis; Higley, Kathy; Ishida, Ken; Kapustka, Lawrence; Kautsky, Ulrik; Kuhne, Wendy; Lynch, Michael; Mappes, Tapio; Mihok, Steve; Møller, Anders P.; Mothersill, Carmel; Mousseau, Timothy A.; Otaki, Joji M.; Pryakhin, Evgeny; Rhodes, Olin E.; Salbu, Brit; Strand, Per; Tsukada, Hirofumi
2016-01-01
This paper reports the output of a consensus symposium organized by the International Union of Radioecology in November 2015. The symposium gathered an academically diverse group of 30 scientists to consider the still debated ecological impact of radiation on populations and ecosystems. Stimulated by the Chernobyl and Fukushima disasters’ accidental contamination of the environment, there is increasing interest in developing environmental radiation protection frameworks. Scientific research conducted in a variety of laboratory and field settings has improved our knowledge of the effects of ionizing radiation on the environment. However, the results from such studies sometimes appear contradictory and there is disagreement about the implications for risk assessment. The Symposium discussions therefore focused on issues that might lead to different interpretations of the results, such as laboratory versus field approaches, organism versus population and ecosystemic inference strategies, dose estimation approaches and their significance under chronic exposure conditions. The participating scientists, from across the spectrum of disciplines and research areas, extending also beyond the traditional radioecology community, successfully developed a constructive spirit directed at understanding discrepancies. From the discussions, the group has derived seven consensus statements related to environmental protection against radiation, which are supplemented with some recommendations. Each of these statements is contextualized and discussed in view of contributing to the orientation and integration of future research, the results of which should yield better consensus on the ecological impact of radiation and consolidate suitable approaches for efficient radiological protection of the environment. PMID:27058410
Grant, E J; Ozasa, K; Ban, N; de González, A Berrington; Cologne, J; Cullings, H M; Doi, K; Furukawa, K; Imaoka, T; Kodama, K; Nakamura, N; Niwa, O; Preston, D L; Rajaraman, P; Sadakane, A; Saigusa, S; Sakata, R; Sobue, T; Sugiyama, H; Ullrich, R; Wakeford, R; Yasumura, S; Milder, C M; Shore, R E
2015-05-01
The RERF International Low-Dose Symposium was held on 5-6 December 2013 at the RERF campus in Hiroshima, Japan, to discuss the issues facing the Life Span Study (LSS) and other low-dose studies. Topics included the current status of low-dose risk detection, strategies for low-dose epidemiological and statistical research, methods to improve communication between epidemiologists and biologists, and the current status of radiological studies and tools. Key points made by the participants included the necessity of pooling materials over multiple studies to gain greater insight where data from single studies are insufficient; generating models that reflect epidemiological, statistical, and biological principles simultaneously; understanding confounders and effect modifiers in the current data; and taking into consideration less studied factors such as the impact of dose rate. It is the hope of all participants that this symposium be used as a trigger for further studies, especially those using pooled data, in order to reach a greater understanding of the health effects of low-dose radiation.
The Eighth International Symposium On Radiative Transfer
NASA Astrophysics Data System (ADS)
Lemonnier, Denis; Webb, Brent W.; Mengüç, M. Pınar
2017-08-01
This Special Issue of The Journal of Quantitative Spectroscopy and Radiative Transfer is based on the papers selected from RAD-16, the Eighth International Symposium on Radiative Transfer, which was held June 2016, in Cappadocia, Turkey. This Symposium is a follow-up of the seven previous meetings held in Kuşadası in 1995, 1997, and 2013; Antalya in 2001 and 2010; Istanbul in 2004; and Bodrum in 2007, all in Turkey. The Symposium was another enjoyable opportunity for the international radiation transfer community to assemble in a comfortable setting to present and discuss the state-of-the-art in research and application.
Second Symposium on Protection Against Radiations in Space
NASA Technical Reports Server (NTRS)
Reetz, Arthur, Jr. (Editor)
1965-01-01
All space vehicles will be exposed to natural charged particle radiation fields. The effects and possible problems imposed by such radiations are of great concern to those actively engaged in the exploration of space. Materials and components, which may be damaged by the radiation, frequently can be replaced by more radiation resistant items; however, replacement systems are not always possible or practical and, hence, protective measures in the form of shielding must be employed. (One of the more radiation-sensitive systems to be flown in space is man himself.) Many groups are engaged in research on the attenuation and penetration of high-energy space radiation and on the development of methods for the design of shielding which affords protection against the radiation. The purpose of the Second Symposium on Protection Against Radiations in Space, like that of the First, was to bring these groups together to exchange information and share ideas. The First Symposium on the Protection Against Radiation Hazards in Space was held in Gatlinburg, Tenn., on November 5-7, 1962, and was sponsored by the NASA Manned Spacecraft Center, the Oak Ridge National Laboratory, and the American Nuclear Society. The proceedings of that symposium were published by the U.S. Atomic Energy Commission in a two volume report numbered TID-7652. Early in 1964, it became apparent that sufficient new information worthy of presentation in another symposium had been gathered. Because of its interest and role in space and related research, the U.S. Air Force joined NASA and AEC in the sponsorship of the Second Symposium at Gatlinburg in October 1964. The host, as before, was the Oak Ridge National Laboratory. These proceedings are the written record of the Second Symposium. Invited papers covering the space radiation environment, radiobiological effects, and radiation effects on materials and components comprised the first three sessions. By defining the radiation problems in space and providing for the proper assessment of the radiation effects and shielding requirements, these papers helped to establish the necessary background for the shielding papers which followed in the fourth session.
Samet, Jonathan M; de González, Amy Berrington; Dauer, Lawrence T; Hatch, Maureen; Kosti, Ourania; Mettler, Fred A; Satyamitra, Merriline M
2018-01-01
This commentary summarizes the presentations and discussions from the 2016 Gilbert W. Beebe symposium "30 years after the Chernobyl accident: Current and future studies on radiation health effects." The symposium was hosted by the National Academies of Sciences, Engineering, and Medicine (the National Academies). The symposium focused on the health consequences of the Chernobyl accident, looking retrospectively at what has been learned and prospectively at potential future discoveries using emerging 21st Century research methodologies.
2008 Homeland Security Symposium and Exposition
2008-09-10
Untitled Document 2008 Homeland Security Symposium and Exposition.html[5/19/2016 8:49:43 AM] 2008 Homeland Security Symposium and Exposition "New...national defenSe magazine Advertise in National Defense and increase your company exposure at this symposium! National Defense will be distributed to all...use the Internet Cafe to check their e-mail and search the Internet. Brand your name with maximum exposure at this high traffic area. Benefits
2006 Homeland Security Symposium and Exposition. Held in Arlington, VA on 29-31 March 2006
2006-03-31
Consequences , Vulnerabilities, and Threats) Prioritize Implement Protective Programs Measure Effectiveness 9March 2006 Major NIPP Theme: Sector Partnership... effect of exposure • Full understanding of the levels of exposure that mark the onset of miosis • Refined human operational exposure standard for GB...Untitled Document 2006 Homeland Security Symposium and Exposition.html[7/7/2016 11:38:26 AM] 2006 Homeland Security Symposium and Exposition
Summary and Findings of the EPA and CDC Symposium on Air Pollution Exposure and Health
The U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) co-organized a symposium on "Air Pollution Exposure and Health" at Research Triangle Park, North Carolina on September 19–20, 2006. The symposium brought together health and environmenta...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hei, Tom K.
This conference grant was proposed to organize and host an international conference at Columbia University in New York to critically assess the cellular and molecular signaling events and tissue response following radiation damage. The conference would also serve as a venue to play tribute to the more than forty years contributions made by Professor Eric J. Hall to the radiation biology field. The goals of the meeting were to examine tumor hypoxia and sensitizer development; recent advances made in clinical radiotherapy; addressed several low dose phenomena, including genomic instability and bystander effects that are important in radiation risk assessment. Studymore » and Results: The symposium was held on October 13th and 14th, 2008 at the Alfred Lerner Hall in the Morningside campus of Columbia University. The symposium, entitled “From Beans to Genes: A Forty Year Odyssey in Radiation Biology” was attended by more than 120 faculty, scientists, clinicians, fellows and students. The symposium, spanned over a day and a half, covered four scientific themes. These included tumor hypoxia and radiosensitizers; low dose radiation response; radiation biology in the practice of radiotherapy, and radiation hazard in space and genetic predisposition to cancer. The program of the symposium is as follow:« less
Summary of ionizing radiation analysis on the Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Parnell, T. A.
1992-01-01
The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently transported up from the stratosphere with exceptional efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1964-10-31
Thirty papers and 3 reviews of papers and panel discussions presented at the Symposium on Radiation Damage in Solids and Reactor Materials are given. Eighteen papers were previously abstracted for NSA. Separate abstracts were prepared for the remaining 15 papers. (M.C.G.)
NASA Technical Reports Server (NTRS)
1962-01-01
The realization in recent years that outer space is traversed by high-energy radiations has caused man to reevaluate the feasibility of manned or even instrumented exploration outside our atmosphere. Fortunately, it is possible to determine the nature and intensities of these radiations and to produce similar radiations on earth by means of accelerators. Thus we can learn how to attenuate them and to design capsules which afford protection against them. Of course this protection carries a weight penalty so that there is a premium on optimizing the shield design. Many groups in the United states are engaged in research to this end,and it was the purpose of this symposium to bring these groups together so that they could exchange information. To make the meeting more comprehensive, sessions on the nature of the radiations and their effects on people and things were included. However, the major part of the meeting was devoted to discussions on shielding research, comprising theoretical calculations and experiments carried out mainly with high-energy accelerators. The symposium committee feels that the aims of the symposium were met and that progress in space research program was greatly accelerated thereby.
Einstein, Andrew J.; Berman, Daniel S.; Min, James K.; Hendel, Robert C.; Gerber, Thomas C.; Carr, J. Jeffrey; Cerqueira, Manuel D.; Cullom, S. James; DeKemp, Robert; Dickert, Neal; Dorbala, Sharmila; Garcia, Ernest V.; Gibbons, Raymond J.; Halliburton, Sandra S.; Hausleiter, Jörg; Heller, Gary V.; Jerome, Scott; Lesser, John R.; Fazel, Reza; Raff, Gilbert L.; Tilkemeier, Peter; Williams, Kim A.; Shaw, Leslee J.
2014-01-01
Objective To identify key components of a radiation accountability framework fostering patient-centered imaging and shared decision-making in cardiac imaging. Background An NIH-NHLBI/NCI-sponsored symposium was held in November 2012 to address these issues. Methods Symposium participants, working in three tracks, identified key components of a framework to target critical radiation safety issues for the patient, the laboratory, and the larger population of patients with known or suspected cardiovascular disease. Results Use of ionizing radiation during an imaging procedure should be disclosed to all patients by the ordering provider at the time of ordering, and reinforced by the performing provider team. An imaging protocol with effective dose ≤3mSv is considered very low risk, not warranting extensive discussion or written consent. However, a protocol effective dose <20mSv was proposed as a level requiring particular attention in terms of shared decision-making and either formal discussion or written informed consent. Laboratory reporting of radiation dosimetry is a critical component of creating a quality laboratory fostering a patient-centered environment with transparent procedural methodology. Efforts should be directed to avoiding testing involving radiation, in patients with inappropriate indications. Standardized reporting and diagnostic reference levels for computed tomography and nuclear cardiology are important for the goal of public reporting of laboratory radiation dose levels in conjunction with diagnostic performance. Conclusions The development of cardiac imaging technologies revolutionized cardiology practice by allowing routine, noninvasive assessment of myocardial perfusion and anatomy. It is now incumbent upon the imaging community to create an accountability framework to safely drive appropriate imaging utilization. PMID:24530677
The Energetic Gamma-Ray Experiment Telescope (EGRET) Science Symposium
NASA Technical Reports Server (NTRS)
Fichtel, Carl E. (Editor); Hunter, Stanley D. (Editor); Sreekumar, Parameswaran (Editor); Stecker, Floyd W. (Editor)
1990-01-01
The principle purpose of this symposium is to provide the EGRET (Energetic Gamma-Ray Experiment Telescope) scientists with an opportunity to study and improve their understanding of high energy gamma ray astronomy. The Symposium began with the galactic diffusion radiation both because of its importance in studying galactic cosmic rays, galactic structure, and dynamic balance, and because an understanding of its characteristics is important in the study of galactic sources. The galactic objects to be reviewed included pulsars, bursts, solar flares, and other galactic sources of several types. The symposium papers then proceeded outward from the Milky Way to normal galaxies, active galaxies, and the extragalactic diffuse radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, R.
1967-03-13
The objective of the meeting was to provide a companion meeting to the ''First Symposium on Accelerator Radiation Dosimetry and Experience'' which was held November 3-5, 1965, at the Brookhaven National Laboratory. This first symposium was limited in scope to an intensified discussion of dosimetry techniques. The biology which is associated with high energy radiation was specifically excluded, since it was the original plan to hold a second symposium devoted entirely to biology. Thus the present Symposium was a sequel to the first and they were inseparable in their objectives. Since those attending the BNL Symposium were almost entirely healthmore » physicists with a background in physical science and actively engaged in the solution of radiation protection problems at high energy accelerators, it was felt that it would be necessary to begin the BID Symposium with a general review session on radiation biology, in order to provide a biological background for the proper understanding of the later sessions. This first session was arranged to give the health physicist a meaningful transition from fundamental radiobiological considerations to current new research activities in high energy biology. In our opinion, and also based on the comments of several of those attending these objectives were quite well attained. The talks by Bond, Robertson, Brustad, Wolff, and Patt were quite exhaustive as an introduction to the several areas of specialization in radiobiology. The overall purpose of the meeting was of course to inform the health physicists about the state of knowledge in advanced biological research as it might apply to their problems. It has often been said that it takes a long time for laboratory findings to be applied in practical situations, but this is certainly not true in radiobiology. Through this conference and others like it, the most recent understanding of high energy radiobiology is available to the practicing health physicist and is probably used fairly effectively. In addition, much of this material applies equally well to reactor and space radiation problems, and some of the participants were from these areas as well.« less
NASA Technical Reports Server (NTRS)
Wagner, L. J.
1977-01-01
The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.
2008-05-01
asthma in Cynomolgus monkeys. J Appl Physiol 96:1433-1444, 2003. Task 2. Shibata Y, A Nishiyama, H Ohata, J Gabbard , QN Myrvik, RA Henriksen...Proceeding of “International Symposium on Low-Dose Radiation Exposures and Bio-Defense System. Page 5, 2006. Task 2. Shibata Y, J Gabbard , M Yamashita...killed BCG. J Leukoc Biol 78:1281-1290. 4. Shibata, Y., J. Gabbard , M. Yamashita, S. Tsuji, M. Smith, A. Nishiyama, R. A. Henriksen, and Q. N. Myrvik
NASA Astrophysics Data System (ADS)
Newhauser, Wayne
2010-07-01
The availability of low-cost, high-performance computing is rapidly transforming the landscape of cancer research. Computational techniques are playing an increasingly important role and have become the third major method of scientific inquiry, supplementing traditional methods of observation and theory. This evolution began in the 1940s when high-performance computing techniques were developed for military applications, including radiation transport calculations. These same basic methods are still widely utilized in a broad spectrum of computational problems in medicine, including radiation cancer therapy (Rogers 2006, Spezi 2010) and radiologic diagnostic imaging (Doi 2006, Kalender 2006). Supercomputing is also now being used to study the genetics and genomics of cancer (Geurts van Kessel 2010), with application to gene sequencing (Mardis 2008), genome-wide association studies (Pearson and Manolio 2008), biomolecular dynamics (Sanbonmatsu and Tung 2007) and systems biology (Wolkenhauer et al 2010). The extensive and growing body of literature is evidence of a remarkable expansion of activity and enormous boost to cancer research from the application of high-performance computing. Early successes were facilitated by inexpensive computing resources and advances in modeling algorithms. Many contemporary models require extensive approximations and phenomenological approaches. In fact, many critical problems remain computationally intractable; the underlying physical and biological processes are simply too complex to model with contemporary theory and computing capacity. In the future, a vast stream of new insights will flow from studies that use increasingly exact models and first-principles approaches. Hence, in the war on cancer the present status of computational research could be summarized as the beginning of the beginning. For these reasons, there is a vital need for scientists and clinicians to periodically discuss progress and future plans regarding computational cancer research, particularly research involving supercomputing. In April 2010, a symposium entitled '4th Joint Symposium on Computational Medical Physics: The Nexus of Research on Cancer, Radiation, and Supercomputing: Dawn of a Golden Age?' was convened at Rice University in Houston, Texas. One objective of this symposium was to provide researchers and clinicians with an overview of recent progress in advanced radiation therapy. Another was to review basic concepts and methods from a wide variety of disciplines related to cancer radiation therapy, including supercomputing, physics, informatics, imaging, and epidemiology. The symposium featured current issues and controversies and, in particular, a review of recent advances in research on proton and photon therapies. Sessions included Current Issues in Proton Therapy for Pediatric Cancers; Current Issues in Advanced Radiotherapy for Prostate Cancer; Charged Particles in Space and Military Applications; Recent Advances in Radiation Epidemiology; Advanced Computing Techniques: Perspectives from Cancer Researchers and Computer Scientists; Radiobiologic, Dosimetric, and Outcomes Modeling; Imaging and Informatics, and a Young Investigators' Symposium. The complete program is available at www.regonline.com/joint_symposium. The symposium was attended by more than 100 delegates who delivered 47 oral presentations. The delegates included leading scientists and clinicians from the fields of epidemiology, particle physics, medical physics, mathematics, oncology, and cancer prevention. This issue of Physics in Medicine and Biology contains 13 original research articles based on selected presentations from the symposium. Each article underwent the journal's usual rigorous peer review process; we are grateful to the many individuals who contributed to this issue, including the publishing editor, board members, referees, and of course the authors, all of whom generously shared their time and expertise. The majority of articles from the symposium are interrelated and focus on dose and risk assessments related to radiation exposures from advanced radiation therapies. These research topics have become increasingly complex and require the combined expertise of researchers with highly specialized and diverse investigational skills. Innovative multidisciplinary teams will be needed to achieve breakthroughs and, ultimately, to translate the research into clinical practice (Disis and Slattery 2010). The symposium's scientific goals included fostering and promoting such multidisciplinary teams, which will work to solve these complex problems and thereby improve cancer outcomes. To help clarify how the 13 articles each contribute to the goal of improving cancer outcomes, a brief digression is necessary. The proportion of patients surviving their cancers for five years or more is large and increasing (Jemal et al 2009). Unfortunately, in survivors who received radiation therapy, the prevalence of radiogenic late effects is likewise large and increasing (cf Altekruse et al 2010, Meadows et al 2009, Hudson et al 2009, Friedman et al 2010), with the potential to become a public health issue of considerable scale (Travis 2006). A multitude of late effects are associated with radiation exposure, including the development of second cancers, cardiac toxicity, cognitive deficits, and musculoskeletal growth abnormalities in children. In modern radiation therapy, much effort is devoted to developing personalized treatments that control the tumor while minimizing acute toxicities to surrounding healthy tissues; comparatively less attention has been paid to minimizing late effects (Durante and Loeffler 2010). In recent years, however, there has been an encouraging increase in research activities seeking to quantify radiation exposures (Stovall et al 2006) and the associated risks of late effects from modern external-beam therapies (Xu et al 2008). In this issue, Zhang et al (2010) report on Monte Carlo and analytical models to predict the stray radiation exposure in a patient receiving proton radiotherapy. In this study, the authors focused on stray neutron radiation that emanated from the treatment unit. Despite the complexity of high-energy neutron dosimetry, the authors succeeded in developing a relatively simple analytical model to predict these exposures. This finding is important because, with further development, it could provide a method to predict stray radiation exposures as an enhanced form of routine treatment planning. Fontenot et al (2010) report on methods to evaluate uncertainties in comparative risk assessments; knowledge of uncertainties is vital to determine the limits of applicability in these assessments, which may in turn affect clinical and policy decisions. Howell et al (2010a) report on the accuracy of a widely used radiation treatment planning system. In particular, they investigated the system's dosimetric accuracy outside the treatment beam, e.g. due to scatter and leakage radiation from external-beam photon therapy. This study provides important illustrative evidence of the need to carefully validate dose algorithms in out-of-field regions. In a related study, Howell et al (2010b) developed a methodology to estimate doses to partially in-field and out-of-field organs. Scarboro et al (2010) report on the impact of organ size and position on out-of-field dose estimates. Taddei et al (2010a) report on the targeting accuracy of a novel device that can be used to treat age-related macular degeneration, the leading cause of blindness in the developed world. Taddei et al (2010b) report on the risks of radiogenic second cancers following proton and photon radiation therapies for liver cancer. Taddei et al (2010c) also compare the risks of radiogenic second cancers from secondary neutrons for a boy and a girl after receiving craniospinal irradiation with passively scattered proton beams. Scanned-beam proton therapy is presently considered the technologically most complex beam delivery approach and is used in only a few centers worldwide. Coutrakon et al (2010) reported on an investigation of dosimetric errors associated with the delivery of scanned proton beams. Titt et al (2010) report on a novel method to adjust the size of scanned proton beams. This study is important because our inability to produce very small beam spot sizes has been an obstacle to realizing the full clinical potential of this technique. Yepes et al (2010) report on the speedup and accuracy of a fast proton dose algorithm that uses an array of graphics processing units; this technique represents a nascent low-cost alternative to the traditional approach of high-performance computing using central processing units. Radiation exposures from kilovoltage computed tomography (CT) procedures have increased dramatically, with the fraction of collective effective dose from CT exposures rising from 3% in the early 1980s to 49% in 2006 (NCRP 2009). Proton CT is an emerging technology that may enable reductions in both proton range uncertainties and the imaging dose to the patient relative to comparable kilovoltage CT techniques. Erdelyi (2010) reports on uncertainties in electron densities estimated using proton CT. Finally, Cheung et al (2010) report on the suitability of advanced composite fiducial markers for localization of the prostate in proton therapy. Their analysis is particularly important because approximately 60% of the proton treatment capacity in the United States is used for patients with prostate cancer. The symposium was the fourth of a series entitled 'Symposia on Computational Cancer Research'. The symposia have alternately been hosted by The University of Texas M D Anderson Cancer Center, Rice University, and Northern Illinois University. The fifth joint symposium will be held in Houston, on 5-7 April 2011, and will focus on survivorship issues after childhood cancers (www.regonline.com/5thjointsymposium). On behalf of the symposium organizing committee, I hope to see you there. Wayne Newhauser, The University of Texas M D Anderson Cancer Center, USA Chairman of 4th Joint Symposium Organizing Committee and Guest Editor References Altekruse S F et al (ed) SEER Cancer Statistics Review, 1975--2007 (Bethesda, MD: National Cancer Institute) (http://seer.cancer.gov/csr/1975_2007/) based on November 2009 SEER data submission, posted to the SEER website, 2010 Cheung J, Kudchadker R J, Zhu X R, Lee A K and Newhauser W D 2010 Dose perturbations and image artifacts caused by carbon-coated ceramic and stainless steel fiducials used in proton therapy for prostate cancer Phys. Med. Biol. 55 7135-47 Coutrakon G, Wang N, Miller D W and Yang Y 2010 Dose error analysis for a scanned proton beam delivery system Phys. Med. Biol. 55 7081-96 Disis M L and Slattery J T 2010 The road we must take: multidisciplinary team science Sci. Transl. Med. 2 22cm9 Doi K 2006 Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology Phys. Med. Biol. 51 R5-27 Durante M and Loeffler J S 2010 Charged particles in radiation oncology Nat. Rev. Clin. Oncol. 7 37-43 Erdelyi B 2010 Electron density uncertainties in proton computed tomography Phys. Med. Biol. 55 7121-34 Fontenot J D, Bloch C, Followill D, Titt U, Zhang M and Newhauser W D 2010 Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy Phys. Med. Biol. 55 6987-98 Friedman D L, Whitton J, Leisenring W, Mertens A C, Hammond S, Stovall M, Donaldson S S, Meadows A T, Robison L L and Neglia J P 2010 Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study J. Natl Cancer Inst. 102 1083-95 Geurts van Kessel A 2010 The 'omics' of cancer Cancer Genet. Cytogenet. 203 37-42 Howell R M, Scarboro S B, Kry S F and Yaldo D Z 2010a Accuracy of out-of-field dose calculations by a commercial treatment planning system Phys. Med. Biol. 55 6999-7008 Howell R M, Scarboro S B, Taddei P J, Krishnan S, Kry S F and Newhauser W D 2010b Methodology for determining doses to in-field, out-of-field and partially in-field organs for late effects studies in proton radiotherapy Phys. Med. Biol. 55 7009-23 Hudson M M, Mulrooney D A, Bowers D C, Sklar C A, Green D M, Donaldson S S, Oeffinger K C, Neglia J P, Meadows A T and Robison L L 2009 High-risk populations identified in Childhood Cancer Survivor Study investigations: implications for risk-based surveillance J. Clin. Oncol. 27 2405-14 Jemal A, Siegel R, Ward E, Hao Y, Xu J and Thun M J 2009 Cancer statistics, 2009 CA Cancer J. Clin. 59 225-49 Kalender W A 2006 X-ray computed tomography Phys. Med. Biol. 51 R29-43 Mardis E R 2008 Next-generation DNA sequencing methods Annu. Rev. Genomics Hum. Genet. 9 387-402 Meadows A T, Friedman D L, Neglia J P, Mertens A C, Donaldson S S, Stovall M, Hammond S, Yasui Y and Inskip P D 2009 Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort J. Clin. Oncol. 27 2356-62 NCRP (National Council on Radiation Protection and Measurements) 2009 Ionizing radiation exposure of the population of the United States {\\it NCRP Report No. 160} (Bethesda, MD: NCRP) Pearson T A and Manolio T A 2008 How to interpret a genome-wide association study JAMA 299 1335-44 Rogers D W 2006 Fifty years of Monte Carlo simulations for medical physics Phys. Med. Biol. 51 R287-301 Sanbonmatsu K Y and Tung C S 2007 High performance computing in biology: multimillion atom simulations of nanoscale systems J. Struct. Biol. 157 470-80 Scarboro S B, Stovall M, White A, Smith S A, Yaldo D, Kry S F and Howell R M 2010 Effect of organ size and position on out-of-field dose distributions during radiation therapy Phys. Med. Biol. 55 7025-36 Spezi E (ed) 2010 Special section: Selected papers from the Second European Workshop on Monte Carlo Treatment Planning (MCTP2009) Phys. Med. Biol. 55 (16) 4431-614 Stovall M, Weathers R, Kasper C, Smith S A, Travis L, Ron E and Kleinerman R 2006 Dose reconstruction for therapeutic and diagnostic radiation exposures: use in epidemiological studies Radiat. Res. 166 141-57 Taddei P J, Chell E, Hansen S, Gertner M and Newhauser W D 2010a Assessment of targeting accuracy of a low-energy stereotactic radiosurgery treatment for age-related macular degeneration Phys. Med. Biol. 55 7037-54 Taddei P J, Howell R M, Krishnan S, Scarboro S B, Mirkovic D and Newhauser W D 2010b Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma Phys. Med. Biol. 55 7055-65 Taddei P J, Mahajan A, Mirkovic D, Zhang R, Giebeler A, Kornguth D, Harvey M, Woo S and Newhauser W D 2010c Predicted risks of second malignant neoplasm incidence and mortality due to secondary neutrons in a girl and boy receiving proton craniospinal irradiation Phys. Med. Biol. 55 7067-80 Titt U, Mirkovic D, Sawakuchi G O, Perles L A, Newhauser W D, Taddei P J and Mohan R 2010 Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency Phys. Med. Biol. 55 7097-106 Travis L B 2006 The epidemiology of second primary cancers Cancer Epidemiol. Biomarkers Prev. 15 2020-6 Wolkenhauer O et al 2010 Systems biologists seek fuller integration of systems biology approaches in new cancer research programs Cancer Res. 70 12-3 Xu X G, Bednarz B and Paganetti H 2008 A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction Phys. Med. Biol. 53 R193-241 Yepes P, Mirkovic D and Taddei P J 2010 A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations Phys. Med. Biol. 55 7107-20 Zhang R, P\\'{e}rez-And\\'{u}jar A, Fontenot J D, Taddei P J and Newhauser W D 2010 An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy Phys. Med. Biol. 55 6975-85
Natural radioactivity. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Bettencourt, A.O.; Galvao, J.P.; Lowder, W.
1988-12-31
This volume provides the Proceedings of the Fourth International Symposium on the Natural Radiation Environment held in Lisbon, Portugal December 7--11, 1987. Individual papers of the symposium are abstracted and indexed for the database.
NASA Astrophysics Data System (ADS)
Potylitsyn, Alexander; Karataev, Pavel
2012-05-01
This volume contains papers presented at the IX International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS'11) which was held at Royal Holloway, University of London on September 12-16, Egham, United Kingdom. The symposium was organized jointly by Royal Holloway, University of London and Tomsk Polytechnic University, Tomsk, Russia. RREPS is a biennial series of symposia founded in September 1993 as an initiative of the Nuclear Physics Institute at Tomsk Polytechnic University. The intention was to strengthen the basic and applied research focused on radiation from relativistic electrons in condensed media, particularly from natural and artificial periodic structures, and to review the research activity in this area. Since then, the symposium has developed into a forum attracting young scientists from different areas of research and from many countries. Previous successful symposia were held at Tomsk, Russia (1993, 1995, 1997, 2003), Lake Baikal, Russia (1999), Lake Aiya, Altai, Russia (2001), Czech Technical University in Prague, Czech Republic (2007) and Zvenigorod, Moscow region, Russia (2009). As an outcome of the symposia the conference proceedings have been published in Nuclear Instruments and Methods in Physics Research, Section B (Vol. 145 No 1-2, October 1998; Vol. 173 No 1-2, January 2001; Vol. 201 No 1 January 2003; Vol. 227 No 1-2, January 2005; Vol. 266 No 17, September 2008) and Journal of Physics: Conference Series (Vol. 236, June 2010). The purpose of the present RREPS'11 symposium was to review the up-to-date situation in the area of electromagnetic radiation generated by relativistic charged particles in condensed media, and to discuss the research strategy for the near future. Nowadays, electromagnetic radiation studies cover electron energies from a few MeV up to hundreds of GeV in many laboratories throughout the world. The goal is to study the physics of the generation of various kinds of radiation and their interplay or combined effects, and to find successful applications for them. Every kind of radiation reflects specific processes of fundamental atomic physics, classical and quantum electrodynamics with a broad range of applications in accelerator physics, nuclear physics, material science and medicine. During the symposium the general properties of electromagnetic radiation were discussed. A few reports were devoted to Cherenkov radiation. Such a renewed interest in this problem is related to possible applications in wakefield accelerators and beam diagnostics. Transition radiation appeared as a well-known subject but wide use of it requires a detailed investigation of its characteristics. New prospective schemes for generating intense radiation beams were proposed. During the last few years electromagnetic radiation has been intensively studied as a potential tool for non-invasive charged particle beam diagnostics. In the symposium a few presentations were devoted to both transverse beam size measurements, using optical diffraction radiation and longitudinal beam dynamics monitoring the use of coherent diffraction and synchrotron radiation techniques. The generation of intense THz and soft x-ray beams was a very popular topic. A few presentations were devoted to the development of compact x-ray sources which might be used as an alternative to large central facilities such as third or fourth generation light sources. An application of crystal targets for radiation generation attracted the attention of all RREPS'11 participants. Parametric x-rays may be used for low-emittance beam diagnostics, and channeling radiation and coherent bremsstrahlung are being studied as a possible mechanism for an intense gamma source for positron production. Traditionally the RREPS symposium includes the following topics: General Properties of Radiation from Relativistic Particles; Cherenkov Radiation Transition Radiation Parametric X-ray Radiation Diffraction Radiation and the Smith-Purcell Effect Coherent Bremsstrahlung and Channeling Radiation Crystal Assisted Processes Applications of Monochromatic X-ray and Gamma Beams Produced at Electron Accelerators We would like to acknowledge the International Program Committee for their suggestions during the preparation of the scientific program. We acknowledge John Adams Institute for Accelerator Science for their financial support of the students, and Royal Holloway, University of London (UK) and Tomsk Polytechnic University (Russia) for their administrative and financial support. Editors Prof Alexander Potylitsyn Tomsk Polytechnic University, Tomsk, Russia Dr Pavel Karataev Royal Holloway, University of London, Egham, United Kingdom Royal Holloway
The 1992 USEPA/AWMA International Symposium Measurement of Toxic and Related Air Pollutants was held in Durham, NC on May 4-9, 1992. his yearly symposium is sponsored by the Atmospheric Research and Exposure Assessment Laboratory and the Air & Waste Management Association. he tec...
NASA Astrophysics Data System (ADS)
Potylitsyn, Alexander; Karataev, Pavel; Mkrtchyan, Alpik
2014-05-01
These Proceedings are published as a recollection of contributions presented at the X International Symposium on "Radiation from Relativistic Electrons in Periodic Structures" (RREPS-13) merged with III International Conference "Electron, Positron, Neutron and X-ray Scattering under External Influences" (Meghri-13), which was held at Lake Sevan, 23-28 September, 2013, Armenia. RREPS-13 and Meghri-13 were co-organized by Tomsk Polytechnic University (Russia) and Institute of Applied Problems of Physics (Armenia). The main goal of the symposium was to bring together the scientists from around the world who work on designs of new radiation sources and their applications. There were 89 participants from 12 countries. The website of the symposium is available at http://rreps.tpu.ru/ The scientific program of the symposium consisted of 8 sections and a satellite Workshop on Terahertz Radiation generation. All papers in these Proceedings refer to one from the following topics: Section 1: General Properties of Radiation from Relativistic Particles Section 2: Transition Radiation Section 3: Parametric X-Radiation Section 4: Diffraction Radiation and Smith-Purcell Effect Section 5: Coherent Bremsstrahlung and Channeling Radiation Section 6: X-Ray Scattering without and by Acoustic Superlattices Section 7: Interaction of Particles Beams with Artificial Structures (Acoustic Superlattices, Metamaterials, etc.) Section 8: Application of Radiation Beams The published papers cover nearly all "hot" topics of current interest on investigations of monochromatic and broadband radiation sources based on accelerators and X-ray tubes. Different mechanisms of radiation emission such as Compton backscattering, Cherenkov radiation, transition radiation, diffraction radiation, Smith-Purcell effect, parametric X-ray were considered in Sections 1, 2, 3, 4 and 5. The problem of control of radiation parameters by external acoustic fields is discussed in Section 6. Several applications of electron, proton, gamma and X-ray beams are proposed in Sections 7 and 8. Conference photograph We are extremely thankful to all authors for providing their valuable contributions for these Proceedings as well as the reviewers for their constructive recommendations and criticism aiding to improve the presented articles. We are looking forward to welcoming all colleagues at the next Symposium of the biennial series RREPS-15, which will be hosted by Saint Petersburg State University in 2015. We invite all researchers interested in the field including the authors of these Proceedings. Professor Alexander Potylitsyn Tomsk Polytechnic University, Tomsk, Russia Dr Pavel Karataev Royal Holloway, University of London, Egham, United Kingdom Professor Alpik Mkrtchyan Institute of Applied Problems of Physics, Yerevan, Armenia
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.
The Fifth NASA Symposium on VLSI Design
NASA Technical Reports Server (NTRS)
1993-01-01
The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design.
LDEF microenvironments, observed and predicted
NASA Astrophysics Data System (ADS)
Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.
1993-04-01
A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.
LDEF microenvironments, observed and predicted
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.
1993-01-01
A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.
Status of LDEF ionizing radiation measurements and analysis
NASA Technical Reports Server (NTRS)
Parnell, Thomas A.
1993-01-01
At this symposium significant new data and analyses were reported in cosmic ray research, radiation dosimetry, induced radioactivity, and radiation environment modeling. Measurements of induced radioactivity and absorbed dose are nearly complete, but much analysis and modeling remains. Measurements and analyses of passive nuclear track detectors (PNTD), used to derive the cosmic ray composition and spectra, and linear energy transfer (LET) spectra, are only a few percent complete, but important results have already emerged. As one might expect at this stage of the research, some of the new information has produced questions rather than answers. Low-energy heavy nuclei detected by two experiments are not compatible with known solar or cosmic components. Various data sets on absorbed dose are not consistent, and a new trapped proton environment model does not match the absorbed dose data. A search for cosmogenic nuclei other than Be-7 on Long Duration Exposure Facility (LDEF) surfaces has produced an unexpected result, and some activation data relating to neutrons is not yet understood. Most of these issues will be resolved by the analysis of further experiment data, calibrations, or the application of the large LDEF data set that offers alternate data or analysis techniques bearing on the same problem. The scope of the papers at this symposium defy a compact technical summary. I have attempted to group the new information that I noted into the following groups: induced radioactivity; absorbed dose measurements; LET spectra and heavy ion dosimetry; environment modeling and three dimensional shielding effects; cosmogenic nuclei; and cosmic rays and other heavy ions. The papers generally are expository and have excellent illustrations, and I refer to their figures rather than reproduce them here. The general program and objectives of ionizing radiation measurements and analyses on LDEF has been described previously.
NASA Astrophysics Data System (ADS)
Kozak, Maciej; Kwiatek, Wojciech M.; Piszora, Paweł
2017-11-01
This special issue of Nuclear Instruments and Methods in Physics Research Section B of Nuclear Instruments and Methods in Physics Research was prepared to present recent achievements in synchrotron radiation science and mark the 25th anniversary of the Polish Synchrotron Radiation Society (PSRS) which fell in 2016. It presents selected papers submitted after the 13th International School and Symposium on Synchrotron Radiation in Natural Science (ISSRNS 2016) which was organized by PSRS in cooperation with the Adam Mickiewicz University. It is worth noting that PSRS is probably one of the earliest founded scientific societies focused on promoting the use of synchrotron radiation research (for details visit the PSRS home page: http://www.synchrotron.org.pl.
NASA Astrophysics Data System (ADS)
Nho, Young-Chang; Kang, Phil-Hyun; Güven, Olgun
2016-01-01
The 11th meeting of the 'Ionizing Radiation and Polymers' symposium, IRaP2014 was held in Jeju Island, Korea between October 5 and 9, 2014. The foundations of IRaP symposium were established more than 20 years ago, and over the years it has grown to be a well established and appreciated symposium in the field of ionizing radiation and polymers. The event was organized by the concerted efforts and generous contributions of Korean Ministry of Science ICT and Future Planning, Korean Atomic Energy Research Institute, Korean Society of Radiation Industry, Korea Nuclear International Cooperation Foundation and International Atomic Energy Agency, IAEA. Following the traditions of previous IRaP symposia, oral presentations were collected in daily single sessions throughout the week allowing the participants to listen to every talk. Like in previous symposia entire spectrum of the effects of ionizing radiation on polymers were elaborated by oral and poster presentations. The progress and new trends in radiation chemistry, physics and processing of polymers covering nanotechnology, nanocomposites, biopolymers, membranes, natural polymers, surface modification, lithography, medical applications, packaging materials, polymers used in NPP environments were presented and discussed. This list by no means includes all the subjects covered by the symposium and a quick look at the contents of this proceedings will reveal the titles of many interesting subjects. This is another unique aspect of IRaP symposia, one can hardly find a relatively small sized meeting including such a variety of subjects. The participants of the IRaP2014 were also fortunate to learn about the new developments on the hardware of new X-ray and E-beam devices.
ANEUPLOIDY: ETIOLOGY AND MECHANISMS
The 'Symposium on Aneuploidy: Etiology and Mechanisms' was held from March 25-29, 1985. This Symposium developed as a consequence of the concern of the Environmental Protection Agency with the support of the National Institute of Environmental Health Sciences about human exposure...
2016 Gilbert W. Beebe symposium
The National Academies of Sciences, Engineering, and Medicine is hosting the 2016 Gilbert W. Beebe Symposium. Its focus will be on commemorating the 1986 Chernobyl nuclear reactor accident and discussing the achievements of 30 years of studies on the radiation health effects following the accident and future research directions.
Ninth international symposium on radiopharmacology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The goal of this Symposium is to provide a forum for those international scientists involved in applying the principles of pharmacology and radiation biology to the development of agents for the diagnosis and treatment of disease. The program will highlight state-of-the-art progress in the development of those agents used in conjunction with some form of radiation such as radiopharmaceuticals, radiopaques, photo- and radiosensitizing drugs, and neutron capture agents. An underlying pharmacokinetic parameter associated with all these agents is the need for site-specific delivery to an organ or tumor. Therefore, a major goal of the symposium will be to address thosemore » pharmacologic principles for targeting molecules to specific tissue sites. Accordingly, session themes will include receptor-mediated processes, membrane transporters, antibody interactions, metabolic trapping, and oligonucleotide-antisense mechanisms.« less
Non-Volatile Memory Technology Symposium 2000: Proceedings
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh (Editor)
2000-01-01
This publication contains the proceedings for the Non-Volatile Memory Technology Symposium 2000 that was held on November 15-16, 2000 in Arlington, Virginia. The proceedings contains a wide range of papers that cover the presentations of myriad advances in the nonvolatile memory technology during the recent past including memory cell design, simulations, radiation environment, and emerging memory technologies. The papers presented in the proceedings address the design challenges and applications and deals with newer, emerging memory technologies as well as related issues of radiation environment and die packaging.
CYANOBACTERIAL TOXINS AND 2005 ISOCHAB EXPOSURE ASSESSMENT WORKGROUP
The US EPA, Office of Research and Development, in collaboration with other US federal agencies, is leading the organization of an International Symposium on Cyanobacterial Harmful Algal Blooms on 6-10 September, 2005. The goal of this symposium is to develop a comprehensive nat...
Learning on the Job. Symposium.
ERIC Educational Resources Information Center
2002
This document contains two papers from a symposium on learning on the job. "Professional Crisis Workers: Impact of Repeated Exposure to Human Pain and Destructiveness" (Lynn Atkinson-Tovar) examines the following topics: (1) the secondary and vicarious traumatic stress disorder that affects many professional crisis workers who are…
ExpoCast Framework for Rapid Exposure Forecasts (ISES ExpoDat symposium presentation)
The U.S. E.P.A. ExpoCast project uses high throughput exposure models (simulation) and any easily-obtained exposure heuristics to generate forward predictions of potential exposures from chemical properties. By comparison with exposures inferred via reverse pharmacokinetic modeli...
Neurobehavioural and neurodevelopmental effects of pesticide exposures
London, Leslie; Beseler, Cheryl; Bouchard, Maryse F.; Bellinger, David C.; Colosio, Claudio; Grandjean, Philippe; Harari, Raul; Kootbodien, Tahira; Kromhout, Hans; Little, Francesca; Meijster, Tim; Moretto, Angelo; Rohlman, Diane S.; Stallones, Lorann
2012-01-01
The association between pesticide exposure and neurobehavioral and neurodevelopmental effects is an area of increasing concern. This symposium brought together participants to explore the neurotoxic effects of pesticides across the lifespan. Endpoints examined included neurobehavioral, affective and neurodevelopmental outcomes amongst occupational (both adolescent and adult workers) and non-occupational populations (children). The symposium discussion highlighted many challenges for researchers concerned with the prevention of neurotoxic illness due to pesticides and generated a number of directions for further research and policy interventions for the protection of human health, highlighting the importance of examining potential long-term effects across the lifespan arising from early adolescent, childhood or pre-natal exposure. PMID:22269431
NASA Astrophysics Data System (ADS)
Sakurai, Kazuo; Takahara, Atsushi
2011-01-01
This special issue contains peer-reviewed invited and contributed papers that were presented at The International Symposium on 'Future Trend in Soft Material Research with Advanced Light Source: Interdisciplinary of Bio- & Synthetic- Materials and Industrial Transferring', which was held in SPring-8, Japan, on September 1-3, 2010. Advanced light sources including neutron and synchrotron are becoming increasingly critical to the study of soft materials. This cutting-edge analytical tool is expected to lead to the creation of new materials with revolutionary properties and functions. At SPring-8, a new beam line dedicated to soft materials has now been launched as one of the most powerful X-rays for scattering and diffraction. Additionally, the next-generation light source, XFEL (X-ray Free Electron Laser), facilities are currently being developed in several locations. In the near future, femto-second and coherent X-ray sources will be available in soft material research and should reveal the various new aspects of advanced soft material research and technology. On the occasion of the third fiscal year of the CREST (project leader: Kazuo Sakurai) and ERATO (project leader: Atsushi Takahara) projects, we organized this international symposium in order to accelerate the discussion among global-level researchers working on next-generation synchrotron radiation science, biophysics and supramolecular science, modern surface science in soft materials, and industrial applications of neutron and synchrotron radiation sources. In this symposium 21 oral presentations, including 8 invited speakers from abroad, and 40 poster presentations from USA, France, Korea, Taiwan, and Japan were presented during the three day symposium. The symposium chairs reviewed the poster presentations by young scientists, and eight young researchers received the Award for Best Poster Presentation. We sincerely hope that these proceedings will be beneficial in future applications of advanced light sources to soft materials science and technology, not only to our ERATO and CREST projects, but also to the research of all the participants, broadening our scientific horizons. Kazuo Sakurai & Atsushi TakaharaSymposium Chairs Symposium Organization and Committee Supported by: Japan Science and Technology Agency (JST) Japan Synchrotron Radiation Research Institute (JASRI) Co-sponsored by: Society of Japan Polymer Science Japanese Society of Synchrotron Radiation Research Advanced Softmaterial Beamline Consortium Symposium Chairs: Atsushi Takahara (Kyushu University, JST, ERATO) Kazuo Sakurai (Univ. Kitakyushu, JST, CREST) Organizing Committee: Yoshiyuki Amemiya (The Univ. of Tokyo, JST, CREST) Naoto Yagi (JASRI, JST, CREST) Masaki Takata (JASRI) Isamu Akiba (Univ. Kitakyushu, JST, CREST) Yuya Shinohara (The Univ. of Tokyo, JST, CREST) Taiki Hoshino (Kyushu University, JST, ERATO) Jun-ichi Imuta (Kyushu University, JST, ERATO) Moriya Kikuchi (Kyushu University, JST, ERATO) Motoyasu Kobayashi (Kyushu University, JST, ERATO) Group photograph Group photograph Lecture meeting Lecture meeting
The stress response: A radiation study section workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The following manuscript represents the proceedings of a 1-day symposium held in Santa Fe, NM, on February 22, 1995 in conjunction with a regular meeting of the Radiation Study Section of the Division of Research Grants (DRG), National Institutes of Health (NIH). The purpose of the symposium was to educate Study Section members on various aspects of the heat-shock, or stress, response in mammalian systems and to inform them of the most recent developments in this area. The symposium was organized by Paul Strudler, the Scientific Review Administrator for the Radiation Study Section, and was co-chaired, and this report edited,more » by Eugene Gerner (University of Arizona, Tucson) and Peter Corry (Beaumont Hospital, Royal Oak, MI). The invited speakers, their affiliations and their general topics were Stuart Calderwood (Dana Farber Cancer Institute, Boston, tolerance and signal transduction), Michael Freeman (Vanderbilt University, Nashville, oxidative stress), Andrei Laszlo (Washington University, St. Louis, chaperones), Gloria Li (Memorial Sloan Kettering, New York, hsp-70), John Subjeck (Roswell Park Cancer Institute, Buffalo, hsp-110) and Lee Weber (University of Nevada, Reno, hsp-27). 97 refs.« less
NASA Astrophysics Data System (ADS)
Armantrout, Guy A.
1988-02-01
The present conference consideres topics in radiation detectors, advanced electronic circuits, data acquisition systems, radiation detector systems, high-energy and nuclear physics radiation detection, spaceborne instrumentation, health physics and environmental radiation detection, nuclear medicine, nuclear well logging, and nuclear reactor instrumentation. Attention is given to the response of scintillators to heavy ions, phonon-mediated particle detection, ballistic deficits in pulse-shaping amplifiers, fast analog ICs for particle physics, logic cell arrays, the CERN host interface, high performance data buses, a novel scintillating glass for high-energy physics applications, background events in microchannel plates, a tritium accelerator mass spectrometer, a novel positron tomograph, advancements in PET, cylindrical positron tomography, nuclear techniques in subsurface geology, REE borehole neutron activation, and a continuous tritium monitor for aqueous process streams.
NASA Technical Reports Server (NTRS)
1973-01-01
Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.
Status of LDEF ionizing radiation measurements and analysis
NASA Technical Reports Server (NTRS)
Parnell, T. A.
1992-01-01
The LDEF-1 results from the particle astrophysics, radiation environments, and dosimetry measurements on LDEF-1 are summarized, including highlights from presentations at the 2nd symposium. Progress in using LDEF data to improve radiation environment models and calculation methods is reviewed. Radiation effects, or the lack thereof are discussed. Future plans of the LDEF Ionizing Radiation Special Investigation Group are presented.
Third LDEF Post-Retrieval Symposium Abstracts
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Compiler)
1993-01-01
This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.
LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 1
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1992-01-01
A compilation of papers from the symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the Long Duration Exposure Facility (LDEF). The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroids), electronics, optics, and life sciences.
Environmental toxicology and risk assessment: Seventh volume
Little, Edward E.; Greenberg, Bruce M.; DeLonay, Aaron J.
1998-01-01
This publication, Environmental Toxicology and Risk Assessment: Seventh Volume, contains papers presented at the Seventh Symposium on Toxicology and Risk Assessment: Ultraviolet Radiation and the Environment, held 7-9 April, 1997 in St. Louis, MO. The symposium, the 24th in a series on environmental toxicology, was sponsored by Committee E-47. Edward E. Little, of the U.S. Geological Survey/Biological Services Division in Columbia, MO, presided as chairman of the symposium. Bruce M. Greenberg, with the Department of Biology at the University of Waterloo in Ontario, Canada, and Aaron J. DeLonay, also with the U.S. Geological Service/Biological Services Division in Columbia, MO, served as co-chairmen of the symposium. Each of these men served as editor of the resulting publication.
NASA Technical Reports Server (NTRS)
Stubblefield, F. W. (Editor)
1987-01-01
Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.
Payne-Sturges, Devon; Garcia, Lisa; Lee, Charles; Zenick, Hal; Grevatt, Peter; Sanders, William H.; Case, Heather; Dankwa-Mullan, Irene
2011-01-01
In March 2010, the Environmental Protection Agency (EPA) collaborated with government and nongovernmental organizations to host a groundbreaking symposium, “Strengthening Environmental Justice Research and Decision Making: A Symposium on the Science of Disproportionate Environmental Health Impacts.” The symposium provided a forum for discourse on the state of scientific knowledge about factors identified by EPA that may contribute to higher burdens of environmental exposure or risk in racial/ethnic minorities and low-income populations. Also featured were discussions on how environmental justice considerations may be integrated into EPA's analytical and decision-making frameworks and on research needs for advancing the integration of environmental justice into environmental policymaking. We summarize key discussions and conclusions from the symposium and briefly introduce the articles in this issue. PMID:22028456
LDEF: 69 Months in Space. Part 4: Second Post-Retrieval Symposium
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are presented. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.
LDEF: 69 Months in Space. Part 1: Second Post-Retrieval Symposium
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.
LDEF: 69 Months in Space. Part 3: Second Post-Retrieval Symposium
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
Papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.
Climate change impacts on human exposures to air pollution
This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium.
LDEF: 69 Months in Space. Second Post-Retrieval Symposium, part 2
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
This document is a compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.
LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 3
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1992-01-01
A compilation of papers presented at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life sciences.
Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose
Chin, Cynthia; Cody, Dianna D.; Gupta, Rajiv; Hess, Christopher P.; Kalra, Mannudeep K.; Kofler, James M.; Krishnam, Mayil S.; Einstein, Andrew J.
2014-01-01
The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities and various indications require unique protocols, but there remains room for standardization and optimization. In this paper we summarize approaches to reduce dose, as discussed in lectures comprising the first session of the 2013 UCSF Virtual Symposium on Radiation Safety in Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing-tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose. PMID:24589403
The 13th Tihany Symposium on Radiation Chemistry
NASA Astrophysics Data System (ADS)
Wojnárovits, László; Takács, Erzsébet
2016-07-01
The Symposium was held in Balatonalmádi, a beautiful city by the Lake Balaton, Hungary, between August 29 and September 3, 2015. This time - to meet the expectations of many colleagues and friends - a place close to the village Tihany was selected, where the first Tihany Symposium was organized in 1962. The participants beside the excellent lectures could also enjoy the panorama of the Lake from the rooms and from the terrace of Hotel Ramada. The number of participants was close to 170 from about 33 countries. The highest number of participants arrived from Poland (14), followed by France (11), Turkey (9) and China (9). The Symposium had 6-6 colleagues from Brazil, Israel, and Romania. Beside China, Asia was represented by a few scientists from the Republic of Korea, Malaysia, Thailand, Philippines and from Saudi Arabia.
Villalba, Marcelo Blanco; Bramajo, Marina; Bruno, Mario
2016-01-01
The ecancer/SAC First International Prostate Cancer Symposium, held in Buenos Aires, included national, regional, and international experts in the field of prostate cancer. More than 200 professionals from a variety of areas (clinical urologists, pathologists, oncologists, biologists, imaging specialists, radiation therapists, and generalist doctors, among others) attended, and they proposed multidisciplinary management of prostate pathology from the start in concordance with the ideas set forth by the organising committee. A radiotherapy workshop was also held during the symposium, in which new techniques and their possible uses were specifically discussed. In addition to the local doctors, Dr Lilian Faroni (COI Group, Rio de Janeiro, Brazil), Dr Leonardo Carmona (Chilean Head and Neck Institute, Chile), and Dr Anthony Addesa (Jupiter Medical Centre, Florida, USA) also participated in this symposium. PMID:27350786
Symposium Abstract: Exposure science has evolved from a time when the primary focus was on measurements of environmental and biological media and the development of enabling field and laboratory methods. The Total Exposure Assessment Method (TEAM) studies of the 1980s were class...
Shimizu, Shinichi; Tsuchiya, Kazuhiko; Takao, Seishin; Shirato, Hiroki
2014-05-01
Cancer is the most major cause of death in Japan recently. In this symposium, we explained advanced treatment technology for cancer treatment, now used and that will be used in near future at the Hokkaido University Hospital. Intensity Moderated Radiation Therapy (IMRT) and Proton Beam Therapy (PBT) are considered to be the most promising and advanced technologies for cancer treatment. Various kinds of radiation treatment equipment and methods have been developed and constructed at the Hokkaido University. One of the most worlds wide famous one is the real time tumor tracking radiotherapy system. The FIRST (Funding for World-Leading Innovative R&D on Science and Technology) Program has been supporting us to produce cutting-edge technology. We hope that this symposium would help the audience to understand the latest technology for cancer treatment especially in the field of radiation therapy and also we wish the audience would recognize the importance of the research aspect that have been performed at Hokkaido University and its Hospital.
NASA Astrophysics Data System (ADS)
Musilek, L.; Dunn, W. L.
2017-08-01
The selected proceedings of the 13th International Symposium on Radiation Physics (ISRP-13) are presented here across a broad range of important topics including: Fundamental processes in radiation physics, Theoretical investigations, New radiation sources, techniques & detectors, Absorption and fluorescence spectroscopy (XAFS, XANES, XRF Spectroscopy, Raman, Infrared …), Applications of radiation in material science, nano-science & nanotechnology, Applications of radiation in biology & medical science, Applications of radiation in space, earth, energy & environmental sciences, Applications of radiation in cultural heritage & art and Applications of radiation in industry. In total, 48 papers have been accepted for these proceedings.
Biological risks of medical irradiations: Medical physics monograph 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullerton, G.D., Kopp, D.T.; Waggener, R.G.; Webster, E.W.
1980-01-01
This book is the fifth in a series of monographs by the American Association of Physicists in Medicine (AAPM) and is a compendium of papers presented at an AAPM regional symposium conducted in San Antonio in July 1980. The book is divided into three sections: (1) biological fundamentals of ionizing radiation, (2) risk evaluation and reduction in three principle radiologic subspecialties (diagnostic radiology, nuclear medicine and radiation therapy), and (3) medical-legal implications. The first section includes a historical review of radiation biology, including a discussion of somatic and genetic effects and statistical approaches to risk estimates. The section on riskmore » evaluation and reduction includes a good review of the units of exposure and activity including the international (SI) system employing the gray, becquerel, and seivert that respectively replace the rad, Curie, and rem. The unavoidable problem of legal responsibility and liability is the subject of the third, and last, section of the monograph. A chapter summarizing the legal history of medical irradiation also includes a glossary of pertinent legal terms. Recent court decisions that impact upon the clinical use of radiation are presented and discussed as well as proposed changes in federal guidelines that could have a large impact on the practice of medicine in general and radiology in particular. (JMT)« less
Highlights of the second ISCB Student Council Symposium in Africa, 2017.
Rafael, Candice N; Ashano, Efejiro; Moosa, Yumna; Shome, Sayane; DeBlasio, Dan
2017-01-01
Student Council Symposiums (SCSs) have been found to be very useful for students and young researchers. This is especially true given that the events are held directly before large international conferences, giving attendees a chance to gain exposure and have a warm up to the social nuances involved in attending such a meeting. This was the second SCS held in Africa in conjunction with the International Society for Computational Biology (ISCB) and the African Society for Bioinformatics and Computational Biology's (ASBCB) biennial meeting. This symposium was organised by students within the society inside Africa and was held on the 10 th of October 2017 in Entebbe, Uganda.
Overview (this manuscript is an overview of an ASTM ...
The Symposium on Developing Consensus Standards for Measuring Chemical Emissions from Spray Polyurethane Foam (SPF) Insulation was held on April 30th and May 1, 2015. Sponsored by ASTM Committee D22 on Air Quality, the symposium was held in Anaheim, CA, in conjunction with the standards development meetings of the Committee. ASTM D22.05 is developing tools to answer fundamental questions: what is emitted from SPF, how long do the emissions persist, how does ventilation impact concentrations and potential exposures? How can we model these processes to address the multiplicity of products, applications, and environmental conditions that may impact exposure to emissions over the life cycle of the material? These are complex and interrelated questions that have challenged the indoor environments research community for many years. Objectives of Symposium: Standardized methods are needed to assess the potential impacts of SPF insulation products on indoor air quality, establish re-entry times for trade workers or re-occupancy times for building occupants after product installation and to evaluate post-occupancy ventilation. The objective of the symposium was to provide a forum for the exchange of ideas from SPF manufacturers, regulatory agencies, indoor air quality professionals, testing labs, air quality consultants, instrument vendors and other stakeholders. Following the presentations on the current status of measuring emissions from SPF insulation, participants di
Matsuya, Yusuke; Tsujiguchi, Takakiyo; Yamaguchi, Masaru; Kimura, Takaaki; Mori, Ryosuke; Yamada, Ryota; Saga, Ryo; Fujishima, Yohei; Date, Hiroyuki
2017-06-01
In the northern part of Japan, close cooperation is essential in preparing for any possible emergency response to radiation accidents because several facilities, such as the Low-Level Radioactive Waste Disposal Facility, the MOX Fuel Fabrication Plant and the Vitrified Waste Storage Center, exist in Rokkasho Village (Aomori Prefecture). After the accident at Fukushima Daiichi Nuclear Power Plant in 2011, special attention should be given to the relationship between radiation and human health, as well as establishing a system for managing with a radiation emergency. In the area of Hokkaido and Aomori prefectures in Japan, since 2008 an exchange meeting between Hokkaido University and Hirosaki University has been held every year to have opportunities to discuss radiation effects on human health and to collect the latest news on monitoring environmental radiation. This meeting was elevated to an international meeting in 2014 titled "Educational Symposium on Radiation and Health (ESRAH) by Young Scientists". The 3rd ESRAH meeting took place in 2016, with the theme "Investigating Radiation Impact on the Environmental and Health". Here we report the meeting findings on the continuing educational efforts after the Fukushima incident, what was accomplished in terms of building a community educational approaches, and future goals.
BMDExpress Data Viewer: A Visualization Tool to Analyze BMDExpress Datasets (STC symposium)
Background: Benchmark Dose (BMD) modelling is a mathematical approach used to determine where a dose-response change begins to take place relative to controls following chemical exposure. BMDs are being increasingly applied in regulatory toxicology to estimate acceptable exposure...
1984-04-01
the three radiations tested (RBE defined as the ratio of the absorbed dose from one radiation to that of a reference radiation required to produce...increase in the latency of tail-withdrawal from warm (56 C) - water, compared with animals receiving morphine alone. Radiation alone had no effect on ...between one -half and three-quarters of the infantry personnel targeted with a
NASA Technical Reports Server (NTRS)
1972-01-01
Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.
Non-Volatile Memory Technology Symposium 2001: Proceedings
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh; Daud, Taher; Strauss, Karl
2001-01-01
This publication contains the proceedings for the Non-Volatile Memory Technology Symposium 2001 that was held on November 7-8, 2001 in San Diego, CA. The proceedings contains a a wide range of papers that cover current and new memory technologies including Flash memories, Magnetic Random Access Memories (MRAM and GMRAM), Ferro-electric RAM (FeRAM), and Chalcogenide RAM (CRAM). The papers presented in the proceedings address the use of these technologies for space applications as well as radiation effects and packaging issues.
1980-01-01
change between 2 x 10- 2 torr PRESSURE (to-r) and I atmosphere was measured (in a non -temper- ature controlled environment) to be less than FIGURE 8...microstrip, how- non -resonant and non -propagating. Losses due to ever, are less desirable. To control radiation finite substrate thickness werE determined .y...Temperature dependence of the stabilized oscillator. 254 Proc. 34th Ann. Freq. Control Symposium, USAERADCOM, Ft. Monmouth. NJ 07703. May 1980 NON -LINEAR
Air pollution exposure prediction approaches used in air pollution epidemiology studies.
Özkaynak, Halûk; Baxter, Lisa K; Dionisio, Kathie L; Burke, Janet
2013-01-01
Epidemiological studies of the health effects of outdoor air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and misclassification of exposures for pollutants that are spatially heterogeneous, such as those associated with traffic emissions (e.g., carbon monoxide, elemental carbon, nitrogen oxides, and particulate matter). We review alternative air quality and human exposure metrics applied in recent air pollution health effect studies discussed during the International Society of Exposure Science 2011 conference in Baltimore, MD. Symposium presenters considered various alternative exposure metrics, including: central site or interpolated monitoring data, regional pollution levels predicted using the national scale Community Multiscale Air Quality model or from measurements combined with local-scale (AERMOD) air quality models, hybrid models that include satellite data, statistically blended modeling and measurement data, concentrations adjusted by home infiltration rates, and population-based human exposure model (Stochastic Human Exposure and Dose Simulation, and Air Pollutants Exposure models) predictions. These alternative exposure metrics were applied in epidemiological applications to health outcomes, including daily mortality and respiratory hospital admissions, daily hospital emergency department visits, daily myocardial infarctions, and daily adverse birth outcomes. This paper summarizes the research projects presented during the symposium, with full details of the work presented in individual papers in this journal issue.
LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 3
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1995-01-01
This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.
Alcohol advertising and youth.
Martin, Susan E; Snyder, Leslie B; Hamilton, Mark; Fleming-Milici, Fran; Slater, Michael D; Stacy, Alan; Chen, Meng-Jinn; Grube, Joel W
2002-06-01
This article presents the proceedings of a symposium at the 2001 Research Society on Alcoholism meeting in Montreal, Canada. The symposium was organized and chaired by Joel W. Grube. The presentations and presenters were (1) Introduction and background, by Susan E. Martin; (2) The effect of alcohol ads on youth 15-26 years old, by Leslie Snyder, Mark Hamilton, Fran Fleming-Milici, and Michael D. Slater; (3) A comparison of exposure to alcohol advertising and drinking behavior in elementary versus middle school children, by Phyllis L. Ellickson and Rebecca L. Collins; (4) USC health and advertising project: assessment study on alcohol advertisement memory and exposure, by Alan Stacy; and (5) TV beer and soft drink advertising: what young people like and what effects? by Meng-Jinn Chen and Joel W. Grube.
Chemistry of Atmospheric Aerosols at Pacifichem 2015 Congress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nizkorodov, Sergey
This grant was used to provide participant support for a symposium entitled “Chemistry of Atmospheric Aerosols” at the 2015 International Chemical Congress of Pacific Basin Societies (Pacifichem) that took place in Honolulu, Hawaii, USA, on December 15-20, 2015. The objective was to help attract both distinguished scientists as well as more junior researchers, including graduate students, to this international symposium by reducing the financial barrier for its attendance. It was the second time a symposium devoted to Atmospheric Aerosols was part of the Pacifichem program. This symposium provided a unique opportunity for the scientists from different countries to gather inmore » one place and discuss the cutting edge advances in the cross-disciplinary areas of aerosol research. To achieve the highest possible impact, the PI and the symposium co-organizers actively advertised the symposium by e-mail and by announcements at other conferences. A number of people responded, and the end result was a very busy program with about 100 oral and poster presentation described in the attached PDF file. Presentations by invited speakers occupied approximately 30% of time in each of the sessions. In addition to the invited speakers, each session also had contributed presentations, including those by graduate students and postdoctoral researchers. This symposium gathered established aerosol chemists from a number of countries including United States, Canada, China, Japan, Korea, Australia, Brazil, Hongkong, Switzerland, France, and Germany. There were plenty of time for the attendees to discuss new ideas and potential collaborations both during the oral sessions and at the poster sessions of the symposium. The symposium was very beneficial to graduate student researchers, postdoctoral fellows, and junior researchers whose prior exposure to international aerosol chemistry science had been limited. The symposium provided junior researchers with a much broader perspective of aerosol chemistry than that afforded by attending a national meeting. The oral and platform presentation abstracts from the symposium were published in the Pacifichem Congress program.« less
LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 1
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1995-01-01
This volume (Part 1 of 3) is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.
LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 2
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1995-01-01
This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included. This second of three parts covers spacecraft construction materials.
NASA Technical Reports Server (NTRS)
1978-01-01
Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.
In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in ord...
Dingwall, S.; Mills, C.E.; Phan, N.; Taylor, K.; Boreham, D.R.
2011-01-01
Tritium is a radioactive form of hydrogen and is a by-product of energy production in Canadian Deuterium Uranium (CANDU) reactors. The release of this radioisotope into the environment is carefully managed at CANDU facilities in order to minimize radiation exposure to the public. However, under some circumstances, small accidental releases to the environment can occur. The radiation doses to humans and non-human biota from these releases are low and orders of magnitude less than doses received from naturally occurring radioisotopes or from manmade activities, such as medical imaging and air travel. There is however a renewed interest in the biological consequences of low dose tritium exposures and a new limit for tritium levels in Ontario drinking water has been proposed. The Ontario Drinking Water Advisory Council (ODWAC) issued a formal report in May 2009 in response to a request by the Minister of the Environment, concluding that the Ontario Drinking Water Quality Standard for tritium should be revised from the current 7,000 Bq/L level to a new, lower 20 Bq/L level. In response to this recommendation, an international scientific symposium was held at McMaster University to address the issues surrounding this change in direction and the validity of a new policy. Scientists, regulators, government officials, and industrial stakeholders were present to discuss the potential health risks associated with low level radiation exposure from tritium. The regulatory, economic, and social implications of the new proposed limit were also considered. The new recommendation assumed a linear-no-threshold model to calculate carcinogenic risk associated with tritium exposure, and considered tritium as a non-threshold chemical carcinogen. Both of these assumptions are highly controversial given that recent research suggests that low dose exposures have thresholds below which there are no observable detrimental effects. Furthermore, mutagenic and carcinogenic risk calculated from tritium exposure at 20 Bq/L would be orders of magnitude less than that from exposure to natural background sources of radiation. The new proposed standard would set the radiation dose limit for drinking water to 0.0003 mSv/year, which is equivalent to approximately three times the dose from naturally occurring tritium in drinking water. This new standard is incongruent with national and international standards for safe levels of radiation exposure, currently set at 1 mSv/year for the general public. Scientific research from leading authorities on the carcinogenic health effects of tritium exposure supports the notion that the current standard of 7,000 Bq/L (annual dose of 0.1 mSv) is a safe standard for human health. Policy-making for the purpose of regulating tritium levels in drinking water is a dynamic multi-stage process that is influenced by more than science alone. Ethics, economics, and public perception also play important roles in policy development; however, these factors sometimes undermine the scientific evidence that should form the basis of informed decision making. Consequently, implementing a new standard without a scientific basis may lead the public to perceive that risks from tritium have been historically underestimated. It was concluded that the new recommendation is not supported by any new scientific insight regarding negative consequences of low dose effects, and may be contrary to new data on the potential benefits of low dose effects. Given the lack of cost versus benefit analysis, this type of dramatic policy change could have detrimental effects to society from an ethical, economical, and public perception perspective. PMID:21431084
Dingwall, S; Mills, C E; Phan, N; Taylor, K; Boreham, D R
2011-02-22
Tritium is a radioactive form of hydrogen and is a by-product of energy production in Canadian Deuterium Uranium (CANDU) reactors. The release of this radioisotope into the environment is carefully managed at CANDU facilities in order to minimize radiation exposure to the public. However, under some circumstances, small accidental releases to the environment can occur. The radiation doses to humans and non-human biota from these releases are low and orders of magnitude less than doses received from naturally occurring radioisotopes or from manmade activities, such as medical imaging and air travel. There is however a renewed interest in the biological consequences of low dose tritium exposures and a new limit for tritium levels in Ontario drinking water has been proposed. The Ontario Drinking Water Advisory Council (ODWAC) issued a formal report in May 2009 in response to a request by the Minister of the Environment, concluding that the Ontario Drinking Water Quality Standard for tritium should be revised from the current 7,000 Bq/L level to a new, lower 20 Bq/L level. In response to this recommendation, an international scientific symposium was held at McMaster University to address the issues surrounding this change in direction and the validity of a new policy. Scientists, regulators, government officials, and industrial stakeholders were present to discuss the potential health risks associated with low level radiation exposure from tritium. The regulatory, economic, and social implications of the new proposed limit were also considered.The new recommendation assumed a linear-no-threshold model to calculate carcinogenic risk associated with tritium exposure, and considered tritium as a non-threshold chemical carcinogen. Both of these assumptions are highly controversial given that recent research suggests that low dose exposures have thresholds below which there are no observable detrimental effects. Furthermore, mutagenic and carcinogenic risk calculated from tritium exposure at 20 Bq/L would be orders of magnitude less than that from exposure to natural background sources of radiation. The new proposed standard would set the radiation dose limit for drinking water to 0.0003 mSv/year, which is equivalent to approximately three times the dose from naturally occurring tritium in drinking water. This new standard is incongruent with national and international standards for safe levels of radiation exposure, currently set at 1 mSv/year for the general public. Scientific research from leading authorities on the carcinogenic health effects of tritium exposure supports the notion that the current standard of 7,000 Bq/L (annual dose of 0.1 mSv) is a safe standard for human health.Policy-making for the purpose of regulating tritium levels in drinking water is a dynamic multi-stage process that is influenced by more than science alone. Ethics, economics, and public perception also play important roles in policy development; however, these factors sometimes undermine the scientific evidence that should form the basis of informed decision making. Consequently, implementing a new standard without a scientific basis may lead the public to perceive that risks from tritium have been historically underestimated. It was concluded that the new recommendation is not supported by any new scientific insight regarding negative consequences of low dose effects, and may be contrary to new data on the potential benefits of low dose effects. Given the lack of cost versus benefit analysis, this type of dramatic policy change could have detrimental effects to society from an ethical, economical, and public perception perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strom, Daniel J.
2005-01-14
In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia);more » reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.« less
Acceptability of risk from radiation: Application to human space flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
First LDEF Post-Retrieval Symposium abstracts
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Compiler)
1991-01-01
The LDE facility was designed to better understand the environments of space and the effects of prolonged exposure in these environments on future spacecraft. The symposium abstracts presented here are organized according to the symposium agenda into five sessions. The first session provides an overview of the LDEF, the experiments, the mission, and the natural and induced environments the spacecraft and experiments encountered during the mission. The second session presents results to date from studies to better define the environments of near-Earth space. The third session addresses studies of the effects of the space environments on spacecraft materials. The fourth session addresses studies of the effects of the space environments on spacecraft systems. And the fifth session addresses other subjects such as results of the LDEF life science and crystal growth experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, B.; Wallis, L.R.
This paper has a dual purpose. On the one hand, congratulations are in order; the 25th Hanford Life Sciences Symposium celebrates four decades of important research at Hanford. This research has helped provide a better understanding of ionizing radiation effects on man and his environment. Researchers at Hanford and those at other locations can take pride in the fact that today we know more about the major characteristics and potential health effects of ionizing radiation than we do for any other biological hazard. Ionizing radiation's present mysteries, important as they are, involve subtleties that are difficult to explore in detailmore » because the effects are so small relative to other health effects. It will also be a pleasure to add our tribute, along with many others, to Herb Parker, a friend, colleague, and pioneer in the radiation protection field. Building on the work of early pioneers such as Herb and those who have and will follow in their footsteps, we will develop an even broader understanding--an understanding that will clarify the effects of low-level radiation exposure, an area of knowledge about which sound explanations and predictions elude us today. The second purpose of this paper is to remind those in the radiation protection field that they have been less than successful in one of their most important tasks--that of effective communication. The task is not an easy one because the content of the message depends upon the dose. At high doses, above 1 Sv, where the deleterious effects of radiation are predictable, there is agreement on the message that must be delivered to the public: avoid it. There is no confusion in the public sector about this message. At the much lower doses resulting from beneficial activities, the message we must convey to the public is different.« less
Measurement of Thermal Radiation Properties of Solids
NASA Technical Reports Server (NTRS)
Richmond, J. C. (Editor)
1963-01-01
The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.
Editorial Conference Comments by the Editors
NASA Astrophysics Data System (ADS)
Fabris, Lorenzo; Valentine, John D.; Barton, Paul; Derenzo, Stephen; Archer, Daniel E.; Bell, Zane W.; Brubaker, Erik; Conway, Adam M.; Dalla Betta, Gian-Franco; De Geronimo, Gianluigi; Fiorini, Carlo; Guazzoni, Chiara; Hayward, Jason P.; Kernan, Warnick J.; Labov, Simon E.; Payne, Stephen; Re, Valerio; Rozenfeld, Anatoly; Runkle, Robert; Sturm, Benjamin; Yang, Liang; Zhuravleva, Mariya; Ziock, Klaus-Peter
2017-07-01
The Symposium on Radiation Measurements and Applications (SORMA) convened for the third time on the West Coast, May 22-26, 2016, at the Clark Kerr Campus of the University of California, Berkeley, CA, USA. With radiation detectors increasing in number, variety, and societal importance, we are alternating between SORMA (in Ann Arbor, MI, USA) and SORMA West so that the forum will be available every two years.
The multi-facets of sustainable nanotechnology - Lessons from a nanosafety symposium.
George, Saji; Ho, Shirley S; Wong, Esther S P; Tan, Timothy Thatt Yang; Verma, Navin Kumar; Aitken, Robert J; Riediker, Michael; Cummings, Christopher; Yu, Liya; Wang, Zheng Ming; Zink, Daniele; Ng, Zhihan; Loo, Say Chye Joachim; Ng, Kee Woei
2015-05-01
An international symposium for nanosafety was held recently at the Nanyang Technological University in Singapore. Topics relating to understanding nanomaterial properties, tools, and infrastructure required for predicting hazardous outcomes, measuring nanomaterial exposure levels, systems approach for risk assessment and public's perception of nanotechnology were covered. The need for a multidisciplinary approach, across both natural and social sciences, for developing sustainable nanotechnology solutions was heavily emphasized. This commentary highlights the major issues discussed and the commitment of the nanosafety research community in Singapore to contribute collectively to realise the vision of sustainable nanotechnology.
NASA Technical Reports Server (NTRS)
Lastovicka, Jan (Editor); Miles, Thomas (Editor); Oneill, Alan (Editor)
1989-01-01
The proceedings of the symposium is presented. Eight different sessions were presented: (1) Papers generally related to the subject; (2) Papers on the influence of the Quasi Biennial Oscillation; (3) Papers on the influence of the solar electromagnetic radiation variability; (4) Papers on the solar wind and high energy particle influence; (5) Papers on atmospheric circulation; (6) Papers on atmospheric electricity; (7) Papers on lower ionospheric variability; and (8) Solar posters, which are not included in this compilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
Proceedings of the AMEDD Psychology Symposium Held at Washington, DC on 27-31 October 1980
1983-12-01
more toxic pesticides . In fact, so rapid was this development that the possibilities of modern chemical warfare were foreseen by 1899. An international...cases of "severe" exposure to organophosphate (OP) pesticides (compounds similar in action to NA) the prominent symptoms were vomiting, abdominal pain...exposures to OP pesticides . Some severe exposure cases showed an inability to remember street and phone numbers and were unable to recognize old friends
TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushberg, J; Boreham, D; Ulsh, B
2014-06-15
At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased belowmore » background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at what dose level are risk vs. benefit discussions with patients appropriate, 3) at what dose level should we tell a pregnant woman that the baby’s health risk from a prenatal radiation exposure is “significant”, 4) is informed consent needed for patients undergoing medical imaging, and 5) at what dose level is evacuation appropriate after a radiological accident. Examples of the tremendous impact that choosing different risks models can have on the answers to these types of questions will be given.A moderated panel discussion will allow audience members to pose questions to the faculty members, each of whom is an established expert in his respective discipline. Learning Objectives: Understand the fundamental principles, strengths and limitations of radiation epidemiology and radiation biology for determining the risk from exposures to low doses of ionizing radiation Become familiar with common models of risk used to describe the dose-response relationship at low dose levels Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation Understand the implications of different risk models on public policy and health care decisions.« less
Translation of EPA Research: Data Interpretation and Communication Strategies
Symposium Title: Social Determinants of Health, Environmental Exposures, and Disproportionately Impacted Communities: What We Know and How We Tell Others Topic 3: Community Engagement and Research Translation Title: Translation of EPA Research: Data Interpretation and Communicati...
2011-03-15
management, toxicology/health risks (e.g., particulates nanomaterials, radiation, etc.), monitoring disease trends , other areas of preventive medicine...will include hematocrit, hemoglobin, mean corpuscle volume, iron, total iron binding capacity, Ferritin , and soluble transferring receptor. The
The multi-facets of sustainable nanotechnology – Lessons from a nanosafety symposium
George, Saji; Ho, Shirley S.; Wong, Esther S. P.; Tan, Timothy Thatt Yang; Verma, Navin Kumar; Aitken, Robert J.; Riediker, Michael; Cummings, Christopher; Yu, Liya; Wang, Zheng Ming; Zink, Daniele; Ng, Zhihan; Loo, Say Chye Joachim; Ng, Kee Woei
2015-01-01
Abstract An international symposium for nanosafety was held recently at the Nanyang Technological University in Singapore. Topics relating to understanding nanomaterial properties, tools, and infrastructure required for predicting hazardous outcomes, measuring nanomaterial exposure levels, systems approach for risk assessment and public’s perception of nanotechnology were covered. The need for a multidisciplinary approach, across both natural and social sciences, for developing sustainable nanotechnology solutions was heavily emphasized. This commentary highlights the major issues discussed and the commitment of the nanosafety research community in Singapore to contribute collectively to realise the vision of sustainable nanotechnology. PMID:25976321
Current Needs and Future Directions of Occupational Safety and Heath in a Globalized World
Perera, Frederica P.; Li, TY; Lin, C; Tang, Deliang; Gilbert, Steven G.; Kang, Seong-Kyu; Aschner, Michael
2011-01-01
This summary provides a synopsis of talks included in a symposium entitled “Current Needs and Future Directions of Occupational Safety and Heath in a Globalized World”. The purpose of the symposium was to (1) highlight national and international agencies with occupational health related activities; (2) address electronic (e-)waste issues in developing countries where exposures are secondary to the handling and scavenging of scrap; and (3) discuss the effects of hazardous materials, such as polycyclic aromatic hydrocarbon (PAH) and tobacco smoke on child intelligence quotient (IQ) in developing countries. PMID:22037493
Emerging Neurotoxic Mechanisms in Environmental Factors-Induced Neurodegeneration
Kanthasamy, Anumantha; Jin, Huajun; Anantharam, Vellareddy; Sondarva, Gautam; Rangasamy, Velusamy; Rana, Ajay; Kanthasamy, Arthi
2012-01-01
Exposure to environmental neurotoxic metals, pesticides and other chemicals is increasingly recognized as a key risk factor in the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. Oxidative stress and apoptosis have been actively investigated as neurotoxic mechanisms over the past two decades, resulting in a greater understanding of neurotoxic processes. Nevertheless, emerging evidence indicates that epigenetic changes, protein aggregation and autophagy are important cellular and molecular correlates of neurodegenerative diseases resulting from chronic neurotoxic chemical exposure. During the Joint Conference of the 13th International Neurotoxicology Association and the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health, the recent progress made toward understanding epigenetic mechanisms, protein aggregation, autophagy, and deregulated kinase activation following neurotoxic chemical exposure and the relevance to neurodegenerative conditions were one of the themes of the symposium. Dr. Anumantha G. Kanthasamy described the role of acetylation of histones and non-histone proteins in neurotoxicant-induced neurodegenerative processes in the nigral dopaminergic neuronal system. Dr. Arthi Kanthasamy illustrated the role of autophagy as a key determinant in cell death events during neurotoxic insults. Dr. Ajay Rana provided evidence for posttranslational modification of α-synuclein protein by the Mixed Linage Kinase (MLK) group of kinases to initiate protein aggregation in cell culture and animal models of Parkinson’s disease. These presentations outlined emerging cutting edge mechanisms that might set the stage for future mechanistic investigations into new frontiers of molecular neurotoxicology. This report summarizes the views of symposium participants, with emphasis on future directions for study of environmentally and occupationally linked chronic neurodegenerative diseases. PMID:22342404
This introduction to the lunchtime symposium and panel discussion introduces the panel topics and participants from across the spectrum of organizations who have responded to large scale disasters. This overview will briefly discuss the role of exposure science during each phase ...
Aschner, M; Lukey, B; Tremblay, A
2006-09-01
The manganese (Mn) research health program (MHRP) symposium was a full day session at the 22nd International Neurotoxicology Conference. Mn is a critical metal in many defense and defense-related private sector applications including steel making and fabrication, improved fuel efficiency, and welding, and a vital and large component in portable power sources (batteries). At the current time, there is much debate concerning the potential adverse health effects of the use of manganese in these and other applications. Due to the significant use of manganese by the Department of Defense, its contractors and its suppliers, the Manganese Health Research Program (MHRP) seeks to use the resources of the federal government, in tandem with manganese researchers, as well as those industries that are involved with manganese, to determine the exact health effects of manganese, as well as to devise proper safeguard measures for both public and private sector workers. Humans require manganese as an essential element; however, exposure to high levels of this metal is sometimes associated with adverse health effects, most notably within the central nervous system. Exposure scenarios vary extensively in relation to geographical location, urban versus rural environment, lifestyles, diet, and occupational setting. Furthermore, exposure may be brief or chronic, it may be to different types of manganese compounds (aerosols or salts of manganese with different physical and/or chemical properties), and it may occur at different life-stages (e.g., in utero, neonatal life, puberty, adult life, or senescence). These factors along with diverse genetic composition that imposes both a background and disease occurrence likely reflect on differential sensitivity of individuals to manganese exposure. Unraveling these complexities requires a multi-pronged research approach to address multiple questions about the role of manganese as an essential metal as well as its modulation of disease processes and dysfunction. A symposium on the Health Effects of Manganese (Mn) was held on Wednesday, September 14, 1005, to discuss advances in the understanding on role of Mn both in health and disease. The symposium was sponsored by the Manganese Health Research Program (MHRP). This summary provides background on the MHRP, identifies the speakers and topics discussed at the symposium, and identifies research needs and anticipated progress in understanding Mn health- and disease-related issues.
1974-08-21
Ptiyiici Univtreity of Borgtn Btigm, Nonmy Abstract SPARMO (Solar Particles and Radiations Monitoring Organization) was originally organized mainly...for the purpose of coordinating bal- loon recordings of solar particle radiations, but in recent years the collaborative work of SPARMO groups has...IJ mi ■■ I I .. r— *- *■ 1 - 1. ORIGIN AND ORGANIZATIONAL STATUS SPARMO was created in October 1961, when a group of
Funding for LoopFest IV and RADCOR2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bern, Zvi
This is a request for funds to help run two conferences: RADCOR2015 (the 12th International Symposium on Radiative Corrections) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders). These conferences will be jointly held June 15--19, 2015 at the Department of Physics and Astronomy at UCLA. These conferences are central to providing theoretical support to the experimental physics programs at particle colliders, including the Large Hadron Collider and possible future colliders.
NASA Astrophysics Data System (ADS)
Strikhanov, Mikhail N.; Pivovarov, Yury L.
2010-04-01
This volume contains the papers presented at 8th International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS'09), which was held in Zvenigorod, Moscow Region, Russia, from 7 to 11 September 2009, organized jointly by National Research Nuclear University MEPhI (Moscow) and Tomsk Polytechnic University (Tomsk), Russia. University MEPhI (Moscow) and Tomsk Polytechnic University (Tomsk), Russia. RREPS was founded in September 1993 by an initiative of the Nuclear Physics Institute at Tomsk Polytechnic University, Russia, with the intention of strengthening basic and applied research focused on radiation from relativistic particles in natural and artificial periodic structures. Since then, the symposium has developed into a forum attracting scientists from different fields and from many countries all over the world. RREPS'09 followed previous successful series of biennial RREPS symposia at Tomsk (1993, 1995, 1997, 2003), Baikal Lake (1999), Aya Lake (Altai, Russia, 2001) and Czech Technical University in Prague (Czech Republic, 2007). Five NIMB topical issues (V 145 No 1-2, October 1998; V 173 No 1-2, January 2001; V 201(1) January 2003; V 227, Issues 1-2, January 2005; V 266, Issue 17, September 2008) have been published as outgrowth of these symposia. Traditionally, the RREPS program includes following topics: General Properties of Electromagnetic Radiation from Relativistic Particles Transition Radiation Parametric X- Radiation Diffraction Radiation and Smith-Purcell Effect Coherent Bremsstrahlung and Channeling Radiation Crystal- Assisted Processes Applications of Monochromatic X- and Gamma- Beams Produced at Electron Accelerators The present RREPS'09 Symposium was dedicated to the modern problems in radiation from relativistic electrons in crystals and other periodic structures, as well as to new applications of photon and electron beams. During the last few decades, electromagnetic radiation from relativistic particles, both in external fields and in matter, has always been an interesting field for investigation. Every kind of radiation reflects specific processes of fundamental atomic physics, classical or quantum electrodynamics and might have specific applications in accelerator physics (beam diagnostics), nuclear physics (hard photon sources), material science and medicine (X-Ray sources). Nowadays, electromagnetic radiation studies cover electron energies from a few MeV up to hundreds of GeV in many laboratories throughout the world. The goal is to study the physics of generation of various kinds of radiation and their interplay or combined effects and to find successful applications for them. New photon sources, which use new types of radiation at new accelerators (e.g. tabletop synchrotrons), may be considered complementary to conventional photon sources based on synchrotron radiation, undulator radiation and free electron lasers. We express our thanks to the members of the International Program Committee for their suggestions during the preparation of the scientific program of the workshop. We warmly thank the National Research Nuclear University MEPhI (Moscow) and the Tomsk Polytechnic University (Tomsk) for the financial and administrative support. We also acknowledge the valuable financial contributions by Russian Fund for Basic Research and "Dynasty" Foundation. Editors Mikhail N. Strikhanov National Research Nuclear University MEPhI, Moscow, Russia Yury L. Pivovarov Tomsk Polytechnic University, Tomsk, Russia
Perspectives on communicating risks of chemicals.
Armbrust, Kevin; Burns, Mitchell; Crossan, Angus N; Fischhoff, David A; Hammond, Larry E; Johnston, John J; Kennedy, Ivan; Rose, Michael T; Seiber, James N; Solomon, Keith
2013-05-22
The Agrochemicals Division symposium "Perfecting Communication of Chemical Risk", held at the 244th National Meeting and Exposition of the American Chemical Society in Philadelphia, PA, August 19-23, 2012, is summarized. The symposium, organized by James Seiber, Kevin Armbrust, John Johnston, Ivan Kennedy, Thomas Potter, and Keith Solomon, included discussion of better techniques for communicating risks, lessons from past experiences, and case studies, together with proposals to improve these techniques and their communication to the public as effective information. The case studies included risks of agricultural biotechnology, an organoarsenical (Roxarsone) in animal feed, petroleum spill-derived contamination of seafood, role of biomonitoring and other exposure assessment techniques, soil fumigants, implications of listing endosulfan as a persistant organic pollutant (POP), and diuron herbicide in runoff, including use of catchment basins to limit runoff to coastal ecozones and the Great Barrier Reef. The symposium attracted chemical risk managers including ecotoxicologists, environmental chemists, agrochemists, ecosystem managers, and regulators needing better techniques that could feed into better communication of chemical risks. Policy issues related to regulation of chemical safety as well as the role of international conventions were also presented. The symposium was broadcast via webinar to an audience outside the ACS Meeting venue.
A photon phreak digs the LDEF happening
NASA Technical Reports Server (NTRS)
Smith, Alan R.; Hurley, Donna L.
1993-01-01
A year ago at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium, detailed measurements on trunnion sections, as well as results from 'intentional' samples (Co, Ni, In, Ta, and V) and spacecraft parts were reported. For this year's Symposium, some of these findings are re-evaluated in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned need to be applied to future missions - right back to the early phases of mission planning.
The biological processes by which environmental pollutants induce adverse health effects is most likely regulated by complex interactions dependent upon the route of exposure, dose, kinetics of distribution, and multiple cellular responses. To further complicate deciphering thes...
The Cosmic Microwave Background Radiation and its Polarization
NASA Astrophysics Data System (ADS)
Wollack, Edward
2016-03-01
The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).
Interaction of biological systems with static and ELF electric and magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, L.E.; Kelman, B.J.; Weigel, R.J.
1987-01-01
Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic fieldmore » strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.« less
Biological Implications of the Nuclear Age.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
Reported are the proceedings of an interdisciplinary symposium on the effects on the biosphere of the release of radiation from the use of nuclear energy. Papers given include discussions of the use of radioisotopes in medicine, the benefits and possible consequences of peaceful applications of nuclear explosives, methods of estimating maximum…
Proceedings of the Geophysical Laboratory/Lawrence Radiation Laboratory Cratering Symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordyke, Milo D.
1961-10-01
The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.
Helms, A; Evans, A W; Chu, J; Sahgal, A; Ostrowski, R; Sosiak, T; Wolf, G; Gillett, J; Whelan, H
2011-01-01
The 2008 Toronto Hyperbaric Medicine Symposium was convened to discuss research into neurologic indications for hyperbaric oxygen therapy (HBO2T). Four topics were particularly addressed: acute ischemic stroke; acute traumatic brain injury; brain radiation necrosis; and status migrainosus. Four multicenter trials were designed and proposed to evaluate the efficacy of HBO2T for these indications and are presented here in addition to brief reviews of the rationale behind each.
1991-06-01
carried out and planned is given. IP-VI-4 NEUTRINO RADIATION FROM SUPERNOVAE J.A. Grifols Grup de Fisica Teorica, Universitat Autonoma de Barcelona 08193...and Pedro Gonzdlez. Instituto Nacional de Investigaciones Nucleares (ININ) Carretera M~xico-Toluca, Km. 36.5 Salazar, Mdxico. Three important...ments made with LiF:Mg,Cu,P prepared at the Instituto Nacio- nal de Investigaciones Nucleares (ININ) are presented in this paper. These results have
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, D.O.; Graham, F.E.; Sauer, H.S.
1961-10-31
ning both the transient and permanent effects that an environment of the type created by a nuclear detonation or a pulsed reactor exerts on electronic devices, is described. The design of suitable test heads for containing the electronic devices is discussed. The design of a blockhouse for use near Ground Sero when evaluating components in a weapons environment is also discussed. (C.J.G.)
SUMMARY OF THE 1994 EPA/AWMA INTERNATIONAL SYMPOSIUM
A joint conference cosponsored for the ninth year by the Atmospheric Research & Exposure Assessment Laboratory of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 3-6, 1994. he 4-day technical program cons...
ISO WD 1856. Guideline for radiation exposure of nonmetallic materials. Present status
NASA Astrophysics Data System (ADS)
Briskman, B. A.
In the framework of the International Organization for Standardization (ISO) activity we started development of international standard series for space environment simulation at on-ground tests of materials. The proposal was submitted to ISO Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). A draft of the first international standard "Space Environment Simulation for Radiation Tests of Materials" (1st version) was presented at the 7th International Symposium on Materials in Space Environment (Briskman et al, 1997). The 2nd version of the standard was limited to nonmetallic materials and presented at the 20th Space Simulation Conference (Briskman and Borson, 1998). It covers the testing of nonmetallic materials embracing also polymer composite materials including metal components (metal matrix composites) to simulated space radiation. The standard does not cover semiconductor materials. The types of simulated radiation include charged particles (electrons and protons), solar ultraviolet radiation, and soft X-radiation of solar flares. Synergistic interactions of the radiation environment are covered only for these natural and some induced environmental effects. This standard outlines the recommended methodology and practices for the simulation of space radiation on materials. Simulation methods are used to reproduce the effects of the space radiation environment on materials that are located on surfaces of space vehicles and behind shielding. It was discovered that the problem of radiation environment simulation is very complex and the approaches of different specialists and countries to the problem are sometimes quite opposite. To the present moment we developed seven versions of the standard. The last version is a compromise between these approaches. It was approved at the last ISO TC20/SC14/WG4 meeting in Houston, October 2002. At a splinter meeting of Int. Conference on Materials in a Space Environment, Noordwijk, Netherlands, ESA, June 2003, the experts from ESA, USA, France, Russia and Japan discussed the last version of the draft and approved it with a number of notes. A revised version of the standard will be presented this May at ISO TC20/SC14 meeting in Russia.
NASA Astrophysics Data System (ADS)
Landi Degl'Innocenti, Egidio
2015-10-01
The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.
TU-E-BRD-01: President’s Symposium: The Necessity of Innovation in Medical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayouth, J; Siewerdsen, J; Wahl, E
This abstract will not blow you away, but speed-painting presenter Erik Wahl will certainly make a truly unique AAPM symposium that you will not want to miss. Along with clinical director John Bayouth and scientific leader Jeff Siewerdsen, this session will highlight innovation. To avoid being button pushers and irrelevant investigators of yesterday’s science, we must innovate. This is particularly challenging in the changing landscape of declining research funding and healthcare reimbursement. But all hope is not lost, Medical Physics is a field born out of innovation. As scientists we quickly translated the man-made and natural phenomena of radiation intomore » a tool that could diagnose broken bones, locate foreign objects imbedded within the body, and treat a spectrum of diseases. As hyperbolae surrounding the curative powers of radiation overcame society, physicists continued their systematic pursuit of a fundamental understanding of radiation and applied their knowledge to enable the diagnostic and therapeutic power of this new tool. Health economics and the decline in research funding have put the Medical Physicist in a precarious position: how do we optimally participate in medical research and advanced patient care in the face of many competing needs? Today's diagnostic imaging and therapeutic approaches are tremendously sophisticated. Researchers and commercial vendors are producing technologies at a remarkable rate; to enable their safe and effective implementation Medical Physicists must work from a fundamental understanding of these technologies. This requires all of us, clinically practicing Medical Physicists, Researchers and Educators alike, to combine our training in scientific methods with innovation. Innovation is the key to our past, a necessity for our contemporary challenges, and critical for the future of Medical Physics. The keynote speakers for the 2014 AAPM Presidential Symposium session will address the way we approach these vitally important technologies for diagnosis and therapy into opportunities to innovate. The speed-painting artist and lecturer Erik Wahl will finish the symposium with a fast-paced and entertaining presentation on embracing the future by creating disruptive innovation strategies. Learning Objectives: Identify connection between Medical Physics and Innovation. Understand how Innovation enables Clinical Medical Physicists to implement novel technologies. Learn how innovative Medical Physics solutions can address significant and relevant challenges in science. Become inspired to pursue a new scientific understanding, positive change in clinical practice, and benefit to patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leakey, Andrew D. B.
This project funded the C 4 and CAM (crassulacean acid metabolism) Plant Biology 2013 symposium, held at the University of Illinois at Urbana-Champaign, IL, on August 6-9, 2013. The symposium brought together a diverse group of scientists to discuss the evolution, ecology, functional biology, genomics and biotechnological engineering of C 4 and CAM plants. These two groups of plants possess evolutionary modifications to their photosynthetic machinery that improve their performance in hot and dry conditions. Maize and pineapple are classic examples of C 4 and CAM plants, respectively. The meeting discussed how lessons learned from these groups of plants canmore » be harnessed to improve crop production of biofuel feedstocks in an era of global climate change. The interdisciplinary nature of the meeting meant that the delegation members typically do not collectively attend any one scientific society meeting. As a result, the symposium was a unique opportunity for knowledge transfer, initiation of new collaborations, and recruitment and exposure of early career scientists.« less
DEFINING THE CELLULAR AND MOLECULAR MECHANISMS OF TOXICANT ACTION IN THE TESTIS
A symposium was held at the 41st annual meeting of the Society of Toxicology with presentations that emphasized novel molecular and cellular pathways that modulate the response to testicular toxicants. The first two presentations described cellular alterations after exposure to t...
Cancer risks after radiation exposure in middle age.
Shuryak, Igor; Sachs, Rainer K; Brenner, David J
2010-11-03
Epidemiological data show that radiation exposure during childhood is associated with larger cancer risks compared with exposure at older ages. For exposures in adulthood, however, the relative risks of radiation-induced cancer in Japanese atomic bomb survivors generally do not decrease monotonically with increasing age of adult exposure. These observations are inconsistent with most standard models of radiation-induced cancer, which predict that relative risks decrease monotonically with increasing age at exposure, at all ages. We analyzed observed cancer risk patterns as a function of age at exposure in Japanese atomic bomb survivors by using a biologically based quantitative model of radiation carcinogenesis that incorporates both radiation induction of premalignant cells (initiation) and radiation-induced promotion of premalignant damage. This approach emphasizes the kinetics of radiation-induced initiation and promotion, and tracks the yields of premalignant cells before, during, shortly after, and long after radiation exposure. Radiation risks after exposure in younger individuals are dominated by initiation processes, whereas radiation risks after exposure at later ages are more influenced by promotion of preexisting premalignant cells. Thus, the cancer site-dependent balance between initiation and promotion determines the dependence of cancer risk on age at radiation exposure. For example, in terms of radiation induction of premalignant cells, a quantitative measure of the relative contribution of initiation vs promotion is 10-fold larger for breast cancer than for lung cancer. Reflecting this difference, radiation-induced breast cancer risks decrease with age at exposure at all ages, whereas radiation-induced lung cancer risks do not. For radiation exposure in middle age, most radiation-induced cancer risks do not, as often assumed, decrease with increasing age at exposure. This observation suggests that promotional processes in radiation carcinogenesis become increasingly important as the age at exposure increases. Radiation-induced cancer risks after exposure in middle age may be up to twice as high as previously estimated, which could have implications for occupational exposure and radiological imaging.
1977-11-07
34On the Effects of Microwave Irradiation of Seeds on the Development of Corn," "Biofi- zika rasteniy" [Plant Biophysics], Symposium 10-13 Sept...electromagnetic fields. BIBLIOGRAPHY 1. Viru , A. A. (editor), "Endokrinnyye mekhanizmy regulyatsii prisposobleniya organizma k myshechnoy deyatel’nosti
Proceedings of the symposium on Nuclear Radiation Detection Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, D.L.; Burger, A.; Franks, L.
2008-07-01
This symposium provides a venue for the presentation of the latest results and discussion of radiation detection materials from both experimental and theoretical standpoints. As advances are made in this area of materials, additional experimental and theoretical approaches are used to both guide the growth of materials and to characterize the materials that have a wide array of applications for detecting different types of radiation. The types of detector materials for semiconductors and scintillators include a variety of molecular compounds such as lanthanum halides (LaX{sub 3}), zinc oxide (ZnO), lead iodide (PbI{sub 2}), cadmium telluride (CdTe), mercuric iodide (HgI{sub 2}),more » thallium bromide (TlBr), as well as others, such as cadmium zinc telluride (CZT). An additional class of scintillators includes those based on organic compounds and glasses. Ideally, desired materials used for radiation detection have attributes such as appropriate-range band-gaps, high atomic numbers of the central element, high densities, performance at room temperature, and strong mechanical properties, and are low cost in terms of their production. There are significant gaps in the knowledge related to these materials that are very important in making radiation detector materials that are higher quality in terms of their reproducible purity, homogeneity, and mechanical integrity. The topics that are the focal point of this symposium address these issues so that much better detectors may be made in the future. Topics cover the following areas: - Material growth: on-going developments regarding cadmium telluride (CdTe), cadmium zinc telluride (CZT), mercuric iodide (HgI{sub 2}), cadmium manganese telluride (CMT), LaX{sub 3}, and all other detector materials; new materials with potential for radiation detection (II-VI, III-VI, III-VII compounds, neutron detectors, nano-materials, and ceramic scintillators); purification techniques; and growth methods; - Characterization: experimental results; methodologies; defect structure; surface and bulk effects; and interfacial phenomena (contacting, contact adhesion, crystallographic polarity, Schottky barrier, and surface passivation); - Physical and mechanical properties: electric charge compensation mechanisms, charge collection, and thermal transport; hardness; and plasticity; - New and innovative characterization techniques: optical spectroscopy; microscopy (SEM, TEM, STM, AFM, etc.); synchrotron mapping and X-ray diffraction; rocking curves; and spectroscopy (IR, Raman, NMR, XPS, Auger, and other applicable approaches); - Theoretical studies: bandgap calculations; mobility calculations; scintillator material physics; thermal modeling; crystal growth; processes in material matrices; and processes in amorphous and crystalline matrices.« less
NASA Astrophysics Data System (ADS)
Takahara, Atsushi; Kawahara, Seiichi
2009-09-01
Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y aimed to provide recent advances in polymer synthesis, self-assembling processes and morphologies, and functionalization of nano-soft-materials in order to initiate mutual and collaborative research interest that is essential to develop revolutionarily new nano-soft-materials in the decades ahead. Four Keynote lectures, 15 invited talks and 30 posters presented important new discoveries in polymeric nano-soft-materials, precision polymer synthesis, self-assembling and their functionalization. As for the precision polymer synthesis, the latest results were provided for studies on synthesis of polyrotaxane with movable graft chains, organic-inorganic hybridization of polymers, supra-molecular coordination assembly of conjugated polymers, precision polymerization of adamantane-containing monomers, production of high density polymer brush and synthesis of rod coil type polymer. The state-of-the-art results were introduced for the formation of nano-helical-structure of block copolymer containing asymmetric carbon atoms, self-assembling of block copolymers under the electric field, self-assembling of liquid crystalline elastomers, preparation of nano cylinder template films and mesoscopic simulation of phase transition of polymers and so forth. Moreover, recent advantages of three-dimensional electron microtomography and scanning force microscopy were proposed for analyses of nano-structures and properties of polymeric multi-component systems. Syntheses, properties and functions of slide-ring-gel, organic-inorganic hybrid hydrogels, hydrogel nano-particles, liquid-crystalline gels, the self-oscillating gels, and double network gels attracted participants' attention. Modifications of naturally occurring polymeric materials with supercritical carbon dioxide were introduced as a novel technology. Some of the attractive topics are presented in this issue. We are grateful to all the speakers and participants for valuable contributions and active discussions. Organizing committee of Symposium Y (IUMRS-ICA 2008) Chair Seiichi Kawahara (Nagaoka University of Technology, Japan) Vice Chairs Rong-Ming Ho (National Tsing Hua University, Taiwan) Hiroshi Jinnai (Kyoto Institute of Technology, Japan) Masami Kamigaito (Nagoya University, Japan) Takashi Miyata (Kansai University, Japan) Hiroshi Morita (National Institute of Advanced Industrial Science and Technology, Japan) Hideyuki Otsuka (Kyushu University, Japan) Daewon Sohn (Hanyang University, Korea) Keiji Tanaka (Kyushu University, Japan)
Legacy of Environmental Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Lane, Helen W.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the major environmental lessons learned and the development of countermeasures, monitoring hardware, and procedures.
Recommendation of an Occupational Exposure Level for Perfluro-N-Butyl Iodide
2006-09-01
Clinical signs observed in some dogs, but not all dogs exposed to PFBI included salivation, limb and/or muscle tension, and non-specific signs of...Symposium 2003 considered, “…developmental deficits or delays, and goiter and other effects of frank hypothyroid condition to be adverse effects
A joint conference for the sixth year co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 6-19, 1991. he technical progra...
SUMMARY OF THE EPA/A&WMA INTERNATIONAL SYMPOSIUM: MEASUREMENT OF TOXIC & RELATED AIR POLLUTANTS
A joint conference co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory of the U.S Environmental Protection Agency and the Air & Waste Management Association was held at Raleigh, North Carolina, May 1-4, 1990. he technical program consisted of 187 presentat...
SUMMARY OF THE 1993 EPA/AWMA SYMPOSIUM - MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS
A joint conference cosponsored for the eighth year by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 3-7, 1993. he four day technica...
A joint conference cosponsored for the seventh year by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 4-8, 1992. he technical progra...
Recently, household dust has been implicated as a major source of polybrominated diphenyl ether (PBDE) exposure in humans. This finding may have important implications for young children, who are thought to ingest more dust than adults and may be more susceptible to some of the ...
1987-01-01
tinguished predecessors--have made a very real and signif - icant contribution to this nation’s defense. The U.S. armed services created the forerunner of...rate, with the hope that a permanent agency would take over support of this research after that date. The nature of the work of the Radiation...of Electronics. Quite naturally the administration and most of the personnel of the Electronics Laboratory were members of the wartime Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
MO-C-BRB-03: RSNA President [Diagnostic radiology and radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arenson, R.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
MO-C-BRB-01: Introduction [Diagnostic radiology and radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, J.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
MO-C-BRB-02: ASTRO President [Diagnostic radiology and radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsky, B.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
1983-12-01
Report on Tri-Modcl Treatment Based Stress Management Program for the Psychosomatic Patient P003 96S’ Psychological Effects of Soldier Acute High Altitude...Psychological Effects of Soldier Acute High Altitude Exposure: Study Progress Report - David H. Gillooly . . . . . 93 S. A Rationale for Family Therapy...34 \\ . ,; ’ . , • . • .. , , • , • "•. . . ( 1545-1615 Psychological Effects of Soldier LTC Gillooly Acute High Altitude Exposure 1615-1700 Consultation to
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...
TU-A-17A-02: In Memoriam of Ben Galkin: Virtual Tools for Validation of X-Ray Breast Imaging Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, K; Bakic, P; Abbey, C
2014-06-15
This symposium will explore simulation methods for the preclinical evaluation of novel 3D and 4D x-ray breast imaging systems – the subject of AAPM taskgroup TG234. Given the complex design of modern imaging systems, simulations offer significant advantages over long and costly clinical studies in terms of reproducibility, reduced radiation exposures, a known reference standard, and the capability for studying patient and disease subpopulations through appropriate choice of simulation parameters. Our focus will be on testing the realism of software anthropomorphic phantoms and virtual clinical trials tools developed for the optimization and validation of breast imaging systems. The symposium willmore » review the stateof- the-science, as well as the advantages and limitations of various approaches to testing realism of phantoms and simulated breast images. Approaches based upon the visual assessment of synthetic breast images by expert observers will be contrasted with approaches based upon comparing statistical properties between synthetic and clinical images. The role of observer models in the assessment of realism will be considered. Finally, an industry perspective will be presented, summarizing the role and importance of virtual tools and simulation methods in product development. The challenges and conditions that must be satisfied in order for computational modeling and simulation to play a significantly increased role in the design and evaluation of novel breast imaging systems will be addressed. Learning Objectives: Review the state-of-the science in testing realism of software anthropomorphic phantoms and virtual clinical trials tools; Compare approaches based upon the visual assessment by expert observers vs. the analysis of statistical properties of synthetic images; Discuss the role of observer models in the assessment of realism; Summarize the industry perspective to virtual methods for breast imaging.« less
A joint conference of the sixth year co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air and Waste Management Association was held in Durham, North Carolina, May 6-19, 1991. he technical progr...
A joint conference of the sixth year co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air and Waste Management Association was held in Durham, North Carolina, May 6-19, 1991. he technical progr...
Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo
2007-11-20
A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.
Health effects of prenatal radiation exposure.
Williams, Pamela M; Fletcher, Stacy
2010-09-01
Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.
Fortoul, T I; Rojas-Lemus, M; Rodriguez-Lara, V; Gonzalez-Villalva, A; Ustarroz-Cano, M; Cano-Gutierrez, G; Gonzalez-Rendon, S E; Montaño, L F; Altamirano-Lozano, M
2014-01-01
Vanadium (V) has a variety of applications that make it suitable for use in ceramic production and decoration, production of pigments for a variety of products, an accelerator for drying paint, production of aniline black dye, and as a mordant in coloring textiles. Taking advantage of its hardness, resilience, ability to form alloys, and its resistance to corrosion, V is also used in the production of tools, steel, machinery, and surgical implants. V is employed in producing photographic developers, batteries, and semi-conductors, and in catalyst-based recycling processes. As technologies have evolved, the use of V has increased in jet aircraft and space technology, as well as in manufacture of ultraviolet filter glass to prevent radiation injury. Due to these myriad uses, the potential for occupational exposure to V is ever-evident. Similarly, there is an increased risk for environmental contamination by V agents themselves or as components of by-products released into the environment. For example, the use of V in sulfuric acid production results in the release of soot and/or fly ash rich in vanadium pentoxide. Petroleum refinery, smelting, welding, and cutting of V-rich steel alloy, the cleaning and repair of oil-fired boilers, and catalysis of chemical productions are other sources of increased airborne V-bearing particles in local/distant environments. Exposure of non-workers to V is an increasing health concern. Studies have demonstrated associations between exposure to airborne V-bearing particles (as part of air pollution) and increased risks of a variety of pathologies like hypertension, dysrhythmia, systemic inflammation, hyper-coagulation, cancers, and bronchial hyper-reactivity. This paper will provide a review of the history of V usage in occupational settings, documented exposure levels, environmental levels of V associated with pollution, epidemiologic data relating V exposure(s) to adverse health outcomes, and governmental responses to protect both workers and non-workers from exposure to this metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanooka, H.; Orii, H.
1971-09-01
The RBE of therapy using ionizing radiations other than x rays, gamma - rays, and electrons in various materials and under various radiation conditions is discussed. Literature concerning the RBE of various ionizing radiations published between 1966 and 1971 was selected from the following ten journals: Radiation Research, international Journal of Radiation Biology, Journal of Radiation Research, Japanese Journal of Oenetics, Nippon Acta Radiologica, American Journal of Roentgenology, British Journal of Radiology, and Acta Radiologica. This review includes a comprehensive survey of the usefulness of fast neutrons and the conclusions from the symposiums. In addition, a series of reports ofmore » experimental data concerning the excellent therapeutic effects of the 14 MeV neutron are reviewed. It is also noted that the progress of studies on the RBE in the cells of higher organisms has been achieved. In addition, the utilization of linear accelerators with high LET can positively increase the therapeutic effectiveness. (JA)« less
Minimizing radiation exposure during percutaneous nephrolithotomy.
Chen, T T; Preminger, G M; Lipkin, M E
2015-12-01
Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.
Proceedings (Supplement), AFCRL Scientific Balloon Symposium (8th) 30 September to 3 October 1974
1974-12-02
material must withstand a long term dead load of 1.5 x 60 lb/in or approxi- mately 90 lb/in, where the total "safety factor" 1.5 has been proven valid...21 BALLOON FABTRC SOLAR RADIATION TEMPERATURE ABSORBED ’.0 14310 A 710i X 106STU H0 OUTSIDE NATURAL CONVECTION 0.71.181 X 1061STU NI A TEMPERATURE 470...145311 R INSIDE NATURAL CONVRCTION-8 Oi- 151 X 106 BTU NR • • INFrRARED RADIATION AMBIEINT AIR EMITTED TEMPERATURE 271141 X 106 BTU MR 43414221 ’R
MO-C-BRB-06: Translating NIH / NIBIB funding to clinical reality in quantitative diagnostic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, E.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
MO-C-BRB-04: The role of the NIH in funding innovations in science and medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettigrew, R.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A
2012-05-01
Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice. Copyright 2012, SLACK Incorporated.
Predictors of radiation exposure to providers during percutaneous nephrolithotomy
Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.
2017-01-01
Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931
MO-FG-BRC-00: Joint AAPM-ESTRO Symposium: Advances in Experimental Medical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
Radiation safety audit of a high volume Nuclear Medicine Department.
Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh
2014-10-01
Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure.
Symposium on the Tropospheric Chemistry of the Antarctic Region: Pre- Conference Abstracts
1991-06-01
and composition); elemental carbon particles can scatter and absorb solar radiation. In addition, molecular species present as organic carbon aerosol ...elemental carbon to organic carbon aerosol particles are measured. This accounting pro- vides useful information needed to describe the ambient levels... Particle Analysis of Five Years of Aerosol Sampling in the Antarctic Peninsula P. Artaxo, W. M aenhaut and Rend Van Grieken
Microstructural processes in irradiated materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie
2016-04-01
This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.
Fundamental Processes in Partially Ionized Plasmas
1988-08-01
thermal plasma chemistry , may significantly underestimate Lie importance of radiation losses. Also shown in Figure 4 are the earlier measurements of Emmons...in Thermal Plasma Chemistry ," 8th Int’l Symposium on Plasma Chemistry , Tokyo Japan, August 1987. 4. Kruger, Charles H., "Nonequilibrium Effects in...Annual Gaseous Electronics Conference, Minneapolis, MN, October 1988. 7. Kruger, C. H., "Nonequilibrium Effects in Thermal Plasma Chemistry ," Submitted
Progress and future tasks in food irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-09-01
Progress in the use of atomic energy for preserving food was reviewed at recent meetings of the Second International Symposium on Food Irradiation in India. The technical feasibility of radiation control was discussed with regard to the inhibition of sprouting in yams by gamma radiation; combined radiation and chemical treatment of potatoes and onions to prevent sprouting; effects of radiation on starch preparations and seasonings; radiation preservation of fish; radiation effects on bacteria; and control of insect pests. The importance of assessing the economic feasibility on the basis of practical, large-scale tests is emphasized. With regard to wholesomeness reports weremore » given of acute and chronic toxicity tests with irradiated wheat, shrimp, whole diets, beef, strawberries, mushrooms, and chicken. No harmful effects were observed following large-scale animal testing of irradiated complete diets. A summary of tasks ahead includes an assessment of economic benefits of food irradiation; criteria of public health acceptance; education of the public; and internationsl collaboration with the FAO and IAEA. (HLW)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, D.R. Jr.; Wondrow, M.A.; Gray, J.E.
1990-01-01
The increased application of therapeutic interventional cardiology procedures is associated with increased radiation exposure to physicians, patients and technical personnel. New advances in imaging techniques have the potential for reducing radiation exposure. A progressive scanning video system with a standard vascular phantom has been shown to decrease entrance radiation exposure. The effect of this system on reducing actual radiation exposure to physicians and technicians was assessed from 1984 through 1987. During this time, progressive fluoroscopy was added sequentially to all four adult catheterization laboratories; no changes in shielding procedures were made. During this time, the case load per physician increasedmore » by 63% and the number of percutaneous transluminal coronary angioplasty procedures (a high radiation procedure) increased by 244%. Despite these increases in both case load and higher radiation procedures, the average radiation exposure per physician declined by 37%. During the same time, the radiation exposure for technicians decreased by 35%. Pulsed progressive fluoroscopy is effective for reducing radiation exposure to catheterization laboratory physicians and technical staff.« less
Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research
The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.
Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin
2017-04-01
Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.
Radiation exposure to sonographers from nuclear medicine patients: A review.
Earl, Victoria Jean; Badawy, Mohamed Khaldoun
2018-06-01
Following nuclear medicine scans a patient can be a source of radiation exposure to the hospital staff, including sonographers. Sonographers are not routinely monitored for occupational radiation exposure as they do not commonly interact with radioactive patients or other sources of ionizing radiation. This review aims to find evidence relating to the risk and amount of radiation the sonographer is exposed to from nuclear medicine patients. It is established in the literature that the radiation exposure to the sonographer following diagnostic nuclear medicine studies is low and consequently the risk is not significant. Nevertheless, it is paramount that basic radiation safety principles are followed to ensure any exposure to ionizing radiation is kept as low as reasonably achievable. Practical recommendations are given to assist the sonographer in radiation protection. Nuclear medicine therapy procedures may place the sonographer at higher risk and as such consultation with a Radiation Safety Officer or Medical Physicist as to the extent of exposure is recommended. © 2018 The Royal Australian and New Zealand College of Radiologists.
2011-03-15
2 Impact of Alternating Days of Intermittent Hypoxic Exposure (IHE) on Physical and Cognitive Performance...60 Management and Treatment of Pediatric Obesity in a Military Outpatient Setting ................................. 71 Budget Impact Analysis of...Bariatric Surgery for Morbid Obesity ........................................................... 78 Pilot Study of A Diabetes Prevention Program in A
Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...
Annual Research Progress Report FY 92.
1993-01-11
and Toxic Exposures B ronchial m ucin .................................................................. 12 Enriquez, John 1 .: 90/13 (T) The Effect of...Bast RC: Fibronectin is an immunosuppressive Pearl W, Zeballos R, Gregors G, Connery S, substance associated with epithelial ovarian Weisman 1 : Effects ...Symposium. 30 Sonthofen, Germany, Apr 92. Apr-03 May 92. Donovan M: Maxillofacial Reconstruction Using Weisman 1 : Presence of SOT and the Effect on
Role of Ionizing Radiation in Neurodegenerative Diseases
Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.
2018-01-01
Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445
NASA Technical Reports Server (NTRS)
Wu, Honglu
2006-01-01
Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.
A decade of changes in radiation protection.
Moulder, J E
1992-04-01
Although radiation protection standards have changed remarkably little over the past decade, there have been changes in our understanding of radiation hazards that may affect the practice of radiation medicine over the next decade. With recognition of indoor radon exposure has come a new focus for public health concerns, because it is now clear that radon rather than medical exposure is the largest controllable source of radiation exposure to the general public. Continued follow-up of irradiated populations has led to an increase in our estimate of the cancer risk for high-dose exposures; this increased risk estimate is, in turn, leading to decreases in radiation exposure limits. Although our concern about the carcinogenic risk for radiation exposure has increased, our concern about genetic consequences has decreased, because no genetic effects have yet been observed in the offspring of atomic bomb survivors. Studies of atomic bomb survivors have also led to a change in the focus of concern over prenatal radiation exposure; the principle risk now appears to be mental retardation rather than childhood cancer.
Kubale, Travis L; Daniels, Robert D; Yiin, James H; Couch, James; Schubauer-Berigan, Mary K; Kinnes, Gregory M; Silver, Sharon R; Nowlin, Susan J; Chen, Pi-Hsueh
2005-12-01
A nested case-control study using conditional logistic regression was conducted to evaluate the exposure-response relationship between external ionizing radiation exposure and leukemia mortality among civilian workers at the Portsmouth Naval Shipyard (PNS), Kittery, Maine. The PNS civilian workers received occupational radiation exposure while performing construction, overhaul, repair and refueling activities on nuclear-powered submarines. The study age-matched 115 leukemia deaths with 460 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992. In addition to radiation doses received in the workplace, a secondary analysis incorporating doses from work-related medical X rays and other occupational radiation exposures was conducted. A significant positive association was found between leukemia mortality and external radiation exposure, adjusting for gender, radiation worker status, and solvent exposure duration (OR = 1.08 at 10 mSv of exposure; 95% CI = 1.01, 1.16). Solvent exposure (including benzene and carbon tetrachloride) was also significantly associated with leukemia mortality adjusting for radiation dose, radiation worker status, and gender. Incorporating doses from work-related medical X rays did not change the estimated leukemia risk per unit of dose.
Monitoring of fetal radiation exposure during pregnancy.
Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei
2013-09-01
One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.
Rinsky, R A; Melius, J M; Hornung, R W; Zumwalde, R D; Waxweiler, R J; Landrigan, P J; Bierbaum, P J; Murray, W E
1988-01-01
Case-control analysis of deaths due to lung cancer (International Classification of Diseases, Eighth Revision, code 162) among persons who worked at the Portsmouth Naval Shipyard, Kittery, Maine, between 1952 and 1977 found elevated odds ratios for exposures to ionizing radiation, asbestos, and welding byproducts. The radiation-related excess was statistically significant in persons with cumulative lifetime exposures of 1.0-4.999 rem. When asbestos and welding histories were combined into a single risk factor, odds ratios for the combined exposure were significantly elevated for two of three duration-of-exposure categories examined. Further analysis of data on radiation exposure, controlling for exposures to asbestos and welding, found reductions in initial estimates of radiation risk at all levels of radiation exposure. This reduction suggests that radiation workers were more heavily exposed to asbestos and/or welding fumes than were other workers and that those exposures confounded the observed association between radiation and lung cancer. Analysis of mortality by time since first exposure to radiation revealed no pattern of progressive increase as latency increased. By contrast, odds ratios for asbestos/welding increased with latency. Data on cigarette smoking and socioeconomic status were not available. The results of this study do not preclude a possible association between radiation exposure at the Portsmouth Naval Shipyard and excess mortality from lung cancer. However, they provide no evidence in support of such a relation.
Radiation safety audit of a high volume Nuclear Medicine Department
Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh
2014-01-01
Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361
Müller, M C; Strauss, A; Pflugmacher, R; Nähle, C P; Pennekamp, P H; Burger, C; Wirtz, D C
2014-08-01
There is a positive correlation between operation time and staff exposure to radiation during intraoperative use of C-arm fluoroscopy. Due to harmful effects of exposure to long-term low-dose radiation for both the patient and the operating team it should be kept to a minimum. AIM of this study was to evaluate a novel dosimeter system called Dose Aware® (DA) enabling radiation exposure feedback of the personal in an orthopaedic and trauma operation theatre in real-time. Within a prospective study over a period of four month, DA was applied by the operation team during 104 orthopaedic and trauma operations in which the C-arm fluoroscope was used in 2D-mode. During ten operation techniques, radiation exposure of the surgeon, the first assistant, the theatre nurse and the anaesthesiologist was evaluated. Seventy-three operations were analysed. The surgeon achieved the highest radiation exposure during dorsolumbar spinal osteosynthesis, kyphoplasty and screw fixation of sacral fractures. The first assistant received a higher radiation exposure compared to the surgeon during plate osteosynthesis of distal radius fractures (157 %), intramedullary nailing of pertrochanteric fractures (143 %) and dorsolumbar spinal osteosynthesis (240 %). During external fixation of ankle fractures (68 %) and screw fixation of sacral fractures (66 %) radiation exposure of the theatre nurse exceeded 50 % of the surgeon's radiation exposure. During plate osteosynthesis of distal radius fractures (157 %) and intramedullary splinting of clavicular fractures (115 %), the anaesthesiologist received a higher radiation exposure than the surgeon. The novel dosimeter system DA provides real-time radiation exposure feedback of the personnel in an orthopaedic and trauma operation theatre for the first time. Data of this study demonstrate that radiation exposure of the personnel depends on the operation type. The first assistant, the theatre nurse and the anaesthesiologist might be exposed to higher radiation doses than the surgeon. DA might help to increase awareness concerning irradiation in an orthopaedic and trauma operation theatre and might enhance staff compliance in using radiation protection techniques. Georg Thieme Verlag KG Stuttgart · New York.
PREFACE: International Congress on Energy Fluxes and Radiation Effects (EFRE-2014)
NASA Astrophysics Data System (ADS)
2014-11-01
The International Congress on Energy Fluxes and Radiation Effects 2014 (EFRE 2014) was held in Tomsk, Russia, on September 21-26, 2014. The organizers of the Congress were the Institute of High Current Electronics SB RAS and Tomsk Polytechnic University. EFRE 2014 combines three international conferences which are regularly held in Tomsk, Russia: the 18th International Symposium on High-Current Electronics (18th SHCE), the 12th International Conference on Modification of Materials with Particle Beams and Plasma Flows (12th CMM) and the 16th International Conference on Radiation Physics and Chemistry of Condensed Matter (16th RPC). The International Conference on Radiation Physics and Chemistry of Condensed Matter is a traditional representative forum devoted to the discussion of the fundamental problems of physical and chemical non-linear processes in condensed matter (mainly inorganic dielectrics) under the action of particle and photon beams of all types including pulsed power laser radiation. The International Symposium on High-Current Electronics is held biannually in Tomsk, Russia. The program of the conferences covers a wide range of scientific and technical areas including pulsed power technology, ion and electron beams, high-power microwaves, plasma and particle beam sources, modification of materials, and pulsed power applications in chemistry, biology and medicine. The 12th International Conference on Modification of Materials with Particle Beams and Plasma Flows is devoted to the discussion of the fundamental and applied issues in the field of modification of materials properties with particle beams and plasma flows. The six-day Congress brought together more than 250 specialists and scientists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussion on the topics of interest. The proceedings were edited by Victor Lisitsyn, Vladimir Lopatin, and Anna Bogdan. We appreciate the contribution of the invited speakers and all participants, as well as sponsors "Intech Analytics" and "MICROSPLAV" for making the Congress successful.
NASA Technical Reports Server (NTRS)
Morgan, William F.
2003-01-01
The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.
Radiation exposure of the anesthesiologist in the neurointerventional suite.
Anastasian, Zirka H; Strozyk, Dorothea; Meyers, Philip M; Wang, Shuang; Berman, Mitchell F
2011-03-01
Scatter radiation during interventional radiology procedures can produce cataracts in participating medical personnel. Standard safety equipment for the radiologist includes eye protection. The typical configuration of fluoroscopy equipment directs radiation scatter away from the radiologist and toward the anesthesiologist. This study analyzed facial radiation exposure of the anesthesiologist during interventional neuroradiology procedures. Radiation exposure to the forehead of the anesthesiologist and radiologist was measured during 31 adult neuroradiologic procedures involving the head or neck. Variables hypothesized to affect anesthesiologist exposure were recorded for each procedure. These included total radiation emitted by fluoroscopic equipment, radiologist exposure, number of pharmacologic interventions performed by the anesthesiologist, and other variables. Radiation exposure to the anesthesiologist's face averaged 6.5 ± 5.4 μSv per interventional procedure. This exposure was more than 6-fold greater (P < 0.0005) than for noninterventional angiographic procedures (1.0 ± 1.0) and averaged more than 3-fold the exposure of the radiologist (ratio, 3.2; 95% CI, 1.8-4.5). Multiple linear regression analysis showed that the exposure of the anesthesiologist was correlated with the number of pharmacologic interventions performed by the anesthesiologist and the total exposure of the radiologist. Current guidelines for occupational radiation exposure to the eye are undergoing review and are likely to be lowered below the current 100-150 mSv/yr limit. Anesthesiologists who spend significant time in neurointerventional radiology suites may have ocular radiation exposure approaching that of a radiologist. To ensure parity with safety standards adopted by radiologists, these anesthesiologists should wear protective eyewear.
Epidemiology of accidental radiation exposures.
Cardis, E
1996-01-01
Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed. PMID:8781398
Manchikanti, Laxmaiah; Cash, Kim A; Moss, Tammy L; Rivera, Jose; Pampati, Vidyasagar
2003-08-06
BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with 0.6042 mREM per procedure. In Group III the scatter radiation exposure was 1152 mREM with 1.3930 mREM per procedure. CONCLUSION: Results of this study showed that scatter radiation exposure to both the upper and lower parts of the physician's body is present. Protection was offered by traditional measures to the upper body only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahimian, B.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, D.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berbeco, R.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, P.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.
Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A
2015-07-01
The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Blattnig, Steve; Slaba, Tony; Kress, Brian; Wiltberger, Michael; Solomon, Stan
NASA's High Charge and Energy Transport (HZETRN) code is a deterministic model for rapid and accurate calculations of the particle radiation fields in the space environment. HZETRN is used to calculate dosimetric quantities on the International Space Station (ISS) and assess astronaut risk to space radiations, including realistic spacecraft and human geometry for final exposure evaluation. HZETRN is used as an engineering design tool for materials research for radiation shielding protection. Moreover, it is used to calculate HZE propagation through the Earth and Martian atmospheres, and to evaluate radiation exposures for epidemiological studies. A new research project has begun that will use HZETRN as the transport engine for the development of a nowcast prediction of air-crew radiation exposure for both background galactic cosmic ray (GCR) exposure and radiation exposure during solar particle events (SPE) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which utilizes real-time observations from ground-based, atmospheric, and satellite measurements. In this paper, we compute the global distribution of atmospheric radiation dose for several SPE events during solar cycle 23, with particular emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure.
Hand and body radiation exposure with the use of mini C-arm fluoroscopy.
Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H
2011-04-01
To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Impact of climate change on occupational exposure to solar radiation.
Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro
2016-01-01
Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.
The Role of Optical Radiations in Skin Cancer
Palla, Marco; Di Trolio, Rossella; Mozzillo, Nicola; Ascierto, Paolo A.
2013-01-01
Purpose. Electromagnetic radiation with wavelength in the range 100 nm to 1 mm is known as optical radiation and includes ultraviolet radiation, the visible spectrum, and infrared radiation. The deleterious short- and long-term biological effects of ultraviolet radiation, including melanoma and other skin cancers, are well recognized. Infrared radiation may also have damaging biological effects. Methods. The objective of this review was to assess the literature over the last 15 years and to summarize correlations between exposure to optical radiation and the risk of melanoma and other cancers. Results. There is a clear correlation between exposure to UV radiation and the development of skin cancer. Most importantly, a strong association between artificial UV radiation exposure, for example, tanning devices, and the risk of melanoma and squamous cell carcinoma has been clearly demonstrated. There is no clear evidence that exposure to IR and laser radiation may increase the risk of skin cancer, although negative health effects have been observed. Conclusions. Preventative strategies that involve provision of public information highlighting the risks associated with exposure to sunlight remain important. In addition, precautionary measures that discourage exposure to tanning appliances are required, as is legislation to prevent their use during childhood. PMID:23710365
Ionizing radiation exposure as a result of diagnostic imaging in patients with lymphoma.
Crowley, M P; O'Neill, S B; Kevane, B; O'Neill, D C; Eustace, J A; Cahill, M R; Bird, B; Maher, M M; O'Regan, K; O'Shea, D
2016-05-01
Survival rates among patients with lymphoma continue to improve. Strategies aimed at reducing potential treatment-related toxicity are increasingly prioritized. While radiological procedures play an important role, ionizing radiation exposure has been linked to an increased risk of malignancy, particularly among individuals whose cumulative radiation exposure exceeds a specific threshold (75 millisieverts). Within this retrospective study, the cumulative radiation exposure dose was quantified for 486 consecutive patients with lymphoma. The median estimated total cumulative effective dose (CED) of ionizing radiation per subject was 69 mSv (42-118). However, younger patients (under 40 years) had a median CED of 89 mSv (55-124). This study highlights the considerable radiation exposure occurring among patients with lymphoma as a result of diagnostic imaging. To limit the risk of secondary carcinogenesis, consideration should be given to monitoring cumulative radiation exposure in individual patients as well as considering imaging modalities, which do not impart an ionizing radiation dose.
Radiation dose from initial trauma assessment and resuscitation: review of the literature.
Hui, Catherine M; MacGregor, John H; Tien, Homer C; Kortbeek, John B
2009-04-01
Trauma care benefits from the use of imaging technologies. Trauma patients and trauma team members are exposed to radiation during the continuum of care. Knowledge of exposure amounts and effects are important for trauma team members. We performed a review of the published literature; keywords included "trauma," "patients," "trauma team members," "wounds," "injuries," "radiation," "exposure," "dose" and "computed tomography" (CT). We also reviewed the Board on Radiation Effects Research (BEIR VII) report, published in 2005 and 2006. We found no randomized controlled trials or studies. Relevant studies demonstrated that CT accounts for the single largest radiation exposure in trauma patients. Exposure to 100 mSv could result in a solid organ cancer or leukemia in 1 of 100 people. Trauma team members do not exceed the acceptable occupation radiation exposure determined by the National Council of Radiation Protection and Management. Modern imaging technologies such as 16- and 64-slice CT scanners may decrease radiation exposure. Multiple injured trauma patients receive a substantial dose of radiation. Radiation exposure is cumulative. The low individual risk of cancer becomes a greater public health issue when multiplied by a large number of examinations. Though CT scans are an invaluable resource and are becoming more easily accessible, they should not replace careful clinical examination and should be used only in appropriate patients.
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2014 CFR
2014-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. Link to an... execution, or 952.223-72, Radiation protection and nuclear criticality: Preservation of Individual...
Climate change impacts on human exposures to air pollution ...
This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.
Radiation protection aspects of the cosmic radiation exposure of aircraft crew.
Bartlett, D T
2004-01-01
Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.
Radically Reducing Radiation Exposure during Routine Medical Imaging
Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.
NASA Astrophysics Data System (ADS)
Chardenet, Kathleen A.
Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures (phase 2). Methods: A primary, quantitative crossover study of faculty and staff working in an electrophysiology lab at the University of Michigan Hospitals setting occurred. Participants in the control group was first blinded in phase 1 to their radiation exposure over an 10-week time period. The same group subsequently became the treatment group in phase 2 when over a second 10-week period real-time exposure levels were made available to them. Power analysis, using a 40% decrease in exposure, was calculated using a variance of radiation exposure equal to the mean radiation exposure with 80% power and alpha = .05. Calculations revealed 102 subjects in each treatment and control group were necessary. Results: Using the mixed effect linear model, a significant decrease in radiation levels occurred in phase 2 as compared to phase 1 for the operator role represented by the combined electrophysiologist-fellow role with a P value of .025. Exposure levels in all other provider groups for phase 1 or 2 failed to reach statistical significance. All dose values were low and well below the US maximum allowable yearly dose of 5,000 mrem per year. Conclusion: A real-time radiation dose monitoring system during electrophysiology procedures may significantly lower occupational radiation exposure in health care workers.
Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony
2013-01-01
Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051
... Your Health Possible Health Effects Contamination and Exposure Acute Radiation Syndrome (ARS) Cutaneous Radiation Injury (CRI) Cancer and Long- ... Information for Professionals Radiation Thermometer Information for ... Radiation Syndrome: A Fact Sheet for Clinicians Cutaneous Radiation Injury ( ...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2012 CFR
2012-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2013 CFR
2013-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2011 CFR
2011-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline
2017-04-01
Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. AL cases diagnosed over 1990-2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002-2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland.
International Symposium on Electrets (ISE 6) (6th) Held in Oxford, England on 1-3 September 1988
1988-09-01
detector Heat and other electromagnetic radiation detection Micro- & millimeter waves Nerve excitation studies Optical fibre attenuation Heat generation in...Phenomena in Reslnic Eaters of 241 Photothermoplastic Devices for Application to Holographic Optical Switching J. Datndurand, C. Lacabanne, J.Y. Molsan...328 Ionisation Chambers K. Doughty and I. Fleming t-64 Electro- Optical Behaviour of Ferroelectric Liquid 334 Crystal (FLC) Mixtures H.R. Dilbal, C
1998-11-06
after many iterations of analysis , development, construction and testing was found to provide amplification ratios of around 250:1 and generate...IEEE International Symposium on Application of Ferroelectrics 2, 767-770 (1996). 11. "A Comparative Analysis of Piezoelectric Bending Mode Actuators...Active 95, 359-368, Newport Beach, CA(1995) 21. "Multiple Reference Feedforward Active Noise Control. Part I. Analysis and Simulation of Behavior," Y
High Energy Phenomena on the Sun. [conference on solar activity effects and solar radiation
NASA Technical Reports Server (NTRS)
Ramaty, R. (Editor); Stone, R. G. (Editor)
1973-01-01
The proceedings of a symposium of high energy phenomena on the sun are presented. The subjects discussed include the following: (1) flare theories and optical observations, (2) microwave and hard X-ray observations, (3) ultraviolet and soft X-ray emissions, (4) nuclear reactions in solar flares, (5) energetic particles from the sun, (6) magnetic fields and particle storage, and (7) radio emissions in the corona and interplanetary space.
Radiation and Laser Potential of Homo and Heteronuclear Rare-Gas Diatomic Molecules.
1982-12-01
studied in detail and classified in terms of the transition involved. Molecular constants and H details of the dimer potential curves were determined...identify their origin and determine excited state energies and molecular parameters. Summary of the Research: The rare-gas dimers were studied in the... Molecular Dynamics Symposium, October 1979, by Y. Tanaka. Emission Spectra of Kr 2 in the VUV Region Paper to be presented at AFOSR/ Molecular
Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P
2009-07-01
In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to asbestos and welding fume, that the absolute level of confounding exposure did not affect the risk estimates, and that weak relationships existed between monitored lifetime cumulative occupational radiation dose and asbestos or welding fume.
New Approaches to Radiation Protection
Rosen, Eliot M.; Day, Regina; Singh, Vijay K.
2015-01-01
Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development. PMID:25653923
Hoenerhoff, Mark J; Hartke, James
2015-01-01
The theme of the Society of Toxicologic Pathology 2014 Annual Symposium was "Translational Pathology: Relevance of Toxicologic Pathology to Human Health." The 5th session focused on epigenetic end points in biology, toxicity, and carcinogenicity, and how those end points are relevant to human exposures. This overview highlights the various presentations in this session, discussing integration of epigenetics end points in toxicologic pathology studies, investigating the role of epigenetics in product safety assessment, epigenetic changes in cancers, methodologies to detect them, and potential therapies, chromatin remodeling in development and disease, and epigenomics and the microbiome. The purpose of this overview is to discuss the application of epigenetics to toxicologic pathology and its utility in preclinical or mechanistic based safety, efficacy, and carcinogenicity studies. © 2014 by The Author(s).
Radiation Exposure from Medical Exams and Procedures
Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...
Cumulative radiation exposure and cancer risk estimation in children with heart disease.
Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S; Benjamin, Daniel K; Yoshizumi, Terry T; Reiman, Robert E; Frush, Donald P; Hill, Kevin D
2014-07-08
Children with heart disease are frequently exposed to imaging examinations that use ionizing radiation. Although radiation exposure is potentially carcinogenic, there are limited data on cumulative exposure and the associated cancer risk. We evaluated the cumulative effective dose of radiation from all radiation examinations to estimate the lifetime attributable risk of cancer in children with heart disease. Children ≤6 years of age who had previously undergone 1 of 7 primary surgical procedures for heart disease at a single institution between 2005 and 2010 were eligible for the study. Exposure to radiation-producing examinations was tabulated, and cumulative effective dose was calculated in millisieverts. These data were used to estimate lifetime attributable risk of cancer above baseline using the approach of the Committee on Biological Effects of Ionizing Radiation VII. The cohort included 337 children exposed to 13 932 radiation examinations. Conventional radiographs represented 92% of examinations, whereas cardiac catheterization and computed tomography accounted for 81% of cumulative exposure. Overall median cumulative effective dose was 2.7 mSv (range, 0.1-76.9 mSv), and the associated lifetime attributable risk of cancer was 0.07% (range, 0.001%-6.5%). Median lifetime attributable risk of cancer ranged widely depending on surgical complexity (0.006%-1.6% for the 7 surgical cohorts) and was twice as high in females per unit exposure (0.04% versus 0.02% per 1-mSv effective dose for females versus males, respectively; P<0.001). Overall radiation exposures in children with heart disease are relatively low; however, select cohorts receive significant exposure. Cancer risk estimation highlights the need to limit radiation dose, particularly for high-exposure modalities. © 2014 American Heart Association, Inc.
Metabolic Phenotyping Reveals a Lipid Mediator Response to Ionizing Radiation
2015-01-01
Exposure to ionizing radiation has dramatically increased in modern society, raising serious health concerns. The molecular response to ionizing radiation, however, is still not completely understood. Here, we screened mouse serum for metabolic alterations following an acute exposure to γ radiation using a multiplatform mass-spectrometry-based strategy. A global, molecular profiling revealed that mouse serum undergoes a series of significant molecular alterations following radiation exposure. We identified and quantified bioactive metabolites belonging to key biochemical pathways and low-abundance, oxygenated, polyunsaturated fatty acids (PUFAs) in the two groups of animals. Exposure to γ radiation induced a significant increase in the serum levels of ether phosphatidylcholines (PCs) while decreasing the levels of diacyl PCs carrying PUFAs. In exposed mice, levels of pro-inflammatory, oxygenated metabolites of arachidonic acid increased, whereas levels of anti-inflammatory metabolites of omega-3 PUFAs decreased. Our results indicate a specific serum lipidomic biosignature that could be utilized as an indicator of radiation exposure and as novel target for therapeutic intervention. Monitoring such a molecular response to radiation exposure might have implications not only for radiation pathology but also for countermeasures and personalized medicine. PMID:25126707
Fan, Guoxin; Wang, Yueye; Guo, Changfeng; Lei, Xuefeng; He, Shisheng
2017-05-01
Knowledge and concern degree about work-related radiation hazards remained unknown among orthopedic surgeons. The aim of the cross-sectional study is to investigate whether the knowledge degree of work-related radiation is associated with psychological distress among orthopedic surgeons. This cross-sectional study sent electronic questionnaire via WeChat to orthopedic surgeons nationwide. Concern and knowing degree over radiation exposure was evaluated by a single self-reported question. Professional evaluation of concern degree was reflected by general psychological distress, which was assessed with the Kessler 10 scale (K10) and depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D). Only 43.23% (115/266) respondents knew well about radiation and a total of 78.20% (208/266) respondents considered radiation exposure as a great concern. Among those who reported concerns about radiation exposure, a total of 57.69% (120/208) respondents reported knowing little about radiation. Respondents who reported concerns over radiation exposure were significantly associated with higher scores on CES-D and K10 (P < .05). Among respondents who reported concerns over radiation exposure, those who have fewer knowledge about radiation, had higher CES-D and K10 scores than those who knew well about radiation (P < .05). Among respondents who reported no concerns over radiation exposure, those who knew little about radiation still had higher CES-D and K10 scores (P < .05). Fewer radiation knowledge tends to induce more radiation concerns associated with higher psychological distress in orthopedic surgeons. Radiation knowledge should be enhanced for surgeons who daily work with radiation-related fluoroscopy.
Fan, Guoxin; Wang, Yueye; Guo, Changfeng; Lei, Xuefeng; He, Shisheng
2017-01-01
Abstract Knowledge and concern degree about work-related radiation hazards remained unknown among orthopedic surgeons. The aim of the cross-sectional study is to investigate whether the knowledge degree of work-related radiation is associated with psychological distress among orthopedic surgeons. This cross-sectional study sent electronic questionnaire via WeChat to orthopedic surgeons nationwide. Concern and knowing degree over radiation exposure was evaluated by a single self-reported question. Professional evaluation of concern degree was reflected by general psychological distress, which was assessed with the Kessler 10 scale (K10) and depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D). Only 43.23% (115/266) respondents knew well about radiation and a total of 78.20% (208/266) respondents considered radiation exposure as a great concern. Among those who reported concerns about radiation exposure, a total of 57.69% (120/208) respondents reported knowing little about radiation. Respondents who reported concerns over radiation exposure were significantly associated with higher scores on CES-D and K10 (P < .05). Among respondents who reported concerns over radiation exposure, those who have fewer knowledge about radiation, had higher CES-D and K10 scores than those who knew well about radiation (P < .05). Among respondents who reported no concerns over radiation exposure, those who knew little about radiation still had higher CES-D and K10 scores (P < .05). Fewer radiation knowledge tends to induce more radiation concerns associated with higher psychological distress in orthopedic surgeons. Radiation knowledge should be enhanced for surgeons who daily work with radiation-related fluoroscopy. PMID:28538368
Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu
1993-01-01
The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.
Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John
2016-03-01
Imaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation. Radiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared. This is a retrospective cohort case-control study. Seventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy. Effective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared. Intraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation. The 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation exposure to the patient was 5.69 mSv, a value less than a single routine lumbar CT scan (7.5 mSv). The average radiation exposure to the patient in the present study was approximately one quarter the recommended annual occupational radiation exposure. Navigation did not reduce the number of postoperative X-rays or CT scans obtained. Intraoperative CT navigation increases the radiation exposure to the patient and reduces the radiation exposure to the surgeon when compared with values reported in the literature. Intraoperative CT navigation improves the accuracy of spine instrumentation with acceptable patient radiation exposure and reduced surgical team exposure. Surgeons should be aware of the implications of radiation exposure to both the patient and the surgical team when using intraoperative CT navigation. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Walz, Garry R., Ed.; Knowdell, Richard, Ed.; Kirkman, Chris, Ed.
This publication is designed to broaden exposure to the ideas presented at the 2001 International Career Development Conference. It provides authors with an international forum for communicating their current research, proposals, and projects to the international career development community. The articles in this symposium include: (1) "Chaos,…
Nebraska Prostate Cancer Research Program
2012-05-01
Powell. (2012). Dioxin exposure enhances nuclear localization of androgen receptor. The 8th Annual National Symposium on Prostate Cancer by CCRTD...cholesterol. Mol . Cellu. Endo. 295:115-120. 2. Siegel, R., Naishadham, D., and Jemal, A. (2012). Cancer Statistics, 2012. CA Cancer J Clin 62: 10-29...Ul DIOXIN J!1XPOSURE EN CES NUCLEAR LOCALIZATION OF ANDROGEN RECEPTOR\\~f..aTayia Aaron, nd Joann Powell, Center for Cancer Research and Therapeutic
ERIC Educational Resources Information Center
Kaneko, Masahiro, Ed.
This comprehensive collection of current research on the health and fitness of the aged, the disabled, and the industrial worker examines the growing health problems in those populations. These problems are the result of the rising proportion of elderly and disabled citizens in Western countries and the increasing exposure of industrial workers to…
Radiation exposure in gastroenterology: improving patient and staff protection.
Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M
2014-08-01
Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.
Karam, P Andrew
2003-03-01
Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.
Skinner, Sarah
2013-06-01
Diagnostic radiology procedures, such as computed tomography (CT) and X-ray, are an increasing source of ionising radiation exposure to our community. Exposure to ionising radiation is associated with increased risk of malignancy, proportional to the level of exposure. Every diagnostic test using ionising radiation needs to be justified by clinical need. General practitioners need a working knowledge of radiation safety so they can adequately inform their patients of the risks and benefits of diagnostic imaging procedures.
Space Radiation Risk Assessment
NASA Astrophysics Data System (ADS)
Blakely, E.
Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from
Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.
Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L
2017-11-01
This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.
Identifying and managing the risks of medical ionizing radiation in endourology.
Yecies, Todd; Averch, Timothy D; Semins, Michelle J
2018-02-01
The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
28 CFR 79.44 - Proof of working level month exposure to radiation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
DOE 2011 occupational radiation exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2012-12-01
The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.« less
Health and low-level radiation: turning good news into bad news.
Wolfe, B; Wallis, L R
1988-08-01
This paper has a dual purpose. On the one hand, congratulations are in order; the 25th Hanford Life Sciences Symposium celebrates four decades of important research at Hanford. This research has helped provide a better understanding of ionizing radiation effects on man and his environment. Researchers at Hanford and those at other locations can take pride in the fact that today we know more about the major characteristics and potential health effects of ionizing radiation than we do for any other biological hazard. Ionizing radiation's present mysteries, important as they are, involve subtleties that are difficult to explore in detail because the effects are so small relative to other health effects. It will also be a pleasure to add our tribute, along with many others, to Herb Parker, a friend, colleague, and pioneer in the radiation protection field. Building on the work of early pioneers such as Herb and those who have and will follow in their footsteps, we will develop an even broader understanding--an understanding that will clarify the effects of low-level radiation exposure, an area of knowledge about which sound explanations and predictions elude us today. The second purpose of this paper is to remind those in the radiation protection field that they have been less than successful in one of their most important tasks--that of effective communication. The task is not an easy one because the content of the message depends upon the dose. At high doses, above 1 Sv, where the deleterious effects of radiation are predictable, there is agreement on the message that must be delivered to the public: avoid it. There is no confusion in the public sector about this message. At the much lower doses resulting from beneficial activities, the message we must convey to the public is different. Unfortunately, the only message about radiation that the public seems to remember is "avoid it." We know the proper message is not being received when the medical profession resorts to using the term "magnetic resonance" in place of "nuclear magnetic resonance" because of public fear of the word "nuclear." We know there's a problem when the public cringes because of a lead story in the press detailing an incident where people were exposed to a few microgray and when the linear hypothesis is used to predict hundreds of thousands of cancers from Chernobyl-related doses well below 0.01 Sv.(ABSTRACT TRUNCATED AT 400 WORDS)
Minimally Invasive Radiation Biodosimetry and Evaluation of Organ Responses
2016-10-01
radiation exposure, potentially leading to Acute Radiation Syndromes (ARS) and Delayed Effects of Acute ...underlying conditions and inherent variations. 2. KEYWORDS Radiation Biodosimetry, Radiation Biomarkers, microRNA, Acute Radiation Syndromes ... syndromes and delayed effects of acute radiation exposure. We expect to identify the circulating miRNA biomarkers as early predictors of late effects
Perception of low dose radiation risks among radiation researchers in Korea.
Seong, Ki Moon; Kwon, TaeWoo; Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook
2017-01-01
Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public's risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure.
Zhou, D D; Hao, J L; Guo, K M; Lu, C W; Liu, X D
2016-03-22
Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.
1999-11-30
Natick Soldier Center. Sample products include spaghetti sauce, orange juice and yogurt - based drinks or puddings. Benefits of PEF treatment compared...Kiel, AFRL, Brooks AFB. Pulsed microwave radiation in the 1.25 to 9.35 GHz range was found to affect the growth of bacteria in the presence of certain...being very effective for biological decontamination. A major US company has already a commercial product on sale. An in-depth analysis of
1994-05-14
in the stria vascularis. (Supported by the Research Service of the Veterans Administration and NIDCD grant DC00139.) MELANIN IN THE NORMAL AND NOISE...DAMAGED COCHLZA Marie-Louise Barrenas, Dept of Audiology, Sahlgrenska University Hospital, G6teborg, Sweden Melanin is an interesting molecule which...probably has a dual function. At moderate energy stimulation levels such as ultraviolet radiation or sound energy melanin could have a protective
Radiation Exposure and Pregnancy
Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...
Space radiation and cardiovascular disease risk
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-01-01
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293
Space radiation and cardiovascular disease risk.
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-12-26
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.
Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi.
Jamal, Joseph E; Armenakas, Noel A; Sosa, R Ernest; Fracchia, John A
2011-11-01
The efficacy of computed tomography (CT) in detailing upper urinary tract calculi is well established. There is no established acceptable annual recommended limit for medical exposure, yet the global accepted upper limit for occupational radiation exposure is <50 millisieverts (mSv) in any one year. We sought to appreciate the CT and fluoroscopic radiation exposure to our patients undergoing endoscopic removal of upper tract calculi during the periprocedure period. All patients undergoing upper urinary endoscopic stone removal between 2005 and 2009 were identified. To calculate the cumulative radiation exposure, we included all ionizing radiation imaging performed during a periprocedure period, which we defined as ≤90 days pre- and post-therapeutic procedure. A total of 233 upper urinary tract therapeutic patient stone procedures were identified; 127 patients underwent ureteroscopy (URS) and 106 patients underwent percutaneous nephrolithotomy (PCNL). A mean 1.58 CTs were performed per patient. Ninety (38.6%) patients underwent ≥2 CTs in the periprocedure period, with an average number in this group of 2.49 CT/patient, resulting in approximately 49.8 mSv of CT radiation exposure. Patients who were undergoing URS were significantly more likely to have multiple CTs (P=0.003) than those undergoing PCNL. Median fluoroscopic procedure exposures were 43.3 mGy for patients who were undergoing PCNL and 27.6 mGy for those patients undergoing URS. CT radiation exposure in the periprocedure period for patients who were undergoing endoscopic upper tract stone removal is considerable. Added to this is the procedure-related fluoroscopic radiation exposure. Urologic surgeons should be aware of the cumulative amount of ionizing radiation received by their patients from multiple sources.
NASA Technical Reports Server (NTRS)
Durante, M.; George, K.; Yang, T. C.
1997-01-01
Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.
Durante, M; George, K; Yang, T C
1997-11-01
Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.
Fluoroscopic exposure in modern spinal surgery.
Fransen, Patrick
2011-06-01
The widespread use of minimally invasive and other spinal procedures raises concern about the peroperative radiation exposure to surgeon and patient. The authors noted the fluoroscopy time and the radiation dose, as read from the image amplifier, in 95 spinal procedures. The results of this prospective study varied widely between different operations. Percutaneous surgery was associated with more exposure than open surgery. For instance, the average radiation dose per pedicle screw was 3.2 times higher with percutaneous insertion than with an open approach. Therefore, efforts to reduce fluoroscopy time and radiation exposure should be made when using minimally invasive percutaneous surgical techniques. Preventive measures for the surgeon, such as lead aprons and gloves, thyroid shields, radioprotective glasses and staying away from the beam are recommended. Still from the surgeon's view-point, source inferior positioning of the image amplifier is indicated for the AP view, as well as monitoring of the radiation exposure. Finally, the difference in fluoroscopy time and radiation exposure between surgeons for the same procedure stresses the fact that peroperative radiation may be reduced by simple awareness and by training.
Mokarram, P; Sheikhi, M; Mortazavi, S M J; Saeb, S; Shokrpour, N
2017-03-01
Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern.
Fundamentals of health physics for the radiation-protection officer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.
1983-03-01
The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)
Approximating the Probability of Mortality Due to Protracted Radiation Exposures
2016-06-01
syndrome of acute radiation sickness. In the MARCELL model, radiation exposure dynamically depletes the bone marrow cell population, the underpinning of...Protracted Radiation Exposures DTRA-TR-16-054 HDTRA1-14-D-0003; 0005 Prepared by: Applied Research Associates, Inc. 801 N. Quincy Street...Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation curie (Ci) [activity of radionuclides] 3.7 × 1010 per second (s–1
NASA Technical Reports Server (NTRS)
Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.
2012-01-01
Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.
Reeves, Ryan R; Ang, Lawrence; Bahadorani, John; Naghi, Jesse; Dominguez, Arturo; Palakodeti, Vachaspathi; Tsimikas, Sotirios; Patel, Mitul P; Mahmud, Ehtisham
2015-08-17
This study sought to determine radiation exposure across the cranium of cardiologists and the protective ability of a nonlead, XPF (barium sulfate/bismuth oxide) layered cap (BLOXR, Salt Lake City, Utah) during fluoroscopically guided, invasive cardiovascular (CV) procedures. Cranial radiation exposure and potential for protection during contemporary invasive CV procedures is unclear. Invasive cardiologists wore an XPF cap with radiation attenuation ability. Six dosimeters were fixed across the outside and inside of the cap (left, center, and right), and 3 dosimeters were placed outside the catheterization lab to measure ambient exposure. Seven cardiology fellows and 4 attending physicians (38.4 ± 7.2 years of age; all male) performed diagnostic and interventional CV procedures (n = 66.2 ± 27 cases/operator; fluoroscopy time: 14.9 ± 5.0 min). There was significantly greater total radiation exposure at the outside left and outside center (106.1 ± 33.6 mrad and 83.1 ± 18.9 mrad) versus outside right (50.2 ± 16.2 mrad; p < 0.001 for both) locations of the cranium. The XPF cap attenuated radiation exposure (42.3 ± 3.5 mrad, 42.0 ± 3.0 mrad, and 41.8 ± 2.9 mrad at the inside left, inside center, and inside right locations, respectively) to a level slightly higher than that of the ambient control (38.3 ± 1.2 mrad, p = 0.046). After subtracting ambient radiation, exposure at the outside left was 16 times higher than the inside left (p < 0.001) and 4.7 times higher than the outside right (p < 0.001). Exposure at the outside center location was 11 times higher than the inside center (p < 0.001), whereas no difference was observed on the right side. Radiation exposure to invasive cardiologists is significantly higher on the left and center compared with the right side of the cranium. Exposure may be reduced similar to an ambient control level by wearing a nonlead XPF cap. (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures [BRAIN]; NCT01910272). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
1980-02-01
again. Ultimately he regained full strength because of hard work at physiotherapy . lie was cleared by specialistLs and retturned to diving. This spring...to both French and English-speaking students , more spectalized, intense, all-inclusive field-orientated programmes. Curricula have been carefully...the students exposure to actual field condlitions. Canadian Underwater Training Centre will meet existing and proposed national and tnternattonal
Open cohort ("time-series") studies of the adverse health effects of short-term exposures to ambient particulate matter and gaseous co-pollutants have been essential in the standard setting process. Last year, a number of serious issues were raised concerning the fitting of Gener...
Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave
Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.
Time- and dose-dependent changes in neuronal activity produced by X radiation in brain slices.
Pellmar, T C; Schauer, D A; Zeman, G H
1990-05-01
A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction.
A study of smart card for radiation exposure history of patient.
Rehani, Madan M; Kushi, Joseph F
2013-04-01
The purpose of this article is to undertake a study on developing a prototype of a smart card that, when swiped in a system with access to the radiation exposure monitoring server, will locate the patient's radiation exposure history from that institution or set of associated institutions to which it has database access. Like the ATM or credit card, the card acts as a secure unique "token" rather than having cash, credit, or dose data on the card. The system provides the requested radiation history report, which then can be printed or sent by e-mail to the patient. The prototype system is capable of extending outreach to wherever the radiation exposure monitoring server extends, at county, state, or national levels. It is anticipated that the prototype shall pave the way for quick availability of patient exposure history for use in clinical practice for strengthening radiation protection of patients.
Low-dose radiation: a cause of breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, C.E.
1980-08-15
It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporalmore » patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.« less
Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena
2014-12-30
An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.
Patel, Akash R; Ganley, Jamie; Zhu, Xiaowei; Rome, Jonathan J; Shah, Maully; Glatz, Andrew C
2014-10-01
Radiation exposure during pediatric catheterization is significant. We sought to describe radiation exposure and the effectiveness of radiation safety protocols in reducing exposure during catheter ablations with electrophysiology studies in children and patients with congenital heart disease. We additionally sought to identify at-risk patients. We retrospectively reviewed all interventional electrophysiology procedures performed from April 2009 to September 2011 (6 months preceding intervention, 12 months following implementation of initial radiation safety protocol, and 8 months following implementation of modified protocol). The protocols consisted of low pulse rate fluoroscopy settings, operator notification of skin entrance dose every 1,000 mGy, adjusting cameras by >5 at every 1,000 mGy, and appropriate collimation. The cohort consisted of 291 patients (70 pre-intervention, 137 after initial protocol implementation, 84 after modified protocol implementation) at a median age of 14.9 years with congenital heart disease present in 11 %. Diagnoses included atrioventricular nodal reentrant tachycardia (25 %), atrioventricular reentrant tachycardia (61 %), atrial tachycardias (12 %), and ventricular tachycardia (2 %). There were no differences between groups based on patient, arrhythmia, and procedural characteristics. Following implementation of the protocols, there were significant reductions in all measures of radiation exposure: fluoroscopy time (17.8 %), dose area product (80.2 %), skin entry dose (81.0 %), and effective dose (76.9 %), p = 0.0001. Independent predictors of increased radiation exposure included larger patient weight, longer fluoroscopy time, and lack of radiation safety protocol. Implementation of a radiation safety protocol for pediatric and congenital catheter ablations can drastically reduce radiation exposure to patients without affecting procedural success.
2014-01-01
Although exposure to electromagnetic radiation in radiofrequency range has caused a great deal of concern globally, radiofrequency radiation has many critical applications in both telecommunication and non-communication fields. The induction of adaptive response phenomena by exposure to radiofrequency radiation as either increased resistance to a subsequent dose of ionizing radiation or resistance to a bacterial infection has been reported recently. Interestingly, the potential beneficial effects of mobile phone radiofrequency radiation are not only limited to the induction of adaptive phenomena. It has previously been indicated that the visual reaction time of university students significantly decreased after a 10 min exposure to radiofrequency radiation emitted by a mobile phone. Furthermore, it has been revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. Based on these findings, it can be hypothesized that in special circumstances, these exposures might lead to a better response of humans to different hazards. Other investigators have also provided evidence that confirms the induction of RF-induced cognitive benefits. Furthermore, some recent reports have indicated that RF radiation may play a role in protecting against cognitive impairment in Alzheimer’s disease. In this light, a challenging issue will arise if there are other RF-induced stimulating effects. It is also challenging to explore the potential applications of these effects. Further research may shed light on dark areas of the health effects of short and long-term human exposure to radiofrequency radiation. PMID:24843789
Mortazavi, Seyed Ali Reza; Tavakkoli-Golpayegani, Ali; Haghani, Masoud; Mortazavi, Seyed Mohammad Javad
2014-01-01
Although exposure to electromagnetic radiation in radiofrequency range has caused a great deal of concern globally, radiofrequency radiation has many critical applications in both telecommunication and non-communication fields. The induction of adaptive response phenomena by exposure to radiofrequency radiation as either increased resistance to a subsequent dose of ionizing radiation or resistance to a bacterial infection has been reported recently. Interestingly, the potential beneficial effects of mobile phone radiofrequency radiation are not only limited to the induction of adaptive phenomena. It has previously been indicated that the visual reaction time of university students significantly decreased after a 10 min exposure to radiofrequency radiation emitted by a mobile phone. Furthermore, it has been revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. Based on these findings, it can be hypothesized that in special circumstances, these exposures might lead to a better response of humans to different hazards. Other investigators have also provided evidence that confirms the induction of RF-induced cognitive benefits. Furthermore, some recent reports have indicated that RF radiation may play a role in protecting against cognitive impairment in Alzheimer's disease. In this light, a challenging issue will arise if there are other RF-induced stimulating effects. It is also challenging to explore the potential applications of these effects. Further research may shed light on dark areas of the health effects of short and long-term human exposure to radiofrequency radiation.
Exposure of luminous marine bacteria to low-dose gamma-radiation.
Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A
2017-04-01
The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excessmore » of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.« less
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Slava; Jones, Jeffrey
Countermeasures against nuclear terrorism to prevent or limit the number of irradiated human population or radiation intoxications include early identification of the nuclear terrorism event and all persons which exposed by radiation, decontamination program and procedures, radiation control, and medical countermeasures which include medical diagnosis,differential diagnosis of Acute Radiation Syndromes by Immune Enzyme Assay , pre-exposure vaccination with Human Antiradiation Vaccine, post-exposure specific treatment - de-intoxication with Radiation Antidote IgG (blocking Antiradiation Antibodies). Our Advanced Medical Technology elaborated as a part of effective countermeasure include Plan of Action.Countermeasures against nuclear terrorism to prevent or limit the number of high level of lethality and severe forms of radiation illness or intoxications include A.early identification of the nuclear terrorism event and persons exposed,b. appropriate decontamination, c. radiation control, and d.medical countermeasures and medical management of ARS. Medical countermeasures, which include medical interventions such as active immuneprophylaxis with Human Antiradiation Vaccine , passive immune-prophylaxis with Antiradiation Antitoxins immune-globulins IgG , and chemoprophylaxis - post-exposure antioxidants prophylaxis and antibioticprophylaxis. Medical countermeasures with Antiradiation Vaccine should be initiated before an exposure (if individuals are identified as being at high risk for exposure)but after a confirmed exposure event Antiradiation Vaccine not effective and Antiradiation Antidot IgG must be applyed for treatment of Acute Radiation Syndromes.
NASA Technical Reports Server (NTRS)
Chan, S. H. (Editor); Anderson, E. E. (Editor); Simoneau, R. J. (Editor); Chan, C. K. (Editor); Pepper, D. W. (Editor)
1990-01-01
Theoretical and experimental studies of heat-tranfer in a space environment are discussed in reviews and reports. Topics addressed include a small-scale two-phase thermosiphon to cool high-power electronics, a low-pressure-drop heat exchanger with integral heat pipe, an analysis of the thermal performance of heat-pipe radiators, measurements of temperature and concentration fields in a rectangular heat pipe, and a simplified aerothermal heating method for axisymmetric blunt bodies. Consideration is given to entropy production in a shock wave, bubble-slug transition in a two-phase liquid-gas flow under microgravity, plasma arc welding under normal and zero gravity, the Microgravity Thaw Experiment, the flow of a thin film on stationary and rotating disks, an advanced ceramic fabric body-mounted radiator for Space Station Freedom phase 0 design, and lunar radiators with specular reflectors.
Naoi, Yutaka; Fujikawa, Akira; Kyoto, Yukishige; Kunishima, Naoaki; Ono, Masahiro; Watanabe, Yukie
2013-01-01
When the Great East Japan Earthquake occurred on March 11, 2011, the Ground Self-Defense Force (GSDF) was dispatched nationally to Northeast area in Japan. The highly trained GSDF members were simultaneously assigned to various missions for the Fukushima Nuclear Power Plants disaster. The missions of GSDF terminated on August 31, 2011. Special medical examinations were conducted for the members as they returned to each military unit. GSDF members who were assigned to the nuclear power plant were at risk of radiation exposure; therefore, pocket dosimeters were used to assess external radiation exposure. A few months after the mission was terminated, measurements of internal radiation exposure were performed. This is the first report of the internal exposure of GSDF members who worked in the restricted radiation contamination area. Here, we report the amounts of internal and external exposure of and the equipment used by the GSDF members.
Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I
2010-07-15
Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.
NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits
NASA Technical Reports Server (NTRS)
Huff, J. L.; Patel, Z. S.; Simonsen, L. C.
2017-01-01
Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.
Perception of low dose radiation risks among radiation researchers in Korea
Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook
2017-01-01
Expert’s risk evaluation of radiation exposure strongly influences the public’s risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts’ radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual’s opinions have often exacerbated the public’s confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years’ research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public’s risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure. PMID:28166286
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Erat, S.
1998-01-01
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.
Rimawi, Bassam H; Green, Victoria; Lindsay, Michael
2016-06-01
The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... radiologic technologists or technologists in other specialties as well as physicians in all medical...] Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting... Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging.'' The purpose of this meeting is to...
NASA Technical Reports Server (NTRS)
Lushbaugh, C. C.
1974-01-01
The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.
Kurokawa, S; Yabe, S; Takamura, A; Ishizaki, H; Aizawa, S
2000-11-30
Two practical protective tools for occupational exposure for neurointerventional radiologists are presented. The first purpose of this study was to investigate the effectiveness of double focus spectacles for the aged with a highly refracted glass lens (special spectacles for the aged) for radiation protection of the crystalline lens of the eye in comparison with other spectacles on the market, based on the measurement of film density which was obtained by exposure of X-ray through those spectacles. As a result of the film densitometry mentioned above, the effectiveness of special spectacles for the aged in radiation protection was nearly equal to the effectiveness of a goggle type shield which is made with a 0.07 mm lead-equivalent plastic lens. The second purpose of this study was to investigate the effectiveness of the protective barrier, which we remodeled for cerebral angiography or neuroendovascular therapy, for radiation exposure, based on the measurement in a simulated study with a head phantom, and on the measurement of radiation exposure in operaters during procedures of clinical cases. In the experimental study radiation exposure in supposed position of the crystalline lens was reduced to about one third and radiation exposure in supposed position of the gonadal glands was reduced to about one seventh, compared to radiation exposure without employing the barrier. The radiation exposure was monitored at the left breast of three radiologists, in 215 cases of cerebral angiography. Employing the barrier in cerebral angiography, average equivalent dose at the left breast measured 1.49mu Sv during 10 min of fluoroscopy. In three kinds of neuroendovascular therapy in 40 cases, radiation exposure in an operator was monitored in the same fashion and the dose was recorded less than the result reported in previous papers in which any protective barrier have not been employed in the procedure (1,2). As a result, the two above mentioned protective tools are considered practical in clinical usage and very effective to reduce radiation exposure in an operator of interventional neuroradiolgy which may sometimes require many hours to complete the therapy under extended fluoroscopic time. 1) The first topic of this report is double focus spectacles for the aged with a highly refracted glass lens (special spectacles for the aged).
Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.
Dörr, Harald; Meineke, Viktor
2011-11-25
Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.
RADIATION EFFECTS ON IMMUNE MECHANISMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.D.; Hale, W.M.
1963-03-01
Experiments were performed on pathogen-free Swiss albino mice to determine the repressive effect of ionizing radiation on immune mechanisms. In animals given sublethal doses of Co/sup 60/ gamma radiation by acute short-term exposure or by chronic long-term exposure at a low dose rate, ability to produce antibody was inhibited or abolished, and natural resistance and active and passive immunity to pneumococcal and Trichinella infections were severely depressed. It appears that the repression resulted from damage to the cellular defensive mechanisms of the host. Active immunity and natural resistance to influenza virus infections were not altered significantly by radiation. Exposure tomore » radiation enhanced the severity of anaphylactic shock markedly in mice previously sensitized to tetanus toxoid and challenged with tetanus toxoid after radiation. Chronic exposure to radiation caused immediate increased sensitivity to fatal anaphylaxis. (auth)« less
Radiation exposure of air carrier crewmembers II.
DOT National Transportation Integrated Search
1992-01-01
The cosmic radiation environment at air carrier flight altitudes is described and estimates given of the amounts of galactic cosmic radiation received on a wide variety of routes to and from, and within the contiguous United States. Radiation exposur...
Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.
Daniels, Robert D; Kubale, Travis L; Spitz, Henry B
2005-03-01
Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.
DNA Topoisomerase IB as a Potential Ionizing Radiation Exposure and Dose Biomarker.
Daudee, Rotem; Gonen, Rafi; German, Uzi; Orion, Itzhak; Alfassi, Zeev B; Priel, Esther
2018-06-01
In radiation exposure scenarios where physical dosimetry is absent or inefficient, dose estimation must rely on biological markers. A reliable biomarker is of utmost importance in correlating biological system changes with radiation exposure. Human DNA topoisomerase ІB (topo І) is a ubiquitous nuclear enzyme, which is involved in essential cellular processes, including transcription, DNA replication and DNA repair, and is the target of anti-cancer drugs. It has been shown that the cellular activity of this enzyme is significantly sensitive to various DNA lesions, including radiation-induced DNA damages. Therefore, we investigated the potential of topo I as a biomarker of radiation exposure and dose. We examined the effect of exposure of different human cells to beta, X-ray and gamma radiation on the cellular catalytic activity of topo I. The results demonstrate a significant reduction in the DNA relaxation activity of topo I after irradiation and the level of the reduction was correlated with radiation dose. In normal human peripheral blood lymphocytes, exposure for 3 h to an integral dose of 0.065 mGy from tritium reduced the enzyme activity to less than 25%. In MG-63 osteoblast-like cells and in human pulmonary fibroblast (HPF) cells exposed to gamma radiation from a 60 Co source (up to 2 Gy) or to X rays (up to 2.8 Gy), a significant decrease in topo I catalytic activity was also observed. We observed that the enzyme-protein level was not altered but was partially posttranslational modified by ADP-ribosylation of the enzyme protein that is known to reduce topo I activity. The results of this study suggest that the decrease in the cellular topo I catalytic activity after low-dose exposure to different radiation types may be considered as a novel biomarker of ionizing radiation exposure and dose. For this purpose, a suitable ELISA-based method for large-scale analysis of radiation-induced topo I modification is under development.
Shorrock, Deborah; Christopoulos, Georgios; Wosik, Jedrek; Kotsia, Anna; Rangan, Bavana; Abdullah, Shuaib; Cipher, Daisha; Banerjee, Subhash; Brilakis, Emmanouil S
2015-07-01
Daily radiation exposure over many years can adversely impact the health of medical professionals. Operator radiation exposure was recorded for 124 percutaneous coronary interventions (PCIs) performed at our institution between August 2011 and May 2013: 69 were chronic total occlusion (CTO)-PCIs and 55 were non-CTO PCIs. A disposable radiation protection sterile drape (Radpad; Worldwide Innovations & Technologies, Inc) was used in all CTO-PCI cases vs none of the non-CTO PCI cases. Operator radiation exposure was compared between CTO and non-CTO PCIs. Mean age was 64.6 ± 6.2 years and 99.2% of the patients were men. Compared with non-CTO PCI, patients undergoing CTO-PCI were more likely to have congestive heart failure, to be current smokers, and to have longer lesions, and less likely to have prior PCI and a saphenous vein graft target lesion. CTO-PCI cases had longer procedural time (median: 123 minutes [IQR, 85-192 minutes] vs 27 minutes [IQR, 20-44 minutes]; P<.001), fluoroscopy time (35 minutes [IQR, 19-54 minutes] vs 8 minutes [IQR, 5-16 minutes]; P<.001), number of stents placed (2.4 ± 1.5 vs 1.7 ± 0.9; P<.001), and patient air kerma radiation exposure (3.92 Gray [IQR, 2.48-5.86 Gray] vs 1.22 Gray [IQR, 0.74-1.90 Gray]; P<.001), as well as dose area product (267 Gray•cm² [IQR, 163-4.25 Gray•cm²] vs 84 Gray•cm² [IQR, 48-138 Gray•cm²]; P<.001). In spite of higher patient radiation exposure, operator radiation exposure was similar between the two groups (20 μSv [IQR, 9.5-31 μSv] vs 15 μSv [IQR, 7-23 μSv]; P=.07). Operator radiation exposure during CTO-PCI can be reduced to levels similar to less complicated cases with the use of a disposable sterile radiation protection shield.
Radiation safety among cardiology fellows.
Kim, Candice; Vasaiwala, Samip; Haque, Faizul; Pratap, Kiran; Vidovich, Mladen I
2010-07-01
Cardiology fellows can be exposed to high radiation levels during procedures. Proper radiation training and implementation of safety procedures is of critical importance in lowering physician health risks associated with radiation exposure. Participants were cardiology fellows in the United States (n = 2,545) who were contacted by e-mail to complete an anonymous survey regarding the knowledge and practice of radiation protection during catheterization laboratory procedures. An on-line survey engine, SurveyMonkey, was used to distribute and collect the results of the 10-question survey. The response rate was 10.5%. Of the 267 respondents, 82% had undergone formal radiation safety training. Only 58% of the fellows were aware of their hospital's pregnancy radiation policy and 60% knew how to contact the hospital's radiation safety officer. Although 52% of the fellows always wore a dosimeter, 81% did not know their level of radiation exposure in the previous year and only 74% of fellows knew the safe levels of radiation exposure. The fellows who had received formal training were more likely to be aware of their pregnancy policy, to know the contact information of their radiation safety officer, to be aware of the safe levels of radiation exposure, to use dosimeters and RadPad consistently, and to know their own level of radiation exposure in the previous year. In conclusion, cardiology fellows have not been adequately educated about radiation safety. A concerted effort directed at physician safety in the workplace from the regulatory committees overseeing cardiology fellowships should be encouraged. Published by Elsevier Inc.
Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline
2016-01-01
Background: Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. Methods: AL cases diagnosed over 1990–2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002–2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. Results: AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Conclusions: Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland. Citation: Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J. 2017. Residential exposure to natural background radiation and risk of childhood acute leukemia in France, 1990–2009. Environ Health Perspect 125:714–720; http://dx.doi.org/10.1289/EHP296 PMID:27483500
The triterpenoid RTA 408 is a robust mitigator of hematopoietic acute radiation syndrome in mice.
Goldman, Devorah C; Alexeev, Vitali; Lash, Elizabeth; Guha, Chandan; Rodeck, Ulrich; Fleming, William H
2015-03-01
Bone marrow suppression due to exposure to ionizing radiation is a significant clinical problem associated with radiation therapy as well as with nonmedical radiation exposure. Currently, there are no small molecule agents available that can enhance hematopoietic regeneration after radiation exposure. Here, we report on the effective mitigation of acute hematopoietic radiation syndrome in mice by the synthetic triterpenoid, RTA 408. The administration of a brief course of RTA 408 treatment, beginning 24 h after lethal doses of radiation to bone marrow, significantly increased overall survival. Importantly, treatment with RTA 408 led to the full recovery of steady state hematopoiesis with normalization of the frequency of hematopoietic stem and progenitor cells. Moreover, hematopoietic stem cells from RTA 408-mitigated mice showed lineage-balanced, long-term, multilineage potential in serial transplantation assays, indicative of their normal self-renewal activity. The potency of RTA 408 in mitigating radiation-induced bone marrow suppression makes it an attractive candidate for potential clinical use in treating both therapy-related and unanticipated radiation exposure.
Innovative Advances in HPM: From Metamaterials to Buridan’s Ass
2014-07-17
beam kinetic energy into electromagnetic radiation. The output can be from S - to X- band microwave frequencies with powers over 100 MW. These...Modulator Symposium and High Voltage Workshop (San Diego, CA, June 3-7, 2012), p. 752-755. 12. A. Elfrgani, M. Fuks, S . Prasad, and E. Schamiloglu, “X- band ...field in the device and they weigh about 250 lbs for an S - band source [13]. Output power levels up to 1 GW are feasible. Pulse repetition rate and
2010-12-01
papers relating to antenna arrays and elements, millimeter wave antennas, simulation and measurement of antennas, integrated antennas, and antenna...Hansen 282 v Artificial Impedance Surface Antenna Design and Simulation D.J. Gregoire and J.S. Colburn 288 uCAST - A New Generation UTD...radiating mode to be self-resonant in the electrically small region. 260 hs (cm) Predicted L0 (nH) Simulated L0 (nH) R1 (Ω) Q1 -- -- -- 7.5
NASA Astrophysics Data System (ADS)
Korol, Andrey V.; Solov'yov, Andrey
2013-01-01
Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.
1992-08-17
01731-5000 UP, No. 1106 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER DARPA/NMRO 3701 North...the peaceful uses of nuclear explosives, UCRL -5414, Lawrence Livermore National Laboratory, 1973. Nordyke, M.D., A review of Soviet data on the peaceful...Lawrence Livermore national Laboratory, UCRL -JC-107941, preprint. Haskell, N. A. (1964). Radiation pattern of surface waves from point sources in a
1982-01-01
Hardy, Rand, and Rittler (HRR) pseudoisochromatic plates and the Farnsworth D15 color panel; these tests were normal. However, in an anomaloscopic...measures (e.g., slit-lamp and ophthalmoscopic examinations ) rather than quantitative visual function tests (e.g., Snellen acuity, contrast transfer, color...arose from eye examination programs ii ..’ 1C- following field tests at Fort Hunter Liggett, California and at Yuma Proving Ground, Arizona. Most, if
Radiological Dispersal Devices: Select Issues in Consequence Management
2004-03-10
goals, following which medical treatment of the radiation effects can be provided.10 Post- exposure medical therapy is designed to treat the consequences ...the approach that radiation related health effects can be extrapolated, i.e. the damage caused by radiation exposure CRS-3 8 For example, see Health...effort to determine the validity of these models, the federal government funds research into the health effects of radiation exposure through the
Zöller, G; Figel, M; Denk, J; Schulz, K; Sabo, A
2016-03-01
Eye lens radiation exposure during radiologically-guided endoscopic procedures may result in radiation-induced cataracts; therefore, we investigated the ocular radiation exposure during ureteroscopy on a phantom model. Using an Alderson phantom model and eye lens dosimeters, we measured the ocular radiation exposure depending on the number of X-ray images and on the duration of fluoroscopic imaging. The measurements were done with and without using a face protection shield. We could demonstrate that a significant ocular radiation exposure can occur, depending on the number of X-ray images and on the duration time of fluoroscopy. Eye lens doses up to 0.025 mSv were recorded even using modern digital X-ray systems. Using face protection shields this ocular radiation exposure can be reduced to a minimum. The International Commission on Radiological Protection (ICRP) recommendations of a mean eye lens dosage of 20 mSv/year may be exceeded during repeated ureteroscopy by a high volume surgeon. Using a face protection shield, the eye lens dose during ureteroscopy could be reduced to a minimum in a phantom model. Further investigations will show whether these results can be transferred to real life ureteroscopic procedures.
Radiation exposure and lung disease in today's nuclear world.
Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew
2017-03-01
Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.
Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment
Vaiserman, Alexander M.
2010-01-01
Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444
Pannkuk, Evan L; Fornace, Albert J; Laiakis, Evagelia C
2017-10-01
Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Radiation exposure in the moon environment
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Matthiae, Daniel
2012-12-01
During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the surface of the moon for an astronaut in an EVA suit and are compared with measurements. Since it is necessary to verify/validate such calculations with measurement on the lunar surface, a description is given of a radiation detector for future detailed surface measurements. This device is proposed for the ESA Lunar Lander Mission and is capable to characterize the radiation field concerning particle fluencies, dose rates and energy transfer spectra for ionizing particles and to measure the dose contribution of secondary neutrons.
Mokarram, P.; Sheikhi, M.; Mortazavi, S.M.J.; Saeb, S.; Shokrpour, N.
2017-01-01
Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). Material and Method: 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Results: Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. Conclusion: It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern. PMID:28451581
2011-08-01
Exposure 311 -+- Control R=9 JP8 200 mg/m1+ Noise 85dB n= lO JP8 750 mg/m1+ Nohe 85dB n=9 JP815D~ mg!m3+Nohe 85dB n=9...Force Health Protection 24 Results- Study 4: DPOAE DPOAE 1 0 Day Post Exposure Males Control tt=5 • JP8 1000 mglm3 n=S Ml +- Noi5 e lO !db 15...min/h x 6h n=5 B -::.::.~:::r·= lO . . .. ~.·:~· .· . ~>. • .. -~~ .. . ~ ~ . . n ..~ !"-. IL~ ~+,-------,------,,-------~,.-----~~----~ Fnquency
Control of excessive lead exposure in radiator repair workers.
1991-03-01
In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.
Grigor'ev, Iu G; Shafirkin, A V; Nikitina, V N; Vasin, A L
2003-01-01
A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...
Halgamuge, Malka N; Yak, See Kye; Eberhardt, Jacob L
2015-02-01
The aim of this work was to study possible effects of environmental radiation pollution on plants. The association between cellular telephone (short duration, higher amplitude) and base station (long duration, very low amplitude) radiation exposure and the growth rate of soybean (Glycine max) seedlings was investigated. Soybean seedlings, pre-grown for 4 days, were exposed in a gigahertz transverse electromagnetic cell for 2 h to global system for mobile communication (GSM) mobile phone pulsed radiation or continuous wave (CW) radiation at 900 MHz with amplitudes of 5.7 and 41 V m(-1) , and outgrowth was studied one week after exposure. The exposure to higher amplitude (41 V m(-1)) GSM radiation resulted in diminished outgrowth of the epicotyl. The exposure to lower amplitude (5.7 V m(-1)) GSM radiation did not influence outgrowth of epicotyl, hypocotyls, or roots. The exposure to higher amplitude CW radiation resulted in reduced outgrowth of the roots whereas lower CW exposure resulted in a reduced outgrowth of the hypocotyl. Soybean seedlings were also exposed for 5 days to an extremely low level of radiation (GSM 900 MHz, 0.56 V m(-1)) and outgrowth was studied 2 days later. Growth of epicotyl and hypocotyl was found to be reduced, whereas the outgrowth of roots was stimulated. Our findings indicate that the observed effects were significantly dependent on field strength as well as amplitude modulation of the applied field. © 2015 Wiley Periodicals, Inc.
21 CFR 352.72 - General testing procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... administered the doses of UV radiation. After UV radiation exposure from the solar simulator is completed, all... specified dosage of UV radiation, in a series of UV radiation exposures, in which the test site area is... subsites should be exposed to the varying doses of UV radiation in a randomized manner. (f) Waiting period...
Factors modifying the response of large animals to low-intensity radiation exposure
NASA Technical Reports Server (NTRS)
Page, N. P.; Still, E. T.
1972-01-01
In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies formore » protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.« less
The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model
Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.
2014-01-01
Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435
Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E
2013-11-01
Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.
Whittaker, Stephen G
2003-07-01
Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.
Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David
Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p<0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p<0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p<0.001) or suspended lead (p=0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p<0.001) and 80.0% less than manual PCI performed with suspended lead (p<0.001). Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie
The MELiSSA life support system from the European Space Agency is targeting the produc-tion of oxygen, water and food by recycling organic waste. Among different types of pro-cesses, MELiSSA uses several interconnected bioreactors inhabited by microorganisms and higher plants (Hendrickx et al., 2006; Mergeay et al., 1988). Because this loop is foreseen to be functional in space where it will be exposed to higher doses and different spectra of ionizing radiation, it was decided to screen the radiotolerance of the organisms used. In this study, the radiotolerance (i.e. tolerance to ionizing radiation) of the photosynthetic bacterium Rho-dospirillum rubrum S1H was investigated. In this test, first the effect of low energy Cobalt-60 gamma rays, were tested. To assess the radiotolerance of bacterium S1H, the survival rate after increasing exposure was determined. R. rubrum S1H appeared relatively radiosensitive, as the radiation dose at which 90% of the population was killed (D10 value) was 4 times lower than the model bacterium Escherichia coli. It was demonstrate that the culture medium has an impact on radiation tolerance. This survival curve also permitted to select a number of sub-lethal ionizing radiation doses (¡ D10 ), that were used to analyze the gene expression response of R. rubrum S1H after gamma irradiation. The microarray transcriptome analysis results ob-tained from different doses and different culture medium showed a significant response of the bacterium to sublethal doses. Potential marker genes for ionizing radiation stress in R. rubrum S1H were identified. By quantitative PCR, it was shown that the expression of these marker genes increased with the recovery time after exposure to ionizing radiation. In other words, the radiation tolerance and the response of R. rubrum S1H to low energy Cobalt-60 gamma ionizing radiation was characterized. Therefore to ensure MELiSSA process robustness during extended space exploration mission, it is advised that this particular aspect of R. rubrum S1H metabolism should be carefully monitored and possibly countermeasure could be taken in order to avoid potential malfunctioning of the continuous culture bioreactor. Hendrickx L., De Wever H., Hermans V., Mastroleo F., Morin N., Wilmotte A., Janssen P. and Mergeay M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Sup-port System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regenera-tion system for long-haul space exploration missions. Res Microbiol 2006;157:77-86. Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R.A. `MELiSSA'—A micro-organisms-based model for `CELSS' development. Proceedings at the 3rd European Symposium on Space Thermal Control Life Support Systems Noordwijk, The Netherlands (1988) pp 65-68. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.
The relationship between ultraviolet radiation exposure and vitamin D status.
Engelsen, Ola
2010-05-01
This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.
Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992
1993-10-01
constructive and destructive wave interaction that produces interference fringes on the holographic plate. If the object moves more than a fraction of a...wavelength during the duration of the laser exposure these interference fringes are lost and with it the holographic image of the object. However there...interest, it is possible to use magnification optics such as microscope objectives or lithography lenses between the holographic plate and the impact
2017-12-27
were determined and the effects of changes in loading rate and solution on this susceptibility were determined. Technical Approach The technical... approach followed in this completed work has been to conduct quasi- static fracture and fatigue experiments on 5XXX commercial aluminum alloys of interest...Metallic Materials Studied by Correlative Tomography", in 38th Riso International Symposium on Materials Science - IOP Conf. Series: Materials Science
Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M
2017-08-02
The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.
Brauer, Michael; Bert Hakkinen, Pertti J; Gehan, Brenda M; Shirname-More, Lata
2004-11-01
The Mickey Leland National Urban Air Toxics Research Center sponsored a Symposium in August 2002 that focused on the communication of health effects results from community studies involving exposure to hazardous substances in the environment. Some of the audiences identified for presentation of study results were the study subjects, the community, and the general public. Principles and approaches to communicating findings were discussed, as were the challenges that may confront researchers in developing and implementing a communication plan. The Symposium included four sessions. The first was an overview session where Timothy McDaniels (University of British Columbia) described risk communication as a decision-aiding process. In the second session, case studies were presented by Timothy Buckley (Johns Hopkins University), Jane Hoppin (National Institute of Environmental Health Sciences), and Anne-Marie Nicol (University of British Columbia). Approaches and strategies used by different stakeholders to communicate study results was the topic for a panel discussion at the third session. Panelists included: James Collins (The Dow Chemical Company), Mary White (Agency for Toxic Substances and Disease Registry), Richard Clapp (Boston University), Valerie Zartarian (Environmental Protection Agency), Pamela Williams (Chemrisk), and Tina Bahadori (American Chemistry Council). The final session was a summary presentation on lessons learned given by Rebecca Parkin of George Washington University, in which she synthesized the preceding presentations and formulated guidelines for effective risk communication in community research studies.
Soffritti, Morando; Tibaldi, Eva; Bua, Luciano; Padovani, Michela; Falcioni, Laura; Lauriola, Michelina; Manservigi, Marco; Manservisi, Fabiana; Belpoggi, Fiorella
2015-01-01
Experimental long-term carcinogenicity bioassays conducted on rats and mice proved that ionizing radiation can induce a variety of tumor types. However few studies have been conducted on rats. This report deals with the effects of γ-radiation in groups of 416-1,051 6-weeks old Sprague-Dawley rats exposed to 0, 0.1, 1, or 3 Gy of γ-radiation delivered in a single acute exposure. The experiment lasted for the animals' lifespan and all were necropsied and underwent full histopathological evaluation. The results confirm the dose-related carcinogenic effects of γ-radiation for several organs and tissues. Moreover they indicate that exposure to 0.1 Gy induces a statistically significant increased incidence in Zymbal gland carcinomas and pancreas islet cell carcinomas in females. Our data show that exposure to γ-radiation induces carcinogenic effects at all tested doses. © 2014 Wiley Periodicals, Inc.
Malignant mesothelioma following radiation exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antman, K.H.; Corson, J.M.; Li, F.P.
Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommonmore » cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.« less
Radiation Monitoring Equipment Dosimeter Experiment
NASA Technical Reports Server (NTRS)
Hardy, Kenneth A.; Golightly, Michael J.; Quam, William
1992-01-01
Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.
NASA Technical Reports Server (NTRS)
Elgart, Shona Robin; Shavers, Mark; Huff, Janice; Patel, Zarana; Semones, Edward
2016-01-01
Successfully communicating the complex risks associated with radiation exposure is a difficult undertaking; communicating those risks within the high-risk context of space travel is uniquely challenging. Since the potential risks of space radiation exposure are not expected to be realized until much later in life, it is hard to draw comparisons between other spaceflight risks such as hypoxia and microgravity-induced bone loss. Additionally, unlike other spaceflight risks, there is currently no established mechanism to mitigate the risks of incurred radiation exposure such as carcinogenesis. Despite these challenges, it is the duty of the Space Radiation Analysis Group (SRAG) at NASA's Johnson Space Center to provide astronauts with the appropriate information to effectively convey the risks associated with exposure to the space radiation environment. To this end, astronauts and their flight surgeons are provided with an annual radiation risk report documenting the astronaut's individual radiation exposures from space travel, medical, and internal radiological procedures throughout the astronaut's career. In an effort to improve this communication and education tool, this paper critically reviews the current report style and explores alternative report styles to define best methods to appropriately communicate risk to astronauts, flight surgeons, and management.
Childhood cancer and occupational radiation exposure in parents.
Hicks, N; Zack, M; Caldwell, G G; Fernbach, D J; Falletta, J M
1984-04-15
To test the hypothesis that a parent's job exposure to radiation affects his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR) = infinity, one-sided 95% lower limit = 1.5; P = 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR = 2.73; P = 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations.
Radiation in dental practice: awareness, protection and recommendations.
Praveen, B N; Shubhasini, A R; Bhanushree, R; Sumsum, P S; Sushma, C N
2013-01-01
Radiation is the transmission of energy through space and matter. There are several forms of radiation, including ionizing and nonionizing. X-rays are the ionizing radiation used extensively in medical and dental practice. Even though they provide useful information and aid in diagnosis, they also have the potential to cause harmful effects. In dentistry, it is mainly used for diagnostic purposes and in a dental set-up usually the practicing dentist exposes, processes and interprets the radiograph. Even though such exposure is less, it is critical to reduce the exposure to the dental personnel and patients in order to prevent the harmful effects of radiation. Several radiation protection measures have been advocated to ameliorate these effects. A survey conducted in the Bengaluru among practicing dentists revealed that radiation protection awareness was very low and the necessary measures taken to reduce the exposure were not adequate. The aim of the article is to review important parameters that must be taken into consideration in the clinical set-up to reduce radiation exposure to patients and dental personnel.
Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J
2014-02-01
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.
American College of Nuclear Physics 1991 DOE day symposium: Aids and nuclear medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
Since first described in 1981, the acquired immunodeficiency syndrome (AIDS) has become the medical dilemma of the century. AIDS retrovirus, and the economic consequences of this exposure are staggering. AIDS has been the topic of conferences and symposia worldwide. This symposium, to be held on January 25, 1991, at the 17th Annual Meeting and Scientific Sessions of the American College of Nuclear Physicians, will expose the Nuclear Medicine Physicians/Radiologists to their role in the diagnosis of AIDS, and will educate them on the socio-economic and ethical issues related to this problem. In addition, the Nuclear Medicine Physicians/Radiologists must be awaremore » of their role in the management of their departments in order to adequately protect the health care professionals working in their laboratories. Strategies are currently being developed to control the spread of bloodborne diseases within the health care setting, and it is incumbent upon the Nuclear Medicine community to be aware of such strategies.« less
Hamatani, Kiyohiro; Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro
2012-11-01
We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAF(V600E)) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription-polymerase chain reaction and 5' rapid amplification of cDNA ends (5' RACE). We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Our findings suggest that ALK rearrangements are involved in the development of radiation-induced adult-onset PTC.
Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro
2012-01-01
Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Conclusion Our findings suggest that ALK rearrangements are involved in the development of radiation-induced adult-onset PTC. PMID:23050789
Chromosome aberrations induced by high-LET radiations
NASA Technical Reports Server (NTRS)
Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.
2004-01-01
Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.
Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C
2011-03-01
A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.
ERIC Educational Resources Information Center
Chardenet, Kathleen A.
2016-01-01
Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures…
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
Deriabin, E I
1997-01-01
Exposure of rabbits with mandibular bone defects to coherent infrared radiation (IR) at a wavelength of 890 nm decreased the intensity of inflammation by accelerating the repair. The results of exposure of the injured site to noncoherent IR radiation are compatible with those of IR laser exposure.
Low dose or low dose rate ionizing radiation-induced health effect in the human.
Tang, Feng Ru; Loganovsky, Konstantin
2018-06-05
The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spector, A.C.; Smith, J.C.; Hollander, G.R.
1986-05-01
Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A controlmore » group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.« less
Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon
2014-01-01
The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709
Overview of Radiation Environments and Human Exposures
NASA Technical Reports Server (NTRS)
Wilson, John W.
2004-01-01
Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.
Tuorkey, Muobarak J
2015-09-01
Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.
Kreuzer, M; Straif, K; Marsh, J W; Dufey, F; Grosche, B; Nosske, D; Sogl, M
2012-03-01
'Dusty occupations' and exposure to low-dose radiation have been suggested as potential risk factors for stomach cancer. Data from the German uranium miner cohort study are used to further evaluate this topic. The cohort includes 58 677 miners with complete information on occupational exposure to dust, arsenic and radiation dose based on a detailed job-exposure matrix. A total of 592 stomach cancer deaths occurred in the follow-up period from 1946 to 2003. A Poisson regression model stratified by age and calendar year was used to calculate the excess relative risk (ERR) per unit of cumulative exposure to fine dust or from cumulative absorbed dose to stomach from α or low-LET (low linear energy transfer) radiation. For arsenic exposure, a binary quadratic model was applied. After adjustment for each of the three other variables, a statistically non-significant linear relationship was observed for absorbed dose from low-LET radiation (ERR/Gy=0.30, 95% CI -1.26 to 1.87), α radiation (ERR/Gy=22.5, 95% CI -26.5 to 71.5) and fine dust (ERR/dust-year=0.0012, 95% CI -0.0020 to 0.0043). The relationship between stomach cancer and arsenic exposure was non-linear with a 2.1-fold higher RR (95% CI 0.9 to 3.3) in the exposure category above 500 compared with 0 dust-years. Positive statistically non-significant relationships between stomach cancer and arsenic dust, fine dust and absorbed dose from α and low-LET radiation were found. Overall, low statistical power due to low doses from radiation and dust are of concern.
Vlastra, Wieneke; Delewi, Ronak; Sjauw, Krischan D; Beijk, Marcel A; Claessen, Bimmer E; Streekstra, Geert J; Bekker, Robbert J; van Hattum, Juliette C; Wykrzykowska, Joanna J; Vis, Marije M; Koch, Karel T; de Winter, Robbert J; Piek, Jan J; Henriques, José P S
2017-11-01
Interventional cardiologists are increasingly exposed to radiation-induced diseases like cataract and the stochastic risk of left-sided brain tumors. The RADPAD is a sterile, disposable, lead-free shield placed on the patient with the aim to minimize operator-received scatter radiation. The objective of the trial was to examine the RADPAD's efficacy in a real-world situation. In the current, double-blind, sham-controlled, all-comer trial, patients undergoing diagnostic catheterization or percutaneous coronary interventions were randomized in a 1:1:1 ratio to a radiation absorbing shield (RADPAD), standard treatment (NOPAD), or a sham shield (SHAMPAD). The sham shield allowed testing for shield-induced radiation behavior. The primary outcome was the difference in relative exposure of the primary operator between the RADPAD and NOPAD arms and was defined as the ratio between operator's exposure (E in µSv) and patient exposure (dose area product in mGy·cm 2 ), measured per procedure. A total of 766 consecutive coronary procedures were randomized to the use of RADPAD (N=255), NOPAD (N=255), or SHAMPAD (N=256). The use of RADPAD was associated with a 20% reduction in relative operator exposure compared with that of NOPAD ( P =0.01) and a 44% relative exposure reduction compared with the use of a SHAMPAD ( P <0.001). Use of the SHAMPAD was associated with a 43% higher relative radiation exposure than procedures with NOPAD ( P =0.009). In clinical daily practice, the standard use of the RADPAD radiation shield reduced operator radiation exposure compared with procedures with NOPAD or SHAMPAD. This study supports the routine use of RADPAD in the catheterization laboratory. URL: https://www.clinicaltrials.gov. Unique identifier: NCT03139968. © 2017 American Heart Association, Inc.
Li, Shuang; Zhang, Qing-Zhao; Zhang, De-Qin; Feng, Jiang-Bin; Luo, Qun; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Gao, Ling; Liu, Qing-Jie
2017-01-01
The identification of rapid, sensitive and high-throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH-1 human lymphoblastoid cells, following exposure to γ-rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF-15 gene expression in AHH-1 cells and human peripheral blood lymphocytes (HPBLs). GDF-15 mRNA and protein expression levels following exposure to γ-rays and neutron radiation were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis in AHH-1 cells. In addition, alterations in GDF-15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF-15 mRNA and protein expression levels in AHH-1 cells were significantly upregulated following exposure to γ-ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose-response relationship was identified in AHH-1 cells at γ-ray doses between 0.4 and 1.6 Gy. GDF-15 mRNA levels in HPBLs were significantly upregulated following exposure to γ-ray doses between 1 and 8 Gy, within 4–48 h following irradiation. These results suggested that significant time- and dose-dependent alterations in GDF-15 mRNA and protein expression occur in AHH-1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF-15 gene expression may have potential as a biomarker to evaluate radiation exposure. PMID:28440431
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
47 CFR 80.227 - Special requirements for protection from RF radiation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... radiation. 80.227 Section 80.227 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... requirements for protection from RF radiation. As part of the information provided with transmitters for ship... help prevent human exposure to radiofrequency (RF) radiation in excess of the RF exposure guidelines...
Nakajima, T; Kamiyama, T; Fujii, Y; Motoyama, H; Esumi, S
1995-12-01
Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antartica over the latitude range 69 degrees S - 77 degrees S during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antartica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antartica consists mainly of cosmic rays.
Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.
2006-03-01
According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses.more » While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.« less
Yang, Feng; Waters, Katrina M; Miller, John H; Gritsenko, Marina A; Zhao, Rui; Du, Xiuxia; Livesay, Eric A; Purvine, Samuel O; Monroe, Matthew E; Wang, Yingchun; Camp, David G; Smith, Richard D; Stenoien, David L
2010-11-30
High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.
Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.
2010-01-01
Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. PMID:21152398
Hall, William A; Bergom, Carmen; Thompson, Reid F; Baschnagel, Andrew M; Vijayakumar, Srinivasan; Willers, Henning; Li, X Allen; Schultz, Christopher J; Wilson, George D; West, Catharine M L; Capala, Jacek; Coleman, C Norman; Torres-Roca, Javier F; Weidhaas, Joanne; Feng, Felix Y
2018-06-01
To summarize important talking points from a 2016 symposium focusing on real-world challenges to advancing precision medicine in radiation oncology, and to help radiation oncologists navigate the practical challenges of precision, radiation oncology. The American Society for Radiation Oncology, American Association of Physicists in Medicine, and National Cancer Institute cosponsored a meeting on precision medicine in radiation oncology. In June 2016 numerous scientists, clinicians, and physicists convened at the National Institutes of Health to discuss challenges and future directions toward personalized radiation therapy. Various breakout sessions were held to discuss particular components and approaches to the implementation of personalized radiation oncology. This article summarizes the genomically guided radiation therapy breakout session. A summary of existing genomic data enabling personalized radiation therapy, ongoing clinical trials, current challenges, and future directions was collected. The group attempted to provide both a current overview of data that radiation oncologists could use to personalize therapy, along with data that are anticipated in the coming years. It seems apparent from the provided review that a considerable opportunity exists to truly bring genomically guided radiation therapy into clinical reality. Genomically guided radiation therapy is a necessity that must be embraced in the coming years. Incorporating these data into treatment recommendations will provide radiation oncologists with a substantial opportunity to improve outcomes for numerous cancer patients. More research focused on this topic is needed to bring genomic signatures into routine standard of care. Published by Elsevier Inc.
Mohammed, Riazuddin; Johnson, Karl; Bache, Ed
2010-07-01
Multiple radiographic images may be necessary during the standard procedure of in-situ pinning of slipped capital femoral epiphysis (SCFE) hips. This procedure can be performed with the patient positioned on a fracture table or a radiolucent table. Our study aims to look at any differences in the amount and duration of radiation exposure for in-situ pinning of SCFE performed using a traction table or a radiolucent table. Sixteen hips in thirteen patients who were pinned on radiolucent table were compared for the cumulative radiation exposure to 35 hips pinned on a fracture table in 33 patients during the same time period. Cumulative radiation dose was measured as dose area product in Gray centimeter2 and the duration of exposure was measured in minutes. Appropriate statistical tests were used to test the significance of any differences. Mean cumulative radiation dose for SCFE pinned on radiolucent table was statistically less than for those pinned on fracture table (P<0.05). The mean duration of radiation exposure on either table was not significantly different. Lateral projections may increase the radiation doses compared with anteroposterior projections because of the higher exposure parameters needed for side imaging. Our results showing decreased exposure doses on the radiolucent table are probably because of the ease of a frog leg lateral positioning obtained and thereby the ease of lateral imaging. In-situ pinning of SCFE hips on a radiolucent table has an additional advantage that the radiation dose during the procedure is significantly less than that of the procedure that is performed on a fracture table.
Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina
2015-01-01
We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 ((137)Cs) in Seoul. Using information regarding the frequency and duration of passing via the (137)Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of (137)Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline.
Reduction of radiation exposure in Japanese BWR Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morikawa, Yoshitake
1995-03-01
The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolantmore » system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.« less
Radiation as a Risk Factor for Cardiovascular Disease
Moulder, John E.; Hopewell, John W.
2011-01-01
Abstract Humans are continually exposed to ionizing radiation from terrestrial sources. The two major contributors to radiation exposure of the U.S. population are ubiquitous background radiation and medical exposure of patients. From the early 1980s to 2006, the average dose per individual in the United States for all sources of radiation increased by a factor of 1.7–6.2 mSv, with this increase due to the growth of medical imaging procedures. Radiation can place individuals at an increased risk of developing cardiovascular disease. Excess risk of cardiovascular disease occurs a long time after exposure to lower doses of radiation as demonstrated in Japanese atomic bomb survivors. This review examines sources of radiation (atomic bombs, radiation accidents, radiological terrorism, cancer treatment, space exploration, radiosurgery for cardiac arrhythmia, and computed tomography) and the risk for developing cardiovascular disease. The evidence presented suggests an association between cardiovascular disease and exposure to low-to-moderate levels of radiation, as well as the well-known association at high doses. Studies are needed to define the extent that diagnostic and therapeutic radiation results in increased risk factors for cardiovascular disease, to understand the mechanisms involved, and to develop strategies to mitigate or treat radiation-induced cardiovascular disease. Antioxid. Redox Signal. 15, 1945–1956. PMID:21091078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inada, G.J.; Hall, C.W.
Results are reported from ophthalmologic observations carried out on residents of Nagasaki and Hiroshima and exposed to radiation from an atomic explosion. Very significant statistical test results indicate that lenticular opacities observed have definite relationship to ionizing radiation exposure distance from the hypocenter (exposure distance in this instance is used as a relative index of radiation dosage received). Exposure to ionizing radiation does increase the incidence of lenticular changes indicative of ionizing radiation (definite opacities, polychrome posterior capsular roughening, excessive cortical opacities unexplained and, especially, the polychrome posterior capsular plaques). No appreciable differences in opacities by sex or loss ofmore » visual acuity were observed.« less
Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, M.W.; Mak, H.K.; Lachman, R.S.
1987-05-01
A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.
Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery.
Herman, M W; Mak, H K; Lachman, R S
1987-05-01
A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.
Nylund, Reetta; Kuster, Niels; Leszczynski, Dariusz
2010-10-18
Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined immediately after the end of the exposure and when the false discovery rate correction was applied to analysis. This observation agrees with our earlier study showing that the 1800 MHz GSM radiation exposure had only very limited effect on the proteome of human endothelial cell line EA.hy926, as compared with the effect of 900 MHz GSM radiation.
Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo
2001-08-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods — shielding and anti-carcinogens.
Gene-Expression Biomarkers for Application to High-Throughput Radiation Biodosimetry
2005-01-01
nuclear disaster . Even with the delayed onset of symptoms, sometimes several days after exposure, gene-expression biomarkers can identify these exposed individuals very early after exposure, allowing for prompt medical intervention. This early assessment of a radiation dose after exposure would enhance the operational commander’s situational awareness of the radiation exposure status of deployed units and increase the prospect of reduced morbidity and mortality through early medical intervention. Candidate gene targets were selected from microarray studies of ex
Cosmic radiation exposure during air travel.
DOT National Transportation Integrated Search
1980-03-01
In 1967 the FAA appointed an advisory committee on radiation biology aspects of SST flight. Some of the committee members were subsequently appointed to a working group to study radiation exposure during air travel in conventional jet aircraft. : Pre...
Real Time Radiation Exposure And Health Risks
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.
2015-01-01
Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McChesney, D.G.; Ledney, G.D.; Madonna, G.S.
The survival of B6D2F1 female mice exposed to lethal doses of fission neutron radiation is increased when trehalose dimycolate (TDM) preparations are given either 1 h after exposure or 1 day before exposure to radiation. TDM in an emulsion of squalene, Tween 80, and saline was the most effective formulation for increasing the 30-day survival of mice when given 1 day before (90%) or 1 h after (88%) exposure to radiation. An aqueous suspension of a synthetic analog of TDM was less effective at increasing 30-day survival (60%) when given 1 day prior to radiation exposure and not effective whenmore » given 1 h after radiation. Mice receiving a sublethal dose (3.5 Gy) of fission neutron radiation and either the TDM emulsion or synthetic TDM 1 h after irradiation were substantially more resistant to challenge with 10, 100, 1000, or 5000 times the LD50/30 dose of Klebsiella pneumoniae than untreated mice.« less
Matsuoka, Yutaka; Nishi, Daisuke; Nakaya, Naoki; Sone, Toshimasa; Noguchi, Hiroko; Hamazaki, Kei; Hamazaki, Tomohito; Koido, Yuichi
2012-05-15
On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers.
Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim
2016-01-01
Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558
Effect of Gender on the Radiation Sensitivity of Murine Blood Cells
Billings, Paul C; Romero-Weaver, Ana L; Kennedy, Ann R
2014-01-01
Space travel beyond the Earth’s protective magnetosphere risks exposing astronauts to ionizing radiation, such as that generated during a solar particle event (SPE). Ionizing radiation has well documented effects on blood cells and it is generally assumed that these effects contribute to the hematopoietic syndrome (HS), observed in animals and humans, following exposure to total body irradiation (TBI). The purpose of the current study was to assess the role of gender on the effects of gamma radiation on blood cells. C3H/HeN mice were irradiated with a 137Cs gamma source. Radiation had similar effects on white blood cells (WBCs), lymphocytes, and granulocytes in male and female C3H/HeN mice, while red blood cell (RBC) counts and hematocrit values remained stable following radiation exposure. Non-irradiated male mice had 13% higher platelet counts, compared with their female counterparts, and showed enhanced recovery of platelets on day 16 following radiation exposure. Hence, gender differences influence the response of platelets to TBI exposure. PMID:25221782
Overview on association of different types of leukemias with radiation exposure.
Gluzman, D F; Sklyarenko, L M; Zavelevich, M P; Koval, S V; Ivanivska, T S; Rodionova, N K
2015-06-01
Exposure to ionizing radiation is associated with increasing risk of various types of hematological malignancies. The results of major studies on association of leukemias and radiation exposure of large populations in Japan and in Ukraine are analyzed. The patterns of different types of leukemia in 295 Chernobyl clean-up workers diagnosed according to the criteria of up-to-date World Health Organization classification within 10-25 years following Chernobyl catastrophe are summarized. In fact, a broad spectrum of radiation-related hematological malignancies has been revealed both in Life Span Study in Japan and in study of Chernobyl clean-up workers in Ukraine. The importance of the precise diagnosis of tumors of hematopoietic and lymphoid tissues according to up-to-date classifications for elucidating the role of radiation as a causative factor of leukemias is emphasized. Such studies are of high importance since according to the recent findings, radiation-associated excess risks of several types of leukemias seem to persist throughout the follow-up period up to 55 years after the radiation exposure.
Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory
NASA Astrophysics Data System (ADS)
Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.
2017-12-01
The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.
Radiation and cancer risk in atomic-bomb survivors.
Kodama, K; Ozasa, K; Okubo, T
2012-03-01
With the aim of accurately assessing the effects of radiation exposure in the Japanese atomic-bomb survivors, the Radiation Effects Research Foundation has, over several decades, conducted studies of the Life Span Study (LSS) cohort, comprising 93 000 atomic-bomb survivors and 27 000 controls. Solid cancer: the recent report on solid cancer incidence found that at age 70 years following exposure at age 30 years, solid cancer rates increase by about 35% Gy(-1) for men and 58% Gy(-1) for women. Age-at-exposure is an important risk modifier. In the case of lung cancer, cigarette smoking has been found to be an important risk modifier. Radiation has similar effects on first-primary and second-primary cancer risks. Finally, radiation-associated increases in cancer rates appear to persist throughout life. Leukaemia: the recent report on leukaemia mortality suggests that radiation effects on leukaemia mortality persisted for more than 50 years. Moreover, significant dose-response for myelodysplastic syndrome was observed in Nagasaki LSS members even 40-60 years after radiation exposure. Future perspective: given the continuing solid cancer increase in the survivor population, the LSS will likely continue to provide important new information on radiation exposure and solid cancer risks for another 15-20 years, especially for those exposed at a young age.
1985-05-01
distribution, was evaluation of phase shift through best fit of assumed to be the beam response to the microwave theoretical curves and experimental...vibration sidebands o Acceleration as shown in the lower calculated curve . o High-Temperature Exposure o Thermal Vacuum Two of the curves show actual phase ...conclude that the method to measure the phase noise with spectrum estimation is workable, and it has no principle limitation. From the curve it has been
Radiation safety in the cardiac catheterization lab: A time series quality improvement initiative.
Abuzeid, Wael; Abunassar, Joseph; Leis, Jerome A; Tang, Vicky; Wong, Brian; Ko, Dennis T; Wijeysundera, Harindra C
Interventional cardiologists have one of the highest annual radiation exposures yet systems of care that promote radiation safety in cardiac catheterization labs are lacking. This study sought to reduce the frequency of radiation exposure, for PCI procedures, above 1.5Gy in labs utilizing a Phillips system at our local institution by 40%, over a 12-month period. We performed a time series study to assess the impact of different interventions on the frequency of radiation exposure above 1.5Gy. Process measures were percent of procedures where collimation and magnification were used and percent of completion of online educational modules. Balancing measures were the mean number of cases performed and mean fluoroscopy time. Information sessions, online modules, policies and posters were implemented followed by the introduction of a new lab with a novel software (AlluraClarity©) to reduce radiation dose. There was a significant reduction (91%, p<0.05) in the frequency of radiation exposure above 1.5Gy after utilizing a novel software (AlluraClarity©) in a new Phillips lab. Process measures of use of collimation (95.0% to 98.0%), use of magnification (20.0% to 14.0%) and completion of online modules (62%) helped track implementation. The mean number of cases performed and mean fluoroscopy time did not change significantly. While educational strategies had limited impact on reducing radiation exposure, implementing a novel software system provided the most effective means of reducing radiation exposure. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Epidemiological research on radiation-induced cancer in atomic bomb survivors.
Ozasa, Kotaro
2016-08-01
The late effects of exposure to atomic bomb radiation on cancer occurrence have been evaluated by epidemiological studies on three cohorts: a cohort of atomic bomb survivors (Life Span Study; LSS), survivors exposed IN UTERO : , and children of atomic bomb survivors (F1). The risk of leukemia among the survivors increased remarkably in the early period after the bombings, especially among children. Increased risks of solid cancers have been evident since around 10 years after the bombings and are still present today. The LSS has clarified the dose-response relationships of radiation exposure and risk of various cancers, taking into account important risk modifiers such as sex, age at exposure, and attained age. Confounding by conventional risk factors including lifestyle differences is not considered substantial because people were non-selectively exposed to the atomic bomb radiation. Uncertainty in risk estimates at low-dose levels is thought to be derived from various sources, including different estimates of risk at background levels, uncertainty in dose estimates, residual confounding and interaction, strong risk factors, and exposure to residual radiation and/or medical radiation. The risk of cancer in subjects exposed IN UTERO : is similar to that in LSS subjects who were exposed in childhood. Regarding hereditary effects of radiation exposure, no increased risk of cancers associated with parental exposure to radiation have been observed in the F1 cohort to date. In addition to biological and pathogenetic interpretations of the present results, epidemiological investigations using advanced technology should be used to further analyze these cohorts. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Technical Reports Server (NTRS)
Denkins, Pamela; Badhwar, Gautam; Obot, Victor
2000-01-01
NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.
Calvo, F A; Santos, M; Azinovic, I
1998-01-01
Intraoperative radiotherapy is a technique that can be integrated into multidisciplinary treatment strategies in oncology. A radiation boost delivered with high energy electron beams can intensify locoregional antitumor therapy in patients undergoing cancer surgery. Intraoperative radiotherapy can increase the therapeutic index of the conventional combination of surgery and radiotherapy by improving the precision of radiation dose location, while decreasing the normal tissue damage in mobile structures and enhancing the biological effect of radiation when combined with surgical debulking. Intraoperative radiotherapy has been extensively investigated in clinical oncology in the last 15 years. Commercially available linear accelerators require minimal changes to be suitable for intraoperative radiotherapy. Its successful implementation in clinical protocols depends on the support given by the single institutions and on a clinical research-oriented mentality. Tumors where intraoperative radiotherapy as a treatment component has shown promising rates of local control include locally advanced rectal, gastric and gynecologic cancer, bone and soft tissue sarcoma. Intraoperative radiotherapy can be applied to brain tumors, head and neck cancer, NSCLC and pancreatic carcinoma.
29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).
Code of Federal Regulations, 2010 CFR
2010-07-01
... produce ionizations directly or indirectly, but does not include electromagnetic radiations other than... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations...
29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).
Code of Federal Regulations, 2013 CFR
2013-07-01
... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...
29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).
Code of Federal Regulations, 2014 CFR
2014-07-01
... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...
29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).
Code of Federal Regulations, 2012 CFR
2012-07-01
... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...
Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure
2014-01-01
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376
CONFERENCE NOTE: Sixth Symposium on Temperature Scheduled for March 1982
NASA Astrophysics Data System (ADS)
1981-07-01
The call for papers for the 6th Symposium on Temperature, Its Measurement and Control in Science and Industry has been issued. The Symposium is scheduled to take place in Washington, DC, USA during the week of March 14 18, 1982. Like its predecessors held in the years 1919, 1939, 1954, 1961, and 1971, the 6th Symposium will stress advances in the measurement of thermodynamic values of temperature, in temperature reference points, in temperature sensors and instruments for the control of temperature, and in the development and use of temperature scales. For the first time, an exhibit of thermometry will be a part of the Symposium. Manuscripts to be submitted for inclusion in the Symposium should be sent to the 6th Temperature Symposium Program Chairman, National Bureau of Standards, by September 15, 1981. Those papers accepted for the Symposium will be due in camera-ready form by February 15, 1982. Original papers on all of the topics listed above, as well as reviews of the past decade's progress in thermometry and temperature control, are solicited by the Symposium organizers. The Symposium arrangements and registration are in the care of the Instrument Society of America (represented on the Symposium General Committee by Mr C T Glazer, 67 Alexander Drive, PO Box 12277, Research Triangle Park, North Carolina, 27709, USA). Questions regarding the instrument exhibits should also be addressed to the ISA. The technical program for the Symposium is the responsibility of a committee headed by Dr J F Schooley, Room B-128 Physics Building, National Bureau of Standards, Washington, DC, 20234, USA. The Symposium proceedings will be published by the American Institute of Physics.
Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi
2017-04-01
Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Singh, Vijay K.; Romaine, Patricia L.P.; Seed, Thomas M.
2015-01-01
Abstract World events over the past decade have highlighted the threat of nuclear terrorism as well as an urgent need to develop radiation countermeasures for acute radiation exposures and subsequent bodily injuries. An increased probability of radiological or nuclear incidents due to detonation of nuclear weapons by terrorists, sabotage of nuclear facilities, dispersal and exposure to radioactive materials, and accidents provides the basis for such enhanced radiation exposure risks for civilian populations. Although the search for suitable radiation countermeasures for radiation-associated injuries was initiated more than half a century ago, no safe and effective radiation countermeasure for the most severe of these injuries, namely acute radiation syndrome (ARS), has been approved by the United States Food and Drug Administration (FDA). The dearth of FDA-approved radiation countermeasures has prompted intensified research for a new generation of radiation countermeasures. In this communication, the authors have listed and reviewed the status of radiation countermeasures that are currently available for use, or those that might be used for exceptional nuclear/radiological contingencies, plus a limited few medicines that show early promise but still remain experimental in nature and unauthorized for human use by the FDA. PMID:25905522
Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W
2013-08-01
There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.
Exposure to Mobile Phone Radiation Opens New Horizons in Alzheimer’s Disease Treatment
Mortazavi, SAR; Shojaei-Fard, MB; Haghani, M; Shokrpour, N; Mortazavi, SMJ
2013-01-01
Alzheimer’s disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer’s disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer. Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer’s disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease. PMID:25505755
Exposure to mobile phone radiation opens new horizons in Alzheimer's disease treatment.
Mortazavi, Sar; Shojaei-Fard, Mb; Haghani, M; Shokrpour, N; Mortazavi, Smj
2013-09-01
Alzheimer's disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer's disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer. Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer's disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-06-06
There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewedmore » at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.« less
1978-08-04
flip. 3. Instructions for completing forms.-DD Form 7A1 I nd DD) Form 742 -ire used by trained examiners andl the itemns ictluiring comt - pletion are...radiation exposure report by organization for July. Monthly radiation exposure report by organization for Agust . Monthly radiation exposure report by
Fujimura, Maya Sophia; Komasa, Yukako; Kimura, Shinzo; Shibanuma, Akira; Kitamura, Akiko; Jimba, Masamine
2017-01-01
On March 11, 2011, Japan experienced its largest recorded earthquake with a magnitude of 9.0. The resulting tsunami caused massive damage to the Fukushima Daiichi Nuclear Power Plant reactors, and the surrounding environment was contaminated with radioactive materials. During this period, some residents were exposed to high levels of radiation (up to 5 millisieverts [mSv]), but since then, many residents have been exposed to low levels of radiation (<1 mSv). This study was conducted to assess the effects of lifestyle and attitude factors on external radiation exposure among Fukushima residents. This community-based, cross-sectional study was conducted in Nihonmatsu City of the Fukushima Prefecture from May to July 2014. The population survey targeted 6,884 children between the ages of 0-15 years, and a personal radiation badge and questionnaire were administered to each of the residences. Multiple linear regression analysis was used to assess the impact of lifestyle and attitude factors on external radiation dose. The study participants (population size [n] = 4,571) had an additional mean radiation dose of 0.65 mSv/year, which is small as compared to the mean radiation dose 6 months after the disaster (1.5 mSv/year), in 2012 (1.5 mSv/year), and in 2013 (1.0 mSv/year). External radiation doses statistically varied by socio-demographic and lifestyle factors. Participants living in wooden residences (p-value<0.001) and within 100 meters of a forest (p = 0.001) had higher radiation exposure. Conversely, participants with a cautious attitude towards radiation had lower radiation exposure (beta [b] = -0.124, p = 0.003). Having a cautious attitude towards radiation and being aware of exposure risks proved to be significant in the reduction of external radiation dose. Therefore, in the event of future radiation disasters, attitudes towards and awareness of radiation should be considered in the reduction of exposure risk and implementation of radiation protection.
Smith, Jim T
2007-01-01
Background Following a nuclear incident, the communication and perception of radiation risk becomes a (perhaps the) major public health issue. In response to such incidents it is therefore crucial to communicate radiation health risks in the context of other more common environmental and lifestyle risk factors. This study compares the risk of mortality from past radiation exposures (to people who survived the Hiroshima and Nagasaki atomic bombs and those exposed after the Chernobyl accident) with risks arising from air pollution, obesity and passive and active smoking. Methods A comparative assessment of mortality risks from ionising radiation was carried out by estimating radiation risks for realistic exposure scenarios and assessing those risks in comparison with risks from air pollution, obesity and passive and active smoking. Results The mortality risk to populations exposed to radiation from the Chernobyl accident may be no higher than that for other more common risk factors such as air pollution or passive smoking. Radiation exposures experienced by the most exposed group of survivors of Hiroshima and Nagasaki led to an average loss of life expectancy significantly lower than that caused by severe obesity or active smoking. Conclusion Population-averaged risks from exposures following major radiation incidents are clearly significant, but may be no greater than those from other much more common environmental and lifestyle factors. This comparative analysis, whilst highlighting inevitable uncertainties in risk quantification and comparison, helps place the potential consequences of radiation exposures in the context of other public health risks. PMID:17407581
Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria
NASA Astrophysics Data System (ADS)
Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.
2018-02-01
It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.
Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria
NASA Astrophysics Data System (ADS)
Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.
2018-05-01
It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.
Ionizing radiation: future etiologic research and preventive strategies.
Darby, S C; Inskip, P D
1995-11-01
Estimates of cancer risks following exposure to ionizing radiation traditionally have been based on the experience of populations exposed to substantial (and known) doses delivered over short periods of time. Examples include survivors of the atomic bombings at Hiroshima and Nagasaki, and persons treated with radiation for benign or malignant disease. Continued follow-up of these populations is important to determine the long-term effects of exposure in childhood, to characterize temporal patterns of excess risk for different types of cancer, and to understand better the interactions between radiation and other host and environmental factors. Most population exposure to radiation occurs at very low dose rates. For low linear energy transfer (LET) radiations, it often has been assumed that cancer risks per unit dose are lower following protracted exposure than following acute exposure. Studies of nuclear workers chronically exposed over a working lifetime provide data that can be used to test this hypothesis, and preliminary indications are that the risks per unit dose for most cancers other than leukemia are similar to those for acute exposure. However, these results are subject to considerable uncertainty, and further information on this question is needed. Residential radon is the major source of population exposure to high-LET radiation. Current estimates of the risk of lung cancer due to residential exposure to radon and radon daughters are based on the experience of miners exposed to much higher concentrations. Data indicate that lung cancer risk among miners is inversely associated with exposure rate, and also is influenced by the presence of other lung carcinogens such as arsenic in the mine environment. Further study of populations of radon-exposed miners would be informative, particularly those exposed at below-average levels. More direct evidence on the effects of residential exposure to radon also is desirable but might be difficult to come by, as risks associated with radon levels found in most homes might be too low to be quantified accurately in epidemiological studies.
Ionizing radiation: future etiologic research and preventive strategies.
Darby, S C; Inskip, P D
1995-01-01
Estimates of cancer risks following exposure to ionizing radiation traditionally have been based on the experience of populations exposed to substantial (and known) doses delivered over short periods of time. Examples include survivors of the atomic bombings at Hiroshima and Nagasaki, and persons treated with radiation for benign or malignant disease. Continued follow-up of these populations is important to determine the long-term effects of exposure in childhood, to characterize temporal patterns of excess risk for different types of cancer, and to understand better the interactions between radiation and other host and environmental factors. Most population exposure to radiation occurs at very low dose rates. For low linear energy transfer (LET) radiations, it often has been assumed that cancer risks per unit dose are lower following protracted exposure than following acute exposure. Studies of nuclear workers chronically exposed over a working lifetime provide data that can be used to test this hypothesis, and preliminary indications are that the risks per unit dose for most cancers other than leukemia are similar to those for acute exposure. However, these results are subject to considerable uncertainty, and further information on this question is needed. Residential radon is the major source of population exposure to high-LET radiation. Current estimates of the risk of lung cancer due to residential exposure to radon and radon daughters are based on the experience of miners exposed to much higher concentrations. Data indicate that lung cancer risk among miners is inversely associated with exposure rate, and also is influenced by the presence of other lung carcinogens such as arsenic in the mine environment. Further study of populations of radon-exposed miners would be informative, particularly those exposed at below-average levels. More direct evidence on the effects of residential exposure to radon also is desirable but might be difficult to come by, as risks associated with radon levels found in most homes might be too low to be quantified accurately in epidemiological studies. PMID:8741792
Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.
Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A
2016-01-01
The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined radiations. The levels of MDC and eotaxin correlated and the levels of MDC, but not eotaxin, correlated with the percentage of newly born activated microglia in the blades of the dentate gyrus. Finally, hippocampal IL-6 levels were higher in mice receiving combined radiations compared with mice receiving (56)Fe radiation alone. These data demonstrate the sensitivity of novel object recognition for detecting cognitive injury three months after exposure to proton radiation alone, and combined exposure to proton and (56)Fe radiations, and that newly-born activated microglia and inflammation might be involved in this injury.
Shah, Binita; Mai, Xingchen; Tummala, Lakshmi; Kliger, Chad; Bangalore, Sripal; Miller, Louis H.; Sedlis, Steven P.; Feit, Frederick; Liou, Michael; Attubato, Michael; Coppola, John; Slater, James
2014-01-01
Coronary angiography is the gold standard for defining obstructive coronary disease. However, radiation exposure remains an unwanted hazard. Patients referred for coronary angiography with abdominal circumference <45 inches and glomerular filtration rate >60mL/min were randomized to the Fluorography (n=25) or Cineangiography (n=25) group. Patients in the Fluorography group underwent coronary angiography using retrospectively-stored fluorography with repeat injection under cineangiography only when needed for better resolution per operator’s discretion. Patients in the Cineangiography group underwent coronary angiography using routine cineangiography. The primary endpoint was patient radiation exposure measured by radiochromic film. Secondary endpoints included the radiation output measurement of kerma-area product (KAP) and air kerma at the interventional reference point (Ka,r), and operator radiation exposure measured by dosimeter. Patient radiation exposure (158.2mGy [76.5–210.2] vs 272.5mGy [163.3–314.0], p=0.001), KAP (1323μGy m2 [826–1765] vs 3451μGy m2 [2464–4818], p<0.001), and Ka,r (175 mGy [112–252] vs 558 mGy [313–621], p<0.001)was significantly lower in the Fluorography compared with Cineangiography group (42%, 62%, and 69% relative reduction, respectively). Operator radiation exposure trended in the same direction though statistically non-significant (Fluorography 2.35 μGy [1.24–6.30] vs Cineangiography 5.03μGy [2.48–7.80], p=0.059). In conclusion, the use of fluorography in a select group of patients during coronary angiography with repeat injection under cineangiography only when needed was efficacious at reducing patient radiation exposure. PMID:24513469
Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.
2015-01-01
In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221
Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha
2016-01-01
The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163
Lung cancer mortality among workers at a nuclear materials fabrication plant.
Richardson, David B; Wing, Steve
2006-02-01
The Oak Ridge, Tennessee Y-12 plant has operated as a nuclear materials fabrication plant since the 1940s. Given the work environment, and prior findings that lung cancer mortality was elevated among white male Y-12 workers relative to US white males, we investigated whether lung cancer mortality was associated with occupational radiation exposures. A cohort of 3,864 workers hired between 1947 and 1974 who had been monitored for internal radiation exposure was identified. Vital status was ascertained through 1990. Over the study period 111 lung cancer deaths were observed. Cumulative external radiation dose under a 5-year lag assumption was positively associated with lung cancer mortality (0.54% increase in lung cancer mortality per 10 mSv, se=0.16, likelihood ratio test (LRT)=5.84, 1 degree of freedom [df]); cumulative internal radiation dose exhibited a highly-imprecise negative association with lung cancer mortality. The positive association between external radiation dose and lung cancer mortality was primarily due to exposure occurring in the period 5-14 years after exposure (0.97% increase in lung cancer mortality rate per 10 mSv, se=0.28, LRT=6.35, 1 df). The association between external radiation dose and lung cancer mortality was negative for exposures occurring at ages<35 years and positive for exposures occurring at ages 35-50 and 50+years. There is evidence of a positive association between cumulative external radiation dose and lung cancer mortality in this population. However, a causal interpretation of this association is constrained by the uncertainties in external and internal radiation dose estimates, the lack of information about exposures to other lung carcinogens, and the limited statistical power of the study. Copyright (c) 2005 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Konda, Bikash; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther; Lau, Patrick
Radiation exposure and musculoskeletal disuse are among the major challenges during space missions. Astronauts face the problem to lose bone calcium due to uncoupling of bone formation and resorption. Bone forming osteoblasts can be derived from the undifferentiated mesenchymal stem cell compartment (MSC). In this study, the ability of human adipose tissue derived stem cells (ATSC) to differentiate into the osteoblastic lineage was examined after radiation exposure in presence of medium supplementation with osteogenic additives (ß-glycerophosphate, ascorbic acid and dexamethasone). The SAOS-2 cell line (human osteosarcoma cell line) was used as control for osteoblastic differentiation. Changes in cellular morphology, cell cycle progression, as well as cellular radiation sensitivity were characterized after ionizing radiation exposure with X-rays and heavy ions (Ti). Rapidly proliferating SAOS-2 cells are less radiation-sensitive than slowly proliferating ATSC cells after X-ray (CFA: dose effect curves show D0 values of 1 Gy and 0.75 Gy for SAOS-2 and ATSC, respectively) exposure. Heavy ion (Ti) exposure resulted in a greater extent of cells accumulating in the G2/M phase of the cell cycle in a dose-dependent manner when compared to X-ray exposure. Differentiation of cells towards the osteoblastic lineage was quantified by hydroxyapatite (HA) deposition using Lonza OsteoImageTM mineralization assay. The deposition of HA after X- and Ti-irradiation for highly proliferating SAOS-2 cells showed a dose-dependent time delay while slowly proliferating ATSC showed no effect from radiation exposure. More detailed investigation is required to reveal the radiation dependent mechanism of bone loss in astronauts.
Climate Science and Technology Symposium
2010-01-06
at the Roger Revelle Centennial Symposium, the scientific focus of Scripps Institution of Oceanography’s celebration of Roger Revelle’s 100th...the Roger Revelle Centennial Symposium honored Revelle’s continuing legacy, and highlighted the influence his work continues to exert upon the...view the Roger Revelle Centennial Symposium on UCSD-TV, visit ucsd.tv/revellesymposium warn SYMPOSIUM REPORT ROGER REVELLE 100 TH BIRTHDAY
Liu, Q; Cao, J; Wang, Z Q; Bai, Y S; Lü, Y M; Huang, Q L; Zhao, W Z; Li, J; Jiang, L P; Tang, W S; Fu, B H; Fan, F Y
2009-01-01
The objective of this study was to assess the radiation exposure levels in victims of a 60Co radiation accident using chromosome aberration analysis and the micronucleus assay. Peripheral blood samples were collected from three victims exposed to 60Co 10 days after the accident and were used for the chromosome aberration and micronucleus assays. After in vitro culture of the lymphocytes, the frequencies of dicentric chromosomes and rings (dic+r) and the numbers of cytokinesis blocking micronuclei (CBMN) in the first mitotic division were determined and used to estimate radiation dosimetry. The Poisson distribution of the frequency of dic+r in lymphocytes was used to assess the uniformity of the exposure to 60Co radiation. Based on the frequency of dic+r in lymphocytes, estimates of radiation exposure of the three victims were 5.61 Gy (A), 2.48 Gy (B) and 2.68 Gy (C). The values were estimated based on the frequencies of CBMN, which were 5.45 Gy (A), 2.78 Gy (B) and 2.84 Gy (C). The estimated radiation dosimetry demonstrated a critical role in estimating the radiation dose and facilitating an accurate clinical diagnosis. Furthermore, the frequencies of dir+r in victims A and B deviated significantly from a normal Poisson distribution. Chromosome aberration analysis offers a reliable means for estimating biological exposure to radiation. In the present study, the micronucleus assay demonstrated a high correlation with the chromosome aberration analysis in determining the radiation dosimetry 10 days after radiation exposure. PMID:19366736
1980-04-30
linac is triggered, it produces a 3-5 nC, 50-psec pulse of 6-MeV electrons across the test fiber. Dosimetry is done by integrating the charge in the...the Electron Tube. Thermoluminescent Li4B40 7 crystals ( TLD -8001 were used to verify the dose. The FOWs absorbed zO.47 x 106 rad, which corresponds to...Agency, U.S. Army Electronic Research and Development Command, and Harry Diamond Laboratories. Volume I contains the classified presentations and those
NASA Astrophysics Data System (ADS)
The present conference discusses topics in EM shielding effectiveness, system-level EMC, EMP effects, circuit-level EMI testing, EMI control, analysis techniques for system-level EMC, EMP protective measures, EMI test methods, electrostatic-discharge testing, printed circuit-board design for EMC, and EM environment effects. Also discussed are EMI measurement procedures, EM spectrum-management issues for the 21st century, antenna and propagation effects on EMI testing, EMI control in cables, socioeconomic aspects of EMC, systemwide EMI controls, and EM radiation and coupling.
1981-09-01
reflectivity near 9.0 GHz and relative transparency above 10.5 GHz and below 7.5 GHz. The frequency-selective response of the FSS, as tested in the...FREQUENCY (GHz) Figure 6. Frequency Selective Responses of FSS U.~I noU 0 .jj 7 41 IN J43 cH-’ AI 4c!,) ---------- -- ,-7 -7 2Z~Zf -~44 -- t 4qpi V...assumes no responsibility for the information presented." -2- quiescent (before adaption) radiation pattern of the adaptive antenna affects the initial
UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management
Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua
2011-01-01
Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations. PMID:21860667
Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury
Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan
2015-01-01
Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001
Awosan, K J; Ibrahim, Mto; Saidu, S A; Ma'aji, S M; Danfulani, M; Yunusa, E U; Ikhuenbor, D B; Ige, T A
2016-08-01
Use of ionizing radiation in medical imaging for diagnostic and interventional purposes has risen dramatically in recent years with a concomitant increase in exposure of patients and health workers to radiation hazards. To assess the knowledge of radiation hazards, radiation protection practices and clinical profile of health workers in UDUTH, Sokoto, Nigeria. A cross-sectional study was conducted among 110 Radiology, Radiotherapy and Dentistry staff selected by universal sampling technique. The study comprised of administration of standardized semi-structured pre-tested questionnaire (to obtain information on socio-demographic characteristics, knowledge of radiation hazards, and radiation protection practices of participants), clinical assessment (comprising of chest X-ray, abdominal ultrasound and laboratory investigation on hematological parameters), and evaluation of radiation exposure of participants (extracted from existing hospital records on their radiation exposure status). The participants were aged 20 to 65 years (mean = 34.04 ± 8.83), most of them were males (67.3%) and married (65.7%). Sixty five (59.1%) had good knowledge of radiation hazards, 58 (52.7%) had good knowledge of Personal Protective Devices (PPDs), less than a third, 30 (27.3%) consistently wore dosimeter, and very few (10.9% and below) consistently wore the various PPDs at work. The average annual radiation exposure over a 4 year period ranged from 0.0475mSv to 1.8725mSv. Only 1 (1.2%) of 86 participants had abnormal chest X-ray findings, 8 (9.4%) of 85 participants had abnormal abdominal ultrasound findings; while 17 (15.5%) and 11 (10.0%) of 110 participants had anemia and leucopenia respectively. This study demonstrated poor radiation protection practices despite good knowledge of radiation hazards among the participants, but radiation exposure and prevalence of abnormal clinical conditions were found to be low. Periodic in-service training and monitoring on radiation safety was suggested.
Ibrahim, MTO; Saidu, SA; Ma’aji, SM; Danfulani, M; Yunusa, EU; Ikhuenbor, DB; Ige, TA
2016-01-01
Introduction Use of ionizing radiation in medical imaging for diagnostic and interventional purposes has risen dramatically in recent years with a concomitant increase in exposure of patients and health workers to radiation hazards. Aim To assess the knowledge of radiation hazards, radiation protection practices and clinical profile of health workers in UDUTH, Sokoto, Nigeria. Materials and Methods A cross-sectional study was conducted among 110 Radiology, Radiotherapy and Dentistry staff selected by universal sampling technique. The study comprised of administration of standardized semi-structured pre-tested questionnaire (to obtain information on socio-demographic characteristics, knowledge of radiation hazards, and radiation protection practices of participants), clinical assessment (comprising of chest X-ray, abdominal ultrasound and laboratory investigation on hematological parameters), and evaluation of radiation exposure of participants (extracted from existing hospital records on their radiation exposure status). Results The participants were aged 20 to 65 years (mean = 34.04 ± 8.83), most of them were males (67.3%) and married (65.7%). Sixty five (59.1%) had good knowledge of radiation hazards, 58 (52.7%) had good knowledge of Personal Protective Devices (PPDs), less than a third, 30 (27.3%) consistently wore dosimeter, and very few (10.9% and below) consistently wore the various PPDs at work. The average annual radiation exposure over a 4 year period ranged from 0.0475mSv to 1.8725mSv. Only 1 (1.2%) of 86 participants had abnormal chest X-ray findings, 8 (9.4%) of 85 participants had abnormal abdominal ultrasound findings; while 17 (15.5%) and 11 (10.0%) of 110 participants had anemia and leucopenia respectively. Conclusion This study demonstrated poor radiation protection practices despite good knowledge of radiation hazards among the participants, but radiation exposure and prevalence of abnormal clinical conditions were found to be low. Periodic in-service training and monitoring on radiation safety was suggested. PMID:27656470
Medical management of three workers following a radiation exposure incident
DOE Office of Scientific and Technical Information (OSTI.GOV)
House, R.A.; Sax, S.E.; Rumack, E.R.
The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experiencedmore » somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.« less
Radiation exposure from fluoroscopy during orthopedic surgical procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, S.A.
1989-11-01
The use of fluoroscopy has enabled orthopedic surgeons to become technically more proficient. In addition, these surgical procedures tend to have less associated patient morbidity by decreasing operative time and minimizing the area of the operative field. The trade-off, however, may be an increased risk of radiation exposure to the surgeon on an annual or lifetime basis. The current study was designed to determine the amount of radiation received by the primary surgeon and the first assistant during selected surgical procedures involving the use of fluoroscopy. Five body sites exposed to radiation were monitored for dosage. The results of thismore » study indicate that with appropriate usage, (1) radiation exposure from fluoroscopy is relatively low; (2) the surgeon's dominant hand receives the most exposure per case; and (3) proper maintenance and calibration of fluoroscopic machines are important factors in reducing exposure risks. Therefore, with proper precautions, the use of fluoroscopy in orthopedic procedures can remain a safe practice.« less
TRIENNIAL REPRODUCTION SYMPOSIUM: Developmental programming of fertility.
Reynolds, L P; Vonnahme, K A
2016-07-01
The 2015 Triennial Reproduction Symposium focused on developmental programming of fertility. The topics covered during the morning session included the role of the placenta in programming of fetal growth and development, effects of feeding system and level of feeding during pregnancy on the annual production cycle and lifetime productivity of heifer offspring, effects of litter size and level of socialization postnatally on reproductive performance of pigs, effects of postnatal dietary intake on maturation of the hypothalamic-pituitary-gonadal axis and onset of puberty in heifers, effects of housing systems on growth performance and reproductive efficiency of gilts, and effects of energy balance on sexual differentiation in rodent models. The morning session concluded with presentation of the American Society of Animal Science L. E. Casida Award for Excellence in Graduate Education to Dr. Michael Smith from the University of Missouri, Columbia, who shared his philosophy of graduate education. The afternoon session included talks on the role of epigenetic modifications in developmental programming and transgenerational inheritance of reproductive dysfunction, effects of endocrine disrupting compounds on fetal development and long-term physiology of the individual, and potential consequences of real-life exposure to environmental contaminants on reproductive health. The symposium concluded with a summary talk and the posing of 2 questions to the audience. From an evolutionary standpoint, programming and epigenetic events must be adaptive; when do they become maladaptive? If there are so many environmental factors that induce developmental programming, are we doomed, and if not, what is or are the solution or solutions?
A safety radiation marker in the cardiac catheterization lab.
Kostakou, Peggy M; Damaskos, Dimitris S; Dagre, Anna G; Makavos, Georgios A; Olympios, Christophoros D
2016-04-01
Nowadays, in order to deal with cardiovascular disease, coronary angiography (CRA) is the best tool and gold standard for diagnosis and assessment. CRA inevitably exposes both patient and operator to radiation. The purpose of this study was to calculate the radiation exposure in association with the radiation absorbed by interventional cardiologists, in order to estimate a safety radiation marker in the catheterization laboratory. In 794 successive patients undergoing CRA and in three interventional cardiologists the following parameters were examined: radioscopy duration, radiation exposure during fluoroscopy, total radiation exposure and the number of stents per procedure. Every interventional cardiologist was exposed to 562,936 μGym2 of total radiation during CRA procedures, to 833,371 μGym2 during elective CRA + percutaneous coronary intervention (PCI) procedures and to 328,250 μGym2 during primary CRA + PCI. Hence, the total amount of radiation that every angiographer was exposed to amounted to 1,724,557.5 μGym2 (median values). During the same period, the average radiation that every angiographer absorbed was 15,253 while the average dose of radiation absorbed during one procedure was 0.06 mSv for each operator. Therefore, the ratio between radiation exposure and the radiation finally absorbed by every operator was 113:1 μGym2/mSv. The present study, indicating the ratio above, offers a safety marker in order to realistically estimate the dose absorbed by interventional cardiologists, suggesting a specified number of permitted procedures and an effective level of radiation use protection tools.
Worker Alienation and Compensation at the Savannah River Site.
Ashwood, Loka; Wing, Steve
2016-05-01
Corporations operating U.S. nuclear weapons plants for the federal government began tracking occupational exposures to ionizing radiation in 1943. However, workers, scholars, and policy makers have questioned the accuracy and completeness of radiation monitoring and its capacity to provide a basis for workers' compensation. We use interviews to explore the limitations of broad-scale, corporate epidemiological surveillance through worker accounts from the Savannah River Site nuclear weapons plant. Interviewees report inadequate monitoring, overbearing surveillance, limited venues to access medical support and exposure records, and administrative failure to report radiation and other exposures at the plant. The alienation of workers from their records and toil is relevant to worker compensation programs and the accuracy of radiation dose measurements used in epidemiologic studies of occupational radiation exposures at the Savannah River Site and other weapons plants. © The Author(s) 2016.
ERIC Educational Resources Information Center
Atomic Energy Commission, Washington, DC.
THE SUCCESSFUL OPERATION OF THE PERMISSIBLE LEVEL CONCEPT OF RADIATION CONTROL NECESSARILY ENTAILS A COMPREHENSIVE SYSTEM UNDER WHICH EXPOSURE MUST BE RECORDED AND EMPLOYEES NOTIFIED OF THEIR EXPOSURE HISTORY. IN AN INVESTIGATION OF RECORD KEEPING NECESSARY TO PROCESS RADIATION CLAIMS, QUESTIONNAIRES OR LETTERS WERE RECEIVED FROM 45 STATE AGENCIES…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreuzer, W.
External and internal natural radiation exposure seems to be relatively and absolutely higher in livestock, mainly in herbivores, than in man. The artificial internal and external radiation exposure hardly exists in animals, even not in the vicinity of nuclear reactors. The external radiation exposure resulting from the radionuclides of the fallout of nuclear weapon experiments was negligibly small in Central Europe. The internal radiation exposure after intake of radionuclides with food of animal origin and their accumulation in the organism of the consumer is important. Milk and dairy products may contain considerable amounts of/sup 131/I, /sup 137/Cs, and /sup 90/Sr.more » In meat, /sup 137/Cs-contaminations were found sporadically that were higher than the permissible maximal dose. In total, the artificial radiation exposure did not yet reach the dimensions of the natural radiation exposure, neither in livestock nor in men, even not in reindeers or their breeders in Lapland, where the extreme /sup 137/Cs-contamination of the lichen causes high /sup 137/Csactivity, both in reindeers and in reindeer breeders who live almost exclusively on meat, blood, and milk of the animals. The radioactive contamination of livestock and food of animal origin may cause concern in case of a crisis or emengency. (GE)« less
Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina
2015-01-01
Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047
Management of fear of radiation exposure in carers of outpatients treated with iodine-131.
Calais, Phillipe J; Page, Andrew C; Turner, J Harvey
2012-07-01
To characterise potential fear of radiation exposure in a normal population of individuals who have volunteered to care for a radioactive family member or friend after outpatient radioimmunotherapy (RIT) treatment for cancer, and obtain their knowing and willing acceptance of the risk. Over 750 carers of 300 patients confined to their homes for 1 week following outpatient iodine-131 rituximab RIT of lymphoma were interviewed by a nuclear medicine physicist according to a multi-visit integrated protocol designed to minimise radiation exposure, define risk and gain informed consent. Median radiation exposure of carers was 0.49 mSv (range 0.01-3.7 mSv) which is below the Western Australian regulatory limit of 5 mSv for consenting adult carers of radioactive patients. After signing a declaration of consent, only 2 carers of 750 abrogated their responsibility and none of those who carried out their duties expressed residual concerns at the end of the exit interview with respect to their radiation exposure. Fear of radiation exposure in a normal population may be characterised as a normal emotional response. In the special case of carers of radioactive patients, this fear may be successfully managed by rational, authoritative and empathic explanation to define the risk and gain willing acceptance within the context of domiciliary patient care.
Europa Propulsion Valve Seat Material Testing
NASA Technical Reports Server (NTRS)
Addona, Brad M.
2017-01-01
The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.
Method for minimizing the radiation exposure from scoliosis radiographs. [X ray
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Smet, A.A.; Fritz, S.L.; Asher, M.A.
1981-01-01
The radiation exposure resulting from standard scoliosis radiographs was determined for eighteen adolescent girls. The risk of inducing breast cancer was estimated from the skin-exposure doses. The average skin exposure to the breasts was 59.6 millirads (0.59 mGy) for the anteroposterior radiograph. Assuming a total of twenty-two anteroposterior radiographs during a course of treatment, the cumulative exposure would result in a 1.35% relative increase in the risk of development of breast cancer. By utilizing collimation of the x-ray beam and proper selection of grids, films, and screens, the radiation risk of scoliosis radiographs is minimized.
Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M
2012-01-01
Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P < 0.0001) corresponding to a 23% total reduction. Moreover, mean radiation exposure was lower with Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.
An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure
NASA Technical Reports Server (NTRS)
Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.
2015-01-01
The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.
[The new law on radiation protection as a consequence of the EU safety standard of 2013].
Layer, G
2017-07-01
The transformation of a European guideline (2013/59/Euratom) from 2013 into national law requires adaptation of the national statutory regulations. This year, all areas of protection from ionizing radiation will be subject to the new radiation protection law (StrlSchG). Through this, the German X‑ray and Radiation Protection Acts will be combined to form a higher level of authority. The main parts of the StrlSchG will receive a new classification and will be organized according to the exposure scenario: radiation protection in planned exposure scenarios, radiation protection in emergency exposure scenarios, radiation protection in existing exposure scenarios, and the regulation of overall exposure scenarios. The most important or modified regulated points for radiology are concerned with early recognition, where the application of X‑ray or nuclear radiation is permitted in principle under certain conditions; the consultation of medical physics experts in all diagnostic investigative procedures involving radiation and applications for radiological intervention that are linked to high doses in the person under investigation; teleradiology, another special case of the application of X‑rays in humans that requires approval, now with the "required" technical qualification in radiation protection, formerly with the "full" technical qualification, in addition to research, the simplified approval procedure being substituted with a notification procedure.Furthermore, in contrast to previous regulations, those tasked with radiation protection can contact the regulators directly in the case of conflict, which indicates considerable reinforcement of their authority.The only dose limit that will be considerably reduced is the organ-specific equivalent dose of the eye lens, where the highest value will be reduced from 150 to 20 mSv per year in those who are exposed to radiation professionally.
Theriot, Corey A; Westby, Christian M; Morgan, Jennifer L L; Zwart, Sara R; Zanello, Susana B
2016-01-01
Radiation exposure in combination with other space environmental factors including microgravity, nutritional status, and deconditioning is a concern for long-duration space exploration missions. Astronauts experience altered iron homeostasis due to adaptations to microgravity and an iron-rich food system. Iron intake reaches three to six times the recommended daily allowance due to the use of fortified foods on the International Space Station. Iron is associated with certain optic neuropathies and can potentiate oxidative stress. This study examined the response of eye and vascular tissue to gamma radiation exposure (3 Gy fractionated at 37.5 cGy per day every other day for 8 fractions) in rats fed an adequate-iron diet or a high-iron diet. Twelve-week-old Sprague-Dawley rats were assigned to one of four experimental groups: adequate-iron diet/no radiation (CON), high-iron diet/no radiation (IRON), adequate-iron diet/radiation (RAD), and high-iron diet/radiation (IRON+RAD). Animals were maintained on the corresponding iron diet for 2 weeks before radiation exposure. As previously published, the high-iron diet resulted in elevated blood and liver iron levels. Dietary iron overload altered the radiation response observed in serum analytes, as evidenced by a significant increase in catalase levels and smaller decrease in glutathione peroxidase and total antioxidant capacity levels. 8-OHdG immunostaining, showed increased intensity in the retina after radiation exposure. Gene expression profiles of retinal and aortic vascular samples suggested an interaction between the response to radiation and high dietary iron. This study suggests that the combination of gamma radiation and high dietary iron has deleterious effects on retinal and vascular health and physiology. PMID:28725729
Is ionizing radiation regulated more stringently than chemical carcinogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.
1989-04-01
It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals andmore » ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens.« less
Atmospheric Ionizing Radiation and Human Exposure
NASA Technical Reports Server (NTRS)
Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.
2005-01-01
Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.
Atmospheric Ionizing Radiation and Human Exposure
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.
2004-01-01
Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, C.E.; Boice, J.D. Jr.; Shore, R.E.
1980-08-01
Breast cancer incidence data were analyzed from three populations of women exposed to ionizing radiation: survivors of the Hiroshima and Nagasaki atomic bombs, patients in Massachusetts tuberculosis sanitoria who were exposed to multiple chest fluoroscopies, and patients treated by X-rays for acute postpartum mastitis in Rochester, New York. Parallel analyses by radiation dose, age at exposure, and time after exposure suggested that risk of radiation-induced cancer increased approximately linearly with increasing dose and was heavily dependent on age at exposure; however, the risk was otherwise remarkably similar among the three populations, at least for ages 10 to 40 years atmore » exposure, and followed the same temporal pattern of occurrence as did breast cancer incidence in nonexposed women of similar ages.« less
Cumulative total effective whole-body radiation dose in critically ill patients.
Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J
2013-11-01
Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.
2012-01-01
Background On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. Methods One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Results Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. Conclusion The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers. PMID:22455604
Bazyka, D; Finch, S C; Ilienko, I M; Lyaskivska, O; Dyagil, I; Trotsiuk, N; Gudzenko, N; Chumak, V V; Walsh, K M; Wiemels, J; Little, M P; Zablotska, L B
2017-06-23
Ionizing radiation is a well-known carcinogen. Chromosome aberrations, and in particular micronuclei represent an early biological predictor of cancer risk. There are well-documented associations of micronuclei with ionizing radiation dose in some radiation-exposed groups, although not all. That associations are not seen in all radiation-exposed groups may be because cells with micronuclei will not generally pass through mitosis, so that radiation-induced micronuclei decay, generally within a few years after exposure. Buccal samples from a group of 111 male workers in Ukraine exposed to ionizing radiation during the cleanup activities at the Chornobyl nuclear power plant were studied. Samples were taken between 12 and 18 years after their last radiation exposure from the Chornobyl cleanup. The frequency of binucleated micronuclei was analyzed in relation to estimated bone marrow dose from the cleanup activities along with a number of environmental/occupational risk factors using Poisson regression adjusted for overdispersion. Among the 105 persons without a previous cancer diagnosis, the mean Chornobyl-related dose was 59.5 mSv (range 0-748.4 mSv). There was a borderline significant increase in micronuclei frequency among those reporting work as an industrial radiographer compared with all others, with a relative risk of 6.19 (95% CI 0.90, 31.08, 2-sided p = 0.0729), although this was based on a single person. There was a borderline significant positive radiation dose response for micronuclei frequency with increase in micronuclei per 1000 scored cells per Gy of 3.03 (95% CI -0.78, 7.65, 2-sided p = 0.1170), and a borderline significant reduction of excess relative MN prevalence with increasing time since last exposure (p = 0.0949). There was a significant (p = 0.0388) reduction in MN prevalence associated with bone X-ray exposure, but no significant trend (p = 0.3845) of MN prevalence with numbers of bone X-ray procedures. There are indications of increasing trends of micronuclei prevalence with Chornobyl-cleanup-associated dose, and indications of reduction in radiation-associated excess prevalence of micronuclei with time after exposure. There are also indications of substantially increased micronuclei associated with work as an industrial radiographer. This analysis adds to the understanding of the long-term effects of low-dose radiation exposures on relevant cellular structures and methods appropriate for long-term radiation biodosimetry.
Radiofrequency (mobile telephones) Exposures and Health Risks: Findings and Controversies by Dr. Martha Linet - part of the Radiation Epidemiology and Dosimetry Course on the health effects of radiation exposure
Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆
Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.
2012-01-01
In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416
A novel nanometric DNA thin film as a sensor for alpha radiation
Kulkarni, Atul; Kim, Byeonghoon; Dugasani, Sreekantha Reddy; Joshirao, Pranav; Kim, Jang Ah; Vyas, Chirag; Manchanda, Vijay; Kim, Taesung; Park, Sung Ha
2013-01-01
The unexpected nuclear accidents have provided a challenge for scientists and engineers to develop sensitive detectors, especially for alpha radiation. Due to the high linear energy transfer value, sensors designed to detect such radiation require placement in close proximity to the radiation source. Here we report the morphological changes and optical responses of artificially designed DNA thin films in response to exposure to alpha radiation as observed by an atomic force microscope, a Raman and a reflectance spectroscopes. In addition, we discuss the feasibility of a DNA thin film as a radiation sensing material. The effect of alpha radiation exposure on the DNA thin film was evaluated as a function of distance from an 241Am source and exposure time. Significant reflected intensity changes of the exposed DNA thin film suggest that a thin film made of biomolecules can be one of promising candidates for the development of online radiation sensors. PMID:23792924
Risk of ionising radiation to trainee orthopaedic surgeons.
Khan, Ishrat A; Kamalasekaran, Senthil; Fazal, M Ali
2012-02-01
We undertook this study to determine the amount of scattered radiation received by the primary surgeon, assistant and patient during dynamic hip screw fixation for proximal femoral fractures. Data was collected from fifty patients. Five registrars were included as operating surgeon and four senior house officers as assistant surgeon. Radiation was monitored by thermo luminescent dosimeters placed on the surgeon and assistant. The approximate distance of surgeon and assistant from the operative site was measured. A dosimeter on the unaffected hip of patients measured the radiation to the patient. The results show that the surgeon's dominant hand receives the highest dose of radiation and radiation exposure is dependent on the experience of the operator. Our study concludes that exposure to radiation during this procedure is well below the toxic levels; however greater awareness is needed for harmful effects of exposure to long term low dose radiation.
Characteristic of the radiation field in low Earth orbit and in deep space.
Reitz, Guenther
2008-01-01
The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth orbits and in interplanetary missions.
NASA Astrophysics Data System (ADS)
Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias
2017-03-01
The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286 μGy/day with dose equivalent values of 647 μSv/day.
Dadoukis, Panagiotis; Klagas, Ioannis; Komnenou, Anastasia; Karakiulakis, George; Karoutis, Athanasios; Karampatakis, Vassilios; Papakonstantinou, Eleni
2013-08-01
Prolonged exposure to infrared (IR) radiation is associated with different types of damage to cornea and lens. The aim of our study was to investigate the effect of acute and chronic exposure to IR radiation on the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 and on the expression of glycosaminoglycans (GAG) in the rabbit cornea and crystalline lens. New Zealand rabbits were subjected to IR radiation for 4 months (chronic exposure to IR) or to normal light (control group). In experiments regarding acute exposure, animals were subjected to IR radiation or normal light for 12 h, in the presence of 0.1% diclofenac sodium (eye drops instilled in the right eye of animals) or saline (instilled in the left eye of animals). The cornea and lens were dissected away and homogenized. The activity of MMP-2 and MMP-9 was assayed by gelatine zymography. Total GAG were isolated from tissue specimens after lipid extraction and extensive digestion with pronase and DNase and characterized by treatment with GAG-degrading enzymes, followed by electrophoresis on cellulose acetate membranes. Acute or chronic exposure to IR radiation induced the activity of MMP-2 in cornea and lens, whereas only acute IR radiation increased the content of heparan sulphate in crystalline lens. Local administration of diclofenac sodium did not prevent the above effects of acute IR radiation. The detrimental effects of excessive or prolonged exposure of the eyes to IR radiation are associated with induced activity of MMP-2 in cornea and lens and alterations in the content of heparan sulphate in lens. Thus, MMP and GAG may offer alternative targets for pharmacological intervention to confront ocular damages associated with IR radiation.
Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo
Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.
2015-01-01
Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721
McCunney, Robert J; Li, Jessica
2014-03-01
The National Lung Cancer Screening Trial (NLST) demonstrated that screening with low-dose CT (LDCT) scan reduced lung cancer and overall mortality by 20% and 7%, respectively. The LDCT scanning involves an approximate 2-mSv dose, whereas full-chest CT scanning, the major diagnostic study used to follow up nodules, may involve a dose of 8 mSv. Radiation associated with CT scanning and other diagnostic studies to follow up nodules may present an independent risk of lung cancer. On the basis of the NLST, we estimated the incidence and prevalence of nodules detected in screening programs. We followed the Fleischner guidelines for follow-up of nodules to assess cumulative radiation exposure over 20- and 30-year periods. We then evaluated nuclear worker cohort studies and atomic bomb survivor studies to assess the risk of lung cancer from radiation associated with long-term lung cancer screening programs. The findings indicate that a 55-year-old lung screening participant may experience a cumulative radiation exposure of up to 280 mSv over a 20-year period and 420 mSv over 30 years. These exposures exceed those of nuclear workers and atomic bomb survivors. This assessment suggests that long-term (20-30 years) LDCT screening programs are associated with nontrivial cumulative radiation doses. Current lung cancer screening protocols, if conducted over 20- to 30-year periods, can independently increase the risk of lung cancer beyond cigarette smoking as a result of cumulative radiation exposure. Radiation exposures from LDCT screening and follow-up diagnostic procedures exceed lifetime radiation exposures among nuclear power workers and atomic bomb survivors.
NASA Astrophysics Data System (ADS)
Flores-McLaughlin, John
During human spaceflight missions, controlled variation of atmospheric pressure and oxygen concentration from a sea-level based normal to hyperoxic levels may occur as part of operational procedure. This activity is of interest because it provides the relevant radiation exposure and dynamic oxygen concentration parameters that may lead to varying radiation sensitivity in the skin and other organs. Tumor hypoxia has been indicated as a primary factor in the decrease in efficacy of radiation therapy. These oxygen concentration effects have been largely demonstrated with low-LET radiations and to a lesser degree with high-LET primary radiations such as protons and heavy ions common in space exposure. In order to analyze the variation of oxygen concentration in human skin from spaceflight activities, a mathematical model of oxygen transport through the human cardiorespiratory system with pulmonary and cutaneous intake was implemented. Oxygen concentration was simulated at the various skin layers, from dermis to epidermis. Skin surface radiation doses and spectra from relatively high flux Solar Particle Events (SPEs) were calculated by the PHITS radiation transport code over a range of spacecraft and spacesuit thicknesses in terms of aluminum equivalence. A series of anatomical skin and shielding thicknesses were chosen to encompass the scope of radiation exposure levels as indicated by existing NASA skin phantom studies. To model the influence of oxygen with radiation exposure, microdosimetric oxygen fixation simulations were implemented using the Monte-Carlo-Damage-Simulation (MCDS) code. From these outputs, occurrence of DNA double strand breaks (DSBs) and relative biological effect (RBE) from radiation exposure with oxygen concentration dependence was established and correlated to spaceflight activities. It was determined that minimal but observable oxygen concentration transients occur in skin during environmental oxygen changes in spaceflight. The most significant transients occurred in the thickest epidermal layers with relatively high amounts of diffusion. Accordingly, these thickest epidermal layers also showed the greatest spaceflight induced transients of RBE relative to sea-level based atmosphere exposures.
Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.
Miron, S D; Astărăstoae, V
2014-01-01
Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.
77 FR 21785 - Medical Countermeasures Initiative Regulatory Science Symposium
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Medical Countermeasures Initiative Regulatory Science Symposium AGENCY: Food and Drug Administration, HHS...: Medical Countermeasures Initiative Regulatory Science Symposium. The symposium is intended to provide a...
Karatasakis, Aris; Brilakis, Harilaos S; Danek, Barbara A; Karacsonyi, Judit; Martinez-Parachini, Jose Roberto; Nguyen-Trong, Phuong-Khanh J; Alame, Aya J; Roesle, Michele K; Rangan, Bavana V; Rosenfield, Kenneth; Mehran, Roxana; Mahmud, Ehtisham; Chambers, Charles E; Banerjee, Subhash; Brilakis, Emmanouil S
2018-03-01
To examine the relationship between occupational exposure to ionizing radiation and the prevalence of lens changes in interventional cardiologists (ICs) and catheterization laboratory ("cath-lab") staff. Exposure to ionizing radiation is associated with the development of lens opacities. ICs and cath-lab staff can receive high doses of ionizing radiation without protection, and may thus be at risk for lens opacity formation. We conducted a cross-sectional study at an interventional cardiology conference. Study participants completed a questionnaire pertaining to occupational exposure to radiation and potential confounders for the development of cataracts, followed by slit-lamp examination and grading of lens findings. A total of 117 attendees participated in the study, including 99 (85%; 49 ± 11 years-old; 82% male) with occupational exposure to ionizing radiation and 18 (15%; 39 ± 12 years-old; 61% male) unexposed controls. The prevalence of overall cortical and posterior subcapsular lens changes (including subclinical findings) was higher in exposed participants compared with controls (47 vs. 17%, P = 0.015). Occupational exposure and age over 60 were independent predictors of lens changes (odds ratio [95% CI]: 6.07 [1.38-43.45] and 7.72 [1.60-43.34], respectively). The prevalence of frank opacities was low and similar between the two groups (14 vs. 6%, P = 0.461). Most lens findings consisted of subclinical changes in the periphery of the lens without impact on visual acuity. Compared with unexposed controls, ICs and cath-lab staff had a higher prevalence of lens changes that may be attributable to ionizing radiation exposure. While most of these changes were subclinical, they are important due to the potential to progress to clinical symptoms, highlighting the importance of minimizing staff radiation exposure. © 2017 Wiley Periodicals, Inc.
Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou
2013-01-01
Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12–30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers’ resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309–1050 Bq/kg), and 5.3 Bq/kg (range, 5.1–18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10-2 mSv/y (range, 1.0 x 10-2-4.1 x 10-2 mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure. PMID:24312602
Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou
2013-01-01
Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12-30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers' resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309-1050 Bq/kg), and 5.3 Bq/kg (range, 5.1-18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10(-2) mSv/y (range, 1.0 x 10(-2)-4.1 x 10(-2) mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure.
Epidemiological research on radiation-induced cancer in atomic bomb survivors
Ozasa, Kotaro
2016-01-01
The late effects of exposure to atomic bomb radiation on cancer occurrence have been evaluated by epidemiological studies on three cohorts: a cohort of atomic bomb survivors (Life Span Study; LSS), survivors exposed in utero, and children of atomic bomb survivors (F1). The risk of leukemia among the survivors increased remarkably in the early period after the bombings, especially among children. Increased risks of solid cancers have been evident since around 10 years after the bombings and are still present today. The LSS has clarified the dose–response relationships of radiation exposure and risk of various cancers, taking into account important risk modifiers such as sex, age at exposure, and attained age. Confounding by conventional risk factors including lifestyle differences is not considered substantial because people were non-selectively exposed to the atomic bomb radiation. Uncertainty in risk estimates at low-dose levels is thought to be derived from various sources, including different estimates of risk at background levels, uncertainty in dose estimates, residual confounding and interaction, strong risk factors, and exposure to residual radiation and/or medical radiation. The risk of cancer in subjects exposed in utero is similar to that in LSS subjects who were exposed in childhood. Regarding hereditary effects of radiation exposure, no increased risk of cancers associated with parental exposure to radiation have been observed in the F1 cohort to date. In addition to biological and pathogenetic interpretations of the present results, epidemiological investigations using advanced technology should be used to further analyze these cohorts. PMID:26976124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, W. W.
It is suggested that film speed is the most important single factor in reducing dental radiation exposure but has been given little attention. A necessary step in this direction is the application of quantitative film rating systems (of the type used in general radiography) to dental radiography and attention to exposure development factors. To this end, a sensitometric method is presented for measurement of undesired dental radiation overexposure resulting from underdevelopment. The method is based on a universal curve of density-log relative exposure for dental x-ray film. The curve is applicable to any given film and machine setting in intraoralmore » roentgenography. Correct exposure time can be predicted from the curve after exposure of only two dental films and use of a lead-aluminum penetrometer. This dental penetrometer and the universal sensitometric curve make it possible to conduct mass surveys of the amount of radiation overexposure from exposure-development factors in dental offices. An example of a typical determination of the effect of exposuredevelopment factors on radiation dose is given. The densities were measured with a densitometer in the range from 0 to 8. With an exposure of 1/2 sec and development for 1 1/2 min at 64 deg F, the hypothetical dentist obtained a density of 1.95 under aluminum. Full development gave a much greater density, 4.05, which was found by reference to the universal curve to represent a radiation exposure of 3.5 times normal. In other words, the underdevelopment (1 1/2 min at 64 deg F) was compensated by overexposure (1/2 sec), so that films of normal density could be obtained. The dentist was informed of the overexposure, and it was predicted that by dividing his time (1/2 sec) by the radiation exposure (3.5), with full development, he would be able to reduce exposure time from 0.5 to 0.143 sec. On the corrected film with an exposure time of 0.15 sec, the density is 1.72. By changing to full development, the dentist obtained normal density with 1/3 the amount of radiation.« less
Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar
NASA Astrophysics Data System (ADS)
Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken
1997-02-01
On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.
Sinha, Navita; Kral, Timothy A
2018-05-12
Methanogens have been considered models for life on Mars for many years. In order to survive any exposure at the surface of Mars, methanogens would have to endure Martian UVC radiation. In this research, we irradiated hydrated and desiccated cultures of slightly halophilic Methanococcus maripaludis and non-halophilic Methanobacterium formicicum for various time intervals with UVC (254 nm) radiation. The survivability of the methanogens was determined by measuring methane concentrations in the headspace gas samples of culture tubes after re-inoculation of the methanogens into their growth-supporting media following exposure to UVC radiation. Hydrated M. maripaludis survived 24 h of UVC exposure, while in a desiccated condition they endured for 16 h. M. formicicum also survived UVC radiation for 24 h in a liquid state; however, in a desiccated condition, the survivability of M. formicicum was only 12 h. Some of the components of the growth media could have served as shielding agents that protected cells from damage caused by exposure to ultraviolet radiation. Overall, these results suggest that limited exposure (12⁻24 h) to UVC radiation on the surface of Mars would not necessarily be a limiting factor for the survivability of M. maripaludis and M. formicicum .
Radiation Exposure and Attributable Cancer Risk in Patients With Esophageal Atresia.
Yousef, Yasmine; Baird, Robert
2018-02-01
Cases of esophageal carcinoma have been documented in survivors of esophageal atresia (EA). Children with EA undergo considerable amounts of diagnostic imaging and consequent radiation exposure potentially increasing their lifetime cancer mortality risk. This study evaluates the radiological procedures performed on patients with EA and estimates their cumulative radiation exposure and attributable lifetime cancer mortality risk. Medical records of patients with EA managed at a tertiary care center were reviewed for demographics, EA subtype, and number and type of radiological investigations. Existing normative data were used to estimate the cumulative radiation exposure and lifetime cancer risk per patient. The present study included 53 patients with a mean follow-up of 5.7 years. The overall median and maximum estimated effective radiation dose in the neonatal period was 5521.4 μSv/patient and 66638.6 μSv/patient, respectively. This correlates to a median and maximum estimated cumulative lifetime cancer mortality risk of 1:1530 and 1:130, respectively. Hence, radiation exposure in the neonatal period increased the cumulative cancer mortality risk a median of 130-fold and a maximum of 1575-fold in EA survivors. Children with EA are exposed to significant amounts of radiation and an increased estimated cumulative cancer mortality risk. Efforts should be made to eliminate superfluous imaging.
Investigation of terahertz radiation influence on rat glial cells
Borovkova, Mariia; Serebriakova, Maria; Fedorov, Viacheslav; Sedykh, Egor; Vaks, Vladimir; Lichutin, Alexander; Salnikova, Alina; Khodzitsky, Mikhail
2016-01-01
We studied an influence of continuous terahertz (THz) radiation (0.12 – 0.18 THz, average power density of 3.2 mW/cm2) on a rat glial cell line. A dose-dependent cytotoxic effect of THz radiation is demonstrated. After 1 minute of THz radiation exposure a relative number of apoptotic cells increased in 1.5 times, after 3 minutes it doubled. This result confirms the concept of biological hazard of intense THz radiation. Diagnostic applications of THz radiation can be restricted by the radiation power density and exposure time. PMID:28101417
ADVISORY ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION
The National Academy of Sciences (NAS) published the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in 2006. The Committee analyzed the most recent epidemiology from the important exposed cohorts and factor...
The risk of radiation exposure to the eyes of the interventional pain physician.
Fish, David E; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog
2011-01-01
It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them.
A Review of Radiation Protection Solutions for the Staff in the Cardiac Catheterisation Laboratory.
Badawy, Mohamed Khaldoun; Deb, Pradip; Chan, Robert; Farouque, Omar
2016-10-01
Adverse health effects of radiation exposure to staff in cardiac catheterisation laboratories have been well documented in the literature. Examples include increased risk of cataracts as well as possible malignancies. These risks can be partly mitigated by reducing scatter radiation exposure to staff during diagnostic and interventional cardiac procedures. There are currently commercially available radiation protection tools, including radioprotective caps, gloves, eyewear, thyroid collars, aprons, mounted shields, table skirts and patient drapes to protect staff from excessive radiation exposure. Furthermore, real-time dose feedback could lead to procedural changes that reduce operator dose. The objective of this review is to examine the efficacy of these tools and provide practical recommendations to reduce occupational radiation exposure with the aim of minimising long-term adverse health outcomes. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
The Risk of Radiation Exposure to the Eyes of the Interventional Pain Physician
Fish, David E.; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog
2011-01-01
It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them. PMID:22091381
32nd Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)
1998-01-01
The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.
NASA Astrophysics Data System (ADS)
Romero-Weaver, A. L.; Ni, J.; Lin, L.; Kennedy, A. R.
2014-07-01
Exposure of the whole body or a major portion of the body to ionizing radiation can result in Acute Radiation Sickness (ARS), which can cause symptoms that range from mild to severe, and include death. One of the syndromes that can occur during ARS is the hematopoietic syndrome, which is characterized by a reduction in bone marrow cells as well as the number of circulating blood cells. Doses capable of causing this syndrome can result from conventional radiation therapy and accidental exposure to ionizing radiation. It is of concern that this syndrome could also occur during space exploration class missions in which astronauts could be exposed to significant doses of solar particle event (SPE) radiation. Of particular concern is the reduction of lymphocytes and granulocytes, which are major components of the immune system. A significant reduction in their numbers can compromise the immune system, causing a higher risk for the development of infections which could jeopardize the success of the mission. Although there are no specific countermeasures utilized for the ARS resulting from exposure to space radiation(s), granulocyte colony-stimulating factor (G-CSF) has been proposed as a countermeasure for the low number of neutrophils caused by SPE radiation, but so far no countermeasure exists for a reduced number of circulating lymphocytes. The present study demonstrates that orally administered fructose significantly increases the number of peripheral lymphocytes reduced by exposure of mice to 2 Gy of gamma- or SPE-like proton radiation, making it a potential countermeasure for this biological end-point.
MO-FG-209-05: Towards a Feature-Based Anthropomorphic Model Observer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avanaki, A.
2016-06-15
This symposium will review recent advances in the simulation methods for evaluation of novel breast imaging systems – the subject of AAPM Task Group TG234. Our focus will be on the various approaches to development and validation of software anthropomorphic phantoms and their use in the statistical assessment of novel imaging systems using such phantoms along with computational models for the x-ray image formation process. Due to the dynamic development and complex design of modern medical imaging systems, the simulation of anatomical structures, image acquisition modalities, and the image perception and analysis offers substantial benefits of reduced cost, duration, andmore » radiation exposure, as well as the known ground-truth and wide variability in simulated anatomies. For these reasons, Virtual Clinical Trials (VCTs) have been increasingly accepted as a viable tool for preclinical assessment of x-ray and other breast imaging methods. Activities of TG234 have encompassed the optimization of protocols for simulation studies, including phantom specifications, the simulated data representation, models of the imaging process, and statistical assessment of simulated images. The symposium will discuss the state-of-the-science of VCTs for novel breast imaging systems, emphasizing recent developments and future directions. Presentations will discuss virtual phantoms for intermodality breast imaging performance comparisons, extension of the breast anatomy simulation to the cellular level, optimized integration of the simulated imaging chain, and the novel directions in the observer models design. Learning Objectives: Review novel results in developing and applying virtual phantoms for inter-modality breast imaging performance comparisons; Discuss the efforts to extend the computer simulation of breast anatomy and pathology to the cellular level; Summarize the state of the science in optimized integration of modules in the simulated imaging chain; Compare novel directions in the design of observer models for task based validation of imaging systems. PB: Research funding support from the NIH, NSF, and Komen for the Cure; NIH funded collaboration with Barco, Inc. and Hologic, Inc.; Consultant to Delaware State Univ. and NCCPM, UK. AA: Employed at Barco Healthcare.; P. Bakic, NIH: (NIGMS P20 #GM103446, NCI R01 #CA154444); M. Das, NIH Research grants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graff, C.
This symposium will review recent advances in the simulation methods for evaluation of novel breast imaging systems – the subject of AAPM Task Group TG234. Our focus will be on the various approaches to development and validation of software anthropomorphic phantoms and their use in the statistical assessment of novel imaging systems using such phantoms along with computational models for the x-ray image formation process. Due to the dynamic development and complex design of modern medical imaging systems, the simulation of anatomical structures, image acquisition modalities, and the image perception and analysis offers substantial benefits of reduced cost, duration, andmore » radiation exposure, as well as the known ground-truth and wide variability in simulated anatomies. For these reasons, Virtual Clinical Trials (VCTs) have been increasingly accepted as a viable tool for preclinical assessment of x-ray and other breast imaging methods. Activities of TG234 have encompassed the optimization of protocols for simulation studies, including phantom specifications, the simulated data representation, models of the imaging process, and statistical assessment of simulated images. The symposium will discuss the state-of-the-science of VCTs for novel breast imaging systems, emphasizing recent developments and future directions. Presentations will discuss virtual phantoms for intermodality breast imaging performance comparisons, extension of the breast anatomy simulation to the cellular level, optimized integration of the simulated imaging chain, and the novel directions in the observer models design. Learning Objectives: Review novel results in developing and applying virtual phantoms for inter-modality breast imaging performance comparisons; Discuss the efforts to extend the computer simulation of breast anatomy and pathology to the cellular level; Summarize the state of the science in optimized integration of modules in the simulated imaging chain; Compare novel directions in the design of observer models for task based validation of imaging systems. PB: Research funding support from the NIH, NSF, and Komen for the Cure; NIH funded collaboration with Barco, Inc. and Hologic, Inc.; Consultant to Delaware State Univ. and NCCPM, UK. AA: Employed at Barco Healthcare.; P. Bakic, NIH: (NIGMS P20 #GM103446, NCI R01 #CA154444); M. Das, NIH Research grants.« less
Initiation-promotion model of tumor prevalence in mice from space radiation exposures
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.
1995-01-01
Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.
Radiation-induced genomic instability
NASA Technical Reports Server (NTRS)
Kronenberg, A.
1994-01-01
Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.
Occupational skin cancer induced by ultraviolet radiation and its prevention.
Diepgen, T L; Fartasch, M; Drexler, H; Schmitt, J
2012-08-01
Skin cancer is by far the most common kind of cancer diagnosed in many western countries and ultraviolet radiation is the most important risk factor for cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Although employees at several workplaces are exposed to increased levels of UV radiation, skin cancer due to long-term intense occupational exposure to UV radiation is often not considered as occupational disease. The actually available evidence in the epidemiological literature clearly indicates that occupational UV radiation exposure is a substantial and robust risk factor for the development of cutaneous SCC and also clearly shows a significant risk for developing BCC. There is enough scientific evidence that outdoor workers have an increased risk of developing work-related occupational skin cancer due to natural UV radiation exposure and adequate prevention strategies must be implemented. The three measures which are successful and of particular importance in the prevention of nonmelanoma skin cancer in outdoor workers are changes in behaviour regarding awareness of health and disease resulting from exposure to natural UV radiation, protection from direct UV radiation by wearing suitable clothing, and regular and correct use of appropriate sunscreens. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevtsova, Z.V.
1960-01-01
On immunization with 19-BA live brucellosis vaccine on the 3rd and 10th days after exposure to radiation in a dose of 200 r, guinea pigs died 4 and 2 times more frequently than unvaccinated guinea pigs. If immunization was carried out on the 30th day after irradiation the mortality among irradiated animals showed only a slight increase compared with the mortality among unvaccinated control animals. Immunization carried out before exposure to radiation had no influence upon the mortality of the animals caused by radiation sickness. Guinea pigs immunized after exposure to radiation were insusceptible when infected with the doses ofmore » virulent strains of Brucella usually employed to challenge immunity (2-4 infective doses). If, however, the animals were infected with a dose twice as high (8 infective doses) the degree of immunity proved to be lower in guinea pigs exposed to radiation, than in guinea pigs immunized and not exposed to radiation. Exposure of guinea pigs to radiation at a time when immunity had already developed had no influence upon the degree of immunity on infection with 4 infective doses of the virulent strain. (auth)« less
Review of NASA approach to space radiation risk assessments for Mars exploration.
Cucinotta, Francis A
2015-02-01
Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.
Correlated Uncertainties in Radiation Shielding Effectiveness
NASA Technical Reports Server (NTRS)
Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.
2013-01-01
The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.
Radiation exposure of patient and surgeon in minimally invasive kidney stone surgery.
Demirci, A; Raif Karabacak, O; Yalçınkaya, F; Yiğitbaşı, O; Aktaş, C
2016-05-01
Percutaneous nephrolithotomy (PNL) and retrograde intrarenal surgery (RIRS) are the standard treatments used in the endoscopic treatment of kidney stones depending on the location and the size of the stone. The purpose of the study was to show the radiation exposure difference between the minimally invasive techniques by synchronously measuring the amount of radiation the patients and the surgeon received in each session, which makes our study unique. This is a prospective study which included 20 patients who underwent PNL, and 45 patients who underwent RIRS in our clinic between June 2014 and October 2014. The surgeries were assessed by dividing them into three steps: step 1: the access sheath or ureter catheter placement, step 2: lithotripsy and collection of fragments, and step 3: DJ catheter or re-entry tube insertion. For the PNL and RIRS groups, mean stone sizes were 30mm (range 16-60), and 12mm (range 7-35); mean fluoroscopy times were 337s (range 200-679), and 37s (range 7-351); and total radiation exposures were 142mBq (44.7 to 221), and 4.4mBq (0.2 to 30) respectively. Fluoroscopy times and radiation exposures at each step were found to be higher in the PNL group compared to the RIRS group. When assessed in itself, the fluoroscopy time and radiation exposure were stable in RIRS, and the radiation exposure was the highest in step 1 and the lowest in step 3 in PNL. When assessed for the 19 PNL patients and the 12 RIRS patients who had stone sizes≥2cm, the fluoroscopy time in step 1, and the radiation exposure in steps 1 and 2 were found to be higher in the PNL group than the RIRS group (P<0.001). Although there is need for more prospective randomized studies, RIRS appears to be a viable alternate for PNL because it has short fluoroscopy time and the radiation exposure is low in every step. 4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures
2016-08-01
Acronyms and Symbols ARA Applied Research Associates, Inc. ARS Acute radiation syndrome d Days DE Differential Evolution DTRA Defense Threat...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...epithelial cells to acute radiation alone. The model has been modified for improved radiation response, and an addition to the model allows for thermal injury
Medium wave exposure characterisation using exposure quotients.
Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Pinar, Iván
2010-06-01
One of the aspects considered in the International Commission on Non-Ionizing Radiation Protection guidelines is that, in situations of simultaneous exposure to fields of different frequencies, exposure quotients for thermal and electrical stimulation effects should be examined. The aim of the present work was to analyse the electromagnetic radiation levels and exposure quotients for exposure to multiple-frequency sources in the vicinity of medium wave radio broadcasting antennas. The measurements were made with a spectrum analyser and a monopole antenna. Kriging interpolation was used to prepare contour maps and to estimate the levels in the towns and villages of the zone. The results showed that the exposure quotient criterion based on electrical stimulation effects to be more stringent than those based on thermal effects or power density levels. Improvement of dosimetry evaluations requires the spectral components of the radiation to be quantified, followed by application of the criteria for exposure to multiple-frequency sources.
NASA Astrophysics Data System (ADS)
Lau, Patrick; Hu, Yueyuan; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther
Extended exposure to altered gravity conditions like during long-term space flight results in significant bone loss. Exposure to ionizing radiation for cancer therapy causes bone damage and may increase the risk of fractures. Similarly, besides altered gravity conditions, astronauts on exploratory missions beyond low-Earth orbit will be exposed to high-energy heavy ions in addition to proton and photon radiation, although for prolonged periods and at lower doses and dose rates compared with therapy. Space conditions may place astronauts at a greater risk for mission-critical fractures. Until now, little is known about the effects of space radiation on the skeletal system especially on osteoprogenitor cells. Accelerator facilities are used to simulate parts of the radiation environment in space. Heavy ion accelerators therefore could be used to assess radiation risks for astronauts who will be exposed to higher radiation doses e.g. on a Mars mission. The aim of the present study was to determine the biological effects of spaceflight-relevant radiation exposure on the cellular level using murine osteoprogenitor cell lines compared to nonirradiated controls. To gain a deeper understanding of bone cell differenti-ation and mineralization after exposure to heavy ions, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. We investigated the transcrip-tional modulation of type I collagen (Col I), osteocalcin (Ocn), Transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and the bone specific transcription factor Runx2 (Cbfa1). To gain deeper insight into potential cellular mechanisms involved in cellular response after ex-posure to heavy ions, we investigated gene expression modulations after exposure to energetic carbon ions (35 MeV/u, 73.2 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. Exposure to X-irradiation dose-dependently increased the mRNA levels of Runx2 (cbfa1) whereas expression values of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more marked effect on bone specific gene expression within the differentiation process. Collectively, our results indi-cate that heavy ions facilitate differentiation more effectively than X-rays as a major response in the progeny of irradiated osteoprogenitor cells. The data presented allow us to suggest that exposure to ionizing radiation interferes with bone formation at the level of cellular differenti-ation. In this regard, further experiments are needed to investigate gene expression patterns in mammalian cells that respond to differentiation after exposure to ionizing radiation.
Decreasing radiation exposure on pediatric portable chest radiographs.
Hawking, Nancy G; Sharp, Ted D
2013-01-01
To determine whether additional shielding designed for pediatric patients during portable chest exams that ascertain endotracheal tube placement would significantly decrease the amount of scatter radiation. Children aged 24 months or younger were intubated and received daily morning chest radiographs to determine endotracheal tube placement. For each measurement, the amount of scatter radiation decreased by more than 20% from a nonshielded exposure to a shielded exposure. There was a significant decrease in scatter radiation when using the lead shielding device along with appropriate collimation vs appropriate collimation alone. These results suggest that applying additional shielding to appropriately collimated chest radiographs could significantly reduce scatter radiation and therefore the overall dose to young children.
Radiation Protection Quantities for Near Earth Environments
NASA Technical Reports Server (NTRS)
Clowdsley, Martha S.; Wilson, John W.; Kim, Myung-Hee; Anderson, Brooke M.; Nealy, John E.
2004-01-01
As humans travel beyond the protection of the Earth's magnetic field and mission durations grow, risk due to radiation exposure will increase and may become the limiting factor for such missions. Here, the dosimetric quantities recommended by the National Council on Radiation Protection and Measurements (NCRP) for the evaluation of health risk due to radiation exposure, effective dose and gray-equivalent to eyes, skin, and blood forming organs (BFO), are calculated for several near Earth environments. These radiation protection quantities are evaluated behind two different shielding materials, aluminum and polyethylene. Since exposure limits for missions beyond low Earth orbit (LEO) have not yet been defined, results are compared to limits recommended by the NCRP for LEO operations.
Request for Travel Funds for Systems Radiation Biology Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcellos-Hoff, Mary Helen
The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expensesmore » of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.« less
NASA Technical Reports Server (NTRS)
Sinclair, W. K.
2000-01-01
Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.
Occupational radiation exposure in nuclear medicine department in Kuwait
NASA Astrophysics Data System (ADS)
Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.
2017-11-01
Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.
Occupational exposure assessment: Practices in Malaysian nuclear agency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarowi, S. Muhd, E-mail: suzie@nuclearmalaysia.gov.my; Ramli, S. A.; Kontol, K. Mohamad
Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia includingmore » the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H{sub 0}) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304)« less
Occupational exposure assessment: Practices in Malaysian nuclear agency
NASA Astrophysics Data System (ADS)
Sarowi, S. Muhd; Ramli, S. A.; Kontol, K. Mohamad; Rahman, N. A. H. Abd.
2016-01-01
Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H₀) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Feng; Waters, Katrina M.; Miller, John H.
2010-11-30
Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peakmore » intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low dose radiation exposure on human health.« less
Kreuzer, M; Auvinen, A; Cardis, E; Durante, M; Harms-Ringdahl, M; Jourdain, J R; Madas, B G; Ottolenghi, A; Pazzaglia, S; Prise, K M; Quintens, R; Sabatier, L; Bouffler, S
2018-03-01
MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).
Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.
Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen
2018-03-30
Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.
Tulik, P; Kowalska, M; Golnik, N; Budzynska, A; Dziuk, M
2017-05-01
This paper presents the results of radiation level measurements at workplaces in a nuclear medicine facility performing PET/CT examinations. This study meticulously determines the staff radiation exposure in a PET/CT facility by tracking the path of patient movement. The measurements of the instantaneous radiation exposure were performed using an electronic radiometer with a proportional counter that was equipped with the option of recording the results on line. The measurements allowed for visualisation of the staff's instantaneous exposure caused by a patient walking through the department after the administration of 18F-FDG. An estimation of low doses associated with each working step and the exposure during a routine day in the department was possible. The measurements were completed by determining the average radiation level using highly sensitive thermoluminescent detectors. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)
NASA Astrophysics Data System (ADS)
Woods, D. H.; Hardy, K. A.; Cox, A. B.; Salmon, Y. L.; Yochmowitz, M. G.; Cordts, R. E.
1989-05-01
Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.
Lope, Virginia; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Gustavsson, Per; Floderus, Birgitta; Dosemeci, Mustafa; Silva, Agustín; Pollán, Marina
2006-08-01
This study sought to ascertain the risk of thyroid cancer in relation to occupational exposure to ionizing radiation and extremely low-frequency magnetic fields (ELFMF) in a cohort representative of Sweden's gainfully employed population. A historical cohort of 2 992 166 gainfully employed Swedish male and female workers was followed up from 1971 through 1989. Exposure to ELFMF and ionizing radiation was assessed using three job exposure matrices based on industrial branch or occupational codes. Relative risks (RR) for male and female workers, adjusted for age and geographic area, were computed using log-linear Poisson models. Occupational ELFMF exposure showed no effect on the risk of thyroid cancer in the study. However, female workers exposed to high intensities of ionizing radiation registered a marked excess risk (RR 1.85, 95% confidence interval (95% CI) 1.02-3.35]. This trend was not in evidence among the men. While the study confirms the etiologic role of ionizing radiation, with a higher incidence of thyroid cancer being recorded for the most-exposed female workers, our results do not support the possibility of occupational exposure to ELFMF being a risk factor for the development of thyroid cancer.