Science.gov

Sample records for radiation hard monolithic

  1. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    NASA Astrophysics Data System (ADS)

    Pernegger, H.; Bates, R.; Buttar, C.; Dalla, M.; van Hoorne, J. W.; Kugathasan, T.; Maneuski, D.; Musa, L.; Riedler, P.; Riegel, C.; Sbarra, C.; Schaefer, D.; Schioppa, E. J.; Snoeys, W.

    2017-06-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  2. Pixel frontend electronics in a radiation hard technology for hybrid and monolithic applications

    SciTech Connect

    Pengg, F. |; Campbell, M.; Heijne, E.H.M.; Snoeys, W.

    1996-06-01

    Pixel detector readout cells have been designed in the radiation hard DMILL technology and their characteristics evaluated before and after irradiation to 14Mrad. The test chip consists of two blocks of six readout cells each. Two different charge amplifiers are implemented, one of them using a capacitive feedback loop, the other the fast signal charge transfer to a high impedance integrating node. The measured equivalent noise charge is 110e{sup {minus}}r.m.s. before and 150e{sup {minus}}r.m.s. after irradiation. With a discriminator threshold set to 5000e{sup {minus}}, which reduces for the same bias setting to 400e{sup {minus}} after irradiation, the threshold variation is 300e{sup {minus}}r.m.s. and 250e{sup {minus}}r.m.s. respectively. The time walk is 40ns before and after irradiation. The use of this SOI technology for monolithic integration of electronics and detector in one substrate is under investigation.

  3. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    NASA Astrophysics Data System (ADS)

    Riegel, C.; Backhaus, M.; Van Hoorne, J. W.; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 1015 n/cm2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.

  4. Radiation from hard objects

    SciTech Connect

    Canavan, G.H.

    1997-02-01

    The inference of the diameter of hard objects is insensitive to radiation efficiency. Deductions of radiation efficiency from observations are very sensitive - possibly overly so. Inferences of the initial velocity and trajectory vary similarly, and hence are comparably sensitive.

  5. A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements.

    PubMed

    Leitenberger, Wolfram; Pietsch, Ullrich

    2007-03-01

    Experiments using a simple X-ray interferometer to measure the degree of spatial coherence of hard X-rays are reported. A monolithic Fresnel bimirror is used at small incidence angles to investigate synchrotron radiation in the energy interval 5-50 keV with monochromatic and white beam. The experimental set-up was equivalent to a Young's double-slit experiment for hard X-rays with slit dimensions in the micrometre range. From the high-contrast interference pattern the degree of coherence was determined.

  6. Synthesis of Porous Carbon Monoliths Using Hard Templates

    PubMed Central

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-01-01

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m2·g−1. The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions. PMID:28773338

  7. Thermopile detector radiation hard readout

    NASA Astrophysics Data System (ADS)

    Gaalema, Stephen; Van Duyne, Stephen; Gates, James L.; Foote, Marc C.

    2010-08-01

    The NASA Jupiter Europa Orbiter (JEO) conceptual payload contains a thermal instrument with six different spectral bands ranging from 8μm to 100μm. The thermal instrument is based on multiple linear arrays of thermopile detectors that are intrinsically radiation hard; however, the thermopile CMOS readout needs to be hardened to tolerate the radiation sources of the JEO mission. Black Forest Engineering is developing a thermopile readout to tolerate the JEO mission radiation sources. The thermal instrument and ROIC process/design techniques are described to meet the JEO mission requirements.

  8. Radiation hard electronics for LHC

    NASA Astrophysics Data System (ADS)

    Raymond, M.; Millmore, M.; Hall, G.; Sachdeva, R.; French, M.; Nygård, E.; Yoshioka, K.

    1995-02-01

    A CMOS front end electronics chain is being developed by the RD20 collaboration for microstrip detector readout at LHC. It is based on a preamplifier and CR-RC filter, analogue pipeline and an analogue signal processor. Amplifiers and transistor test structures have been constructed and evaluated in detail using a Harris 1.2 μm radiation hardened CMOS process. Progress with larger scale elements, including 32 channel front end chips, is described. A radiation hard 128 channel chip, with a 40 MHz analogue multiplexer, is to be submitted for fabrication in July 1994 which will form the basis of the readout of the tracking system of the CMS experiment.

  9. Radiation Hardness Assurance (RHA) Guideline

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Radiation Hardness Assurance (RHA) consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the mission space environment. The subset of interests for NEPP and the REAG, are EEE parts. It is important to register that all of these undertakings are in a feedback loop and require constant iteration and updating throughout the mission life. More detail can be found in the reference materials on applicable test data for usage on parts.

  10. A radiation-hardened two transistor memory cell for monolithic active pixel sensors in STAR experiment

    NASA Astrophysics Data System (ADS)

    Wei, X.; Gao, D.; Dorokhov, A.; Hu, Y.

    2011-01-01

    Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) is dramatically decreased when intellectual property (IP) memories are integrated for fast readout application. This paper presents a new solution to improve radiation hardness and avoid latch-up for memory cell design. The tradeoffs among radiation tolerance, area and speed are significantly considered and analyzed. The cell designed in 0.35 μm process satisfies the radiation tolerance requirements of STAR experiment. The cell size is 4.55 × 5.45 μm2. This cell is smaller than the IP memory cell based on the same process and is only 26% of a radiation tolerant 6T SRAM cell used in previous contribution. The write access time of the cell is less than 2 ns, while the read access time is 80 ns.

  11. Development of radiation hard scintillators

    NASA Astrophysics Data System (ADS)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G.; Blackburn, R.

    1993-01-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  12. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. ); Blackburn, R. )

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  13. Automated radiation hard ASIC design tool

    NASA Technical Reports Server (NTRS)

    White, Mike; Bartholet, Bill; Baze, Mark

    1993-01-01

    A commercial based, foundry independent, compiler design tool (ChipCrafter) with custom radiation hardened library cells is described. A unique analysis approach allows low hardness risk for Application Specific IC's (ASIC's). Accomplishments, radiation test results, and applications are described.

  14. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  15. Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes

    NASA Astrophysics Data System (ADS)

    Hasegawa, George; Kanamori, Kazuyoshi; Kannari, Naokatsu; Ozaki, Jun-ichi; Nakanishi, Kazuki; Abe, Takeshi

    2016-06-01

    Hard carbons emerge as one of the most promising candidate for an anode of Na-ion batteries. This research focuses on the carbon monolith derived from resorcinol-formaldehyde (RF) gels as a model hard carbon electrode. A series of binder-free monolithic carbon electrodes heat-treated at varied temperatures allow the comparative investigation of the correlation between carbon nanotexture and electrochemical Na+-ion storage. The increase in carbonization temperature exerts a favorable influence on electrode performance, especially in the range between 1600 °C and 2500 °C. The comparison between Li+- and Na+-storage behaviors in the carbon electrodes discloses that the Na+-trapping in nanovoids is negligible when the carbonization temperature is higher than 1600 °C. On the other hand, the high-temperature sintering at 2500-3000 °C enlarges the resistance for Na+-insertion into interlayer spacing as well as Na+-filling into nanovoids. In addition, the study on the effect of pore size clearly demonstrates that not the BET surface area but the surface area related to meso- and macropores is a predominant factor for the initial irreversible capacity. The outcomes of this work are expected to become a benchmark for other hard carbon electrodes prepared from various precursors.

  16. Radiation-Hardness Data For Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Brown, S. F.; Gauthier, M. K.; Martin, K. E.

    1984-01-01

    Document presents data on and analysis of radiation hardness of various semiconductor devices. Data specifies total-dose radiation tolerance of devices. Volume 1 of report covers diodes, bipolar transistors, field effect transistors, silicon controlled rectifiers and optical devices. Volume 2 covers integrated circuits. Volume 3 provides detailed analysis of data in volumes 1 and 2.

  17. Radiation-Hardness Data For Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Brown, S. F.; Gauthier, M. K.; Martin, K. E.

    1984-01-01

    Document presents data on and analysis of radiation hardness of various semiconductor devices. Data specifies total-dose radiation tolerance of devices. Volume 1 of report covers diodes, bipolar transistors, field effect transistors, silicon controlled rectifiers and optical devices. Volume 2 covers integrated circuits. Volume 3 provides detailed analysis of data in volumes 1 and 2.

  18. Radiation-hard static induction transistor

    NASA Astrophysics Data System (ADS)

    Hanes, M. H.; Bartko, J.; Hwang, J.-M.; Rai-Choudhury, P.; Leslie, S. G.

    1988-12-01

    The design, fabriction, and characteristics of a 350-V, 100-A buried-gate static induction transistor (SIT) as a power switching device for applications to military and space environments (because of its potential for radiation hardness, high-frequency operation, and the incorporation of on-chip smart power sensor and logic functions) are described. The potential radiation hardness of this class of devices was evaluated by measurement of SIT characteristics after irradiation with 100-Mrad (2-MeV) electrons and up to 10 to the 16th fission neutrons/sq cm. High-temperature operation and the possibility of radiation-damage self-annealing are discussed.

  19. Monolithic Integrated Radiation Sensor Using Stimulated Luminescence From Alumina

    NASA Technical Reports Server (NTRS)

    McKeever, S. W. S.; Yukihara, E. G.; Stoebe, T. G.; Chen, T.-C.

    2005-01-01

    The project goal was to design and test a monolithic integrated device for radiation sensing, using optically stimulated luminescence (OSL) from Al2O3:C. The device would consist of GaN/InGaN-based components epitaxially grown on each side of a A12O3:C substrate. Radiation energy stored in the substrate would be stimulated by visible emission from a GaN light-emitting diode (LED) grown on one side of the device, and the OSL emission from the substrate (in the blue region of the spectrum) would be detected by the InGaN pi-n diode grown on the other side of the substrate. The primary application of the device would be in space radiation environments. Thus, two major research thrusts were launched during this project. Firstly, research at Oklahoma State University (Dr. Stephen W.S. McKeever and Dr. E.G. Yukihara) concentrated on characterization of the OSL properties of Al2O3:C in radiation fields typical of those experienced in low-Earth orbit. Secondly, research at the University of Washington (Co-Is, Dr. T.G. Stoebe and Dr. T. Chen) focused of device development and GaN/InGaN epitaxial growth. While progress in each line of research has been substantial, the ultimate goal (that of producing a working prototype device) has not yet been reached. We detail the research progress and identify outstanding issues in this paper.

  20. Radiation Hardness Assurance for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Day, John H. (Technical Monitor)

    2002-01-01

    The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section

  1. Development of radiation hard scintillators

    NASA Astrophysics Data System (ADS)

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyl trimethyl trisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made from monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetra phenyl butadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  2. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.; Rivard, M.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyltrimethyltrisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made form monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetraphenylbutadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  3. Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Buchner, Stephen

    2007-01-01

    This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.

  4. Radiation tolerance of CMOS monolithic active pixel sensors with self-biased pixels

    NASA Astrophysics Data System (ADS)

    Deveaux, M.; Amar-Youcef, S.; Besson, A.; Claus, G.; Colledani, C.; Dorokhov, M.; Dritsa, C.; Dulinski, W.; Fröhlich, I.; Goffe, M.; Grandjean, D.; Heini, S.; Himmi, A.; Hu, C.; Jaaskelainen, K.; Müntz, C.; Shabetai, A.; Stroth, J.; Szelezniak, M.; Valin, I.; Winter, M.

    2010-12-01

    CMOS monolithic active pixel sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the dead time free, so-called self bias pixel. Moreover, we introduce radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad.

  5. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high

  6. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  7. Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.

  8. Development of a radiation-hard photomultiplier tube

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Bunker, R. L.; Roderick, J.; Stephenson, K.

    1984-01-01

    In a radiation-hard photomultiplier tube (PMT) such as has been developed for stabilization of the Galileo spacecraft as it goes through the Jovian high energy radiation belts, the primary effects of high energy electron and proton radiation that must be resisted are the production of fluorescence and Cerenkov emission. The present PMT envelope is ceramic rather than glass, and employs a special, electron-focusing design which will collect, accelerate and amplify electrons only from desired photocathode areas. Tests in a Co-60 radiation facility have shown that the radiation-hard PMT produces less than 2.5 percent of the radiation noise of a standard PMT.

  9. Development of a radiation-hard photomultiplier tube

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Bunker, R. L.; Roderick, J.; Stephenson, K.

    1984-01-01

    In a radiation-hard photomultiplier tube (PMT) such as has been developed for stabilization of the Galileo spacecraft as it goes through the Jovian high energy radiation belts, the primary effects of high energy electron and proton radiation that must be resisted are the production of fluorescence and Cerenkov emission. The present PMT envelope is ceramic rather than glass, and employs a special, electron-focusing design which will collect, accelerate and amplify electrons only from desired photocathode areas. Tests in a Co-60 radiation facility have shown that the radiation-hard PMT produces less than 2.5 percent of the radiation noise of a standard PMT.

  10. Test bench development for the radiation Hard GBTX ASIC

    NASA Astrophysics Data System (ADS)

    Leitao, P.; Feger, S.; Porret, D.; Baron, S.; Wyllie, K.; Barros Marin, M.; Figueiredo, D.; Francisco, R.; Da Silva, J. C.; Grassi, T.; Moreira, P.

    2015-01-01

    This paper presents the development of the GBTX radiation hard ASIC test bench. Developed for the LHC accelerator upgrade programs, the GBTX implements a bidirectional 4.8 Gb/s link between the radiation hard on-detector custom electronics and the off-detector systems. The test bench was used for functional testing of the GBTX and to evaluate its performance in a radiation environment, by conducting Total Ionizing Dose and Single-Event Upsets tests campaigns.

  11. Statistical Modeling for Radiation Hardness Assurance: Toward Bigger Data

    NASA Technical Reports Server (NTRS)

    Ladbury, R.; Campola, M. J.

    2015-01-01

    New approaches to statistical modeling in radiation hardness assurance are discussed. These approaches yield quantitative bounds on flight-part radiation performance even in the absence of conventional data sources. This allows the analyst to bound radiation risk at all stages and for all decisions in the RHA process. It also allows optimization of RHA procedures for the project's risk tolerance.

  12. Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Olson, J. M.; Bertness, K. A.; Friedman, D. J.; Kibbler, A.; Cavicchi, B. T.; Krut, D. D.

    1991-01-01

    The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology.

  13. Second Generation Monolithic Full-depletion Radiation Sensor with Integrated CMOS Circuitry

    SciTech Connect

    Segal, J.D.; Kenney, C.J.; Parker, S.I.; Aw, C.H.; Snoeys, W.J.; Wooley, B.; Plummer, J.D.; /Stanford U., Elect. Eng. Dept.

    2011-05-20

    A second-generation monolithic silicon radiation sensor has been built and characterized. This pixel detector has CMOS circuitry fabricated directly in the high-resistivity floatzone substrate. The bulk is fully depleted from bias applied to the backside diode. Within the array, PMOS pixel circuitry forms the first stage amplifiers. Full CMOS circuitry implementing further amplification as well as column and row logic is located in the periphery of the pixel array. This allows a sparse-field readout scheme where only pixels with signals above a certain threshold are readout. We describe the fabrication process, circuit design, system performance, and results of gamma-ray radiation tests.

  14. Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Kino, H.; Yasuda, S.; Kohmura, Y.; Okada, H.; Ishikawa, T.; Yamauchi, K.

    2015-09-01

    Advanced Kirkpatrick-Baez mirror optics using two monolithic imaging mirrors was developed to realize an achromatic, high-resolution, and a high-stability full-field X-ray microscope. The mirror consists of an elliptical section and a hyperbolic section on a quartz glass substrate, in which the geometry follows the Wolter (type I) optics rules. A preliminary test was performed at SPring-8 using X-rays monochromatized to 9.881 keV. A 100-nm feature on a Siemens star chart could be clearly observed.

  15. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  16. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  17. Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2013-08-01

    To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].

  18. Initial Nuclear Radiation Hardness Validation Test

    DTIC Science & Technology

    2008-11-03

    Measurement Accuracy Photocurrent Photocurrent Probes ±5% Gamma Dose **CaF 2 (Mn) TLD ±10% Gamma Radiation Pulse PIN Diode Compton ...1.02 and cGy(tissue)/cGy(CaF2) = 1.13, respectively. Each radiation pulse will be measured using a PIN or Compton diode and digitized on a transient...photocurrents produce secondary effects that include: a. Error generation in logic and analog circuits. b. Secondary photocurrents. TOP 1-2-618 3

  19. Synchrotron radiation hardness studies of PILATUS II.

    PubMed

    Sobott, B A; Broennimann, Ch; Eikenberry, E F; Dinapoli, R; Kraft, P; Taylor, G N; Willmott, P R; Schlepütz, C M; Rassool, R P

    2009-07-01

    A synchrotron beam has been used to investigate the radiation tolerance of a PILATUS II module. It has been demonstrated that radiation-induced threshold shifts become significant above 30 Mrad. Individual adjustment of pixel thresholds after irradiation enabled retention of standard behaviour in excess of 40 Mrad. This implies that a module can be continuously irradiated for in excess of 40 days at an individual pixel count rate of 10(6) counts s(-1).

  20. Radiation Hardness Assurance (RHA) for Small Missions

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Varied mission life and complexity is growing for small spacecraft. Small missions benefit from detailed hazard definition and evaluation as done in the past. Requirements need to flow from the system down to the parts level and aid system level radiation tolerance. RHA is highlighted with increasing COTS usage.

  1. Radiation hardness of present optical fibres

    NASA Astrophysics Data System (ADS)

    Henschel, Henning

    1994-12-01

    Optical fibers find rapidly growing use also in the nuclear industry. The dependence of their radiation-induced loss on fiber type, wavelength, temperature, light power, dose rate, and radiation type (gamma rays, neutrons) is pointed out and test results of modern (1989 - 1993) single mode (SM), graded index (GI), multimode stepindex (MM SI), and polymer optical fibers (POF) are presented. Continuous 60Co gamma irradiation of the SM fibers with a dose rate of about 1.5 Gy/s up to a final dose of 106 Gy led to radiation-induced losses of only 0.85 to 1.3 dB/10 m at 1300 nm wavelength and temperatures around 30 degree(s)C, whereas the GI fibers had losses of 1.3 to 2 dB/10 m under the same conditions. The lowest radiation-induced loss show MM SI fibers with pure SiO2 core of high OH-content: about 0.15 dB/10 m around 850 nm and about 0.1 dB/10 m around 1060 nm (106 Gy, equals 30 degree(s)C). POF with a core made of polymethyl methacrylate also have loss increases of

  2. Curve Fitting Solar Cell Degradation Due to Hard Particle Radiation

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.; Cikoski, Rebecca; Mekadenaumporn, Danchai

    2003-01-01

    This paper investigates the suitability of the equation for accurately defining solar cell parameter degradation as a function of hard particle radiation. The paper also provides methods for determining the constants in the equation and compares results from this equation to those obtained by the more traditionally used.

  3. Review of radiation hard electronics activities at European Space Agency

    NASA Astrophysics Data System (ADS)

    Furano, G.; Jansen, R.; Menicucci, A.

    2013-02-01

    Several Research and Development activities are ongoing at European Space Agency [1] to secure the supply of key electronic parts for current and future space avionics systems. Analogously to astro-particle and high-energy physics, the space missions radiation environment drives the radiation hardness requirements, which limits availability of suitable electronic components. In particular for the future ESA flagship Jupiter science mission, the necessary processing, reliability, mass, power performance requirements are difficult to meet with current components and systems with sufficient radiation tolerance margins. Improved radiation characterisation and modelling of the Jupiter radiation environment as well as operational radiation monitoring during the mission will be key in ensuring adequate margins for the operation of electronic components.

  4. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  5. Total-dose radiation hardness assurance for space electronics

    SciTech Connect

    Winokur, P.S.; Fleetwood, D.M. )

    1991-01-05

    An improved standard total-dose test method is described to qualify electronics for a low-dose-rate radiation environment typical of space systems. The method consists of {sup 60}Co irradiation at a dose rate of 1--3 Gy(Si)/s (100--300 rad(Si)/s) and a subsequent 373 K (100 {degree}C) bake. New initatives in radiation hardness assurance are also briefly discussed, including the Qualified Manufactures List (QML) test methodology and the possible use of 1/f noise measurements as a nondestructive screen for oxide-trap charge related failure.

  6. Solar cell nanotechnology for improved efficiency and radiation hardness

    NASA Astrophysics Data System (ADS)

    Fedoseyev, Alexander I.; Turowski, Marek; Shao, Qinghui; Balandin, Alexander A.

    2006-08-01

    Space electronic equipment, and NASA future exploration missions in particular, require improvements in solar cell efficiency and radiation hardness. Novel nano-engineered materials and quantum-dot array based photovoltaic devices promise to deliver more efficient, lightweight solar cells and arrays which will be of high value to long term space missions. In this paper, we describe issues related to the development of the quantum-dot based solar cells and comprehensive software tools for simulation of the nanostructure-based photovoltaic cells. Some experimental results used for the model validation are also reviewed. The novel modeling and simulation tools for the quantum-dot-based nanostructures help to better understand and predict behavior of the nano-devices and novel materials in space environment, assess technologies, devices, and materials for new electronic systems as well as to better evaluate the performance and radiation response of the devices at an early design stage. The overall objective is to investigate and design new photovoltaic structures based on quantum dots (QDs) with improved efficiency and radiation hardness. The inherently radiation tolerant quantum dots of variable sizes maximize absorption of different light wavelengths, i.e., create a "multicolor" cell, which improves photovoltaic efficiency and diminishes the radiation-induced degradation. The QD models described here are being integrated into the advanced photonic-electronic device simulator NanoTCAD, which can be useful for the optimization of QD superlattices as well as for the development and exploring of new solar cell designs.

  7. Scintillation Detectors for Radiation-Hard Electromagnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Löhner, H.

    2005-02-01

    For the application in the compact and radiation hard electromagnetic (EM) calorimeter in the PANDA detection system at the new GSI facility, we have started to advance scintillation crystals and the light detection technique. PANDA is the universal internal-target detection system for charmonium spectroscopy and the search for glue-balls and hybrid states in antiproton annihilations. In particular, the large dynamic range from several GeV down to a detection threshold of some MeV for EM radiation and the expected high background rate of neutrons and ions will impose severe requirements on crystals and light sensors. In the magnetic environment of tracking devices the use of Avalanche Photodiodes (APD's) is preferred. In order to achieve suitable resolution for low energy hadrons and photons, the light output of crystals will have to be improved by special production techniques, activation and doping. These procedures might have implications for the radiation hardness. We report on measurements of signal response and radiation damage in crystals of PbWO4 and BGO both from the BTCP (Russia) and SICCAS (China) production sites. Beams of protons, electrons and photons have been applied while detectors with either phototube or APD readout were operated in the range from room temperature to -20°C. Results on light yield and energy resolution are presented. We report on the reduction of light transmission after proton irradiation and results from electron-spin resonance studies on irradiated crystals to analyse the cause of radiation damage.

  8. High Speed, Radiation Hard CMOS Pixel Sensors for Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Contarato, Devis; Denes, Peter; Doering, Dionisio; Joseph, John; Krieger, Brad

    CMOS monolithic active pixel sensors are currently being established as the technology of choice for new generation digital imaging systems in Transmission Electron Microscopy (TEM). A careful sensor design that couples μm-level pixel pitches with high frame rate readout and radiation hardness to very high electron doses enables the fabrication of direct electron detectors that are quickly revolutionizing high-resolution TEM imaging in material science and molecular biology. This paper will review the principal characteristics of this novel technology and its advantages over conventional, optically-coupled cameras, and retrace the sensor development driven by the Transmission Electron Aberration corrected Microscope (TEAM) project at the LBNL National Center for Electron Microscopy (NCEM), illustrating in particular the imaging capabilities enabled by single electron detection at high frame rate. Further, the presentation will report on the translation of the TEAM technology to a finer feature size process, resulting in a sensor with higher spatial resolution and superior radiation tolerance currently serving as the baseline for a commercial camera system.

  9. A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process

    NASA Astrophysics Data System (ADS)

    Hemperek, Tomasz; Kishishita, Tetsuichi; Krüger, Hans; Wermes, Norbert

    2015-10-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffers from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.

  10. Radiation-hard electrical coil and method for its fabrication

    DOEpatents

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  11. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  12. Laser radiation propagation in the hard and soft dental tissues

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Sulc, Jan; Cerny, Pavel; Nemec, Michal; Cech, Miroslav; Miyagi, Mitsunobu

    2000-03-01

    The objective of this study was to compare the penetration effect of the near and mid-infrared laser radiation. For this reason the Er:YAG, Nd:YAG, and alexandrite laser systems were used in the experiments. The spread of the laser radiation energy in the hard dental tissue surrounding the root canal was evaluated and the possible bactericidal effect of these various laser wavelengths was analyzed. During the measurements, three experimental arrangements were used. The energy transport through the tooth tissue was observed for the frontal and side experimental layout. It was demonstrated that due to the absorption in the hydroxyapatite and water content in the dentin, the Er:YAG laser radiation is fully, and the Nd:YAG is partly absorbed in the root canal's wall. On the other hand, it was proved that the alexandrite laser radiation spreads through the canal system space and leaks into the surrounding tooth tissues. All laser radiation can be efficiently used for killing dental bacteria but the spreading of their radiation in the tooth tissues is different.

  13. Radiation Hardness Assurance (RHA): Challenges and New Considerations

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2017-01-01

    Radiation Hardness Assurance (RHA) challenges associated with the use of commercial-off-the-shelf (COTS) components and emerging technologies are cause for risk acceptance in space flight missions. The RHA flow includes environment definition, hazard evaluation, requirements definition, evaluation of design, and design trades to accommodate the risk a project or program takes. The varied missions profiles and environments don't necessarily benefit from the same risk reduction efforts or cost reduction attempts. The level of effort within the RHA flow can be tailored to minimize risk based on the environment or design criticality.

  14. Radiation-hard/high-speed parallel optical links

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-09-01

    We have designed and fabricated a compact parallel optical engine for transmitting data at 5 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The performance of the optical engine up at 5 Gb/s is satisfactory.

  15. Absorption of infrared radiation by human dental hard substances

    NASA Astrophysics Data System (ADS)

    Roth, Klaus K.; Duczynski, Edwin W.; von der Heide, Hans-Joachim; Struve, Bert

    1993-12-01

    Absorption spectra of enamel, dentin, synthetic hydroxyapatite and deionized water were taken in the wavelength band 500 to 3000 nm. It could be shown that infrared radiation is mainly absorbed in the aqueous components of dental hard tissues. Because of their decreased water content extinctions measured are slightly lower than those of deionized water. Furthermore, mineral absorptions could be detected in the range of 2760 to 2840 nm with a maximum at 2800 nm in enamel and a smaller one at 2500 nm in dentin.

  16. Characterisation of a PERCIVAL monolithic active pixel prototype using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Correa, J.; Bayer, M.; Göttlicher, P.; Lange, S.; Marras, A.; Niemann, M.; Reza, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Xia, Q.; Viti, M.; Wunderer, C. B.; Zimmer, M.; Dipayan, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Giuressi, D.; Khromova, A.; Pinaroli, G.; Menk, R.; Stebel, L.; Fan, R.; Marchal, J.; Pedersen, U.; Rees, N.; Steadman, P.; Sussmuth, M.; Tartoni, N.; Yousef, H.; Hyun, H. J.; Kim, K.; Rah, S.; Graafsma, H.

    2016-02-01

    PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile And Large") is a monolithic active pixel sensor (MAPS) based on CMOS technology. Is being developed by DESY, RAL/STFC, Elettra, DLS, and PAL to address the various requirements of detectors at synchrotron radiation sources and Free Electron Lasers (FELs) in the soft X-ray regime. These requirements include high frame rates and FELs base-rate compatibility, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency (QE), and (multi-)megapixel arrangements with good spatial resolution. Small-scale back-side-illuminated (BSI) prototype systems are undergoing detailed testing with X-rays and optical photons, in preparation of submission of a larger sensor. A first BSI processed prototype was tested in 2014 and a preliminary result—first detection of 350eV photons with some pixel types of PERCIVAL—reported at this meeting a year ago. Subsequent more detailed analysis revealed a very low QE and pointed to contamination as a possible cause. In the past year, BSI-processed chips on two more wafers were tested and their response to soft X-ray evaluated. We report here the improved charge collection efficiency (CCE) of different PERCIVAL pixel types for 400eV soft X-rays together with Airy patterns, response to a flat field, and noise performance for such a newly BSI-processed prototype sensor.

  17. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  18. Radiation Hardness Assurance (RHA): Challenges and New Considerations

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2017-01-01

    Use of commercial-off-the-shelf (COTS) components and emerging technologies often require space flight missions to accept elevated risk. The Radiation Hardness Assurance (RHA) flow includes environment definition, hazard evaluation, requirements definition, evaluation of design, and design trades to accommodate and mitigate the risk a project or program takes. Depending on the mission profile and environment, different missions may not necessarily benefit from the same risk reduction efforts or cost reduction attempts. While this poses challenges for the radiation engineer, it also presents opportunities to tailor the RHA flow to minimize risk based on the environment or design criticality while remaining within budget. This presentation will focus on an approach to RHA amidst the present challenges, using the same RHA flow as in the past, with examples from recent radiation test results. The current challenges and the types of risk will be identified. How these risks drive requirements development and realization will be explained with examples of device results and data for single event effects (SEE) and in one case total ionizing dose (TID).

  19. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-08-15

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and

  20. Charge collection imaging of a monolithic DeltaE-E telescope for radiation protection applications.

    PubMed

    Cornelius, I; Rosenfeld, A; Reinhard, M; Fazzi, A; Prokopovich, D; Wroe, A; Siegele, R; Pola, A; Agosteo, S

    2006-01-01

    The development of microdosimeters and particle telescopes is important for risk assessment in space and aviation applications. The charge collection properties of a monolithic particle telescope, suitable for both microdosimetry and fluence based approaches, were studied using an ion microprobe.

  1. Experimental study of hard photon radiation processes at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; de Roeck, A.; de Wolf, E. A.; di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.

    1995-12-01

    We present an experimental study of the ep→ eγ+ p and ep→ eγ+ X processes using data recorded by the H1 detector in 1993 at the electron-proton collider HERA. These processes are employed to measure the luminosity with an accuracy of 4.5 %. A subsample of the ep→ eγ+ X events in which the hard photon is detected at angles θ{γ/'} ≤ 0.45 mrad with respect to the incident electron direction is used to verify experimentally the size of radiative corrections to the ep→ eX inclusive cross section and to investigate the structure of the proton in the Q 2 domain down to 2 GeV2, lower than previously attained at HERA.

  2. Radiation-hard/high-speed array-based optical engine

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-12-01

    We have designed and fabricated a compact array-based optical engine for transmitting data at 10 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The DAC settings are stored in SEU (single event upset) tolerant registers. Several devices were irradiated with 24 GeV/c protons and the performance of the devices is satisfactory after the irradiation.

  3. A MONOLITHIC PREAMPLIFIER-SHAPER FOR MEASUREMENT LOSS AND TRANSITION RADIATION.

    SciTech Connect

    KANDASAMY,A.

    1999-11-08

    A custom monolithic circuit has been developed for the Time Expansion Chamber (TEC) of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). This detector identifies particles by sampling their ionization energy loss (dE/dx) over a 3 cm drift space and by detecting associated transition radiation (TR) photons. The requirement of being simultaneously sensitive to dE/dx and TR events requires a dual-gain system. We have developed a compact solution featuring an octal preamplifier/shaper (P/S) IC with a split gain stage. The circuit, fabricated in 1.2 {micro}m CMOS process, incorporates a trans-impedance preamplifier and a 70 ns unipolar CR-RC{sup 4} shaper with ion tail compensation and active DC offset cancellation. Digitally selectable gain, peaking time, and tail cancellation as well as channel-by-channel charge injection and disable can be configured in the system via a 3-wire interface. The 3.5 x 5 mm{sup 2} die is packaged in a fine-pitch 64-pin PQFP. Equivalent input noise is less than 1500 rms electrons at a power dissipation of 30 mW per channel. On a sample of 2400 chips, the DC offset was 2.3 {+-} 3 mV rms without trimming. A chamber-mounted TEC-PS Printed Circuit Board (PCB) houses four PIS chips, on-board calibration circuit, and 64 analog differential line drivers which transmit the shaped pulses to crate-mounted flash ADC's. 7 m apart An RS-422 link provides digital configuration downloading and read back, and supplies the calibration strobe. The 24.6 cm x 9.5 cm board dissipates 8.5 W.

  4. Notional Radiation Hardness Assurance (RHA) Planning For NASA Missions: Updated Guidance

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Pellish, Jonathan A.

    2014-01-01

    Radiation Hardness Assurance (RHA) is the process of ensuring space system performance in the presence of a space radiation environment. Herein, we present an updated NASA methodology for RHA focusing on content, deliverables and timeframes.

  5. National Radiation Hardness Assurance (RHA) Planning For NASA Missions: Updated Guidance

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Pellish, Jonathan Allen

    2014-01-01

    Radiation Hardness Assurance (RHA) is the process of ensuring space system performance in the presence of a space radiation environment. Herein, we present an updated NASA methodology for RHA focusing on content, deliverables and timeframes.

  6. Fault tolerant, radiation hard, high performance digital signal processor

    NASA Technical Reports Server (NTRS)

    Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke

    1990-01-01

    An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.

  7. Development of high temperature, radiation hard detectors based on diamond

    NASA Astrophysics Data System (ADS)

    Metcalfe, Alex; Fern, George R.; Hobson, Peter R.; Ireland, Terry; Salimian, Ali; Silver, Jack; Smith, David R.; Lefeuvre, Gwenaelle; Saenger, Richard

    2017-02-01

    Single crystal CVD diamond has many desirable properties compared to current, well developed, detector materials; exceptional radiation, chemical and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry), wide bandgap and an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. However effective exploitation of these properties requires development of a suitable metallisation scheme to give stable contacts for high temperature applications. To best utilise available processing techniques to optimise sensor response through geometry and conversion media configurations, a reliable model is required. This must assess the performance in terms of spectral response and overall efficiency as a function of detector and converter geometry. The same is also required for proper interpretation of experimental data. Sensors have been fabricated with varying metallisation schemes indented to permit high temperature operation; Present test results indicate that viable fabrication schemes for high temperature contacts have been developed and present modelling results, supported by preliminary data from partners indicate simulations provide a useful representation of response.

  8. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  9. The comparison of radiation hardness of heterojunction SiGe and conventional silicon bipolar transistors

    NASA Astrophysics Data System (ADS)

    Bakerenkov, A. S.; Felitsyn, V. A.; Rodin, A. S.

    2016-10-01

    The results of the X-ray radiation impact on heterojunction SiGe and conventional silicon bipolar transistors are presented. Oxide thickness over the emitter-base junction depletion region determines the radiation hardness of the bipolar transistors. In this article, the estimation of the rate of radiation degradation of electrical parameters for conventional silicon devices and SiGe-transistors is performed.

  10. CONTROL OF LASER RADIATION PARAMETERS: Evolution of transient oscillation regimes in monolithic ring lasers

    NASA Astrophysics Data System (ADS)

    Kravtsov, Nikolai V.; Chekina, S. N.

    2005-07-01

    The evolution of the regions of existence and stability of quasi-periodic and chaotic oscillation regimes in a monolithic ring Nd:YAG laser caused by changing the pump power is studied experimentally. It is shown that the dynamic chaos regime appearing upon modulation of the pump power is alternated by windows in which different quasi-periodic lasing regimes take place. A scenario of the passage from the self-modulation lasing regime to dynamic chaos is considered.

  11. Effects of He radiation on cavity distribution and hardness of bulk nanolayered Cu-Nb composites

    NASA Astrophysics Data System (ADS)

    Yang, L. X.; Zheng, S. J.; Zhou, Y. T.; Zhang, J.; Wang, Y. Q.; Jiang, C. B.; Mara, N. A.; Beyerlein, I. J.; Ma, X. L.

    2017-04-01

    Interface engineering is an important strategy for developing radiation tolerant materials. In prior work, bulk nanolayered composites fabricated by accumulative roll bonding (ARB) showed outstanding radiation resistance. However, the effects of layer thickness and radiation conditions on damage distributions and their effect on hardness have not been explored. Here, we use transmission electron microscopy (TEM) and nanoindentation to investigate the effects of radiation on the distribution of radiation-induced cavities and post-radiation hardness in ARB nanolayered Cu-Nb composites. We show that whether the cavities cross the interface depends on layer thickness and temperature, and that, remarkably, radiation could generate softening, not always hardening. We posit that the softening mainly results from the recovery of dislocations stored in the crystal after the bulk forming ARB processing due to He radiation and this phenomenon offsets radiation-induced hardening as layers become finer and temperatures rise.

  12. The Use of Hard Synchrotron Radiation for Diffraction Studies of Composite and Functional Materials

    NASA Astrophysics Data System (ADS)

    Ancharov, A. I.

    2017-07-01

    Potential use of hard synchrotron radiation (SR) with the quantum energy above 25 keV is discussed aiming to solve a number of research tasks on investigation of structural changes taking place in materials. The advantages and limitations of the use of hard SR for diffraction studies are evaluated. A review of the principal techniques is made wherein application of hard SR both promotes certain experimental investigations and frequently allows obtaining new structural data unavailable with X-ray tubes.

  13. Model-Based Assurance Case+ (MBAC+): Tutorial on Modeling Radiation Hardness Assurance Activities

    NASA Technical Reports Server (NTRS)

    Austin, Rebekah; Label, Ken A.; Sampson, Mike J.; Evans, John; Witulski, Art; Sierawski, Brian; Karsai, Gabor; Mahadevan, Nag; Schrimpf, Ron; Reed, Robert A.

    2017-01-01

    This presentation will cover why modeling is useful for radiation hardness assurance cases, and also provide information on Model-Based Assurance Case+ (MBAC+), NASAs Reliability Maintainability Template, and Fault Propagation Modeling.

  14. Influence of design variables on radiation hardness of silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.

    1985-01-01

    Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.

  15. Comparison of the radiation hardness of various VLSI technologies for defense applications

    SciTech Connect

    Gibbon, C.F.

    1985-01-01

    In this review the radiation hardness of various potential very large scale (VLSI) IC technologies is evaluated. IC scaling produces several countervailing trends. Reducing vertical dimensions tends to increase total dose hardness, while reducing lateral feature sizes may increase susceptibility to transient radiation effects. It is concluded that during the next decade at least, silicon complimentary MOS (CMOS), perhaps on an insulating substrate (SOI) will be the technology of choice for VLSI in defense systems.

  16. Improving the radiation hardness of graphene field effect transistors

    DOE PAGES

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; ...

    2016-10-11

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally,more » we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.« less

  17. Improving the radiation hardness of graphene field effect transistors

    SciTech Connect

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; Wishart, James F.; Hao, Yufeng; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2016-10-11

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally, we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.

  18. Improving the radiation hardness of graphene field effect transistors

    NASA Astrophysics Data System (ADS)

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; Wishart, James F.; Hao, Yufeng; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2016-10-01

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. Here, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. We believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.

  19. Effect Of Clock Mode On Radiation Hardness Of An ADC

    NASA Technical Reports Server (NTRS)

    Lee, Choon I.; Rax, Bernie G.; Johnston, Allan H.

    1995-01-01

    Report discusses techniques for testing and evaluating effects of total dosages of ionizing radiation on performances of high-resolution successive-approximation analog-to-digital converters (ADCs), without having to test each individual bit or transition. Reduces cost of testing by reducing tests to few critical parametric measurements, from which one determines approximate radiation failure levels providing good approximations of responses of converters for purpose of total-dose-radiation evaluations.

  20. Microstructural investigation to the controlled release kinetics of monolith osmotic pump tablets via synchrotron radiation X-ray microtomography.

    PubMed

    Li, Haiyan; Yin, Xianzhen; Ji, Junqiu; Sun, Lixin; Shao, Qun; York, Peter; Xiao, Tiqiao; He, You; Zhang, Jiwen

    2012-05-10

    Tomographic imaging techniques are attractive tools for the visualization of the internal structural characteristics of pharmaceutical solid dosage forms. In this paper, the internal structure of the tablet core for a monolith osmotic drug delivery system, felodipine sustained-release tablet, was visualized via synchrotron radiation X-ray computed microtomography during the drug release process. The surface areas and three dimensional parameters of the tablet core were calculated based on the three dimensional reconstruction of the images. At different stages of the drug release process, the surface morphology, the hydration, the swelling, and the structure changing of the tablet, were visualized from the two dimensional monochrome X-ray images. The three dimensional volumes of the remaining tablet core correlated well with the percentages of felodipine (R=0.9988). Also, the three dimensional surface area almost unchanged during the drug release process, which clearly demonstrated the intrinsic drug release mechanism of the osmotic drug delivery system. In conclusion, the synchrotron radiation X-ray computed microtomography, with rapid acquisition, high intensity and micro-scale spatial resolution, was found to be a useful tool for the quantitative elucidation of the intrinsic drug release kinetics and the three dimensional parameters such as surface areas of the remained core obtained by the synchrotron radiation. Thus, X-ray computed microtomography can be considered as a new and complimentary analytical tool to standard compendial pharmaceutical tests for quality control of osmotic drug delivery systems.

  1. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    SciTech Connect

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-08-15

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering.

  2. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology.

    PubMed

    Xapsos, M A; Stauffer, C; Phan, A; McClure, S S; Ladbury, R L; Pellish, J A; Campola, M J; LaBel, K A

    2017-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  3. Radiation hardness improvement of analog front-end microelectronic devices for particle accelerator

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, A. G.; Rodin, A. S.; Bakerenkov, A. S.; Felitsyn, V. A.

    2016-10-01

    Series of schematic techniques for increasing radiation hardness of the current mirrors is developed. These techniques can be used for the design of analog front-end microelectronic devices based on the operational amplifiers. The circuit simulation of radiation degradation of current transmission coefficients was performed for various circuit solutions in LTSpice software.

  4. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2016-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  5. Radiation hard analog circuits for ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Gajanana, D.; Gromov, V.; Kuijer, P.; Kugathasan, T.; Snoeys, W.

    2016-03-01

    The ALICE experiment is planning to upgrade the ITS (Inner Tracking System) [1] detector during the LS2 shutdown. The present ITS will be fully replaced with a new one entirely based on CMOS monolithic pixel sensor chips fabricated in TowerJazz CMOS 0.18 μ m imaging technology. The large (3 cm × 1.5 cm = 4.5 cm2) ALPIDE (ALICE PIxel DEtector) sensor chip contains about 500 Kpixels, and will be used to cover a 10 m2 area with 12.5 Gpixels distributed over seven cylindrical layers. The ALPOSE chip was designed as a test chip for the various building blocks foreseen in the ALPIDE [2] pixel chip from CERN. The building blocks include: bandgap and Temperature sensor in four different flavours, and LDOs for powering schemes. One flavour of bandgap and temperature sensor will be included in the ALPIDE chip. Power consumption numbers have dropped very significantly making the use of LDOs less interesting, but in this paper all blocks are presented including measurement results before and after irradiation with neutrons to characterize robustness against displacement damage.

  6. Radiation hardness by design for mixed signal infrared readout circuit applications

    NASA Astrophysics Data System (ADS)

    Gaalema, Stephen; Gates, James; Dobyns, David; Pauls, Greg; Wall, Bruce

    2013-09-01

    Readout integrated circuits (ROICs) to support space-based infrared detection applications often have severe radiation tolerance requirements. Radiation hardness-by-design (RHBD) significantly enhances the radiation tolerance of commercially available CMOS and custom radiation hardened fabrication techniques are not required. The combination of application specific design techniques, enclosed gate architecture nFETs and intrinsic thin oxide radiation hardness of 180 nm process node commercial CMOS allows realization of high performance mixed signal circuits. Black Forest Engineering has used RHBD techniques to develop ROICs with integrated A/D conversion that operate over a wide range of temperatures (40K-300K) to support infrared detection. ROIC radiation tolerance capability for 256x256 LWIR area arrays and 1x128 thermopile linear arrays is presented. The use of 130 nm CMOS for future ROIC RHBD applications is discussed.

  7. Design and development of a hard tube flexible radiator system

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1980-01-01

    The construction and operational characteristics of an extended life flexible radiator panel is described. The radiator panel consists of a flexible fin laminate and stainless steel flow tubes designed for a 90 percent probability of surviving 5 years in an Earth orbit micrometeoroid environment. The radiator panel rejects 1.1 kW sub t of heat into an environmental sink temperature of 0 F. Total area is 170 square feet and the panel extends 25 feet in the fully deployed position. When retracted the panel rolls onto a 11.5 inch diameter by 52 inch long storage drum, for a final stored diameter of 22 inches.

  8. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber.

    PubMed

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Lee, Seung Ho; Han, Won-Taek

    2016-02-22

    We have investigated gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber. Radiation-induced attenuation (RIA) of the optical fiber was measured under intermittent gamma-ray irradiations with dose rate of ~10 kGy/h. No radiation hardening effect on the RIA by the gamma-ray pre-dose was found when the exposed fiber was bleached for long periods of time (27~47 days) at room-temperature. Photo-bleaching scheme upon 980 nm LD pumping has proven to be an effective deterrent to the RIA, particularly by suppressing the incipient RIA due to room-temperature unstable self-trapped hole defects (STHs). Large temperature dependence of the RIA of the optical fiber together with the photo-bleaching effect are worthy of note for reinforcing its radiation hard characteristics.

  9. Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment

    NASA Astrophysics Data System (ADS)

    Diblen, Faruk; Buitenhuis, Tom; Solf, Torsten; Rodrigues, Pedro; van der Graaf, Emiel; van Goethem, Marc-Jan; Brandenburg, Sytze; Dendooven, Peter

    2017-07-01

    In vivo verification of dose delivery in proton therapy by means of positron emission tomography (PET) or prompt gamma imaging is mostly based on fast scintillation detectors. The digital silicon photomultiplier (dSiPM) allows excellent scintillation detector timing properties and is thus being considered for such verification methods. We present here the results of the first investigation of radiation damage to dSiPM sensors in a proton therapy radiation environment. Radiation hardness experiments were performed at the AGOR cyclotron facility at the KVI-Center for Advanced Radiation Technology, University of Groningen. A 150-MeV proton beam was fully stopped in a water target. In the first experiment, bare dSiPM sensors were placed at 25 cm from the Bragg peak, perpendicular to the beam direction, a geometry typical for an in situ implementation of a PET or prompt gamma imaging device. In the second experiment, dSiPM-based PET detectors containing lutetium yttrium orthosilicate scintillator crystal arrays were placed at 2 and 4 m from the Bragg peak, perpendicular to the beam direction; resembling an in-room PET implementation. Furthermore, the experimental setup was simulated with a Geant4-based Monte Carlo code in order to determine the angular and energy distributions of the neutrons and to determine the 1-MeV equivalent neutron fluences delivered to the dSiPM sensors. A noticeable increase in dark count rate (DCR) after an irradiation with about 108 1-MeV equivalent neutrons/cm2 agrees with observations by others for analog SiPMs, indicating that the radiation damage occurs in the single photon avalanche diodes and not in the electronics integrated on the sensor chip. It was found that in the in situ location, the DCR becomes too large for successful operation after the equivalent of a few weeks of use in a proton therapy treatment room (about 5 × 1013 protons). For PET detectors in an in-room setup, detector performance was unchanged even after an

  10. Radiation-hard breadboard star tracker. Final report

    SciTech Connect

    Hubbard, M.W.; Murata, D.L.

    1985-09-01

    Operation in a radiation environment affects the performance of many types of electro-optical sensors. Specifically, noise generated from radiation in the detector and front-end electronics in star trackers can degrade the performance of the sensors. Upsets in the related processing electronics can cause loss of track, data interruptions, and in some cases, failure to recover. Degradation of performance can occur in a natural charged-particle environment and becomes worse in a weapon-enhanced radiation environment. High total dose results in component and, in turn, system failure to operate. The objectives of this program, which was conducted by Ball Aerospace Systems Division (BASD) for the Naval Research Laboratory (NRL), were to develop a tracker that could survive a high total dose and to gain a better understanding of the transient effects of radiation on the star tracker performance. Survivability of the star tracker in a radiation environment, both at the component level and at the system level, is of primary importance.

  11. Radiation hardness of Efratom M-100 rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    English, T. C.; Vorwerk, H.; Rudie, N. J.

    1983-01-01

    The effects of nuclear radiation on rubidium gas cell frequency standards and components are presented, including the results of recent tests where a continuously operating rubidium frequency standard (Effratom, Model M-100) was subjected to simultaneous neutron/gamma radiation. At the highest neutron fluence 7.5 10 to the 12th power n/sq cm and total dose 11 krad(Si) tested, the unit operated satisfactorily; the total frequency change over the 2 1/2 hour test period due to all causes, including repeated retraction from and insertion into the reactor, was less than 1 x 10 to the -10th power. The effects of combined neutron/gamma radiation on rubidium frequency standard physics package components were also studied, and the results are presented.

  12. Radiation hardness of Efratom M-100 rubidium frequency standard

    SciTech Connect

    English, T.C.; Vorwerk, H.; Rudie, N.J.

    1983-02-01

    The effects of nuclear radiation on rubidium gas cell frequency standards and components are presented, including the results of recent tests where a continuously operating rubidium frequency standard (Effratom, Model M-100) was subjected to simultaneous neutron/gamma radiation. At the highest neutron fluence 7.5 10 to the 12th power n/sq cm and total dose 11 krad(Si) tested, the unit operated satisfactorily. The total frequency change over the 2 1/2 hour test period due to all causes, including repeated retraction from and insertion into the reactor, was less than 1 x 10 to the -10th power. The effects of combined neutron/gamma radiation on rubidium frequency standard physics package components were also studied, and the results are presented.

  13. A radiation-hard, low-background multiplexer design for spacecraft imager applications

    NASA Technical Reports Server (NTRS)

    Staller, Craig; Ramirez, Luis; Niblack, Curtiss; Blessinger, Michael; Kleinhans, William

    1992-01-01

    A possible multiplexer design for the focal plane for the Cassini Visible and Infrared Mapping Spectrometer (VIMS) is reviewed. The instrument's requirements for the multiplexed array are summarized. The VIMS instrument has a modest radiation-hardness requirement due to the trajectory and planetary environments in which the instrument will be required to operate. The total ionizing dose hardness requirement is a few tens of kilorads. A thin-gate oxide of a few hundred angstroms thickness is to be used. Field hardness is to be achieved by guard bands or hardened dielectric isolation. The design is argued to meet the low-noise and radiation-hardness required for imaging at Saturn. The design is versatile enough to provide double-correlated and double-uncorrelated sampling, which is accomplished in the signal processing electronics outside the focal plane.

  14. Test of radiation hardness of CMOS transistors under neutron irradiation

    SciTech Connect

    Sadrozinski, H.F.W.; Rowe, W.A.; Seiden, A.; Spencer, E.; Hoffman, C.M.; Holtkamp, D.; Kinnison, W.W.; Sommer, W.F. Jr.; Ziock, H.J.

    1989-01-01

    We have tested 2 micron CMOS test structures from various foundries in the LAMPF Beam stop for radiation damage under prolongued neutron irradiation. The fluxes employed covered the region expected to be encountered at the SSC and led to fluences of up to 10/sup 14/ neutrons/cm/sup 2/ in about 500 hrs of running. We show that test structures which have been measured to survive ionizing radiation of the order MRad also survive these high neutron fluences. 5 refs., 4 figs.

  15. Influence of Li-codoping on the radiation hardness of CsBr:Eu{sup 2+}

    SciTech Connect

    Zimmermann, J.; Hesse, S.; Seggern, H. von; Fuchs, M.; Knuepfer, W.

    2007-06-01

    The poor radiation hardness of the otherwise excellent x-ray storage phosphor CsBr:Eu{sup 2+} constitutes a problem for its commercial application in medical diagnostics. X-ray induced vacancy centers such as M-centers enhance the diffusion of Eu{sup 2+} activators resulting in a formation of photostimulated luminescence (PSL) inactive europium clusters or second phases of europium compounds. The present study investigates the influence of Li-codoping on the radiation hardness of CsBr:Eu{sup 2+}. It is reported that the integration of Li{sup +} into the CsBr:Eu{sup 2+} suppresses the generation of M-centers during x-irradiation and thereby partially improves the radiation hardness.

  16. Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project.

    NASA Astrophysics Data System (ADS)

    Huffman, B. T.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hoeferkamp, M.; Hommels, L. B. A.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, J.; Liang, Z.; Mandić, I.; Maneuski, D.; Martinez-Mckinney, F.; McMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2016-02-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with the AMS H35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper.

  17. FPIX2: A radiation-hard pixel readout chip for BTeV

    SciTech Connect

    David C. Christian et al.

    2000-12-11

    A radiation-hard pixel readout chip, FPIX2, is being developed at Fermilab for the recently approved BTeV experiment. Although designed for BTeV, this chip should also be appropriate for use by CDF and DZero. A short review of this development effort is presented. Particular attention is given to the circuit redesign which was made necessary by the decision to implement FPIX2 using a standard deep-submicron CMOS process rather than an explicitly radiation-hard CMOS technology, as originally planned. The results of initial tests of prototype 0.25{micro} CMOS devices are presented, as are plans for the balance of the development effort.

  18. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  19. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  20. Study of radiation hardness of pure CsI crystals for Belle-II calorimeter

    NASA Astrophysics Data System (ADS)

    Boyarintsev, A.; Boyarintseva, Y.; Gektin, A.; Shiran, N.; Shlyakhturov, V.; Taranyuk, V.; Timoshenko, N.; Bobrov, A.; Garmash, A.; Golkovski, M.; Kuzmin, A.; Matvienko, D.; Savrovski, P.; Shebalin, V.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Krumshtein, Z. V.; Nozdrin, A. A.; Olshevsky, A. G.

    2016-03-01

    A study of the radiation hardness of pure CsI crystals 30 cm long was performed with a uniformly absorbed dose of up to 14.3 krad. This study was initiated by the proposed upgrade of the end cap calorimeter of the Belle-II detector, using pure CsI crystals. A set of 14 crystals of truncated pyramid shape used in this study was produced at the Institute for Scintillation Materials NAS from 14 different ingots grown with variations of the growing technology. Interrelationship of crystal scintillation characteristics, radiation hardness and the growing technology was observed.

  1. MNOS/SOS radiation hardness performance and reliability study

    NASA Astrophysics Data System (ADS)

    Hampton, F. L.; Cricchi, J. R.

    1982-05-01

    In this investigation the endurance-retention characteristics of fast-write MNOS memory structure, and radiation tolerance of metal-gate dual-dielectric and polysilicon-gate all-oxide devices have been evaluated. Writing and clearing speed have been studied with respect to the NH3:SiH4 ratio (APCVD), and NH3:SiC12H2 ratio (LPCVD). The films deposited with a low NH3:SiC12 ratios could be written and cleared with shorter pulse widths; however, a degradation in retention was observed. An improvement in the endurance retention product of a drain source protected transistor structure has been realized by oxidizing the memory nitride followed by an H2 anneal immediately after deposition. The film was deposited with a LPCVD reactor at 750 deg with a NH3:SiC12H2 ratio of 9:1. Oxidation was performed in steam at 900 C, as was the subsequent H2 anneal. The effect of total dose radiation was found to be more severe for a positive bias. The all oxide polysilicon gate transistor structures were observed to be relatively soft, however results from capacitor structures shows promise in developing a radiation tolerant polysilicon-gate all-oxide gate structure.

  2. The angular dependence of a two dimensional monolithic detector array for dosimetry in small radiation fields

    NASA Astrophysics Data System (ADS)

    Stansook, N.; Petasecca, M.; Utitsarn, K.; Newall, M.; Metcalfe, P.; Carolan, M.; Lerch, M.; Rosenfeld, A. B.

    2017-01-01

    The purpose of this study is to investigate the directional dependence of a two dimensional monolithic detector array (M512) under 6 MV photon irradiation and to evaluate the effect of field size on angular dependence. Square fields of sizes: 3x3 cm2 and 10x10 cm2 were measured at the iso-centre of a cylindrical phantom. Beam angles with incidences from 00- 1800 in increments of 150 were used to investigate the central pixel angular response of M512, normalized to the pixel response for normal (0°) beam incidence. The angular response of the detector was compared to the response of EBT3 radiochromic film in the identical geometric orientation. The maximum angular dependence was observed at the angle 90°±15° to be -18.62% and -17.70% for the field sizes 3x3 cm2 and 10x10 cm2, respectively. The angular dependence of M512 showed no significant difference between field sizes of 3x3 cm2 and 10x10 cm2 (p>0.05). The maximum dose difference measured by the central pixel of M512 and EBT3 for all angles are -20% for 3x3 cm2 field size and -18.58% for the 10x10 cm2 field. The diode array’s size and packaging effects the angular response of the detector. The angular correction factor is necessary to apply to increase accuracy in dosimetry for arc treatment delivery.

  3. Axial ion-electron emission microscopy of IC radiation hardness

    NASA Astrophysics Data System (ADS)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  4. Radiation hardness of n-GaN schottky diodes

    SciTech Connect

    Lebedev, A. A. Belov, S. V.; Mynbaeva, M. G.; Strel’chuk, A. M.; Bogdanova, E. V.; Makarov, Yu. N.; Usikov, A. S.; Kurin, S. Yu.; Barash, I. S.; Roenkov, A. D.; Kozlovski, V. V.

    2015-10-15

    Schottky-barrier diodes with a diameter of ∼10 µm are fabricated on n-GaN epitaxial films grown by hydride vapor-phase epitaxy (HVPE) on sapphire substrates. The changes in the parameters of the diodes under irradiation with 15 MeV protons are studied. The carrier removal rate was found to be 130–145 cm{sup –1}. The linear nature of the dependence N = f(D) (N is the carrier concentration, and D, the irradiation dose) shows that compensation of the material is associated with transitions of electrons from shallow donors to deep acceptor levels which are related to primary radiation defects.

  5. A source of hard X-ray radiation based on hybrid X pinches

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Hoyt, C. L.; Cahill, A. D.; Atoyan, L.; Hammer, D. A.; Tilikin, I. N.; Mingaleev, A. R.; Romanova, V. M.; Agafonov, A. V.

    2016-10-01

    X pinches are well known to produce very small, dense plasma pinches ("hot spots") that emit sub-nanosecond bursts of 1-8 keV radiation. Hard X-ray radiation in the range from 8 to 300 keV or more is also emitted, and only a small portion of which is associated with the X-pinch hot spot. In hybrid X-pinches (HXP), the 10 ns hard X-ray pulse is terminated by fast closure of the gap between the two conical electrodes of the HXP by rapidly expanding electrode plasmas. The temporal, spectral, and spatial properties of this higher energy radiation have been studied. This radiation was used for point-projection imaging with magnification between 1.5 and 6, and spatial resolution of 20-100 μm was demonstrated.

  6. A semi-analytic approximation of charge induction in monolithic pixelated CdZnTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Bale, Derek S.

    2010-03-01

    A semi-analytic approximation to the weighting potential within monolithic pixelated CdZnTe radiation detectors is presented. The approximation is based on solving the multi-dimensional Laplace equation that results upon replacing rectangular pixels with equal-area circular pixels. Further, we utilize the simplicity of the resulting approximate weighting potential to extend the well-known Hecht equation, describing charge induction in a parallel plate detector, to that approximating the multi-dimensional charge induction within a pixelated detector. These newly found expressions for the weighting potential and charge induction in a pixelated detector are compared throughout to full 3D electrostatic and monte carlo simulations using eV DSIM ( eV Microelectronics Device SIMulator). The semi-analytic expressions derived in this paper can be evaluated quickly, and can therefore be used to efficiently reduce the size and dimensionality of the parameter space on which a detailed 3D numerical analysis is needed for pixelated detector design in a wide range of applications.

  7. Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation.

    PubMed

    Rack, Alexander; García-Moreno, Francisco; Helfen, Lukas; Mukherjee, Manas; Jiménez, Catalina; Rack, Tatjana; Cloetens, Peter; Banhart, John

    2013-11-20

    Pushing synchrotron x-ray radiography to increasingly higher image-acquisition rates (currently up to 100,000 fps) while maintaining spatial resolutions in the micrometer range implies drastically reduced fields of view. As a consequence, either imaging a small subregion of the sample with high spatial resolution or only the complete specimen with moderate resolution is applicable. We introduce a concept to overcome this limitation by making use of a semi-transparent x-ray detector positioned close to the investigated sample. The hard x-rays that pass through the sample either create an image on the first detector or keep on propagating until they are captured by a second x-ray detector located further downstream. In this way, a process can be imaged simultaneously in a hierarchical manner within a single exposure and a projection of the complete object with moderate resolution as well as a subregion with high resolution are obtained. As a proof-of-concept experiment, image sequences of an evolving liquid-metal foam are shown, employing frame rates of 1000  images/s (1.2 μm pixel size) and 15,000  images/s (18.1 μm pixel size) for the first and second detector, respectively.

  8. Radiation hardness of 3HF-tile/O2-WLS-fiber calorimeter

    SciTech Connect

    Han, S.W.; Hu, L.D.; Liu, N.Z.

    1993-11-01

    The radiation hardness of a 3HF-tile/O2-WLS-fiber calorimeter with two different tile/fiber patterns has been studied. Two calorimeter modules were irradiated up to 10 Mrad with the BEPC 1.3 GeV electron beam. The radiation damage of these modules is compared with our previous measurements from SCSN81-tile/BCF91A-WLS-fiber modules. The longitudinal damage profiles are fitted as a function of depth.

  9. Radiation hard programmable delay line for LHCb calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Mauricio, J.; Gascón, D.; Vilasís, X.; Picatoste, E.; Machefert, F.; Lefrancois, J.; Duarte, O.; Beigbeder, C.

    2014-01-01

    This paper describes the implementation of a SPI-programmable clock delay chip based on a Delay Locked Loop (DLL) in order to shift the phase of the LHC clock (25 ns) in steps of 1ns, with less than 5 ps jitter and 23 ps of DNL. The delay lines will be integrated into ICECAL, the LHCb calorimeter front-end analog signal processing ASIC in the near future. The stringent noise requirements on the ASIC imply minimizing the noise contribution of digital components. This is accomplished by implementing the DLL in differential mode. To achieve the required radiation tolerance several techniques are applied: double guard rings between PMOS and NMOS transistors as well as glitch suppressors and TMR Registers. This 5.7 mm2 chip has been implemented in CMOS 0.35 μm technology.

  10. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2015-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the design margin concept with one of failure probability.

  11. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  12. A reliability simulator for radiation-hard microelectronics development

    NASA Astrophysics Data System (ADS)

    Huang, David H.; King, Everett E.; Wang, J. J.

    1991-07-01

    A real-time reliability simulator to predict device lifetime of n-channel MOSFET transistors due to channel hot-electron (CHE) degradation was developed. The correlation between the x ray radiation induced and hot-electron induced interface state generation was established for both conventional non-LDD and the LDD n-channel devices by using appropriate failure criteria. The correlation has been confirmed by the charge pumping measurements. Software modules were developed to control the hardware of the simulator, collect the data and perform the data analysis. The benefit of this stimulator is dramatically reduced test time. A new hot-carrier stress test procedure has been developed based on the constant gate current stress to evaluate the hot-carrier induced device lifetime of p-channel transistors. This approach ensures a constant electric field near the drain and the constant electron injection rate. It becomes possible to compare the hot-carrier sensitivity of p-channel devices from different process technologies.

  13. Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA

    SciTech Connect

    Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.

    2016-03-25

    A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.

  14. Creation of a Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2010-08-01

    To support space applications we will develop an 0.13 micron CMOS library which should be radiation hard up to 200 krad. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latchup (SEL). To reduce single event upset (SEU) we will add two p-MOS transistors to all flip flops. For reliability reasons we will use double contacts in all library elements. The additional rules and the library elements will then be integrated in our Cadence mixed signal designkit, Virtuoso IC6.1 [1]. A test chip will be produced with our in house 0.13 micron BiCMOS technology, see Ref. [2].Thereafter we will doing radiation tests according the ESA specifications, see Ref. [3], [4].

  15. Radiation Hard Active Media R&D for CMS Hadron Endcap Calorimetry

    NASA Astrophysics Data System (ADS)

    Tiras, Emrah; CMS-HCAL Collaboration

    2015-04-01

    The High Luminosity LHC era imposes unprecedented radiation conditions on the CMS detectors targeting a factor of 5-10 higher than the LHC design luminosity. The CMS detectors will need to be upgraded in order to withstand these conditions yet maintain/improve the physics measurement capabilities. One of the upgrade options is reconstructing the CMS Endcap Calorimeters with a shashlik design electromagnetic section and replacing active media of the hadronic section with radiation-hard scintillation materials. In this context, we have studied various radiation-hard materials such as Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET), HEM and quartz plates coated with various organic materials such as p-Terphenyl (pTp), Gallium doped Zinc Oxide (ZnO:Ga) and Anthracene. Here we discuss the related test beam activities, laboratory measurements and recent developments.

  16. Impact of Radiation Hardness and Operating Temperatures of Silicon Carbide Electronics on Space Power System Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1998-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  17. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    SciTech Connect

    Sun, Ke-Xun; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-09-21

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 1015 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 1012 protons/cm2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2x1012 protons/cm2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have demonstrated

  18. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  19. Medium-induced gluon radiation in hard forward parton scattering in the saturation formalism

    NASA Astrophysics Data System (ADS)

    Munier, Stéphane; Peigné, Stéphane; Petreska, Elena

    2017-01-01

    We derive the medium-induced, fully coherent soft gluon radiation spectrum associated with the hard forward scattering of an energetic parton off a nucleus, in the saturation formalism within the Gaussian approximation for the relevant correlators of Wilson lines and for finite number of colors. The validity range of the result is rigorously specified by keeping track of the order of magnitude of subleading contributions to the spectrum. The connection between the saturation formalism and the opacity expansion used in previous studies of the same observable is made apparent. Our calculation sets the basis for further studies of the interplay between saturation and fully coherent energy loss in hard forward parton scattering.

  20. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  1. R&D Studies on Radiation Hard Wavelength Shifting Fiber for CMS Hadronic Endcap Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Neuhaus, John

    2009-11-01

    The Hadronic Endcap (HE) calorimeters of the CMS experiment cover the pseudorapidity range of 1.4 to 3 on both sides of the CMS detector, contributing to superior jet and missing transverse energy resolutions. As the integrated luminosity of the LHC increases, the scintillator tiles used in the CMS Hadronic Endcap calorimeter will lose their efficiency. Here, we propose to replace the scintillator tiles in high radiation area with ``radiation hard'' quartz plates. To increase the light collection efficiency, the generated Cerenkov photons are collected by UV absorbing wavelength shifting (WLS) fibers. Our previous study has shown that quartz plates and plastic wavelength shifting fibers can be used as an effective calorimeter. However there is no radiation hard WLS fiber commercially available. Here we summarize the R&D studies on constructing a radiation hard WLS fiber prototype in University of Iowa CMS Laboratories. The results from the tests performed on quartz fibers treated with p-Terphenyl, as well as the Geant4 simulations of this prototype are presented.

  2. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  3. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  4. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  5. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  6. Effect of radiation light characteristics on surface hardness of paint-on resin for shade modification.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji

    2005-12-01

    The purpose of this study was to investigate the effect of radiation light characteristics--of different types of clinical light-curing unit--on polymerization efficiency, as determined by the surface hardness of light-cured paint-on resins. Four shades of paint-on resin for shade modification of restorative resins were used. Materials were cured using one laboratory and three clinical light-curing units with different light sources, namely tungsten-halogen, LED, plasma arc, and xenon flash lamps. Knoop hardness measurements were taken at both the top and bottom surfaces of the specimens to assess the mechanical properties and degree of polymerization. Both LED and plasma arc light units caused significantly poorer surface hardness than the halogen and laboratory xenon lights. In addition, the transparent shade was more sensitive to surface hardness than other chromatic shades. Our results indicated that the polymerization efficiency of paint-on resin was significantly influenced by the radiation light characteristics of clinical light-curing units.

  7. Radiation Hard Plastic Scintillators for a New Generation of Particle Detectors

    NASA Astrophysics Data System (ADS)

    Dettmann, M.; Herrig, V.; Maldonis, J.; Neuhaus, J.; Shrestha, D.; Rajbhandari, P.; Thune, Z.; Been, M.; Martinez-Szewczyk, M.; Khristenko, V.; Onel, Y.; Akgun, U.

    2017-03-01

    The radiation hardness of specific scintillating materials used in particle physics experiments is one of the main focuses of research in detector development. This report summarizes the preparation methods, light yield characterization and radiation damage tests of a plastic scintillator with a polysiloxane base and pTP and bis-MSB dopants. The scintillator is shown to be a promising candidate for particle detectors with its intense light output around 400 nm and very little scintillation or transmission loss after proton irradiation of 4 × 105 Gy.

  8. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    NASA Astrophysics Data System (ADS)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  9. Observation of hard radiations in a laboratory atmospheric high-voltage discharge

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Bogachenkov, V. A.; Chubenko, A. P.; Oginov, A. V.; Rodionov, A. A.; Rusetskiy, A. S.; Ryabov, V. A.; Shepetov, A. L.; Shpakov, K. V.

    2017-04-01

    The new results concerning neutron emission detection from a laboratory high-voltage discharge in the air are presented. Data were obtained with a combination of plastic scintillation detectors and 3He-filled counters of thermal neutrons. Strong dependence of the hard x-ray and neutron radiation appearance on the field strength near electrodes, which is determined by their form, was found. We have revealed a more sophisticated temporal structure of the neutron bursts observed during electric discharge.

  10. The role of radiation hard solar cells in minimizing the costs of global satellite communication systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.

  11. The role of radiation hard solar cells in minimizing the costs of global satellite communication systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.

  12. Satellite project "CORONAS-PHOTON" for study of solar hard radiation

    NASA Astrophysics Data System (ADS)

    Kotov, Yu.; Cor-Phot Team

    "CORONAS-PHOTON" is the Russian mission for study of the solar hard electromagnetic radiation in the very wide energy range from Extreme UV up to high-energy gamma - radiation. GOAL OF PROJECT: The investigation of energy accumulation and its transformation into energy of accelerated particles processes during solar flares; the study of the acceleration mechanisms, propagation and interaction of fast particles in the solar atmosphere; the study of the solar activity correlation with physical-chemical processes in the Earth upper atmosphere. SCIENTIFIC PAYLOAD CAPABILITY Radiation / Energy region / Detector type: Full solar disk X- radiation / 2keV - 2000MeV / Prop. counter; NaI(Tl); Full solar disk X- and γ-radiation / NaI(Tl)/CsI(Na) phoswich; Full solar disk X- and γ-radiation and solar neutrons / 20 - 300MeV / YalO_3(Ce); CsI(Tl); Hard X-ray polarization in large flares / 20 - 150keV / p-terphenyl scatterer and CsI(Na) absorbers; Full solar disk EUV-radiation monitoring / 6 spectral windows in <10 - 130nm / Filtered photodiodes; Solar images in narrow spectral bands and monochromatic emission lines of hot plasma / Emission of HeII, SiXI, FeXXI, FeXXIII, MgXII ions / Multi-layer and Bregg spherical crystal quartz mirrors with CCDs; Additionally, the temporal and energy spectra of electrons (0.2-14MeV), protons (1-61MeV) and nuclei (Z<26, 2-50MeV/nuclon) at the satellite orbit will be registrated by several instruments. MAIN CHARACTERISTICS OF SPACECRAFT: Spacecraft weight: 1900 kg; Orbit type: Circular; Scientific payload weight: 540 kg; Height: 500 km; Orientation to the Sun [arc min]: better 5; Inclination: 82.5 degree; Instability of orientation [deg/s]: less 0.005; Solar - synchronous orbit is under study. Launching date of "CORONAS-PHOTON" spacecraft is 2006.

  13. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Low-threshold generation of harmonics and hard x radiation in a laser plasma. 2. Multipeak generation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    The conditions for the generation of hard x radiation with a multipeak structure in a plasma pumped by a long pulse from a free-running CO2 laser at a low intensity (q≲10 GW/cm2) have been studied. This x-ray generation had been observed in a previous study by the present authors. It is shown that this generation of hard x radiation with a multipeak structure leads to a more than tenfold increase in the yield of hard x radiation per laser pulse, under optimum conditions. This increase results from the additional peaks in the x-ray signal. An explanation of this effect is proposed.

  14. On the nature of the sources of hard pulse X-ray radiation

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1978-01-01

    Besides the identified sources of cosmic pulse X-ray radiation with globular clusters NGC 6624, NGC 1851 and MXB 1730-335 several new identifications were made. The source in Norma was probably identified with globular cluster NGC 5927, the source in Aquila with globular cluster NGC 6838 (M71), and the source in Puppis with globular cluster NGC 2298. Gamma pulses discovered by the Vela satellites and X-ray pulses thoroughly measured by the SAS-3, Ariel-5, and ANS satellites are thought to be the same phenomenon. The sources of such a radiation must be some kind of peculiarity at the central part of globular clusters; it is most probably a massive black hole. The sources of hard pulse radiation which cannot be identified with globular clusters are considered to be a new kind of galactic object, invisible globular clusters, which are naked nuclei of globular clusters.

  15. Radiation Hardness Tests of SiPMs for the JLab Hall D Barrel Calorimeter

    SciTech Connect

    Yi Qiang, Carl Zorn, Fernando Barbosa, Elton Smith

    2013-01-01

    We report on the measurement of the neutron radiation hardness of silicon photomultipliers (SiPMs) manufactured by Hamamatsu Corporation in Japan and SensL in Ireland. Samples from both companies were irradiated by neutrons created by a 1 GeV electron beam hitting a thin lead target at Jefferson Lab Hall A. More tests regarding the temperature dependence of the neutron radiation damage and self-annealing were performed on Hamamatsu SiPMs using a calibrated Am–Be neutron source from the Jefferson Lab Radiation Control group. As the result of irradiation both dark current and dark rate increase linearly as a function of the 1 MeV equivalent neutron fluence and a temperature dependent self-annealing effect is observed

  16. Acoustic radiation patterns for a source in a hard-walled unflanged circular duct

    NASA Technical Reports Server (NTRS)

    Holm, R. G.

    1973-01-01

    Acoustic radiation patterns are measured over a 320 deg arc for a point source in a finite length, hard walled, unflanged circular duct. The measured results are compared with computed results which are based on the Wiener-Hopf solution for radiation from a semi-infinite unflanged duct. Measurements and computations are presented for frequencies slightly below and slightly above each of the first four higher order radial mode cutoff frequencies. It is found that the computed and measured patterns show better agreement below the mode cut-off frequencies than above and that the agreement is better at lower frequencies that at higher frequencies. The computed radiation patterns do not show fine lobes which are caused by diffraction from the back end of the duct.

  17. A New Radiation Hard Semiconductor — Semi-Insulating GaN: Photoelectric Properties

    NASA Astrophysics Data System (ADS)

    Vaitkus, J.; Gaubas, E.; Kazukauskas, V.; Blue, A.; Cunningham, W.; Rahman, M.; Smith, K.; Sakai, S.

    2005-06-01

    The anticipated upgrade of the CERN Large Hadron Collider to ten times brighter luminosity poses a severe challenge to semiconductor detectors in the CERN experiments. The suitability of semi-insulating GaN (SI-GaN), proposed as an alternative to silicon for the fabrication of radiation hard detectors, is investigated here in MOCVD GaN layers grown on sapphire. The electrical properties of SI-GaN were studied by dc and microwave techniques, and defect parameters determined by the method of thermally stimulated currents. Variations of charge collection efficiency (CCE) in SI-GaN diodes induced by ionizing radiation of 5.48 MeV alpha particles were revealed. Samples were also irradiated by X-rays, reactor neutrons and high-energy proton fluences of up to 1016 cm-2. The high radiation hardness of SI-GaN was demonstrated by the modest reduction in CCE, from 92% to 77%, in the material irradiated by neutrons (up to a fluence of 1015 cm-2). The CCE was unaffected by an X-rays dose of 600 MRad), but decreased to a few % after proton and neutron fluences of 1016 cm-2. The electrical characteristics vary more significantly, depending on irradiation type and dose. Fast decay components and a significant role of percolation effects are observed in the photoconductivity transients.

  18. Electron-irradiated two-terminal, monolithic InP/Ga0.47In0.53As tandem solar cells and annealing of radiation damage

    NASA Technical Reports Server (NTRS)

    Cotal, H. L.; Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.

    1994-01-01

    Radiation damage results from two-terminal monolithic InP/Ga(0.47)In(0.53)As tandem solar cells subject to 1 MeV electron irradiation are presented. Efficiencies greater than 22 percent have been measured by the National Renewable Energy Laboratory from 2x2 sq cm cells at 1 sun, AMO (25 C). The short circuit current density, open circuit voltage and fill factor are found to tolerate the same amount of radiation at low fluences. At high fluence levels, slight differences are observed. Decreasing the base amount of radiation at the Ga(0.47)In(0.53)As bottomcell improved the radiation resistance of J(sub sc) dramatically. This is turn, extended the series current flow through the subcell substantially up to a fluence of 3x10(exp 15) cm(exp -2) compared to 3x10(exp 14) cm(exp -2), as observed previously. The degradation of the maximum power output form tandem device is comparable to that from shallow homojunction (SHJ) InP solar cells, and the mechanism responsible for such degradation is explained in terms of the radiation response of the component cells. Annealing studies revealed that the recovery of the tandem cell response is dictated by the annealing characteristics exhibited by SHJ InP solar cells.

  19. Foreign technology assessment: Environmental evaluation of a radiation-hard oscillator/divider

    NASA Astrophysics Data System (ADS)

    Dvorack, M. A.

    1993-03-01

    Salford Electrical Instruments, Ltd., and the General Electric Company's Hirst Research Center, under contract to the United Kingdom's (UK) Ministry of Defence, developed a radiation-hard, leadless chip-carrier-packaged oscillator/divider. Two preproduction clocks brought to Sandia National Laboratories (SNL) by a potential SNL customer underwent mechanical and thermal environmental evaluation. Because of the subsequent failure of one device and the deteriorating condition of another device, the devices were not subjected to radiation tests. The specifics of the environmental evaluation performed on these two clocks and the postmortem analysis of one unit, which ultimately failed, are described. Clock startup time versus temperature studies were also performed and compared to an SNL-designed clock having the same fundamental frequency.

  20. The role of radiation hard solar cells in minimizing the costs of global satellite communications systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and

  1. The role of radiation hard solar cells in minimizing the costs of global satellite communications systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Low-threshold generation of harmonics and hard x radiation in a laser plasma. 1. Single-peak generation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    A source of hard x radiation based on a laser plasma has been studied under conditions such that parametric instabilities are driven in the plasma at low intensities of the pump radiation (below 10 GW/cm2). A qualitative interpretation of the observed effects is offered.

  3. Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2009-03-01

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, space charge concentration, and free carrier trapping. For LHC applications, where the total fluence is in the order of 1 × 1015 neq/cm2 for 10 years, the increase in space charge concentration has been the main problem since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. For LHC Upgrade, or the SLHC, however, whit an increased total fluence up to 1 × 1016 neq/cm2, the main limiting factor for Si detector operation is the severe trapping of free carriers by radiation-induced defect levels. Several new approaches have been developed to make Si detector more radiation hard/tolerant to such ultra-high radiation, including 3D Si detectors, Current-Injected-Diodes (CID) detectors, and Elevated temperature annealing.

  4. Performance of radiation-hard HV/HR CMOS sensors for the ATLAS inner detector upgrades

    NASA Astrophysics Data System (ADS)

    Liu, J.; Barbero, M.; Bilbao De Mendizabal, J.; Breugnon, P.; Godiot-Basolo, S.; Pangaud, P.; Rozanov, A.

    2016-03-01

    A major upgrade (Phase II Upgrade) to the Large Hadron Collider (LHC), scheduled for 2022, will be brought to the machine so as to extend its discovery potential. The upgraded LHC, called High-Luminosity LHC (HL-LHC), will run with a nominal leveled instantaneous luminosity of 5×1034 cm-2s-1, more than twice the expected luminosity. This unprecedented luminosity will result in higher occupancy and background radiations, which will request the design of a new Inner Tracker (ITk) which should have higher granularity, reduced material budget and improved radiation tolerance. A new pixel sensor concept based on High Voltage and High Resistivity CMOS (HV/HR CMOS) technology targeting the ATLAS inner detector upgrade is under exploration. With respect to the traditional hybrid pixel detector, the HV/HR CMOS sensor can potentially offer lower material budget, reduced pixel pitch and lower cost. Several prototypes have been designed and characterized within the ATLAS upgrade R&D effort, to investigate the detection and radiation hardness performance of various commercial technologies. An overview of the HV/HR CMOS sensor operation principle is described in this paper. The characterizations of three prototypes with X-ray, proton and neutron irradiation are also given.

  5. X-ray silicon detectors for measuring hard x-ray radiation damage effects

    NASA Astrophysics Data System (ADS)

    Wagner, Delia; Halmagean, Eugenia T.; Loukas, Dido Y.; Misiakos, K.; Tsoi, Elisabeth; Veron, A.; Ohanisian, M.

    1997-07-01

    For high sensitivity hard x-ray detector applications there is a solid-state alternative using high purity silicon as starting material. The paper presents some original results concerning a radiation hardened technology to be used for obtaining x-ray silicon detectors and the behavior of the special designed devices in a specific radiation environment. Original processing sequences were experimentally tested and results concerning the most performant technology suited for this specific application are presented. Specially designed gettering steps were applied by backside ion implantation and annealing for enhancing the minority carriers lifetime in the substrate material and for reducing leakage currents at orders less than 10 nA. After a complete presentation of the specific characteristics of the as obtained detectors, they were exposed and completely characterized in x-ray ambient up to dose levels of 10(superscript 8) rad (E greater than 50 keV). Solutions for increasing the detector sensitivity and stability in radiation environments are proposed.

  6. Radiation-hard beam position detector for use in the accelerator dump lines

    SciTech Connect

    Pavel Degtiarenko; Danny Dotson; Arne Freyberger; Vladimir Popov

    2005-06-01

    A new method of beam position measurement suitable for monitoring high energy and high power charged particle beams in the vicinity of high power beam dumps is presented. We have found that a plate made of Chemical Vapor Deposition (CVD) Silicon Carbide (SiC) has physical properties that make it suitable for such an application. CVD SiC material is a chemically inert, extremely radiation-hard, thermo-resistive semiconductor capable of withstanding working temperatures over 1500 C. It has good thermal conductivity comparable to that of Aluminum, which makes it possible to use it in high-current particle beams. High electrical resistivity of the material, and its semiconductor properties allow characterization of the position of a particle beam crossing such a plate by measuring the balance of electrical currents at the plate ends. The design of a test device, and first results are presented in the report.

  7. The CERN RD50 Collaboration: Development of Radiation-Hard Semiconductor Detectors for Super-LHC

    SciTech Connect

    Macchiolo, Anna

    2005-10-12

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN represents a technological challenge for the vertex detectors of the SLHC experiments since the innermost layers will receive fast hadron fluences up to 1016 cm-2. The CERN RD50 project has been established to explore detector materials and designs that will allow to operate devices up to this limit. Among the different research lines followed by RD50 we report on the development of sensors produced with substrates like Czochralski and epitaxial silicon and on the investigation of the radiation hardness of p-type silicon detectors. Moreover innovative designs like thin, 3D and 3D-STC sensors are under evaluation in the RD50 Collaboration.

  8. Radiation hard mode-locked laser suitable as a spaceborne frequency comb.

    PubMed

    Buchs, Gilles; Kundermann, Stefan; Portuondo-Campa, Erwin; Lecomte, Steve

    2015-04-20

    We report ground-level gamma and proton radiation tests of a passively mode-locked diode-pumped solid-state laser (DPSSL) with Yb:KYW gain medium. A total gamma dose of 170 krad(H(2)O) applied in 5 days generates minor changes in performances while maintaining solitonic regime. Pre-irradiation specifications are fully recovered over a day to a few weeks timescale. A proton fluence of 9.76·10(10) cm(-2) applied in few minutes shows no alteration of the laser performances. Furthermore, complete stabilization of the laser shows excellent noise properties. From our results, we claim that the investigated femtosecond DPSSL technology can be considered rad-hard and would be suitable for generating frequency combs compatible with long duration space missions.

  9. Development of radiation hard CMOS active pixel sensors for HL-LHC

    NASA Astrophysics Data System (ADS)

    Pernegger, Heinz

    2016-07-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  10. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  11. Decision feedback equalization for radiation hard data link at 5 Gbps

    NASA Astrophysics Data System (ADS)

    Wallängen, V.; Garcia-Sciveres, M.

    2017-01-01

    The increased particle collision rate following the upgrade of the Large Hadron Collider (LHC) to an increased luminosity requires an increased readout data speed, especially for the ATLAS pixel detector, located closest to the particle interaction point. For this reason, during the Phase-II upgrade of the ATLAS experiment the output data speed of the pixel front-end chips will be increased from 160 Mbps to 5 Gbps. The increased radiation levels will require a radiation hard data transmission link to be designed to carry this data from the pixel front-end to the off-detector system where it will undergo optical conversion. We propose a receiver utilizing the concept of Decision Feedback Equalization (DFE) to be used in this link, where the number of filter taps can be determined from simulations using S-parameter data from measurements of various customized cable prototypes under characterization as candidates to function as transmission medium between the on-chip data driver and the receiver of the link. A dedicated framework has been set up in Matlab to analyze the S-parameter characteristics for the various cable prototypes and investigate the possibilities for signal recovery and maintained signal integrity using DFE, as well as pre-emphasis and different encoding schemes. The simulation results indicate that DFE could be an excellent choice for expanding the system bandwidth to reach required data speeds with minimal signal distortion.

  12. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  13. Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR

  14. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    2013-12-01

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have

  15. Radiation hardness studies of n + -in-n planar pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2011-12-01

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with the increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 to about 3000 fb -1 which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5×1015 neq cm-2 at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2×1016 neq cm-2. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for these fluences, n +-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a 90Sr source in the laboratory. The collected charge after IBL fluences was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. After SLHC fluences, still reliable operation of the devices could be observed with a collected charge of more than 5000 electrons per MIP.

  16. Irradiation of thin diamond detectors and radiation hardness tests using MeV protons

    NASA Astrophysics Data System (ADS)

    Grilj, V.; Skukan, N.; Jakšić, M.; Kada, W.; Kamiya, T.

    2013-07-01

    Although numerous studies have confirmed the superb radiation hardness of diamond for high-energy (above 100 MeV) protons, almost no data have been reported in the MeV energy range. Because the interaction mechanism that dominates the displacement damage cross section is different for these two energy regimes, it could be misleading to simply extrapolate the results of previous papers down to low energies. Therefore, the radiation tolerance of a 50 μm thick single-crystal CVD diamond detector was tested by irradiating it with 4.5 MeV protons. The scanning microbeam allowed for the selective introduction of damage to a small area of the detector. The ion beam-induced current (IBIC) was used to monitor the charge collection efficiency (CCE) degradation due to the electrically active defects produced. The irradiation was stopped when a signal degradation of nearly 3% was observed. For comparison, the procedure was repeated on a 50 μm thick silicon surface barrier detector (SSBD), for which a significantly higher proton fluence was required to reach the same signal decrease as in the diamond detector. This result can be explained by the different recombination rates of the vacancies and interstitials created in the two materials. The transport properties of electrons and holes in the damaged and virgin areas of the diamond detector were also investigated by 500 keV protons and 6 MeV carbon ions as short-range IBIC probes. The mobility-lifetime products calculated for both charge carriers after fitting the single-carrier Hecht equation indicated that there was more pronounced electron trapping by the radiation-induced defects. The frequently reported effect of polarization in diamond was successfully avoided for 500 keV protons but still remained for 6 MeV carbon ions because an order of magnitude higher ionization rate.

  17. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  18. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  19. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  20. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  1. Hardness assurance testing and radiation hardening by design techniques for silicon-germanium heterojunction bipolar transistors and digital logic circuits

    NASA Astrophysics Data System (ADS)

    Sutton, Akil K.

    Hydrocarbon exploration, global navigation satellite systems, computed tomography, and aircraft avionics are just a few examples of applications that require system operation at an ambient temperature, pressure, or radiation level outside the range covered by military specifications. The electronics employed in these applications are known as "extreme environment electronics." On account of the increased cost resulting from both process modifications and the use of exotic substrate materials, only a handful of semiconductor foundries have specialized in the production of extreme environment electronics. Protection of these electronic systems in an extreme environment may be attained by encapsulating sensitive circuits in a controlled environment, which provides isolation from the hostile ambient, often at a significant cost and performance penalty. In a significant departure from this traditional approach, system designers have begun to use commercial off-the-shelf technology platforms with built in mitigation techniques for extreme environment applications. Such an approach simultaneously leverages the state of the art in technology performance with significant savings in project cost. Silicon-germanium is one such commercial technology platform that demonstrates potential for deployment into extreme environment applications as a result of its excellent performance at cryogenic temperatures, remarkable tolerance to radiation-induced degradation, and monolithic integration with silicon-based manufacturing. In this dissertation the radiation response of silicon-germanium technology is investigated, and novel transistor-level layout-based techniques are implemented to improve the radiation tolerance of HBT digital logic.

  2. Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder

    NASA Technical Reports Server (NTRS)

    Katzman, Vladimir

    2012-01-01

    A radiation-hard transponder was developed utilizing submicron/nanotechnology from IBM. The device consumes low power and has a low fabrication cost. This device utilizes a Plug-and-Play concept, and can be integrated into intra-satellite networks, supporting SpaceWire and Gigabit Ethernet I/O. A space-qualified, 100-pin package also was developed, allowing space-qualified (class K) transponders to be delivered within a six-month time frame. The novel, optical, radiation-tolerant transponder was implemented as a standalone board, containing the transponder ASIC (application specific integrated circuit) and optical module, with an FPGA (field-programmable gate array) friendly parallel interface. It features improved radiation tolerance; high-data-rate, low-power consumption; and advanced functionality. The transponder utilizes a patented current mode logic library of radiation-hardened-by-architecture cells. The transponder was developed, fabricated, and radhard tested up to 1 MRad. It was fabricated using 90-nm CMOS (complementary metal oxide semiconductor) 9 SF process from IBM, and incorporates full BIT circuitry, allowing a loop back test. The low-speed parallel LVCMOS (lowvoltage complementary metal oxide semiconductor) bus is compatible with Actel FPGA. The output LVDS (low-voltage differential signaling) interface operates up to 1.5 Gb/s. Built-in CDR (clock-data recovery) circuitry provides robust synchronization and incorporates two alarm signals such as synch loss and signal loss. The ultra-linear peak detector scheme allows on-line control of the amplitude of the input signal. Power consumption is less than 300 mW. The developed transponder with a 1.25 Gb/s serial data rate incorporates a 10-to-1 serializer with an internal clock multiplication unit and a 10-1 deserializer with internal clock and data recovery block, which can operate with 8B10B encoded signals. Three loop-back test modes are provided to facilitate the built-in-test functionality. The

  3. Radiation Evaluation of an Advanced 64Mb 3.3V DRAM and Insights into the Effects of Scaling on Radiation Hardness

    NASA Technical Reports Server (NTRS)

    Shaw, D. C.; Swift, G. M.; Johnston, A. H.

    1995-01-01

    In this paper, total ionizing dose radiation evaluations of the Micron 64 Mb 3.3 V, fast page mode DRAM and the IBM LUNA-ES 16 Mb DRAM are presented. The effects of scaling on total ionizing dose radiation hardness are studied utilizing test structures and a series of 16 Mb DRAMs with different feature sizes from the same manufacturing line. General agreement was found between the threshold voltage shifts of 16 Mb DRAM test structures and the threshold voltage measured on complete circuits using retention time measurements. Retention time measurement data from early radiation doses are shown that allow internal failure modes to be distinguished.

  4. Radiation Evaluation of an Advanced 64Mb 3.3V DRAM and Insights into the Effects of Scaling on Radiation Hardness

    NASA Technical Reports Server (NTRS)

    Shaw, D. C.; Swift, G. M.; Johnston, A. H.

    1995-01-01

    In this paper, total ionizing dose radiation evaluations of the Micron 64 Mb 3.3 V, fast page mode DRAM and the IBM LUNA-ES 16 Mb DRAM are presented. The effects of scaling on total ionizing dose radiation hardness are studied utilizing test structures and a series of 16 Mb DRAMs with different feature sizes from the same manufacturing line. General agreement was found between the threshold voltage shifts of 16 Mb DRAM test structures and the threshold voltage measured on complete circuits using retention time measurements. Retention time measurement data from early radiation doses are shown that allow internal failure modes to be distinguished.

  5. Steady jets from radiatively efficient hard states in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Rushton, A.; Spencer, R.; Fender, R.; Pooley, G.

    2010-12-01

    Recent studies of different X-ray binaries (XRBs) have shown a clear correlation between the radio and X-ray emission. We present evidence of a close relationship found between the radio and X-ray emission at different epochs for GRS 1915+105, using observations from the Ryle Telescope and Rossi X-ray Timing Explorer satellite. The strongest correlation was found during the hard state (also known as the “plateau” state), where a steady AU-scale jet is known to exist. Both the radio and X-ray emission were found to decay from the start of most plateau states, with the radio emission decaying faster. An empirical relationship of Sradio ∝ SX-rayξ was then fitted to data taken only during the plateau state, resulting in a power-law index of ξ 1.7±0.3, which is significantly higher than in other black hole XRBs in a similar state. An advection-flow model was then fitted to this relationship and compared to the universal XRB relationship as described by Gallo et al. (2003, MNRAS, 344, 60). We conclude that either (I) the accretion disk in this source is radiatively efficient, even during the continuous outflow of a compact jet, which could also suggest a universal turn-over from radiatively inefficient to efficient for all stellar-mass black holes at a critical mass accretion rate (dot{m}{c} ≈ 1018.5 g/s); or (II) the X-rays in the plateau state are dominated by emission from the base of the jet and not the accretion disk (e.g. via inverse Compton scattering from the outflow).

  6. Mercury Chalcohalide Semiconductor Hg3Se2Br2 for Hard Radiation Detection

    DOE PAGES

    Li, Hao; Meng, Fang; Malliakas, Christos D.; ...

    2016-09-28

    We present Hg3Se2Br2 that has a wide band gap semiconductor (2.22 eV) with high density (7.598 g/cm3) and crystallizes in the monoclinic space group C2/m with cell parameters of a = 17.496 (4) Å, b = 9.3991 (19) Å, c = 9.776(2) Å, β = 90.46(3)°, V = 1607.6(6) Å3. It melts congruently at a low temperature, 566°C, which allows for an easy single crystal growth directly from the stoichiometric melt. Single crystals of Hg3Se2Br2 up to 1 cm long have been grown using the Bridgman method. Hg3Se2Br2 single crystals exhibit a strong photocurrent response when exposed to Ag X-raymore » and blue diode laser. The resistivity of Hg3Se2Br2 measured by the two probe method is on the order of 1011 Ω·cm, and the mobility-lifetime product (μτ) of the electron and hole carriers estimated from the energy spectroscopy under Ag X-ray radiation are (μτ)e ≈ 1.4 × 10–4cm2/V and (μτ)h ≈ 9.2 × 10–5cm2/V. Electronic structure calculations at the density functional theory level indicate a direct band gap and a relatively small effective mass for carriers. Lastly, on the basis of the photoconductivity and hard X-ray spectrum, Hg3Se2Br2 is a promising candidate for X-ray and γ-ray radiation detection at room temperature.« less

  7. Radiation Hard Bandpass Filters for Mid- to Far-IR Planetary Instruments

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenack, James A.; Huang, Wei-Chung; Merrell, Willie C.; Quijada, Manuel; Steptoe-Jackson, Rosalind; Wollack, Edward J.

    2012-01-01

    We present a novel method to fabricate compact metal mesh bandpass filters for use in mid- to far-infrared planetary instruments operating in the 20-600 micron wavelength spectral regime. Our target applications include thermal mapping instruments on ESA's JUICE as well as on a de-scoped JEO. These filters are novel because they are compact, customizable, free-standing copper mesh resonant bandpass filters with micromachined silicon support frames. The filters are well suited for thermal mapping mission to the outer planets and their moons because the filter material is radiation hard. Furthermore, the silicon support frame allows for effective hybridization with sensors made on silicon substrates. Using a Fourier Transform Spectrometer, we have demonstrated high transmittance within the passband as well as good out-of-band rejection [1]. In addition, we have developed a unique method of filter stacking in order to increase the bandwidth and sharpen the roll-off of the filters. This method allows one to reliably control the spacing between filters to within 2 microns. Furthermore, our method allows for reliable control over the relative position and orienta-tion between the shared faces of the filters.

  8. Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.

    1994-01-01

    In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.

  9. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Effect of compression of a laser plasma on the generation of harmonics and hard x radiation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    A compression of a plasma produced at a conical target by a low-intensity beam (q≲10 GW/cm2) from a CO2 laser has been studied. The effect of this compression on the onset of the parametric instability responsible for the generation of harmonics and of hard x radiation has also been studied. A qualitative interpretation of the results is offered.

  10. The radiation hardness and temperature stability of Planar Light-wave Circuit splitters for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ryder, N. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.; Issever, C.

    2011-10-01

    High Luminosity LHC (HL-LHC) Inner Tracker designs may include the sharing of Timing, Trigger and Control (TTC) signals between several tracker modules. This is possible because the highest frequency signals are common to all modules. Such designs are an attractive option because they reduce the number of optical links required and hence the cost. These designs will require optical signal splitters that are radiation hard up to high doses and capable of operating in cold temperatures. Optical splitters are available as either fused-fibre splitters or Planar Light-wave Circuit (PLC) splitters. PLC splitters are preferable because they are smaller than fused-fibre splitters. A selection of PLC splitters from different manufacturers and of two different technologies (silica and glass based) have been tested for radiation hardness up to a dose of 500 kGy(Si) and for temperature stability. All the tested splitters displayed small increases in insertion losses ( < 0.1 dB) in reducing the operating temperature from 25°C to -25°C. The silica based splitters from all manufacturers did not exhibit significant radiation induced insertion losses, despite the high dose they were exposed to. The glass based sample, however, had a per channel radiation induced insertion loss of up to 1.16 dB. Whilst the silica based splitters can be considered as qualified for HL-LHC use with regards to radiation hardness, the glass technology would require further testing at a lower, more realistic, dose to also be considered as a potential component for HL-LHC upgrade designs.

  11. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  12. A built-in SRAM for radiation hard CMOS pixel sensors dedicated to high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Wei, Xiaomin; Gao, Deyuan; Doziere, Guy; Hu, Yann

    2013-02-01

    CMOS pixel sensors (CPS) are attractive candidates for charged particle tracking in high energy physics experiments. However, CPS chips fabricated with standard CMOS processes, especially the built-in SRAM IP cores, are not radiation hard enough for this application. This paper presents a radiation hard SRAM for improving the CPS radiation tolerance. The SRAM cell is hardened by increasing the static noise margin (SNM) and adding P+ guard rings in layout. The peripheral circuitry is designed by building a radiation-hardened logic library. The SRAM internal timing control is hardened by a self-adaptive timing design. Finally, the SRAM design was implemented and tested in the Austriamicrosystems (AMS) 0.35 μm standard CMOS process. The prototype chips are adapted to work with frequencies up to 80 MHz, power supply voltages from 2.9 V to 3.3 V and temperatures from 0 °C to 60 °C. The single event latchup (SEL) tolerance is improved from 5.2 MeV cm2/mg to above 56 MeV cm2/mg. The total ionizing dose (TID) tolerance is enhanced by the P+ guard rings and the self-adaptive timing design. The single event upset (SEU) effects are also alleviated due to the high SNM SRAM cell and the P+ guard rings. In the near future, the presented SRAM will be integrated in the CPS chips for the STAR experiments.

  13. Widely tunable, all-polarization maintaining, monolithic mid-infrared radiation source based on differential frequency generation in PPLN crystal

    NASA Astrophysics Data System (ADS)

    Krzempek, Karol; Sobon, Grzegorz; Sotor, Jaroslaw; Dudzik, Grzegorz; Abramski, Krzysztof M.

    2014-10-01

    We present a difference frequency generation based (DFG) mid-infrared (mid-IR) laser source using an all-polarization-maintaining-fiber (all-PM) amplifier capable of simultaneous amplification of 1064 nm and 1550 nm signals. The amplifier incorporates a single piece of a standard erbium:ytterbium (Er:Yb) co-doped double-clad (DC) active fiber and a limited number of off-the-shelf fiber-based components. Excited by a single 9 W multimode pump, the amplifier delivered over 12.1 dB and 17.8 dB gain at 1 µm and 1.55 µm, respectively. Due to an all-PM configuration, the amplifier was exceptionally convenient for DFG of mid-IR radiation in periodically polled lithium niobate (PPLN) crystal, yielding an output power of ~200 µW in a wide spectral range spanning from 3300 to 3470 nm.

  14. RADECS Short Course Section 4 Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian

    2003-01-01

    Contents include the following: Introduction. Programmatic aspects of RHA. RHA componens: requirements and specifications; mission radiation environment; and parts selection and radiation tolerance. Analysis at the function/subsystem/system level: TID/DD; SEE. Conclusion.

  15. Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology

    NASA Astrophysics Data System (ADS)

    Bahl, Inder J.

    Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.

  16. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  17. Effects of quenching, irradiation, and annealing processes on the radiation hardness of silica fiber cladding materials (I)

    NASA Astrophysics Data System (ADS)

    Wen, Jianxiang; Gong, Renxiang; Xiao, Zhongyin; Luo, Wenyun; Wu, Wenkai; Luo, Yanhua; Peng, Gang-ding; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun

    2016-07-01

    Silica optical fiber cladding materials were experimentally treated by a series of processes. The treatments involved quenching, irradiation, followed by annealing and subsequent re-irradiation, and they were conducted in order to improve the radiation hardness. The microstructural properties of the treated materials were subsequently investigated. Following the treatment of the optical fiber cladding materials, the results from the electron spin resonance (ESR) analysis demonstrated that there was a significant decrease in the radiation-induced defect structures. The ESR signals became significantly weaker when the samples were annealed at 1000 °C in combination with re-irradiation. In addition, the microstructure changes within the silica optical fiber cladding material were also analyzed using Raman spectroscopy. The experimental results demonstrate that the Sisbnd Osbnd Si bending vibrations at ω3 = 800-820 cm-1 and ω4 = 1000-1200 cm-1 (with longitudinal optical (LO) and transverse optical (TO) splitting bands) were relatively unaffected by the quenching, irradiation, and annealing treatments. In particular, the annealing process resulted in the disappearance of the defect centers; however, the LO and TO modes at the ω3 and ω4 bands were relatively unchanged. With the additional support of the ESR test results, we can conclude that the combined treatment processes can significantly enhance the radiation hardness properties of the optical fiber cladding materials.

  18. Radiation hardness of a polycrystalline chemical-vapor-deposited diamond detector irradiated with 14 MeV neutrons

    SciTech Connect

    Angelone, M.; Pillon, M.; Balducci, A.; Marinelli, M.; Milani, E.; Morgada, M.E.; Pucella, G.; Tucciarone, A.; Verona-Rinati, G.; Ochiai, Kentaro; Nishitani, Takeo

    2006-02-15

    Chemical-vapor-deposited (CVD) diamond films are considered as neutron detectors for nuclear fusion devices because of their radiation hardness. Data about the radiation hardness of polycrystalline CVD diamond films exposed to 14 MeV neutron are missing in literature so the actual capability of CVD diamond detectors to withstand fusion device conditions must be truly demonstrated. In this work a polycrystalline CVD diamond detector, 101 {mu}m thick, was irradiated for the first time with 14 MeV neutrons produced by the Fusion Neutron Source of the Japan Atomic Energy Research Institute with the goal to study its radiation hardness. The 14 MeV neutron fluence was 8x10{sup 14} n/cm{sup 2}. The film performances were studied before and after the 14 MeV neutron irradiation by using 5.5 MeV {alpha} from {sup 241}Am source, both in the pumped and the 'as-grown' state. A comparison with previous measurements performed in more soft neutron spectra (mean neutron energy of 1-2 MeV) is reported pointing out the more damaging effects of the 14 MeV neutrons. It was found that annealing at 500 deg. C and redeposition of the gold contact followed by a proper pumping procedure will restore more than 70% the initial working conditions of the irradiated detector. An analysis of the neutron field expected in the neutron camera of the International Thermonuclear Reactor fusion tokamak was also performed, showing the capability of CVD diamond detector to withstand the 14 MeV neutron fluence expected in about one year of operation.

  19. Quantitative analysis of flare accelerated electrons through their hard X-ray and microwave radiation

    NASA Technical Reports Server (NTRS)

    Klein, K. L.; Trottet, G.

    1985-01-01

    Hard X-ray and microwave modelling that takes into account the temporal evolution of the electron spectrum as well as the inhomogeneity of the magnetic field and the ambient medium in the radio source is presented. This method is illustrated for the June 29 1980 10:41 UT event. The implication on the process of acceleration/injection is discussed.

  20. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  1. Monolithic and mechanical multijunction space solar cells

    SciTech Connect

    Jain, R.K.; Flood, D.J. )

    1993-05-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  2. CONTROL OF LASER RADIATION PARAMETERS: Excitation of dynamic chaos in a monolithic ring chip laser upon periodic modulation of mechanical stresses in the active element

    NASA Astrophysics Data System (ADS)

    Kravtsov, Nikolai V.; Sidorov, S. S.; Pashinin, Pavel P.; Firsov, V. V.; Chekina, S. N.

    2004-04-01

    The peculiarities of nonlinear dynamics of solid-state bidirectional ring Nd:YAG chip lasers are studied theoretically and experimentally during periodic modulation of mechanical stresses in the active element. It is shown that modulation of mechanical stresses is an effective method for exciting dynamic chaos in a monolithic chip laser.

  3. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    SciTech Connect

    Jungmann-Smith, J. H. Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.; Cartier, S.; Medjoubi, K.

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  4. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  5. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Jaggi, A; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  6. Radiation hardness of gas discharge tubes and avalanche diodes used for transient voltage suppression

    NASA Astrophysics Data System (ADS)

    Osmokrović, P.; Jurosević, M.; Stanković, K.; Vujisić, M.

    The widespread use of gas discharge tubes (GDTs) and avalanche diodes for transient voltage suppression (TVS) in many cases results in their exposure to ionizing radiation. The aim of this paper is to investigate the influence of irradiation on these TVS devices' characteristics, by exposing them to a combined neutron/gamma radiation field. Experimental results show that irradiation of TVS diodes causes a lasting degradation of their protective characteristics. On the other hand, GDTs exhibit a temporary change of performance. The observed effects are presented with the accompanying theoretical interpretations, based on the interaction of radiation with materials constituting the investigated devices.

  7. RADIATION HARDNESS / TOLERANCE OF SI SENSORS / DETECTORS FOR NUCLEAR AND HIGH ENERGY PHYSICS EXPERIMENTS.

    SciTech Connect

    LI,Z.

    2002-09-09

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, and space charge concentration. The increase in space charge concentration is particularly damaging since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. Several strategies can be used to make Si detectors more radiation had tolerant to particle radiations. In this paper, the main radiation induced degradations in Si detectors will be reviewed. The details and specifics of the new engineering strategies: material/impurity/defect engineering (MIDE); device structure engineering (DSE); and device operational mode engineering (DOME) will be given.

  8. Radiation Hardness Assurance Issues Associated with COTS in JPL Flight Systems: The Challenge of Europa

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.

    1999-01-01

    With the decreasing availability of radiation hardened electronics and the new NASA paradigm of faster, more aggressive and less expensive space missions, there has been an increasing emphasis on using high performance commercial microelectronic parts and circuits in NASA spacecraft.

  9. The Ganymede Laser Altimeter - Instrument Design Overview with Radiation hard Transmitter

    NASA Astrophysics Data System (ADS)

    Althaus, C.; Hussmann, H.; Lingenauber, K.; Michaelis, H.; Kallenbach, R.; Oberst, J.

    2016-10-01

    The Ganymede Laser Altimeter (GALA) onboard of JUICE mission shall investigate Ganymede. A laser provides the measuring signal and has therefore to be robust and reliable in the environment of Jupiter, in particular with regard to radiation.

  10. A Radiation-Hard Silicon Drift Detector Array for Extraterrestrial Element Mapping

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Chen, Wei; De Geronimo, Gianluigi; Keister, Jeff; Li, Shaouri; Li, Zhen; Siddons, David P.; Smith, Graham

    2011-01-01

    Measurement of x-rays from the surface of objects can tell us about the chemical composition Absorption of radiation causes characteristic fluorescence from material being irradiated. By measuring the spectrum of the radiation and identifying lines in the spectrum, the emitting element (s) can be identified. This technique works for any object that has no absorbing atmosphere and significant surface irradiation : Our Moon, the icy moons of Jupiter, the moons of Mars, the planet Mercury, Asteroids and Comets

  11. Radiation-hard analog-to-digital converters for space and strategic applications

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Dantas, A. R. V.

    1985-01-01

    During the course of the Jet Propulsion Laboratory's program to study radiation-hardened analog-to-digital converters (ADCs), numerous milestones have been reached in manufacturers' awareness and technology development and transfer, as well as in user awareness of these developments. The testing of ADCs has also continued with twenty different ADCs from seven manufacturers, all tested for total radiation dose and three tested for neutron effects. Results from these tests are reported.

  12. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  13. World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review).

    PubMed

    Hardell, Lennart

    2017-08-01

    In May 2011 the International Agency for Research on Cancer (IARC) evaluated cancer risks from radiofrequency (RF) radiation. Human epidemiological studies gave evidence of increased risk for glioma and acoustic neuroma. RF radiation was classified as Group 2B, a possible human carcinogen. Further epidemiological, animal and mechanistic studies have strengthened the association. In spite of this, in most countries little or nothing has been done to reduce exposure and educate people on health hazards from RF radiation. On the contrary ambient levels have increased. In 2014 the WHO launched a draft of a Monograph on RF fields and health for public comments. It turned out that five of the six members of the Core Group in charge of the draft are affiliated with International Commission on Non-Ionizing Radiation Protection (ICNIRP), an industry loyal NGO, and thus have a serious conflict of interest. Just as by ICNIRP, evaluation of non-thermal biological effects from RF radiation are dismissed as scientific evidence of adverse health effects in the Monograph. This has provoked many comments sent to the WHO. However, at a meeting on March 3, 2017 at the WHO Geneva office it was stated that the WHO has no intention to change the Core Group.

  14. World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review)

    PubMed Central

    Hardell, Lennart

    2017-01-01

    In May 2011 the International Agency for Research on Cancer (IARC) evaluated cancer risks from radiofrequency (RF) radiation. Human epidemiological studies gave evidence of increased risk for glioma and acoustic neuroma. RF radiation was classified as Group 2B, a possible human carcinogen. Further epidemiological, animal and mechanistic studies have strengthened the association. In spite of this, in most countries little or nothing has been done to reduce exposure and educate people on health hazards from RF radiation. On the contrary ambient levels have increased. In 2014 the WHO launched a draft of a Monograph on RF fields and health for public comments. It turned out that five of the six members of the Core Group in charge of the draft are affiliated with International Commission on Non-Ionizing Radiation Protection (ICNIRP), an industry loyal NGO, and thus have a serious conflict of interest. Just as by ICNIRP, evaluation of non-thermal biological effects from RF radiation are dismissed as scientific evidence of adverse health effects in the Monograph. This has provoked many comments sent to the WHO. However, at a meeting on March 3, 2017 at the WHO Geneva office it was stated that the WHO has no intention to change the Core Group. PMID:28656257

  15. R&D of Radiation-Hard Scintillators and WLS Fibers

    NASA Astrophysics Data System (ADS)

    Tiras, Emrah; Wetzel, James; Bilki, Burak; Durgut, Suleyman; Onel, Yasar; Winn, David

    2017-01-01

    Radiation resistant and high light-yield scintillators are in more need than ever at particle physics experiments. In this regard, several polyethylene-based and quartz-based scintillating materials and WLS fibers have been studied. Radiation resistance of plastic scintillators such as PEN, PET, SiX and Eljen samples and WLS fibers has been studied over time after they are exposed to 1.4 and 14 MRad total radiation by 137Cs gamma source. The light-yield and timing measurements of the plastic scintillators as well as coated quartz plates have been studied in beam test at Fermilab Test Beam Facility (FTBF). Here, we discuss the recent developments and the results of beam tests and laboratory measurements.

  16. Low-mass, intrinsically-hard high temperature radiator. Final report, Phase I

    SciTech Connect

    1990-07-15

    This paper reports on the investigation of layered ceramic/metal composites in the design of low-mass hardened radiators for space heat rejection systems. The investigation is part of the Strategic Defence Initiative. This effort evaluated the use of layered composites as a material to form thin-walled, vacuum leaktight heat pipes. The heat pipes would be incorporated into a large heat pipe radiator for waste heat rejection from a space nuclear power source. Composite materials evaluations were performed on combinations of refractory metals and ceramic powders. Fabrication experiments were performed to demonstrate weldability. Two titanium/titanium diboride composite tubes were successfully fabricated into potassium heat pipes and operated at temperatures in excess of 700C. Testing and analysis for composite tubes are described in the report. The study has verified the feasibility of using layered composites for forming thin-walled, light weight heat pipe tubes for use in hardened space radiators.

  17. Development of a Depleted Monolithic CMOS Sensor in a 150 nm CMOS Technology for the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Wang, T.; Rymaszewski, P.; Barbero, M.; Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Liu, J.; Orsini, F.; Pangaud, P.; Rozanov, A.; Wermes, N.

    2017-01-01

    The recent R&D focus on CMOS sensors with charge collection in a depleted zone has opened new perspectives for CMOS sensors as fast and radiation hard pixel devices. These sensors, labelled as depleted CMOS sensors (DMAPS), have already shown promising performance as feasible candidates for the ATLAS Inner Tracker (ITk) upgrade, possibly replacing the current passive sensors. A further step to exploit the potential of DMAPS is to investigate the suitability of equipping the outer layers of the ATLAS ITk upgrade with fully monolithic CMOS sensors. This paper presents the development of a depleted monolithic CMOS pixel sensor designed in the LFoundry 150 nm CMOS technology, with the focus on design details and simulation results.

  18. Improvement of the radiation hardness of a directly converting high resolution intra-oral X-ray imaging sensor

    NASA Astrophysics Data System (ADS)

    Spartiotis, Konstantinos; Pyyhtiä, Jouni; Schulman, Tom

    2003-11-01

    The radiation tolerance of a directly converting digital intra-oral X-ray imaging sensor reported in Spartiotis et al. [Nucl. Instr. and Meth. A 501 (2003) 594] has been tested using a typical dental X-ray beam spectrum. Radiation induced degradation in the performance of the sensor which consists of CMOS signal readout circuits bump bonded to a high resistivity silicon pixel detector was observed already before a dose (in air) of 1 krad. Both increase in the leakage current of the pixel detector manufactured by Sintef, Norway and signal leakage to ground from the gate of the pixel input MOSFETs of the readout circuit were observed and measured. The sensitive part of the CMOS circuit was identified as the protection diode of the gate of the input MOSFET. After removing the gate protection diode no signal leakage was observed up to a dose of 5 krad (air) which approximately corresponds to 125.000 typical dental X-ray exposures. The radiation hardness of the silicon pixel detector was improved by using a modified oxidation process supplied by Colibrys, Switzerland. The improved pixel detectors showed no increase in the leakage current at dental doses.

  19. Eigenpolarization theory of monolithic nonplanar ring oscillators

    NASA Technical Reports Server (NTRS)

    Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.

    1989-01-01

    Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.

  20. Nano and Micro Structures Image Based on Lens-Crystal System For Hard X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Kuyumchyan, David; Kuyumchyan, Armen; Kohn, Victor; Snigirev, Anatoly; Snigireva, Irina; Shulakov, Evgeny

    2012-02-01

    We present results of imaging properties of the lens-crystal system for hard x-ray radiation. The system is based on a beryllium parabolic refractive lens placed in front of the sample, and an asymmetric silicon single crystal placed behind the sample. We record the magnified x-ray phase contrast image at the x-ray energy 15 keV. The peculiarities of image transformation are investigated both experimentally and theoretically when the focus of refractive lens is moved across and along the optical axis. The computer program was elaborated for a simulation of image formation in the system based on the refractive lens and the crystal with asymmetric Bragg diffraction. The algorithm is based on the FFT procedure.

  1. Densification of sol-gel silica thin films induced by hard X-rays generated by synchrotron radiation.

    PubMed

    Innocenzi, Plinio; Malfatti, Luca; Kidchob, Tongjit; Costacurta, Stefano; Falcaro, Paolo; Marmiroli, Benedetta; Cacho-Nerin, Fernando; Amenitsch, Heinz

    2011-03-01

    In this article the effects induced by exposure of sol-gel thin films to hard X-rays have been studied. Thin films of silica and hybrid organic-inorganic silica have been prepared via dip-coating and the materials were exposed immediately after preparation to an intense source of light of several keV generated by a synchrotron source. The samples were exposed to increasing doses and the effects of the radiation have been evaluated by Fourier transform infrared spectroscopy, spectroscopic ellipsometry and atomic force microscopy. The X-ray beam induces a significant densification on the silica films without producing any degradation such as cracks, flaws or delamination at the interface. The densification is accompanied by a decrease in thickness and an increase in refractive index both in the pure silica and in the hybrid films. The effect on the hybrid material is to induce densification through reaction of silanol groups but also removal of the organic groups, which are covalently bonded to silicon via Si-C bonds. At the highest exposure dose the removal of the organic groups is complete and the film becomes pure silica. Hard X-rays can be used as an efficient and direct writing tool to pattern coating layers of different types of compositions.

  2. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGES

    Makita, M.; Karvinen, P.; Zhu, D.; ...

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  3. Effects of gamma radiation on hard dental tissues of albino rats using scanning electron microscope - Part 1

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; Ameen, Reham; El-Haddad, Khaled; Maghraby, Ahmed; El-Zainy, Medhat

    2011-12-01

    In the present study, 40 adult male albino rats were used to study the effect of gamma radiation on the hard dental tissues (enamel surface, dentinal tubules and the cementum surface). The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy gamma doses. The effects of irradiated hard dental tissues samples were investigated using a scanning electron microscope. For doses up to 0.5 Gy, there was no evidence of the existence of cracks on the enamel surface. With 1 Gy irradiation dose, cracks were clearly observed with localized erosive areas. At 2 Gy irradiation dose, the enamel showed morphological alterations as disturbed prismatic and interprismatic areas. An increase in dentinal tubules diameter and a contemporary inter-tubular dentine volume decrease were observed with higher irradiation dose. Concerning cementum, low doses,<0.5 Gy, showed surface irregularities and with increase in the irradiation dose to≥1 Gy, noticeable surface irregularities and erosive areas with decrease in Sharpey's fiber sites were observed. These observations could shed light on the hazardous effects of irradiation fields to the functioning of the human teeth.

  4. A confident source of hard X-rays: radiation from a tokamak applicable for runaway electrons diagnosis.

    PubMed

    Kafi, M; Salar Elahi, A; Ghoranneviss, M; Ghanbari, M R; Salem, M K

    2016-09-01

    In a tokamak with a toroidal electric field, electrons that exceed the critical velocity are freely accelerated and can reach very high energies. These so-called `runaway electrons' can cause severe damage to the vacuum vessel and are a dangerous source of hard X-rays. Here the effect of toroidal electric and magnetic field changes on the characteristics of runaway electrons is reported. A possible technique for runaways diagnosis is the detection of hard X-ray radiation; for this purpose, a scintillator (NaI) was used. Because of the high loop voltage at the beginning of a plasma, this investigation was carried out on toroidal electric field changes in the first 5 ms interval from the beginning of the plasma. In addition, the toroidal magnetic field was monitored for the whole discharge time. The results indicate that with increasing toroidal electric field the mean energy of runaway electrons rises, and also an increase in the toroidal magnetic field can result in a decrease in intensity of magnetohydrodynamic oscillations which means that for both conditions more of these high-energy electrons will be generated.

  5. Radiation Hardness Tests of a Scintillation Detector with Wavelength Shifting Fiber Readout

    SciTech Connect

    Alfaro, R.; Sandoval, A.; Cruz, E.; Martinez, M. I.; Paic, G.; Montano, L. M.

    2006-09-25

    We have performed radiation tolerance tests on the BCF-99-29MC wavelength shifting fibers and the BC404 plastic scintillator from Bicron as well as on silicon rubber optical couplers. We used the 60Co gamma source at the Instituto de Ciencias Nucleares facility to irradiate 30-cm fiber samples with doses from 50 Krad to 1 Mrad. We also irradiated a 10x10 cm2 scintillator detector with the WLS fibers embedded on it with a 200 krad dose and the optical conectors between the scintillator and the PMT with doses from 100 to 300 krad. We measured the radiation damage on the materials by comparing the pre- and post-irradiation optical transparency as a function of time.

  6. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm-2s-1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  7. Radiation hardness test of the Philips Digital Photon Counter with proton beam

    NASA Astrophysics Data System (ADS)

    Barnyakov, M. Yu.; Frach, T.; Kononov, S. A.; Kuyanov, I. A.; Prisekin, V. G.

    2016-07-01

    The Philips Digital Photon Counter (DPC) is a silicon photomultiplier combining Geiger-mode avalanche photodiodes (G-APD) and dedicated readout electronics in the same chip. The DPC is a promising photon sensor for future RICH detectors. A known issue of G-APD is its sensitivity to radiation damage. Two DPC sensors were tested using 800 MeV/c protons. An increase of dark counting rate with proton fluence up to 4 ·1011cm-2 has been measured.

  8. Low-mass, intrinsically-hard high-temperature radiator. Final report, Phase I

    SciTech Connect

    1990-06-15

    Thermacore, Inc. of Lancaster, Pennsylvania has completed a Phase I SBIR program to investigate the use of layered ceramic/metal composites in the design of low-mass hardened radiators for space heat rejection systems. The program is being monitored by the Los Alamos National Laboratory (LANL) for the Strategic Defense Initiative Organization (SDIO). This effort evaluated the use of layered composites as a material to form thin-walled, vacuum leaktight heat pipes. The heat pipes would be incorporated into a large heat pipe radiator for waste heat rejection from a space nuclear power source. This approach forms an attractive alternative to metal or silicon-carbon fiber reinforced metal heat pipes by offering a combination of low mass and improved fabricability. Titanium has been shown to have a yield strength too low at 875{degrees}K to be a useful radiator material. A silicon carbide fiber reinforced titanium material appears to have sufficient strength at 875{degrees}K. but cannot be welded due to the continuous fibers, and the preferred heat pipe working fluid (potassium) has been demonstrated to be incompatible with silicon carbide at 875{degrees}K. Moreover, titanium does not appear to be acceptable for radiators subjected to anticipated laser threats. As part of this effort, Thermacore performed composite material evaluations on combinations of refractory metals and ceramic powders. Layered composite tube samples with wall thicknesses as thin as 0.012 inches were developed. Fabrication experiments were performed that demonstrated the weldability of layered composites. Two titanium/titanium diboride composite tubes were successfully fabricated into potassium heat pipes and operated at temperatures in excess of 700{degrees}C. A hybrid composite tube was also fabricated into a potassium heat pipe. The tube was composed of alternating layers of niobium-1% zirconium foil and layers of a mixture of titanium powder and titanium diboride powder.

  9. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Dreyer, J.; Fan, X.; Kämpfer, B.; Kiselev, S.; Kotte, R.; Garcia, A. Laso; Malkevich, D.; Naumann, L.; Nedosekin, A.; Plotnikov, V.; Stach, D.; Sultanov, R.; Voloshin, K.

    2017-02-01

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  10. Characterisation of novel prototypes of monolithic HV-CMOS pixel detectors for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Terzo, S.; Cavallaro, E.; Casanova, R.; Di Bello, F.; Förster, F.; Grinstein, S.; Períc, I.; Puigdengoles, C.; Ristić, B.; Barrero Pinto, M. Vicente; Vilella, E.

    2017-06-01

    An upgrade of the ATLAS experiment for the High Luminosity phase of LHC is planned for 2024 and foresees the replacement of the present Inner Detector (ID) with a new Inner Tracker (ITk) completely made of silicon devices. Depleted active pixel sensors built with the High Voltage CMOS (HV-CMOS) technology are investigated as an option to cover large areas in the outermost layers of the pixel detector and are especially interesting for the development of monolithic devices which will reduce the production costs and the material budget with respect to the present hybrid assemblies. For this purpose the H35DEMO, a large area HV-CMOS demonstrator chip, was designed by KIT, IFAE and University of Liverpool, and produced in AMS 350 nm CMOS technology. It consists of four pixel matrices and additional test structures. Two of the matrices include amplifiers and discriminator stages and are thus designed to be operated as monolithic detectors. In these devices the signal is mainly produced by charge drift in a small depleted volume obtained by applying a bias voltage of the order of 100V. Moreover, to enhance the radiation hardness of the chip, this technology allows to enclose the electronics in the same deep N-WELLs which are also used as collecting electrodes. In this contribution the characterisation of H35DEMO chips and results of the very first beam test measurements of the monolithic CMOS matrices with high energetic pions at CERN SPS will be presented.

  11. MNOS/SOS radiation hardness performance and reliability study. Interim report Aug 79-Aug 80

    SciTech Connect

    Hampton, F.L.; Cricchi, J.R.

    1982-05-01

    In this investigation the endurance-retention characteristics of fast-write MNOS memory structure, and radiation tolerance of metal-gate dual-dielectric and polysilicon-gate all-oxide devices have been evaluated. Writing and clearing speed have been studied with respect to the NH3:SiH4 ratio (APCVD), and NH3:SiC12H2 ratio (LPCVD). The films deposited with a low NH3:SiC12 ratios could be written and cleared with shorter pulse widths; however, a degradation in retention was observed. An improvement in the endurance retention product of a drain source protected transistor structure has been realized by oxidizing the memory nitride followed by an H2 anneal immediately after deposition. The film was deposited with a LPCVD reactor at 750 deg with a NH3:SiC12H2 ratio of 9:1. Oxidation was performed in steam at 900 C, as was the subsequent H2 anneal. The effect of total dose radiation was found to be more severe for a positive bias. The all oxide polysilicon gate transistor structures were observed to be relatively soft, however results from capacitor structures shows promise in developing a radiation tolerant polysilicon-gate all-oxide gate structure.

  12. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    NASA Astrophysics Data System (ADS)

    Currás, Esteban; Fernández, Marcos; Gallrapp, Christian; Gray, Lindsey; Mannelli, Marcello; Meridiani, Paolo; Moll, Michael; Nourbakhsh, Shervin; Scharf, Christian; Silva, Pedro; Steinbrueck, Georg; Fatis, Tommaso Tabarelli de; Vila, Iván

    2017-02-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb-1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb-1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 1016 neq/cm2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  13. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Monolithic and mechanically stacked tandem solar cells have been fabricated with encouraging AM0 efficiencies summarized as: monolithic GaAs/Ge: 19.1 percent (28 C, 4 sq cm); monolithic InP/Ga0.47In0.53As: 22.2 percent (25 C, 0.296 sq cm); monolithic AlGaAs/GaAs/InGaAs: 27.6 percent (80 C, 0.2 sq cm, 100 X); mechanically stacked GaAs/GaSb: 30.8 percent (25 C, 0.049 sq cm, 100 X); and mechanically stacked GaAs/CuInSe2: 23.1 percent (25 C, 4 sq cm). Significant improvement in tandem cell efficiencies nearing to theoretical predictions has been projected with the improvement in cell material quality and processing. Thin-film cells offer improved specific power. It is pointed out that both the monolithic and mechanically stacked cells have their own problems as to size, processing, current-voltage matching, weight, etc. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full spectrum range simulators are required to measure efficiencies correctly.

  14. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  15. Radiation hardness measurements of new permanent magnet materials for high-intensity linac applications

    SciTech Connect

    Barlow, D.B.; Kraus, R.H.; Borden, M.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The radiation resistance of samples of high-strength samarium cobalt permanent-magnet material has been studied. Samples of commercially available material were obtained from four different manufacturers. The remanent field of the samples was measured before and after the samples were irradiated with neutrons produced at the beam stop of the Los Alamos Neutron Science Center (LANSCE) proton accelerator.

  16. Performance of Multilayer Monochromators for Hard X-Ray Imaging with Coherent Synchrotron Radiation

    SciTech Connect

    Dietsch, R.; Holz, T.; Kraemer, M.; Weissbach, D.; Rack, A.; Weitkamp, T.; Morawe, Ch.; Cloetens, P.; Ziegler, E.; Riotte, M.; Rack, T.; Siewert, F.

    2011-09-09

    We present a study in which multilayers of different periodicity (from 2.5 to 5.5 nm), composition (W/Si, Mo/Si, Pd/B{sub 4}C, Ru/B{sub 4}C), and numbers of layers have been compared. Particularly, we chose mirrors with similar intrinsic quality (roughness and reflectivity) to study their performance (flatness and coherence of the outgoing beam) as monochromators in synchrotron radiography. The results indicate that material composition is the dominating factor for the performance. This is important to consider for future developments in synchrotron-based hard x-ray imaging methods. In these techniques, multilayer monochromators are popular because of their good tradeoff between spectral bandwidth and photon flux density of the outgoing beam, but sufficient homogeneity and preservation of the coherent properties of the reflected beam are major concerns. The experimental results we collected may help scientists and engineers specify multilayer monochromators and can contribute to better exploitation of the advantages of multilayer monochromators in microtomography and other full-field imaging techniques.

  17. Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hicks, K. A.; Jennings, G. A.; Lin, Y.-S.; Pina, C. A.; Sayah, H. R.; Zamani, N.

    1989-01-01

    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis.

  18. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    NASA Astrophysics Data System (ADS)

    Pastuović, Željko; Capan, Ivana; Cohen, David D.; Forneris, Jacopo; Iwamoto, Naoya; Ohshima, Takeshi; Siegele, Rainer; Hoshino, Norihiro; Tsuchida, Hidekazu

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm-3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1-6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm-2.

  19. Depletion layer recombination effects on the radiation damage hardness of gallium arsenide cells

    NASA Technical Reports Server (NTRS)

    Garlick, G. F. J.

    1985-01-01

    The significant effect of junction depletion layer recombination on the efficiency of windowed GaAs cells was demonstrated. The effect becomes more pronounced as radiation damage occurs. The depletion is considered for 1 MeV electron fluences up to 10 to the 16th power e/sq m. The cell modeling separates damage in emitter and base or buffer layers using different damage coefficients is reported. The lower coefficient for the emitter predicts less loss of performance at fluences greater than 10 to the 15th power e/sq cm. A method for obtaining information on junction recombination effects as damage proceeds is described; this enables a more complete diagnosis of damage to be made.

  20. Hard X-ray nanofocusing at low-emittance synchrotron radiation sources

    PubMed Central

    Schroer, Christian G.; Falkenberg, Gerald

    2014-01-01

    X-ray scanning microscopy relies on intensive nanobeams generated by imaging a highly brilliant synchrotron radiation source onto the sample with a nanofocusing X-ray optic. Here, using a Gaussian model for the central cone of an undulator source, the nanobeam generated by refractive X-ray lenses is modeled in terms of size, flux and coherence. The beam properties are expressed in terms of the emittances of the storage ring and the lateral sizes of the electron beam. Optimal source parameters are calculated to obtain efficient and diffraction-limited nanofocusing. With decreasing emittance, the usable fraction of the beam for diffraction-limited nanofocusing experiments can be increased by more than two orders of magnitude compared with modern storage ring sources. For a diffraction-limited storage ring, nearly the whole beam can be focused, making these sources highly attractive for X-ray scanning microscopy. PMID:25177988

  1. Design of Si-photonic structures to evaluate their radiation hardness dependence on design parameters

    NASA Astrophysics Data System (ADS)

    Zeiler, M.; Detraz, S.; Olantera, L.; Pezzullo, G.; Seif El Nasr-Storey, S.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.

    2016-01-01

    Particle detectors for future experiments at the HL-LHC will require new optical data transmitters that can provide high data rates and be resistant against high levels of radiation. Furthermore, new design paths for future optical readout systems for HL-LHC could be opened if there was a possibility to integrate the optical components with their driving electronics and possibly also the silicon particle sensors themselves. All these functionalities could potentially be combined in the silicon photonics technology which currently receives a lot of attention for conventional optical link systems. Silicon photonic test chips were designed in order to assess the suitability of this technology for deployment in high-energy physics experiments. The chips contain custom-designed Mach-Zehnder modulators, pre-designed ``building-block'' modulators, photodiodes and various other passive test structures. The simulation and design flow of the custom designed Mach-Zehnder modulators and some first measurement results of the chips are presented.

  2. Radiation hardness study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    NASA Astrophysics Data System (ADS)

    Currás, E.; Mannelli, M.; Moll, M.; Nourbakhsh, S.; Steinbrueck, G.; Vila, I.

    2017-02-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering 0~25 fb ‑1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many detector components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 40 layers of silicon detectors totalling 600 m2. The sensors will be realized as pad detectors with cell size between 0.5 and 1.0 cm2 and an active thickness between 100 μm and 300 μm depending on their location in the endcaps. The thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fb ‑1, the electromagnetic calorimeter will have to sustain a maximum integrated dose of 1.5 MGy and neutron fluences of 1.0×1016 neq/cm2. A tolerance study after neutron irradiation of 300 μm, 200 μm, 100 μm and 50 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The main properties of these diodes have been studied before and after irradiation: leakage current, capacitance, charge collection efficiency with laser and sensitivity to minimum ionizing particles with radioactive source (90Sr). The results show a good performance even after the most extreme irradiation.

  3. Application of monolithic chromatographic supports in virus research.

    PubMed

    Krajacic, Mladen; Ravnikar, Maja; Štrancar, Aleš; Gutiérrez-Aguirre, Ion

    2017-05-12

    Key properties of monolithic chromatographic supports, make them suitable for separation and/or concentration of large biomolecules, especially virus particles and viral genomes. One by one, the studies that have been completed so far, contributed to the knowledge that monolith chromatography has hardly any limitation to be applied in virus research. Viruses of different sizes, possessing icosahedral structure and symmetrical morphology, as well as rod-shaped or filamentous viruses with helical structure, even enveloped ones, all of them could be successfully managed by means of monolith chromatography. Same is true for viral genomes, primarily when being distinct from other nucleic acid forms present in a host cell. This review is exclusively focused on viruses. It describes the application of monolith chromatography to different problematics within the virus research field. The reviewed achievements offer new possibilities and trigger new aspects in virology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    ultimately impact the surface of Europa after the mission is completed. The current JEO mission concept includes a range of instruments on the payload, to monitor dynamic phenomena (such as Io's volcanoes and Jupiters atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. The payload includes a low mass (3.7 Kg) and low power (< 5 W) Thermal Instrument (TI) concept for measuring possible warm thermal anomalies on Europa s cold surface caused by recent (< 10,000 years) eruptive activity. Regions of anomalously high heat flow will be identified by thermal mapping using a nadir pointing, push-broom filter radiometer that provides far-IR imagery in two broad band spectral wavelength regions, 8-20 m and 20-100 m, for surface temperature measurements with better than a 2 K accuracy and a spatial resolution of 250 m/pixel obtained from a 100 Km orbit. The temperature accuracy permits a search for elevated temperatures when combined with albedo information. The spatial resolution is sufficient to resolve Europa's larger cracks and ridge axial valleys. In order to accomplish the thermal mapping, the TI uses sensitive thermopile arrays that are readout by a custom designed low-noise Multi-Channel Digitizer (MCD) ASIC that resides very close to the thermopile linear array outputs. Both the thermopile array and the MCD ASIC will need to show full functionality within the harsh Jovian radiation environment, operating at cryogenic temperatures, typically 150 K to 170 K. In the following, a radiation mitigation strategy together with a low risk Radiation-Hardened-By-Design (RHBD) methodology using commercial foundry processes is given for the design and manufacture of a MCD ASIC that will meet this challenge.

  5. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Mellado, B.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Solvyanov, O.

    2015-06-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs but a breakdown in the light transfer between base and fluor dopants is observed. For doses of 8 MGy to 80 MGy, structural damage leads to hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss as dose is increased.

  6. Spaceflight Ka-Band High-Rate Radiation-Hard Modulator

    NASA Technical Reports Server (NTRS)

    Jaso, Jeffery M.

    2011-01-01

    A document discusses the creation of a Ka-band modulator developed specifically for the NASA/GSFC Solar Dynamics Observatory (SDO). This flight design consists of a high-bandwidth, Quadriphase Shift Keying (QPSK) vector modulator with radiation-hardened, high-rate driver circuitry that receives I and Q channel data. The radiationhard design enables SDO fs Ka-band communications downlink system to transmit 130 Mbps (300 Msps after data encoding) of science instrument data to the ground system continuously throughout the mission fs minimum life of five years. The low error vector magnitude (EVM) of the modulator lowers the implementation loss of the transmitter in which it is used, thereby increasing the overall communication system link margin. The modulator comprises a component within the SDO transmitter, and meets the following specifications over a 0 to 40 C operational temperature range: QPSK/OQPSK modulator, 300-Msps symbol rate, 26.5-GHz center frequency, error vector magnitude less than or equal to 10 percent rms, and compliance with the NTIA (National Telecommunications and Information Administration) spectral mask.

  7. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Sekonya, K.; Solvyanov, O.

    2015-10-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy and light yield analysis whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs and light loss can be attributed to a breakdown in the light transfer between base and fluor dopants. For doses of 8 MGy to 80 MGy, structural damage leads to possible hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss and light yield loss with increasing dose.

  8. Monolithic pixel detectors for high energy physics

    NASA Astrophysics Data System (ADS)

    Snoeys, W.

    2013-12-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio (Q/C). It is shown that monolithic detectors can achieve Q/C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining sufficient Q/C, collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  9. Proposal to produce novel, transparent radiation hard low refractive index polymers. Final report, 1 October-31 December 1993

    SciTech Connect

    Schuman, P.D.; Harmon, J.

    1994-02-09

    Low and high molecular weight polymers of heptafluorobutyl methacrylate, HFBM, were prepared for commercial evaluation by Bicron, an optical fiber manufacturer. Polymers were evaluated as low refractive index fiber cladding materials. Test results of Low MW polymer solutions gave excellent results. Higher MW polymers were prepared for cladding by melt co-extrusion. Corning Glass Corp, also expressed an interest in these cladding materials. These results appear to be sufficiently unique that a search has been initiated to determine patentability of the soluble fluorocarbon acrylate, methacrylate and copolymer compositions for cladding use. This research resulted in identifying a radiation hard, low refractive index polymer, poly(heptafluorobutyl methacrylate), P(HFBM) as the best candidate for a novel cladding material. P(HFBM) has a refractive index of 1.387. When used to clad a styrene core, the theoretical light propagation efficiency is 50% greater than that of styrene fiber core clad with PMMA, a common commercial cladding material. These polymers will be the only commercial fluorocarbon acrylic cladding polymers available to U.S. manufacturers. Japanese optical fiber manufacturers produce fluorocarbon clad fibers but their polymers are not available to U.S. manufacturers. These polymers can fill an urgent need in the optical fiber market.

  10. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    NASA Astrophysics Data System (ADS)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Alonso-Mori, R.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Bergmann, U.

    2013-05-01

    We present a multicrystal Johann-type hard x-ray spectrometer (˜5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88°-74°) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4π sr. The typical resolving power is in the order of E/Δ E ˜ 10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  11. Radiation hardness of AlxGa1-xN photodetectors exposed to Extreme UltraViolet (EUV) light beam

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel E.; John, Joachim; Barkusky, Frank; Duboz, Jean Yves; Lorenz, Anne; Cheng, Kai; Derluyn, Joff; Germain, Marianne; De Moor, Piet; Minoglou, Kyriaki; Bayer, Armin; Mann, Klaus; Hochedez, Jean-Francois; Giordanengo, Boris; Borghs, Gustaaf; Mertens, Robert

    2009-05-01

    We report on the results of fabrication and optoelectrical characterization of Gallium Nitride (GaN) based Extreme UltraViolet (EUV) photodetectors. Our devices were Schottky photodiodes with a finger-shaped rectifying contact, allowing better penetration of light into the active region. GaN layers were epitaxially grown on Silicon (111) by Metal- Organic-Chemical Vapor Deposition (MOCVD). Spectral responsivity measurements in the Near UltraViolet (NUV) wavelength range (200-400 nm) were performed to verify the solar blindness of the photodetectors. After that the devices were exposed to the EUV focused beam of 13.5 nm wavelength using table-top EUV setup. Radiation hardness was tested up to a dose of 3.3Â.1019 photons/cm2. Stability of the quantum efficiency was compared to the one measured in the same way for a commercially available silicon based photodiode. Superior behavior of GaN devices was observed at the wavelength of 13.5 nm.

  12. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Zhu, Hanliang; Ionescu, Mihail; Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon

    2015-04-01

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 1021 ion m-2 (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α2 and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  13. LDQ10: a compact ultra low-power radiation-hard 4 × 10 Gb/s driver array

    DOE PAGES

    Zeng, Z.; Zhang, T.; Wang, G.; ...

    2017-02-28

    Here, a High-speed and low-power VCSEL driver is an important component of the Versatile Link for the high-luminosity LHC (HL-LHC) experiments. A compact low-power radiation-hard 4 × 10 Gb/s VCSEL driver array (LDQ10) has been developed in 65 nm CMOS technology. Each channel in LDQ10 can provide a modulation current up to 8 mA and bias current up to 12 mA. Edge pre-emphasis is employed to compensate for the bandwidth limitations due to parasitic and the turn-on delay of VCSEL devices. LDQ10 occupies a chip area of 1900 μm × 1700 μm and consumes 130 mW power for typical currentmore » settings. The modulation amplitude degrades less than 5% after 300 Mrad total ionizing dose. LDQ10 can be directly wire-bonded to the VCSEL array and it is a suitable candidate for the Versatile Link.« less

  14. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  15. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Bisello, Francesca; Menichelli, David; Scaringella, Monica; Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta; Bruzzi, Mara

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm2 modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1-2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, 60Co radiation and 226 MeV protons is reported.

  16. Embedded-monolith armor

    DOEpatents

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  17. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  18. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  19. Accompanying of parameters of color, gloss and hardness on polymeric films coated with pigmented inks cured by different radiation doses of ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bardi, Marcelo Augusto Gonçalves; Machado, Luci Diva Brocardo

    2012-09-01

    In the search for alternatives to traditional paint systems solvent-based, the curing process of polymer coatings by ultraviolet light (UV) has been widely studied and discussed, especially because of their high content of solids and null emission of VOC. In UV-curing technology, organic solvents are replaced by reactive diluents, such as monomers. This paper aims to investigate variations on color, gloss and hardness of print inks cured by different UV radiation doses. The ratio pigment/clear coating was kept constant. The clear coating presented higher average values for König hardness than pigmented ones, indicating that UV-light absorption has been reduced by the presence of pigments. Besides, they have indicated a slight variation in function of cure degree for the studied radiation doses range. The gloss loss related to UV light exposition allows inferring that some degradation occurred at the surface of print ink films.

  20. Performance prospects for the CMS electromagnetic calorimeter barrel avalanche photodiodes for LHC phase I and phase II: Radiation hardness and longevity

    NASA Astrophysics Data System (ADS)

    Addesa, F.; Cavallari, F.

    2015-07-01

    The electromagnetic calorimeter of the Compact Muon Solenoid (CMS) experiment at the LHC is a hermetic, fine-grained, homogeneous calorimeter, comprising 75,848 lead tungstate scintillating crystals. Avalanche photodiodes produced by Hamamatsu are used as sensors for the electromagnetic barrel calorimeter. These devices were tested for radiation hardness assuming an integrated luminosity of 500 fb-1, which corresponds to a neutron fluence of 2- 4 ×1013 n /cm2, depending on the detector location. Beginning in 2022, a new phase of the LHC is foreseen to exploit the full potential of the accelerator, which will deliver 3000 fb-1 of integrated luminosity. Irradiation studies up to a fluence of 1.5 ×1014 n /cm2 have been performed to qualify the avalanche photodiodes for radiation hardness. We present measurements of gain, quantum efficiency and noise, and discuss the implications for the CMS electromagnetic barrel calorimeter performance.

  1. Silicon PM Radiation Hardness

    SciTech Connect

    Rohlf, James

    2016-08-25

    Detailed measurements have been made of 9 mm2 SiPMs from Hamamatsu (MPPC) and Zecotek (MAPD) after room temperature annealing after exposure to fluences of 1012 to 1013 cm-2. The data was used to complete the final ADR report.

  2. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  3. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  4. FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS

    PubMed Central

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-01-01

    Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623

  5. Phased-array antenna control by a monolithic photonic integrated circuit, COMPASS

    SciTech Connect

    Kravitz, S.H.; Hietala, V.M.; Vawter, G.A.; Meyer, W.J.

    1991-01-01

    Phased-array antenna systems are well known for rapid beam steering and their ability to bring high power to the target. Such systems are also quite complex and heavy, which have limited their usefulness. The issues of weight, size, power use, and complexity have been addressed through a system named COMPASS (Coherent Optical Monolithic Phased Array Steering System). All phased-array antenna systems need: (1) small size; (2) low power use; (3) high-speed beam steering; and (4) digitally-controlled phase shifting. COMPASS meets these basic requirements, and provides some very desirable additional features. These are: (1) phase control separate from the transmit/receive module; (2) simple expansion to large arrays; (3) fiber optic interconnect for reduced sensitivity to EMI; (4) an intrinsically radiation-hard GaAs chip; and (5) optical power provided by a commercially available continuous wave (CW) laser. 4 refs., 8 figs.

  6. Monolithic MACS micro resonators

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  7. Monolithic Millimeter Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Nan-Lei

    There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.

  8. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  9. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  10. Hard tooth tissue removal by short and long Er:YAG or Er,Cr:YSGG mid-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Dostálová, T.; Remeš, M.; Šulc, J.; Němec, M.; Fibrich, M.

    2017-02-01

    Hard dental tissue removal by laser radiation is an alternative treatment to conventional dental-drilling procedures. The advantages of this therapy are fast and localized treatment of hard dental tissue and painlessness. The most effective systems for those purposes are Er-lasers generating radiation at wavelengths of around 3 μm. The aim of this study was qualitative and quantitative examination of human dentin and ivory tissue removal by pulsed free-running (FR) and Q-switched (QSW) Er:YAG and Er,Cr:YSGG laser radiations. From the obtained results it follows that generally Er:YAG laser has lower threshold for the tissue removal in both FR and QSW regimes. Furthermore, the FR Er:YAG and Er,Cr:YSGG radiation can be effective for both dentin and ivory ablation and can prepare smooth cavities without side effects. The QSW regime is useful preferably for precise ablation of a starting tooth defect and for the part of the tooth very close to the gum. This regime is excellent for micro-preparation or for tooth treatment of children.

  11. Monolith electroplating process

    DOEpatents

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  12. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Mager, M.

    2016-07-01

    A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.

  13. Preparation and photocatalytic activity of robust titania monoliths for water remediation.

    PubMed

    Nakata, Kazuya; Kagawa, Tomoya; Sakai, Munetoshi; Liu, Shanhu; Ochiai, Tsuyoshi; Sakai, Hideki; Murakami, Taketoshi; Abe, Masahiko; Fujishima, Akira

    2013-02-01

    TiO(2) monoliths were prepared, characterized, and evaluated for photocatalytic performance. The TiO(2) monoliths were found to have an interconnected void lattice and a bimodal porous structure with macropores and mesopores after calcination at 500-700 °C. Monoliths calcined at 500 °C had high specific surface area (93.1 m(2)/g) and porosity (68%), which were maintained after calcination at 700-1100 °C (51-46%). The calcined monoliths had relatively high Vickers hardness (∼104) despite their porous structure. Monoliths calcined at 500 and 700 °C exhibited high performance for methylene blue decolorization because of their high specific surface area.

  14. Edge chipping and flexural resistance of monolithic ceramics☆

    PubMed Central

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  15. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  16. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  17. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  18. A pixel unit-cell targeting 16 ns resolution and radiation hardness in a column read-out particle vertex detector

    SciTech Connect

    Wright, M.; Millaud, J.; Nygren, D.

    1992-10-01

    A pixel unit cell (PUC) circuit architecture, optimized for a column read out architecture, is reported. Each PUC contains an integrator, active filter, comparator, and optional analog store. The time-over-threshold (TOT) discriminator allows an all-digital interface to the array periphery readout while passing an analog measure of collected charge. Use of (existing) radiation hard processes, to build a detector bump-bonded to a pixel readout array, is targeted. Here, emphasis is on a qualitative explanation of how the unique circuit implementation benefits operation for Super Collider (SSC) detector application.

  19. Monolithic optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Breunig, Ingo; Beckmann, Tobias; Buse, Karsten

    2012-02-01

    Stability and footprint of optical parametric oscillators (OPOs) strongly depend on the cavity used. Monolithic OPOs tend to be most stable and compact since they do not require external mirrors that have to be aligned. The most straightforward way to get rid of the mirrors is to coat the end faces of the nonlinear crystal. Whispering gallery resonators (WGRs) are a more advanced solution since they provide ultra-high reflectivity over a wide spectral range without any coating. Furthermore, they can be fabricated out of nonlinear-optical materials like lithium niobate. Thus, they are ideally suited to serve as a monolithic OPO cavity. We present the experimental realization of optical parametric oscillators based on whispering gallery resonators. Pumped at 1 μm wavelength, they generate signal and idler fields tunable between 1.8 and 2.5 μm wavelength. We explore different schemes, how to phase match the nonlinear interaction in a WGR. In particular, we show improvements in the fabrication of quasi-phase-matching structures. They enable great flexibility for the tuning and for the choice of the pump laser.

  20. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  1. Structure for monolithic optical circuits

    NASA Technical Reports Server (NTRS)

    Evanchuk, Vincent L. (Inventor)

    1984-01-01

    A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation sensitive plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.

  2. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  3. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs.

  4. Biobased monoliths for adenovirus purification.

    PubMed

    Fernandes, Cláudia S M; Gonçalves, Bianca; Sousa, Margarida; Martins, Duarte L; Barroso, Telma; Pina, Ana Sofia; Peixoto, Cristina; Aguiar-Ricardo, Ana; Roque, A Cecília A

    2015-04-01

    Adenoviruses are important platforms for vaccine development and vectors for gene therapy, increasing the demand for high titers of purified viral preparations. Monoliths are macroporous supports regarded as ideal for the purification of macromolecular complexes, including viral particles. Although common monoliths are based on synthetic polymers as methacrylates, we explored the potential of biopolymers processed by clean technologies to produce monoliths for adenovirus purification. Such an approach enables the development of disposable and biodegradable matrices for bioprocessing. A total of 20 monoliths were produced from different biopolymers (chitosan, agarose, and dextran), employing two distinct temperatures during the freezing process (-20 °C and -80 °C). The morphological and physical properties of the structures were thoroughly characterized. The monoliths presenting higher robustness and permeability rates were further analyzed for the nonspecific binding of Adenovirus serotype 5 (Ad5) preparations. The matrices presenting lower nonspecific Ad5 binding were further functionalized with quaternary amine anion-exchange ligand glycidyltrimethylammonium chloride hydrochloride by two distinct methods, and their performance toward Ad5 purification was assessed. The monolith composed of chitosan and poly(vinyl) alcohol (50:50) prepared at -80 °C allowed 100% recovery of Ad5 particles bound to the support. This is the first report of the successful purification of adenovirus using monoliths obtained from biopolymers processed by clean technologies.

  5. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  6. A radiation-hard dual-channel 12-bit 40 MS/s ADC prototype for the ATLAS liquid argon calorimeter readout electronics upgrade at the CERN LHC

    NASA Astrophysics Data System (ADS)

    Kuppambatti, J.; Ban, J.; Andeen, T.; Brown, R.; Carbone, R.; Kinget, P.; Brooijmans, G.; Sippach, W.

    2017-05-01

    The readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider requires a radiation-hard ADC. The design of a radiation-hard dual-channel 12-bit 40 MS/s pipeline ADC for this use is presented. The design consists of two pipeline A/D channels each with four Multiplying Digital-to-Analog Converters followed by 8-bit Successive-Approximation-Register analog-to-digital converters. The custom design, fabricated in a commercial 130 nm CMOS process, shows a performance of 67.9 dB SNDR at 10 MHz for a single channel at 40 MS/s, with a latency of 87.5 ns (to first bit read out), while its total power consumption is 50 mW/channel. The chip uses two power supply voltages: 1.2 and 2.5 V. The sensitivity to single event effects during irradiation is measured and determined to meet the system requirements.

  7. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  8. Rad-hard electronics study for SSC detectors

    SciTech Connect

    Ekenberg, T.; Dawson, J.; Stevens, A.; Haberichter, W.

    1991-01-01

    The radiation environment in a SSC detector operating at a luminosity of 10{sup 33} cm{sup {minus}2}s{sup {minus}1} will put stringent requirements on radiation hardness of the electronics. Over the expected 10 year life-time of a large detector, ionizing radiation doses of up to 20 MRad and neutron fluences of 10{sup 16} neutrons/cm{sup 2} are projected. At a luminosity of 10{sup 34} cm{sup {minus}2}s{sup {minus}1} even higher total doses are expected. the effect of this environment have been simulated by exposing CMOS/bulk and CMOS/SOS devices from monolithic processes to neutrons and ionizing radiation. leakage currents, noise variations, and DC characteristics have been measured before and after exposure in order to evaluate the effects of the irradiations. As expected the device characteristics remained virtually unchanged by neutron irradiation, while ionizing radiation caused moderate degradation of performance. 5 refs., 6 figs.

  9. Hardness testing

    SciTech Connect

    Not Available

    1987-01-01

    This technical manual is a handbook dealing with all aspects of hardness testing. Every hardness testing method is fully covered, from Rockwell to ultrasonic hardness testing. Specific hardness testing problems are also discussed, and methods are offered for many applications. One chapter examines how to select the correct hardness testing method. A directory of manufacturers, distributors and suppliers of hardness testing equipment and supplies in the United States and Canada is also included. The book consist of eight chapters and an appendix. It discusses common concepts of hardness, and the theories and methods of hardness testing. Coverage includes specific hardness testing methods - Brinell, Rockwell, Vickers, and microhardness testing; and other hardness testing methods, such as scleroscope, ultrasonic, scratch and file testing, and hardness evaluation by eddy current testing.

  10. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  11. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  12. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  13. Monolithic microchannel heatsink

    DOEpatents

    Benett, W.J.; Beach, R.J.; Ciarlo, D.R.

    1996-08-20

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.

  14. Monolithic microchannel heatsink

    DOEpatents

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  15. Recent progress in the development of a B-factory monolithic active pixel detector

    NASA Astrophysics Data System (ADS)

    Stanič, S.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Varner, G.; Yang, Q.

    2006-11-01

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25 μm process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R&D towards a full Pixel Vertex Detector (PVD) are presented.

  16. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  17. Monolith Joint Repairs: Case Histories

    DTIC Science & Technology

    1989-08-01

    REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM TECHNICAL REPORT REMR-CS-22 MONOLITH JOINT REPAIRS: CASE HISTORVS.Z by James G ...Washington, DC 20314-1000 32307 S11. TITLE (Include Security Classification) Monolith Joint Repairs: Case Histories 12. PERSONAL AUTHOR(S) May. James G ...Research Work Unit 32307, "Tech- niques for Joint Repair and Rehabilitation," for which MAJ James G . May, CE, is the Principal Investigator. This work unit

  18. Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes

    SciTech Connect

    Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Schroer, C. G.; Wellenreuther, G.; Falkenberg, G.

    2012-06-18

    We demonstrate x-ray scanning coherent diffraction microscopy (ptychography) with 10 nm spatial resolution, clearly exceeding the resolution limits of conventional hard x-ray microscopy. The spatial resolution in a ptychogram is shown to depend on the shape (structure factor) of a feature and can vary for different features in the object. In addition, the resolution and contrast are shown to increase with increasing coherent fluence. For an optimal ptychographic x-ray microscope, this implies a source with highest possible brilliance and an x-ray optic with a large numerical aperture to generate the optimal probe beam.

  19. Radiation Hard and Self Healing Substrate Agnostic Nanocrystalline ZnO Thin Film Electronics (Per5 E)

    DTIC Science & Technology

    2017-06-01

    radionuclides] 3.7 × 10 10 per second (s –1 ) [becquerel (Bq)] roentgen (R) [air exposure ] 2.579 760 × 10 –4 coulomb per kilogram (C kg –1 ) rad...shifts in threshold voltage and virtually no change in mobility as a function of 60Co gamma ray exposure . Dramatic recovery was observed after a short...For comparison, our early work is included in this figure showing the relatively high radiation tolerance of ZnO TFTs to radiation exposure . 0 200

  20. Efficient organic monoliths prepared by γ-radiation induced polymerization in the evaluation of histone deacetylase inhibitors by capillary(nano)-high performance liquid chromatography and ion trap mass spectrometry.

    PubMed

    Badaloni, Elena; Barbarino, Marcella; Cabri, Walter; D'Acquarica, Ilaria; Forte, Michela; Gasparrini, Francesco; Giorgi, Fabrizio; Pierini, Marco; Simone, Patrizia; Ursini, Ornella; Villani, Claudio

    2011-06-24

    New monolithic HPLC columns were prepared by γ-radiation-triggered polymerization of hexyl methacrylate and ethylene glycol dimethacrylate monomers in the presence of porogenic solvents. Polymerization was carried out directly within capillary (250-200 μm I.D.) and nano (100-75 μm I.D.) fused-silica tubes yielding highly efficient columns for cap(nano)-LC applications. The columns were applied in the complete separation of core (H2A, H2B, H3, and H4) and linker (H1) histones under gradient elution with UV and/or electrospray ionization (ESI) ion trap mass spectrometry (MS) detections. Large selectivity towards H1, H2A-1, H2A-2, H2B, H3-1, H3-2 and H4 histones and complete separation were obtained within 8 min time windows, using fast gradients and very high linear flow velocities, up to 11 mm/s for high throughput applications. The method developed was the basis of a simple and efficient protocol for the evaluation of post-translational modifications (PTMs) of histones from NCI-H460 human non-small-cell lung cancer (NSCLC) and HCT-116 human colorectal carcinoma cells. The study was extended to monitoring the level of histone acetylation after inhibition of Histone DeACetylase (HDAC) enzymes with suberoylanilide hydroxamic acid (SAHA), the first HDAC inhibitor approved by the FDA for cancer therapy. Attractive features of our cap(nano)-LC/MS approach are the short analysis time, the minute amount of sample required to complete the whole procedure and the stability of the polymethacrylate-based columns. A lab-made software package ClustMass was ad hoc developed and used to elaborate deconvoluted mass spectral data (aligning, averaging, clustering) and calculate the potency of HDAC inhibitors, expressed through a Relative half maximal Inhibitory Concentration parameter, namely R_IC(50) and an averaged acetylation degree. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Three-dimensional developing flow model for photocatalytic monolith reactors

    SciTech Connect

    Hossain, Md.M.; Raupp, G.B.; Hay, S.O.; Obee, T.N.

    1999-06-01

    A first-principles mathematical model describes performance of a titania-coated honeycomb monolith photocatalytic oxidation (PCO) reactor for air purification. The single-channel, 3-D convection-diffusion-reaction model assumes steady-state operation, negligible axial dispersion, and negligible homogeneous reaction. The reactor model accounts rigorously for entrance effects arising from the developing fluid-flow field and uses a previously developed first-principles radiation-field submodel for the UV flux profile down the monolith length. The model requires specification of an intrinsic photocatalytic reaction rate dependent on local UV light intensity and local reactant concentration, and uses reaction-rate expressions and kinetic parameters determined independently using a flat-plate reactor. Model predictions matched experimental pilot-scale formaldehyde conversion measurements for a range of inlet formaldehyde concentrations, air humidity levels, monolith lengths, and for various monolith/lamp-bank configurations. This agreement was realized without benefit of any adjustable photocatalytic reactor model parameters, radiation-field submodel parameters, or kinetic submodel parameters. The model tends to systematically overpredict toluene conversion data by about 33%, which falls within the accepted limits of experimental kinetic parameter accuracy. With further validation, the model could be used in PCO reactor design and to develop quantitative energy utilization metrics.

  2. Factorizing monolithic applications

    SciTech Connect

    Hall, J.H.; Ankeny, L.A.; Clancy, S.P.

    1998-12-31

    The Blanca project is part of the US Department of Energy`s (DOE) Accelerated Strategic Computing Initiative (ASCI), which focuses on Science-Based Stockpile Stewardship through the large-scale simulation of multi-physics, multi-dimensional problems. Blanca is the only Los Alamos National Laboratory (LANL)-based ASCI project that is written entirely in C++. Tecolote, a new framework used in developing Blanca physics codes, provides an infrastructure for gluing together any number of components; this framework is then used to create applications that encompass a wide variety of physics models, numerical solution options, and underlying data storage schemes. The advantage of this approach is that only the essential components for the given model need be activated at runtime. Tecolote has been designed for code re-use and to isolate the computer science mechanics from the physics aspects as much as possible -- allowing physics model developers to write algorithms in a style quite similar to the underlying physics equations that govern the computational physics. This paper describes the advantages of component architectures and contrasts the Tecolote framework with Microsoft`s OLE and Apple`s OpenDoc. An actual factorization of a traditional monolithic application into its basic components is also described.

  3. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  4. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  5. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  6. Bread-Board Testing of the Radiation Hard Electron Monitor (RADEM) being developed for the ESA JUICE Mission

    NASA Astrophysics Data System (ADS)

    Mrigakshi, Alankrita; Hajdas, Wojtek; Marcinkowski, Radoslaw; Xiao, Hualin; Goncalves, Patricia; Pinto, Marco; Pinto, Costa; Marques, Arlindo; Meier, Dirk

    2016-04-01

    The RADEM instrument will serve as the radiation monitor for the JUICE spacecraft. It will characterize the highly dynamic radiation environment of the Jovian system by measuring the energy spectra of energetic electrons and protons up to 40 MeV and 250 MeV, respectively. It will also determine the directionality of 0.3-10 MeV electrons. Further goals include the detection of heavy ions, and the determination of the corresponding LET spectra and dose rates. Here, the tests of the Electron and Proton Telescopes, and the Directionality Detector of the RADEM Bread-Board model are described. The objective of these tests is to validate RADEM design and physical concept applied therein. The tests were performed at various irradiation facilities at the Paul Scherrer Institute (PSI) where energy ranges relevant for space applications can be covered (electrons: ≤100 MeV and protons: ≤230 MeV). The measured values are also compared with GEANT4 Monte-Carlo Simulation results.

  7. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  8. A system-level model for high-speed, radiation-hard optical links in HEP experiments based on silicon Mach-Zehnder modulators

    NASA Astrophysics Data System (ADS)

    Zeiler, M.; Detraz, S.; Olantera, L.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.

    2016-12-01

    Silicon Mach-Zehnder modulators have been shown to be relatively insensitive to displacement damage beyond a 1-MeV-equivalent neutron fluence of 3ṡ1016n/cm2. Recent investigations on optimized device designs have also led to a high resistance against total ionizing dose levels of above 1 MGy. Such devices could potentially replace electrical and/or optical links close to the particle interaction points in future high energy physics experiments. Since they require an external continuous-wave light source, radiation-hard optical links based on silicon Mach-Zehnder modulators need to have a different system design when compared to existing directly modulated laser-based optical links. 10 Gb/s eye diagrams of irradiated Mach-Zehnder modulators were measured. The outcomes demonstrate the suitability for using these components in harsh radiation environments. A proposal for the implementation of silicon Mach-Zehnder modulators in CERN's particle detectors was developed and a model to calculate the system performance is presented. The optical power budget and the electrical power dissipation of the proposed link is compared to that of the upcoming Versatile Link system that will be installed in 2018.

  9. Submicrometre beams from a hard X-ray waveguide at a third-generation synchrotron radiation source.

    PubMed

    Cedola, A; Lagomarsino, S; Di Fonzo, S; Jark, W; Riekel, C; Deschamps, P

    1998-01-01

    The use of an X-ray waveguide for scattering experiments at an undulator of a third-generation synchrotron radiation source is discussed. The performance with a perfect crystal monochromator, multilayer monochromator and focusing mirror is explored. A maximum flux of 8 x 109 photons s(-1) at lambda = 0.083 nm was obtained for a 0.15 (V) x 600 (H) micron(2) beam at the exit of the waveguide with a multilayer monochromator. The combination of an Si (111) monochromator and ellipsoidal mirror resulted in a flux of approximately 10(9) photons s(-1) but with a horizontal compression of the beam to approximately 30 micron. The use of the waveguide in diffraction experiments is addressed.

  10. Defect Antiperovskite Compounds Hg3Q2I2 (Q = S, Se, and Te) for Room-Temperature Hard Radiation Detection.

    PubMed

    He, Yihui; Kontsevoi, Oleg Y; Stoumpos, Constantinos C; Trimarchi, Giancarlo G; Islam, Saiful M; Liu, Zhifu; Kostina, Svetlana S; Das, Sanjib; Kim, Joon-Il; Lin, Wenwen; Wessels, Bruce W; Kanatzidis, Mercouri G

    2017-06-14

    The high Z chalcohalides Hg3Q2I2 (Q = S, Se, and Te) can be regarded as of antiperovskite structure with ordered vacancies and are demonstrated to be very promising candidates for X- and γ-ray semiconductor detectors. Depending on Q, the ordering of the Hg vacancies in these defect antiperovskites varies and yields a rich family of distinct crystal structures ranging from zero-dimensional to three-dimensional, with a dramatic effect on the properties of each compound. All three Hg3Q2I2 compounds show very suitable optical, electrical, and good mechanical properties required for radiation detection at room temperature. These compounds possess a high density (>7 g/cm(3)) and wide bandgaps (>1.9 eV), showing great stopping power for hard radiation and high intrinsic electrical resistivity, over 10(11) Ω cm. Large single crystals are grown using the vapor transport method, and each material shows excellent photo sensitivity under energetic photons. Detectors made from thin Hg3Q2I2 crystals show reasonable response under a series of radiation sources, including (241)Am and (57)Co radiation. The dimensionality of Hg-Q motifs (in terms of ordering patterns of Hg vacancies) has a strong influence on the conduction band structure, which gives the quasi one-dimensional Hg3Se2I2 a more prominently dispersive conduction band structure and leads to a low electron effective mass (0.20 m0). For Hg3Se2I2 detectors, spectroscopic resolution is achieved for both (241)Am α particles (5.49 MeV) and (241)Am γ-rays (59.5 keV), with full widths at half-maximum (FWHM, in percentage) of 19% and 50%, respectively. The carrier mobility-lifetime μτ product for Hg3Q2I2 detectors is achieved as 10(-5)-10(-6) cm(2)/V. The electron mobility for Hg3Se2I2 is estimated as 104 ± 12 cm(2)/(V·s). On the basis of these results, Hg3Se2I2 is the most promising for room-temperature radiation detection.

  11. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  12. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.; Matthias, Sabrina

    2014-10-01

    Beam expanding is a common task, where Galileo telescopes are preferred. However researches and customers have found limitations when using these systems. A new monolithical solution which is based on the usage of only one aspherical component will be presented. It will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Insights will be given how aspherical beam expanding systems will help using larger incoming beams and reducing the overall length of such a system. Additionally an add-on element for divergence and wavelength adaption will be presented.

  13. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  14. A monolithic bolometer array suitable for FIRST

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; LeDuc, H. G.; Lange, A. E.; Zmuidzinas, J.

    1997-01-01

    The development of arrays of infrared bolometers that are suitable for use in the Far Infrared and Submillimeter Telescope (FIRST) mission is reported. The array architecture is based on the silicon nitride micromesh bolometer currently baselined for use in the case of the Planck mission. This architecture allows each pixel to be efficiently coupled to one or both polarizations and to one or more spatial models of radiation. Micromesh structures are currently being developed, coupled with transistor-edge sensors and read out by a SQUID amplifier. If these devices are successful, then the relatively large cooling power available at 300 mK may enable a SQUID-based multiplexer to be integrated on the same wafer as the array, creating a monolithic, fully multiplexed, 2D array with relatively few connections to the sub-Kelvin stage.

  15. Organic-inorganic hybrid fluorous monolithic capillary column for selective solid-phase microextraction of perfluorinated persistent organic pollutants.

    PubMed

    Xiong, Xiyue; Yang, Zihui; Huang, Yongbin; Jiang, Linbo; Chen, Yingzhuang; Shen, Yao; Chen, Bo

    2013-03-01

    A novel construction strategy of monolithic capillary column for selectively enriching perfluorinated persistent organic pollutants was proposed. The organic-inorganic hybrid fluorous monolithic capillary column was synthesized by a "one-pot" approach via the polycondensation of γ-methacryloxypropyltrimethoxy-silane, then in situ copolymerization of 1H,1H,7H-dodecafluoroheptyl methacrylate and vinyl group on the precondensed siloxanes. The obtained monolithic columns were systematically characterized. The results demonstrated that the optimal column possessed good mechanical stability and high permeability. The adsorption capacities of the optimized monolithic column for perfluorooctanoic acid and perfluorooctane sulfonate were 0.257 and 0.513 μg/mg, respectively. Adsorption capacities of the monoliths were proved to increasing with increasing the amounts of fluorinated monomers in the fluorous monoliths. Sodium 1-octanesulfonate, as a comparison compound, was hardly adsorbed on the fluorous monolith. In addition, the trace amounts of perfluorooctanoic acid and perfluorooctane sulfonate in water samples can be successfully concentrated about 160 times to their original concentrations by this monolithic column. These results demonstrated that the capacity and selectivity of the affinity fluorous column is high and can be applied to the selective enrichment for the perfluorinated persistent organic pollutants from environmental samples.

  16. Computer monitoring of the thermal effects induced by Er:YAG laser radiation during preparation of the hard tooth tissue

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel; Prochazka, Ivan; Bakule, Pavel

    1993-12-01

    We are presenting the results of the thermal changes of enamel, dentin and pulp temperature monitoring in extracted human teeth subjected to a pulsed Er:YAG laser radiation. We made a series of experiments irradiating the tooth using the pulsed Er:YAG laser and monitoring simultaneously the temperature of various parts of the tooth. The temperature was measured by the bead thermistor either in contact with the tooth surface or built in the pulp chamber. In the former experiments it was demonstrated, that the uncooled preparation can cause irreversible changes of the pulp. In the second part of the experiments the teeth have been cooled by flowing water. During the laser preparation of the enamel and the dentin the temperature did not increase more than 2 degree(s)C. In the moment of dentin perforation and hence laser irradiation of the pulp, the pulp temperature increased rapidly. The opening of the pulp coincides with the rapid temperature increase. These studies verified the feasibility of the pulsed Erbium:YAG laser use in stomatology.

  17. Constant-pitch microprism-array optical device for beam condensers in hard x-ray synchrotron radiation beamlines

    NASA Astrophysics Data System (ADS)

    Kagoshima, Y.; Takano, H.; Takeda, S.

    2013-06-01

    A constant-pitch microprism-array optical device has been developed. It is a modified version of the previously reported quasi-Fresnel lens [Kagoshima et al., Appl. Phys. Lett. 101, 163102 (2012)]. The modification eases the fabrication of the lens, although it degrades some of the focusing performance. It consists of twenty 50-μm-wide right-angle microprisms, whose slope angles gradually increase to 67.8° at the outer side. By inclining the array, the aspect ratio of the microprisms becomes large enough for X-ray use. The effective slope angle can be enlarged to 86.4° at an inclination angle of 80.5°. A 10-keV synchrotron beam with a size of 680 μm (V) × 660 μm (H) was two-dimensionally condensed to 130 μm (V) × 380 μm (H) with a photon flux density gain of ˜3. We also show that the microprism array is suitable for practical use below the critical radiation dose rate.

  18. Developments for radiation hard silicon detectors by defect engineering—results by the CERN RD48 (ROSE) Collaboration

    NASA Astrophysics Data System (ADS)

    Lindström, G.; Ahmed, M.; Albergo, S.; Allport, P.; Anderson, D.; Andricek, L.; Angarano, M. M.; Augelli, V.; Bacchetta, N.; Bartalini, P.; Bates, R.; Biggeri, U.; Bilei, G. M.; Bisello, D.; Boemi, D.; Borchi, E.; Botila, T.; Brodbeck, T. J.; Bruzzi, M.; Budzynski, T.; Burger, P.; Campabadal, F.; Casse, G.; Catacchini, E.; Chilingarov, A.; Ciampolini, P.; Cindro, V.; Costa, M. J.; Creanza, D.; Clauws, P.; Da Via, C.; Davies, G.; De Boer, W.; Dell'Orso, R.; De Palma, M.; Dezillie, B.; Eremin, V.; Evrard, O.; Fallica, G.; Fanourakis, G.; Feick, H.; Focardi, E.; Fonseca, L.; Fretwurst, E.; Fuster, J.; Gabathuler, K.; Glaser, M.; Grabiec, P.; Grigoriev, E.; Hall, G.; Hanlon, M.; Hauler, F.; Heising, S.; Holmes-Siedle, A.; Horisberger, R.; Hughes, G.; Huhtinen, M.; Ilyashenko, I.; Ivanov, A.; Jones, B. K.; Jungermann, L.; Kaminsky, A.; Kohout, Z.; Kramberger, G.; Kuhnke, M.; Kwan, S.; Lemeilleur, F.; Leroy, C.; Letheren, M.; Li, Z.; Ligonzo, T.; Linhart, V.; Litovchenko, P.; Loukas, D.; Lozano, M.; Luczynski, Z.; Lutz, G.; MacEvoy, B.; Manolopoulos, S.; Markou, A.; Martinez, C.; Messineo, A.; Miku, M.; Moll, M.; Nossarzewska, E.; Ottaviani, G.; Oshea, V.; Parrini, G.; Passeri, D.; Petre, D.; Pickford, A.; Pintilie, I.; Pintilie, L.; Pospisil, S.; Potenza, R.; Radicci, V.; Raine, C.; Rafi, J. M.; Ratoff, P. N.; Richter, R. H.; Riedler, P.; Roe, S.; Roy, P.; Ruzin, A.; Ryazanov, A. I.; Santocchia, A.; Schiavulli, L.; Sicho, P.; Siotis, I.; Sloan, T.; Slysz, W.; Smith, K.; Solanky, M.; Sopko, B.; Stolze, K.; Sundby Avset, B.; Svensson, B.; Tivarus, C.; Tonelli, G.; Tricomi, A.; Tzamarias, S.; Valvo, G.; Vasilescu, A.; Vayaki, A.; Verbitskaya, E.; Verdini, P.; Vrba, V.; Watts, S.; Weber, E. R.; Wegrzecki, M.; Wegrzecka, I.; Weilhammer, P.; Wheadon, R.; Wilburn, C.; Wilhelm, I.; Wunstorf, R.; Wüstenfeld, J.; Wyss, J.; Zankel, K.; Zabierowski, P.; Zontar, D.

    2001-06-01

    This report summarises the final results obtained by the RD48 collaboration. The emphasis is on the more practical aspects directly relevant for LHC applications. The report is based on the comprehensive survey given in the 1999 status report (RD48 3rd Status Report, CERN/LHCC 2000-009, December 1999), a recent conference report (Lindström et al. (RD48), and some latest experimental results. Additional data have been reported in the last ROSE workshop (5th ROSE workshop, CERN, CERN/LEB 2000-005). A compilation of all RD48 internal reports and a full publication list can be found on the RD48 homepage (http://cern.ch/RD48/). The success of the oxygen enrichment of FZ-silicon as a highly powerful defect engineering technique and its optimisation with various commercial manufacturers are reported. The focus is on the changes of the effective doping concentration (depletion voltage). The RD48 model for the dependence of radiation effects on fluence, temperature and operational time is verified; projections to operational scenarios for main LHC experiments demonstrate vital benefits. Progress in the microscopic understanding of damage effects as well as the application of defect kinetics models and device modelling for the prediction of the macroscopic behaviour has also been achieved but will not be covered in detail.

  19. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  20. Monolithic blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Gaebler, Volker; Eichler, Hans J.

    2002-06-01

    We report a monolithic low threshold 482nm Tm:ZBLAN upconversion fiber laser. The laser cavity consists of a directly coated single-mode fluoride fiber. The vapor deposit coatings significantly reduce the coupling losses and are suitable to be pumped by laser diodes. The laser operation and threshold characteristics have been investigated. The output stability and beam quality was tested.

  1. In situ Fabrication of Monolithic Copper Azide

    NASA Astrophysics Data System (ADS)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  2. Investigation on the long-term radiation hardness of low resistivity starting silicon materials for RT silicon detectors in high energy physics

    SciTech Connect

    Li, Z.

    1994-02-01

    Relatively low resistivity (200 to 1000 {Omega}-cm) starting silicon materials have been studied in the search of room temperature neutron radiation-hard silicon detectors. It has been found that, moderate resistivity (300-700 {Omega}-cm) silicon detectors, after being irradiated to 5.0 {times} 10{sup 13} to 2.0 {times} 10{sup 14} n/cm{sup 2}, are extremely stable in terms of the detector full depletion voltage (V{sub d}) or the net effective concentration of ionized space charges (N{sub eff} ---- there is little ``reverse annealing`` of N{sub eff} at RT and elevated temperatures as compared with large reverse annealing observed for high resistivity silicon detectors. Detectors with starting resistivity of 300-700 {Omega}-cm have been found to be stable, during the equivalent of one year RT anneal that would reach the saturation of the first stage of reverse anneal, within then N{sub eff} window of {vert_bar}N{sub eff}{vert_bar}{le} 2.5 {times} 10{sup 12} cm{sup {minus}3} (V{sub d} = 180 V for d = 300 {mu}m) in a working range of 5.0 {times} 10{sup 13} to 1.5 {times} 10{sup 14} n/cm{sup 2}, or a net neutron radiation tolerance of 1.0 {times} 10{sup 14} n/cm{sup 2}. The observed effects are in very good agreement with an early proposed model, which predicted among others, that there might be an off set between the reverse annealing effect and the partial annealing of the P-V centers that leads to the partial recovery of the shallow impurity donors.

  3. Development and characterization of monolithic multilayer Laue lens nanofocusing optics

    NASA Astrophysics Data System (ADS)

    Nazaretski, E.; Xu, W.; Bouet, N.; Zhou, J.; Yan, H.; Huang, X.; Chu, Y. S.

    2016-06-01

    We have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

  4. Development and characterization of monolithic multilayer Laue lens nanofocusing optics

    DOE PAGES

    Nazaretski, E.; Xu, W.; Bouet, N.; ...

    2016-06-27

    In this study, we have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

  5. Development and characterization of monolithic multilayer Laue lens nanofocusing optics

    SciTech Connect

    Nazaretski, E.; Xu, W.; Bouet, N.; Zhou, J.; Yan, H.; Huang, X.; Chu, Y. S.

    2016-06-27

    In this study, we have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

  6. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    PubMed

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  7. Strategy on removing oxygen impurity for crystal growth of one candidate Tl6SeI4 for room-temperature hard radiation detector(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Wenwen; Liu, Zhifu; Churilov, Alexei V.; He, Yihui; Kim, Hadong; Cirignano, Leonard J.; Malliakas, Christos D.; Li, Hao; Stoumpos, Constantinos C.; Chung, Duck Young; Wessels, Bruce W.; Kanatzidis, Mercouri G.

    2016-09-01

    Thallium based chalcogenide and halide semiconductors such as Tl4HgI6, TlGaSe2, Tl6SeI4 and Tl6SI4 are promising materials for room-temperature hard radiation detection. They feature appropriate band gaps, high mass densities and facile growth technology. However, these materials are being plagued by the Tl oxides impurity from Tl precursor or Tl containing binary precursors, which leads to problems including tube breakage, parasitic nucleation and detector performance deterioration. In this work, we present a facile way to chemically reduce Tl oxidations, and then eliminate oxygen impurity by adding high-purity graphite powder during synthesis and crystal growth. We also further investigated the reactivity between Tl oxides and graphite. The detector performance of Tl6SeI4 crystal was dramatically improved after lowering/removing the oxygen impurities. This result not only indicates the significance of removing oxygen impurity for improving detector performance. Our results suggest that the chemical reduction method we developed by adding carbon powder during synthesis is highly effective in substantially reducing oxygen impurities from Tl containing materials.

  8. CLARO-CMOS: a fast, low power and radiation-hard front-end ASIC for single-photon counting in 0.35 micron CMOS technology

    NASA Astrophysics Data System (ADS)

    Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Fiorini, M.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.

    2015-01-01

    The CLARO-CMOS is a prototype ASIC designed for fast photon counting with multi-anode photomultiplier tubes (MaPMT). The CLARO features a 5 ns peaking time, a recovery time to baseline smaller than 25 ns, and a power consumption of less than 1 mW per channel. The chip was designed in 0.35 μm CMOS technology, and was tested for radiation hardness with neutrons up to 1014 1 MeV neq/cm2, X-rays up to 40 kGy and protons up to 76 kGy. Its capability to read out single photons at high rate from a Hamamatsu R11265 MaPMT, the baseline photon detector for the LHCb RICH upgrade, was demonstrated both with test bench measurements and with actual signals from a R11265 MaPMT. The presented results allowed CLARO to be chosen as the front-end readout chip in the upgraded LHCb RICH detector.

  9. Uranium hohlraum with an ultrathin uranium-nitride coating layer for low hard x-ray emission and high radiation temperature

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Ding, Yongkun; Xing, Pifeng; Li, Sanwei; Kuang, Longyu; Li, Zhichao; Yi, Taimin; Ren, Guoli; Wu, Zeqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Baibin; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

    2015-11-01

    An ultrathin layer of uranium nitrides (UN) has been coated on the inner surface of depleted uranium hohlraum (DUH), which has been proven by our experiment to prevent the oxidization of uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on an SGIII-prototype laser facility. Under a laser intensity of 6 × 1014 W cm-2, we observe that the hard x-ray (hν \\gt 1.8 keV) fraction of the uranium hohlraum decreases by 61% and the peak intensity of the total x-ray flux (0.1 keV˜5.0 keV) increases by 5%. Radiation hydrodynamic code LARED is used to interpret the above observations. Our result for the first time indicates the advantages of the UN-coated DUH in generating a uniform x-ray source with a quasi-Planckian spectrum, which should have important applications in high energy density physics.

  10. LDQ10: a compact ultra low-power radiation-hard 4 × 10 Gb/s driver array

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Zhang, T.; Wang, G.; Gui, P.; Kulis, S.; Moreira, P.

    2017-02-01

    A High-speed and low-power VCSEL driver is an important component of the Versatile Link for the high-luminosity LHC (HL-LHC) experiments. A compact low-power radiation-hard 4 × 10 Gb/s VCSEL driver array (LDQ10) has been developed in 65 nm CMOS technology. Each channel in LDQ10 can provide a modulation current up to 8 mA and bias current up to 12 mA. Edge pre-emphasis is employed to compensate for the bandwidth limitations due to parasitic and the turn-on delay of VCSEL devices. LDQ10 occupies a chip area of 1900 μm × 1700 μm and consumes 130 mW power for typical current settings. The modulation amplitude degrades less than 5% after 300 Mrad total ionizing dose. LDQ10 can be directly wire-bonded to the VCSEL array and it is a suitable candidate for the Versatile Link.

  11. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    SciTech Connect

    Hahn, C. Höfer, S.; Kämpfer, T.; Weber, G.; Märtin, R.; Stöhlker, Th.

    2016-04-15

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  12. High conductance ohmic junction for monolithic semiconductor devices

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R. (Inventor)

    1988-01-01

    In order to increase the efficiency of solar cells, a monolithic stacked device is constructed comprising a plurality of solar sub-cells adjusted for different bands of radiation. The interconnection between these sub-cells has been a significant technical problem. The invention provides an interconnection which is a thin layer of high ohmic conductance material formed between the sub-cells. Such a layer tends to form beads which serve as a shorting interconnect while passing a large fraction of the radiation to the lower sub-cells and permitting lattice-matching between the sub-cells to be preserved.

  13. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  14. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  15. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  16. Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties.

    PubMed

    Uo, Motohiro; Hasegawa, Tomoka; Akasaka, Tsukasa; Tanaka, Isao; Munekane, Fuminori; Omori, Mamoru; Kimura, Hisamichi; Nakatomi, Reiko; Soga, Kohei; Kogo, Yasuo; Watari, Fumio

    2009-01-01

    Three types of multiwalled carbon nanotube (MWCNT) monoliths without any binders were obtained by spark plasma sintering (SPS) treatment at 2000 degrees C under 80 MPa sintering pressure. Three MWCNTs with different diameters: thin (slashed circle20-30 nm, CNT Co., Ltd., Korea), thick (slashed circle100 nm, Nano Carbon Technologies Co., Ltd., Japan) and spherical thin (slashed circle20-30 nm, granulated diameter = 1-3 microm, Shimizu Corporation, Japan) were employed for SPS. SEM observation confirmed that these materials maintained the nanosized tube microstructure of raw CNT powder after SPS treatment. The densest monolith was prepared with the spherical MWCNTs. The mechanical properties of this material were estimated by the dynamic hardness test. The elastic modulus of the monolith did not depend on the difference of MWCNTs, but the hardness of spherical MWCNTs was higher than that of thick MWCNTs. The high density and hardness of the spherical MWCNTs were caused by the high packing density during the SPS process because of its spherical granulation. Thus, the spherical MWCNTs were most useful for the MWCNT monolith preparation with the SPS process and its application as a bone substitute material and a bone tissue engineering scaffold material was suggested.

  17. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  18. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  19. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  20. Monolithic millimeter-wave and picosecond electronic technologies

    SciTech Connect

    Talley, W.K.; Luhmann, N.C.

    1996-03-12

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band ({approximately}8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies.

  1. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  2. Monolithic Fuel Fabrication Process Development

    SciTech Connect

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  3. Graphene-supported metal oxide monolith

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  4. Monolithic Nanocrystalline Au Fabricated by the Compaction of Nanoscale Foam

    SciTech Connect

    Hodge, A M; Biener, J; Hsiung, L M; Hamza, A V; Satcher Jr., J H

    2004-07-28

    We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam is synthesized by electrochemically-driven dealloying. The resulting Au foams exhibit porosities of 60 and 70% with pore sizes of {approx} 40 and 100 nm, respectively, and a typical grain size of <50 nm. Second, the nanoporous foams are fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by TEM and X-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibits an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which are up to 4.5 times higher than the hardness values obtained from polycrystalline Au.

  5. Radiation Hard Sensors for Surveillance.

    DTIC Science & Technology

    1988-03-11

    Dark Matter ", Proc. Workshop, Ringberg Castle, Tegerusee May 12-13, 1987 ed. K. Pretzl D.et al., Springer Verlay 1987 D. Perret-Gallix ,ibid 4) A...Low Temperature Detectors for *-., Neutrino/ Dark Matter ", Ringberg Castle, Tegernsee, May 1987. In the following this paper is quoted as UBC, 1987...advantage of the SQUID sensitivity. Multichannel readout capability is presently being buil.I. 30 DISIAIIBUIIU’..AVAILANI..TY Of AeStRAC? 3

  6. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  7. Radiation hard ceramic RPC development

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Dreyer, J.; Fan, X.; Kämpfer, B.; Kiselev, S.; Kotte, R.; Laso Garcia, A.; Malkevich, D.; Naumann, L.; Nedosekin, A.; Plotnikov, V.; Stach, D.; Sultanov, R.; Voloshin, K.

    2017-01-01

    We report recent advances in R&D on the Beam Fragmentation and T0 Counter (BFTC) for the CBM experiment, based on RPCs with floating electrodes made of resistive ceramic material. An optimal value of the ceramics bulk resistivity has been determined to be about 5·109 Ω·cm. RPCs with such electrodes show even characteristics and stable operation under particle fluxes of up to 150 kHz/cm2, with the detection efficiency above 90%.

  8. Mercury Chalcohalide Semiconductor Hg3Se2Br2 for Hard Radiation Detection

    SciTech Connect

    Li, Hao; Meng, Fang; Malliakas, Christos D.; Liu, Zhifu; Chung, Duck Young; Wessels, Bruce; Kanatzidis, Mercouri G.

    2016-09-28

    We present Hg3Se2Br2 that has a wide band gap semiconductor (2.22 eV) with high density (7.598 g/cm3) and crystallizes in the monoclinic space group C2/m with cell parameters of a = 17.496 (4) Å, b = 9.3991 (19) Å, c = 9.776(2) Å, β = 90.46(3)°, V = 1607.6(6) Å3. It melts congruently at a low temperature, 566°C, which allows for an easy single crystal growth directly from the stoichiometric melt. Single crystals of Hg3Se2Br2 up to 1 cm long have been grown using the Bridgman method. Hg3Se2Br2 single crystals exhibit a strong photocurrent response when exposed to Ag X-ray and blue diode laser. The resistivity of Hg3Se2Br2 measured by the two probe method is on the order of 1011 Ω·cm, and the mobility-lifetime product (μτ) of the electron and hole carriers estimated from the energy spectroscopy under Ag X-ray radiation are (μτ)e ≈ 1.4 × 10–4cm2/V and (μτ)h ≈ 9.2 × 10–5cm2/V. Electronic structure calculations at the density functional theory level indicate a direct band gap and a relatively small effective mass for carriers. Lastly, on the basis of the photoconductivity and hard X-ray spectrum, Hg3Se2Br2 is a promising candidate for X-ray and γ-ray radiation detection at room temperature.

  9. Synthesis of high porosity, monolithic alumina aerogels

    SciTech Connect

    Poco, J F; Satcher, J H; Hrubesh, L W

    2000-09-20

    Many non-silica aerogels are notably weak and fragile in monolithic form. Particularly, few monolithic aerogels with densities less than 50kg/m3 have any significant strength. It is especially difficult to prepare uncracked monoliths of pure alumina aerogels that are robust and moisture stable. In this paper, we discuss the synthesis of strong, stable, monolithic, high porosity (>98% porous) alumina aerogels, using a two-step sol-gel process. The alumina aerogels have a polycrystalline morphology that results in enhanced physical properties. Most of the measured physical properties of the alumina aerogels are superior to those for silica aerogels for equivalent densities.

  10. Characterization and Testing of Monolithic RERTR Fuel Plates

    SciTech Connect

    D. D. Keiser; J. F. Jue; D. E. Burkes

    2007-03-01

    Monolithic fuel plates are being developed for application in research reactors throughout the world. These fuel plates are comprised of a U-Mo alloy foil encased in aluminum alloy cladding. Three different fabrication techniques have been looked at for producing monolithic fuel plates: hot isostatic pressing (HIP), transient liquid phase bonding (TLPB), and friction stir welding (FSW). Of these three techniques, HIP and FSW are currently being emphasized. As part of the development of these fabrication techniques, fuel plates are characterized and tested to determine properties like hardness and the bond strength at the interface between the fuel and cladding. Testing of HIPed samples indicates that the foil/cladding interaction behavior depends on the Mo content in the U-Mo foil, the measured hardness values are quite different for the fuel, cladding, and interaction zone phase and Ti, Zr and Nb are the most effective diffusion barriers. For FSW samples, there is a dependence of the bond strength at the foil/cladding interface on the type of tool that is employed for performing the actual FSW process.

  11. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  12. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  13. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  14. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  15. Configuration study for a 30 GHz monolithic receive array: Technical assessment

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.

  16. Monolithically integrated GaAs thyristor-transistor as a hardened optically-triggered switch

    SciTech Connect

    Carson, R.F.; Hughes, R.C.; Weaver, H.T.; Brennan, T.M.; Hammons, B.E.

    1990-01-01

    Optically-triggered thyristors are hardened to high x-ray dose rates by the addition of a monolithically integrated compensating phototransistor. Tests of these devices show that sensitivity to radiation-induced switching is reduced by a factor of ten compared to conventional two-terminal thyristors (to 2 {times} 10{sup 9} Rad (Si)/sec). 3 refs., 5 figs.

  17. Development of a super B-factory monolithic active pixel detector—the Continuous Acquisition Pixel (CAP) prototypes

    NASA Astrophysics Data System (ADS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-04-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R&D issues are presented.

  18. Adsorption over polyacrylonitrile based carbon monoliths

    NASA Astrophysics Data System (ADS)

    Nandi, Mahasweta; Dutta, Arghya; Patra, Astam Kumar; Bhaumik, Asim; Uyama, Hiroshi

    2013-02-01

    Highly porous activated carbon monoliths have been prepared from mesoporous polyacrylonitrile (PAN) monolith as the carbon precursor. The mesoporous PAN monoliths are fabricated by a unique and facile template-free method which on carbonization gives N-doped activated carbon monoliths. The carbonization is achieved via two step thermal process which includes pretreatment in air leading to cyclization and subsequent aromatization of the PAN moieties followed by carbonization in a mixture of argon and carbon dioxide to give a layered carbon framework. Nitrogen sorption experiments carried over these carbon monoliths revealed high surface area (ca. 2500 m2g-1) for these materials with precise micropore size distribution. The activated carbons show extraordinarily high CO2 capture capacity and the uptake up to 3 bar has been found to be as high as 22.5 and 10.6 mmol/g at 273 K and 298 K, respectively.

  19. An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: A new candidate for hard radiation detection

    DOE PAGES

    Wibowo, Arief C.; Malliakas, Christos D.; Li, Hao; ...

    2016-03-16

    Here, we assess the mercury chalcohalide compound, β-Hg3S2Cl2, as a potential semiconductor material for X-ray and γ-ray detection. It has a high density (6.80 g/cm3) and wide band gap (2.56 eV) and crystallizes in the cubic Pm4more » $$\\bar{3}$$n space group with a three-dimensional structure comprised of [Hg12S8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of β-Hg3S2Cl2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg3Bi2S2Cl8 compound followed by the formation of β-Hg3S2Cl2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg3Bi2S2Cl8 followed by its partial decomposition into β-Hg3S2Cl2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 1010 Ω·cm and mobility-lifetime products of electron and hole carriers of 1.4(4) × 10–4 cm2/V and 7.5(3) × 10–5 cm2/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of β-Hg3S2Cl2 as a hard radiation detector material.« less

  20. Q-switched Nd:YAG/V:YAG monolith microlaser

    NASA Astrophysics Data System (ADS)

    Sulc, Jan; Jelinkova, Helena; Nejezchleb, Karel; Skoda, Vaclav

    2005-03-01

    A specially developed monolith crystal, which combines in one piece cooling undoped part (undoped YAG crystal), active laser part (YAG crystal doped with Nd3+ ions) and saturable absorber (YAG crystal doped with V3+ ions), was used for construction of longitudinally diode pumped Q-switched Nd:YAG laser operating at wavelength 1342 nm. The monolith consists of 4 mm long undoped part bounded to the V:YAG saturable absorber 530 μm thick which gives the initial transmission of saturable absorber 88%. The diameter of whole monolith was 5 mm. This combination of active crystal and saturable absorber allows to realize more compact resonator with the shortest cavity length of 33 mm only. The monolith was mounted in an adjustable water-cooled cupreous ring. Temperature of cooling water was in a range from 12 to 14 °C. As a pumping source the CW-operating laser diode emitting radiation at wavelength 808 nm with the maximum output power 20 W at the end of the fiber (fiber core diameter 400 &mum, numerical aperture 0.22) was used. The diode radiation was focused into the active Nd:YAG crystal by two achromatic doublet lenses with the focal length of 75 mm. The measured diameter of pumping beam focus inside the crystal was 360 μm. The resonator of the Nd:YAG laser was formed by a planar dielectric mirror with high transmission for the pumping radiation (T>98%@808nm) together with the high reflectance for the generated radiation (R=100%@1340nm), and by a concave (100mm or 146 mm) dielectric mirror serving as an output coupler. As this coupler a various dielectric reflectors (with the reflectivity from 82% up to 94%) was used with the reason to obtain the shortest giant pulse with the maximum power. As the optimal, the stable CW Q-switched output at wavelength 1342 nm with length of pulses 11 ns with repetition rate 6.4kHz and peak power 6.1kW, was obtained.

  1. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-02-01

    In complex laser systems, such as those for material processing, and in basically all laboratory applications passive optical components are indispensable. Matching beam diameters is a common task, where Galileo type telescopes are preferred for beam expansion. Nevertheless researches and customers have found various limitations when using these systems. Some of them are the complicated adjustment, very small diameter for the incoming beam (1/e2), fixed and non-modifiable magnifications. Above that, diffraction-limitation is only assured within the optical design and not for the real world setup of the beam expanding system. Therefore, we will discuss limitations of currently used beam expanding systems to some extent. We will then present a new monolithical solution, which is based on the usage of only one aspherical component. It will be shown theoretically how the beam quality can be significantly improved by using aspherical lenses. As it is in the nature of things aspheres are working diffraction limited in the design, it will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Data of the culminated wavefront error will be presented. Last but not least insights will be given how beam expanding systems based on aspheres will help to use larger incoming beams and to reduce the overall length of such a system.

  2. Large monolithic particle pixel-detector in high-voltage CMOS technology

    NASA Astrophysics Data System (ADS)

    Perić, I.; Takacs, C.

    2010-12-01

    A large monolithic particle pixel-detector implemented as system on a chip in a high-voltage 0.35 μm CMOS technology will be presented. The detector uses high-voltage n-well/p-substrate diodes as pixel-sensors. The diodes can be reversely biased with more than 60 V. In this way, depleted zones of about 10 μm thickness are formed, where the signal charges can be collected by drift. Due to fast charge collection in the strong electric-field zones, a higher radiation tolerance of the sensor is expected than in the case of the standard MAPS detectors. Simple pixel-readout electronics are implemented inside the n-wells. The readout is based on a source follower with one select- and two reset-transistors. Due to embedding of the pixel-readout electronics inside the collecting electrodes (n-wells) there are no insensitive zones within the pixel matrix. The detector chip contains a 128×128 matrix consisting of pixels of 21×21 μm2 -size. The diode voltages of one selected pixel-row are received at the bottom of the matrix by 128 eight-bit single-slope ADCs. All ADCs operate in parallel. The ADC codes are read out using eight LVDS 500 MBit/s output links. The readout electronics are designed to allow the readout of the whole pixel matrix in less than 50 μs. The total DC power consumption of the chip is 50 mW. All analog parts of the chip are implemented using radiation-hard layout techniques. Experimental results will be presented.

  3. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  4. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  5. Multiple wavelength LED on monolithic QW structure

    NASA Astrophysics Data System (ADS)

    Zakariya, Abdullah J.; LiKamWa, Patrick

    2012-10-01

    A monolithically integrated multi-wavelength LED based on selective dielectric cap intermixing is investigated experimentally. The proposed LED emits radiation with multiple wavelength peaks from one compact easy to fabricate quantum well (QW) structure. Each wavelength has an independent emission power control, allowing the LED to radiate one or more wavelengths simultaneously. The LED material is an AlGaAs/GaAs QW p-i-n heterostructure. The device is divided into three selectively intermixed regions using an impurity-free vacancy induced intermixing technique creating localized intermixed areas. Each region is intermixed to varying extent resulting in different luminescence peaks and by separately addressing each section with its electrical current, the net emission spectrum can be fully controlled. The fabrication process starts with the growth of a 400nm thick layer of SiO2 over the whole sample using plasma enhanced chemical vapor deposition. Three regions with different SiO2 thicknesses are defined via two photolithographic and subsequent reactive ion etching steps. The sample is then annealed at 975°C for 20s to activate the intermixing of the constituent atoms of the quantum well and barrier materials. The degree of intermixing is determined by the thickness of the SiO2 cap. After removal of the SiO2 cap, contact stripes are evaporated on each region to act as an independent intensity power control for that region. Experimental results have shown that a controllable 10nm, 21nm and 33nm blue shifts of the peak wavelength of emission from that of the as-grown sample corresponding to 0, 100nm, and 400nm thick SiO2 caps respectively.

  6. A parametric experimental study of aerothermal performance and efficiency in monolithic volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Luque, Salvador; Bai, Fengwu; González-Aguilar, José; Wang, Zhifeng; Romero, Manuel

    2017-06-01

    This paper presents experimental thermal efficiency measurements conducted on nine monolithic absorbers manufactured in siliconized silicon carbide with square flow channels. The effects of two geometric parameters on efficiency have been investigated: flow channel width and absorber length. Experiments have been conducted in the test bench for optical and thermal absorber characterizations at the IMDEA Energy Institute, which employs a 7 kWe (1.2 kWth) high flux solar simulator. The facility is modular in design and allows for a rapid interchangeability of the test components. Experimental measurements are benchmarked against on-sun tests conducted in a pilot deployment with a similar monolithic configuration. The effects of absorber cross-sectional geometry on thermal efficiency are discussed. It is generally concluded that a significantly larger effect of the forced convection heat transfer mechanism with respect to the radiative mode is necessary in order to achieve the volumetric effect in this type of monolithic absorbers.

  7. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  8. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  9. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  10. Monolithic cells for solar fuels.

    PubMed

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  11. Anisotropically structured magnetic aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  12. CMOS monolithic active pixel sensors for high energy physics

    NASA Astrophysics Data System (ADS)

    Snoeys, W.

    2014-11-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics. Two major requirements are radiation tolerance and low power consumption. For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit. Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1]. Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps. More conventional solutions up to now require a simple in-pixel readout circuit. Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes. The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost. This paper tries to give an overview.

  13. Radiation

    NASA Image and Video Library

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  14. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  15. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  16. Optimization of monolithic columns for microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.

    2011-06-01

    Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.

  17. Resonant-cavity based monolithic white light-emitting diode

    NASA Astrophysics Data System (ADS)

    Huang, Lirong; Huang, Dexiu; Wen, Feng

    2007-11-01

    We propose a new scheme of resonant-cavity (RC) based monolithic white LED, it relaxes the hard requirement of high internal quantum efficiency of yellow multi-quantum (MQW) and offers an easy way to obtain high luminous efficacy white light emission. In the proposed white LED, the blue MQW and yellow MQW active layer are embedded in a resonant-cavity defined by the bottom distributed Bragg reflector(DBR) and top DBR. For a optimal design of RC-based white LED, the extraction efficiency for yellow light is enhanced, while that for blue light is suppressed, thus intensity ratio of yellow light in the emitting light is increased, which not only helps to obtain white emission in spite of the low internal quantum efficiency of yellow light, but also doubles luminous efficacy. The color coordinates and luminous flux of the emitting light from RC-based white LED are calculated and the performance dependence on directionality is investigated.

  18. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  19. Electrically pumped semiconductor laser with monolithic control of circular polarization

    PubMed Central

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P.; Lachab, Mohammad; Giles Davies, A.; Linfield, Edmund H.; Capasso, Federico

    2014-01-01

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by “fishbone” gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed. PMID:25512515

  20. Electrically pumped semiconductor laser with monolithic control of circular polarization.

    PubMed

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P; Lachab, Mohammad; Giles Davies, A; Linfield, Edmund H; Capasso, Federico

    2014-12-30

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by "fishbone" gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed.

  1. Methacrylate Polymer Monoliths for Separation Applications

    PubMed Central

    Groarke, Robert J.; Brabazon, Dermot

    2016-01-01

    This review summarizes the development of methacrylate-based polymer monoliths for separation science applications. An introduction to monoliths is presented, followed by the preparation methods and characteristics specific to methacrylate monoliths. Both traditional chemical based syntheses and emerging additive manufacturing methods are presented along with an analysis of the different types of functional groups, which have been utilized with methacrylate monoliths. The role of methacrylate based porous materials in separation science in industrially important chemical and biological separations are discussed, with particular attention given to the most recent developments and challenges associated with these materials. While these monoliths have been shown to be useful for a wide variety of applications, there is still scope for exerting better control over the porous architectures and chemistries obtained from the different fabrication routes. Conclusions regarding this previous work are drawn and an outlook towards future challenges and potential developments in this vibrant research area are presented. Discussed in particular are the potential of additive manufacturing for the preparation of monolithic structures with pre-defined multi-scale porous morphologies and for the optimization of surface reactive chemistries. PMID:28773570

  2. Polyurea-Based Aerogel Monoliths and Composites

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  3. The radiation hardness of specific multi-mode and single-mode optical fibres at -25°C beyond a full SLHC dose to a dose of 500 kGy(Si)

    NASA Astrophysics Data System (ADS)

    Huffman, B. T.; Issever, C.; Ryder, N. C.; Weidberg, A. R.

    2010-11-01

    The optical fibres that will be used in SLHC detectors will be exposed to high doses and low temperatures in the inner detectors. A number of Single-Mode (SM) and Multi-Mode (MM) fibres have been tested for radiation hardness by exposure beyond a full SLHC dose to 500 kGy(Si) in the -25°C operating temperatures expected in the upgraded inner detectors. From these measurements conservative estimates of the level of Radiation Induced Absorption (RIA) have been calculated for these fibres in realistic paths through an upgraded inner detector. Two SM fibres have been found whose total calculated RIAs were much lower than the budgeted 1 dB, despite the high dose rates used in the experiment. The RIAs for the DrakaElite Super RadHard Single-Mode Fiber and Fibre X were calculated to be 0.142 and 0.064 dB respectively. Another SM and a MM fibre showed high levels of RIA during the experiment, however they cannot be ruled out as candidate fibres due the the high dose rate of 27 kGy(Si)/hr used.

  4. Monolithically integrated Ge CMOS laser

    NASA Astrophysics Data System (ADS)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  5. Uncooled monolithic ferroelectric IRFPA technology

    NASA Astrophysics Data System (ADS)

    Belcher, James F.; Hanson, Charles M.; Beratan, Howard R.; Udayakumar, K. R.; Soch, Kevin L.

    1998-10-01

    Once relegated to expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, uncooled thermal imaging affords cost-effective solutions for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are continuing to drop, and swelling production volume will soon drive prices substantially lower. The impetus for further development is to improve performance. Hybrid barium strontium titanate (BST) detectors currently in production are relatively inexpensive, but have limited potential for improved performance. The MTF at high frequencies is limited by thermal conduction through the optical coating. Microbolometer arrays in development at Raytheon have recently demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of upgradable, deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers. They are also compatible with numerous fielded and planned system implementations. Like the resistive microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  6. InP/Ga0.47In0.53As monolithic, two-junction, three-terminal tandem solar cells

    NASA Technical Reports Server (NTRS)

    Wanlaas, M. W.; Gessert, T. A.; Horner, G. S.; Emery, K. A.; Coutts, T. J.

    1991-01-01

    The work presented has focussed on increasing the efficiency of InP-based solar cells through the development of a high-performance InP/Ga(0.47)In(0.53)As two-junction, three-terminal monolithic tandem cell. Such a tandem is particularly suited to space applications where a radiation-hard top cell (i.e., InP) is required. Furthermore, the InP/Ga(0.47)In(0.53)As materials system is lattice matched and offers a top cell/bottom cell bandgap differential (0.60 eV at 300 K) suitable for high tandem cell efficiencies under AMO illumination. A three-terminal configuration was chosen since it allows for independent power collection from each subcell in the monolithic stack, thus minimizing the adverse impact of radiation damage on the overall tandem efficiency. Realistic computer modeling calculations predict an efficiency boost of 7 to 11 percent from the Ga(0.47)In(0.53)As bottom cell under AMO illumination (25 C) for concentration ratios in the 1 to 1000 range. Thus, practical AMO efficiencies of 25 to 32 percent appear possible with the InP/Ga(0.47)In(0.53)As tandem cell. Prototype n/p/n InP/Ga(0.47)In(0.53)As monolithic tandem cells were fabricated and tested successfully. Using an aperture to define the illuminated areas, efficiency measurements performed on a non-optimized device under standard global illumination conditions (25 C) with no antireflection coating (ARC) give 12.2 percent for the InP top cell and 3.2 percent for the Ga(0.47)In(0.53)As bottom cell, yielding an overall tandem efficiency of 15.4 percent. With an ARC, the tandem efficiency could reach approximately 22 percent global and approximately 20 percent AMO. Additional details regarding the performance of individual InP and Ga(0.47)In(0.53)As component cells, fabrication and operation of complete tandem cells and methods for improving the tandem cell performance, are also discussed.

  7. Monolithic OLED-Microwire Devices for Ultrastrong Magnetic Resonant Excitation.

    PubMed

    Jamali, Shirin; Joshi, Gajadhar; Malissa, Hans; Lupton, John M; Boehme, Christoph

    2017-08-09

    Organic light-emitting diodes (OLEDs) make highly sensitive probes to test magnetic resonance phenomena under unconventional conditions since spin precession controls singlet-triplet transitions of electron-hole pairs, which in turn give rise to distinct recombination currents in conductivity. Electron paramagnetic resonance can therefore be detected in the absence of spin polarization. We exploit this characteristic to explore the exotic regime of ultrastrong light-matter coupling, where the Rabi frequency of a charge carrier spin is of the order of the transition frequency of the two-level system. To reach this domain, we have to lower the Zeeman splitting of the spin states, defined by the static magnetic field B0, and raise the strength of the oscillatory driving field of the resonance, B1. This is achieved by shrinking the OLED and bringing the source of resonant radio frequency (RF) radiation as close as possible to the organic semiconductor in a monolithic device structure, which incorporates an OLED fabricated directly on top of an RF microwire within one monolithic thin-film device structure. With an RF driving power in the milliwatt range applied to the microwire, the regime of bleaching and inversion of the magnetic resonance signal is reached due to the onset of the spin-Dicke effect. In this example of ultrastrong light-matter coupling, the individual resonant spin transitions of electron-hole pairs become indistinguishable with respect to the driving field, and superradiance of the magnetic dipole transitions sets in.

  8. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  9. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  10. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  11. THE EFFECT OF CORONAL RADIATION ON A RESIDUAL INNER DISK IN THE LOW/HARD SPECTRAL STATE OF BLACK HOLE X-RAY BINARY SYSTEMS

    SciTech Connect

    Liu, B. F.; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2011-01-01

    Thermal conduction between a cool accretion disk and a hot inner corona can result in either evaporation of the disk or condensation of the hot corona. At low mass accretion rates, evaporation dominates and can completely remove the inner disk. At higher mass accretion rates, condensation becomes more efficient in the very inner regions, so that part of the mass accretes via a weak (initially formed) inner disk which is separated from the outer disk by a fully evaporated region at mid radii. At still higher mass accretion rates, condensation dominates everywhere, so there is a continuous cool disk extending to the innermost stable circular orbit. We extend these calculations by including the effect of irradiation by the hot corona on the disk structure. The flux which is not reflected is reprocessed in the disk, adding to the intrinsic thermal emission from gravitational energy release. This increases the seed photons for Compton cooling of the hot corona, enhancing condensation of the hot flow, and reinforcing the residual inner disk rather than evaporating it. Our calculations confirm that a residual inner disk can coexist with a hard, coronally dominated spectrum over the range of 0.006< m-dot <0.016 (for {alpha} = 0.2). This provides an explanation for the weak thermal component seen recently in the low/hard state of black hole X-ray binary systems.

  12. Consolidation and densification methods for fibrous monolith processing

    SciTech Connect

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  13. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  14. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  15. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  16. Monolithic widely tunable quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Lascola, Kevin M.; Leavitt, Richard P.; Bruno, John D.; Bradshaw, John L.; Pham, John T.; Towner, Frederick J.

    2012-06-01

    Maxion Technologies has designed a monolithic, widely tunable Quantum Cascade (QC) laser for use in chemical sensing applications. This multi-section QC laser is a monolithically tunable device, similar to those demonstrated in the near IR for telecommunications. Wideband tuning is achieved through grating assisted coupling of the optical mode between lateral waveguides, allowing ~10 times the tuning range normally achieved by distributed feedback lasers without incorporation of external optical elements. Compared to implementations in the near IR, the use of lateral waveguides (rather than vertically stacked waveguides) allows the optical mode to maintain the high overlap with the active region necessary for room temperature lasing in the mid-IR. Due to its monolithic design, this laser is expected to be rapidly tunable and usable in field environments due to its insensitivity to shock and vibration, while the wide tuning range of the device will allow for an enhanced ability to discriminate against background chemicals.

  17. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    PubMed

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  18. Ultra-Low Power High Temperature and Radiation Hard Complementary Metal-Oxide-Semiconductor (CMOS) Silicon-on-Insulator (SOI) Voltage Reference

    PubMed Central

    Boufouss, El Hafed; Francis, Laurent A.; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-01-01

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of −40–200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage VREF depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of VREF and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2. PMID:24351635

  19. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  20. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  1. Physical and chemical sensing using monolithic semiconductor optical transducers

    NASA Astrophysics Data System (ADS)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  2. Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design

    DTIC Science & Technology

    2012-10-01

    Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design by John E. Penn ARL-TR-6237 October 2012...Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design John E. Penn Sensors and Electron Devices Directorate, ARL...TITLE AND SUBTITLE Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  3. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2)

    DTIC Science & Technology

    2013-07-01

    Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) by John E. Penn ARL-TN-0556 July 2013...Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) John E. Penn Sensors and Electron Devices...TITLE AND SUBTITLE Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  4. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers

    DTIC Science & Technology

    2012-12-01

    Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers by John E. Penn ARL-TR-6278 December 2012...Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers John E. Penn Sensors and Electron Devices Directorate, ARL...SUBTITLE Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  5. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  6. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  7. Monolithically integrated optoelectronic down-converter (MIOD)

    NASA Astrophysics Data System (ADS)

    Portnoi, Efrim L.; Venus, G. B.; Khazan, A. A.; Gorfinkel, Vera B.; Kompa, Guenter; Avrutin, Evgenii A.; Thayne, Iain G.; Barrow, David A.; Marsh, John H.

    1995-06-01

    Optoelectronic down-conversion of very high-frequency amplitude-modulated signals using a semiconductor laser simultaneously as a local oscillator and a mixer is proposed. Three possible constructions of a monolithically integrated down-converter are considered theoretically: a four-terminal semiconductor laser with dual pumping current/modal gain control, and both a passively mode-locked and a passively Q-switched semiconductor laser monolithically integrated with an electroabsorption or pumping current modulator. Experimental verification of the feasibility of the concept of down conversion in a laser diode is presented.

  8. Macroporous Monolithic Polymers: Preparation and Applications

    PubMed Central

    Arrua, Ruben Dario; Strumia, Miriam Cristina; Alvarez Igarzabal, Cecilia Inés

    2009-01-01

    In the last years, macroporous monolithic materials have been introduced as a new and useful generation of polymers used in different fields. These polymers may be prepared in a simple way from a homogenous mixture into a mold and contain large interconnected pores or channels allowing for high flow rates at moderate pressures. Due to their porous characteristics, they could be used in different processes, such as stationary phases for different types of chromatography, high-throughput bioreactors and in microfluidic chip applications. This review reports the contributions of several groups working in the preparation of different macroporous monoliths and their modification by immobilization of specific ligands on the products for specific purposes.

  9. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    SciTech Connect

    Piriaei, D.; Javadi, S.; Ghoranneviss, M.; Mahabadi, T. D.; Saw, S. H.; Lee, S.

    2015-12-15

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  10. A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Liao, S.; Erasmus, R.; Jivan, H.; Pelwan, C.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    The influence of radiation on the light transmittance of plastic scintillators was studied experimentally. The high optical transmittance property of plastic scintillators makes them essential in the effective functioning of the Tile calorimeter of the ATLAS detector at CERN. This significant role played by the scintillators makes this research imperative in the movement towards the upgrade of the tile calorimeter. The radiation damage of polyvinyl toluene (PVT) based plastic scintillators was studied, namely, EJ-200, EJ-208 and EJ-260, all manufactured and provided to us by ELJEN technology. In addition, in order to compare to scintillator brands actually in use at the ATLAS detector currently, two polystyrene (PS) based scintillators and an additional PVT based scintillator were also scrutinized in this study, namely, Dubna, Protvino and Bicron, respectively. All the samples were irradiated using a 6 MeV proton beam at different doses at iThemba LABS Gauteng. The radiation process was planned and mimicked by doing simulations using a SRIM program. In addition, transmission spectra for the irradiated and unirradiated samples of each grade were obtained, observed and analyzed.

  11. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  12. Package Holds Five Monolithic Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  13. Acetone oxidation in a photocatalytic monolith reactor

    SciTech Connect

    Sauer, M.L.; Ollis, D.F.

    1994-09-01

    Photocatalyzed oxidation of acetone (70-400 mg/m{sup 3}) in air was carried out using near-UV illuminated TiO{sub 2} (anatase) coated on the surface of a ceramic honeycomb monolith. Considerable adsorption of acetone and water was noted on the catalyst coated monolith; these uptakes were described with a Langmuir adsorption isotherm for acetone and a modified BET adsorption isotherm for water. The acetone photocatalyzed disappearance kinetics on the TiO{sub 2} were determined with initial rate differential conversion, recycle reactor data and were analyzed using a Langmuir-Hinshel-Wood rate form coupled with a reactant mass balance including appreciable acetone monolith adsorption. The model, with parameters evaluated from initial rate data, is then shown to satisfactorily predict reactor behavior at all conversions. These kinetics and design results, together with earlier literature for photocatalytic oxidation of alkanes, 1-butanol, toluene, trichloroethylene, and odor compounds, indicate a potential for use of the photocatalytic monolith configuration for removal of all major classes of air contaminants. 14 refs., 11 figs., 1 tab.

  14. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  15. Monolithic resonant optical reflector laser diodes

    NASA Astrophysics Data System (ADS)

    Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.

    1991-10-01

    The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.

  16. Development of oxide fibrous monolith systems.

    SciTech Connect

    Goretta, K. C.

    1999-03-02

    Fibrous monolithic ceramics generally have a cellular structure that consists of a strong cell surrounded by a weaker boundary phase [1-5]. Fibrous monoliths (FMs) are produced from powders by conventional ceramic fabrication techniques, such as extrusion [1,2]. When properly engineered, they exhibit fail gracefully [3-5]. Several compositions of ceramics and cermets have been processed successfully in fibrous monolithic form [4]. The most thoroughly investigated fibrous monolith consists of Si{sub 3}N{sub 4} cells and a BN cell-boundary phase [3-5]. Through appropriate selection of initial powders and extrusion and hot-pressing parameters, very tough final products have been produced. The resultant high toughness is due primarily to delamination during fracture along textured platelike BN grains. The primary objectives of our program are to develop: (1) Oxide-based FMs, including new systems with improved properties; (2) FMs that can be pressureless sintered rather than hot-pressed; (3) Techniques for continuous extrusion of FM filaments, including solid freeform fabrication (SFF) for net-shape fabrication of FMs; (4) Predictive micromechanical models for FM design and performance; and (5) Ties with industrial producers and users of FMs.

  17. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  18. Rad-Hard Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Giorgi, Marco

    2005-06-01

    For the next generation of High Energy Physics (HEP) Experiments silicon microstrip detectors working in harsh radiation environments with excellent performances are necessary. The irradiation causes bulk and surface damages that modify the electrical properties of the detector. Solutions like AC coupled strips, overhanging metal contact, <100> crystal lattice orientation, low resistivity n-bulk and Oxygenated substrate are studied for rad-hard detectors. The paper presents an outlook of these technologies.

  19. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    SciTech Connect

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiency by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.

  20. Rad-Hard/HI-REL FPGA

    NASA Technical Reports Server (NTRS)

    Wang, Jih-Jong; Cronquist, Brian E.; McGowan, John E.; Katz, Richard B.

    1997-01-01

    The goals for a radiation hardened (RAD-HARD) and high reliability (HI-REL) field programmable gate array (FPGA) are described. The first qualified manufacturer list (QML) radiation hardened RH1280 and RH1020 were developed. The total radiation dose and single event effects observed on the antifuse FPGA RH1280 are reported on. Tradeoffs and the limitations in the single event upset hardening are discussed.

  1. Rad-Hard/HI-REL FPGA

    NASA Technical Reports Server (NTRS)

    Wang, Jih-Jong; Cronquist, Brian E.; McGowan, John E.; Katz, Richard B.

    1997-01-01

    The goals for a radiation hardened (RAD-HARD) and high reliability (HI-REL) field programmable gate array (FPGA) are described. The first qualified manufacturer list (QML) radiation hardened RH1280 and RH1020 were developed. The total radiation dose and single event effects observed on the antifuse FPGA RH1280 are reported on. Tradeoffs and the limitations in the single event upset hardening are discussed.

  2. Method of making a high conductance ohmic junction for monolithic semiconductor devices

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R. (Inventor)

    1988-01-01

    In order to increase the efficiency of solar cells, a monolithic stacked device is constructed comprising a plurality of solar sub-cells adjusted for different bands of radiation. The interconnection between these sub-cells has been a significant technical problem. The invention provides an interconnection which is a thin layer of high ohmic conductance material formed between the sub-cells. Such a layer tends to form beads which serve as a shorting interconnect while passing a large fraction of the radiation to the lower sub-cells and permitting lattice-matching between the sub-cells to be preserved.

  3. Miniature multimode monolithic flextensional transducers.

    PubMed

    Hladky-Hennion, Anne-Christine; Uzgur, A Erman; Markley, Douglas C; Safari, Ahmad; Cochran, Joe K; Newnham, Robert E

    2007-10-01

    Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized.

  4. Wideband monolithically integrated front-end subsystems and components

    NASA Astrophysics Data System (ADS)

    Mruk, Joseph Rene

    This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High

  5. Development Of Hard X-Ray Sources With High Radiative Power Output At The National Ignition Facility Utilizing Molybdenum and Silver Cavities

    NASA Astrophysics Data System (ADS)

    Widmann, Klaus; Benjamin, Russ; May, Mark; Thorn, Daniel; Colvin, Jeff; Barrios, Maria; Kemp, G. Elijah; Fournier, Kevin; Blue, Brent

    2016-10-01

    In our on-going x-ray source development campaign at the National Ignition Facility, we have recently extended the energy range of our laser-driven cavity sources to the 20 keV range by utilizing molybdenum-lined and silver-lined cavity targets. Using a variety of spectroscopic and power diagnostics we determined that almost 1% of the nearly 1 MJ total laser energy used for heating the cavity target was converted to Mo K-shell x rays using our standard cavity design. The same laser drive for silver-lined cavities yielded about 0.4% conversion efficiency for the Ag K-shell emission. Comparison with HYDRA simulations are used to further optimize the x-rays conversion efficiency. The simulations indicate that minor changes in the aspect ratio of the cavity and the layer thickness may double the radiative power of the K-shell emission. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  6. Weak solar flares with a detectable flux of hard X rays: Specific features of microwave radiation in the corresponding active regions

    NASA Astrophysics Data System (ADS)

    Grigor'eva, I. Yu.; Livshits, M. A.

    2014-12-01

    The emission of very weak flares was registered at the Suzaku X-ray observatory in 2005-2009. The photon power spectrum in the 50-110 keV range for a number of these phenomena shows that some electrons accelerate to energies higher than 100 keV. The corresponding flares originate in active regions (ARs) with pronounced sunspots. As in the case of AR 10933 in January 2007 analyzed by us previously (Grigor'eva et al., 2013), the thoroughly studied weak flares in May 2007 are related to the emergence of a new magnetic field in the AR and to the currents that originate in this case. A comparison of the Suzaku data with the RATAN-600 microwave observations indicates that a new polarized source of microwave radiation develops in the AR (or the previously existing source intensifies) one-two days before a weak flare in the emerging flux regions. Arguments in favor of recent views that fields are force-free in the AR corona are put forward. The development of weak flares is related to the fact that the free energy of the currents that flow above the field neutral line at altitudes reaching several thousand kilometers is accumulated and subsequently released.

  7. MONOLITHIC ACTIVE PIXEL MATRIX WITH BINARY COUNTERS IN AN SOI PROCESS.

    SciTech Connect

    DUPTUCH,G.; YAREMA, R.

    2007-06-07

    The design of a Prototype monolithic active pixel matrix, designed in a 0.15 {micro}m CMOS SOI Process, is presented. The process allowed connection between the electronics and the silicon volume under the layer of buried oxide (BOX). The small size vias traversing through the BOX and implantation of small p-type islands in the n-type bulk result in a monolithic imager. During the acquisition time, all pixels register individual radiation events incrementing the counters. The counting rate is up to 1 MHz per pixel. The contents of counters are shifted out during the readout phase. The designed prototype is an array of 64 x 64 pixels and the pixel size is 26 x 26 {micro}m{sup 2}.

  8. Initial results for the silicon monolithically interconnected solar cell product

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-01-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  9. Initial results for the silicon monolithically interconnected solar cell product

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-01-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  10. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  11. A monolithic integrated photonic microwave filter

    NASA Astrophysics Data System (ADS)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2016-12-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  12. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  13. A monolithic integrated photonic microwave filter

    NASA Astrophysics Data System (ADS)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  14. Trends in monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Sterzer, F.

    1981-11-01

    Current trends in the fabrication of monolithic microwave integrated circuits (MMICs) are reviewed. The technologies developed predominantly make use of semi-insulating GaAs substrates, GaAs FET active elements, and lumped element circuits. An increasing number of MMIC designs incorporate innovative designs, including actively matched amplifiers and mixers, analog and digital functions, SAW circuits, and increased Q with lower resistance. A new generation of hybrid integrated circuits is also being developed which is expected to compete with conventional MMICs due to the potential for significant cost reduction. MMICs are considered to have the greatest potentials in applications requiring large quantities of similar circuits, circuits using large numbers of transistors or small areas for passive elements, and novel circuits such as SAWs monolithically combined with FETs.

  15. Monolithic mode-locked quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Penty, R. V.; Thompson, M. G.; White, I. H.

    2008-02-01

    Monolithic mode-locked laser diodes based on QD active regions are regarded as potentially suitable for a large range of photonic applications due to their compactness, mechanical stability and robustness, high potential repetition rates and low potential jitter. Their inherent properties, such as high differential gain, low chirp and fast saturable absorption have led to demonstration of improved performance over their QW equivalents. Low background loss and the relatively long lengths of quantum dot laser devices also have encouraged studies of mode-locking at repetition rates previously not explored in monolithic devices. Applications include biomedicine, high-speed data transmission, clock signal generation and electro-optic sampling. This paper reviews some of the work at Cambridge on the realization of such devices.

  16. Comparison of soil-monolith extraction techniques

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Rupp, H.; Weller, U.; Vogel, H.-J.

    2009-04-01

    In the international literature the term „lysimeter" is used for different objectives, e.g. suction cups, fluxmeters, etc. According to our understanding it belongs to the direct methods to measure water and solute fluxes in soil. Depending on the scientific task the shape and dimensions of the lysimeter as well as the type of filling (disturbed or undisturbed) and the specific instrumentation can be different. In any case where water dynamics or solute transport in natural soil is considered, lysimeters should be filled with 'undisturbed' monoliths which are large enough to contain the small scale heterogeneity of a site since flow and transport is highly sensitive to soil structure. Furthermore, lysimeters with vegetation should represent the natural crop inventory and the maximum root penetration depth should be taken into account. The aim of this contribution is to give an overview about different methods for obtaining undisturbed soil monoliths, in particular about i) techniques for the vertical and ii) for the horizontal extraction and iii) to evaluate the most frequently used procedures based on X-ray tomography images. Minimal disturbance of the soil monolith during extraction and subsequence filling of the lysimeter vessel is of critical importance for establishing flow and transport conditions corresponding approximately to natural field conditions. In the past, several methods were used to extract and fill lysimeter vessels vertically - including hand digging, employing sets of trihedral scaffold with lifting blocks and ballast, or using heavy duty excavators, which could shear and cut large blocks of soil. More recently, technologies have been developed to extract cylindrical soil monoliths by using ramming equipment or screw presses. One of the great disadvantages of the mentioned methods is the compaction or settling of soil that occurs during the "hammering" or "pressing". For this reason a new technology was developed, which cuts the outline of

  17. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  18. Refined Synthesis and Crystal Growth of Pb{sub 2}P{sub 2}Se{sub 6} for Hard Radiation Detectors.

    SciTech Connect

    Wang, Peng L.; Kostina, Svetlana S.; Meng, Fang; Kontsevoi, Oleg Y.; Liu, Zhifu; Chen, Pice; Peters, John A.; Hanson, Micah; He, Yihui; Chung, Duck Young; Freeman, Arthur J.; Wessels, Bruce W.; Kanatzidis, Mercouri G.

    2016-09-01

    The refined synthesis and optimized crystal growth of high quality Pb2P2Se6 single crystals are reported. Improved experimental procedures were implemented to reduce the oxygen contamination and improve the stoichiometry of the single crystal samples. The impact of oxygen contamination and the nature of the stoichiometry deviation in the Pb2P2Se6 system were studied by first-principles density functional theory (DFT) electronic structure calculations as well as experimental methods. The DFT calculations indicated that the presence of interstitial oxygen atoms (O-int) leads to the formation of a deep level located near the middle of the gap, as well as a shallow acceptor level near the valence band maximum. In addition, total energy calculations of the heat of formation of Pb2P2Se6 suggest that the region of thermodynamic stability is sufficiently wide. By refining the preparative procedures, high quality Pb2P2Se6 single crystal samples were reproducibly obtained. These Pb2P2Se6 single crystals exhibited excellent optical transparency, electrical resistivity in the range of 10(11) Omega.cm, and a significant increase in photoconductivity. Infrared photoluminescence of the Pb2P2Se6 single crystals was observed over the temperature range of 15-75 K. Detectors fabricated from boules yielded a clear spectroscopic response to both Ag K alpha X-ray and Co-57 gamma-ray radiation. The electron and hole mobility lifetime product (mu tau) of the current Pb2P2Se6 detectors were estimated to be 3.1 x 10(-4) and 4.8 X 10(-5) cm(2)/V, respectively.

  19. Update On Monolithic Fuel Fabrication Development

    SciTech Connect

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  20. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  1. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  2. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  3. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  4. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  5. Monolithically integrated interferometer for optical displacement measurement

    NASA Astrophysics Data System (ADS)

    Hofstetter, Daniel; Zappe, Hans P.

    1996-01-01

    We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.

  6. Monolithic Integration of Semiconductor and Superconductor Components

    DTIC Science & Technology

    1992-03-31

    change the device performance at room temperature . The monolithic bipolar transistors will be fabricated by Honeywell’s MICRO SWITCH Division of...subsequent processing run funded by Honeywell which was completed in December, 1991. Task 2.5: Device Evaluation Room temperature resistance measurements were...dc bias current of only 1 pA was measured at a substrate temperature of 73 K in a microbolometer occupying a 125 pm x 125 pm area. In thermal imaging

  7. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  8. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths.

  9. Monolithic zirconia and digital impression: case report.

    PubMed

    De Angelis, F; Brauner, E; Pignatiello, G; Mencio, F; Rosella, D; Papi, P; Di Carlo, T; Giovannetti, A; Pompa, G; Di Carlo, S

    2017-01-01

    The aim of this study is to present a clinical case of a full arch prosthetic rehabilitation on natural teeth, combining both digital work-flow and monolithic zirconia. Digital impression was taken with an intraoral optical scanner (CS3500, Carestream Dental, Atlanta, GA, USA). A prosthetic rehabilitation was realized on natural teeth using monolithic zirconia from 1.6 to 1.4 and from 2.7 to 2.4 frameworks, while in the aesthetic area (from 2.3 to 1.3), technicians left on the structure a 0.8 mm vestibular space for ceramic layering. The combination of digital impression technology and the use of the monolithic zirconia had demonstrated the delivery of the final prosthetic device in a quick time without the need to remodel functional or aesthetic areas. The digital work-flow combines intraoral optical impression techniques and CAD/CAM technology, in order to achieve a fully digital and successful way to deliver prosthetic restorations to patients, providing aesthetics and function in shorter intervals of time. The clinical outcome of this study was satisfactory but a long-term evaluation is needed.

  10. Monolithic catalyst beds for hydrazine reactors

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monolithic catalyst bed for monopropellant hydrazine decomposition was evaluated. The program involved the evaluation of a new hydrazine catalyst concept wherein open-celled foamed materials are used as supports for the active catalysts. A high-surface-area material is deposited upon the open-celled foamed material and is then coated with an active metal to provide a spontaneous catalyst. Only a fraction of the amount of expensive active metal in currently available catalysts is needed to promote monolithic catalyst. Numerous parameters were evaluated during the program, and the importance of additional parameters became obvious only while the program was in progress. A demonstration firing (using a 2.2-Newton (N)(0.5-lbf) reactor) successfully accumulated 7,700 seconds of firing time and 16 ambient temperature starts without degradation. Based on the excellent results obtained throughout the program and the demonstrated life capability of the monolithic foam, it is recommended that additional studies be conducted to further exploit the advantages of this concept.

  11. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ('standard') 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name 'Independent Coaxial Detector Array', or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  12. Strength and toughness of monolithic and composite silicon nitrides

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    1990-01-01

    The strength and toughness of two composite and two monolithic silicon nitrides were measured from 25 to 1400 C. The monolithic and composite materials were made from similar starting powders. Both of the composite materials contained 30 vol percent silicon carbide whiskers. All measurements were made by four point flexure in surrounding air and humidity. The composite and monolithic materials exhibited similar fast fracture properties as a function of temperature.

  13. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  14. Consolidation and densification methods for fibrous monolith processing

    SciTech Connect

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  15. Less common applications of monoliths: Preconcentration andsolid-phase extraction

    SciTech Connect

    Svec, Frantisek

    2006-03-27

    Monolithic materials are finding their place in a variety of fields. While liquid chromatography is the most emphasized use of this new category of porous media, some other just as important applications are eclipsed by the success of monolithic columns. This review article describes all current facets of use of monoliths in preconcentration and solid-phase extraction. In addition to the typical off line use that does not seem to be the main stream application for the monolithic materials, in-line connection of the preconcentration with HPLC, electrochromatography, electrophoresis, enzymatic digestion, as well as its applications in microfluidics are presented.

  16. Monolithic Lumped Element Integrated Circuit (M2LEIC) Transistors.

    DTIC Science & Technology

    INTEGRATED CIRCUITS, *MONOLITHIC STRUCTURES(ELECTRONICS), *TRANSISTORS, CHIPS(ELECTRONICS), FABRICATION, EPITAXIAL GROWTH, ULTRAHIGH FREQUENCY, POLYSILICONS, PHOTOLITHOGRAPHY, RADIOFREQUENCY POWER, IMPEDANCE MATCHING .

  17. Thermodynamic hardness and the maximum hardness principle

    NASA Astrophysics Data System (ADS)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2017-08-01

    An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T-1(I -A ) , where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

  18. Thermodynamic hardness and the maximum hardness principle.

    PubMed

    Franco-Pérez, Marco; Gázquez, José L; Ayers, Paul W; Vela, Alberto

    2017-08-21

    An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T(-1)(I-A), where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

  19. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  20. Measuring THz QCL feedback using an integrated monolithic transceiver.

    SciTech Connect

    Wanke, Michael Clement

    2010-08-01

    THz quantum cascade lasers are of interest for use as solid-state local-oscillators in THz heterodyne receiver systems, especially for frequencies exceeding 2 THz and for use with non-cryogenic mixers which require mW power levels. Among other criteria, to be a good local oscillator, the laser must have a narrow linewidth and excellent frequency stability. Recent phase locking measurements of THz QCLs to high harmonics of microwave frequency reference sources as high as 2.7 THz demonstrate that the linewidth and frequency stability of QCLs can be more than adequate. Most reported THz receivers employing QCLs have used discrete source and detector components coupled via mechanically aligned free-space quasioptics. Unfortunately, retroreflections of the laser off of the detecting element can lead to deleterious feedback effects. Using a monolithically integrated transceiver with a Schottky diode monolithically integrated into a THz QCL, we have begun to explore the sensitivity of the laser performance to feedback due to retroreflections of the THz laser radiation. The transceiver allows us to monitor the beat frequency between internal Fabry-Perot modes of the QCL or between a QCL mode and external radiation incident on the transceiver. When some of the power from a free running Fabry-Perot type QCL is retroreflected with quasi-static optics we observe frequency pulling, mode splitting and chaos. Given the lack of calibrated frequency sources with sufficient stability and power to phase lock a QCL above a couple THz, attempts have been made to lock the absolute laser frequency by locking the beat frequency of a multimoded laser. We have phase locked the beat frequency between Fabry-Perot modes to an {approx}13 GHz microwave reference source with a linewidth less than 1 Hz, but did not see any improvment in stability of the absolute frequency of the laser. In this case, when some laser power is retroreflected back into the laser, the absolute frequency can be pulled

  1. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    2000-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  2. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    SciTech Connect

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  3. Creating deep soil core monoliths: Beyond the solum

    USDA-ARS?s Scientific Manuscript database

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  4. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  5. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  6. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  7. Electrochromic switching of monolithic Prussian blue thin film devices.

    PubMed

    Liu, Jianxi; Zhou, Wencai; Walheim, Stefan; Wang, Zhengbang; Lindemann, Peter; Heissler, Stefan; Liu, Jinxuan; Weidler, Peter G; Schimmel, Thomas; Wöll, Christof; Redel, Engelbert

    2015-06-01

    Monolithic, crystalline and highly oriented coordination network compound (CNC) Prussian blue (PB) thin films have been deposited though different routes on conductive substrates. Characterization of the monolithic thin films reveals a long-term stability, even after many redox cycles the crystallinity as well as the high orientation remain intact during the electrochromic switching process.

  8. Monolithic LTCC seal frame and lid

    SciTech Connect

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  9. Isolation of Bacterial Ribosomes with Monolith Chromatography

    PubMed Central

    Trauner, Andrej; Bennett, Mark H.; Williams, Huw D.

    2011-01-01

    We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology. PMID:21326610

  10. Hardness of irradiated poly(methyl methacrylate) at elevated temperatures

    SciTech Connect

    Lu, K.-P.; Lee, Sanboh; Cheng, Cheu Pyeng

    2001-08-15

    The decrease in hardness induced by gamma irradiation in poly(methyl methacrylate) (PMMA) has been investigated. The hardness is assumed to decrease linearly with the concentration of radiation-induced defects. Annealing at high temperatures induces defect annihilation as tracked by an increase in hardness. The annihilation follows first-order kinetics during isothermal annealing. The dependence of hardness on the reciprocal of the time constant satisfies the Arrhenius equation, and the corresponding activation energy of the kinetic process decreases with increasing dose. The hardness of postannealed PMMA decreases linearly with increasing dose. {copyright} 2001 American Institute of Physics.

  11. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect

    Mark J. Rigali

    2001-10-01

    Published mechanical and thermal properties data on a variety of materials was gathered, with focus on materials that have potential with respect to developing wear resistant and damage tolerant composite for mining industry applications. Preliminary core materials of interest include but are not limited to: Diamond, Tungsten Carbide and Cemented Tungsten Carbides, Carbides of Boron, Silicon, Titanium and Aluminum, Diboride of Titanium and Aluminum, Nitrides of Aluminum, Silicon, Titanium, and Boron, Aluminum Oxide, Tungsten, Titanium, Iron, Cobalt and Metal Alloys. Preliminary boundary materials of interest include but are not limited to: W metal, WC-Co, W-Co, WFeNi, and Mo metal and alloys. Several FM test coupons were fabricated with various compositions using the above listed materials. These coupons were consolidated to varying degrees by uniaxial hot pressing, then cut and ground to expose the FM cell structure. One promising system, WC-Co core and WFeNi boundary, was consolidated to 97% of theoretical density, and demonstrates excellent hardness. Data on standard mechanical tests was gathered, and tests will begin on the consolidated test coupons during the upcoming reporting period. The program statements of work for ACR Inc. and its subcontractors, as well as the final contract negotiations, were finalized during the current reporting period. The program start date was February 22nd, 2001. In addition to the current subcontractors, Kennametal Inc., a major manufacturer of cutting tools and wear resistant tooling for the mining industry, expressed considerable interest in ACR's Fibrous Monolith composites for both machine and mining applications. At the request of Kennametal, ARC Inc fabricated and delivered several Fibrous Monolith coupons and components for testing and evaluation in the mining and machine tool applications. Additional samples of Diamond/Tungsten Carbide-6%Cobalt Fibrous Monolith were fabricated and delivered for testing Kennametal's Rapid

  12. Digital micromirror device imaging bar for hard copy

    NASA Astrophysics Data System (ADS)

    Nelson, William E.; Bhuva, Rohit L.

    1995-04-01

    Texas Instruments has pursued the development of a Spatial Light Modulator called the Digital Micromirror Device (DMD) for a number of years. The device is applicable in both display and hard copy applications. This paper discusses the progress that has been made on a DMD imaging subsystem for high speed, high quality electrophotographic printing. An architecture and method of manufacture have been developed for a monolithic silicon area array DMD suitable for imaging across an A3 page (297 mm) at 600 dots per inch. The device and optical characteristics will be discussed in the context of an experimental testbed.

  13. Temperature Insensitive and Radiation Hard Photonics

    DTIC Science & Technology

    2014-03-19

    irradiation session and the results recorded . Temperature variation tests using the segmented contact method produced data used in predictive models. 3.1...measurements using the segmented contact method. The second device was a working laser that can be used to test the effect of irradiation on the...gain and loss curves of the diagnostic devices after the irradiation will provide us with the metrics that we can use to gauge the overall effect

  14. Statistical Modeling for Radiation Hardness Assurance

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2014-01-01

    We cover the models and statistics associated with single event effects (and total ionizing dose), why we need them, and how to use them: What models are used, what errors exist in real test data, and what the model allows us to say about the DUT will be discussed. In addition, how to use other sources of data such as historical, heritage, and similar part and how to apply experience, physics, and expert opinion to the analysis will be covered. Also included will be concepts of Bayesian statistics, data fitting, and bounding rates.

  15. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

    DOEpatents

    Murray, Christopher S.; Wilt, David M.

    2000-01-01

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  16. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    SciTech Connect

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  17. Monolithic molecularly imprinted cryogel for lysozyme recognition.

    PubMed

    Rabieizadeh, Mohammadmahdi; Kashefimofrad, Seyed Mohammadreza; Naeimpoor, Fereshteh

    2014-10-01

    The application of molecularly imprinted polymers in the selective adsorption of macromolecules such as proteins by monolithic protein-imprinted columns requires a macroporous structure, which can be provided by cryogelation at low temperature in which the formation of ice crystals gives a porous structure to the molecularly imprinted polymer. In this study, we applied this technique to synthesize lysozyme-imprinted polyacrylamide cryogels containing 8% w/v of total monomers and 0.3% w/v of lysozyme. The synthesized cryogel was sponge-like and elastic with very fast swelling and reshaping properties, showing a swelling ratio of 24.5 ± 3 and gel fraction yield of about 72%. It showed an imprinting effect of 1.58 and a separation factor of 1.37 for cytochrome c as the competing protein. Adsorption studies on the cryogel revealed that it follows the Langmuir isotherm, with a maximum theoretical adsorption capacity of 36.3 mg lysozyme per gram of cryogel. Additionally, it was shown that a salt-free rebinding solution at low flow rate and pH = 7.0 is favorable for lysozyme rebinding. This kind of monolithic column promises a wide range of application in separation of various biomolecules due to its preparation simplicity, good rebinding characteristics, and macroporosity.

  18. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  19. Large area monolithic organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Tao, Cheng; Hambsch, Mike; Pivrikas, Almantas; Velusamy, Marappan; Aljada, Muhsen; Zhang, Yuliang; Burn, Paul L.; Meredith, Paul

    2012-11-01

    Although efficiencies of > 10% have recently been achieved in laboratory-scale organic solar cells, these competitive performance figures are yet to be translated to large active areas and geometries relevant for viable manufacturing. One of the factors hindering scale-up is a lack of knowledge of device physics at the sub-module level, particularly cell architecture, electrode geometry and current collection pathways. A more in depth understanding of how photocurrent and photovoltage extraction can be optimised over large active areas is urgently needed. Another key factor suppressing conversion efficiencies in large area cells is the relatively high sheet resistance of the transparent conducting anode - typically indium tin oxide. Hence, to replace ITO with alternative transparent conducting anodes is also a high priority on the pathway to viable module-level organic solar cells. In our paper we will focus on large area devices relevant to sub-module scales - 5 cm × 5 cm monolithic geometry. We have applied a range of experimental techniques to create a more comprehensive understanding of the true device physics that could help make large area, monolithic organic solar cells more viable. By employing this knowledge, a novel transparent anode consisting of molybdenum oxide (MoOx) and silver (Ag) is developed to replace ITO and PEDOT-free large area solar cell sub-modules, acting as both a transparent window and hole-collecting electrode. The proposed architecture and anode materials are well suited to high throughput, low cost all-solution processing.

  20. Catastrophic failure of a monolithic zirconia prosthesis.

    PubMed

    Chang, Jae-Seung; Ji, Woon; Choi, Chang-Hoon; Kim, Sunjai

    2015-02-01

    Recently, monolithic zirconia restorations have received attention as an alternative to zirconia veneered with feldspathic porcelain to eliminate chipping failures of veneer ceramics. In this clinical report, a patient with mandibular edentulism received 4 dental implants in the interforaminal area, and a screw-retained monolithic zirconia prosthesis was fabricated. The patient also received a maxillary complete removable dental prosthesis over 4 anterior roots. At the 18-month follow-up, all of the zirconia cylinders were seen to be fractured, and the contacting abutment surfaces had lost structural integrity. The damaged abutments were replaced with new abutments, and a new prosthesis was delivered with a computer-assisted design and computer-assisted manufacturing fabricated titanium framework with denture teeth and denture base resins. At the 6-month recall, the patient did not have any problems. Dental zirconia has excellent physical properties; however, care should be taken to prevent excessive stresses on the zirconia cylinders when a screw-retained zirconia restoration is planned as a definitive prosthesis.

  1. Monolithic columns in plant proteomics and metabolomics.

    PubMed

    Rigobello-Masini, Marilda; Penteado, José Carlos Pires; Masini, Jorge Cesar

    2013-03-01

    Since "omics" techniques emerged, plant studies, from biochemistry to ecology, have become more comprehensive. Plant proteomics and metabolomics enable the construction of databases that, with the help of genomics and informatics, show the data obtained as a system. Thus, all the constituents of the system can be seen with their interactions in both space and time. For instance, perturbations in a plant ecosystem as a consequence of application of herbicides or exposure to pollutants can be predicted by using information gathered from these databases. Analytical chemistry has been involved in this scientific evolution. Proteomics and metabolomics are emerging fields that require separation, identification, and quantification of proteins, peptides, and small molecules of metabolites in complex biological samples. The success of this work relies on efficient chromatographic and electrophoretic techniques, and on mass spectrometric detection. This paper reviews recent developments in the use of monolithic columns, focusing on their applications in "top-down" and "bottom-up" approaches, including their use as supports for immobilization of proteolytic enzymes and their use in two-dimensional and multidimensional chromatography. Whereas polymeric columns have been predominantly used for separation of proteins and polypeptides, silica-based monoliths have been more extensively used for separation of small molecules of metabolites. Representative applications in proteomics and in analysis of plant metabolites are given and summarized in tables.

  2. Method of making and structure for monolithic optical circuits

    NASA Technical Reports Server (NTRS)

    Evanchuk, Vincent L. (Inventor)

    1983-01-01

    A method for making monolithic optical circuits, with related optical devices as required or desired, on a supporting surface (10) consists of coating the supporting surface with reflecting metal or cladding resin, spreading a layer of liquid radiation senstivie plastic (12) on the surface, exposing the liquid plastic with a mask (14) to cure it in a desired pattern of light conductors (16, 18, 20), washing away the unexposed liquid plastic, and coating the conductors thus formed with reflective metal or cladding resin. The index of refraction for the cladding (22) is selected to be lower than for the conductors so that light in the conductors will be reflected by the interface with the cladding. For multiple level conductors, as where one conductor must cross over another, the process may be repeated to fabricate a bridge with columns (24, 26) of conductors to the next level, and conductor (28) between the columns. For more efficient transfer of energy over the bridge, faces at 45.degree. may be formed to reflect light up and across the bridge.

  3. Recent developments in monolithic phase-locked semiconductor laser arrays

    NASA Technical Reports Server (NTRS)

    Katz, J.; Kapon, E.; Margalit, S.; Yariv, A.

    1984-01-01

    Coherent combination of the power of several semiconductor lasers fabricated on the same substrate has been the subject of an intense research effort in recent years, the main motivation being to obtain higher power levels than those available from a single laser in a stable radiation pattern. Best results reported so far include 2.6 Watts CW emitted power and less than 1 deg far-field angle (in the array plane) in arrays where all the lasers are electrically connected in parallel. A different type of coherent array, where each element has a separate contact, has been recently demonstrated. While requiring the more complex two-level metallization technology, applying a separate contact to each laser provides an additional degree of freedom in the design and the operation of monolithic arrays. The separate contacts can be employed to tailor the near-field and far-field distributions and to compensate for device-to-device nonuniformities. Furthermore, the control of the currents of the array elements allows the performance of a variety of other functions, such as beam scanning, spectral mode control, wavelength tuning and control of the mutual coherence between array elements.

  4. Recent developments in monolithic phase-locked semiconductor laser arrays

    NASA Technical Reports Server (NTRS)

    Katz, J.; Kapon, E.; Margalit, S.; Yariv, A.

    1984-01-01

    Coherent combination of the power of several semiconductor lasers fabricated on the same substrate has been the subject of an intense research effort in recent years, the main motivation being to obtain higher power levels than those available from a single laser in a stable radiation pattern. Best results reported so far include 2.6 watts CW emitted power and less than 1 deg far-field angle (in the array plane) in arrays where all the lasers are electrically connected in parallel. A different type of coherent array, where each element has a separate contact, has been recently demonstrated. While requiring the more complex two-level metallization technology, applying a separate contact to each laser provides an additional degree of freedom in the design and the operation of monolithic arrays. The separate contacts can be employed to tailor the near-field and far-field distributions and to compensate for device-to-device nonuniformities. Furthermore, the control of the currents of the array elements allows the performance of a variety of other functions, such as beam scanning, spectral mode control, wavelength tuning and control of the mutual coherence between array elements.

  5. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    PubMed Central

    Smeltink, M. W.; Straathof, A. J. J.; Paasman, M. A.; van de Sandt, E. J. A. X.; Kapteijn, F.; Moulijn, J. A.

    2008-01-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l−1 PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml−1 gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml−1 gel. The observed volumetric reaction rate in the MLR was 0.79 mol s−1 m−3monolith. Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s−1 m−3catalyst), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different

  6. Ordering of hard particles between hard walls

    NASA Astrophysics Data System (ADS)

    Chrzanowska, A.; Teixeira, P. I. C.; Ehrentraut, H.; Cleaver, D. J.

    2001-05-01

    The structure of a fluid of hard Gaussian overlap particles of elongation κ = 5, confined between two hard walls, has been calculated from density-functional theory and Monte Carlo simulations. By using the exact expression for the excluded volume kernel (Velasco E and Mederos L 1998 J. Chem. Phys. 109 2361) and solving the appropriate Euler-Lagrange equation entirely numerically, we have been able to extend our theoretical predictions into the nematic phase, which had up till now remained relatively unexplored due to the high computational cost. Simulation reveals a rich adsorption behaviour with increasing bulk density, which is described semi-quantitatively by the theory without any adjustable parameters.

  7. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  8. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  9. Westerlund 1: monolithic formation of a starburst cluster

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Clark, J. Simon; Ritchie, Ben; Goodwin, Simon

    2015-08-01

    Westerlund 1 is in all likelihood the most massive young cluster in the Milky Way, with a mass on the order of 105 Msol. We have been observing its massive star population for ten years, measuring radial velocity changes for a substantial fraction of its OB stars and evolved supergiants. The properties of the evolved population are entirely consisting with a single burst of star formation, in excellent agreement with the results of studies based on the lower-mass population.Here we will present two new studies of the cluster: 1) A direct measurement of its average radial velocity and velocity dispersion based on individual measurements for several dozen stars with constant radial velocity and 2) A search for massive stars in its immediate neighbourhood using multi-object spectroscopy.The results of these two studies show that Westerlund 1 is decidedly subvirial and has a systemic radial velocity significantly different from that of nearby gas, which was assumed to provide a dynamical distance by previous authors. Moreover, the dynamical distance is inconsistent with the properties of the high-mass stellar population. In addition, we find that the cluster is completely isolated, with hardly any massive star in its vicinity that could be associated in terms of distance modulus or radial velocity. The cluster halo does not extend much further than five parsec away from the centre. All these properties are very unusual among starburst clusters in the Local Universe, which tend to form in the context of large star-forming regions.Westerlund 1 is thus the best example we have of a starburst cluster formed monolithically.

  10. Fabrication and characterization of nanotemplated carbon monolithic material.

    PubMed

    He, Xiaoyun; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Brabazon, Dermot; Zhou, Lin; Glennon, Jeremy D; Luong, John H T; Paull, Brett

    2013-09-11

    A novel hierarchical nanotemplated carbon monolithic rod (NTCM) was prepared using a novel facile nanotemplating approach. The NTCM was obtained using C60-fullerene modified silica gels as hard templates, which were embedded in a phenolic resin containing a metal catalyst for localized graphitization, followed by bulk carbonization, and template and catalyst removal. TEM, SEM, and BET measurements revealed that NTCM possessed an integrated open hierarchical porous structure, with a trimodal pore distribution. This porous material also possessed a high mesopore volume and narrow mesopore size distribution. During the course of carbonization, the C60 conjugated to aminated silica was partly decomposed, leading to the formation of micropores. The Raman signature of NTCM was very similar to that of multiwalled carbon nanotubes as exemplified by three major peaks as commonly observed for other carbon materials, i.e., the sp3 and sp2 carbon phases coexisted in the sample. Surface area measurements were obtained using both nitrogen adsorption/desorption isotherms (BET) and with a methylene blue binding assay, with BET results showing the NTCM material possessed an average specific surface area of 435 m2 g(-1), compared to an area of 372 m2 g(-1) obtained using the methylene blue assay. Electrochemical studies using NTCM modified glassy carbon or boron doped diamond (BDD) electrodes displayed quasi-reversible oxidation/reduction with ferricyanide. In addition, the BDD electrode modified with NTCM was able to detect hydrogen peroxide with a detection limit of below 300 nM, whereas the pristine BDD electrode was not responsive to this target compound.

  11. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography.

    PubMed

    Jiang, Zhengjin; Smith, Norman W; Ferguson, Paul D; Taylor, Mark R

    2009-08-01

    A novel zwitterionic hydrophilic porous poly(SPV-co-MBA) monolithic column was prepared by thermal co-polymerisation of 1-(3-sulphopropyl)-4-vinylpyridinium-betaine (4-SPV) and N,N'-methylenebisacrylamide (MBA). An HILIC/RP dual separation mechanism was observed on this optimised poly(SPV-co-MBA) monolithic column and the composition of the mobile phase corresponding to the transition from the HILIC to the RP mode was around 30% ACN in water. Higher hydrophilicity was achieved on this novel monolithic column compared to the poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulphopropyl)ammonium betaine-co-ethylene dimethacrylate) monolithic column. Permeability studies showed slight swelling and/or shrinking with mobile phases of different polarity. As might be anticipated, a weak electrostatic interaction for charged analytes was also observed by studying the influence of mobile phase pH and salt concentration on their retention on the poly(SPV-co-MBA) monolithic column. The final optimised poly(SPV-co-MBA) monolith showed comparable selectivities to commercial ZIC-pHILIC phases for polar test analytes. Fast separation of five pyrimidines and purines was achieved in less than 1 min due to the high permeability of the monolithic column. Additionally, baseline separation of nine benzoic acid derivatives was also observed using either a pH or ACN gradient.

  12. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture.

    PubMed

    Schriwer, Christian; Skjold, Anneli; Gjerdet, Nils Roar; Øilo, Marit

    2017-09-01

    Dental all-ceramic restorations of zirconia, with and without an aesthetic veneering layer, have become a viable alternative to conventional metal-ceramic restorations. The aim of this study was to evaluate whether factors of the production methods or the material compositions affect load at fracture, fracture modes, internal fit or crown margins of monolithic zirconia crowns. Sixty crowns made from six different commercially available dental zirconias were produced to a model tooth with a shallow circumferential chamfer preparation. Internal fit was assessed by the replica method. The crown margin quality was assessed by light microscopy on an ordinal scale. The cemented crowns were loaded centrally in the occlusal fossa with a horizontal steel cylinder with a diameter of 13mm at 0.5mm/min until fracture. Fractographic analysis was performed on the fractured crowns. There were statistically significant differences among the groups regarding crown margins, internal fit and load at fracture (p<0.05, Kruskall Wallis). Fracture analyses revealed that all fractures started cervically and propagated to the occlusal surface similar to clinically observed fractures. There was statistically significant correlation between margin quality and load at fracture (Spearman's rank correlation, p<0,05). Production method and material composition of monolithic zirconia crowns affect internal fit, crown margin quality and the load at fracture. The hard-machined Y-TZP zirconia crowns had the best margin quality and the highest load at fracture. Reduction of margin flaws will improve fracture strength of monolithic zirconia crowns and thereby increase clinical success. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  14. Hardness Tester for Polyur

    NASA Technical Reports Server (NTRS)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  15. Hardness Tester for Polyur

    NASA Technical Reports Server (NTRS)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  16. Rapid process for producing transparent, monolithic porous glass

    DOEpatents

    Coronado, Paul R.

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  17. Engineering and Design: Structural Analysis and Design of U-Frame Lock Monoliths

    DTIC Science & Technology

    1993-12-31

    upstream and downstream direction. Finally, any of the aforementioned monoliths can also act as bridge pier monoliths. When a bridge pier is located on a...monolith, it can have an effect on the design of the monolith due to the loads transmitted to the monolith from the bridge pier. This is particu- larly...ations: erodibility of foundation, potential for scour , factor of safety against flotation during dewatering of the lock, differential movements

  18. The hard metal diseases

    SciTech Connect

    Cugell, D.W. )

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure.66 references.

  19. The hard metal diseases.

    PubMed

    Cugell, D W

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure.

  20. LSST primary/tertiary monolithic mirror

    NASA Astrophysics Data System (ADS)

    Sebag, J.; Gressler, W.; Liang, M.; Neill, D.; Araujo-Hauck, C.; Andrew, J.; Angeli, G.; Cho, M.; Claver, C.; Daruich, F.; Gessner, C.; Hileman, E.; Krabbendam, V.; Muller, G.; Poczulp, G.; Repp, R.; Wiecha, O.; Xin, B.; Kenagy, K.; Martin, H. M.; Tuell, M. T.; West, S. C.

    2016-08-01

    At the core of the Large Synoptic Survey Telescope (LSST) three-mirror optical design is the primary/tertiary (M1M3) mirror that combines these two large mirrors onto one monolithic substrate. The M1M3 mirror was spin cast and polished at the Steward Observatory Mirror Lab at The University of Arizona (formerly SOML, now the Richard F. Caris Mirror Lab at the University of Arizona (RFCML)). Final acceptance of the mirror occurred during the year 2015 and the mirror is now in storage while the mirror cell assembly is being fabricated. The M1M3 mirror will be tested at RFCML after integration with its mirror cell before being shipped to Chile.

  1. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  2. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  3. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  4. Monolithic cascade-type solar cells

    NASA Technical Reports Server (NTRS)

    Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

    1985-01-01

    Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

  5. A study of subterahertz HEMT monolithic oscillators

    NASA Technical Reports Server (NTRS)

    Kwon, Youngwoo; Pavlidis, Dimitris

    1992-01-01

    A detailed study of monolithic InP-based HEMT oscillators for subterahertz operation is presented. InAlAs/InGaAs HEMT's have been optimized for high frequency operation and showed very high maximum oscillation frequencies (f(sub max)) of 310 GHz using offset self-aligned gamma-gate technology. Power characteristics of HEMT oscillators are reported. An oscillation power of more than 10 mW was evaluated by large-signal analysis at 320 GHz using HEMT's with f(sub max) = 450 GHz, V(sub br) = 10 V and a gate width (W(sub g)) of 8 x 22.5 microns. Oscillator topology studies showed that complex feedback schemes such as dual and active feedback enhance the negative resistance. Push-push oscillator designs based on harmonic signal generation can finally be used to overcome the frequency barrier imposed by f(sub max).

  6. Development of 20 GHz monolithic transmit modules

    NASA Technical Reports Server (NTRS)

    Higgins, J. A.

    1988-01-01

    The history of the development of a transmit module for the band 17.7 to 20.2 GHz is presented. The module was to monolithically combine, on one chip, five bits of phase shift, a buffer amplifier and a power amplifier to produce 200 mW to the antenna element. The approach taken was MESFET ion implanted device technology. A common pinch-off voltage was decided upon for each application. The beginning of the total integration phases revealed hitherto unencountered hazards of large microwave circuit integration which were successfully overcome. Yield and customer considerations finally led to two separate chips, one containing the power amplifiers and the other containing the complete five bit phase shifter.

  7. Solid oxide fuel cell having monolithic core

    NASA Astrophysics Data System (ADS)

    Ackerman, J. P.; Young, J. E.

    1983-10-01

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. The core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces have only the anode material or only the cathode material exposed. Each layer of the electrolyte and interconnect materials 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is 0.002 to 0.05 cm thick.

  8. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  9. Monolithic geometric anti-spring blades

    NASA Astrophysics Data System (ADS)

    Cella, G.; Sannibale, V.; DeSalvo, R.; Márka, S.; Takamori, A.

    2005-03-01

    In this article we investigate the principle and properties of a vertical passive seismic noise attenuator conceived for ground based gravitational wave interferometers. This mechanical attenuator based on a particular geometry of cantilever blades called monolithic geometric anti springs (MGAS) permits the design of mechanical harmonic oscillators with very low resonant frequency (below 10 mHz). Here we address the theoretical description of the mechanical device, focusing on the most important quantities for the low-frequency regime, on the distribution of internal stresses, and on the thermal stability. In order to obtain physical insight of the attenuator peculiarities, we devise some simplified models, rather than use the brute force of finite element analysis. Those models have been used to optimize the design of a seismic attenuation system prototype for LIGO advanced configurations and for the next generation of the TAMA interferometer.

  10. Monolithic fuel injector and related manufacturing method

    DOEpatents

    Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  11. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    NASA Astrophysics Data System (ADS)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  12. Hardness Awareness Seminar

    DTIC Science & Technology

    1978-06-01

    32 6.2 Penetration effects 33 6.3 Blast effects 35 6.4 Electromagnetic radiation effects 36 6.5 Electromagnetic pulse effects 39 6.6 Thermal radiation...7.3 Ignition hardening techniques, A-10 wing 57 protection 7.4 EMR hardening techniques 58 7.5 EMP hardening techniques 60 7.6 Thermal radiation...hostile environments which can be produced by a nuclear explosion are: a fireball, an electromagnetic pulse, thermal radiation, nuclear radiation

  13. An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: A new candidate for hard radiation detection

    SciTech Connect

    Wibowo, Arief C.; Malliakas, Christos D.; Li, Hao; Stoumpos, Constantinos C.; Chung, Duck Young; Wessels, Bruce W.; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2016-03-16

    Here, we assess the mercury chalcohalide compound, β-Hg3S2Cl2, as a potential semiconductor material for X-ray and γ-ray detection. It has a high density (6.80 g/cm3) and wide band gap (2.56 eV) and crystallizes in the cubic Pm4$\\bar{3}$n space group with a three-dimensional structure comprised of [Hg12S8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of β-Hg3S2Cl2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg3Bi2S2Cl8 compound followed by the formation of β-Hg3S2Cl2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg3Bi2S2Cl8 followed by its partial decomposition into β-Hg3S2Cl2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 1010 Ω·cm and mobility-lifetime products of electron and hole carriers of 1.4(4) × 10–4 cm2/V and 7.5(3) × 10–5 cm2/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of β-Hg3S2Cl2 as a hard radiation detector material.

  14. Preparation and complex characterization of silica holmium sol-gel monoliths.

    PubMed

    Cacaina, D; Areva, S; Laaksonen, H; Simon, S; Ylänen, H

    2011-01-01

    Amorphous, sol-gel derived SiO(2) are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol-gel derived SiO(2) could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol-gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol-gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate.

  15. AlGaN/GaN-on-Si monolithic power-switching device with integrated gate current booster

    NASA Astrophysics Data System (ADS)

    Han, Sang-Woo; Jo, Min-Gi; Kim, Hyungtak; Cho, Chun-Hyung; Cha, Ho-Young

    2017-08-01

    This study investigates the effects of a monolithic gate current booster integrated with an AlGaN/GaN-on-Si power-switching device. The integrated gate current booster was implemented by a single-stage inverter topology consisting of a recessed normally-off AlGaN/GaN MOS-HFET and a mesa resistor. The monolithically integrated gate current booster in a switching FET eliminated the parasitic elements caused by external interconnection and enabled fast switching operation. The gate charging and discharging currents were boosted by the integrated inverter, which significantly reduced both rise and fall times: the rise time was reduced from 626 to 41.26 ns, while the fall time was reduced from 554 to 42.19 ns by the single-stage inverter. When the packaged monolithic power chip was tested under 1 MHz hard-switching operation with VDD = 200 V, the switching loss was found to have been drastically reduced, from 5.27 to 0.55 W.

  16. 26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT UPPER END OF MAIN LOCK AND DAM PIERS, LOOKING SOUTHEAST (DOWNSTREAM) - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  17. 10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOCK CONSTRUCTION PHOTO SHOWING CONCRETE MONOLITHS FOR WALLS, LOOKING NORTH. August 1934 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 16, Upper Mississippi River, Muscatine, Muscatine County, IA

  18. 62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 321, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 32-1, LOOKING WEST Photograph No. 8571. October 24, 1949 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  19. 31. SPILLWAY CHANNEL WALLS REINF DETAILS; MONOLITHS E21 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SPILLWAY CHANNEL WALLS REINF - DETAILS; MONOLITHS E-21 AND W-21. Sheet S-45, May, 1940. File no. 342/58. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  20. 27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DETAIL VIEW OF CONCRETE MONOLITH CONSTRUCTION AT DOWNSTREAM END OF WEST MAIN LOCK WALL, LOOKiNG SOUTHEAST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL