Sample records for radiation inactivation analysis

  1. Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, U.D.; Govindarajan, P.; Dave, P.J.

    Inactivation of aflatoxin B1 was studied by using gamma radiation and hydrogen peroxide. A 100-krad dose of gamma radiation was sufficient to inactivate 50 micrograms of aflatoxin B1 in the presence of 5% hydrogen peroxide, and 400 krad was required for total degradation of 100 micrograms of aflatoxin in the same system. Degradation of aflatoxin B1 was confirmed by high-pressure liquid chromatographic and thin-layer chromatographic analysis. Ames microsomal mutagenicity test showed loss of aflatoxin activity. This method of detoxification also reduces the toxin levels effectively in artificially contaminated groundnuts.

  2. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    PubMed

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P < 0.05). UV radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P < 0.05) in reconstituted infant formula. Significant effects of UV radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  3. Effect of Lot Variability on Ultraviolet Radiation Inactivation Kinetics of Cryptosporidium parvum Oocysts

    EPA Science Inventory

    Numerous studies have demonstrated the efficiency of ultraviolet (UV) radiation for the inactivation of oocysts of Cryptosporidium parvum. In these studies inactivation is measured as reduction in oocysts. A primary goal is to estimate the UV radiation required to achiev...

  4. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    PubMed Central

    Mahdy, Safy El din; Hassanin, Amr Ismail; Gamal El-Din, Wael Mossad; Ibrahim, Ehab El-Sayed; Fakhry, Hiam Mohamed

    2015-01-01

    Aim: The present work deals with different methods for foot and mouth disease virus (FMDV) inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV) in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21) and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA). Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV “O/pan Asia, A/Iran05, and SAT-2/2012” was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain) were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain) contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance) for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy) were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012) were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2) was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A/Iran05, and SAT-2/2012) with gamma radiation were 55-60 and 45 kGy, respectively. Inactivation of FMDV with binary was 20, 24 and 16 hr for O/pan Asia, A/Iran05, and SAT-2/2012, respectively while inactivation by (BEI+FA) was determined after 18, 19 and 11 hr for O/pan-Asia, A/Iran 05, and SAT-2/2012, respectively. The antigenicity of control virus before inactivation was 1/32, it was not changed after inactivation in case of gamma radiation and (BEI+FA) and slightly decrease to 1/16 in case of binary and declined to 1/2, 1/4 in case of heat and UV inactivation, respectively. The immune response induced by inactivated FMD vaccines by gamma radiation and (BEI+FA) lasted to 9 months post-vaccination, while the binary only still up to 8 months post-vaccination but heat and UV-inactivated vaccines were not effective. Conclusion: Gamma radiation could be considered a good new inactivator inducing the same results of inactivated vaccine by binary with formaldehyde (BEI+FA). PMID:27047204

  5. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation.

    PubMed Central

    Blanc, P L; Tuveson, R W; Sargent, M L

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10% survival. The same strains were about equally sensitive to shortwave ultraviolet (UV) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0% survival) than are conidia from a UV-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably no cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas UV-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment. PMID:128556

  6. Thermoradiation inactivation of naturally occurring organisms in soil

    NASA Technical Reports Server (NTRS)

    Reynolds, M. C.; Lindell, K. F.; David, T. J.

    1973-01-01

    Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization.

  7. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less

  8. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less

  9. THE ANTIGENIC POTENCY OF EPIDEMIC INFLUENZA VIRUS FOLLOWING INACTIVATION BY ULTRAVIOLET RADIATION

    PubMed Central

    Salk, Jonas E.; Lavin, G. I.; Francis, Thomas

    1940-01-01

    A study of the antigenic potency of influenza virus inactivated by ultraviolet radiation has been made. Virus so inactivated is still capable of functioning as an immunizing agent when given to mice by the intraperitoneal route. In high concentrations inactivated virus appears to be nearly as effective as active virus but when quantitative comparisons of the immunity induced by different dilutions are made, it is seen that a hundredfold loss in immunizing capacity occurs during inactivation. Virus in suspensions prepared from the lungs of infected mice is inactivated more rapidly than virus in tissue culture medium. A standard for the comparison of vaccines of epidemic influenza virus is proposed. PMID:19871057

  10. THE INACTIVATION OF DILUTE SOLUTIONS OF CRYSTALLINE TRYPSIN BY X-RADIATION

    PubMed Central

    McDonald, Margaret R.

    1954-01-01

    The activity of dilute solutions of crystalline trypsin is destroyed by x-rays. The inactivation is an exponential function of the radiation dose. The reaction yield of inactivation is independent of the intensity at which the radiation is delivered or the quality of the x-rays. The reaction yield increases with increasing concentration of trypsin, varying from 0.06 to 0.7 micromoles per liter per 1000 r for trypsin solutions ranging from 1 x 10–7 to 2 x 10–4 M. PMID:13192318

  11. Single-hit mechanism of tumour cell killing by radiation.

    PubMed

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells should be further investigated as a radiation-hypersensitive target that could be modulated for therapeutic advantage.

  12. Factors affecting inactivation of Moraxell-Acinetobacter cells in an irradiation process. [/sup 137/Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firstenberg-Eden, R.; Rowley, D.B.; Shattuck, G.E.

    1980-09-01

    The effect of various stages of the irradiation processing of beef on the injury and inactivation of radiation-resistant Moraxella-Acinetobactor cells was studied. Moraxella-Acinetobacter cells were more resistant to heat inactivation and injury when heated in meat with salts (0.75% NaCl and 0.375% sodium tripolyphosphate) than in meat without salts. These salts had no effect on radiation resistance. Heated cells were more sensitive to radiation inactivation and injury than unheated cells. After repair, the cells regained their resistance to both NaCl and irradiation. Freezing and storage at -40/sup 0/C for 14 days had only a slight effect on either unstressed ormore » heat-stressed cells.« less

  13. Mesenchymal stromal cells having inactivated RB1 survive following low irradiation and accumulate damaged DNA: Hints for side effects following radiotherapy.

    PubMed

    Alessio, Nicola; Capasso, Stefania; Di Bernardo, Giovanni; Cappabianca, Salvatore; Casale, Fiorina; Calarco, Anna; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2017-02-01

    Following radiotherapy, bone sarcomas account for a significant percentage of recurring tumors. This risk is further increased in patients with hereditary retinoblastoma that undergo radiotherapy. We analyzed the effect of low and medium dose radiation on mesenchymal stromal cells (MSCs) with inactivated RB1 gene to gain insights on the molecular mechanisms that can induce second malignant neoplasm in cancer survivors. MSC cultures contain subpopulations of mesenchymal stem cells and committed progenitors that can differentiate into mesodermal derivatives: adipocytes, chondrocytes, and osteocytes. These stem cells and committed osteoblast precursors are the cell of origin in osteosarcoma, and RB1 gene mutations have a strong role in its pathogenesis. Following 40 and 2000 mGy X-ray exposure, MSCs with inactivated RB1 do not proliferate and accumulate high levels of unrepaired DNA as detected by persistence of gamma-H2AX foci. In samples with inactivated RB1 the radiation treatment did not increase apoptosis, necrosis or senescence versus untreated cells. Following radiation, CFU analysis showed a discrete number of cells with clonogenic capacity in cultures with silenced RB1. We extended our analysis to the other members of retinoblastoma gene family: RB2/P130 and P107. Also in the MSCs with silenced RB2/P130 and P107 we detected the presence of cells with unrepaired DNA following X-ray irradiation. Cells with unrepaired DNA may represent a reservoir of cells that may undergo neoplastic transformation. Our study suggests that, following radiotherapy, cancer patients with mutations of retinoblastoma genes may be under strict controls to evaluate onset of secondary neoplasms following radiotherapy.

  14. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  15. Inactivation of rabies diagnostic reagents by gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-11-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents.

  16. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    PubMed Central

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  17. Stability and infectivity of cytolethal distending toxin type V gene-carrying bacteriophages in a water mesocosm and under different inactivation conditions.

    PubMed

    Allué-Guardia, Anna; Jofre, Juan; Muniesa, Maite

    2012-08-01

    Two cytolethal distending toxin (Cdt) type V-encoding bacteriophages (Φ62 and Φ125) were induced spontaneously from their wild-type Escherichia coli strains and from the lysogens generated in Shigella sonnei. The stability of Cdt phages was determined at various temperatures and pH values after 1 month of storage by means of infectivity tests using a plaque blot assay and analysis of phage genomes using real-time quantitative PCR (qPCR): both were highly stable. We assessed the inactivation of Cdt phages by thermal treatment, chlorination, UV radiation, and in a mesocosm in both summer and winter. The results for the two Cdt phages showed similar trends and were also similar to the phage SOM23 used for reference, but they showed a much higher persistence than Cdt-producing E. coli. Cdt phages showed maximal inactivation after 1 h at 70°C, 30 min of UV radiation, and 30 min of contact with a 10-ppm chlorine treatment. Inactivation in a mesocosm was higher in summer than in winter, probably because of solar radiation. The treatments reduced the number of infectious phages but did not have a significant effect on the Cdt phage particles detected by qPCR. Cdt phages were quantified by qPCR in 73% of river samples, and these results suggest that Cdt phages are a genetic vehicle and the natural reservoir for cdt in the environment.

  18. Variations in the radiation sensitivity of foodborne pathogens associated with complex ready-to-eat food products

    NASA Astrophysics Data System (ADS)

    Sommers, Christopher H.; Boyd, Glenn

    2006-07-01

    Foodborne illness outbreaks and product recalls are occasionally associated with ready-to-eat (RTE) sandwiches and other "heat and eat" multi-component RTE products. Ionizing radiation can inactivate foodborne pathogens on meat and poultry, fruits and vegetables, seafood, and RTE meat products. However, less data are available on the ability of low-dose ionizing radiation, doses under 5 kGy typically used for pasteurization purposes, to inactivate pathogenic bacteria on complex multi-component food products. In this study, the efficacy of ionizing radiation to inactivate Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Yersinia enterocolitica on RTE foods including a "frankfurter on a roll", a "beef cheeseburger on a bun" and a "vegetarian cheeseburger on a bun" was investigated. The average D-10 values, the radiation dose needed to inactivate 1 log 10 of pathogen, by bacterium species, were 0.61, 0.54, 0.47, 0.36 and 0.15 kGy for Salmonella spp., S. aureus, L. monocytogenes, E. coli O157:H7, and Y. enterocolitica, respectively when inoculated onto the three product types. These results indicate that irradiation may be an effective means for inactivating common foodborne pathogens including Salmonella spp, S. aureus, L. monocytogenes, E. coli O157:H7 and Y. enterocolitica in complex RTE food products such as 'heat and eat" sandwich products.

  19. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  20. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [bibliography

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1976-01-01

    Almost 600 articles and books published since 1960 about microbial and viral inactivation are listed. This bibliography is presented to facilitate literature reviews on chemical, heat, and radiation inactivation of microorganisms and viral particles.

  1. Tracking Human Adenovirus Inactivation by Gamma Radiation under Different Environmental Conditions

    PubMed Central

    Pimenta, Andreia I.; Guerreiro, Duarte; Madureira, Joana; Margaça, Fernanda M. A.

    2016-01-01

    ABSTRACT Adenovirus is the most prevalent enteric virus in waters worldwide due to its environmental stability, which leads to public health concerns. Mitigation strategies are therefore required. The aim of this study was to assess the inactivation of human adenovirus type 5 (HAdV-5) by gamma radiation in aqueous environments. Various substrates with different organic loads, including domestic wastewater, were inoculated with HAdV-5 either individually or in a viral pool (with murine norovirus type 1 [MNV-1]) and were irradiated in a Cobalt-60 irradiator at several gamma radiation doses (0.9 to 10.8 kGy). The infectivity of viral particles, before and after irradiation, was tested by plaque assay using A549 cells. D10 values (dose required to inactivate 90% of a population or the dose of irradiation needed to produce a 1 log10 reduction in the population) were estimated for each substrate based on virus infectivity inactivation exponential kinetics. The capability of two detection methods, nested PCR and enzyme-linked immunosorbent assay (ELISA), to track inactivated viral particles was also assessed. After irradiation at 3.5 kGy, a reduction of the HAdV-5 titer of 4 log PFU/ml on substrates with lower organic loads was obtained, but in highly organic matrixes, the virus titer reduction was only 1 log PFU/ml. The D10 values of HAdV-5 in high organic substrates were significantly higher than in water suspensions. The obtained results point out some discrepancies between nested PCR, ELISA, and plaque assay on the assessments of HAdV-5 inactivation. These results suggest that the inactivation of HAdV-5 by gamma radiation, in aqueous environments, is significantly affected by substrate composition. This study highlights the virucidal potential of gamma radiation that may be used as a disinfection treatment for sustainable water supplies. IMPORTANCE Human adenovirus (HAdV) is the most prevalent of the enteric viruses in environmental waters worldwide. The purposes of this study are to provide new insights on the inactivation of enteric virus by gamma irradiation and to introduce new concepts and reinforce the benefits and utility of radiation technologies as disinfection processes. This may be an effective tool to guarantee the reduction of viral pathogens and to contribute to public health and sustainable water supplies. PMID:27316961

  2. Solar Radiation Disinfection of Drinking Water at Temperate Latitudes: Inactivation rates for an optimized reactor configuration

    EPA Science Inventory

    Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34°S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1 x 10...

  3. Radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quemeneur, E.; Eichenberger, D.; Goldschmidt, D.

    1988-06-30

    Lyophilized suspensions of rabbit heart mitochondria have been irradiated with varying doses of gamma rays. Mitochondrial creatine kinase activity was inactivated exponentially with a radiation inactivation size of 352 or 377 kDa depending upon the initial medium. These values are in good agreement with the molecular mass previously deduced from by permeation experiments: 357 kDa. This is the first direct evidence showing that the native form of mitochondrial creatine kinase is associated to the inner membrane as an oligomer, very likely an octamer.

  4. Mechanisms of the effect of VUV radiation on the microfungi

    NASA Astrophysics Data System (ADS)

    Zvereva, Galina; Kirtsideli, Irina; Machs, Eduard; Vangonen, Albert

    2018-04-01

    The mechanisms of the effect of vacuum ultraviolet (VUV) radiation (λ = 172 nm) on various types of microfungi spores were investigated. It is found that there are several parallel direct and indirect mechanisms, which lead to spores inactivation, including destruction of the cell wall and DNA by means of direct absorption of VUV radiation and by VUV photolysis reactive products. IR transmission spectra indicate the etching of the spore cell wall material with the predominant degradation of the polysaccharides. Electrophoresis of irradiated spores DNA shows heavy (about 20 000 pairs of nucleotides) and light fragments appearance. Experiments using an antioxidant (iodine) indicate the participation of reactive radicals in inactivation, which provide not less than 10% of inactivated cells

  5. Electromagnetic energy and food processing.

    PubMed

    Mudgett, R

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.

  6. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    PubMed

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  7. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis.

    PubMed

    Du, Shi-Suo; Qiang, Min; Zeng, Zhao-Chong; Ke, Ai-Wu; Ji, Yuan; Zhang, Zheng-Yu; Zeng, Hai-Ying; Liu, Zhongshan

    2010-03-15

    To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Impact of UVA pre-radiation on UVC disinfection performance: Inactivation, repair and mechanism study.

    PubMed

    Xiao, Y; Chu, X N; He, M; Liu, X C; Hu, J Y

    2018-05-15

    Ultraviolet (UV) light emission diode (LED), which is mercury free and theoretically more energy efficient, has now become an alternative to conventional UV lamps in water disinfection industry. In this research, the disinfection performance of a novel sequential process, UVA 365nm LED followed by UVC 265nm LED (UVA-UVC), was evaluated. The results revealed that the responses of different bacterial strains to UVA-UVC varied. Coupled with appropriate dosages of UVC, a 20 min UVA pre-radiation provided higher inactivations (log inactivation) of E. coli ATCC 11229, 15597 and 700891 by 1.2, 1.4 and 1.2 times, respectively than the sum of inactivations by UVA alone and UVC alone. On the contrary, the inactivation of E. coli ATCC 25922, the most UVC sensitive strain, decreased from 3 log to 1.8 log after UVA pre-radiation. A 30 min UVA pre-radiation did not affect the photo repair capacity of the four strains (n = 23, p > 0.1), but their dark repair ability was significantly inhibited (n = 14, p < 0.05). Mechanism study was conducted for two representative strains, E. coli ATCC 15597 and 25922 to understand the observed effect. The hypothesis that UVA pre-radiation promoted the yield of reactive oxygen species (ROS) was rejected. ELISA results indicated that 18% more cyclobutane pyrimidine dimers (CPD) were formed in E. coli ATCC 15597 with UVA pre-radiation (n = 3, p < 0.01), however, the CPD levels of E. coli ATCC 25922 was the same with or without UVA pre-radiation (n = 3, p > 0.01). Considering the results of both dark repair and CPD formation, it was concluded that the increased UV sensitivity of E. coli 15597 was originated from the increased CPD. For E. coli ATCC 25922, the enhanced UV resistance was attributed to the strain's adoption of a survival strategy, translesion DNA synthesis (TLS), when triggered by UVA pre-radiation. The study on UmuD protein, which is a key protein during TLS, confirmed this hypothesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.

    1980-08-01

    This study was designed to measure the effects of ionizing radiation on poliovirus particles when given under conditions where either direct (in broth) or indirect (in water) effects were predominant. Under direct conditions, inactivation of poliovirus was found to be due primarily to RNA damage, although capsid damage could account for about one-third of the viral inactivation. RNA damage did not appear to be due to strand breakage and therefore was probably caused primarily by base damage or crosslink formation. Capsid damage under direct irradiation conditions did not result in significant alterations of either the sedimentation coefficients or the isoelectricmore » points of the poliovirus particles or detectable modification of the sizes of the viral proteins. It did, however, cause loss of availability to bind to host cells. Under indirect conditions no more than 25% of viral inactivation appeared to be due to RNA damage. However, the sedimentation coefficients and isoelectric points of the viral particles were greatly altered, and their abilities to bind to cells were lost at about three-fourths the rate of loss of infectivity. Capsid damage in this case did result in changes in the sizes of capsid proteins. Therefore, the majority of the radiation inactivation under indirect conditions appeared to be due to protein damage.« less

  10. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  11. Contaminated Human Remains: Transportable Decontamination - 1. Technical Readiness Level Estimate. 2. Vaccinia Virus Ionizing Radiation Inactivation in a Human Phantom. 3. Current State of Technology Relevant to Development of a Transportable System for Treatment of Contaminated Human Remains

    DTIC Science & Technology

    2011-05-30

    affect chemical agents. Therefore no change in the methods for chemical or radiological decontamination would be necessary. 14. Radiation...here is the high radiation doses do affect the ability to polymerase chain reaction methods. It appears, depending on the dose and target, these...2001) Bacillus spore inactivation methods affect detection assays. Appl Environ Microbiol. 67(8): p. 3665‐70. DeCarlos, A. and Paez, E. (1991

  12. Inactivation of poliovirus in wastewater sludge with radiation and thermoradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.

    1977-05-01

    The effect of sludge on the rate of viral inactivation by radiation and thermoradiation was determined. The virus used for the experiments was the poliovirus type 1 strain CHAT, which was grown in HeLa cells. Radiation, heat, and thermoradiation treatments were carried out in a chamber specifically designed to permit rapid heating and cooling of the samples at the beginning and completion of treatment, respectively. The treated samples were then assayed for plaque-forming units on HeLa cells after sonication in 0.1% sodium dodecylsulfate (SDS). For the radiation treatment virus was diluted 10-fold into PBS containing new sludge, irradiated at 20/supmore » 0/C with /sup 137/Cs at a dose rate of 30 krads/min, and assayed for infectious virus. The results show that raw sludge is protective of poliovirus against ionizing radiation but that small concentrations of sludge are nearly as protective as large concentrations. When heat and radiation are given simultaneously, however, the amount of protection afforded by sludge is less than the additive effects of the individual treatments. This result is especially evident at low concentrations of sludge. It appears, therefore, that thermoradiation treatment may be an effective way of inactivation viruses in waters containing low concentrations of suspended solids. (FMM)« less

  13. Inactivation of mycoplasma in seed virus stocks using gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, J.R.; Fanok, A.G.

    1973-06-01

    A method was developed for the elimination of viable Mycoplasma in reference seed virus stocks. It was found that various species of Mycoplasma (such as M. pneumoniae, M. arthritidis, M. hominis, M. Salivarium, M. orale types I and II, M. meleagridis, and several unidentified species isolated from tissue cultures) were inactivated more rapidly by gamma radiation than all viruses tested. By the use of selected radiation doses, high concentrations of Mycoplasma species could be inactivated in virus suspensions of polioviruses types I and III, coxsackie viruses types A-7, A-9, B-3, and B-6, echoviruses types 1, 9, 12, and 20, herpesmore » simplex, rubella, measles, and adenovirus type 7a, without inactivating all viable virus. After irradiation, the remaining viable virus could be propagnted as well as the original strain and showed no change in reactivity with homologous or heterologous antisera. After storage for two months at --70 deg C, the irradiated virus showed no decrease either in viability or in specific reactivity. By this method, reference seed virus stocks could be prepared free of viable Mycoplasma species, without dependence on tissue cultures free of Mycoplasma. (auth)« less

  14. Ultraviolet disinfection of potable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.L.

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as wellmore » as the advantages and disadvantages of UV disinfection. 38 refs.« less

  15. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.

    PubMed

    Hijnen, W A M; Beerendonk, E F; Medema, G J

    2006-01-01

    UV disinfection technology is of growing interest in the water industry since it was demonstrated that UV radiation is very effective against (oo)cysts of Cryptosporidium and Giardia, two pathogenic micro-organisms of major importance for the safety of drinking water. Quantitative Microbial Risk Assessment, the new concept for microbial safety of drinking water and wastewater, requires quantitative data of the inactivation or removal of pathogenic micro-organisms by water treatment processes. The objective of this study was to review the literature on UV disinfection and extract quantitative information about the relation between the inactivation of micro-organisms and the applied UV fluence. The quality of the available studies was evaluated and only high-quality studies were incorporated in the analysis of the inactivation kinetics. The results show that UV is effective against all waterborne pathogens. The inactivation of micro-organisms by UV could be described with first-order kinetics using fluence-inactivation data from laboratory studies in collimated beam tests. No inactivation at low fluences (offset) and/or no further increase of inactivation at higher fluences (tailing) was observed for some micro-organisms. Where observed, these were included in the description of the inactivation kinetics, even though the cause of tailing is still a matter of debate. The parameters that were used to describe inactivation are the inactivation rate constant k (cm(2)/mJ), the maximum inactivation demonstrated and (only for bacterial spores and Acanthamoeba) the offset value. These parameters were the basis for the calculation of the microbial inactivation credit (MIC="log-credits") that can be assigned to a certain UV fluence. The most UV-resistant organisms are viruses, specifically Adenoviruses, and bacterial spores. The protozoon Acanthamoeba is also highly UV resistant. Bacteria and (oo)cysts of Cryptosporidium and Giardia are more susceptible with a fluence requirement of <20 mJ/cm(2) for an MIC of 3 log. Several studies have reported an increased UV resistance of environmental bacteria and bacterial spores, compared to lab-grown strains. This means that higher UV fluences are required to obtain the same level of inactivation. Hence, for bacteria and spores, a correction factor of 2 and 4 was included in the MIC calculation, respectively, whereas some wastewater studies suggest that a correction of a factor of 7 is needed under these conditions. For phages and viruses this phenomenon appears to be of little significance and for protozoan (oo)cysts this aspect needs further investigation. Correction of the required fluence for DNA repair is considered unnecessary under the conditions of drinking water practice (no photo-repair, dark repair insignificant, esp. at higher (60 mJ/cm(2)) fluences) and probably also wastewater practice (photo-repair limited by light absorption). To enable accurate assessment of the effective fluence in continuous flow UV systems in water treatment practice, biodosimetry is still essential, although the use of computational fluid dynamics (CFD) improves the description of reactor hydraulics and fluence distribution. For UV systems that are primarily dedicated to inactivate the more sensitive pathogens (Cryptosporidium, Giardia, pathogenic bacteria), additional model organisms are needed to serve as biodosimeter.

  16. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  17. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  18. A high-performance doped photocatalysts for inactivation of total coliforms in superficial waters using different sources of radiation.

    PubMed

    Claro, Elis Marina Turini; Bidoia, Ederio Dino; de Moraes, Peterson Bueno

    2016-07-15

    Photocatalytic water treatment has a currently elevated electricity demand and maintenance costs, but the photocatalytic water treatment may also assist in overcoming the limitations and drawbacks of conventional water treatment processes. Among the Advanced Oxidation Processes, heterogeneous photocatalysis is one of the most widely and efficiently used processes to degrade and/or remove a wide range of polluting compounds. The goal of this work was to find out a highly efficient photocatalytic disinfection process in superficial water with different doped photocatalysts and using three sources of radiation: mercury vapor lamp, solar simulator and UV-A LED. Three doped photocatalysts were prepared, SiZnO, NSiZnO and FNSiZnO. The inactivation efficiency of each synthesized photocatalysts was compared to a TiO2 P25 (Degussa(®)) 0.5 g L(-1) control. Photolysis inactivation efficiency was 85% with UV-A LED, which is considered very high, demanding low electricity consumption in the process, whereas mercury vapor lamp and solar simulator yielded 19% and 13% inactivation efficiency, respectively. The best conditions were found with photocatalysts SiZnO, FNSiZnO and NSiZnO irradiated with UV-A LED, where efficiency exceeded 95% that matched inactivation of coliforms using the same irradiation and photocatalyst TiO2. All photocatalysts showed photocatalytic activity with all three radiation sources able to inactivate total coliforms from river water. The use of UV-A LED as the light source without photocatalyst is very promising, allowing the creation of cost-effective and highly efficient water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Inactivation of murine norovirus-1 in the edible seaweeds Capsosiphon fulvescens and Hizikia fusiforme using gamma radiation.

    PubMed

    Park, Shin Young; Kang, Sujin; Ha, Sang-Do

    2016-06-01

    This study investigated the effects of gamma radiation (3-10 kGy) upon the inactivation of murine norovirus-1 (MNV-1), a human norovirus (NoV) surrogate. The edible green and brown algae, fulvescens (Capsosiphon fulvescens) and fusiforme (Hizikia fusiforme), respectively, were experimentally contaminated with 5-6 log10 plaque forming units (PFU)/ml MNV-1. The titer of MNV-1 significantly decreased (P < 0.05) as the dose of gamma radiation increased. MNV-1 titer decreased to 1.16-2.46 log10 PFU/ml in fulvescens and 0.37-2.21 log10 PFU/ml in fusiforme following irradiation. However, all Hunters ('L', 'a' and 'b') and sensory qualities (appearance, color, flavor, texture and overall acceptability) were not significantly (P > 0.05) different in both algae following gamma radiation. The Weibull model was used to generate non-linear survival curves and to calculate Gd values for 1, 2, and 3 log10 reductions of MNV-1 in fulvescens (R(2) = 0.992) and fusiforme (R(2) = 0.988). A Gd value of 1 (90% reduction) corresponded to 2.89 and 3.93 kGy in fulvescens and fusiforme, respectively. A Gd value of 2 (99% reduction) corresponded to 7.75 and 9.02 kGy in fulvescens and fusiforme, respectively, while a Gd value of 3 (99.9% reduction) in fulvescens and fusiforme corresponded with 13.83 and 14.93 kGy of gamma radiation, respectively. A combination of gamma radiation at medium doses and other treatments could be used to inactivate ≥ 3 log10 PFU/ml NoV in seaweed. The inactivation kinetics due to gamma radiation against NoV in these algae might provide basic information for use in seaweed processing and distribution. Copyright © 2015. Published by Elsevier Ltd.

  20. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    This research was initiated to confirm and expand the current database for the inactivation of Giardia spp. using ultraviolet (UV) radiation. Initially, previous research that used in vitro excystation as the indicator for UV effectiveness was confirmed. Later, the in vitro excys...

  1. Ultraviolet radiation from the pulsed corona discharge in water

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sunka, Pavel

    2008-05-01

    Quantitative analysis of ultraviolet radiation from the pulsed corona discharge in water with needle-plate electrode geometry (~1-3 J pulse-1) was performed using the potassium ferrioxalate actinometry. Photon flux J190-280 and radiant energy Q190-280 of the UV light emitted from the discharge at spectral region 190-280 nm was determined in dependence on the applied voltage (17-29 kV, positive polarity) and the solution conductivity (100-500 µS cm-1). The intensity of the UV radiation strongly increased with increasing water conductivity and applied voltage. Depending on the applied voltage the determined photon flux varied by more than two orders of magnitude within the range of solution conductivities 100-500 µS cm-1. It was found that photon flux from the discharge may be directly related to the discharge pulse mean power Pp as J190-280 = 44.33 P_p^{2.11} (quanta pulse-1). A significant role of UV radiation in the production of hydrogen peroxide and bacterial inactivation by the corona discharge in water has been identified. As the solution conductivity increased the yield of H2O2 produced by the discharge decreased due to increasing photolysis of H2O2 accounting for up to 14% of the total decomposition rate of H2O2. As regards bactericidal effects, it was estimated that the UV radiation contributes about 30% to the overall inactivation of Escherichia coli.

  2. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    DTIC Science & Technology

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  3. [Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse].

    PubMed

    Kolesnikov, N N; Elisafenko, E A

    2010-10-01

    After the radiation of primates and rodents, the evolution of X-chromosome inactivation centers in human and mouse (XIC/Xic) followed two different directions. Human XIC followed the pathway towards transposon accumulation (the repeat proportion in the center constitutes 72%), especially LINEs, which prevail in the center. On the contrary, mouse Xic eliminated long repeats and accumulated species-specific SIN Es (the repeat proportion in the center constitutes 35%). The mechanism underlying inactivation of one of the X chromosomes in female mammals appeared on the basis of trasnsposons. The key gene of the inactivation process, XIST/Xist, similarly to other long noncoding RNA genes, like TSIX/Tsix, JPX/Jpx, and FTX/Ftx, was formed with the involvement of different transposon sequences. Furthermore, two clusters ofmicroRNA genes from inactivation center originated from L2 [1]. In mouse, one of such clusters has been preserved in the form of microRNA pseudogenes. Thus, long ncRNA genes and microRNAs appeared during the period of transposable elements expansion in this locus, 140 to 105 Myr ago, after the radiation of marsupials and placental mammal lineages.

  4. THE INACTIVATION OF DILUTE SOLUTIONS OF CRYSTALLINE TRYPSIN BY X-RADIATION

    PubMed Central

    McDonald, Margaret R.

    1955-01-01

    The proteolytic activity of dilute solutions of clystalline trypsin is destroyed by x-rays, the amount of inactivation being an exponential function of the radiation dose. The reaction yield increases steadily with increasing concentration of trypsin, varying, as the concentration of enzyme is increased from 1 to 300 µM, from 0.068 to 0.958 micromole of trypsin per liter inactivated per 1000 r with 0.005 N hydrochloric acid as the solvent, from 0.273 to 0.866 with 0.005 N sulfuric acid as the solvent, and from 0.343 to 0.844 with 0.005 N nitric acid as the solvent. When the reaction yields are plotted as a function of the initial concentration of trypsin, they fall on a curve given by the expression Y α XK, in which Y is the reaction yield, X is the concentration of trypsin, and K is a constant equal to 0.46, 0.20, and 0.16, respectively, with 0.005 N hydrochloric, sulfuric, and nitric acids as solvents. The differences between the reaction yields found with chloride and sulfate ions in I to 10 µM trypsin solutions are significant only in the pH range from 2 to 4. The amount of inactivation obtained with a given dose of x-rays depends on the pH of the solution being irradiated and the nature of the solvent. The reaction yield-pH curve is a symmetrical one, with minimum yields at about pH 7. Buffers such as acetate, citrate, borate and barbiturate, and other organic molecules such as ethanol and glucose, in concentrations as low as 20 µM, inhibit the inactivation of trypsin by x-radiation. Sigmoid inactivation-dose curves instead of exponential ones are obtained in the presence of ethanol. The reaction yields for the inactivation of trypsin solutions by x-rays are approximately 1.5 times greater when the irradiation is done at 26°C. than when it is done at 5°C., when 0.005 N hydrochloric acid is the solvent. The dependence on temperature is less when 0.005 N sulfuric acid is used, and is negligible with 0.005 N nitric acid. The difficulties involved in interpreting radiation effects in aqueous systems, and in comparing the results obtained under different experimental conditions, are discussed. PMID:14367774

  5. Promotion of initiated cells by radiation-induced cell inactivation.

    PubMed

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  6. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Korinek, Ginger C.; Byappanahalli, Muruleedhara N.

    2004-01-01

    Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coliinactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coliconcentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.

  7. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.

  8. The radiation hypersensitivity of cells at mitosis.

    PubMed

    Stobbe, C C; Park, S J; Chapman, J D

    2002-12-01

    Mitotic cells are hypersensitive to ionizing radiation, exhibiting single-hit inactivation coefficients near to those of repair deficient cell lines and lymphocytes. To elucidate possible mechanisms for this hypersensitivity, the kinetics of oxygen radiosensitization, the proportion of indirect effect by OH radicals and the kinetics of radiation-induced DNA strand breakage in the chromatin of mitotic cells were investigated. Synchronized populations of >90% mitotic HT-29 cells were obtained by the mitotic shake-off method. Cells were irradiated at < or =4 degrees C with (137)Cs gamma-rays. Cellular oxygen concentration was varied by gassing cell suspensions prior to and during irradiation with mixtures of pure N(2) that contained 5% CO(2) and measured quantities of O(2). The indirect effect of OH radicals was investigated with the radical scavenger, DMSO. DNA strand breakage was measured by the comet assay. Mitotic HT-29 cell inactivation is well described by a single-hit inactivation coefficient (alpha) of 1.14 +/- 0.06 Gy(-1). The oxygen enhancement ratio of mitotic cells (at 10% survival) was found to be approximately 2.0, significantly lower than the value of 2.8 measured for interphase (asynchronous) cells. More than 60% of mitotic cell killing was eliminated when the media contained 2 M DMSO, indicating that indirect effect is as important in the killing of mitotic cells as it is for interphase cells. The chromatin in mitotic cells was found to be ~2.8 times more sensitive to radiation-induced DNA single-strand breakage than the chromatin of interphase cells. The alpha-inactivation coefficient of mitotic HT-29 cells was ~30 times larger than that of interphase cells. Mitotic cell chromatin appears to contain intrinsic DNA breaks that are not lethal. In addition, chromatin in mitotic cells was found to be more susceptible to radiation-induced DNA strand-breakage than the dispersed chromatin of interphase cells. How the enhanced production of these simple DNA lesions (that are usually reparable) translates into the lethal (non-reparable) events associated with alpha-inactivation is not known. The compaction/dispersion status of DNA throughout the cell cycle appears to be an important factor for determining intrinsic cell radiosensitivity and might be manipulated for radiotherapeutic advantage.

  9. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: a review.

    PubMed

    Hada, Megumi; Wu, Honglu; Cucinotta, Francis A

    2011-06-03

    During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations. 2011 Elsevier B.V. All rights reserved.

  10. Response of bacteria in wastewater sludge to moisture loss by evaporation and effect of moisture content on bacterial inactivation by ionizing radiation.

    PubMed Central

    Ward, R L; Yeager, J G; Ashley, C S

    1981-01-01

    Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765

  11. Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development.

    PubMed

    Gayen, Manoshi; Gupta, Paridhi; Morazzani, Elaine M; Gaidamakova, Elena K; Knollmann-Ritschel, Barbara; Daly, Michael J; Glass, Pamela J; Maheshwari, Radha K

    2017-06-22

    Over the last ten years, Chikungunya virus (CHIKV), an Old World alphavirus has caused numerous outbreaks in Asian and European countries and the Americas, making it an emerging pathogen of great global health importance. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, on the other hand, has been developed as a bioweapon in the past due to its ease of preparation, aerosol dispersion and high lethality in aerosolized form. Currently, there are no FDA approved vaccines against these viruses. In this study, we used a novel approach to develop inactivated vaccines for VEEV and CHIKV by applying gamma-radiation together with a synthetic Mn-decapeptide-phosphate complex (MnDpPi), based on manganous-peptide-orthophosphate antioxidants accumulated in the extremely radiation-resistant bacterium Deinococcus radiodurans. Classical gamma-irradiated vaccine development approaches are limited by immunogenicity-loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus-inactivation. However, addition of MnDpPi during irradiation process selectively protects proteins, but not the nucleic acids, from the radiation-induced oxidative damage, as required for safe and efficacious vaccine development. Previously, this approach was used to develop a bacterial vaccine. In the present study, we show that this approach can successfully be applied to protecting mice against viral infections. Irradiation of VEEV and CHIKV in the presence of MnDpPi resulted in substantial epitope preservation even at supra-lethal doses of gamma-rays (50,000Gy). Irradiated viruses were found to be completely inactivated and safe in vivo (neonatal mice). Upon immunization, VEEV inactivated in the presence of MnDpPi resulted in drastically improved protective efficacy. Thus, the MnDpPi-based gamma-inactivation approach described here can readily be applied to developing vaccines against any pathogen of interest in a fast and cost-effective manner. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Inactivation of biologically active dna by gamma ray induced superoxide radicals and their dismutation products singlet molecular oxygen and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.; Meuling, W.J.A.

    1975-01-01

    The reactivity of gamma ray induced superoxide radicals and dismutation products (singlet molecular oxygen and hydrogen peroxide) with DNA were studied. Superoxide dismutase, which removes superoxide radicals and inhibits the formation of singlet oxygen, protects biologically active DNA (OX174 RF) against inactivation by ionizing radiation. Catalase, which removes hydrogen peroxide, also protects the DNA. Attempts with various chemical sources of singlet oxygen to determine whether this species inactivates DNA did not yield an unequivocal answer. It was concluded that a combination of the protonated form of the superoxide radical and hydrogen peroxide inactivates DNA. (Author) (GRA)

  13. Ultraviolet disinfection of water for small water supplies

    NASA Astrophysics Data System (ADS)

    Carlson, D. A.; Seabloom, R. W.; Dewalle, F. B.; Wetzler, T. F.; Engeset, J.

    1985-07-01

    In the study ultraviolet radiation was considered as an alternative means of disinfection of small drinking water supplies. A major impetus for the study was the large increase in waterborne disease episodes in the United States whose etiologic agent, Giardia lamblia, was found to be highly resistant to conventional chlorination. While the germicidal effect of sunlight has long been known, it has been found that artificial UV radiation with a wavelength of 253.7 nm, can be produced by low pressure mercury vapor lamps. The inactivation of microorganisms by UV radiation is based upon photochemical reactions in DNA which result in errors in the coding system. Inactivation of microorganisms due to exposure to UV is proportional to the intensity multiplied by the time of exposure.

  14. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays.

    PubMed

    De Guzman, Zenaida M; Cervancia, Cleofas R; Dimasuay, Kris Genelyn B; Tolentino, Mitos M; Abrera, Gina B; Cobar, Ma Lucia C; Fajardo, Alejandro C; Sabino, Noel G; Manila-Fajardo, Analinda C; Feliciano, Chitho P

    2011-10-01

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a ⁶⁰Co source. Surviving spores were counted and used to estimate the decimal reduction (D₁₀) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10⁵- 9 × 10³ spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D(min)) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to γ-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Cryo-gamma radiation inactivation of bovine herpesvirus type-1

    NASA Astrophysics Data System (ADS)

    Degiorgi, C. Fernández; Smolko, E. E.; Lombardo, J. H.

    1999-07-01

    The radioresistance of bovine herpesvirus-1 (BHV-1), commonly known as infectious bovine rhinotracheitis virus (IBRV), suspended in free serum Glasgow-MEM medium and frozen at -78°C was studied. The number of surviving virus at a given dose of gamma-radiation was determined by a plaque assay system. D 10 values were calculated before and after removal of cell debris. The D 10 values obtained were 4.72 kGy and 7.31 kGy before and after removal of cell debris, respectively. Our results indicate that the inactivated viral particles could be used for vaccine preparation or diagnostic reagents.

  16. Inactivation of B. subtilis spores by low pressure plasma—influence of optical filters and photon/particle fluxes on the inactivation efficiency

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Hillebrand, Bastian; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2018-01-01

    Inactivation experiments were performed with Bacillus subtilis spores in a low pressure double inductively coupled plasma (DICP) system. Argon, nitrogen and oxygen at 5 Pa were used as feed gas to change the emission spectrum in the range of 100 nm to 400 nm, as well as between radical and metastable densities. Optical filters were applied, to block particles and selected wavelengths from the spores. By determining absolute photon fluxes, the sporicidal efficiency of various wavelength ranges was evaluated. The results showed good agreement with other plasma experiments, as well as with monochromatic light inactivation experiments from a synchrotron. The findings indicated that the inactivation rate constants of broadband plasma emission and monochromatic light were identical, and that no synergistic effect exists. Furthermore, the influence of radicals, ions and metastables on the inactivation efficiency was of minor importance in the set-up used, and radiation was the main reason for spore inactivation.

  17. Inactivation of Escherichia coli O157:H7 and Salmonella by gamma irradiation of alfalfa seed intended for production of food sprouts.

    PubMed

    Thayer, Donald W; Rajkowski, Kathleen T; Boyd, Glenn; Cooke, Peter H; Soroka, Douglas S

    2003-02-01

    Inonizing irradiation was determined to be a suitable method for the inactivation of Salmonella and Escherichia coli O157:H7 on alfalfa seed to be used in the production of food sprouts. The radiation D (dose resulting in a 90% reduction of viable CFU) values for the inactivation of Salmonella and E. coli O157:H7 on alfalfa seeds were higher than the D-values for their inactivation on meat or poultry. The average D-value for the inactivation of Salmonella on alfalfa seeds was 0.97 +/- 0.03 kGy; the D-values for cocktails of meat isolates and for vegetable-associated isolates were not significantly different. The D-values for nonoutbreak and outbreak isolates of E. coli O157:H7 on alfalfa seeds were 0.55 +/- 0.01 and 0.60 +/- 0.01 kGy, respectively. It was determined that the relatively high D-values were not due to the low moisture content or the low water activity of the seed. The D-values for Salmonella on alfalfa seeds from two different sources did not differ significantly, even though there were significant differences in seed size and water activity. The increased moisture content of the seed after artificial inoculation did not significantly alter the D-value for the inactivation of Salmonella. The results of this study demonstrate that 3.3- and 2-log inactivations can be achieved with a 2-kGy dose of ionizing radiation, which will permit satisfactory commercial yields of sprouts from alfalfa seed contaminated with E. coli O157:H7 and Salmonella, respectively.

  18. Analysis of antigen conservation and inactivation of gamma-irradiated avian influenza virus subtype H9N2.

    PubMed

    Salehi, Bahareh; Motamedi-Sedeh, Farahnaz; Madadgar, Omid; Khalili, Iraj; Ghalyan Chi Langroudi, Arash; Unger, Hermann; Wijewardana, Viskam

    2018-06-01

    Avian influenza (AI) A subtype H9N2 virus belongs to Orthomyxoviridae family and causes low-pathogenic disease AI. The use of gamma-irradiated viral antigens has been developed in the production of effective vaccines. In this research, LPAIV H9N2 strain, A/Chicken/IRN/Ghazvin/2001, was multiplied on SPF eggs and irradiated by a Nordian gamma cell instrument. Irradiated and non-irradiated AI virus (AIV) samples were titrated by EID50 method and hemagglutinin (HA) antigen was analyzed by HA test as the WHO pattern method. Infectivity of irradiated virus was determined by egg inoculation method during four blind cultures. The results showed that after increasing the dose of gamma radiation, virus titer gradually decreased. D 10 value and optimum dose for complete virus inactivation were calculated by dose/response curve, 3.36 and 29.52 kGy, respectively. In addition, HA antigenicity of gamma-irradiated virus samples from 0 to 30 kGy was not changed. The results of safety test for gamma-irradiated AIV samples showed complete inactivation with gamma ray doses 30 and 35 kGy, without any multiplication on eggs after four blind cultures. According to the results of HA antigen assay and safety test, the gamma-irradiated and complete inactivated AIV subtype H9N2 is a good candidate as an inactivated immunogenic agent for poultry vaccination.

  19. Inactivation of MS2 bacteriophage by streamer corona discharge in water.

    PubMed

    Lee, Changha; Kim, Jaeeun; Yoon, Jeyong

    2011-02-01

    Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Inactivation kinetics of foodborne pathogens by UV-C radiation and its subsequent growth in fresh-cut kailan-hybrid broccoli.

    PubMed

    Martínez-Hernández, Ginés Benito; Huertas, Juan-Pablo; Navarro-Rico, Javier; Gómez, Perla A; Artés, Francisco; Palop, Alfredo; Artés-Hernández, Francisco

    2015-04-01

    The inactivation of Escherichia coli, S. Enteritidis and Listeria monocytogenes after UV-C radiation with 0, 2.5, 5, 7.5, 10 and 15 kJ UV-C m(-2) on fresh-cut kailan-hybrid broccoli was explored. Inactivation did not follow linear kinetics. Hence, it was modelled by using the Weibull distribution function, obtaining adjusted R(2) values higher than 94%, indicative of the accuracy of the model to the experimental data. The UV-C doses needed to reduce 1 log cycle the E. coli, S. Enteritidis and L. monocytogenes counts were 1.07, 0.02 and 9.26 kJ m(-2), respectively, being S. Enteritidis the most sensitive microorganism to UV-C radiation while L. monocytogenes was the most resistant. According to experimental data, UV-C doses higher than 2.5 kJ m(-2) did not achieve great microbial reductions. No differences in the growth behaviour of these microorganisms was observed in the treated samples stored under air conditions at 5, 10 and 15 °C, compared to the control. Conclusively, low UV-C doses are effective to reduce E. coli, S. Enteritidis and L. monocytogenes populations in fresh-cut kailan-hybrid broccoli keeping such counts stable during shelf life at 5-10 °C. The current study provides inactivation models for these foodborne pathogens that can be used in microbial risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation.

    PubMed

    Du, ChangMing; Liu, Ya; Huang, YaNi; Li, ZiMing; Men, Rui; Men, Yue; Tang, Jun

    2016-01-06

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min; inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation.

  2. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation

    NASA Astrophysics Data System (ADS)

    Du, Changming; Liu, Ya; Huang, Yani; Li, Ziming; Men, Rui; Men, Yue; Tang, Jun

    2016-01-01

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation.

  3. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation

    PubMed Central

    Du, ChangMing; Liu, Ya; Huang, YaNi; Li, ZiMing; Men, Rui; Men, Yue; Tang, Jun

    2016-01-01

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min; inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation. PMID:26732987

  4. Feasibility of the silver-UV process for drinking water disinfection.

    PubMed

    Butkus, Michael A; Talbot, Mark; Labare, Michael P

    2005-12-01

    A synergistic effect between cationic silver and UV radiation (silver-UV disinfection) has been observed that can appreciably enhance inactivation of viruses. The purpose of this work was to assess the feasibility of this technique for drinking water disinfection and evaluate the effects of selected impurities, found in fresh water, and common parameters on inactivation of the coliphage MS-2 with the silver-UV process. Turbidity (kaolin), calcium hardness, carbonate alkalinity, and pH did not significantly degrade inactivation. Inactivation was reduced in the presence of chloride, at concentrations greater than 30 mg/L, and in water samples with UV-254 absorbance values greater than ca. 0.1 cm(-1). Inactivation of MS-2 with silver-UV disinfection was also reduced at high phosphate concentrations (above ca. 5 mM). Silver-UV inactivation of MS-2 increased with increases in temperature between 10 and 20 degrees C. Silver-UV inactivation of MS-2 was increased by greater than 1-log over UV alone, in two untreated fresh water sources, which indicates that silver-UV may be a viable treatment technology. An assessment of operation and management costs suggests that an increase in inactivation of MS-2 with silver-UV disinfection could be economically beneficial.

  5. Increased resistance to ionizing and ultraviolet radiation in Escherichia coli JM83 is associated with a chromosomal rearrangement.

    PubMed

    McLean, K M; Gutman, P D; Minton, K W; Clark, E P

    1992-06-01

    Cells cope with radiation damage through several mechanisms: (1) increased DNA repair activity, (2) scavenging and inactivation of radiation-induced radical molecules, and (3) entry into a G0-like quiescent state. We have investigated a chromosomal rearrangement to elucidate further the molecular and genetic mechanisms underlying these phenomena. A mutant of Escherichia coli JM83 (phi 80dlacZ delta M15) was isolated that demonstrated significantly increased resistance to both ionizing and ultraviolet radiation. Surviving fractions of mutant and wild-type cells were measured following exposure to standardized doses of radiation. Increased radioresistance was directly related to a chromosomal alteration near the bacteriophage phi 80 attachment site (attB), as initially detected by the LacZ- phenotype of the isolate. Southern hybridization of chromosomal DNA from the mutant and wild-type E. coli JM83 strains indicated that a deletion had occurred. We propose that the deletion near the attB locus produces the radioresistant phenotype of the E. coli JM83 LacZ- mutant, perhaps through the alteration or inactivation of a gene or its controlling element(s).

  6. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M

    2015-03-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.

  7. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  8. Optical Properties of Three Beach Waters: Implications for Predictive Modeling of Enterococci

    EPA Science Inventory

    Sunlight plays an important role in the inactivation of fecal indicator bacteria in recreational waters. Solar radiation can explain temporal trends in bacterial counts and is commonly used as an explanatory variable in predictive models. Broadband surface radiation provides a ba...

  9. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    PubMed

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  10. Painting analysis of chromosome aberrations induced by energetic heavy ions in human cells

    NASA Astrophysics Data System (ADS)

    Wu, H.; Hada, M.; Cucinotta, F. A.

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation genetic mutations and cancer induction Most of these biological endpoints are closely related to chromosomal damage which can be utilized as a biomarker for radiation insults Over the years we have studied chromosomal damage in human fibroblast epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell We will summarize the results of the investigations and discuss the unique radiation signatures and biomarkers for space radiation exposure

  11. Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects

    NASA Technical Reports Server (NTRS)

    Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip

    2007-01-01

    When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend treatment gaps during radiotherapy, apart from decreasing the probability of eradicating the primary cancer, substantially increase the risk of later second cancers.

  12. Astrophysical and biological constraints on radiopanspermia.

    PubMed

    Secker, J; Wesson, P S; Lepock, J R

    1996-08-01

    We have carried out a series of calculations involving bacteria and viruses embedded in dust grains, which are ejected from our solar system by radiation pressure and travel through space to other star systems. Under many conditions this type of panspermia is impractical, primarily because the ultraviolet (UV) radiation of the present Sun inactivates the micro-organisms. However, if the organisms are shielded by an absorbing material like carbon and if ejection takes place in the red-giant phase of a one solar mass star like our Sun, there is a significant probability that the micro-organisms can reach another star system alive (i.e. with only sub-lethal damage from UV and ionizing radiation). In addition to panspermia with viable micro-organisms, it is possible to seed the Galaxy with inactivated ones whose DNA and RNA fragments may provide the initial information necessary to start biological evolution in favourable environments.

  13. Analysis of Genotoxic and Cytotoxic Responses Induced by Simulated Space Radiation Qualities by Use of Recombinant Bacteria Carrying a Dual-Function Dual-Reporter Construct

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Hellweg, Christine; Zahoor, Ahmed; Testard, Isabelle; Reitz, Guenther

    Along with the long-term space exploration come various potential health risks due to unique physical factors of the space environment. Space radiation is one of the primary environmental hazards associated with space flight. In order to deal with space-related risk radiation exposure must be properly characterised and quantified, and biological effects of charged particles have to be analysed in ground based research, especially as astronauts are subjected to a differing radiation quality in space than they receive on Earth. For risk assessment, the mutagenic potential of the heavy ion component of the galactic cosmic radiation is of major concern for tumour induction as radiation late effects. The recombinant SWITCH test is based on TA1535 Salmonella typhimurium cells transformed with a dual-function dual-reporter vector harbouring (a) the genes for bioluminescence production from Photobacterium leiognathi under the control of a DNA-damage inducible promoter and (b) the gene for green fluorescent protein from the jellyfish Aequorea victoria under the control of a constitutive promoter. Suchlike genetically modified organism report on the presence of genotoxic conditions by dose dependent increase of bioluminescence induction and on the presence of cytotoxic conditions by dose dependent decrease in GFP fluorescence. By this, it is possible to analyse bacterial inactivation and mutation induction by ionizing radiation in parallel in the same cell within short time. Experiments with heavy ions have been performed with the SWITCH test at GANIL with the following accelerated heavy ions: 35 MeV/u (72 keV/µm) and 75 MeV/u (37 keV/µm) carbon, 95 MeV/u argon (377 keV/µm), 95 MeV/u neon (98 keV/µm), 75 MeV/u nickel (967 keV/µm) and 29 MeV/u lead (10238 keV/µm). The results obtained clearly show that the numbers of hits (particles per cm2 ) necessary to inactivate the bacteria (cytotoxicity) depend on LET. The higher the ionisation capacity of the accelerated ion, the less hits resulted in the same test effect, e.g. 37 % survival. For genotoxicity induction it can be seen, that for very high LET radiation the number of hits required is much less then for lower LET radiation (e.g. 1.4x106 /cm2 hits for lead versus 1.3x107 /cm2 hits for carbon). The power of the genotoxic response seems to be inversely related to LET. While 200 kV X-rays induced a 99.6x induction, carbon radiation results in a maximal induction of 72.6x (37 keV/m) and of 76.5x (72 keV/m), argon radiation (377 keV/m) leads to a 29.4x value, neon radiation (98 keV/m) leads to a 16.1x value, nickel radiation (967 keV/m) leads to a 15.4x value and lead radiation (10238 keV/m) results in only a factor of 4.8. Inactivation cross sections (σRCP) peak at a LET between 100 and 300 keV/m. The same is true for genotoxicity cross sections (σRGP for 2x), while maximal luminescence emission (for peak response) decreases with increasing LET. The response of the SWITCH test to space radiation qualities can be seen as indicative for an increased astronauts' risk from high LET radiation.

  14. Inactivation of foodborne pathogens on crawfish tail meat using cryogenic freezing and gamma radiation

    USDA-ARS?s Scientific Manuscript database

    Foodborne illness outbreaks occasionally occur as a result of microbiologically contaminated crustaceans, including crawfish. Cryogenic freezing and gamma radiation are two technologies which can be used to improve the microbiological safety and shelf-life of foods. In the U.S. the majority of non-c...

  15. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    PubMed

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Role of TGF Beta and PPAR Alpha Signaling Pathways in Radiation Response of Locally Exposed Heart: Integrated Global Transcriptomics and Proteomics Analysis.

    PubMed

    Subramanian, Vikram; Seemann, Ingar; Merl-Pham, Juliane; Hauck, Stefanie M; Stewart, Fiona A; Atkinson, Michael J; Tapio, Soile; Azimzadeh, Omid

    2017-01-06

    Epidemiological data from patients undergoing radiotherapy for thoracic tumors clearly show the damaging effect of ionizing radiation on cardiovascular system. The long-term impairment of heart function and structure after local high-dose irradiation is associated with systemic inflammatory response, contraction impairment, microvascular damage, and cardiac fibrosis. The goal of the present study was to investigate molecular mechanisms involved in this process. C57BL/6J mice received a single X-ray dose of 16 Gy given locally to the heart at the age of 8 weeks. Radiation-induced changes in the heart transcriptome and proteome were investigated 40 weeks after the exposure. The omics data were analyzed by bioinformatics tools and validated by immunoblotting. Integrated network analysis of transcriptomics and proteomics data elucidated the signaling pathways that were similarly affected at gene and protein level. Analysis showed induction of transforming growth factor (TGF) beta signaling but inactivation of peroxisome proliferator-activated receptor (PPAR) alpha signaling in irradiated heart. The putative mediator role of mitogen-activated protein kinase cascade linking PPAR alpha and TGF beta signaling was supported by data from immunoblotting and ELISA. This study indicates that both signaling pathways are involved in radiation-induced heart fibrosis, metabolic disordering, and impaired contractility, a pathophysiological condition that is often observed in patients that received high radiation doses in thorax.

  17. Biomarker for Space Radiation Risk: Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, Kerry; Cucinotta, Francis A.; Wu, Honglu

    2007-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Over the years, we have studied chromosomal damage in human fibroblast, epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world. We have also studied chromosome aberrations in astronaut s peripheral blood lymphocytes before and after space flight. Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell. We will summarize the results of the investigations, and discuss the unique radiation signatures and biomarkers for space radiation exposure.

  18. Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores.

    PubMed Central

    Welt, B A; Tong, C H; Rossen, J L; Lund, D B

    1994-01-01

    Three techniques for studying effects of microwave radiation on microorganisms were introduced. Spores of Clostridium sporogenes (PA 3679) were chosen as a test organism because the kinetic parameters for thermal inactivation are well known and because of the importance of the genus Clostridium to the food industry. For the first technique, a specially designed kinetics vessel was used to compare inactivation rates of microwave-heated and conventionally heated spores at steady-state temperatures of 90, 100, and 110 degrees C. Rates were found to be similar at the 95% confidence level. The second and third techniques were designed to study the effect of relatively high power microwave exposure at sublethal temperatures. In the second approach, the suspension was continuously cooled via direct contact with a copper cooling coil in a well-mixed vessel, outside the microwave oven. The suspension was pumped through a Teflon loop in the oven, where it continuously absorbed approximately 400 W of microwave power. Inactivation occurred in both irradiated and unirradiated samples. It was suspected that copper ions entered the suspension from the copper coil and were toxic to the spores. The fact that the results were similar, however, implied the absence of nonthermal microwave effects. In the third approach, the copper coil was replaced with a silicone tubing loop in a microwave transparent vessel. The suspension was continuously irradiated at 150 W of microwave power. No detectable inactivation occurred. Results indicated that the effect of microwave energy on viability of spores was indistinguishable from the effect of conventional heating. PMID:8135512

  19. Deinococcus Mn2+ -Peptide Complex: A Novel Approach to Alphavirus Vaccine Development

    DTIC Science & Technology

    2016-08-05

    immunogenicity loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus inactivation. Thus, we...bacteria Deinococcus radiodurans) in the present study which selectively protects proteins but not the nucleic acid from the radiation - induced...presence of MDP have significant epitope preservation even at supra-lethal doses of radiation . Irradiated viruses were found to be completely

  20. Disinfection of Airborne Organisms by Ultraviolet-C Radiation and Sunlight

    DTIC Science & Technology

    2012-07-01

    organisms deposited on surfaces, suspended in water , and contaminating food, all of which have been discussed elsewhere (Block, 2001). In contrast, the... water . Therefore, the primary means for organism inactivation in aerosols is ultraviolet (UV) radiation. Radiation from the sunlight is used as a...cortex is essential for reduction of the water content in the spore core and formation of a dormant spore. The cortex is degraded in spore

  1. Gynogenesis in carp, Cyprinus Carpio L. and tench, Tinca Tinca L. induced by 60Co radiation in highly homogeneous radiating field

    NASA Astrophysics Data System (ADS)

    Pipota, J.; Linhart, O.

    The paper deals with a method of fertility inactivation of fish spermatozoa by gamma radiation. Spermatozoa motility remained unchanged after irradiation. Irradiated sperm has been utilized to induced gynogenesis by means of retention of the second polar body and of mitotic gynogenesis, realized in carp for the first time. Homogeneity of gamma-rays field was + - 1 %.

  2. Inactivation of Staphylococcus saprophyticus in chicken meat and exudate using high pressure processing, gamma radiation, and ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Stapylococcus saprophyticus is a common contaminant in foods and causes urinary tract infections in humans. Three nonthermal food safety intervention technologies used to improve the safety foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). A...

  3. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  4. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  5. Radiation resistence of microorganisms from radiation sterilization processing environments

    NASA Astrophysics Data System (ADS)

    Sabovljev, Svetlana A.; Žunić, Zora S.

    The radiation resistance of microorganisms was examined on the samples of dust collected from the radiation sterilization processing environments including assembly, storage, and sterilization plant areas. The isolation of radiation resistant strains was performed by irradiation with screening doses ranging from 10 to 35 kGy and test pieces containing 10 6 to 10 8 CFU in dried serum-broth, representing 100 to 5000 colonies of primary cultures of microorganisms from 7 different sites. In an examination of 16900 colonies of aerobic microorganisms from 3 hygienically controlled production sites and 4 uncontrolled ones, 30 strains of bacteria were isolated. Of those 15 were classified as genus Bacillus, 9 as Micrococcus and 6 as Sarcina. All of the 15 strains of Gram positive sporeforming aerobic rods exhibited an exponential decrease in the surviving fraction as a function of dose, indicating that the inactivation of spores of aerobic rods is a consequence of a single energy deposition into the target. All strains were found to be moderately resistant to radiation with D-6 values (dose required to reduce survival to 6 log cycles) between 18 and 26 kGy. All of the isolated Gram positive cocci showed inactivation curves having a shoulder, indicating that different processes are involved in the inactivation of these cells, e.g. accumulation of sublethal lesions, or final repair capacity of potential lethal lesions. Moderate radiation resistance was observed in 13 strains with D-6 values between 16 to 30 kGy. Two slow-growing, red pigmented strains tentatively classified as genus Micrococcus isolated from uncontrolled sites (human dwellings) were exceptionally resistant with D-6 more than 45 kGy. For hygienically controlled sites, Gram positive spereforming rods composed two thirds of the resistant microflora, while Gram positive cocci comprised one third. For hygienically uncontrolled sites this ratio was reversed. An assumption is made that one isolated strain has grown up from one CFU in the original microflora. In the light of the observed proportion of radiation resistant bacteria in microflora from hygienically controlled radiation sterilization processing environments, and assuming an initial contamination of 50 CFU per product unit, there is no more than one chance of a contaminated item remaining within a population of 10 7 items subjected to sterilization by exposure to a radiation dose of 25 kGy.

  6. Eradication of bacterial species via photosensitization

    NASA Astrophysics Data System (ADS)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1999-02-01

    Photosensitization and inactivation efficacy of three bacterial species: Prevotella nigrescens, Staphylococcus aureus and Escherichia coli have been investigated. Samples of Staphylococcus aureus and Escherichia coli were treated with the triphenylmethane dye malachite green isothiocyanate and exposed to light from a variety of continuous and pulsed light sauces at a wavelength of approximately 630 nm. Inactivation of the Gram-positive species Staphylococcus aureus was found to increase with radiation dose, whilst Gram-negative Escherichia coli was resistant to such treatment. Samples of the pigmented species Prevotella nigrescens were found to be inactivated by exposure to light alone. The mechanism of photosensitization and inactivation of Staphylococcus aureus with malachite green isothiocyanate is addressed. The possible roles of the excited triplet state of the photosensitizer, the involvement of molecular oxygen, and the bacterial cell wall are discussed. Photosensitization may provide a way of eliminating naturally pigmented species responsible for a variety of infections, including oral diseases such as gingivitis and periodontitis.

  7. Thermal Contribution to the Inactivation of Cryptosporidium in Plastic Bottles during Solar Water Disinfection Procedures

    PubMed Central

    Gómez-Couso, Hipólito; Fontán-Sainz, María; Ares-Mazás, Elvira

    2010-01-01

    To determine the thermal contribution, independent of ultraviolet radiation, on the inactivation of Cryptosporidium parvum during solar water disinfection procedures (SODIS), oocysts were exposed for 4, 8, and 12 hours to temperatures recorded in polyethylene terephthalate bottles in previous SODIS studies carried out under field conditions. Inclusion/exclusion of the fluorogenic vital dye propidium iodide, spontaneous excystation, and infectivity studies were used to determine the inactivation of oocysts. There was a significant increase in the percentage of oocysts that took up propidium iodide and in the number of oocysts that excysted spontaneously. There was also a significant decrease in the intensity of infection elicited in suckling mice at the end of all exposure times. The results of the study demonstrate the importance of temperature in the inactivation of C. parvum oocysts during application of SODIS under natural conditions. PMID:20064992

  8. Electrochemically assisted photocatalysis: Highly efficient treatment using thermal titanium oxides doped and non-doped electrodes for water disinfection.

    PubMed

    Dos Santos, Andreia Betina Kreuser; Claro, Elis Marina Turini; Montagnolli, Renato Nallin; Cruz, Jaqueline Matos; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2017-12-15

    Electrochemically assisted photocatalysis (by electronic drainage) is a highly promising method for disinfection of water. In this research, the efficiency of photolytic oxidation using UV-A radiation and electrochemically assisted photocatalysis (with electric potential of 1.5 V) was studied by using electrodes prepared by thermal treatment and doped with silver, for inactivation of Escherichia coli and Staphylococcus aureus. The Chick-Watson microorganism inactivation model was applied and the electrical energy consumption of the process was calculated. It was observed no significant inactivation of microorganisms when UV-A light or electric potential were applied separately. However, the electrochemically assisted photocatalytic process, with Ag-doped electrode completely inactivated the microbial population after 10 (E. coli) and 60 min (S. aureus). The best performing non-doped electrodes achieved 52.74% (E. coli) and 44.09% (S. aureus) inactivation rates after 60 min. Thus, electrochemically assisted photocatalytic activity was not only effective for the inactivation of microorganisms, but also notably low on electrical energy consumption during the treatment due to small current and low electric potential applied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution.

    PubMed

    Zhao, Lei; Mi, Dong; Sun, Yeqing

    2017-05-07

    The multitarget version of the traditional target theory based on the Poisson distribution is still used to describe the dose-survival curves of cells after ionizing radiation in radiobiology and radiotherapy. However, noting that the usual ionizing radiation damage is the result of two sequential stochastic processes, the probability distribution of the damage number per cell should follow a compound Poisson distribution, like e.g. Neyman's distribution of type A (N. A.). In consideration of that the Gaussian distribution can be considered as the approximation of the N. A. in the case of high flux, a multitarget model based on the Gaussian distribution is proposed to describe the cell inactivation effects in low linear energy transfer (LET) radiation with high dose-rate. Theoretical analysis and experimental data fitting indicate that the present theory is superior to the traditional multitarget model and similar to the Linear - Quadratic (LQ) model in describing the biological effects of low-LET radiation with high dose-rate, and the parameter ratio in the present model can be used as an alternative indicator to reflect the radiation damage and radiosensitivity of the cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Altmetric: 165More detailArticle | OPENClimate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters

    EPA Science Inventory

    Climate change is accelerating the release of dissolved organic matter (DOM) to inland and coastal waters through increases in precipitation, thawing of permafrost, and changes in vegetation. Our modeling approach suggests that the selective absorption of ultraviolet radiation (U...

  11. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven homogeneity distributions with maximum variation of ± 10 %.

  12. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    NASA Astrophysics Data System (ADS)

    Badr, Hesham M.

    2011-11-01

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4±1 °C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria.

  13. Study of genetic effects of high energy radiations with different ionizing capacities on extracellular phages.

    PubMed

    Bresler, S E; Kalinin, V L; Kopylova, Y U; Krivisky, A S; Rybchin, V N; Shelegedin, V N

    1975-07-01

    The inactivating and mutagenic action of high-energy radiations with different ionizing capacities (gamma-rays, protons, alpha-particles and accelerated ions of 12C and 20Ne) was studied by using coliphages lambda11 and SD as subjects. In particular the role of irradiation conditions (broth suspension, pure buffer, dry samples) and of the host functions recA, exrA and polA was investigated. The dose-response curve of induced mutagenesis was studied by measuring the yield of vir mutants in lambda11 and plaque mutants in SD. The following results were obtained. (1) The inactivation kinetics of phages under the action of gamma-rays and protons was first order to a survival of 10(-7). Heavy ions also showed exponential inactivation kinetics to a survival of 10(-4). At higher doses of 20Ne ion bombardment some deviation from one-hit kinetics was observed. For dry samples of phages the dimensions of targets for all types of radiation were approximately proportional to the molecular weights of phage DNA's. For densely ionizing radiation (heavy ions) the inactivating action was 3-5 times weaker than for gamma-rays and protons. (2) Mutagenesis was observed for all types of radiation, but heavy ions were 1-5-2 times less efficient than gamma-rays. For both phages studied the dose-response curve of mutagenesis was non-linear. The dependence on the dose was near to parabolic for lambda11. For SD a plateau or maximum of mutagenesis was observed for the relative number of mutants at a survival of about 10(-4). (3) Host-cell functions recA and exrA were practically indifferent for survival of gamma-irradiated phage lambda11, but indispensable for mutagenesis. Mutation recAI3 abolished induced vir mutations totally and exrA- reduced them significantly. The absence of the function polA had a considerable influence on phage survival, but no effect on vir mutation yield (if compared at the same survival level). (4) In conditions of indirect action of gamma-rays no vir mutations were induced. This is regarded as evidence that the single-strand breaks formed under indirect action conditions cannot serve as pre-mutational damage in DNA.

  14. Impacts of Goethite Particles on UV Disinfection of Drinking Water

    PubMed Central

    Wu, Youxian; Clevenger, Thomas; Deng, Baolin

    2005-01-01

    A unique association between bacterial cells and small goethite particles (∼0.2 by 2 μm) protected Escherichia coli and Pseudomonas putida from UV inactivation. The protection increased with the particle concentration in the turbidity range of 1 to 50 nephelometric turbidity units and with the bacterium-particle attachment time prior to UV irradiation. The lower degree of bacterial inactivation at longer attachment time was mostly attributed to the particle aggregation surrounding bacteria that provided shielding from UV radiation. PMID:16000835

  15. Inactivation of ascaris lumbricoides eggs by heat, radiation, and thermoradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannen, J. P.; Garst, D. M.; Langley, S.

    1975-07-01

    It is desirable to eliminate the public health hazards associated with land application of municipal sewage sludge as a fertilizer or soil conditioner. This report describes experimentation to determine the effects of heat, radiation, and thermoradiation on the suppression of embryonation of Ascaris lumbricoides ova, a parasite commonly found in sewage sludge. Heat effects were observed at a minimum temperature of 51°C and radiation effects at doses in excess of 15 krads of ionizing gamma radiation. Thermoradiation at 47°C suppressed embryonation at less than half the total dose required by radiation alone.

  16. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus.

    PubMed

    Ocsoy, Ismail; Yusufbeyoglu, Sadi; Yılmaz, Vedat; McLamore, Eric S; Ildız, Nilay; Ülgen, Ahmet

    2017-11-01

    In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    PubMed Central

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  18. Regression model for estimating inactivation of microbial aerosols by solar radiation.

    PubMed

    Ben-David, Avishai; Sagripanti, Jose-Luis

    2013-01-01

    The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  19. The Influence of C-Ions and X-rays on Human Umbilical Vein Endothelial Cells

    PubMed Central

    Helm, Alexander; Lee, Ryonfa; Durante, Marco; Ritter, Sylvia

    2016-01-01

    Damage to the endothelium of blood vessels, which may occur during radiotherapy, is discussed as a potential precursor to the development of cardiovascular disease. We thus chose human umbilical vein endothelial cells as a model system to examine the effect of low- and high-linear energy transfer (LET) radiation. Cells were exposed to 250 kV X-rays or carbon ions (C-ions) with the energies of either 9.8 MeV/u (LET = 170 keV/μm) or 91 MeV/u (LET = 28 keV/μm). Subculture of cells was performed regularly up to 46 days (~22 population doublings) post-irradiation. Immediately after exposure, cells were seeded for the colony forming assay. Additionally, at regular intervals, mitochondrial membrane potential (MMP) (JC-1 staining) and cellular senescence (senescence-associated β-galactosidase staining) were assessed. Cytogenetic damage was investigated by the micronucleus assay and the high-resolution multiplex fluorescence in situ hybridization (mFISH) technique. Analysis of radiation-induced damage shortly after exposure showed that C-ions are more effective than X-rays with respect to cell inactivation or the induction of cytogenetic damage (micronucleus assay) as observed in other cell systems. For 9.8 and 91 MeV/u C-ions, relative biological effectiveness values of 2.4 and 1.5 were obtained for cell inactivation. At the subsequent time points, the number of micronucleated cells decreased to the control level. Analysis of chromosomal damage by mFISH technique revealed aberrations frequently involving chromosome 13 irrespective of dose or radiation quality. Disruption of the MMP was seen only a few days after exposure to X-rays or C-ions. Cellular senescence was not altered by radiation at any time point investigated. Altogether, our data indicate that shortly after exposure C-ions were more effective in damaging endothelial cells than X-rays. However, late damage to endothelial cells was not found for the applied conditions and endpoints. PMID:26835420

  20. Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase.

    PubMed

    Rodrigues-Silva, Caio; Miranda, Sandra M; Lopes, Filipe V S; Silva, Mário; Dezotti, Márcia; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P; Pinto, Eugénia

    2017-03-01

    In the last decade, environmental risks associated with wastewater treatment plants (WWTPs) have become a concern in the scientific community due to the absence of specific legislation governing the occupational exposure limits (OEL) for microorganisms present in indoor air. Thus, it is necessary to develop techniques to effectively inactivate microorganisms present in the air of WWTPs facilities. In the present work, ultraviolet light A radiation was used as inactivation tool. The microbial population was not visibly reduced in the bioaerosol by ultraviolet light A (UVA) photolysis. The UVA photocatalytic process for the inactivation of microorganisms (bacteria and fungi, ATCC strains and isolates from indoor air samples of a WWTP) using titanium dioxide (TiO 2 P25) and zinc oxide (ZnO) was tested in both liquid-phase and airborne conditions. In the slurry conditions at liquid phase, P25 showed a better performance in inactivation. For this reason, gas-phase assays were performed in a tubular photoreactor packed with cellulose acetate monolithic structures coated with P25. The survival rate of microorganisms under study decreased with the catalyst load and the UVA exposure time. Inactivation of fungi was slower than resistant bacteria, followed by Gram-positive bacteria and Gram-negative bacteria. Graphical abstract Inactivation of fungi and bacteria in gas phase by photocatalitic process performed in a tubular photoreactor packed with cellulose acetate monolith structures coated with TiO 2 .

  1. Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Uropathogenic Escherichia coli (UPEC) are common contaminants in meat and poultry. Nonthermal food safety intervention technologies used to improve safety and shelf-life of both human and pet foods can include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV...

  2. On a fundamental problem in radiation biology

    NASA Technical Reports Server (NTRS)

    Dugan, V.; Trujillo, R.

    1974-01-01

    Experimental evidence indicates that the radiation dose required to reduce a surviving population to a certain fraction of its original population is lower for vertebrate cells than for viruses. On the other hand, the number of ionizations per cell required to inactivate that cell is greater for vertebrate cells than for viruses. The apparent conflict between these two findings is investigated. It is found that the apparent contradiction is probably a result of the fractional power dependence of the radiation-dose value on the nucleic acid weight.

  3. A biotechnological project with a gamma radiation source of 100,000 Ci

    NASA Astrophysics Data System (ADS)

    Lombardo, J. H.; Smolko, E. E.

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.

  4. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    NASA Astrophysics Data System (ADS)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  5. Space Radiation and its Associated Health Consequences

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2007-01-01

    During space travel, astronauts are exposed to energetic particles of a complex composition and energy distribution. For the same amount of absorbed dose, these particles can be much more effective than X- or gamma rays in the induction of biological effects, including cell inactivation, genetic mutations, cataracts, and cancer induction. Several of the biological consequences of space radiation exposure have already been observed in astronauts. This presentation will introduce the space radiation environment and discuss its associated health risks. Accurate assessment of the radiation risks and development of respective countermeasures are essential for the success of future exploration missions to the Moon and Mars.

  6. Drinking water treatment with ultraviolet light for travelers -- Evaluation of a mobile lightweight system.

    PubMed

    Timmermann, Lisa F; Ritter, Klaus; Hillebrandt, David; Küpper, Thomas

    2015-01-01

    The SteriPEN(®) is a handheld device for disinfecting water with ultraviolet (UV) radiation. The manufacturer claims a reduction of at least 99.9% of bacteria, viruses, and protozoa. The present study intends to verify the general effectiveness of the device. Furthermore, the influence of bottle geometry and water movement is examined and the issue of user safety with regard to UV-C radiation is addressed. The device was applied on water containing a known number of microorganisms (Escherichia coli, Staphylococcus aureus, and the spore of Geobacillusstearothermophilus) and the survival rate was examined. Three different types of bottles commonly used among travelers served as test containers. All tests were conducted with and without agitating the water during irradiation. Furthermore, a spectral analysis was performed on the light of the device. The SteriPEN(®) reached a mean reduction of more than 99.99% of bacteria and 99.57% of the spores when applied correctly. However, the results of the trials without agitating the water only yielded a 94.98% germ reduction. The device's maximal radiation intensity lies at 254 nm which is the wavelength most efficient in inactivating bacteria. The UV-C fraction is filtered out completely by common bottle materials. However, when applied in larger containers a portion of the UV-C rays exits the water surface. If applied according to the instructions the device manages a satisfactory inactivation of bacteria. However, it bears the danger of user errors relevant to health. Therefore, education on the risks of incorrect application should be included in the travel medical consultation. Also there are still aspects that need to be subject to further independent research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Origin and evolution of the long non-coding genes in the X-inactivation center.

    PubMed

    Romito, Antonio; Rougeulle, Claire

    2011-11-01

    Random X chromosome inactivation (XCI), the eutherian mechanism of X-linked gene dosage compensation, is controlled by a cis-acting locus termed the X-inactivation center (Xic). One of the striking features that characterize the Xic landscape is the abundance of loci transcribing non-coding RNAs (ncRNAs), including Xist, the master regulator of the inactivation process. Recent comparative genomic analyses have depicted the evolutionary scenario behind the origin of the X-inactivation center, revealing that this locus evolved from a region harboring protein-coding genes. During mammalian radiation, this ancestral protein-coding region was disrupted in the marsupial group, whilst it provided in eutherian lineage the starting material for the non-translated RNAs of the X-inactivation center. The emergence of non-coding genes occurred by a dual mechanism involving loss of protein-coding function of the pre-existing genes and integration of different classes of mobile elements, some of which modeled the structure and sequence of the non-coding genes in a species-specific manner. The rising genes started to produce transcripts that acquired function in regulating the epigenetic status of the X chromosome, as shown for Xist, its antisense Tsix, Jpx, and recently suggested for Ftx. Thus, the appearance of the Xic, which occurred after the divergence between eutherians and marsupials, was the basis for the evolution of random X inactivation as a strategy to achieve dosage compensation. Copyright © 2011. Published by Elsevier Masson SAS.

  8. Cell inactivation, repair and mutation induction in bacteria after heavy ion exposure: results from experiments at accelerators and in space.

    PubMed

    Horneck, G; Schafer, M; Baltschukat, K; Weisbrod, U; Micke, U; Facius, R; Bucker, H

    1989-01-01

    To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration.

  9. Radiation-Dependent Limit for the Viability of Bacterial Spores in Halite Fluid Inclusions and on Mars

    NASA Technical Reports Server (NTRS)

    Kminek, Gerhard; Bada, Jeffrey L.; Pogliano, Kit; Ward, John F.

    2003-01-01

    When claims for the long-term survival of viable organisms are made, either within terrestrial minerals or on Mars, considerations should be made of the limitations imposed by the naturally occurring radiation dose to which they have been exposed. We investigated the effect of ionizing radiation on different bacterial spores by measuring the inactivation constants for B. subtilis and s. marismortui spores in solution as well as for dry spores of B. subtilis and B. thuringiensis. S. marismortui is a halophilic spore that is genetically similar to the recently discovered 2-9-3 bacterium from a halite fluid inclusion, claimed to be 250 million years old, B. thuringiensis is a soil bacterium that is genetically similar to the human pathogens B. anthracis and B. cereus. To relate the inactivation constant to some realistic environments, we calculated the radiation regimen in a halite fluid inclusion and in the Martian subsurface over time. Our conclusion is that the ionizing dose of radiation in those environments limits the survival of viable bacterial spores over long periods. In the absence of an active repair mechanism in the dormant state, the long-term survival of spores is limited to less than 109 million years in halite fluid inclusions, to 100 to 160 million years in the Martian subsurface below 3 m, and to less than 600,000 years in the upper-most meter of Mars.

  10. Thermal inactivation of enzymes and pathogens in biosamples for MS analysis.

    PubMed

    Ahnoff, Martin; Cazares, Lisa H; Sköld, Karl

    2015-01-01

    Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.

  11. Characterization of multilocus lesions in human cells exposed to X radiation and radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, M.A.; Jiang, Q.; Ricanati, M.

    Human TK6 lymphoblasts were exposed to X radiation or radon, and thymidine kinase negative (TK{sup -/-}) mutants were selected, isolated and harvested for analysis of structural changes in the TK gene. A large majority (82%) of the radon-induced mutants, 74% of the X-radiation-induced mutants and 45% of the spontaneous mutants lost the entire active TK allele. To analyze these mutants further we measured the loss of heterozygosity at several loci neighboring the TK locus on chromosome 17q. A greater proportion (61%) of the radon-induced mutants than X-radiation-induced or spontaneous mutants harbored the smaller lesions involving the TK allele alone ormore » extending from the TK locus to one or both of the closest neighboring sequences tested. Further, 21% of the X-radiation-induced mutants but only 5% of the radon-induced mutants lost heterozygosity at the col1A1 locus, 31 Mb from the TK gene. These results are in agreement with a recent analysis of radon- and X-radiation-induced lesions inactivating the HPRT gene of TK6 cells, in which we reported that a lower percentage of radon- than X-radiation-induced mutants showed lesions extending to markers 800 kb or more from the HPRT gene on the X chromosome. In the present study, we observed that the percentage of slowly growing and very slowly growing TK{sup -/-} mutants was greater after treatment with radon than after treatment with X radiation, regardless of the type of lesion present. It is possible, therefore, that the radon-induced lesions are complex and/or less easily repaired, leading to slow growth in a large proportion of the surviving mutant cells. 36 refs., 6 figs., 2 tabs.« less

  12. Determination of the functional size of oxytocin receptors in plasma membranes from mammary gland and uterine myometrium of the rat by radiation inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloff, M.S.; Beauregard, G.; Potier, M.

    1988-05-01

    Gel filtration of detergent-solubilized oxytocin (OT) receptors in plasma membrane fractions from both regressed mammary gland and labor myometrium of the rat, showed that specific (/sup 3/H)OT binding was associated with a heterogeneously sized population of macromolecules. As radiation inactivation is the only method available to measure the apparent molecular weights of membrane proteins in situ, we used this approach to define the functional sizes of OT receptors. The results indicate that both mammary and myometrial receptors are uniform in size and of similar molecular mass. Mammary and myometrial receptors were estimated to be 57.5 +/- 3.8 (SD) and 58.8more » +/- 1.6 kilodaltons, respectively. Knowledge of the functional size of OT receptors will be useful in studies involving the purification and characterization of the receptor and associated membrane components.« less

  13. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  14. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility.

    PubMed

    Khodadad, Christina L; Wong, Gregory M; James, Leandro M; Thakrar, Prital J; Lane, Michael A; Catechis, John A; Smith, David J

    2017-04-01

    Every spacecraft sent to Mars is allowed to land viable microbial bioburden, including hardy endospore-forming bacteria resistant to environmental extremes. Earth's stratosphere is severely cold, dry, irradiated, and oligotrophic; it can be used as a stand-in location for predicting how stowaway microbes might respond to the martian surface. We launched E-MIST, a high-altitude NASA balloon payload on 10 October 2015 carrying known quantities of viable Bacillus pumilus SAFR-032 (4.07 × 10 7 spores per sample), a radiation-tolerant strain collected from a spacecraft assembly facility. The payload spent 8 h at ∼31 km above sea level, exposing bacterial spores to the stratosphere. We found that within 120 and 240 min, spore viability was significantly reduced by 2 and 4 orders of magnitude, respectively. By 480 min, <0.001% of spores carried to the stratosphere remained viable. Our balloon flight results predict that most terrestrial bacteria would be inactivated within the first sol on Mars if contaminated spacecraft surfaces receive direct sunlight. Unfortunately, an instrument malfunction prevented the acquisition of UV light measurements during our balloon mission. To make up for the absence of radiometer data, we calculated a stratosphere UV model and conducted ground tests with a 271.1 nm UVC light source (0.5 W/m 2 ), observing a similarly rapid inactivation rate when using a lower number of contaminants (640 spores per sample). The starting concentration of spores and microconfiguration on hardware surfaces appeared to influence survivability outcomes in both experiments. With the relatively few spores that survived the stratosphere, we performed a resequencing analysis and identified three single nucleotide polymorphisms compared to unexposed controls. It is therefore plausible that bacteria enduring radiation-rich environments (e.g., Earth's upper atmosphere, interplanetary space, or the surface of Mars) may be pushed in evolutionarily consequential directions. Key Words: Planetary protection-Stratosphere-Balloon-Mars analog environment-E-MIST payload-Bacillus pumilus SAFR-032. Astrobiology 17, 337-350.

  15. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility

    NASA Astrophysics Data System (ADS)

    Khodadad, Christina L.; Wong, Gregory M.; James, Leandro M.; Thakrar, Prital J.; Lane, Michael A.; Catechis, John A.; Smith, David J.

    2017-04-01

    Every spacecraft sent to Mars is allowed to land viable microbial bioburden, including hardy endospore-forming bacteria resistant to environmental extremes. Earth's stratosphere is severely cold, dry, irradiated, and oligotrophic; it can be used as a stand-in location for predicting how stowaway microbes might respond to the martian surface. We launched E-MIST, a high-altitude NASA balloon payload on 10 October 2015 carrying known quantities of viable Bacillus pumilus SAFR-032 (4.07 × 107 spores per sample), a radiation-tolerant strain collected from a spacecraft assembly facility. The payload spent 8 h at ˜31 km above sea level, exposing bacterial spores to the stratosphere. We found that within 120 and 240 min, spore viability was significantly reduced by 2 and 4 orders of magnitude, respectively. By 480 min, <0.001% of spores carried to the stratosphere remained viable. Our balloon flight results predict that most terrestrial bacteria would be inactivated within the first sol on Mars if contaminated spacecraft surfaces receive direct sunlight. Unfortunately, an instrument malfunction prevented the acquisition of UV light measurements during our balloon mission. To make up for the absence of radiometer data, we calculated a stratosphere UV model and conducted ground tests with a 271.1 nm UVC light source (0.5 W/m2), observing a similarly rapid inactivation rate when using a lower number of contaminants (640 spores per sample). The starting concentration of spores and microconfiguration on hardware surfaces appeared to influence survivability outcomes in both experiments. With the relatively few spores that survived the stratosphere, we performed a resequencing analysis and identified three single nucleotide polymorphisms compared to unexposed controls. It is therefore plausible that bacteria enduring radiation-rich environments (e.g., Earth's upper atmosphere, interplanetary space, or the surface of Mars) may be pushed in evolutionarily consequential directions.

  16. Spontaneous and radiation-induced genomic instability in human cell lines differing in cellular TP53 status.

    PubMed

    Moore, Stephen R; Ritter, Linda E; Gibbons, Catherine F; Grosovsky, Andrew J

    2005-10-01

    Structural chromosomal rearrangements are commonly observed in tumor karyotypes and in radiation-induced genomic instability. Here we report the effects of TP53 deficiency on karyotypic stability before and after irradiation using related cells and clones differing in cellular TP53 status. The parental cell line, TK6, is a TP53 wild-type human B-lymphoblastoid line with a highly stable karyotype. In the two TK6 derivatives used here, TP53 has been inactivated by biochemical means (expression of HPV16 E6; TK6-5E) or genetic means (allelic inactivation; NH32). Biochemical inactivation of TP53 (TK6-5E) had little effect on the spontaneous karyotype, whereas allelic inactivation of TP53 (NH32) resulted in a modest increase in spontaneous karyotypic instability. After 2 Gy gamma irradiation, the number of unstable clones derived from TP53-deficient cells was significantly elevated compared to the TP53 wild-type counterpart. Extensively destabilized clones were common after irradiation in the set of clones derived from NH32 cells, and one was observed in the set of TK6-5E clones; however, they were never observed in TK6-derived clones. In two of the irradiated NH32 clones, whole chromosomes or chromosome bands were preferentially involved in alterations. These results suggest that genomic instability may differ both quantitatively and qualitatively as a consequence of altered TP53 expression. Some of the results showing repeated and preferential chromosome involvement in aberrations support a model in which instability may be driven by cis mechanisms.

  17. Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle.

    PubMed

    Kowaluk, E A; Seth, P; Fung, H L

    1992-09-01

    Sodium nitroprusside (SNP) is thought to exert its vasodilating activity, at least in part, by vascular activation to nitric oxide (NO), but the activation mechanism has not been delineated. This study has examined the potential for vascular metabolism of SNP to NO in bovine coronary arterial smooth muscle subcellular fractions using a sensitive and specific redox-chemiluminescence assay for NO. SNP was readily metabolized to NO in subcellular fractions, and the dominant site of metabolism appeared to be located in the membrane fractions. NO-generating activity was significantly enhanced by, but did not absolutely require, the addition of a NADPH-regenerating system, NADPH per se, NADH or cysteine. A correlation analysis of NO-generating activity (in the presence of a NADPH-regenerating system) with marker enzyme activities indicated that the SNP-directed NO-generating activity was primarily membrane-associated. Radiation inactivation target-size analysis revealed that the microsomal SNP-directed NO-generating activity was relatively insensitive to inactivation by radiation exposure, suggesting that the functioning catalytic unit might be quite small. A molecular weight of 5 to 11 kDa was estimated. NO-generating activity could be solubilized from the crude microsomes with 3-[(3-cholamidopropyl)- dimethylammonio]-1-propane sulfonate, and the solubilized extract was subjected to gel filtration chromatography. NO-generating activity was eluted in two peaks: one peak corresponding to an approximate molecular weight of 4 kDa, thus confirming the existence of a small molecular weight NO-generating activity, and a second activity peak corresponding to a molecular weight of 112 to 169 kDa, the functional significance of which is unclear at present.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Radiological health risks for exploratory class missions in space

    NASA Technical Reports Server (NTRS)

    Nachtwey, D. Stuart; Yang, Tracy Chui-Hsu

    1991-01-01

    The radiation risks to crewmembers on missions to the moon and Mars are studied. A graph is presented of the cross section as a function of linear energy transfer (LET) for cell inactivation and neoplastic cell transformation. Alternatives to conventional approaches to radiation protection using dose and Q are presented with attention given to a hybrid of the conventional system for particles with LET less than 100 keV/micron.

  19. Inactivation of the Radiation-Resistant Spoilage Bacterium Micrococcus radiodurans

    PubMed Central

    Duggan, D. E.; Anderson, A. W.; Elliker, P. R.

    1963-01-01

    A simplified technique permitting the pipetting of raw puréed meats for quantitative bacteriological study is described for use in determining survival of these non-sporing bacteria, which are exceptionally resistant to radiation. Survival curves, using gamma radiation as the sterilizing agent, were determined in raw beef with four strains of Micrococcus radiodurans. Survival curves of the R1 strain in other meat substrates showed that survival was significantly greater in raw beef and raw chicken than in raw fish or in cooked beef. Resistance was lowest in the buffer. Cells grown in broth (an artificial growth medium) and resuspended in beef did not differ in resistance from cells that had been grown and irradiated in beef. Survival rate was statistically independent of the initial cell concentration, even though there appeared to be a correlation between lower death rate and lower initial cell concentrations. The initial viable count of this culture of the domesticated R1 strain in beef was reduced by a factor of about 10-5 by 3.0 megarad, and 4.0 megarad reduced the initial count by a factor of more than 10-9. Data suggest that M. radiodurans R1 is more resistant to radiation than spore-forming spoilage bacteria for which inactivation rates have been published. PMID:14063780

  20. Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia.

    PubMed

    Dessie, Awrajaw; Alemayehu, Esayas; Mekonen, Seblework; Legesse, Worku; Kloos, Helmut; Ambelu, Argaw

    2014-01-10

    Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate bacteria. Its inactivation efficiency depends on local conditions where the disinfection is made. This study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household water treatment technology. Inactivation of microbes was tested using fecal coliform as test organism. The SODIS experiment was carried out at turbidity 2NTU, pH 7, and various water temperature (38.1°C, 41.8°C, 45.6°Cand 51.1°C) and solar intensities, using clear and black plastic bottles filled to different depths. The results show that the rate of microbial inactivation in relation to depth of water, turbidity, container type, intensity of light and color of container was statistically significant (p < 0.05). However, bottle placement, exposure and water pH were unrelated to microbial inactivation. Bacterial re-growth was not observed after solar disinfection. By adjusting the parameters, complete and irreversible fecal coliform inactivation was achieved within an exposure time of less than four hours in the areas where the solar irradiance is about 3.99 kW/m2 and above. Our results indicate that application of SODIS could play a significant role in the provision of safe water in rural communities of developing countries where there is ample sunshine, specifically in sub-Saharan African countries.

  1. Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia

    PubMed Central

    2014-01-01

    Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate bacteria. Its inactivation efficiency depends on local conditions where the disinfection is made. This study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household water treatment technology. Inactivation of microbes was tested using fecal coliform as test organism. The SODIS experiment was carried out at turbidity 2NTU, pH 7, and various water temperature (38.1°C, 41.8°C, 45.6°Cand 51.1°C) and solar intensities, using clear and black plastic bottles filled to different depths. The results show that the rate of microbial inactivation in relation to depth of water, turbidity, container type, intensity of light and color of container was statistically significant (p < 0.05). However, bottle placement, exposure and water pH were unrelated to microbial inactivation. Bacterial re-growth was not observed after solar disinfection. By adjusting the parameters, complete and irreversible fecal coliform inactivation was achieved within an exposure time of less than four hours in the areas where the solar irradiance is about 3.99 kW/m2 and above. Our results indicate that application of SODIS could play a significant role in the provision of safe water in rural communities of developing countries where there is ample sunshine, specifically in sub-Saharan African countries. PMID:24410979

  2. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  3. CYP2C19 progress curve analysis and mechanism-based inactivation by three methylenedioxyphenyl compounds.

    PubMed

    Salminen, Kaisa A; Meyer, Achim; Imming, Peter; Raunio, Hannu

    2011-12-01

    Several in vitro criteria were used to assess whether three methylenedioxyphenyl (MDP) compounds, the isoquinoline alkaloids bulbocapnine, canadine, and protopine, are mechanism-based inactivators of CYP2C19. The recently reported fluorometric CYP2C19 progress curve analysis approach was applied first to determine whether these alkaloids demonstrate time-dependent inhibition. In this experiment, bulbocapnine, canadine, and protopine displayed time dependence and saturation in their inactivation kinetics with K(I) and k(inact) values of 72.4 ± 14.7 μM and 0.38 ± 0.036 min(-1), 2.1 ± 0.63 μM and 0.18 ± 0.015 min(-1), and 7.1 ± 2.3 μM and 0.24 ± 0.021 min(-1), respectively. Additional studies were performed to determine whether other specific criteria for mechanism-based inactivation were fulfilled: NADPH dependence, irreversibility, and involvement of a catalytic step in the enzyme inactivation. CYP2C19 activity was not significantly restored by dialysis when it had been inactivated by the alkaloids in the presence of a NADPH-regenerating system, and a metabolic-intermediate complex-associated increase in absorbance at approximately 455 nm was observed. In conclusion, the CYP2C19 progress curve analysis method revealed time-dependent inhibition by these alkaloids, and additional experiments confirmed its quasi-irreversible nature. This study revealed that the CYP2C19 progress curve analysis method is useful for identifying novel mechanism-based inactivators and yields a wealth of information in one run. The alkaloids bulbocapnine, canadine, and protopine, present in herbal medicines, are new mechanism-based inactivators and the first MDP compounds exhibiting quasi-irreversible inactivation of CYP2C19.

  4. Radiation inactivation of ricin occurs with transfer of destructive energy across a disulfide bridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haigler, H.T.; Woodbury, D.J.; Kempner, E.S.

    1985-08-01

    The ionizing radiation sensitivity of ricin, a disulfide-linked heterodimeric protein, was studied as a model to determine the ability of disulfide bonds to transmit destructive energy. The radiation-dependent loss of A chain enzymatic activity after irradiation of either intact ricin or ricin in which the interchain disulfide bond was disrupted gave target sizes corresponding to the molecular size of dimeric ricin or monomeric A chain, respectively. These results clearly show that a disulfide bond can transmit destructive energy between protein subunits.

  5. Ultraviolet irradiation: An effective inactivation method of Aspergillus spp. in water for the control of waterborne nosocomial aspergillosis.

    PubMed

    Nourmoradi, H; Nikaeen, M; Stensvold, C R; Mirhendi, H

    2012-11-15

    Invasive aspergillosis is the second most common cause of nosocomial fungal infections and occurring mainly by Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger. There is evidence that nosocomial aspergillosis may be waterborne. This study was conducted to evaluate the ultraviolet (UV) irradiation efficiency in terms of inactivating the most important Aspergillus species in water since these are potential sources for nosocomial aspergillosis. A continuous flow UV reactor which could be used as a point-of-use (POU) system was used to survey Aspergillus inactivation by UV irradiation. The inactivation efficiency of UV fluence (4.15-25 mJ/cm(2)) was measured by determination of fungal density in water before and after radiation. Because turbidity and iron concentration are two major water quality factors impacting UV disinfection effectiveness, the potential influence of these factors on UV inactivation of Aspergillus spp. was also measured. The 4 log inactivation for A. fumigatus, A. niger and A. flavus at a density of 1000 cfu/ml was achieved at UV fluences of 12.45 mJ/cm(2), 16.6 mJ/cm(2) and 20.75 mJ/cm(2), respectively. The inactivation efficiency for lower density (100 cfu/ml) was the same as for the higher density except for A. flavus. The removal efficiency of Aspergillus spp. was decreased by increasing the turbidity and iron concentration. UV disinfection could effectively inactivate Aspergillus spores from water and eliminate potential exposure of high-risk patients to fungal aerosols by installation of POU UV systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Lunar and Planetary Science XXXV: Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites includes the following topics: 1) Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential? 2) An Analysis of Potential Photosynthetic Life on Mars; 3) Radiation Inactivation of Bacterial spores on Mars; 4) Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers; 5) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents; 6) Signs of Life in Meridiani Planum-What Might Opportunity See (or Miss)? 7) Isolation of PUrines and Pyrimidines from the Murchison Meteorite Using Sublimation; and 8) Relative Amino Acid Composition of CM1 Carbonaceous Chondrites.

  7. Wavelength dependence of biological damage induced by UV radiation on bacteria.

    PubMed

    Santos, Ana L; Oliveira, Vanessa; Baptista, Inês; Henriques, Isabel; Gomes, Newton C M; Almeida, Adelaide; Correia, António; Cunha, Ângela

    2013-01-01

    The biological effects of UV radiation of different wavelengths (UVA, UVB and UVC) were assessed in nine bacterial isolates displaying different UV sensitivities. Biological effects (survival and activity) and molecular markers of oxidative stress [DNA strand breakage (DSB), generation of reactive oxygen species (ROS), oxidative damage to proteins and lipids, and the activity of antioxidant enzymes catalase and superoxide dismutase] were quantified and statistically analyzed in order to identify the major determinants of cell inactivation under the different spectral regions. Survival and activity followed a clear wavelength dependence, being highest under UVA and lowest under UVC. The generation of ROS, as well as protein and lipid oxidation, followed the same pattern. DNA damage (DSB) showed the inverse trend. Multiple stepwise regression analysis revealed that survival under UVA, UVB and UVC wavelengths was best explained by DSB, oxidative damage to lipids, and intracellular ROS levels, respectively.

  8. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    PubMed

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  9. Beneficial uses program. Progress report ending December 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-06-01

    Progress is reported in research on uses of irradiated sewage sludge, particularly as a cattle feed supplement and commercial fertilizer additive, on potential sites for irradiator demonstration plants, and on the inactivation of enteric bacteria by radiation treatment. (LCL)

  10. Beneficial uses program. Progress report for period ending March 31, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-07-01

    Progress is reported in a program aimed at recovering radiation sources from radioactive wastes and using these sources, mainly /sup 137/Cs, for irradiating sewage sludge. Information is included on: development and cost of dried sludge irradiator; heat and radiation inactivation of sludge-contained viruses and bacteria; virucidal agents in sludge; use of thermoradiated sludge as animal feed; and a comparison of the efficiency of various source materials. (LCL)

  11. Radiation-Dependent Limit for the Viability of Bacterial Spores in Halite Fluid Inclusions and on Mars

    PubMed Central

    Kminek, Gerhard; Bada, Jeffrey L.; Pogliano, Kit; Ward, John F.

    2014-01-01

    Kminek, G., Bada, J. L., Pogliano, K. and Ward, J. F. Radiation-Dependent Limit for the Viability of Bacterial Spores in Halite Fluid Inclusions and on Mars. Radiat. Res. 159, 722–729 (2003). When claims for the long-term survival of viable organisms are made, either within terrestrial minerals or on Mars, considerations should be made of the limitations imposed by the naturally occurring radiation dose to which they have been exposed. We investigated the effect of ionizing radiation on different bacterial spores by measuring the inactivation constants for B. subtilis and S. marismortui spores in solution as well as for dry spores of B. subtilis and B. thuringiensis. S. marismortui is a halophilic spore that is genetically similar to the recently discovered 2-9-3 bacterium from a halite fluid inclusion, claimed to be 250 million years old (Vreeland et al., Nature 407, 897–900, 2000). B. thuringiensis is a soil bacterium that is genetically similar to the human pathogens B. anthracis and B. cereus (Helgason et al., Appl. Environ. Microbiol. 66, 2627–2630, 2000). To relate the inactivation constant to some realistic environments, we calculated the radiation regimen in a halite fluid inclusion and in the Martian subsurface over time. Our conclusion is that the ionizing dose of radiation in those environments limits the survival of viable bacterial spores over long periods. In the absence of an active repair mechanism in the dormant state, the long-term survival of spores is limited to less than 109 million years in halite fluid inclusions, to 100 to 160 million years in the Martian subsurface below 3 m, and to less than 600,000 years in the uppermost meter of Mars. PMID:12751954

  12. A generalized target theory and its applications.

    PubMed

    Zhao, Lei; Mi, Dong; Hu, Bei; Sun, Yeqing

    2015-09-28

    Different radiobiological models have been proposed to estimate the cell-killing effects, which are very important in radiotherapy and radiation risk assessment. However, most applied models have their own scopes of application. In this work, by generalizing the relationship between "hit" and "survival" in traditional target theory with Yager negation operator in Fuzzy mathematics, we propose a generalized target model of radiation-induced cell inactivation that takes into account both cellular repair effects and indirect effects of radiation. The simulation results of the model and the rethinking of "the number of targets in a cell" and "the number of hits per target" suggest that it is only necessary to investigate the generalized single-hit single-target (GSHST) in the present theoretical frame. Analysis shows that the GSHST model can be reduced to the linear quadratic model and multitarget model in the low-dose and high-dose regions, respectively. The fitting results show that the GSHST model agrees well with the usual experimental observations. In addition, the present model can be used to effectively predict cellular repair capacity, radiosensitivity, target size, especially the biologically effective dose for the treatment planning in clinical applications.

  13. Physicochemical inactivation of Lassa, Ebola, and Marburg viruses and effect on clinical laboratory analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.W.; McCormick, J.B.

    1984-09-01

    Clinical specimens from patients infected with Lassa, Ebola, or Marburg virus may present a serious biohazard to laboratory workers. The authors have examined the effects of heat, alteration of pH, and gamma radiation on these viruses in human blood and on the electrolytes, enzymes, and coagulation factors measured in laboratory tests that are important in the care of an infected patient. Heating serum at 60 degrees C for 1 h reduced high titers of these viruses to noninfectious levels without altering the serum levels of glucose, blood urea nitrogen, and electrolytes. Dilution of blood in 3% acetic acid, diluent formore » a leukocyte count, inactivated all of these viruses. All of the methods tested for viral inactivation markedly altered certain serum proteins, making these methods unsuitable for samples that are to be tested for certain enzyme levels and coagulation factors.« less

  14. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  15. Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels

    PubMed Central

    Perry, Matthew D.; Wong, Sophia; Ng, Chai Ann

    2013-01-01

    Kv11.1 channels are critical for the maintenance of a normal heart rhythm. The flow of potassium ions through these channels is controlled by two voltage-regulated gates, termed “activation” and “inactivation,” located at opposite ends of the pore. Crucially in Kv11.1 channels, inactivation gating occurs much more rapidly, and over a distinct range of voltages, compared with activation gating. Although it is clear that the fourth transmembrane segments (S4), within each subunit of the tetrameric channel, are important for controlling the opening and closing of the activation gate, their role during inactivation gating is much less clear. Here, we use rate equilibrium free energy relationship (REFER) analysis to probe the contribution of the S4 “voltage-sensor” helix during inactivation of Kv11.1 channels. Contrary to the important role that charged residues play during activation gating, it is the hydrophobic residues (Leu529, Leu530, Leu532, and Val535) that are the key molecular determinants of inactivation gating. Within the context of an interconnected multi-domain model of Kv11.1 inactivation gating, our REFER analysis indicates that the S4 helix and the S4–S5 linker undergo a conformational rearrangement shortly after that of the S5 helix and S5P linker, but before the S6 helix. Combining REFER analysis with double mutant cycle analysis, we provide evidence for a hydrophobic interaction between residues on the S4 and S5 helices. Based on a Kv11.1 channel homology model, we propose that this hydrophobic interaction forms the basis of an intersubunit coupling between the voltage sensor and pore domain that is an important mediator of inactivation gating. PMID:23980196

  16. Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation.

    PubMed

    Gonzales, Júlia C; Brancini, Guilherme T P; Rodrigues, Gabriela B; Silva-Junior, Geraldo José; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Ú L

    2017-11-01

    Antimicrobial photodynamic treatment (APDT) is a promising light based approach to control diseases caused by plant-pathogenic fungi. In the present study, we evaluated the effects of APDT with the phenothiazinium photosensitizer methylene blue (MB) under solar radiation on the germination and viability of conidia of the pathogenic fungus Colletotricum abscissum (former Colletotrichum acutatum sensu lato). Experiments were performed both on petals and leaves of sweet orange (Citrus sinensis) in different seasons and weather conditions. Conidial suspensions were deposited on the leaves and petals surface, treated with the PS (25 or 50μM) and exposed to solar radiation for only 30min. The effects of APDT on conidia were evaluated by counting the colony forming units recovered from leaves and petals and by direct evaluating conidial germination on the surface of these plant organs after the treatment. To better understand the mechanistic of conidial photodynamic inactivation, the effect of APDT on the permeability of the conidial plasma membrane was assessed using the fluorescent probe propidium iodide (PI) together with flow cytometry and fluorescence microscopy. APDT with MB and solar exposure killed C. abscissum conidia and prevented their germination on both leaves and petals of citrus. Reduction of conidial viability was up to three orders of magnitude and a complete photodynamic inactivation was achieved in some of the treatments. APDT damaged the conidial plasma membrane and increased its permeability to PI. No damage to sweet orange flowers or leaves was observed after APDT. The demonstration of the efficacy of APDT on the plant host represents a further step towards the use of the method for control phytopathogens in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Induction of gynogenetic and androgenetic haploid and doubled haploid development in the brown trout (Salmo trutta Linnaeus 1758).

    PubMed

    Michalik, O; Dobosz, S; Zalewski, T; Sapota, M; Ocalewicz, K

    2015-04-01

    Gynogenetic and androgenetic brown trout (Salmo trutta Linnaeus 1758) haploids (Hs) and doubled haploids (DHs) were produced in the present research. Haploid development was induced by radiation-induced genetic inactivation of spermatozoa (gynogenesis) or eggs (androgenesis) before insemination. To provide DHs, gynogenetic and androgenetic haploid zygotes were subjected to the high pressure shock to suppress the first mitotic cleavage. Among haploids, gynogenetic embryos were showing lower mortality when compared to the androgenetic embryos; however, most of them die before the first feeding stage. Gynogenetic doubled haploids provided in the course of the brown trout eggs activation performed by homologous and heterologous sperm (rainbow trout) were developing equally showing hatching rates of 14.76 ± 2.4% and 16.14 ± 2.90% and the survival rates at the first feeding stage of 10.48 ± 3.48% and 12.78 ± 2.18%, respectively. Significantly, lower survival rate was observed among androgenetic progenies from the diploid groups with only few specimens that survived to the first feeding stage. Cytogenetic survey showed that among embryos from the diploid variants of the research, only gynogenetic individuals possessed doubled sets of chromosomes. Thus, it is reasonable to assume that radiation employed for the genetic inactivation of the brown trout eggs misaligned mechanism responsible for the cell divisions and might have delayed or even arrested the first mitotic cleavage in the androgenetic brown trout zygotes. Moreover, protocol for the radiation-induced inactivation of the paternal and maternal genome should be adjusted as some of the cytogenetically surveyed gynogenetic and androgenetic embryos exhibited fragments of the irradiated chromosomes. © 2015 Blackwell Verlag GmbH.

  18. The inactivation of human CYP2E1 by phenethyl isothiocyanate, a naturally occurring chemopreventive agent, and its oxidative bioactivation.

    PubMed

    Yoshigae, Yasushi; Sridar, Chitra; Kent, Ute M; Hollenberg, Paul F

    2013-04-01

    Phenethylisothiocyanate (PEITC), a naturally occurring isothiocyanate and potent cancer chemopreventive agent, works by multiple mechanisms, including the inhibition of cytochrome P450 (P450) enzymes, such as CYP2E1, that are involved in the bioactivation of carcinogens. PEITC has been reported to be a mechanism-based inactivator of some P450s. We describe here the possible mechanism for the inactivation of human CYP2E1 by PEITC, as well as the putative intermediate that might be involved in the bioactivation of PEITC. PEITC inactivated recombinant CYP2E1 with a partition ratio of 12, and the inactivation was not inhibited in the presence of glutathione (GSH) and not fully recovered by dialysis. The inactivation of CYP2E1 by PEITC is due to both heme destruction and protein modification, with the latter being the major pathway for inactivation. GSH-adducts of phenethyl isocyanate (PIC) and phenethylamine were detected during the metabolism by CYP2E1, indicating formation of PIC as a reactive intermediate following P450-catalyzed desulfurization of PEITC. Surprisingly, PIC bound covalently to CYP2E1 to form protein adducts but did not inactivate the enzyme. Liquid chromatography mass spectroscopy analysis of the inactivated CYP2E1 apo-protein suggests that a reactive sulfur atom generated during desulfurization of PEITC is involved in the inactivation of CYP2E1. Our data suggest that the metabolism of PEITC by CYP2E1 that results in the inactivation of CYP2E1 may occur by a mechanism similar to that observed with other sulfur-containing compounds, such as parathion. Digestion of the inactivated enzyme and analysis by SEQUEST showed that Cys 268 may be the residue modified by PIC.

  19. UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water.

    PubMed

    Guerrero-Latorre, Laura; Gonzales-Gustavson, Eloy; Hundesa, Ayalkibet; Sommer, Regina; Rosina, Girones

    2016-07-01

    Hepatitis E Virus (HEV) is a major cause of waterborne outbreaks in areas with poor sanitation. As safe water supplies are the keystone for preventing HEV outbreaks, data on the efficacy of disinfection treatments are urgently needed. Here, we evaluated the ability of UV radiation and flocculation-chlorination sachets (FCSs) to reduce HEV in water matrices. The HEV-p6-kernow strain was replicated in the HepG2/C3A cell line, and we quantified genome number using qRT-PCR and infectivity using an immunofluorescence assay (IFA). UV irradiation tests using low-pressure radiation showed inactivation kinetics for HEV of 99.99% with a UV fluence of 232J/m(2) (IC 95%, 195,02-269,18). Moreover, the FCSs preparations significantly reduced viral concentrations in both water matrices, although the inactivation results were under the baseline of reduction (4.5 LRV) proposed by WHO guidelines. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Rapid disinfection of E-Coliform contaminated water using WO3 semiconductor catalyst by laser-induced photo-catalytic process.

    PubMed

    Gondal, Mohammed A; Khalil, Amjad

    2008-04-01

    Laser-induced photo-catalysis process using WO(3) semiconductor catalyst was applied for the study of disinfection effectiveness of E-coliform-contaminated water. For this purpose, wastewater polluted with E-coliform bacteria was exposed to 355 nm UV radiations generated by third harmonic of Nd: YAG laser in special glass cell with and without WO(3) catalyst. E-Coliform quantification was performed by direct plating method to obtain the efficiency of each disinfection treatment. The dependence of disinfection process on laser irradiation energy, amount of catalyst and duration of laser irradiation was also investigated. The disinfection with WO(3) was quite efficient inactivating E-coliforms. For inactivation of E-coliforms, less than 8 minutes' laser irradiation was required, so that, the treated water complies with the microbial standards for drinking water. This study opens the possibility of application of this simple method in rural areas of developing countries using solar radiation.

  1. Use of 8-methoxypsoralen and long-wavelength ultraviolet radiation for decontamination of platelet concentrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L.; Wiesehahn, G.P.; Morel, P.A.

    1989-07-01

    Transmission of viral diseases through blood products remains an unsolved problem in transfusion medicine. We have developed a psoralen photochemical system for decontamination of platelet concentrates in which platelets are treated with long wavelength ultraviolet radiation (UVA, 320-400 nm) in the presence of 8-methoxypsoralen (8-MOP). Bacteria, RNA viruses, and DNA viruses ranging in genome size from 1.2 x 10(6) daltons, encompassing the size range of human pathogens, were inoculated into platelet concentrates and subjected to treatment. This system inactivated 25 to 30 logs/h of bacteria Escherichia coli or Staphylococcus aureus, 6 logs/h of bacteriophage fd, 0.9 log/h of bacteriophage R17more » and 1.1 logs/h of feline leukemia virus (FeLV) in platelet concentrates maintained in standard storage bags. Platelet integrity and in vitro function before, immediately following photochemical treatment, and during prolonged storage after treatment, were evaluated by measuring: (1) extracellular pH; (2) platelet yields; (3) extracellular lactate dehydrogenase (LDH) levels; (4) platelet morphology; (5) platelet aggregation responsiveness; (6) thromboxane beta-2 (TXB-2) production; (7) dense body secretion; and (8) alpha granule secretion. These assays demonstrated that this photochemical inactivation system inactivated bacteria and viruses in platelet concentrates with minimal adverse effects on the in vitro function of platelets in comparison to untreated control concentrates maintained under current, standard blood bank conditions.« less

  2. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    PubMed

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  3. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to High and Low LET Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Wilkins, R.; Saganti, P. B.; Gersey, B.; Cucinotta, F. A.; Wu, H.

    2006-01-01

    Energetic heavy ions pose a health risk to astronauts in extended ISS and future Mars missions. High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human epithelial cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells (CH184B5F5/M10) were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory, high energy neutron at the Los Alamos Nuclear Science Center (LANSCE) or Cs-137-gamma radiation source at the University of Texas, MD Anderson Cancer Center. After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The results of the mBAND study showed a higher ratio of inversion involved with interchromosomal exchange in heavy ions compared to -ray irradiation. Analysis of chromosome aberrations using mBAND has the potential to provide useful information on human cell response to space-like radiation.

  4. Biophysical damage in metallo-enzyme and mammalian cells by Cu-K X-rays and radioisotopes

    NASA Astrophysics Data System (ADS)

    Younis, Abdul-Redha Sahib

    In the fields of radiobiology and nuclear medicine there is considerable interest in the important role played by Auger electron cascades caused by inner-shell ionisation in realistic risk. It is necessary to quantify this risk when radionuclides are used on a routine basis as investigative, diagnostic and radiotherapeutic tools, whether the applications involve incorporated electron capture radionuclides or K-shell ionisation of selected stable nuclides by X-rays, as in "photon activation therapy". Relevant published survival data on biological damage caused by the internal emitters 125I, 77Br, 3H, 33P, 131I and 32P which are incorporated into the DNA of mammalian cells, bacteria (E. Coli) and bacteriophages have been collected and the results re-analysed in terms of the parameters of a new damage model to determine an inactivation cross-section for each internal emitter. These quality parameters are the absolute specification of radiation quality and are compared with cross-sections similarly determined for the effects of external radiations from heavy charged particles and photons (chapter 2). The inactivation probabilities obtained for the nuclides 125I, 77Br and 3H extend over a wide range of values depending on the type of nuclide and its distribution, the type of sensitive target and its shape and distribution, and the environmental temperature during both irradiation and post-irradiation incubation. The higher values approach those determined for heavy charged particles with the same mean free path for primary ionisation, and are an order of magnitude larger than would be expected for external irradiation with photon generated electrons. The results for 33P, 131I and 32P nuclides are appreciably smaller than that expected for external irradiation since the long range electrons dissipate most of their energy out of the sensitive target. A theoretical equation for X-ray production by accelerated electrons incident on a thick target has been revised by including factors to compensate for backscattering, direct and indirect ionisation, attenuation in the target and the incident angle of electrons (chapter 3). An electron accelerator X-ray machine capable of delivering monoenergetic photons up to 4.8 gray/sec exposure dose rate from four different targets has been designed, constructed and tested (chapter 4) The biophysical mechanisms of direct and indirect radiation action has also been studied using the metallo-enzyme dihydroorotic dehydrogenase. The enzyme was irradiated both in dry state and in solution at different concentrations and at different dose rates using monoenergetic Cu-K photons from our X-ray machine. A technique was developed whereby it was possible to isolate and quantify each type of radiation action (chapter 5). The inactivation of the enzyme in both solution and in dry state was found to be a single-hit/single-target process. It was also found that in solution the inactivation of the enzyme was dose-rate-and concentration-dependent with efficiency of radical inactivation has an exponential dependence on dose-rate and the inverse of the enzyme concentration. A new model for the inactivation of the enzyme has been suggested and its parameters, namely direct and indirect cross-sections, geometrical cross-section, saturated concentration constant, root mean square diffusion constant, mean free path of radicals absorption, life time and G value of radical production, have been determined. It is expected that this model can be generalised to suit other enzymes (chapter 6).

  5. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindarajan, A.G.; Lindow, S.E.

    1988-03-01

    Four bacterial species are known to catalyze ice formation at temperatures just below 0/sup 0/C. To better understand the relationship between the molecular structure of bacterial ice-nucleation site(s) and the quantitative and qualitative features of the ice-nucleation-active phenotype, the authors determined by ..gamma..-radiation analysis the in situ size of ice-nucleation sites in strains of Pseudomonas syringae and Erwinia herbicola and in Escherichia coli HB101 carrying the plasmid pICE1.1. Lyophilized cells of each bacterial strain were irradiated with a flux of ..gamma.. radiation from 0 to 10.2 Mrad. Differential concentrations of active ice nuclei decreased as a first-order function of radiationmore » dose in all strains as temperature was decreased from -2/sup 0/C to -14/sup 0/C in 1/sup 0/C intervals. Sizes of ice nuclei were calculated from the /sup +/-radiation flux at which 37% of initial ice nuclei active within each 1/sup 0/C temperature interval remained. The minimum mass of a functional ice nucleus was about 150 kDa for all strains. The size of ice nuclei increased logarithmically with increasing temperature from -12/sup 0/CC to -2/sup 0/C, where the estimated nucleant mass was 19,000 kDa. The ice nucleant in these three bacterial species may represent an oligomeric structure, composed at least in part of an ice gene product that can self-associate to assume many possible sizes.« less

  6. UV Disinfection System for Cabin Air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application of computational fluid dynamics (CFD) and radiation intensity field models. These simulations followed a Lagrangian approach, wherein the UV radiation intensity field was mapped onto simulated particle trajectories for prediction of the UV dose delivered to each particle. By repeating these calculations for a large number of simulated particle trajectories, an estimate of the UV dose distribution delivered by the reactor can be made. In turn, these dose distribution estimates are integrated with the UV dose-response behavior described above to yield an estimate of microbial inactivation accomplished by the reactor. This modeling approach has the advantage of allowing simulation of many reactor configurations in a relatively short period of time. Moreover, by following this approach of "numerical prototyping," it is possible to "build" and analyze several virtual reactors before the construction of a physical prototype. As such, this procedure allows effective development of efficient reactors.

  7. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.

    PubMed

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures.

  8. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome

    PubMed Central

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043

  9. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    NASA Astrophysics Data System (ADS)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm conclusions.

  10. Experimental adaptation of human echovirus 11 to ultraviolet radiation leads to resistance to disinfection and ribavirin

    PubMed Central

    Carratalà, Anna; Shim, Hyunjin; Zhong, Qingxia; Bachmann, Virginie; Jensen, Jeffrey D

    2017-01-01

    Abstract Ultraviolet light in the UVC range is a commonly used disinfectant to control viruses in clinical settings and water treatment. However, it is currently unknown whether human viral pathogens may develop resistance to such stressor. Here, we investigate the adaptation of an enteric pathogen, human echovirus 11, to disinfection by UVC, and characterized the underlying phenotypic and genotypic changes. Repeated exposure to UVC lead to a reduction in the UVC inactivation rate of approximately 15 per cent compared to that of the wild-type and the control populations. Time-series next-generation sequencing data revealed that this adaptation to UVC was accompanied by a decrease in the virus mutation rate. The inactivation efficiency of UVC was additionally compromised by a shift from first-order to biphasic inactivation kinetics, a form of ‘viral persistence’ present in the UVC resistant and control populations. Importantly, populations with biphasic inactivation kinetics also exhibited resistance to ribavirin, an antiviral drug that, as UVC, interferes with the viral replication. Overall, the ability of echovirus 11 to adapt to UVC is limited, but it may have relevant consequences for disinfection in clinical settings and water treatment plants. PMID:29225923

  11. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light.

    PubMed

    Navntoft, C; Ubomba-Jaswa, E; McGuigan, K G; Fernández-Ibáñez, P

    2008-12-11

    Inactivation kinetics are reported for suspensions of Escherichia coli in well-water using compound parabolic collector (CPC) mirrors to enhance the efficiency of solar disinfection (SODIS) for batch reactors under real, solar radiation (cloudy and cloudless) conditions. On clear days, the system with CPC reflectors achieved complete inactivation (more than 5-log unit reduction in bacterial population to below the detection limit of 4CFU/mL) one hour sooner than the system fitted with no CPC. On cloudy days, only systems fitted with CPCs achieved complete inactivation. Degradation of the mirrors under field conditions was also evaluated. The reflectivity of CPC systems that had been in use outdoors for at least 3 years deteriorated in a non-homogeneous fashion. Reflectivity values for these older systems were found to vary between 27% and 72% compared to uniform values of 87% for new CPC systems. The use of CPC has been proven to be a good technological enhancement to inactivate bacteria under real conditions in clear and cloudy days. A comparison between enhancing optics and thermal effect is also discussed.

  12. UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts

    PubMed Central

    Lamore, Sarah D.; Wondrak, Georg T.

    2013-01-01

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447

  13. Contribution of UVB radiation to bacterial inactivation by natural sunlight.

    PubMed

    Oppezzo, Oscar J

    2012-10-03

    The contribution of different components of sunlight to the lethal action exerted by this radiation on bacteria was studied using Pseudomonas aeruginosa ATCC27853 as a model organism. When solar UVB was excluded from the incident radiation by filtering it through a naphthalene solution (cut off 327 nm), significant modifications were observed in the cell-death kinetics. These modifications were comparable to those expected for a reduction of 27-32% in the dose rate, according to the model used in the analysis of the survival curves, and were also observed when the effects of sunlight filtered through polyethylene terephthalate (cut off 331 nm) or polystyrene (cut off 298 nm) were compared. Viability of P. aeruginosa remained almost unchanged when the incident radiation was filtered through a sodium nitrite solution (cut off 406 nm) in order to exclude the UVA and UVB components of sunlight. Nevertheless, a delay in colony formation was detected in bacteria treated in this way, suggesting that a non-lethal effect was exerted by visible light. The results are not consistent with a generally accepted notion which attributes the lethal action of sunlight to the radiation with wavelengths above 320 nm. The characterization of UVB contribution to the lethal effect of sunlight on bacteria is relevant for understanding of the mechanism of cell death, and for improvement of dosimetry techniques and irradiation procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The non-targeted effects of radiation are perpetuated by exosomes.

    PubMed

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim; Irons, Sarah; Luo, Ping; Carter, David; Goodwin, Edwin; Kadhim, Munira

    2015-02-01

    Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein-RNA inactivation. These were added to separate populations of unirradiated cells. The BE was partially inhibited when either exosome protein or exosome RNA were inactivated separately, whilst combined RNA-protein inhibition significantly reduced or eliminated the BE. These results demonstrate that exosomes are associated with long-lived signalling of the NTE of IR. Both RNA and protein molecules of exosomes work in a synergistic manner to initiate NTE, spread these effects to naïve cells, and perpetuate GI in the affected cells. Copyright © 2015. Published by Elsevier B.V.

  15. Mechanisms of inactivation of bacteriophage phiX174 and its DNA in aerosols by ozone and ozonized cyclohexene.

    PubMed Central

    de Mik, G.; de Groot, I.

    1977-01-01

    The mechanisms of inactivation of aerosolized bacteriophage phiX174 in atmospheres containing ozone, cyclohexene, or ozonized cyclohexene were studied by using 32P-labelled phage. The inactivation of the aerosolized phage in clear air or in air containing cyclohexene is due to damage of the protein coat since the deoxyribonucleic acid (DNA) extracted from the inactivated phage retains its biological activity. Inactivation of the phage in air containing ozonized cyclohexene is due both to protein and DNA damage. Sucrose gradient analysis shows that aerosolized inactivated phiX174 releases unbroken DNA. In contrast, the DNA from phage phiX174 inactivated by ozonized cyclohexene is broken. The inactivation of aerosolized phage phiX174-DNA was studied in the same atmospheres using 32P-labelled DNA. phiX174-DNA aerosolized in clear air or air containing cyclohexene at 75% r.h. is inactivated by a factor of 2 in 30 min. The inactivated DNA is broken. Ozone as well as ozonized cyclohexene inactivates KNA very fast causing breaks in the molecule. This is in contrast with the intact bacteriophage in which ozone does not produce breaks in the DNA. PMID:265342

  16. The Inactivation of Human CYP2E1 by Phenethyl Isothiocyanate, a Naturally Occurring Chemopreventive Agent, and Its Oxidative Bioactivation

    PubMed Central

    Yoshigae, Yasushi; Sridar, Chitra; Kent, Ute M.

    2013-01-01

    Phenethylisothiocyanate (PEITC), a naturally occurring isothiocyanate and potent cancer chemopreventive agent, works by multiple mechanisms, including the inhibition of cytochrome P450 (P450) enzymes, such as CYP2E1, that are involved in the bioactivation of carcinogens. PEITC has been reported to be a mechanism-based inactivator of some P450s. We describe here the possible mechanism for the inactivation of human CYP2E1 by PEITC, as well as the putative intermediate that might be involved in the bioactivation of PEITC. PEITC inactivated recombinant CYP2E1 with a partition ratio of 12, and the inactivation was not inhibited in the presence of glutathione (GSH) and not fully recovered by dialysis. The inactivation of CYP2E1 by PEITC is due to both heme destruction and protein modification, with the latter being the major pathway for inactivation. GSH-adducts of phenethyl isocyanate (PIC) and phenethylamine were detected during the metabolism by CYP2E1, indicating formation of PIC as a reactive intermediate following P450-catalyzed desulfurization of PEITC. Surprisingly, PIC bound covalently to CYP2E1 to form protein adducts but did not inactivate the enzyme. Liquid chromatography mass spectroscopy analysis of the inactivated CYP2E1 apo-protein suggests that a reactive sulfur atom generated during desulfurization of PEITC is involved in the inactivation of CYP2E1. Our data suggest that the metabolism of PEITC by CYP2E1 that results in the inactivation of CYP2E1 may occur by a mechanism similar to that observed with other sulfur-containing compounds, such as parathion. Digestion of the inactivated enzyme and analysis by SEQUEST showed that Cys 268 may be the residue modified by PIC. PMID:23371965

  17. Disinfection of an advanced primary effluent using peracetic acid or ultraviolet radiation for its reuse in public services.

    PubMed

    Julio, Flores R; Hilario, Terres-Peña; Mabel, Vaca M; Raymundo, López C; Arturo, Lizardi-Ramos; Ma Neftalí, Rojas-Valencia

    2015-03-01

    The disinfection of a continuous flow of an effluent from an advanced primary treatment (coagulation-flocculation-sedimentation) with or without posterior filtration, using either peracetic acid (PAA) or ultraviolet (UV) radiation was studied. We aimed to obtain bacteriological quality to comply with the microbiological standard established in the Mexican regulations for treated wastewater reuse (NOM-003-SEMARNAT-1997), i.e., less than 240 MPN (most probable number) FC/100 mL. The concentrations of PAA were 10, 15, and 20 mg/L, with contact times of 10, and 15 min. Fecal coliforms (FC) inactivation ranged from 0.93 up to 6.4 log units, and in all cases it reached the limits set by the mentioned regulation. Water quality influenced the PAA disinfection effectiveness. An efficiency of 91% was achieved for the unfiltered effluent, as compared to 99% when wastewater was filtered. UV radiation was applied to wastewater flows of 21, 30 and 39 L/min, with dosages from 1 to 6 mJ/cm². This treatment did not achieve the bacteriological quality required for treated wastewater reuse, since the best inactivation of FC was 1.62 log units, for a flow of 21 L/min of filtered wastewater and a UV dosage of 5.6 mJ/cm².

  18. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden.

    PubMed

    Ic, Erhan; Kottapalli, Bala; Maxim, Joseph; Pillai, Suresh D

    2007-04-01

    Dried fruits and nuts make up a significant portion of the commodities traded globally, and the presence of yeasts and molds on dried fruits and nuts can be a public health risk because of the potential for exposure to toxigenic fungi. Since current postharvest treatment technologies are rather limited for dried fruits and nuts, electron beam (E-beam) radiation experiments were performed to determine the doses required to reduce the yeast and mold bioburden of raisins, walnuts, and dates. The indigenous yeast and mold bioburden on a select number of commodities sold at retail ranged from 10(2) to 10(3) CFU/g. E-beam inactivation kinetics based on the linear model suggest that the decimal reduction dose required to eliminate 90% of the microbial population (D10-value) of these indigenous fungal populations ranges from 1.09 to 1.59 kGy. Some samples, however, exhibited inactivation kinetics that were better modeled by a quadratic model. The results indicate that different commodities can contain molds and yeasts of varying resistance to ionizing radiation. It is thus essential for the dried fruit and nut industry to determine empirically the minimum E-beam dose that is capable of reducing or eliminating the bioburden of yeasts and molds in their specific commodities.

  19. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility

    PubMed Central

    Khodadad, Christina L.; Wong, Gregory M.; James, Leandro M.; Thakrar, Prital J.; Lane, Michael A.; Catechis, John A.

    2017-01-01

    Abstract Every spacecraft sent to Mars is allowed to land viable microbial bioburden, including hardy endospore-forming bacteria resistant to environmental extremes. Earth's stratosphere is severely cold, dry, irradiated, and oligotrophic; it can be used as a stand-in location for predicting how stowaway microbes might respond to the martian surface. We launched E-MIST, a high-altitude NASA balloon payload on 10 October 2015 carrying known quantities of viable Bacillus pumilus SAFR-032 (4.07 × 107 spores per sample), a radiation-tolerant strain collected from a spacecraft assembly facility. The payload spent 8 h at ∼31 km above sea level, exposing bacterial spores to the stratosphere. We found that within 120 and 240 min, spore viability was significantly reduced by 2 and 4 orders of magnitude, respectively. By 480 min, <0.001% of spores carried to the stratosphere remained viable. Our balloon flight results predict that most terrestrial bacteria would be inactivated within the first sol on Mars if contaminated spacecraft surfaces receive direct sunlight. Unfortunately, an instrument malfunction prevented the acquisition of UV light measurements during our balloon mission. To make up for the absence of radiometer data, we calculated a stratosphere UV model and conducted ground tests with a 271.1 nm UVC light source (0.5 W/m2), observing a similarly rapid inactivation rate when using a lower number of contaminants (640 spores per sample). The starting concentration of spores and microconfiguration on hardware surfaces appeared to influence survivability outcomes in both experiments. With the relatively few spores that survived the stratosphere, we performed a resequencing analysis and identified three single nucleotide polymorphisms compared to unexposed controls. It is therefore plausible that bacteria enduring radiation-rich environments (e.g., Earth's upper atmosphere, interplanetary space, or the surface of Mars) may be pushed in evolutionarily consequential directions. Key Words: Planetary protection—Stratosphere—Balloon—Mars analog environment—E-MIST payload—Bacillus pumilus SAFR-032. Astrobiology 17, 337–350. PMID:28323456

  20. Demonstration of a novel Xp22.2 microdeletion as the cause of familial extreme skewing of X-inactivation utilizing case-parent trio SNP microarray analysis.

    PubMed

    Mason, Jane A; Aung, Hnin T; Nandini, Adayapalam; Woods, Rickie G; Fairbairn, David J; Rowell, John A; Young, David; Susman, Rachel D; Brown, Simon A; Hyland, Valentine J; Robertson, Jeremy D

    2018-05-01

    We report a kindred referred for molecular investigation of severe hemophilia A in a young female in which extremely skewed X-inactivation was observed in both the proband and her clinically normal mother. Bidirectional Sanger sequencing of all F8 gene coding regions and exon/intron boundaries was undertaken. Methylation-sensitive restriction enzymes were utilized to investigate skewed X-inactivation using both a classical human androgen receptor (HUMARA) assay, and a novel method targeting differential methylation patterns in multiple informative X-chromosome SNPs. Illumina Whole-Genome Infinium microarray analysis was performed in the case-parent trio (proband and both parents), and the proband's maternal grandmother. The proband was a cytogenetically normal female with severe hemophilia A resulting from a heterozygous F8 pathogenic variant inherited from her similarly affected father. No F8 mutation was identified in the proband's mother, however, both the proband and her mother both demonstrated completely skewed X-chromosome inactivation (100%) in association with a previously unreported 2.3 Mb deletion at Xp22.2. At least three disease-associated genes (FANCB, AP1S2, and PIGA) were contained within the deleted region. We hypothesize that true "extreme" skewing of X-inactivation (≥95%) is a rare occurrence, but when defined correctly there is a high probability of finding an X-chromosome disease-causing variant or larger deletion resulting in X-inactivation through a survival disadvantage or cell lethal mechanism. We postulate that the 2.3 Mb Xp22.2 deletion identified in our kindred arose de novo in the proband's mother (on the grandfather's homolog), and produced extreme skewing of X-inactivation via a "cell lethal" mechanism. We introduce a novel multitarget approach for X-inactivation analysis using multiple informative differentially methylated SNPs, as an alternative to the classical single locus (HUMARA) method. We propose that for females with unexplained severe phenotypic expression of an X-linked recessive disorder trio-SNP microarray should be undertaken in combination with X-inactivation analysis. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  1. Ultraviolet germicidal efficacy as a function of pulsed radiation parameters studied by spore film dosimetry.

    PubMed

    Bauer, Stefan; Holtschmidt, Hans; Ott, Günter

    2018-01-01

    Disinfection by pulsed ultraviolet (UV) radiation is a commonly used method, e.g. in industry or medicine and can be carried out either with lasers or broadband UV radiation sources. Detrimental effects to biological materials depending on parameters such as pulse duration τ or pulse repetition frequency f p are well-understood for pulsed coherent UV radiation, however, relatively little is known for its incoherent variant. Therefore, within this work, it is the first time that disinfection rates of pulsed and continuous (cw) incoherent UV radiation studied by means of spore film dosimetry are presented, compared with each other, and in a second step further investigated regarding two pulse parameters. After analyzing the dynamic range of the Bacillus subtilis spore films with variable cw radiant exposures H=5-100Jm -2 a validation of the Bunsen-Roscoe law revealed its restricted applicability and a 28% enhanced detrimental effect of pulsed compared to cw incoherent UV radiation. A radiant exposure H=50Jm -2 and an irradiance E=0.5Wm -2 were found to be suitable parameters for an analysis of the disinfection rate as a function of τ=0.5-10ms and f p =25-500Hz unveiling that shorter pulses and lower frequencies inactivate more spores. Finally, the number of applied pulses as well as the experiment time were considered with regard to spore film disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Advanced Analysis to Distinguish between Physical Decrease and Inactivation of Viable Phages in Aerosol by Quantitating Phage-Specific Particles.

    PubMed

    Shimasaki, Noriko; Nojima, Yasuhiro; Sakakibara, Masaya; Kikuno, Ritsuko; Iizuka, Chiori; Okaue, Akira; Okuda, Shunji; Shinohara, Katsuaki

    2018-01-01

     Recent studies have investigated the efficacy of air-cleaning products against pathogens in the air. A standard method to evaluate the reduction in airborne viruses caused by an air cleaner has been established using a safe bacteriophage instead of pathogenic viruses; the reduction in airborne viruses is determined by counting the number of viable airborne phages by culture, after operating the air cleaner. The reduction in the number of viable airborne phages could be because of "physical decrease" or "inactivation". Therefore, to understand the mechanism of reduction correctly, an analysis is required to distinguish between physical decrease and inactivation. The purpose of this study was to design an analysis to distinguish between the physical decrease and inactivation of viable phi-X174 phages in aerosols. We established a suitable polymerase chain reaction (PCR) system by selecting an appropriate primer-probe set for PCR and validating the sensitivity, linearity, and specificity of the primer-probe set to robustly quantify phi-X174-specific airborne particles. Using this quantitative PCR system and culture assay, we performed a behavior analysis of the phage aerosol in a small chamber (1 m 3 ) at different levels of humidity, as humidity is known to affect the number of viable airborne phages. The results revealed that the reduction in the number of viable airborne phages was caused not only by physical decrease but also by inactivation under particular levels of humidity. Our study could provide an advanced analysis to differentiate between the physical decrease and inactivation of viable airborne phages.

  3. Use of 8-methoxypsoralen and long-wavelength ultraviolet radiation for decontamination of platelet concentrates

    NASA Astrophysics Data System (ADS)

    Corash, Laurence; Lin, Lily; Wiesehahn, Gary; Cimino, George

    1992-06-01

    Transmission of viral diseases through blood products remains a problem in transfusion medicine. A number of methods have been developed to inactivate viral pathogens in plasma and plasma fractions, including: dry heating, wet heating, solvent-detergent treatment, and immunoaffinity purification. While some of these methods successfully inactivate pathogenic viruses, inactivation may be incomplete or result in damage to labile plasma proteins and cells. We have developed a photochemical decontamination system (PCD) for platelet concentrates (PC) utilizing treatment with long wavelength ultraviolet radiation (UVA, 320 - 400 nm) and 8-methoxypsoralen (8-MOP). This system is capable of inactivating 25 - 30 logs/hr of bacteria E. coli or S. aureus, 6 logs/hr of bacteriophage fd, 0.9 log/hr of bacteriophage R17 and 1.1 logs/hr of feline leukemia virus (FeLV) in PC. Immediately following 6 hrs of PCD treatment, platelet integrity and function of PCD treated and control PC were equivalent. After overnight storage PCD treated and control PC platelet properties were equal, but there was a slight reduction in TXB-2 production of PCD treated PC compared to controls. Following PCD treatment, PC were stored for 48 to 96 hrs. Platelet counts, morphology scores, extracellular LDH levels, aggregation response, dense body (db) content, and alpha granule ((alpha) g) content of PCD treated and control PC were comparable. We assessed the ability of the PCD technique to inactivate intracellular and extracellular virus, quantified the degree of DNA adduct formation in contaminating lymphocytes, and measured the inhibition of polymerase chain reaction (PCR) mediated amplification of intracellular DNA. High titers of cell-free murine cytomegalovirus added to human platelet concentrates (final concentration 106) were inactivated by PCD within 30 min. Cat renal fibroblasts infected at high levels with feline rhinotracheitis virus (FeRTV) were seeded into PC followed by PCD treatment with inactivation of 4.8 logs of FeRTV within 10 minutes. Purified human lymphocytes were seeded into PC and treated with PCD in the presence of 3H 8-MOP. Six hours of PCD treatment resulted in the formation of 9.3 to 12.8 8-MOP adducts per 1000 base pairs (bp) of DNA. PCR amplification of a 242 bp segment at the HLA-DQ(alpha) locus was examined. Inhibition of PCR DNA amplification was dependent on the numbers of 8-MOP adducts formed, and no amplification was present when greater than 12 adducts per 1000 bp were formed. These studies indicate that PCD can effectively inactivate high titers of cell-associated and cell-free virus seeded into standard human PC. The efficiency of DNA adduct formation can be quantitated, and the level of 8-MOP adduct formation in lymphocytes contaminating PC is comparable to the level of adduct formation in cellular DNA reported in the absence of platelets.

  4. X inactivation in Rett syndrome: A preliminary study showing partial preferential inactivation of paternal X with the M27{beta} probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camus, P.; Abbadi, N.; Gilgenkrantz, S.

    1994-04-15

    Rett syndrome (RS) is a severe progressive neurological disorder occurring exclusively in females. Most cases are sporadic. The few familial cases (less than 1%) cannot be explained by a simple mode of inheritance. Several hypotheses have been proposed: X-linked male lethal mutation, maternal uniparental disomy, fresh mutation on the X chromosome, involvement of mitochondrial DNA and differential inactivation with metabolic interference of X-borne alleles. The authors have examined the pattern of X inactivation in 10 affected girls who were selected according to the clinical criteria previously described and accepted by the French Rett Scientific Committee. The X inactivation pattern wasmore » studied by analysis of methylation at the hypervariable locus DXS255 with the M27{beta} probe. The results show a more-or-less skewed inactivation of paternal X in 8 Rett females, and 2 cases of symmetrical inactivation. In control girls, inactivation was symmetrical cases and the maternal X has been preferentially inactivated in the other 2 cases. In no case was a total skewed inactivation observed. Though there was clear evidence for a preferential paternal X inactivation that was statistically significant further studies are necessary to establish a relationship between X inactivation pattern and Rett syndrome.« less

  5. Fate of Earth Microbes on Mars: UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  6. Fate of Earth Microbes on Mars -- UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  7. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation sensing mechanisms; (ii) application of external shielding, such as covering by mud, sand or rock material; (iii) development of intrinsic UV screening pigments, such as tanning, inductive flavonoid production of plants, intracellular mycosporin production in cyanobacteria, (iv) accumulation of antioxidants and quenching substances. However, if UV damage has been induced - in spite of all avoidance efforts, organisms may restore their functionality by numerous repair processes. Repair pathways of a rich diversity and functional universality include (i) direct repair with the reversal of photochemical abnormalities, e.g. in the DNA; (ii) recombination repair removing the UV-induced abnormality by homologous recombination; and (iii) excision repair, where the section of the DNA strand containing the abnormality is removed and a repair patch is synthesized using the intact strand as a template. In addition to efficient repair systems for radiation-induced DNA injury, life has developed a variety of defense mechanisms, such as the increase in the production of stress proteins and the activation of the immune defence system. Some of these capacities have certainly already been evolved in the early biosphere, when it was exposed to the extended UV-spectrum of the sun. Only since the early Proterozoic, due to a rapid rise in the atmospheric oxygen concentration and consequently a photochemical built up of the stratospheric ozone layer, a more moderate UV radiation climate prevailed with wavelengths shorter than 295 nm being effectively cut off.

  8. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-07-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P212121, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  9. Detoxification of Salmonella typhimurium lipopolysaccharide by ionizing radiation.

    PubMed

    Previte, J J; Chang, Y; el-Bisi, H M

    1967-05-01

    The efficiency of ionizing radiation in detoxifying the lethal determinant(s) of the lipopolysaccharide (LPS) of Salmonella typhimurium, S. enteritidis, and Escherichia coli in aqueous solution and associated with heat-killed S. typhimurium cells in suspension decreased with doses above 1 Mrad. The 50% end point of inactivation was more than 7.0 Mrad for heat-killed salmonellae and 4.8, 4.5, and 1.0 Mrad for the LPS of S. typhimurium, S. enteritidis, and E. coli, respectively. After exposure to 20 Mrad, S. typhimurium LPS retained a small portion of its lethal properties although the ld(50) was much greater than 9.5 mg per 20-g mouse. However, at -184 C, no inactivation of the lethal determinant(s) occurred after exposure to as much as 20 Mrad. This demonstrated the significance of the indirect effect and the mobility and formation of free radicals. At 22 C, the optical density at 400 mmu increased and the pH decreased with increasing radiation dose, but no qualitative changes were observed in the infrared spectrum. No change was observed in the pyrogenicity of S. typhimurium LPS; a slight decrease in antigenicity was revealed when 6 days, but not when 1 day, elapsed between vaccination and challenge in the mouse protection test. The results were interpreted as evidence of the existence of two or more lethal and antigenic determinants. The differential effect of radiation on these properties and on the pyrogenic component(s) probably are indicative of separate functional sites for lethal, antigenic, and pyrogenic activities.

  10. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    PubMed

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  11. The Efficiency of UVC Radiation in the Inactivation of
Listeria monocytogenes on Beef-Agar Food Models.

    PubMed

    Hamidi-Oskouei, Amir M; James, Christian; James, Stephen

    2015-06-01

    The aim of this study is to evaluate the effect of meat content and surface smoothness on the deactivation of Listeria monocytogenes in beef-agar food models achieved by shortwave ultraviolet (UVC) light. Food models with various meat contents were made using chopped beef slices and agar solution. Prepared models together with a Listeria selective agar (LSA) plate and a slice of cooked beef were inoculated with L. monocytogenes and then exposed to UVC light. Population of Listeria reduced to below the level of detection on the LSA plates. As the content of beef in the beef-agar models increased, more L. monocytogenes cells survived. Survival was greatest on the treated cooked slice of beef. To better understand the effect of surface irregularities, a white light interferometer was used to analyse the surface smoothness of beef-agar media and LSA plates. No correlation was observed between the surface roughness of seven out of nine types of produced beef-agar media and the degree of inactivation resulting from UVC radiation at the given dose, whereas, less bacterial cells were killed as beef content of the food models increased. The findings of the current study show that the chemical composition of the treated sample also plays an important role in pathogen resistance and survival, meaning that two samples with similar surface irregularities but different chemical composition might produce very different inactivation results when exposed to UVC light.

  12. The Efficiency of UVC Radiation in the Inactivation of
Listeria monocytogenes on Beef-Agar Food Models

    PubMed Central

    James, Christian; James, Stephen

    2015-01-01

    Summary The aim of this study is to evaluate the effect of meat content and surface smoothness on the deactivation of Listeria monocytogenes in beef-agar food models achieved by shortwave ultraviolet (UVC) light. Food models with various meat contents were made using chopped beef slices and agar solution. Prepared models together with a Listeria selective agar (LSA) plate and a slice of cooked beef were inoculated with L. monocytogenes and then exposed to UVC light. Population of Listeria reduced to below the level of detection on the LSA plates. As the content of beef in the beef-agar models increased, more L. monocytogenes cells survived. Survival was greatest on the treated cooked slice of beef. To better understand the effect of surface irregularities, a white light interferometer was used to analyse the surface smoothness of beef-agar media and LSA plates. No correlation was observed between the surface roughness of seven out of nine types of produced beef-agar media and the degree of inactivation resulting from UVC radiation at the given dose, whereas, less bacterial cells were killed as beef content of the food models increased. The findings of the current study show that the chemical composition of the treated sample also plays an important role in pathogen resistance and survival, meaning that two samples with similar surface irregularities but different chemical composition might produce very different inactivation results when exposed to UVC light. PMID:27904353

  13. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to Space-like Radiations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, F. A.; Gonda, S. R.; Wu, H.

    2005-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells and lymphocytes were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory (Upton, NY) or Cs-137 gamma radiation source at the Baylor College (Houston, TX). After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The possible relationship between the frequency of inter- and intra-chromosomal exchanges and the track structure of radiation is discussed. The work was supported by the NASA Space Radiation Health Program.

  14. Microencapsulated antimicrobial compounds as a means to enhance electron beam irradiation treatment for inactivation of pathogens on fresh spinach leaves.

    PubMed

    Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena

    2011-08-01

    Recent outbreaks associated to the consumption of raw or minimally processed vegetable products that have resulted in several illnesses and a few deaths call for urgent actions aimed at improving the safety of those products. Electron beam irradiation can extend shelf-life and assure safety of fresh produce. However, undesirable effects on the organoleptic quality at doses required to achieve pathogen inactivation limit irradiation. Ways to increase pathogen radiation sensitivity could reduce the dose required for a certain level of microbial kill. The objective of this study was to evaluate the effectiveness of using natural antimicrobials when irradiating fresh produce. The minimum inhibitory concentration of 5 natural compounds and extracts (trans-cinnamaldehyde, eugenol, garlic extract, propolis extract, and lysozyme with ethylenediaminetetraacetate acid (disodium salt dihydrate) was determined against Salmonella spp. and Listeria spp. In order to mask odor and off-flavor inherent of several compounds, and to increase their solubility, complexes of these compounds and extracts with β-cyclodextrin were prepared by the freeze-drying method. All compounds showed bacteriostatic effect at different levels for both bacteria. The effectiveness of the microencapsulated compounds was tested by spraying them on the surface of baby spinach inoculated with Salmonella spp. The dose (D₁₀ value) required to reduce the bacterial population by 1 log was 0.190 kGy without antimicrobial addition. The increase in radiation sensitivity (up to 40%) varied with the antimicrobial compound. These results confirm that the combination of spraying microencapsulated antimicrobials with electron beam irradiation was effective in increasing the killing effect of irradiation. Foodborne illness outbreaks attributed to fresh produce consumption have increased and present new challenges to food safety. Current technologies (water washing or treating with 200 ppm chlorine) cannot eliminate internalized pathogens. Ionizing radiation is a viable alternative for eliminating pathogens; however, the dose required to inactivate these pathogens is often too high to be tolerated by the fresh produce without undesirable quality changes. This study uses natural antimicrobial ingredients as radiosensitizers. These ingredients were encapsulated and applied to fresh produce that was subsequently irradiated. The process results in high level of microorganism inactivation using lower doses than the conventional irradiation treatments. © 2011 Institute of Food Technologists®

  15. Comparison of proteomic profiles of serum, plasma, and modified media supplements used for cell culture and expansion

    PubMed Central

    Ayache, Saleh; Panelli, Monica C; Byrne, Karen M; Slezak, Stefanie; Leitman, Susan F; Marincola, Francesco M; Stroncek, David F

    2006-01-01

    Background The culture and expansion of human cells for clinical use requires the presence of human serum or plasma in culture media. Although these supplements have been extensively characterized in their chemical composition, only recently it has been possible to provide by high throughput protein analysis, a comprehensive profile of the soluble factors contributing to cell survival. This study analyzed and compared the presence of 100 proteins including chemokines, cytokines and soluble factors in six different types of media supplements: serum, plasma, recalcified plasma, heat inactivated serum, heat inactivated plasma and heat inactivated recalcified plasma. Methods Serum, plasma, recalcified plasma, and heat inactivated supplements were prepared from ten healthy subjects. The levels of 100 soluble factors were measured in each sample using a multiplexed ELISA assay and compared by Eisen hierarchical clustering analysis. Results A comparison of serum and plasma levels of soluble factors found that 2 were greater in plasma but 18 factors were greater in serum including 11 chemokines. The levels of only four factors differed between recalcified plasma and plasma. Heat inactivation had the greatest effect on soluble factors. Supervised Eisen hierarchical clustering indicated that the differences between heat inactivated supplements and those that were not were greater than the differences within these two groups. The levels of 36 factors differed between heat inactivated plasma and plasma. Thirty one of these factors had a lower concentration in heat inactivated plasma including 12 chemokines, 4 growth factors, 4 matrix metalloproteases, and 3 adhesion molecules. Heat inactivated decalcified plasma is often used in place of heat inactivated serum and the levels of 19 soluble factors differed between these two supplements. Conclusion Our report provides a comprehensive protein profile of serum, plasma recalcified plasma, and heat inactivated supplements. This profile represents a qualitative and quantitative database that can aid in the selection of the appropriate blood derived supplement for human cell cultures with special requirements. PMID:17020621

  16. Effects of Bacterial Inactivation Methods on Downstream Proteomic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Andy; Merkley, Eric D.; Clowers, Brian H.

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography tandem mass spectrometry data quality as well as apparent protein contentmore » of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α = 1.71x10-2 for E. coli, α = 4.97x10-4 for Y. pestis) and irradiation (α = 9.43x10-7 for E. coli, α = 1.21x10-5 for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.« less

  17. Inactivation of human norovirus and Tulane virus in simple mediums and fresh whole strawberries by ionizing radiation

    USDA-ARS?s Scientific Manuscript database

    Human norovirus (NoV) is a major cause of fresh produce associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintainin...

  18. CLAY MINERALS PROTECT BACTERIOPHAGE PBS1 OF BACILLUS SUBTILIS AGAINST INACTIVATION AND LOSS OF TRANSDUCING ABILITY BY UV RADIATION. (R826107)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven A. Belinsky, PhD

    The molecular mechanisms that result in the elevated risk for lung cancer associated with exposure to radiation have not been well characterized. Workers from the MAYAK nuclear enterprise are an ideal cohort in which to study the molecular epidemiology of cancer associated with radiation exposure and to identify the genes targeted for inactivation that in turn affect individual risk for radiation-induced lung cancer. Epidemiology studies of the MAYAK cohort indicate a significantly higher frequency for adenocarcinoma and squamous cell carcinoma (SCC) in workers than in a control population and a strong correlation between these tumor types and plutonium exposure. Twomore » hypotheses will be evaluated through the proposed studies. First, radiation exposure targets specific genes for inactivation by promoter methylation. This hypothesis is supported by our recent studies with the MAYAK population that demonstrated the targeting of the p16 gene for inactivation by promoter methylation in adenocarcinomas from workers (1). Second, genes inactivated in tumors can serve as biomarkers for lung cancer risk in a cancer-free population of workers exposed to plutonium. Support for this hypothesis is based on exciting preliminary results of our nested, case-control study of persons from the Colorado cohort. In that study, a panel of methylation markers for predicting lung cancer risk is being evaluated in sputum samples from incident lung cancer cases and controls. The first hypothesis will be tested by determining the prevalence for promoter hypermethylation of a panel of genes shown to play a critical role in the development of either adenocarcinoma and/or SCC associated with tobacco. Our initial studies on adenocarcinoma in MAYAK workers will be extended to evaluate methylation of the PAX5 {alpha}, PAX5 {beta}, H-cadherin, GATA5, and bone morphogenesis 3B (BMP3B) genes in the original sample set described under Preliminary studies. In addition, studies will be initiated in SCC from workers and controls to identify genes targeted for inactivation by plutonium in this other common histologic form of lung cancer. We will examine methylation of the p16, O{sup 6}-methylguanine-DNA methyl-transferase (MGMT), and death associated protein kinase genes ([DAP-K], evaluated previously in adenocarcinomas) as well as the new genes being assessed in the adenocarcinomas. The second hypothesis will be tested in a cross-sectional study of cancer-free workers exposed to plutonium and an unexposed population. A cohort of 700 cancer-free workers and 700 unexposed persons is being assembled, exposures are being defined, and induced sputum collected at initial entry into the study and approximately 1-year later. Exposed and unexposed persons will be matched by 5-year age intervals and smoking status (current and former). The frequency for methylation of four genes that show the greatest difference in prevalence in tumors from workers and controls will be determined in exfoliated cells within sputum. These studies will extend those in primary tumors to determine whether difference in prevalence for individual or multiple genes are detected in sputum samples from high-risk subjects exposed to plutonium. Follow-up of this cohort offers the opportunity to validate these endpoints and future biomarkers as true markers for lung cancer risk.« less

  20. [Effect of NF-κB activation on the radiation response of esophageal cancer cells].

    PubMed

    Li, Baozhong; Chen, Zhaoli; Zhou, Fang; He, Jie

    2014-07-01

    To investigate the effect of NF-κB activation on radiation response of esophageal carcinoma. The expression of NF-κB was detected in pretreatment and posttreatment specimens of patients with ESCC by immunohistochemistry. Electrophoretic mobility shift assay (EMSA) and Western blot were used to detect the activation of NF-κB in esophageal cancer cell line KYSE150 cells. SN50, a specific NF-κB inhibitor, was applied to inhibit the activation of NF-κB. Clone formation test was used to detect the radiosensitivity of esophageal cancer cells. The median survival time of patients with activated and inactivated NF-κB in the pretreatment specimens were 16 and 19 months, respectively, with a non-significant difference between the two groups (P > 0.05). As to the patients with activated and inactivated NF-κB in posttreatment specimens, the median survival times were 13 and 35 months, respectively, with a significant difference (P < 0.01) between them. Western blot showed that the cytoplasmic expression of NF-κB was reduced with increasing radiation dose at 1.5 and 3 hours after radiation treatment. However, the expression of NF-κB in the cell nuclei was increased under the same condition, showing a trend of increased nucleus/cytoplasm ratio. The clone number in SN50 group was 96.66, 64.66, 76.66 and 10.00 under 0, 2, 4 and 12 Gy irradiation, which demonstrated a significant difference compared with the control groups (P < 0.001). Our results show that activation of NF-κB is induced by radiotherapy. Activation of NF-κB reduces the outcome of radiation treatment of esophageal cancer patients.

  1. Demonstration of the oncogenic potential of Herpes simplex viruses and human cytomegalovirus. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, F.; Li, J.L.H.

    1975-01-01

    The following topics are reviewed: transformation of hamster embryo cells by herpes simplex viruses and human cytomegalovirus; the use of uv radiation and photodynamic action to inactivate virus infectivity while retaining the transformation potential of the virus; detection of virus-specific antigens in transformed cells; oncogenicity of HSV- and CMV-transformed cells in vivo; immunological studies of metastases induced by herpes virus-transformed cells; resistance of transformed cells to superinfection; maintenance of the virus genome in the transformed state; and stimulation of cellular DNA synthesis by human cytomegalovirus. (HLW)

  2. Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.

    PubMed

    Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon

    2017-07-28

    Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.

  3. Ionizing irradiation not only inactivates clonogenic potential in primary normal human diploid lens epithelial cells but also stimulates cell proliferation in a subset of this population.

    PubMed

    Fujimichi, Yuki; Hamada, Nobuyuki

    2014-01-01

    Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that may underlie radiation cataractogenesis, warranting further investigations.

  4. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  5. Non-thermal plasma for inactivated-vaccine preparation.

    PubMed

    Wang, Guomin; Zhu, Ruihao; Yang, Licong; Wang, Kaile; Zhang, Qian; Su, Xia; Yang, Bing; Zhang, Jue; Fang, Jing

    2016-02-17

    Vaccines are of great importance in controlling the spread of infectious diseases in poultry farming. The safety and efficacy of vaccines are also essential. To explore the feasibility of a novel technology (non-thermal plasma) in inactivated vaccine preparation, an alternating current atmospheric pressure non-thermal plasma (NTP) jet with Ar/O2/N2 as the operating gas was used to inactivate a Newcastle disease virus (NDV, LaSota) strain and H9N2 avian influenza virus (AIV, A/Chicken/Hebei/WD/98) for vaccine preparation. The results showed that complete inactivation could be achieved with 2 min of NTP treatment for both NDV and AIV. Moreover, a proper NTP treatment time is needed for inactivation of a virus without destruction of the antigenic determinants. Compared to traditional formaldehyde-inactivated vaccine, the vaccine made from NDV treated by NTP for 2 min (NTP-2 min-NDV-vaccine) could induce a higher NDV-specific antibody titer in specific pathogen-free (SPF) chickens, and the results of a chicken challenge experiment showed that NTP-2 min-NDV-vaccine could protect SPF chickens from a lethal NDV challenge. Vaccines made from AIV treated by NTP for 2 min (NTP-2 min-AIV-vaccine) also showed a similar AIV-specific antibody titer compared with traditional AIV vaccines prepared using formaldehyde inactivation. Studies of the morphological changes of the virus, chemical analysis of NDV allantoic fluid and optical emission spectrum analysis of NTP suggested that reactive oxygen species and reactive nitrogen species produced by NTP played an important role in the virus inactivation process. All of these results demonstrated that it could be feasible to use non-thermal NTP as an alternative strategy to prepare inactivated vaccines for Newcastle disease and avian influenza. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kinetic analysis of Legionella inactivation using ozone in wastewater.

    PubMed

    Li, Jun; Li, Kunquan; Zhou, Yan; Li, Xuebin; Tao, Tao

    2017-02-01

    Legionella inactivation using ozone was studied in wastewater using kinetic analysis and modeling. The experimental results indicate that the relationship between the ozone concentration, germ concentration, and chemical oxygen demand (COD) can be used to predict variations in germ and COD concentrations. The ozone reaction with COD and inactivation of Legionella occurred simultaneously, but the reaction with COD likely occurred at a higher rate than the inactivation, as COD is more easily oxidized by ozone than Legionella. Higher initial COD concentrations resulted in a lower inactivation rate and higher lnN/N 0 . Higher temperature led to a higher inactivation efficiency. The relationship of the initial O 3 concentration and Legionella inactivation rate was not linear, and thus, the Ct value required for a 99.99% reduction was not constant. The initial O 3 concentration was more important than the contact time, and a reduction of the initial O 3 concentration could not be compensated by increasing the contact time. The Ct values were compared over a narrow range of initial concentrations; the Ct values could only be contrasted when the initial O 3 concentrations were very similar. A higher initial O 3 concentration led to a higher inflection point value for the lnN/N 0 vs C 0 t curve. Energy consumption using a plasma corona was lower than when using boron-doped diamond electrodes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Solution structure and function of the "tandem inactivation domain" of the neuronal A-type potassium channel Kv1.4.

    PubMed

    Wissmann, Ralph; Bildl, Wolfgang; Oliver, Dominik; Beyermann, Michael; Kalbitzer, Hans-Robert; Bentrop, Detlef; Fakler, Bernd

    2003-05-02

    Cumulative inactivation of voltage-gated (Kv) K(+) channels shapes the presynaptic action potential and determines timing and strength of synaptic transmission. Kv1.4 channels exhibit rapid "ball-and-chain"-type inactivation gating. Different from all other Kvalpha subunits, Kv1.4 harbors two inactivation domains at its N terminus. Here we report the solution structure and function of this "tandem inactivation domain" using NMR spectroscopy and patch clamp recordings. Inactivation domain 1 (ID1, residues 1-38) consists of a flexible N terminus anchored at a 5-turn helix, whereas ID2 (residues 40-50) is a 2.5-turn helix made up of small hydrophobic amino acids. Functional analysis suggests that only ID1 may work as a pore-occluding ball domain, whereas ID2 most likely acts as a "docking domain" that attaches ID1 to the cytoplasmic face of the channel. Deletion of ID2 slows inactivation considerably and largely impairs cumulative inactivation. Together, the concerted action of ID1 and ID2 may promote rapid inactivation of Kv1.4 that is crucial for the channel function in short term plasticity.

  8. Inactivation disinfection property of Moringa Oleifera seed extract: optimization and kinetic studies

    NASA Astrophysics Data System (ADS)

    Idris, M. A.; Jami, M. S.; Hammed, A. M.

    2017-05-01

    This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.

  9. DOUGLAS LEA MEMORIAL LECTURE: From targets to genes: a brief history of radiosensitivity

    NASA Astrophysics Data System (ADS)

    Steel, G. Gordon

    1996-02-01

    The biological work of Douglas Lea spanned the period from 1934 to his early death in 1947, and during this short period he made important contributions to the theory of radiation action. He interpreted experimental data relating to the effects of radiation on viruses, bacteria, bean roots, etc in terms of the inactivation of discrete targets, which he identified with cellular genes. He thus laid the foundation of much subsequent research. It is now well recognized that mammalian cells differ substantially in radiosensitivity, especially in the low-dose region of the survival curve. The dependence of radiosensitivity on dose rate has been widely studied; this has practical significance for clinical radiotherapy as well as mechanistic implications. Since Lea's time there have been a number of efforts to describe models that can relate cell killing to radiation dose, dose rate, and track structure. So far these have not led to a comprehensive and widely accepted picture. Microdosimetric considerations lead to the concept of differing severity of lesions induced in DNA. Much is known about the sequence of processes that subsequently lead to cell inactivation: this can be divided into phases of induction, processing, and manifestation. Chromosomal events are currently attracting much attention, as they did in Lea's time. Considerable progress has also been made in identifying genes that control the repair of radiation damage. It has been found that mutation is frequently associated with the loss of a large segment of the genome around the damage site and this will have important implications for interactive processes between particle tracks.

  10. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    PubMed

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  11. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using amore » highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.« less

  12. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  13. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    PubMed Central

    Sommers, Christopher H.; Scullen, O. J.; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0–25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers. PMID:27148167

  14. Thermodynamic coupling between activation and inactivation gating in potassium channels revealed by free energy molecular dynamics simulations.

    PubMed

    Pan, Albert C; Cuello, Luis G; Perozo, Eduardo; Roux, Benoît

    2011-12-01

    The amount of ionic current flowing through K(+) channels is determined by the interplay between two separate time-dependent processes: activation and inactivation gating. Activation is concerned with the stimulus-dependent opening of the main intracellular gate, whereas inactivation is a spontaneous conformational transition of the selectivity filter toward a nonconductive state occurring on a variety of timescales. A recent analysis of multiple x-ray structures of open and partially open KcsA channels revealed the mechanism by which movements of the inner activation gate, formed by the inner helices from the four subunits of the pore domain, bias the conformational changes at the selectivity filter toward a nonconductive inactivated state. This analysis highlighted the important role of Phe103, a residue located along the inner helix, near the hinge position associated with the opening of the intracellular gate. In the present study, we use free energy perturbation molecular dynamics simulations (FEP/MD) to quantitatively elucidate the thermodynamic basis for the coupling between the intracellular gate and the selectivity filter. The results of the FEP/MD calculations are in good agreement with experiments, and further analysis of the repulsive, van der Waals dispersive, and electrostatic free energy contributions reveals that the energetic basis underlying the absence of inactivation in the F103A mutation in KcsA is the absence of the unfavorable steric interaction occurring with the large Ile100 side chain in a neighboring subunit when the intracellular gate is open and the selectivity filter is in a conductive conformation. Macroscopic current analysis shows that the I100A mutant indeed relieves inactivation in KcsA, but to a lesser extent than the F103A mutant.

  15. Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations

    PubMed Central

    Lorenz, Susanne; Barøy, Tale; Sun, Jinchang; Nome, Torfinn; Vodák, Daniel; Bryne, Jan-Christian; Håkelien, Anne-Mari; Fernandez-Cuesta, Lynnette; Möhlendick, Birte; Rieder, Harald; Szuhai, Karoly; Zaikova, Olga; Ahlquist, Terje C.; Thomassen, Gard O. S.; Skotheim, Rolf I.; Lothe, Ragnhild A.; Tarpey, Patrick S.; Campbell, Peter; Flanagan, Adrienne

    2016-01-01

    In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies. PMID:26672768

  16. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    NASA Astrophysics Data System (ADS)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  17. The Use of Gamma Radiation for the Preparation of Virus Vaccines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, John R.

    1962-08-01

    Suspensions of the viruses (mumps, influenza A (PR8), A/sub 1/ (FM/sub 1/ ), B, and swine influenza A) were irradiated in a Co/sup 60/ cell with a dose of 1.5 x 10/sup 6/ rad, which is about 50% higher thin the dose calculated to be required for inactivation. A protective agent such as histidine or Na p- aminohippurite was added to purified suspensions of influenzi and mumps viruses. It was then possible to inactivate them while retaining most of the hemagglutination titer. It was demonstrated in mice that a vaccine prepared from a mouse-adapted virus (Shope's swine influenza) conferred protectionmore » against challenge by the live virus and produced an antibody response as measured by the hemagglutinationinhibition technique. Vaccines prepared with the viruses of influenza A(PR8), influenza B, and mumps were shown to produce antibody responses in guinea pigs as measured by the hemigglutination-inhibition and serum neutralization techniques. The use of gamma irradiation has an advantage over most chemical procedures because its dosage of inactivation can be more accurately controlled. (H.H.D.)« less

  18. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    NASA Astrophysics Data System (ADS)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  19. Membrane Permeabilization in Relation to Inactivation Kinetics of Lactobacillus Species due to Pulsed Electric Fields

    PubMed Central

    Wouters, Patrick C.; Bos, Ad P.; Ueckert, Joerg

    2001-01-01

    Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products. PMID:11425727

  20. Fast- or Slow-inactivated State Preference of Na+ Channel Inhibitors: A Simulation and Experimental Study

    PubMed Central

    Karoly, Robert; Lenkey, Nora; Juhasz, Andras O.; Vizi, E. Sylvester; Mike, Arpad

    2010-01-01

    Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics) exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics) and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the “steady-state slow inactivation curve”), was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i) by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii) by testing the same drugs in a fundamentally different model and iii) by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that conclusions based on voltage protocols that are used to detect slow-inactivated state preference are unreliable and should be re-evaluated. PMID:20585544

  1. Operation Sun Beam, Shots Little Feller I, II and Johnie Boy. Project officers report. Project 6. 6. Electromagnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, W.D.; Livingston, P.M.; Rutter, R.L.

    Of considerable interest from both a physical and practical viewpoint is the coupling of electromagnetic energy from a nuclear explosion into various electrical systems in the vicinity of the burst. A series of electromagnetic measurements were made on Shots Little Feller I, Little Feller II, and Johnie Boy. It is clear from the records that radiation shielding must be given closer consideration in future tests. Due to equipment failure and radiation inactivation, only the Johnie Boy dynamic current measurement and the passive peak current indicators on all three events are interpretable.

  2. Problems in mechanistic theoretical models for cell transformation by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, A.; Holley, W.R.

    1991-10-01

    A mechanistic model based on yields of double strand breaks has been developed to determine the dose response curves for cell transformation frequencies. At its present stage the model is applicable to immortal cell lines and to various qualities (X-rays, Neon and Iron) of ionizing radiation. Presently, we have considered four types of processes which can lead to activation phenomena: (1) point mutation events on a regulatory segment of selected oncogenes, (2) inactivation of suppressor genes, through point mutation, (3) deletion of a suppressor gene by a single track, and (4) deletion of a suppressor gene by two tracks.

  3. Inactivation by Phenylglyoxal of the Specific Binding of 1-Naphthyl Acetic Acid with Membrane-Bound Auxin Binding Sites from Maize Coleoptiles

    PubMed Central

    Navé, Jean-François; Benveniste, Pierre

    1984-01-01

    The specific binding of 1-[3H]naphthyl acetic acid (NAA) to membrane-bound binding sites from maize (Zea mays cv INRA 258) coleoptiles is inactivated by phenylglyoxal. The inactivation obeys pseudo first-order kinetics. The rate of inactivation is proportional to phenylglyoxal concentration. Under conditions at which significant binding occurs, NAA, R and S-1-naphthyl 2-propionic acids protect the auxin binding site against inactivation by phenylglyoxal. Scatchard analysis shows that the inhibition of binding corresponds to a decrease in the concentration of sites but not in the affinity. The results of the present chemical modification study indicate that at least one arginyl residue is involved in the positively charged recognition site of the carboxylate anion of NAA. PMID:16663499

  4. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.

    PubMed

    Cooper, S E; Martin, J H; Ghez, C

    2000-10-01

    We previously showed that inactivating the anterior interpositus nucleus in cats disrupts prehension; paw paths, normally straight and accurate, become curved, hypometric, and more variable. In the present study, we determined the joint kinematic and dynamic origins of this impairment. Animals were restrained in a hammock and trained to reach and grasp a cube of meat from a narrow food well at varied heights; movements were monitored using the MacReflex analysis system. The anterior interpositus nucleus was inactivated by microinjection of the GABA agonist muscimol (0.25-0.5 microgram in 0.5 microliter saline). For each joint, we computed the torque due to gravity, inertial resistance (termed self torque), interjoint interactions (termed interaction torque), and the combined effects of active muscle contraction and passive soft tissue stretch (termed generalized muscle torque). Inactivation produced significant reductions in the amplitude, velocity, and acceleration of elbow flexion. However, these movements continued to scale normally with target height. Shoulder extension was reduced by inactivation but wrist angular displacement and velocity were not. Inactivation also produced changes in the temporal coordination between elbow, shoulder, and wrist kinematics. Dynamic analysis showed that elbow flexion both before and during inactivation was produced by the combined action of muscle and interaction torque, but that the timing depended on muscle torque. Elbow interaction and muscle torques were scaled to target height both before and during inactivation. Inactivation produced significant reductions in elbow flexor interaction and muscle torques. The duration of elbow flexor muscle torque was prolonged to compensate for the reduction in flexor interaction torque. Shoulder extension was produced by extensor interaction and muscle torques both before and during inactivation. Inactivation produced a reduction in shoulder extension, primarily by reduced interaction torque, but without compensation. Wrist plantarflexion, which occurred during elbow flexion, was driven by plantarflexor interaction and gravitational torques both before and during inactivation. Muscle torque acted in the opposite direction with a phase lead to restrain the plantarflexor interaction torque. During inactivation, there was a reduction in plantarflexor interaction torque and a loss of the phase lead of the muscle torque. Our findings implicate the C1/C3 anterior interpositus zone of the cerebellum in the anticipatory control of intersegmental dynamics during reaching, which zone is required for coordinating the motions of the shoulder and wrist with those of the elbow. In contrast, this cerebellar zone does not play a role in scaling the movement to match a target.

  5. Targeting Extracellular Histones with Novel RNA Biodrugs for the Treatment of Acute Lung Injury

    DTIC Science & Technology

    2017-10-01

    inactivate) circulating histones and prevent the morbidity and mortality associated with multiple organ dysfunction/ acute respiratory distress syndrome ...patients. 15. SUBJECT TERMS Acute lung injury (ALI), acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome , extracellular...are acute lung injury (ALI) from smoke/chlorine gas inhalation, burns, radiation , influenza and severe infection. Only recently have investigators

  6. Inactivation of Toxoplasma gondii on blueberries using low dose irradiation without affecting quality

    USDA-ARS?s Scientific Manuscript database

    Blueberries (10 g) inoculated with T. gondii (5 log oocysts/g) were exposed to an absorbed dose of 0 (control), 0.2, 0.4 or 0.6 kGy gamma radiation at 4°C. After treatment, oocysts were recovered from berries by washing, and excysted sporozoites were enumerated using a plaque assay. Vero cells wer...

  7. Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria.

    PubMed

    Xu, Peng; Kujundzic, Elmira; Peccia, Jordan; Schafer, Millie P; Moss, Gene; Hernandez, Mark; Miller, Shelly L

    2005-12-15

    This study evaluated the efficacy of an upper-room air ultraviolet germicidal irradiation (UVGI) system for inactivating airborne bacteria, which irradiates the upper part of a room while minimizing radiation exposure to persons in the lower part of the room. A full-scale test room (87 m3), fitted with a UVGI system consisting of 9 louvered wall and ceiling fixtures (504 W all lamps operating) was operated at 24 and 34 degrees C, between 25 and 90% relative humidity, and at three ventilation rates. Mycobacterium parafortuitum cells were aerosolized into the room such that their numbers and physiologic state were comparable both with and without the UVGI system operating. Airborne bacteria were collected in duplicate using liquid impingers and quantified with direct epifluorescent microscopy and standard culturing assay. Performance of the UVGI system degraded significantly when the relative humidity was increased from 50% to 75-90% RH, the horizontal UV fluence rate distribution was skewed to one side compared to being evenly dispersed, and the room air temperature was stratified from hot at the ceiling to cold at the floor. The inactivation rate increased linearly with effective UV fluence rate up to 5 microW cm(-2); an increase in the fluence rate above this level did not yield a proportional increase in inactivation rate.

  8. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  10. Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2006-01-01

    Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.

  11. Increased skewing of X chromosome inactivation in Rett syndrome patients and their mothers.

    PubMed

    Knudsen, Gun Peggy S; Neilson, Tracey C S; Pedersen, June; Kerr, Alison; Schwartz, Marianne; Hulten, Maj; Bailey, Mark E S; Orstavik, Karen Helene

    2006-11-01

    Rett syndrome is a largely sporadic, X-linked neurological disorder with a characteristic phenotype, but which exhibits substantial phenotypic variability. This variability has been partly attributed to an effect of X chromosome inactivation (XCI). There have been conflicting reports regarding incidence of skewed X inactivation in Rett syndrome. In rare familial cases of Rett syndrome, favourably skewed X inactivation has been found in phenotypically normal carrier mothers. We have investigated the X inactivation pattern in DNA from blood and buccal cells of sporadic Rett patients (n=96) and their mothers (n=84). The mean degree of skewing in blood was higher in patients (70.7%) than controls (64.9%). Unexpectedly, the mothers of these patients also had a higher mean degree of skewing in blood (70.8%) than controls. In accordance with these findings, the frequency of skewed (XCI > or =80%) X inactivation in blood was also higher in both patients (25%) and mothers (30%) than in controls (11%). To test whether the Rett patients with skewed X inactivation were daughters of skewed mothers, 49 mother-daughter pairs were analysed. Of 14 patients with skewed X inactivation, only three had a mother with skewed X inactivation. Among patients, mildly affected cases were shown to be more skewed than more severely affected cases, and there was a trend towards preferential inactivation of the paternally inherited X chromosome in skewed cases. These findings, particularly the greater degree of X inactivation skewing in Rett syndrome patients, are of potential significance in the analysis of genotype-phenotype correlations in Rett syndrome.

  12. Inactivation of human norovirus and Tulane virus in simple media and fresh whole strawberries by ionizing radiation.

    PubMed

    DiCaprio, Erin; Phantkankum, Nuttapong; Culbertson, Doug; Ma, Yuanmei; Hughes, John H; Kingsley, David; Uribe, Roberto M; Li, Jianrong

    2016-09-02

    Human norovirus (NoV) is a major cause of fresh produce-associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintaining fresh produce quality. In this study electron beam (E-beam) and gamma radiation were evaluated for efficacy against a human NoV GII.4 strain and Tulane virus (TV). Virus survival following ionizing radiation treatments was determined using direct quantitative reverse transcriptase PCR (RT-qPCR), the porcine gastric mucin magnetic bead (PGM-MB) binding assay followed by RT-qPCR, and plaque assay. In simple media, a high dose of E-beam treatment was required to completely abolish the receptor binding ability of human NoV (35.3kGy) and TV (19.5-24.1kGy), as assessed using the PGM-MB binding assay. Both human NoV and TV were more susceptible to gamma irradiation than E-beam, requiring 22.4kGy to achieve complete inactivation. In whole strawberries, no human NoV or TV RNA was detected following 28.7kGy of E-beam treatment using the PGM-MB binding assay. Overall, human NoV and TV are highly resistant to ionizing radiation and therefore the technology may not be suitable to eliminate viruses in fresh produce at the currently approved levels. In addition, the PGM-MB binding assay is an improved method to detect viral infectivity compared to direct RT-qPCR. Copyright © 2016. Published by Elsevier B.V.

  13. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream.

    PubMed

    Rizzo, L; Fiorentino, A; Anselmo, A

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC>256 μg/mL) and SMZ (MIC>1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t(1/2)=24 min)

  14. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains

    PubMed Central

    Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.

    2014-01-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  15. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines.

    PubMed

    Fredericks, Ilse N; du Toit, Maret; Krügel, Maricel

    2011-05-01

    Since sulphur dioxide (SO(2)) is associated with health risks, the wine industry endeavours to reduce SO(2) levels in wines with new innovative techniques. The aim of this study was, therefore, to investigate the efficacy of ultraviolet radiation (UV)-C (254 nm) as an alternative technology to inactivate microorganisms in grape juices and wines. A pilot-scale UV-C technology (SurePure, South Africa) consisting of an UV-C germicidal lamp (100 W output; 30 W UV-C output) was used to apply UV-C dosages ranging from 0 to 3672 J l(-1), at a constant flow rate of 4000 l h(-1) (Re > 7500). Yeasts, lactic and acetic acid bacteria were singly and co-inoculated into 20 l batches of Chenin blanc juice, Shiraz juice, Chardonnay wine and Pinotage wine, respectively. A dosage of 3672 J l(-1), resulted in an average log(10) microbial reduction of 4.97 and 4.89 in Chardonnay and Pinotage, respectively. In Chenin blanc and Shiraz juice, an average log(10) reduction of 4.48 and 4.25 was obtained, respectively. UV-C efficacy may be influenced by liquid properties such as colour and turbidity. These results had clearly indicated significant (p < 0.05) germicidal effect against wine-specific microorganisms; hence, UV-C radiation may stabilize grape juice and wine microbiologically in conjunction with reduced SO(2) levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Mutagenic and lethal effects of (5-/sup 125/I)lodo-2'-deoxyuridine incorporated into DNA of mammalian cells, and their RBEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, N.; Fujiwara, Y.

    1981-12-01

    Decay of /sup 125/I unifilarly incorporated as 5-iodo-2'-deoxyuridine (IdUrd) into DNA of V79 Chinese hamster cells was approximately an order of magnitude more effective in inducing both 6-thioguanine-resistant mutation and cell inactivation than external X rays under equivalent conditions. RBEs of mutation and killing induced by /sup 125/I decays, compared with 170-kVp X rays of low LET, were approx. = 11 for mutation (ratio of the induction rate in frequency/rad = 11.3 X 10/sup -7/ (/sup 125/I)/100 X 10/sup -7/ (X rays at -79/sup o/C)) and approx. = 10 for cell inactivation (D/sub 0/ ratio = 505 rad (X raysmore » at -79/sup o/C)/52 rad (/sup 125/I)). These RBE values may well exceed the reported maximum values for high-LET radiation in the LET range of 80-110 keV/..mu..m, suggesting that the Auger effect is different from the high-LET radiation effect alone. Thus these biological consequences arise not only from radiation effects of Auger electrons on the immediate vicinity in DNA, but also from the nonionogenic effect through charge transfer processes. In addition, higher inductions of mutation and killing by external X rays in unifilarly IdUrd-substituted cells than in ordinal cells were observed, suggesting a possible involvement of X-ray-induced Auger phenomenon in iodine in DNA.« less

  17. Inactivation of Cg10062, a cis-3-chloroacrylic acid dehalogenase homologue in Corynebacterium glutamicum, by (R)- and (S)-oxirane-2-carboxylate: analysis and implications.

    PubMed

    Robertson, Brooklyn A; Johnson, William H; Lo, Herng-Hsiang; Whitman, Christian P

    2008-08-19

    ( R)- and ( S)-oxirane-2-carboxylate were determined to be active site-directed irreversible inhibitors of the cis-3-chloroacrylic acid dehalogenase ( cis-CaaD) homologue Cg10062 found in Corynebacterium glutamicum. Kinetic analysis indicates that the ( R) enantiomer binds more tightly and is the more potent inhibitor, likely reflecting more favorable interactions with active site residues. Pro-1 is the sole site of covalent modification by the ( R) and ( S) enantiomers. Pro-1, Arg-70, Arg-73, and Glu-114, previously identified as catalytic residues in Cg10062, have also been implicated in the inactivation mechanism. Pro-1, Arg-70, and Arg-73 are essential residues for the process as indicated by the observation that the enzymes with the corresponding alanine mutations are not covalently modified by either enantiomer. The E114Q mutant slows covalent modification of Cg10062 but does not prevent it. The results are comparable to those found for the irreversible inactivation of cis-CaaD by ( R)-oxirane-2-carboxylate with two important distinctions: the alkylation of cis-CaaD is stereospecific, and Glu-114 does not take part in the cis-CaaD inactivation mechanism. Cg10062 exhibits low-level cis-CaaD and trans-3-chloroacrylic acid dehalogenase (CaaD) activities, with the cis-CaaD activity predominating. Hence, the preference of Cg10062 for the cis isomer correlates with the observation that the ( R) enantiomer is the more potent inactivator. Moreover, the factors responsible for the relaxed substrate specificity of Cg10062 may account for the stereoselective inactivation by the enantiomeric epoxides. Delineation of these factors would provide a more complete picture of the substrate specificity determinants for cis-CaaD. This study represents an important step toward this goal by setting the stage for a crystallographic analysis of inactivated Cg10062.

  18. Structure of suicide-inactivated. beta. -hydroxydecanoyl-thioester dehydrase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, J.M.; Ho, C.K.; Li, W.B.

    ..beta..-Hydroxydecanoylthioester dehydrase, the key enzyme in biosynthesis of unsaturated fatty acids under anaerobic conditions, equilibrates thioesters of (R)-3-hydroxydecanoic acid, E-2-decenoic acid, and Z-3-decenoic acid. Dehydrase is irreversibly inactivated by the N-acetylcysteamine thioester of 3-decynoic acid (3-decynoyl-NAC), via dehydrase-catalyzed isomerization to 2,3-decadienoyl-NAC. To probe the relationship between normal catalysis and suicide inactivation, the structure of the inactivated enzyme has been studied. 3-(2-/sup 13/C)Decynoyl-NAC was synthesized and incubated with dehydrase. /sup 13/C NMR showed that attack of 2,3-decadienoyl-NAC by the active site histidine gives 3-histidinyl-3-decenoyl-NAC, which slowly rearranges to the more stable ..delta../sup 2/ isomer. Model histidine-allene adducts have been made andmore » characterized. Analysis of NMR data show that the C=C configuration of the decenoyl moiety of enzyme-bound inactivator is E. The suggestion that the mechanism of dehydrase inactivation parallels its normal mechanism of action is supported these findings.« less

  19. Plasma Decontamination: A Case Study on Kill Efficacy of Geobacillus stearothermophilus Spores on Different Carrier Materials.

    PubMed

    Semmler, Egmont; Novak, Wenzel; Allinson, Wilf; Wallis, Darren; Wood, Nigel; Awakowicz, Peter; Wunderlich, Joachim

    2016-01-01

    A new technology to the pharmaceutical field is presented: surface decontamination by plasmas The technology is comparable to established barrier systems like e-beam, volatile hydrogen peroxide, or radiation inactivation of microbiological contaminations. This plasma technology is part of a fully automated and validated syringe filling line at a major pharmaceutical company and is in production operation. Incoming pre-sterilized syringe containers ("tubs") are processed by plasma, solely on the outside, and passed into the aseptic filling isolator upon successful decontamination. The objective of this article is to present the operating principles and develop and establish a validation routine on the basis of standard commercial biological indicators. Their decontamination efficacies are determined and correlated to the actual inactivation efficacy on the pharmaceutical packaging material.The reference setup is explained in detail and a short presentation of the cycle development and the relevant plasma control parameters is given, with a special focus on the in-process monitor determining the cycle validity. Different microbial inactivation mechanisms are also discussed and evaluated for their contribution and interaction to enhance plasma decontamination. A material-dependent inactivation behavior was observed. In order to be able to correlate the tub surface inactivation of Geobacillus stearothermophilus endospores to metallic biological indicators, a comparative study was performed. Through consistently demonstrating the linear inactivation behavior between the different materials, it becomes possible to develop an effective and time-saving validation scheme. The challenge in new decontamination systems lies in a thorough validation of the inactivation efficacy under different operating regimes. With plasma, as an ionized gas, a new barrier concept is introduced into pharmaceutical aseptic processing of syringes. The presented system operates in vacuum and only decontaminates the outer surface of pre-sterilized syringe containers ("tubs"), before they are transferred into the aseptic area. The plasma does not penetrate into the tub. This article discusses the phase from development and test germ selection, across the identified sporicidal mechanisms, to a proposal for a validation scheme on the basis of commercially available biological indicators. A special focus is placed on an extensive investigation to establish a link between the tub surface microbial kill (polystyrene and Tyvek(and (2)) ) and biological indicator inactivation (stainless steel). Additionally, a rationale is developed on how an optical in-process monitor can be applied to establish a validatable limit on the base of the predetermined inactivation data of Geobacillus stearothermophilus endospores. © PDA, Inc. 2016.

  20. Total solids content and degree of hydrolysis influence proteolytic inactivation kinetics following whey protein hydrolysate manufacture.

    PubMed

    Conesa, Celia; FitzGerald, Richard J

    2013-10-23

    The kinetics and thermodynamics of the thermal inactivation of Corolase PP in two different whey protein concentrate (WPC) hydrolysates with degree of hydrolysis (DH) values of ~10 and 21%, and at different total solids (TS) levels (from 5 to 30% w/v), were studied. Inactivation studies were performed in the temperature range from 60 to 75 °C, and residual enzyme activity was quantified using the azocasein assay. The inactivation kinetics followed a first-order model. Analysis of the activation energy, thermodynamic parameters, and D and z values, demonstrated that the inactivation of Corolase PP was dependent on solution TS. The intestinal enzyme preparation was more heat sensitive at low TS. Moreover, it was also found that the enzyme was more heat sensitive in solutions at higher DH.

  1. Kinetics model for initiation and promotion for describing tumor prevalence from HZE radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A kinetics model for cellular repair and misrepair for multiple radiation-induced lesions (mutation-inactivation) is coupled to a two-mutation model of initiation and promotion in tissue to provide a parametric description of tumor prevalence in the Harderian gland in a mouse. Dose-response curves are described for gamma-rays and relativistic ions. The effects of nuclear fragmentation are also considered for high-energy proton and alpha particle exposures The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. We also consider the two hypotheses that radiation acts either solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma-rays and relativistic Fe ions. For fractionated Fe exposures, an inverse dose-rate effect is provided by a promotion hypothesis using a mutation rate for promotion typical of single-gene mutations.

  2. Radiation biology of HZE particles

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.

    1990-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets which may be related to charge, velocity, or rate of energy loss. There are many consequences of this feature to biological endpoints when compared to effects of ionizing photons. Dose vs response and dose rate kinetics are modified, DNA and cellular repair systems are altered in their abilities to cope with damage and, the qualitative features of damage are unique for different ions. These features must be incorporated into any risk assessment system for radiation health management. HZE induced mutation, cell inactivation and altered organogenesis will be discussed emphasizing studies with the nematode Caenorhabditis elegans and cultured cells. Observations from radiobiology experiments in space will also be reviewed along with plans for future space-based studies.

  3. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Schubert, W. W.; Marshall, T. M.

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space.

  4. Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type.

    PubMed

    Smither, Sophie J; Weller, Simon A; Phelps, Amanda; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn M; Steward, Jackie; Lonsdale, Steve G; Lever, Mark S

    2015-10-01

    Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples. © Crown copyright 2015.

  5. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH.

    PubMed

    Ortega-Gómez, E; Esteban García, B; Ballesteros Martín, M M; Fernández Ibáñez, P; Sánchez Pérez, J A

    2014-10-15

    This study analyses the use of the solar photo-Fenton treatment in compound parabolic collector photo-reactors at neutral pH for the inactivation of wild enteric Escherichia coli and total coliform present in secondary effluents of a municipal wastewater treatment plant (SEWWTP). Control experiments were carried out to find out the individual effects of mechanical stress, pH, reactants concentration, and UVA radiation as well as the combined effects of UVA-Fe and UVA-H2O2. The synergistic germicidal effect of solar-UVA with 50 mg L(-1) of H2O2 led to complete disinfection (up to the detection limit) of total coliforms within 120 min. The disinfection process was accelerated by photo-Fenton, achieving total inactivation in 60 min reducing natural bicarbonate concentration found in the SEWWTP from 250 to 100 mg L(-1) did not give rise to a significant enhancement in bacterial inactivation. Additionally, the effect of hydrogen peroxide and iron dosage was evaluated. The best conditions were 50 mg L(-1) of H2O2 and 20 mg L(-1) of Fe(2+). Due to the variability of the SEWWTP during autumn and winter seasons, the inactivation kinetic constant varied between 0.07 ± 0.04 and 0.17 ± 0.04 min(-1). Moreover, the water treated by solar photo-Fenton fulfilled the microbiological quality requirement for wastewater reuse in irrigation as per the WHO guidelines and in particular for Spanish legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of various conditions on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in fresh-cut lettuce using ultraviolet radiation.

    PubMed

    Kim, Yoon-Hee; Jeong, Seul-Gi; Back, Kyeong-Hwan; Park, Ki-Hwan; Chung, Myung-Sub; Kang, Dong-Hyun

    2013-09-16

    The effect of various conditions on inactivation of foodborne pathogens and quality of fresh-cut lettuce during ultraviolet (254 nm, UVC) radiation was investigated. Lettuce was inoculated with a cocktail of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated at different temperatures (4 and 25 °C), distances between sample and lamp (10 and 50 cm), type of exposure (illuminated from one or two sides), UV intensities (1.36 to 6.80 mW/cm²), and exposure times (0.5 to 10 min), sequentially. UV treatment at 25 °C for 1 min achieved 1.45-, 1.35-, and 2.12-log reductions in surface-inoculated E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, whereas the reduction of these pathogens at 4 °C was 0.31, 0.57, and 1.16 log, respectively. UV radiation was most effective when distance from UV lamp to the sample was minimal (10 cm) and radiation area was maximal (two-sided exposure). All UV intensities significantly (P<0.05) reduced the three pathogens after 10 min exposure, but the effect of treatment was correlated with UV intensity and exposure time. Color values and texture parameters of lettuce subjected to UV treatment under the optimum conditions (25 °C, 10 cm between sample and lamp, two-sided exposure, 6.80 mW/cm²) were not significantly (P>0.05) different from those of nontreated samples up to 5 min exposure. However, these qualities significantly (P<0.05) changed at prolonged treatment time. These results suggest that UV radiation under optimized conditions could reduce foodborne pathogens without adversely affecting color quality properties of fresh-cut lettuce. © 2013 Elsevier B.V. All rights reserved.

  7. A New View of Radiation-Induced Cancer: Integrating Short-and Long-Term Processes. Part I: Approach

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Hahnfeldt, Philip; Hlatky, Lynn; Sachs, Rainer K.; Brenner, David J.

    2009-01-01

    Mathematical models of radiation carcinogenesis are important for understanding mechanisms and for interpreting or extrapolating risk. There are two classes of such models: (1) long-term formalisms that track premalignant cell numbers throughout an entire lifetime but treat initial radiation dose-response simplistically and (2) short-term formalisms that provide a detailed initial dose-response even for complicated radiation protocols, but address its modulation during the subsequent cancer latency period only indirectly. We argue that integrating short- and long-term models is needed. As an example of this novel approach, we integrate a stochastic short-term initiation/ inactivation/repopulation model with a deterministic two-stage long-term model. Within this new formalism, the following assumptions are implemented: radiation initiates, promotes, or kills pre-malignant cells; a pre-malignant cell generates a clone, which, if it survives, quickly reaches a size limitation; the clone subsequently grows more slowly and can eventually generate a malignant cell; the carcinogenic potential of pre-malignant cells decreases with age.

  8. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent.

    PubMed

    Glady-Croue, Julie; Niu, Xi-Zhi; Ramsay, Joshua P; Watkin, Elizabeth; Murphy, Riley J T; Croue, Jean-Philippe

    2018-06-01

    Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. THE EFFECTS OF ULTRAVIOLET LIGHT AND GAMMA RAYS ON CELL LIPIDS AND THE PHYSIOLOGICAL ACTION OF IRRADIATED LIPIDS. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, F.; Wilbur, K.M.

    1962-03-26

    Results are summarized from a series of studies on the effects of ultraviolet and ionizing radiation on the oxidation of cell lipids. It was shown that both in vitro and in vivo radiation produced oxidation products of lipids that inhibited the activity of certain oxidative enzymes, depolymerized desoxyribonucleoprotein, inhibited the division of marine eggs, and retarded bacterial growth. The presence of antioxidant activity was also demonstrated in tissues. The significant feature of antioxidant compounds with respect to the biological effects of radiation was shown to be the inhibition of the oxidation of lipids. In irradiated animals the antioxidant activity ofmore » the intestinal mucosa and the activity of phospholipase decreased. Experiments showed that radiation had not destroyed the enzyme but had inactivated the activator. Results are also summarized from a study on the effects of ionizing radiation on cell growth and protein synthesis in yeast. (C.H.)« less

  10. Radiation survival of two nalidixic acid resistant strains of Salmonella typhimurium in various media

    NASA Astrophysics Data System (ADS)

    Shamsuzzaman, Kazi; Goodwin, Marlene; George, Ian; Singh, Harwant

    Radiation doses required for 90% inactivation, the D10 values, have been determined for two nalidixic acid-resistant strains of Salmonella typhimurium, Nal R ATCC 13311 and K1-2B, in different media. The D10 values were 0.20, 0.57 and 0.53 kGy for the ATCC 13311 strain, and were 0.21, 0.4 and 0.32 kGy for the K1-2B strain, in phosphate buffer, in nutrient broth and on chicken drumsticks, respectively. Since these two strains have radiation sensitivity similar to several Salmonella serotypes reported in the literature, they are good indicator organisms for use in studies on the effect of irradiation on Salmonella in foods that might frequently be contaminated with such organisms.

  11. Regression Model for MODTRAN with Applications to Inactivation of Microbes Suspended in the Atmosphere by Solar Ultraviolet Radiation

    DTIC Science & Technology

    2012-05-01

    mixed vegetation): 0.007 (0.017) For materials tested, • The albedo levels of old grass, dead grass, burnt grass, and maple leaf at 300 nm were...as 0.016-0.017 over vegetation, 0.04-0.05 over bare fertile soil, and 0.07-0.10 over concrete (autobahn, Germany). The albedo over dry bright sand

  12. Wnt Inactivation for Liver Cancer Therapy | Center for Cancer Research

    Cancer.gov

    Hepatocellular carcinoma (HCC) is the fifth most common and third most deadly type of cancer in the world. The majority of cases occur in Asia and Africa, resulting in most cases being diagnosed only at advanced stages of the disease when drug resistance is high. HCC typically follows damage to the liver such as cirrhosis, making radiation and chemotherapy a more challenging

  13. Inactivation of p53 by Human T-Cell Lymphotropic Virus Type 1 Tax Requires Activation of the NF-κB Pathway and Is Dependent on p53 Phosphorylation

    PubMed Central

    Pise-Masison, Cynthia A.; Mahieux, Renaud; Jiang, Hua; Ashcroft, Margaret; Radonovich, Michael; Duvall, Janet; Guillerm, Claire; Brady, John N.

    2000-01-01

    p53 plays a key role in guarding cells against DNA damage and transformation. We previously demonstrated that the human T-cell lymphotropic virus type 1 (HTLV-1) Tax can inactivate p53 transactivation function in lymphocytes. The present study demonstrates that in T cells, Tax-induced p53 inactivation is dependent upon NF-κB activation. Analysis of Tax mutants demonstrated that Tax inactivation of p53 function correlates with the ability of Tax to induce NF-κB but not p300 binding or CREB transactivation. The Tax-induced p53 inactivation can be overcome by overexpression of a dominant IκB mutant. Tax-NF-κB-induced p53 inactivation is not due to p300 squelching, since overexpression of p300 does not recover p53 activity in the presence of Tax. Further, using wild-type and p65 knockout mouse embryo fibroblasts (MEFs), we demonstrate that the p65 subunit of NF-κB is critical for Tax-induced p53 inactivation. While Tax can inactivate endogenous p53 function in wild-type MEFs, it fails to inactivate p53 function in p65 knockout MEFs. Importantly, Tax-induced p53 inactivation can be restored by expression of p65 in the knockout MEFs. Finally, we present evidence that phosphorylation of serines 15 and 392 correlates with inactivation of p53 by Tax in T cells. This study provides evidence that the divergent NF-κB proliferative and p53 cell cycle arrest pathways may be cross-regulated at several levels, including posttranslational modification of p53. PMID:10779327

  14. Drug-drug interactions via mechanism-based cytochrome P450 inactivation: points to consider for risk assessment from in vitro data and clinical pharmacologic evaluation.

    PubMed

    Venkatakrishnan, Karthik; Obach, R Scott

    2007-06-01

    This commentary discusses the approaches to, and key considerations in the in vitro-in vivo extrapolation of drug-drug interactions (DDI) resulting from mechanism-based inactivation (MBI) of cytochrome P450 (CYP) enzymes and clinical pharmacologic implications. In vitro kinetic assessment and prediction of DDI produced via reversible inhibition and MBI rely on operationally and conceptually distinct approaches. DDI risk assessment for inactivators requires estimation of maximal inactivation rate (k(inact)) and inactivator potency (KI) in vitro, that need to be considered in context of the biological turnover rate of the enzyme (kdeg) and clinical exposures of the inactivator (I), respectively, to predict interaction magnitude. Risk assessment cannot be performed by a simple comparison of inactivator potency against in vivo exposure since inactivation is both concentration and time-dependent. MBI contour plots tracking combinations of I:KI and k(inact):k(deg) resulting in identical fold-reductions in intrinsic clearance are proposed as a useful framework for DDI risk assessment. Additionally, substrate-specific factors like fraction of the total clearance of the object drug via the enzyme being inactivated (f(m(CYP) )) and the bioavailability fraction across the intestine for CYP3A substrates (F(G)) are important determinants of interaction magnitude. Sensitivity analysis of predicted DDI magnitude to uncertainty in input parameters is recommended to inform confidence in predictions. The time course of reversal of DDI resulting from CYP inactivation is determined by the half-life of the enzyme which is an important consideration in the design and interpretation of clinical DDI studies with inactivators.

  15. Noncomplementing diploidy resulting from spontaneous zygogenesis in Escherichia coli.

    PubMed

    Gratia, Jean-Pierre

    2005-09-01

    With the aim of understanding sexual reproduction and phenotypic expression, a novel type of mating recently discovered in Escherichia coli was investigated. Termed spontaneous zygogenesis (or Z-mating), it differs from F-mediated conjugation. Its products proved phenotypically unstable, losing part of the phenotype for which they were selected. Inactivation of a parental chromosome in the zygote is strongly suggested by fluctuation tests, respreading experiments, analysis of reisolates, and segregation of non-viable cells detected by epifluorescence staining. Some phenotypically haploid subclones were interpreted as stable noncomplementing diploids carrying an inactivated co-replicating chromosome. Pedigree analysis indicated that the genetic composition of such cells consisted of parental genomes or one parental plus a recombinant genome. Inactivation of a chromosome carrying a prophage resulted in the disappearance of both the ability to produce phage particles and the immunity to superinfection. Phage production signalled transient reactivation of such a chromosome and constituted a sensitive test for stable noncomplementing diploidy. Chromosome inactivation thus appears to be a spontaneous event in bacteria.

  16. Production and Characterization of Chemically Inactivated Genetically Engineered Clostridium difficile Toxoids.

    PubMed

    Vidunas, Eugene; Mathews, Antony; Weaver, Michele; Cai, Ping; Koh, Eun Hee; Patel-Brown, Sujata; Yuan, Hailey; Zheng, Zi-Rong; Carriere, Marjolaine; Johnson, J Erik; Lotvin, Jason; Moran, Justin

    2016-07-01

    A recombinant Clostridium difficile expression system was used to produce genetically engineered toxoids A and B as immunogens for a prophylactic vaccine against C. difficile-associated disease. Although all known enzymatic activities responsible for cytotoxicity were genetically abrogated, the toxoids exhibited residual cytotoxic activity as measured in an in vitro cell-based cytotoxicity assay. The residual cytotoxicity was eliminated by treating the toxoids with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. Mass spectrometry and amino acid analysis of the EDC-inactivated toxoids identified crosslinks, glycine adducts, and β-alanine adducts. Surface plasmon resonance analysis demonstrated that modifications resulting from the chemical treatment did not appreciably affect recognition of epitopes by both toxin A- and B-specific neutralizing monoclonal antibodies. Compared to formaldehyde-inactivated toxoids, the EDC/N-hydroxysuccinimide-inactivated toxoids exhibited superior stability in solution with respect to reversion of cytotoxic activity. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Inactivation gating determines nicotine blockade of human HERG channels.

    PubMed

    Wang, H Z; Shi, H; Liao, S J; Wang, Z

    1999-09-01

    We have previously found that nicotine blocked multiple K+ currents, including the rapid component of delayed rectifier K+ currents (IKr), by interacting directly with the channels. To shed some light on the mechanisms of interaction between nicotine and channels, we performed detailed analysis on the human ether-à-go-go-related gene (HERG) channels, which are believed to be equivalent to the native I(Kr) when expressed in Xenopus oocytes. Nicotine suppressed the HERG channels in a concentration-dependent manner with greater potency with voltage protocols, which favor channel inactivation. Nicotine caused dramatic shifts of the voltage-dependent inactivation curve to more negative potentials and accelerated the inactivation process. Conversely, maneuvers that weakened the channel inactivation gating considerably relieved the blockade. Elevating the extracellular K+ concentration from 5 to 20 mM increased the nicotine concentration (by approximately 100-fold) needed to achieve the same degree of inhibition. Moreover, nicotine lost its ability to block the HERG channels when a single mutation was introduced to a residue located after transmembrane domain 6 (S631A) to remove the rapid channel inactivation. Our data suggest that the inactivation gating determines nicotine blockade of the HERG channels.

  18. Heat-Denatured Lysozyme Inactivates Murine Norovirus as a Surrogate Human Norovirus.

    PubMed

    Takahashi, Hajime; Nakazawa, Moemi; Ohshima, Chihiro; Sato, Miki; Tsuchiya, Tomoki; Takeuchi, Akira; Kunou, Masaaki; Kuda, Takashi; Kimura, Bon

    2015-07-02

    Human norovirus infects humans through the consumption of contaminated food, contact with the excrement or vomit of an infected person, and through airborne droplets that scatter the virus through the air. Being highly infectious and highly viable in the environment, inactivation of the norovirus requires a highly effective inactivating agent. In this study, we have discovered the thermal denaturing capacity of a lysozyme with known antimicrobial activity against gram-positive bacteria, as well as its inactivating effect on murine norovirus. This study is the first report on the norovirus-inactivating effects of a thermally denatured lysozyme. We observed that lysozymes heat-treated for 40 min at 100 °C caused a 4.5 log reduction in infectivity of norovirus. Transmission electron microscope analysis showed that virus particles exposed to thermally denatured lysozymes were expanded, compared to the virus before exposure. The amino acid sequence of the lysozyme was divided into three sections and the peptides of each artificially synthesised, in order to determine the region responsible for the inactivating effect. These results suggest that thermal denaturation of the lysozyme changes the protein structure, activating the region responsible for imparting an inactivating effect against the virus.

  19. Use of radiation in biomaterials science

    NASA Astrophysics Data System (ADS)

    Benson, Roberto S.

    2002-05-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.

  20. Positron emitter labeled enzyme inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline andmore » L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.« less

  1. Randomized Trials Comparing Inactivated Vaccine After Medium- or High-titer Measles Vaccine With Standard Titer Measles Vaccine After Inactivated Vaccine: A Meta-analysis.

    PubMed

    Aaby, Peter; Ravn, Henrik; Benn, Christine S; Rodrigues, Amabelia; Samb, Badara; Ibrahim, Salah A; Libman, Michael D; Whittle, Hilton C

    2016-11-01

    Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated vaccines [after medium-titer MV (MTMV) or high-titer MV (HTMV)] and a live standard titer MV (after an initial inactivated vaccine). The trials were conducted in Sudan, Senegal, The Gambia and Guinea-Bissau. The intervention group received live MTMV or HTMV from 4 to 5 months and then an inactivated vaccine from 9 to 10 months of age; the control children received inactivated vaccine/placebo from 4 to 5 months and standard titer MV from 9 to 10 months of age. We compared mortality from 9 months until end of study at 3 to 5 years of age for children who received inactivated vaccine (after MTMV or HTMV) and standard titer MV (after inactivated vaccine), respectively. The original datasets were analyzed using a Cox proportional hazards model stratified by trial. The mortality rate ratio (MRR) was 1.38 (95% confidence interval: 1.05-1.83) after an inactivated vaccine (after MTMV or HTMV) compared with a standard titer MV (after inactivated vaccine). Girls had a MRR of 1.89 (1.27-2.80), whereas there was no effect for boys, the sex-differential effect being significant (P = 0.02). Excluding measles cases did not alter these conclusions, the MRR after inactivated vaccines (after MTMV or HTMV) being 1.40 (1.06-1.86) higher overall and 1.92 (1.29-2.86) for girls. Control for variations in national immunization schedules for other vaccines did not modify these results. After 9 months of age, all children had been immunized against measles, and mortality in girls was higher when they had received inactivated vaccines (after MTMV or HTMV) rather than live standard titer MV (after an inactivated vaccine).

  2. Virus inactivation studies using ion beams, electron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ß) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  3. Inactivation of bacteria using dc corona discharge: role of ions and humidity.

    PubMed

    Dobrynin, Danil; Friedman, Gary; Fridman, Alexander; Starikovskiy, Andrey

    2011-10-01

    Here we present the results of an experimental study of the effect of ions produced in a dc corona discharge on inactivation of bacteria on the surface of agarose gel. Both positive and negative corona discharges in various gases at different humidities were studied. The measurements in air, O(2), N(2), Ar and He mixtures show that there is no inactivation in pure N(2), pure O(2) and an N(2)-H(2)O mixture. The best results were achieved in the case of direct treatment, when discharge was ignited in oxygen and water-containing mixtures. We show that neither UV radiation, ozone or H(2)O(2) nor other neutral active species alone produced by corona have an effect on bacteria viability. It is shown that the main role of charged particles may be related to the faster transport of active peroxide species-cluster ions OH(-)(H(2)O)(n) and H(3)O(+)(H(2)O)(n). The efficiency of these radicals is much higher than that of the oxygen radicals and ions (including [Formula: see text] and O(3)) and that of nitrogen and argon ions.

  4. Decontamination Efficacy of Ultraviolet Radiation against Biofilms of Common Nosocomial Bacteria.

    PubMed

    Tingpej, Pholawat; Tiengtip, Rattana; Kondo, Sumalee

    2015-06-01

    Ultraviolet radiation (UV) is commonly used to destroy microorganisms in the health-care environment. However, the efficacy of UV radiation against bacteria growing within biofilms has never been studied. To measure the sterilization effectiveness of UV radiation against common healthcare associated pathogens growing within biofilms. Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Streptococcus epidermidis, Escherichia coli, ESBL-producing E. coli, Pseudomonas aeruginosa and Acinetobacter baumannii were cultivated in the Calgary Biofilm Device. Their biofilms were placed 50 cm from the UV lamp within the Biosafety Cabinet. Viability test, crystal violet assay and a scanning electron microscope were used to evaluate the germicidal efficacy. Within 5 minutes, UV radiation could kill S. aureus, MRSA, S. epidermidis, A. baumannii and ESBL-producing E. coli completely while it required 20 minutes and 30 minutes respectively to kill E. coli and P. aeruginosa. However, the amounts of biomass and the ultrastructure between UV-exposed biofilms and controls were not significantly different. UV radiation is effective in inactivating nosocomial pathogens grown within biofilms, but not removing biofilms and EPS. The biofilm of P. aeruginosa was the most durable.

  5. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe0 process for safe water production.

    PubMed

    Yousefzadeh, Samira; Matin, Atiyeh Rajabi; Ahmadi, Ehsan; Sabeti, Zahra; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-01

    One of the most important aspects of environmental issues is the demand for clean and safe water. Meanwhile, disinfection process is one of the most important steps in safe water production. The present study aims at estimating the performance of UV, nano Zero-Valent Iron particles (nZVI, nano-Fe 0 ), and UV treatment with the addition of nZVI (combined process) for Bacillus subtilis spores inactivation. Effects of different factors on inactivation including contact time, initial nZVI concentration, UV irradiance and various aerations conditions were investigated. Response surface methodology, based on a five-level, two variable central composite design, was used to optimize target microorganism reduction and the experimental parameters. The results indicated that the disinfection time had the greatest positive impact on disinfection ability among the different selected independent variables. According to the results, it can be concluded that microbial reduction by UV alone was more effective than nZVI while the combined UV/nZVI process demonstrated the maximum log reduction. The optimum reduction of about 4 logs was observed at 491 mg/L of nZVI and 60 min of contact time when spores were exposed to UV radiation under deaerated condition. Therefore, UV/nZVI process can be suggested as a reliable method for Bacillus subtilis spores inactivation. Copyright © 2018. Published by Elsevier Ltd.

  6. The effect of a non-denaturing detergent and a guanidinium-based inactivation agent on the viability of Ebola virus in mock clinical serum samples.

    PubMed

    Burton, J E; Easterbrook, L; Pitman, J; Anderson, D; Roddy, S; Bailey, D; Vipond, R; Bruce, C B; Roberts, A D

    2017-12-01

    The 2014 Ebola outbreak in West Africa required the rapid testing of clinical material for the presence of potentially high titre Ebola virus (EBOV). Safe, fast and effective methods for the inactivation of such clinical samples are required so that rapid diagnostic tests including downstream analysis by RT-qPCR or nucleotide sequencing can be carried out. One of the most commonly used guanidinium - based denaturing agents, AVL (Qiagen) has been shown to fully inactivate EBOV once ethanol is added, however this is not compatible with the use of automated nucleic acid extraction systems. Additional inactivation agents need to be identified that can be used in automated systems. A candidate inactivation agent is Triton X-100, a non-denaturing detergent that is frequently used in clinical nucleic acid extraction procedures and has previously been used for inactivation of EBOV. In this study the effect of 0.1% and 1.0% Triton X-100 (final concentration 0.08% and 0.8% respectively) alone and in combination with AVL on the viability of EBOV (10 6 TCID 50 /ml) spiked into commercially available pooled negative human serum was tested. The presence of viable EBOV in the treated samples was assessed by carrying out three serial passages of the samples in Vero E6 cells (37°C, 5% CO 2 , 1 week for each passage). At the end of each passage the cells were observed for evidence of cytopathic effect and samples were taken for rRT-PCR analysis for the presence of EBOV RNA. Before cell culture cytotoxic components of AVL and Triton X-100 were removed from the samples using size exclusion spin column technology or a hydrophobic adsorbent resin. The results of this study showed that EBOV spiked into human serum was not fully inactivated when treated with either 0.1% (v/v) Triton X-100 for 10 mins or 1.0% (v/v) Triton X-100 for 20 mins (final concentrations 0.08% and 0.8% Triton X-100 respectively). AVL alone also did not consistently provide complete inactivation. Samples treated with both AVL and 0.1% Triton X-100 for 10 or 20 mins were shown to be completely inactivated. This treatment is compatible with downstream analysis by RT-qPCR and next generation sequencing. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Structural determinants of Kvbeta1.3-induced channel inactivation: a hairpin modulated by PIP2.

    PubMed

    Decher, Niels; Gonzalez, Teresa; Streit, Anne Kathrin; Sachse, Frank B; Renigunta, Vijay; Soom, Malle; Heinemann, Stefan H; Daut, Jürgen; Sanguinetti, Michael C

    2008-12-03

    Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel.

  8. Microdosimetry and Katz's track structure theory. I. One-hit detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaider, M.

    1990-10-01

    A microdosimetric treatment of the response of one-hit detectors to radiation is formulated and compared with the model proposed by R. Katz, S. C. Sharma, and M. Homayoonfar within the framework of their track-structure theory. It is shown that radial dose distributions (on which the track structure theory is based) are generally poor substitutes for the exact microdosimetric distributions except when (a) the target is much larger than the radial extent of the track or (b) the effective specific energy in the target (alpha z) is negligibly small. Since neither one of these conditions is generally satisfied, it is suggestedmore » that a meaningful search for one-hit detectors be based on a microdosimetric description of the stochastics of energy deposition. An analysis of the phi x-174 bacteriophage inactivation data is presented.« less

  9. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    PubMed Central

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation of the thiophene sulfur to give the sulfoxide, which has previously been shown to be a significant metabolite of OSI-930. Because OSI-930 is an inactivator of P450 3A4 but does not exhibit any effect on P450 3A5 activity under the same conditions, it may be an appropriate probe for exploring unique aspects of these two very similar P450s. PMID:21068193

  10. Effects of UVB radiation on Photosynthesis Activity of Wolffia arrhiza as Probed by Chlorophyll Fluorescence Transient

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Chen, Kun; Liu, Yongding

    UV radiation is one major environmental stress for growth of Wolffia arrhiza which is regarded as a good candidate producer for establishing CELSS during extraterrestrial colonization and spaceflight. In this study, we found that UVB radiation inhibited photosynthetic CO2 assimilation activity significantly, and the content of chlorophyll a, chlorophyll b and carotenoids decreased obviously when plants were exposed to UVB radiation for 6 h. High UVB radiation also declined the quantum yield of primary photochemistry (φPo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (ψo) in the cells of Wolffia arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction center per absorption (RC/ABS) had the same changes under UV-B radiation stress. These results indicated that the effects of UV- B radiation on photosynthesis of Wolffia arrhiza maybe functioned by inhibition the electron transport and inactivation of reaction centers, but the inhibition maybe happen in more than one site in photosynthetic apparatus which is different to that in salt adaptation.

  11. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  12. Ultraviolet-C efficacy against a norovirus surrogate and hepatitis A virus on a stainless steel surface.

    PubMed

    Park, Shin Young; Kim, An-Na; Lee, Ki-Hoon; Ha, Sang-Do

    2015-10-15

    In this study, the effects of 10-300 mWs/cm(2) of ultraviolet radiation (UV-C) at 260 nm were investigated for the inactivation of two foodborne viruses: murine norovirus-1 (MNV-1; a human norovirus [NoV] surrogate) and hepatitis A virus (HAV). We used an experimentally contaminated stainless steel surface, a common food-contact surface, to examine the effects of low doses of UV-C radiation on MNV-1 and HAV titers. The modified Gompertz equation was used to generate non-linear survival curves and calculate dR-values as the UV-C dose of 90% reduction for MNV-1 (R(2)=0.95, RMSE=0.038) and HAV (R(2)=0.97, RMSE=0.016). Total MNV-1 and HAV titers significantly decreased (p<0.05) with higher doses of UV-C. MNV-1 and HAV were reduced to 0.0-4.4 and 0.0-2.6 log10PFU/ml, respectively, on the stainless steel surfaces by low-dose UV-C treatment. The dR-value, 33.3 mWs/cm(2) for MNV-1 was significantly (p<0.05) lower than 55.4 mWs/cm(2) of HAV. Therefore, the present study shows that HAV is more resistant to UV-C radiation than MNV-1. These data suggest that low doses of UV-C light on food contact surfaces could be effective to inactivate human NoV and HAV in restaurant, institutional, and industrial kitchens and facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway.

    PubMed

    Wu, Dapeng; Li, Lei; Yan, Wei

    2016-04-15

    Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blotin vitroandin vivo Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results fromin vitroandin vivostudies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. © 2016. Published by The Company of Biologists Ltd.

  14. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway

    PubMed Central

    Wu, Dapeng; Li, Lei; Yan, Wei

    2016-01-01

    ABSTRACT Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blot in vitro and in vivo. Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results from in vitro and in vivo studies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. PMID:27029901

  15. Use of gamma radiation for inactivating Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes in tahini halva.

    PubMed

    Osaili, Tareq M; Al-Nabulsi, Anas A; Aljaafreh, Taqwa F

    2018-08-02

    Tahini halva is a traditional sweet product that is consumed with bread in different countries. It is a low water activity (a w ) product basically made by mixing and cooking tahini, sugar, citric acid and Saponaria officinalis root extract together. Tahini halva maybe contaminated with foodborne pathogens during any stage of production from tahini and other raw ingredients, workers, environment or contact surfaces. The objectives of the study were to i) investigate the efficacy of gamma radiation to inactivate Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes in tahini halva, ii) evaluate the effect of pre-irradiation storage (0, 7 and 30 days at 21 °C) of tahini halva on the sensitivity of these microorganisms toward gamma radiation, and iii) evaluate the effect of post-irradiation storage of tahini halva for up to 6 months on the their survival characteristics. Tahini halva samples were inoculated with Salmonella spp., E. coli O157:H7 and L. monocytogenes separately then stored at 21 °C for 0, 7 and 30 days prior to irradiation at 0-4 KGy and for up to 6 months after irradiation at 4 KGy. Salmonella spp. were the most irradiation resistance among the tested microorganisms. Irradiation (0.8-4.0 KGy) reduced the bacteria in samples stored for 0, 7 and 30 days pre-irradiation in the range of 0.43-2.11, 0.45-2.68 and 0.52-2.7 log 10  CFU/g for Salmonella spp., 0.55-3.08, 0.66-3.00 and 0.60-2.80 log 10  CFU/g for E. coli O157:H7, and 0.69-2.96, 0.86-4.30, 0.62-3.29 log 10  CFU/g for L. monocytogenes, respectively. The D 10 -value, the irradiation dose needed to inactivate 1 log 10 of pathogen, was 1.83, 1.47 and 1.50 KGy for Salmonella spp., 1.28, 1.32 and 1.48 KGy for E. coli O157:H7, and 1.33, 0.94 and 1.27 KGy for L. monocytogenes in pre-irradiation stored samples for 0, 7 and 30 days, respectively. Post-irradiation storage was efficient in decreasing the levels of the microorganisms ca. ≥2 log 10  CFU/g in the first month and to undetected level after the second month of storage but enrichment results showed that Salmonella spp. and L. monocytogenes were detected in the samples until of the end of storage period. The study demonstrates that gamma radiation can be applied to inactivate of foodborne pathogens in tahini halva. Irradiation dose at 4 KGy can reduce Salmonella spp., E. coli O157:H7 and L. monocytogenes in tahini halva by 2-3 log 10  CFU/g. Storage of tahini halva before or after irradiation may reduce the risk of foodborne pathogens in the product. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Identification of an Imprinted Gene Cluster in the X-Inactivation Center

    PubMed Central

    Kobayashi, Shin; Totoki, Yasushi; Soma, Miki; Matsumoto, Kazuya; Fujihara, Yoshitaka; Toyoda, Atsushi; Sakaki, Yoshiyuki; Okabe, Masaru; Ishino, Fumitoshi

    2013-01-01

    Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs–miR-374-5p and miR-421-3p–mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development. PMID:23940725

  17. Identification of an imprinted gene cluster in the X-inactivation center.

    PubMed

    Kobayashi, Shin; Totoki, Yasushi; Soma, Miki; Matsumoto, Kazuya; Fujihara, Yoshitaka; Toyoda, Atsushi; Sakaki, Yoshiyuki; Okabe, Masaru; Ishino, Fumitoshi

    2013-01-01

    Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs-miR-374-5p and miR-421-3p-mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development.

  18. A Planar Source of Atmospheric-Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Zhdanova, O. S.; Kuznetsov, V. S.; Panarin, V. A.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, V. F.

    2018-01-01

    In a single-barrier discharge with voltage sharpening and low gas consumption (up to 1 L/min), plane atmospheric pressure plasma jets with a width of up to 3 cm and length of up to 4 cm in air are formed in the slit geometry of the discharge zone. The energy, temperature, and spectral characteristics of the obtained jets have been measured. The radiation spectrum contains intense maxima corresponding to vibrational transitions of the second positive system of molecular nitrogen N2 ( C 3Π u → B 3Π g ) and comparatively weak transition lines of the first positive system of the N 2 + ion ( B 2Σ u + → X 2Σ g ). By an example of inactivation of the Staphylococcus aureus culture (strain ATCC 209), it is shown that plasma is a source of chemically active particles providing the inactivation of microorganisms.

  19. Inactivation pathogenic microorganisms in water by laser methods

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Grishkanich, Aleksandr; Kascheev, Sergey; Ruzankina, Julia; Afanasyev, Mikhail; Hafizov, Nail

    2017-02-01

    As a result of the research the following methods have been proposed for controlling harmful microorganisms: sterilization of water by laser radiation at wavelengths of 425 nm, 355 nm and 308 nm. The results of theoretical and experimental studies on the development and establishment of a system of ultraviolet disinfection of water for injection (UFOVI) intended for research sterilized water for injections. The pipe created a strong turbulent water flow. Performance irradiation laminar flow of 1.5 liters per second. Irradiation was carried out at three wavelengths 425 nm, 355 nm and 308 nm with energies semiconductor laser diode arrays to 4 MJ / cm3. Wavelength tuning implemented current in the range of 10 nm. For large capacities, we have developed a miniature solid state laser, which was used in fluid microorganisms inactivator. In the water treatment process breaks up to 98% of microbes, but can be left among pathogenic viruses destruction which requires special handling.

  20. Helicases as Prospective Targets for Anti-Cancer Therapy

    PubMed Central

    Gupta, Rigu; Brosh, Robert M.

    2008-01-01

    It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint. PMID:18473724

  1. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    PubMed

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  2. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  3. Effect of extrusion conditions and lipoxygenase inactivation treatment on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends.

    PubMed

    Sosa-Moguel, Odri; Ruiz-Ruiz, Jorge; Martínez-Ayala, Alma; González, Rolando; Drago, Silvina; Betancur-Ancona, David; Chel-Guerrero, Luis

    2009-01-01

    The influence of lipoxygenase inactivation and extrusion cooking on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends was studied. Corn was blended in an 80:15 proportion with cowpea flour treated to inactivate lipoxygenase (CI) or non-inactivated cowpea flour (CNI). Extrusion variables were temperature (150 degrees C, 165 degrees C and 180 degrees C) and moisture (15%, 17% and 19%). Based on their physical properties, the 165 degrees C/15% corn:CNI, and 165 degrees C/15% corn:CI, and 150 degrees C/15% corn:CI blends were chosen for nutritional quality analysis. Extrudate chemical composition indicated high crude protein levels compared with standard corn-based products. With the exception of lysine, essential amino acids content in the three treatments met FAO requirements. Extrusion and lipoxygenase inactivation are promising options for developing corn/cowpea extruded snack products with good physical properties and nutritional quality.

  4. Wastewater disinfection by peracetic acid: assessment of models for tracking residual measurements and inactivation.

    PubMed

    Santoro, Domenico; Gehr, Ronald; Bartrand, Timothy A; Liberti, Lorenzo; Notarnicola, Michele; Dell'Erba, Adele; Falsanisi, Dario; Haas, Charles N

    2007-07-01

    With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.

  5. Structural and Molecular Basis of the Peroxynitrite-mediated Nitration and Inactivation of Trypanosoma cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B

    PubMed Central

    Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A.; Hugo, Martín; Piñeyro, Dolores; Demicheli, Verónica; Moreno, Diego M.; Lima, Analía; Batthyány, Carlos; Durán, Rosario; Robello, Carlos; Martí, Marcelo A.; Larrieux, Nicole; Buschiazzo, Alejandro; Trujillo, Madia; Radi, Rafael; Piacenza, Lucía

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 104 m−1 s−1 and 4.3 ± 0.4 × 104 m−1 s−1 at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr35. Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys83 mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys83 present in Fe-SODB acts as an electron donor that repairs Tyr35 radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells. PMID:24616096

  6. Use of solar radiation for continuous water disinfection in isolated areas.

    PubMed

    Fabbricino, M; d'Antonio, L

    2012-01-01

    This study involved investigation of solar water disinfection in continuously working treatment plants with the aim of producing safe drinking water in isolated areas. Results were obtained from experimental work carried out on a pilot plant operating in different configurations. The use of a simple device to increase solar radiation intensity (solar concentrator) was tested, with results showing that it facilitated better performance. A comparison between transparent and black-painted glass reactors was also made, showing no difference between the two casings. Further, the effect of an increase in water temperature was analysed in detail. Temperature was found to play an important role in the disinfection process, even in cases of limited solar radiation intensities, although a synergistic effect of water heating and solar radiation for effective microbial inactivation was confirmed. Reactor design is also discussed, highlighting the importance of having a plug flow to avoid zones that do not contribute to the overall effectiveness of the process.

  7. aPKCζ-dependent Repression of Yap is Necessary for Functional Restoration of Irradiated Salivary Glands with IGF-1.

    PubMed

    Chibly, Alejandro M; Wong, Wen Yu; Pier, Maricela; Cheng, Hongqiang; Mu, Yongxin; Chen, Ju; Ghosh, Sourav; Limesand, Kirsten H

    2018-04-20

    Xerostomia and salivary hypofunction often result as a consequence of radiation therapy for head and neck cancers, which are diagnosed in roughly 60,000 individuals every year in the U.S. Due to the lack of effective treatments for radiation-induced salivary hypofunction, stem cell-based therapies have been suggested to regenerate the irradiated salivary glands. Pharmacologically, restoration of salivary gland function has been accomplished in mice by administering IGF-1 shortly after radiation treatment, but it is not known if salivary stem and progenitor cells play a role. We show that radiation inactivates aPKCζ and promotes nuclear redistribution of Yap in a population of label-retaining cells in the acinar compartment of the parotid gland (PG)- which comprises a heterogeneous pool of salivary progenitors. Administration of IGF-1 post-radiation maintains activation of aPKCζ and partially rescues Yap's cellular localization in label retaining cells, while restoring salivary function. Finally, IGF-1 fails to restore saliva production in mice lacking aPKCζ, demonstrating the importance of the kinase as a potential therapeutic target.

  8. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    NASA Astrophysics Data System (ADS)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  9. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    NASA Astrophysics Data System (ADS)

    Hernández-Arias, A. N.; Rodríguez-Méndez, B. G.; López-Callejas, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Barocio, S. R.; Muñoz-Castro, A. E.; de la Piedad Beneitez, A.

    2012-06-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 103-107 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ~90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  10. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    PubMed

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Simultaneous occurrence of focal nodular hyperplasia and HNF1A-inactivated hepatocellular adenoma: a collision tumor simulating a composite FNH-HCA.

    PubMed

    Shih, Angela; Lauwers, Gregory Y; Balabaud, Charles; Bioulac-Sage, Paulette; Misdraji, Joseph

    2015-09-01

    Mixed focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA) within a single tumor mass is rarely reported, and most of these cases are examples of tumors with features intermediate between FNH and HCA. Although a few reported cases are probably examples of true mixed tumors, none was evaluated immunohistochemically or confirmed by molecular analysis. We report a mixed FNH and HCA arising in a woman with several HNF1A-inactivated adenomas. Our case is the first case of mixed FNH and HNF1A-inactivated HCA documented by immunohistochemistry.

  12. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese

    PubMed Central

    Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm2, respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm2, and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm2. Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm2 for all three pathogens, with negligible generation of injured cells. PMID:26386061

  13. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients.

    PubMed

    Guidotti, Serena; Minguzzi, Manuela; Platano, Daniela; Cattini, Luca; Trisolino, Giovanni; Mariani, Erminia; Borzì, Rosa Maria

    2015-01-01

    Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy. In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2',7'-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining. In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10. In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response.

  14. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oestavik, R.E.; Eiklid, K.; Oerstavik, K.H.

    1995-03-27

    Wiedemann-Beckwith syndrome (WBS) is a syndrome including exomphalos, macroglossia, and generalized overgrowth. The locus has been assigned to 11p15, and genomic imprinting may play a part in the expression of one or more genes involved. Most cases are sporadic. An excess of female monozygotic twins discordant for WBS have been reported, and it has been proposed that this excess could be related to the process of X chromosome inactivation. We have therefore studied X chromosome inactivation in 13-year-old monozygotic twin girls who were discordant for WBS. In addition, both twins had Tourette syndrome. The twins were monochorionic and therefore themore » result of a late twinning process. This has also been the case in previously reported discordant twin pairs with information on placentation. X chromosome inactivation was determined in DNA from peripheral blood cells by PCR analysis at the androgen receptor locus. The affected twin had a completely skewed X inactivation, where the paternal allele was on the active X chromosome in all cells. The unaffected twin had a moderately skewed X inactivation in the same direction, whereas the mother had a random pattern. Further studies are necessary to establish a possible association between the expression of WBS and X chromosome inactivation. 18 refs., 2 figs., 1 tab.« less

  15. Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster ( Crassostrea gigas) and culture broth under different conditions

    NASA Astrophysics Data System (ADS)

    Jung, Pil-Mun; Park, Jae Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Baek, Min; Chung, Young-Jin; Lee, Ju-Woon

    2009-07-01

    Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster ( Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D10 value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.

  16. No effect of femtosecond laser pulses on M13, E. coli, DNA, or protein.

    PubMed

    Wigle, Jeffrey C; Holwitt, Eric A; Estlack, Larry E; Noojin, Gary D; Saunders, Katharine E; Yakovlev, Valdislav V; Rockwell, Benjamin A

    2014-01-01

    Data showing what appears to be nonthermal inactivation of M13 bacteriophage (M13), Tobacco mosaic virus, Escherichia coli (E. coli), and Jurkatt T-cells following exposure to 80-fs pulses of laser radiation have been published. Interest in the mechanism led to attempts to reproduce the results for M13 and E. coli. Bacteriophage plaque-forming and bacteria colony-forming assays showed no inactivation of the microorganisms; therefore, model systems were used to see what, if any, damage might be occurring to biologically important molecules. Purified plasmid DNA (pUC19) and bovine serum albumin were exposed to and analyzed by agarose gel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively, and no effect was found. DNA and coat proteins extracted from laser-exposed M13 and analyzed by AGE or PAGE found no effect. Raman scattering by M13 in phosphate buffered saline was measured to determine if there was any physical interaction between M13 and femtosecond laser pulses, and none was found. Positive controls for the endpoints measured produced the expected results with the relevant assays. Using the published methods, we were unable to reproduce the inactivation results or to show any interaction between ultrashort laser pulses and buffer/water, DNA, protein, M13 bacteriophage, or E. coli.

  17. No effect of femtosecond laser pulses on M13, E. coli, DNA, or protein

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Holwitt, Eric A.; Estlack, Larry E.; Noojin, Gary D.; Saunders, Katharine E.; Yakovlev, Valdislav V.; Rockwell, Benjamin A.

    2014-01-01

    Data showing what appears to be nonthermal inactivation of M13 bacteriophage (M13), Tobacco mosaic virus, Escherichia coli (E. coli), and Jurkatt T-cells following exposure to 80-fs pulses of laser radiation have been published. Interest in the mechanism led to attempts to reproduce the results for M13 and E. coli. Bacteriophage plaque-forming and bacteria colony-forming assays showed no inactivation of the microorganisms; therefore, model systems were used to see what, if any, damage might be occurring to biologically important molecules. Purified plasmid DNA (pUC19) and bovine serum albumin were exposed to and analyzed by agarose gel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively, and no effect was found. DNA and coat proteins extracted from laser-exposed M13 and analyzed by AGE or PAGE found no effect. Raman scattering by M13 in phosphate buffered saline was measured to determine if there was any physical interaction between M13 and femtosecond laser pulses, and none was found. Positive controls for the endpoints measured produced the expected results with the relevant assays. Using the published methods, we were unable to reproduce the inactivation results or to show any interaction between ultrashort laser pulses and buffer/water, DNA, protein, M13 bacteriophage, or E. coli.

  18. Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa.

    PubMed

    Rice, Philip S

    2011-04-23

    Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming units or quantitative mRNA RT-PCR. The ancestral varicella-zoster virus, most probably a tropical genotype, co-migrated with man as he left Africa approximately 200,000 years ago. For this virus to have lost the selective advantage of resistance to ultra-violet radiation, the hypothesis would predict that the temperate, ultra-violet sensitive virus should have acquired another selective advantage as an evolutionary trade-off. One obvious advantage could be an increased reactivation rate as zoster to set up more rounds of chickenpox transmission. If this were so, the mechanism responsible for resistance to ultra-violet radiation might also be involved in reactivation and latency. This could then provide the first insight into a genetic correlate of the survival strategy of this virus.

  19. Selective effect of irradiation on responses to thymus-independent antigen.

    PubMed

    Lee, S K; Woodland, R T

    1985-02-01

    Low doses of ionizing radiation have a selective immunosuppressive effect on in vivo B cell responses to thymus-independent (TI) antigens. The B cell response, assayed as direct anti-trinitrophenyl (TNP)-specific plaque-forming cells (PFC), induced by type 2, TI antigens (TNP-Ficoll or TNP-Dextran), was reduced, on the average, by 10-fold in animals exposed to 200 rad of ionizing radiation 24 hr before antigen challenge. In contrast, PFC responses to type 1, TI antigens (TNP-lipopolysaccharide or TNP-Brucella abortus) are unaffected in mice exposed to the same dose of radiation. Adoptive transfers showed that this selective immunosuppression is a result of the specific inactivation of the B cell subpopulation responding to type 2, TI antigens. These experiments suggest that physiologic differences exist in the B cell subpopulations of normal mice which respond to type 1, or type 2, TI antigens.

  20. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    PubMed

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of < 1 CFU/100 mL within 2-5 h exposure to sunlight. However, under cloudy conditions, the two FSP systems did not reduce the concentrations of faecal indicator bacteria to levels of < 1 CFU/100 mL. Nonetheless, sufficient evidence was obtained to show that UV radiation of sunlight plus heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria < C. perfringens < F RNA virus < enterococci < E. coli < faecal coliform. In summary, time of exposure to heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  1. Molecular Dynamics of CYP2D6 Polymorphisms in the Absence and Presence of a Mechanism-Based Inactivator Reveals Changes in Local Flexibility and Dominant Substrate Access Channels

    PubMed Central

    de Waal, Parker W.; Sunden, Kyle F.; Furge, Laura Lowe

    2014-01-01

    Cytochrome P450 enzymes (CYPs) represent an important enzyme superfamily involved in metabolism of many endogenous and exogenous small molecules. CYP2D6 is responsible for ∼15% of CYP-mediated drug metabolism and exhibits large phenotypic diversity within CYPs with over 100 different allelic variants. Many of these variants lead to functional changes in enzyme activity and substrate selectivity. Herein, a molecular dynamics comparative analysis of four different variants of CYP2D6 was performed. The comparative analysis included simulations with and without SCH 66712, a ligand that is also a mechanism-based inactivator, in order to investigate the possible structural basis of CYP2D6 inactivation. Analysis of protein stability highlighted significantly altered flexibility in both proximal and distal residues from the variant residues. In the absence of SCH 66712, *34, *17-2, and *17-3 displayed more flexibility than *1, and *53 displayed more rigidity. SCH 66712 binding reversed flexibility in *17-2 and *17-3, through *53 remained largely rigid. Throughout simulations with docked SCH 66712, ligand orientation within the heme-binding pocket was consistent with previously identified sites of metabolism and measured binding energies. Subsequent tunnel analysis of substrate access, egress, and solvent channels displayed varied bottle-neck radii. Taken together, our results indicate that SCH 66712 should inactivate these allelic variants, although varied flexibility and substrate binding-pocket accessibility may alter its interaction abilities. PMID:25286176

  2. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms.

    PubMed

    Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin

    2018-03-23

    Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Liu, Hongbin; Lu, Weiping; Chen, Qiang; Xu, Le; Wang, Xia; Zhu, Qunlin; Zeng, Xue; Yi, Ping

    2017-05-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H2O2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H2O2aq (aq indicates an aqueous species). Further analysis shows that the ·OHaq radicals play an important role in the inactivation process. The ·OHaq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OHaq production increases and enhances the inactivation efficiency of C. glabrata. Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H2O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOHaq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein.

  4. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    DTIC Science & Technology

    2015-09-17

    are the exosporium, the spore coat, the outer membrane, the cortex, the germ cell wall, the inner membrane, and the core. These are illustrated in...small amounts of carbohydrates and lipids. The 6 coat acts as the spore’s first line of defense against some chemical infiltration such as lytic enzymes...the spore as water makes up 48-57 percent of the cortex [2]. Immediately interior to the cortex is the germ cell wall which is also a peptidoglycan

  5. Biological effects of high ultraviolet radiation on early earth--a theoretical evaluation.

    PubMed

    Cockell, C S

    1998-08-21

    The surface of early Earth was exposed to both UVC radiation (< 280 nm) and higher doses of UVB (280-315 nm) compared with the surface of present day Earth. The degree to which this radiation environment acted as a selection pressure on organisms and biological systems has rarely been theoretically examined with respect to the biologically effective irradiances that ancient organisms would receive. Here action spectra for DNA inactivation and isolated chloroplast inhibition are used to estimate biologically effective irradiances on archean Earth. Comparisons are made with present day Earth. The theoretical estimations on the UV radiation screening required to protect DNA on archean Earth compare well with field and laboratory observations on protection strategies found in present day microbial communities. They suggest that many physical and biological methods may have been effective and would have allowed for the radiation of life even under the high UV radiation regimes of archean Earth. Such strategies would also have provided effective reduction of photoinhibition by UV radiation. The data also suggest that the UV regime on the surface of Mars is not a life limiting factor per se, although other environmental factors such as desiccation and low temperatures may contribute towards the apparent lack of a surface biota.

  6. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria.

    PubMed

    Kang, Jun-Won; Kim, Sang-Soon; Kang, Dong-Hyun

    2018-07-01

    The object of this study was to elucidate the bactericidal mechanism of a 222 nm Krypton Chlorine (KrCl) excilamp compared with that of a 254 nm Low Pressure mercury (LP Hg) lamp. The KrCl excilamp had higher bactericidal capacity against Gram-positive pathogenic bacteria (Staphylococcus aureus and L. monocytogenes) and Gram-negative pathogenic bacteria (S. Typhimurium and E. coli O157:H7) than did the LP Hg lamp when cell suspensions in PBS were irradiated with each type of UV lamp. It was found out that the KrCl excilamp induced cell membrane damage as a form of depolarization. From the study of respiratory chain dehydrogenase activity and the lipid peroxidation assay, it was revealed that cell membrane damage was attributed to inactivation of enzymes related to generation of membrane potential and occurrence of lipid peroxidation. Direct absorption of UV radiation which led to photoreaction through formation of an excited state was one of the causes inducing cell damage. Additionally, generation of ROS and thus occurrence of secondary damage can be another cause. The LP Hg lamp only induced damage to DNA but not to other components such as lipids or proteins. This difference was derived from differences of UV radiation absorption by cellular materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation.

    PubMed Central

    Ramabhadran, T V; Jagger, J

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315-405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis ("relaxed" or rel- strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-UV fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similat to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-UV irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-UV-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay. Images PMID:1108019

  8. Inactivation of Bacillus cereus and Salmonella enterica serovar Typhimurium by aqueous ozone (O3): Modeling and Uv-Vis spectroscopic analysis

    USDA-ARS?s Scientific Manuscript database

    Ozone (O3) is a natural antimicrobial agent with potential applications in food industry. In this study, inactivation of Bacillus cereus and Salmonella enterica Typhimurium by aqueous ozone was evaluated. Ozone gas was generated using a domestic ozone generator with an output of 200 mg/hr (approx. 0...

  9. Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine.

    PubMed

    Chureau, Corinne; Prissette, Marine; Bourdet, Agnès; Barbe, Valérie; Cattolico, Laurence; Jones, Louis; Eggen, André; Avner, Philip; Duret, Laurent

    2002-06-01

    We have sequenced to high levels of accuracy 714-kb and 233-kb regions of the mouse and bovine X-inactivation centers (Xic), respectively, centered on the Xist gene. This has provided the basis for a fully annotated comparative analysis of the mouse Xic with the 2.3-Mb orthologous region in human and has allowed a three-way species comparison of the core central region, including the Xist gene. These comparisons have revealed conserved genes, both coding and noncoding, conserved CpG islands and, more surprisingly, conserved pseudogenes. The distribution of repeated elements, especially LINE repeats, in the mouse Xic region when compared to the rest of the genome does not support the hypothesis of a role for these repeat elements in the spreading of X inactivation. Interestingly, an asymmetric distribution of LINE elements on the two DNA strands was observed in the three species, not only within introns but also in intergenic regions. This feature is suggestive of important transcriptional activity within these intergenic regions. In silico prediction followed by experimental analysis has allowed four new genes, Cnbp2, Ftx, Jpx, and Ppnx, to be identified and novel, widespread, complex, and apparently noncoding transcriptional activity to be characterized in a region 5' of Xist that was recently shown to attract histone modification early after the onset of X inactivation.

  10. Inactivation of individual Bacillus subtilis spores in dependence on their distance to single cosmic heavy ions.

    PubMed

    Facius, R; Reitz, G; Schafer, M

    1994-10-01

    For radiobiological experiments in space, designed to investigate biological effects of the heavy ions of the cosmic radiation field, a mandatory requirement is the possibility to spatially correlate the observed biological response of individual test organisms to the passage of single heavy ions. Among several undertakings towards this goal, the BIOSTACK experiments in the Apollo missions achieved the highest precision and therefore the most detailed information on this question. Spores of Bacillus subtilis as a highly radiation resistant and microscopically small test organism yielded these quantitative results. This paper will focus on experimental and procedural details, which must be included for an interpretation and a discussion of these findings in comparison to control experiments with accelerated heavy ions.

  11. Cross linking in the radiolysis of some enzymes and related proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, K.R.

    1977-01-01

    In non-covalently bound complexes of several serine proteases and of ribonuclease with DNA the enzymes were protected against the effects of ionizing radiation. No scavenging by the nucleic acids was observed. Similarly, complexing trypsin with silica protected the enzyme from radiolytic destruction. Irradiation of solutions of serine proteases required about twice the D37 dose to produce about 10% polymerization: significantly lower relative doses were effective in causing polymerization in both lima bean protease inhibitor and in the octapeptidal hormone oxytocin. Several sulfhydryl enzymes which have been examined were very efficiently inactivated by ionizing radiation. There was, at the same time,more » apparent formation of novel intra-molecular -S-S- bonds.« less

  12. Biochemical characterization of the THIN-B metallo-beta-lactamase of Janthinobacterium lividum.

    PubMed

    Docquier, Jean-Denis; Lopizzo, Teresa; Liberatori, Sabrina; Prenna, Manuela; Thaller, Maria Cristina; Frère, Jean-Marie; Rossolini, Gian Maria

    2004-12-01

    The THIN-B metallo-beta-lactamase, a subclass B3 enzyme produced by the environmental species Janthinobacterium lividum, was overproduced in Escherichia coli by means of a T7-based expression system. The enzyme was purified (>95%) by two ion-exchange chromatography steps and subjected to biochemical analysis. The native THIN-B enzyme is a monomeric protein of 31 kDa. It exhibits the highest catalytic efficiencies with carbapenem substrates and cephalosporins, except for cephaloridine, which acts as a poor inactivator. Individual rate constants for inactivation by chelators were measured, suggesting that inactivation occurred by a mechanism involving formation of a ternary complex.

  13. Biochemical Characterization of the THIN-B Metallo-β-Lactamase of Janthinobacterium lividum

    PubMed Central

    Docquier, Jean-Denis; Lopizzo, Teresa; Liberatori, Sabrina; Prenna, Manuela; Thaller, Maria Cristina; Frère, Jean-Marie; Rossolini, Gian Maria

    2004-01-01

    The THIN-B metallo-β-lactamase, a subclass B3 enzyme produced by the environmental species Janthinobacterium lividum, was overproduced in Escherichia coli by means of a T7-based expression system. The enzyme was purified (>95%) by two ion-exchange chromatography steps and subjected to biochemical analysis. The native THIN-B enzyme is a monomeric protein of 31 kDa. It exhibits the highest catalytic efficiencies with carbapenem substrates and cephalosporins, except for cephaloridine, which acts as a poor inactivator. Individual rate constants for inactivation by chelators were measured, suggesting that inactivation occurred by a mechanism involving formation of a ternary complex. PMID:15561856

  14. Skewed X-inactivation in a tumor tissue from a female patient with leiomyomatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishino, T.; Jinno, Y.; Niikawa, N.

    1995-07-17

    Leiomyomatosis (multiple leiomyomas) is characterized by benign smooth muscle cell proliferations in the esophagus, tracheobronchial tree, and female genital tract. At least 3 genetically different hereditary leiomyomatoses have been identified. Among them, an X-linked leiomyomatosis is often associated with an Alport syndrome-like nephropathy. It has remained obscure whether the leiomyomata occur monoclonally or polyclonally. The clonality of various malignancies has been examined by analysis of X-inactivation patterns in female patients heterozygous for polymorphic alleles of X-linked genes. We examined the clonality of a leiomyoma in a female patient by a polymerase chain reaction (PCR)-based X-inactivation assay. 6 refs., 1 fig.

  15. Analysis of the parental origin of de novo MECP2 mutations and X chromosome inactivation in 24 sporadic patients with Rett syndrome in China.

    PubMed

    Zhu, Xingwang; Li, Meirong; Pan, Hong; Bao, Xinhua; Zhang, Jingjing; Wu, Xiru

    2010-07-01

    Rett syndrome is an X-linked neurodevelopmental disorder that predominantly affects females. It is caused by mutations in methyl-CpG-binding protein 2 gene. Due to the sex-limited expression, it has been suggested that de novo X-linked mutations may exclusively occur in male germ cells and thus only females are affected. In this study, the authors have analyzed the parental origin of mutations and the X-chromosome inactivation status in 24 sporadic patients with identified methyl-CpG-binding protein 2 gene mutations. The results showed that 22 of 24 patients have a paternal origin. Only 2 patients have a maternal origin. Except for 2 cases which were homozygotic at the androgen receptor gene locus, of the remaining 22 cases, 16 cases have a random X-chromosome inactivation pattern; the other 6 cases have a skewed X-chromosome inactivation and they favor expression of the wild allele. The relationship between X-chromosome inactivation and phenotype may need more cases to explore.

  16. Inactivating Mutation screening of Exon 6 and Exon 10E of FSHR gene in women with Polycystic Ovarian Syndrome in Vellore population

    NASA Astrophysics Data System (ADS)

    Sekar, Nishu; Sapre, Madhura; Kale, Vaikhari; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.

    2017-11-01

    Polycystic Ovarian syndrome (PCOS) is a major cause of infertility in females of reproducing age and is typified by oligo-anovulation, hyperandrogenism, hirsutism and polycystic ovaries. FSHR gene located on chromosome 2 p21 is responsible for the normal follicular development and any deletion or mutation in the gene affects the interaction of FSH with its receptor. Thus, it becomes the candidate gene for PCOS study. Inactivating mutation in FSHR gene limits the receptor’s function by creating a complete block, changing the receptor-ligand complex or the basic hormone signal transduction.To screen the inactivating mutations in Exon 6 and Exon 10E of FSHR gene in women diagnosed with PCOS.PCR-RFLP analysis indicated that there were no inactivating mutations found in Exon 6 and Exon 10E. Variations in hormone levels were seen amongst the PCOS patients. There were no inactivating mutations found in FSHR gene of the women diagnosed with PCOS according to the Rotterdam criteria in Vellore population.

  17. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode.

    PubMed

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-04-15

    A novel PbO2/graphite felt electrode was constructed by electrochemical deposition of PbO2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8min at an applied current density of 253A/m(2). Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40min of contact time, respectively. A. salina inactivation follows first-order kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Microwave as an emerging technology for the treatment of biohazardous waste: A mini-review.

    PubMed

    Zimmermann, Klaus

    2017-05-01

    Microwave is an emerging technology to treat biohazardous waste, including material from healthcare facilities. A screen of the peer-reviewed literature shows that only limited information may be found in this area of work and, furthermore, analysis of the references reveals that sometimes not all necessary aspects for the appropriate use of the technology are considered. Very often conventional microwave technology is applied for the inactivation of pathogens, which might make sense for certain applications but, on the other hand, may lead to the misbelief that microwave systems cannot be used for the inactivation of a solid "dry" waste. However, conventional microwave units have no means to control the inactivation process, and especially moisture content. But there are a few sophisticated microwave technologies with appropriate measurements allowing a validated inactivation of biohazardous materials. These technologies are an effective tool for inactivation and some of them are commercially available. It must also be considered that the waste should be preferably inactivated either directly at the place where it is generated or biohazardous waste should be transported only in closed systems. Moreover, microwave technology presents a possibility to save energy costs in comparison to the more widely used autoclaves. This mini-review will discuss important aspects for the use of microwave technology for the treatment of biohazardous waste.

  19. Inactivation and magnetic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: observations and mechanisms.

    PubMed

    Chen, Qi; Gao, Min; Li, Jing; Shen, Fangxia; Wu, Yan; Xu, Zhenqiang; Yao, Maosheng

    2012-02-21

    Here, nonelectrosprayed nanoscale zerovalent iron (NE-nZVI), electrosprayed nZVI (E-nZVI) and preoxidized nZVI (O-nZVI) particles were applied to inactivating Bacillus subtilis, Escherichia coli as well as bacteria in various wastewater samples. In addition, magnetic separation was applied to the mixture of 0.2 mL bacterial sample and 1.8 mL E-nZVI or NE-nZVI suspensions. Bacterial concentrations and optical density of the supernatants were analyzed using culturing, optical adsorption and qPCR tests. In general, for wastewater samples the inactivations were shown to range from 1-log to 3-log. PCR-DGGE analysis indicated that no gene mutation occurred when bacteria were treated with nZVI. Using magnetic separation, significant physical removals, revealed as a function of nZVI type (NE-,E- and O-nZVI) and bacterial concentration, up to 6-log were obtained. E-nZVI and NE-nZVI were shown to react differently with B. subtilis and E. coli, although exhibiting similar inactivation rates. qPCR tests detected higher amount of DNA in the supernatants from mixing E. coli with NE-nZVI, but less for E-nZVI. However, the opposite was observed with B. subtilis. Our data together with optical adsorption analysis suggested that the inactivation and magnetic separation mainly depend on Fe(0)/Fe(3)O(4) shell compositions, the type of bacteria (aerobic and anaerobic) and their concentrations.

  20. Bovine Intestinal Bacteria Inactivate and Degrade Ceftiofur and Ceftriaxone with Multiple β-Lactamases▿

    PubMed Central

    Wagner, R. Doug; Johnson, Shemedia J.; Cerniglia, Carl E.; Erickson, Bruce D.

    2011-01-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle. PMID:21876048

  1. Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J; Cerniglia, Carl E; Erickson, Bruce D

    2011-11-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle.

  2. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma.

    PubMed

    Elbelt, Ulf; Trovato, Alessia; Kloth, Michael; Gentz, Enno; Finke, Reinhard; Spranger, Joachim; Galas, David; Weber, Susanne; Wolf, Cristina; König, Katharina; Arlt, Wiebke; Büttner, Reinhard; May, Patrick; Allolio, Bruno; Schneider, Jochen G

    2015-01-01

    Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing's syndrome, which may present in the context of different familial multitumor syndromes. Heterozygous inactivating germline mutations of armadillo repeat containing 5 (ARMC5) have very recently been described as cause for sporadic PMAH. Whether this genetic condition also causes familial PMAH in association with other neoplasias is unclear. The aim of the present study was to delineate the molecular cause in a large family with PMAH and other neoplasias. Whole-genome sequencing and comprehensive clinical and biochemical phenotyping was performed in members of a PMAH affected family. Nodules derived from adrenal surgery and pancreatic and meningeal tumor tissue were analyzed for accompanying somatic mutations in the identified target genes. PMAH presenting either as overt or subclinical Cushing's syndrome was accompanied by a heterozygous germline mutation in ARMC5 (p.A110fs*9) located on chromosome 16. Analysis of tumor tissue showed different somatic ARMC5 mutations in adrenal nodules supporting a second hit hypothesis with inactivation of a tumor suppressor gene. A damaging somatic ARMC5 mutation was also found in a concomitant meningioma (p.R502fs) but not in a pancreatic tumor, suggesting biallelic inactivation of ARMC5 as causal also for the intracranial meningioma. Our analysis further confirms inherited inactivating ARMC5 mutations as a cause of familial PMAH and suggests an additional role for the development of concomitant intracranial meningiomas.

  3. Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    PubMed Central

    2014-01-01

    Background Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. Results and discussions We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. Conclusion We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future. PMID:24495489

  4. Fast Disinfection of Escherichia coli Bacteria Using Carbon Nanotubes Interaction with Microwave Radiation

    PubMed Central

    Al-Hakami, Samer M.; Khalil, Amjad B.; Laoui, Tahar; Atieh, Muataz Ali

    2013-01-01

    Water disinfection has attracted the attention of scientists worldwide due to water scarcity. The most significant challenges are determining how to achieve proper disinfection without producing harmful byproducts obtained usually using conventional chemical disinfectants and developing new point-of-use methods for the removal and inactivation of waterborne pathogens. The removal of contaminants and reuse of the treated water would provide significant reductions in cost, time, liabilities, and labour to the industry and result in improved environmental stewardship. The present study demonstrates a new approach for the removal of Escherichia coli (E. coli) from water using as-produced and modified/functionalized carbon nanotubes (CNTs) with 1-octadecanol groups (C18) under the effect of microwave irradiation. Scanning/transmission electron microscopy, thermogravimetric analysis, and FTIR spectroscopy were used to characterise the morphological/structural and thermal properties of CNTs. The 1-octadecanol (C18) functional group was attached to the surface of CNTs via Fischer esterification. The produced CNTs were tested for their efficiency in destroying the pathogenic bacteria (E. coli) in water with and without the effect of microwave radiation. A low removal rate (3–5%) of (E. coli) bacteria was obtained when CNTs alone were used, indicating that CNTs did not cause bacterial cellular death. When combined with microwave radiation, the unmodified CNTs were able to remove up to 98% of bacteria from water, while a higher removal of bacteria (up to 100%) was achieved when CNTs-C18 was used under the same conditions. PMID:23606820

  5. Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack.

    PubMed

    Kim, Su Jin; Joo, Jeong Chan; Kim, Han Sang; Kwon, Inchan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2014-11-10

    Despite the potential use of peroxidases as industrial biocatalysts, their practical application is often impeded due to suicide inactivation by radicals generated in oxidative reactions. Using a peroxidase from Coprinus cinereus (CiP) as a model enzyme, we revealed a dominant factor for peroxidase inactivation during phenol oxidation, and we engineered radical-stable mutants by site-directed mutagenesis of an amino acid residue susceptible to modification by phenoxyl radical. Mass spectrometry analysis of inactivated CiP identified an adduct between F230 and a phenoxyl radical, and subsequently, the F230 residue was mutated to amino acids that resisted radical coupling. Of the F230 mutants, the F230A mutant showed the highest stability against radical inactivation, retaining 80% of its initial activity, while the wild-type protein was almost completely inactivated. The F230A mutant also exhibited a 16-fold higher turnover of the phenol substrate compared with the wild-type enzyme. Furthermore, the F230A mutant was stable during the oxidation of other phenolic compounds, including m-cresol and 3-methoxyphenol. No structural changes were observed by UV-vis and CD spectra of CiP after radical coupling, implying that the F230-phenol radical adduct inactivated CiP by blocking substrate access to the active site. Our novel strategy can be used to improve the stability of other peroxidases inactivated by radicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Inactivation of Mycobacteria mucogenicum in drinking water: chlorine resistance and mechanism analysis].

    PubMed

    Zheng, Qi; Chen, Chao; Zhang, Xiao-Jian; Lu, Pin-Pin; Liu, Yuan-Yuan; Chen, Yu-Qiao

    2013-02-01

    In recent years, chlorine-resistant bacteria were detected in drinking water distribution systems which threatened the drinking water safety. Our group detected one strain named Mycobacteria mucogenicum from the drinking water distribution system of a city in south China. This paper studied chlorine resistance and mechanism of Mycobacteria mucogenicum. Inactivation experiments of one strain Mycobacteria mucogenicum were conducted with free chlorine, monochloramind and chlorine dioxide. The CT values of 99.9% inactivation by free chlorine, monochloramine and chlorine dioxide were detected as (76.25 +/- 47.55)mg.min.L-1, (1396 +/-382)mg.min.L-1, (13.5 +/- 4.9) mg.min L-1. Using transmission electronmicroscopy (TEM) observed the inactivation process of Mycobacteria mucogenicum. The bacteria surface hydrophobic of Mycobacteria mucogenicum was 37.2%. Mycobacteria mucogenicum has a higher hydrophobicity than other bacteria which prevented the diffusion of chlorine into cells. Mycobacteria mucogenicum is more resistant to chorine than other bacteria.

  7. Metabolism and inactivation of gastrin releasing peptide by endopeptidase-24.11 in the dog.

    PubMed

    Bunnett, N W; Turner, A J; Debas, H T

    1989-09-01

    The purpose of this investigation was to examine the metabolism and inactivation of gastrin releasing peptide 10 (GRP10) by endopeptidase-24.11 prepared from the stomach wall. GRP10 was metabolized in vitro by gastric endopeptidase-24.11. The metabolites were purified by high-pressure liquid chromatography and identified as (1-8) GRP10 and (9-10) GRP10 by amino acid analysis, indicating hydrolysis of the His8-Leu9 bond. The intravenous administration of GRP10 to conscious dogs stimulated gastrin release, gastric acid secretion, pancreatic protein secretion and pancreatic bicarbonate secretion. Incubation of GRP10 with endopeptidase-24.11 significantly diminished the biological activity of the digests compared to control digests containing heat-inactivated enzyme. This effect was abolished by the enzyme inhibitor phosphoramidon. It is concluded that endopeptidase-24.11 from the stomach metabolizes and inactivates GRP10.

  8. Effect of Alkali Metal Cations on Slow Inactivation of Cardiac Na+ Channels

    PubMed Central

    Townsend, Claire; Horn, Richard

    1997-01-01

    Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate. PMID:9234168

  9. Effects of simulated space radiation on immunoassay components for life-detection experiments in planetary exploration missions.

    PubMed

    Derveni, Mariliza; Hands, Alex; Allen, Marjorie; Sims, Mark R; Cullen, David C

    2012-08-01

    The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument.

  10. Theoretical Analysis of the Influence of Process Parameters on Pathogen Transport and Fate in a Recreational Beach

    NASA Astrophysics Data System (ADS)

    Liu, L.; Fu, X.

    2010-12-01

    The US has very long shorelines (95,471 miles) contributing remarkable yearly revenue to the country by providing numerous recreational beaches. The beaches of both inland lakes and marine regions must be closed when the level of waterborne pathogens indicated by fecal indicator bacteria (FIB) including total coliform (TC), fecal coli form (FC, or Escherichia coli, E. coli) and Enterococcus exceed microbial water quality standards. Beach closures are of mounting concern to beach managers and the public due to the increasing risk to human health from waterborne pathogens. Monitoring FIB with laboratory analysis usually takes at least 18 hours during which beach goers may have been unintentionally exposed to the contaminated water. Therefore a water quality model to quickly and precisely forecast FIB has been a very effective tool for beach management to help beach managers in making decisions if beaches are safe enough to open to the public. The fate and transport of pathogens in the surf-zone of a beach area is a complex process involving various factors of hydrodynamics, hydrology, chemistry, microbiology. These factors including dispersion coefficient, wind velocity, particle settling velocity, fraction of bacteria attached, solar insolation, discharges to the beach, geometry of the beach, etc, are the essential components for a mechanistic model to describe the inactivation of FIB. To better understand the importance of these factors and their roles in impacting inactivation, transport and removal of FIB is extremely important to enhance the effectiveness and preciseness of a predictive model. The aim of this paper is to report the sensitivity analysis results of these factors in the surf zone of a creational beach using a verified water quality model system. The relative importance of these parameters is being ranked. For instance, the current sensitivity analysis shows that sunlight insolation has greater impact on pathogen inactivation than water temperature and settling velocity (figure 1). The analysis results and conclusion may provide indication for general beach management and further inactivation investigation of pathogens. Figure 1: Relative contributions of settling and solar insolation to the overall inactivation of E. coli at the Mt. Baldy Beach (Liu et al. 2006)

  11. Significance of the evolutionary α1,3-galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys.

    PubMed

    Galili, Uri

    2015-01-01

    The α1,3-galactosyltransferase (α1,3GT or GGTA1) gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The α1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the α1,3GT enzyme that synthesizes a carbohydrate antigen called "α-gal epitope." The α-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The α1,3GT gene was inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack α-gal epitopes and naturally produce an antibody called the "anti-Gal antibody" which binds specifically to α-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the α1,3GT gene in ancestral Old World primates could have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the α-gal epitope. Once the α-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. This assumption is supported by the fossil record demonstrating an almost complete extinction of apes in the late Miocene and failure of Old World monkeys to radiate into multiple species before that period. A present outcome of this evolutionary event is the anti-Gal-mediated rejection of mammalian xenografts expressing α-gal epitopes in humans, apes, and Old World monkeys.

  12. Stimulation of phagocytosis by sulforaphane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu; Fahey, Jed W., E-mail: jfahey@jhmi.edu; Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatorymore » and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.« less

  13. PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1.

    PubMed

    Gont, Alexander; Hanson, Jennifer E L; Lavictoire, Sylvie J; Parolin, Doris A; Daneshmand, Manijeh; Restall, Ian J; Soucie, Mathieu; Nicholas, Garth; Woulfe, John; Kassam, Amin; Da Silva, Vasco F; Lorimer, Ian A J

    2013-08-01

    Glioblastoma multiforme is an aggressive and incurable type of brain tumor. A subset of undifferentiated glioblastoma cells, known as glioblastoma tumor initiating cells (GTICs), has an essential role in the malignancy of this disease and also appears to mediate resistance to radiation therapy and chemotherapy. GTICs retain the ability to differentiate into cells with reduced malignant potential, but the signaling pathways controlling differentiation are not fully understood at this time. PTEN loss is a very common in glioblastoma multiforme and leads to aberrant activation of the phosphoinositide 3-kinase pathway. Increased signalling through this pathway leads to activation of multiple protein kinases, including atypical protein kinase C. In Drosophila, active atypical protein kinase C has been shown to promote the self-renewal of neuroblasts, inhibiting their differentiation along a neuronal lineage. This effect is mediated by atypical protein kinase c-mediated phosphorylation and inactivation of Lgl, a protein that was first characterized as a tumour suppressor in Drosophila. The effects of the atypical protein kinase C/Lgl pathway on the differentiation status of GTICs, and its potential link to PTEN loss, have not been assessed previously. Here we show that PTEN loss leads to the phosphorylation and inactivation of Lgl by atypical protein kinase C in glioblastoma cells. Re-expression of PTEN in GTICs promoted their differentiation along a neuronal lineage. This effect was also seen when atypical protein kinase C was knocked down using RNA interference, and when a non-phosphorylatable, constitutively active form of Lgl was expressed in GTICs. Thus PTEN loss, acting via atypical protein kinase C activation and Lgl inactivation, helps to maintain GTICs in an undifferentiated state.

  14. On the factors influencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen.

    PubMed

    Manjón, Francisco; Villén, Laura; García-Fresnadillo, David; Orellana, Guillermo

    2008-01-01

    Two solar reactors based on compound parabolic collectors (CPCs) were optimized for water disinfection by photosensitized singlet oxygen (1O2) production in the heterogeneous phase. Sensitizing materials containing Ru(II) complexes immobilized on porous silicone were produced, photochemically characterized, and successfully tested for the inactivation of up to 10(4) CFU mL(-1) of waterborne Escherichia coli (gram-negative) or Enterococcus faecalis (gram-positive) bacteria. The main factors determining the performance of the solar reactors are the type of photosensitizing material, the sensitizer loading, the CPC collector geometry (fin- vs coaxial-type), the fluid rheology, and the balance between concurrent photothermal--photolytic and 1O2 effects on the microorganisms' inactivation. In this way, at the 40 degrees N latitude of Spain, water can be disinfected on a sunny day (0.6-0.8 MJ m(-2) L(-1) accumulated solar radiation dose in the 360-700 nm range, typically 5-6 h of sunlight) with a fin-type reactor containing 0.6 m2 of photosensitizing material saturated with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (ca. 2.0 g m(-2)). The optimum rheological conditions require laminar-to-transitional water flow in both prototypes. The fin-type system showed better inactivation efficiency than the coaxial reactor due to a more important photolytic contribution. The durability of the sensitizing materials was tested and the operational lifetime of the photocatalyst is at least three months without any reduction in the bacteria inactivation efficiency. Solar water disinfection with 1O2-generating films is demonstrated to be an effective technique for use in isolated regions of developing countries with high yearly average sunshine.

  15. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese.

    PubMed

    Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2016-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm(2), respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm(2), and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm(2). Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm(2) for all three pathogens, with negligible generation of injured cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Controlled initiation of chromosomal replication in Escherichia coli requires functional Hda protein.

    PubMed

    Camara, Johanna Eltz; Skarstad, Kirsten; Crooke, Elliott

    2003-05-01

    Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.

  17. Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments.

    PubMed

    Zimmermann, Morgana; Longhi, Daniel A; Schaffner, Donald W; Aragão, Gláucia M F

    2014-05-01

    The knowledge and understanding of Bacillus coagulans inactivation during a thermal treatment in tomato pulp, as well as the influence of temperature variation during thermal processes are essential for design, calculation, and optimization of the process. The aims of this work were to predict B. coagulans spores inactivation in tomato pulp under varying time-temperature profiles with Gompertz-inspired inactivation model and to validate the model's predictions by comparing the predicted values with experimental data. B. coagulans spores in pH 4.3 tomato pulp at 4 °Brix were sealed in capillary glass tubes and heated in thermostatically controlled circulating oil baths. Seven different nonisothermal profiles in the range from 95 to 105 °C were studied. Predicted inactivation kinetics showed similar behavior to experimentally observed inactivation curves when the samples were exposed to temperatures in the upper range of this study (99 to 105 °C). Profiles that resulted in less accurate predictions were those where the range of temperatures analyzed were comparatively lower (inactivation profiles starting at 95 °C). The link between fail prediction and both lower starting temperature and magnitude of the temperature shift suggests some chemical or biological mechanism at work. Statistical analysis showed that overall model predictions were acceptable, with bias factors from 0.781 to 1.012, and accuracy factors from 1.049 to 1.351, and confirm that the models used were adequate to estimate B. coagulans spores inactivation under fluctuating temperature conditions in the range from 95 to 105 °C. How can we estimate Bacillus coagulans inactivation during sudden temperature shifts in heat processing? This article provides a validated model that can be used to predict B. coagulans under changing temperature conditions. B. coagulans is a spore-forming bacillus that spoils acidified food products. The mathematical model developed here can be used to predict the spoilage risk following thermal process deviations for tomato products. © 2014 Institute of Food Technologists®

  18. Radiation processing techniques in remediation of pollutants, and the role of the IAEA in supporting capacity building in developing countries

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, S. Mohammad.; Sampa, M. H.; Safrany, A.; Sabharwal, S.; Ramamoorthy, N.

    2012-08-01

    Radiation treatment, or a combination of radiation with conventional biological-chemical-physical processes, can help in the remediation of contaminated surfaces and in combating industrial chemical effluents and air pollution. The use of ionizing radiation as a powerful tool for inactivation of microbes is a valuable option to address likely threats from biohazard contamination that could be introduced either deliberately or inadvertently into areas where the public are exposed to, as well as for treatment of volatile organic compounds and similar hazardous chemical agents is an emerging development in tackling harmful pollutants. The role of the IAEA has been crucial both in supporting the development of local capabilities as well as in fostering international cooperation due to the multidisciplinary expertise required for achieving sustainable benefits. The IAEA is implementing Coordinated Research Projects, (CRP) thematic topical reviews of issues and challenges involved, and Technical Cooperation (TC) assistance in establishing and maintaining infrastructure in the MS. This paper will give an insight into the above mentioned IAEA activities, with examples of successes achieved through CRPs, as well as challenges on the road for broader dissemination of radiation processing technology for environmental remediation.

  19. Chemical Sensitization of Clostridium botulinum Spores to Radiation in Meat1

    PubMed Central

    Krabbenhoft, K. L.; Corlett, D. A.; Anderson, A. W.; Elliker, P. R.

    1964-01-01

    Beef ground round inoculated with 1,000,000 spores of Clostridium botulinum 33-A per gram and containing various additives was exposed to gamma radiation. Spores were inactivated in samples (irradiated at 2.0, 2.5, and 3.0 Mrad) which contained sodium nitrate (1,000 ppm) plus sodium chloride (2.5%). Similar results were obtained when sodium nitrite (200 ppm) was substituted for sodium nitrate, except that there was evidence of spore survival in 1 of 120 cans irradiated at 2.0 Mrad. Spore destruction was based upon the absence of spores and mouse-lethal toxin in meat subcultures made from cans incubated at 35 C for 120 days. Spores were not destroyed when exposed to 2.5 or 3.0 Mrad in the absence of sodium nitrate, sodium nitrite, or sodium chloride. Furthermore, the use of these chemicals individually, together with radiation, was ineffective. The additives alone in the absence of radiation also did not cause spore destruction. Radiation levels of 2.0, 2.5, and 3.0 Mrad, when used with sodium chloride at 1.5 or 2.0% and sodium nitrate at 500 ppm or sodium nitrite at 100 ppm, were ineffective. PMID:14215973

  20. Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix.

    PubMed

    Park, Daseul; Shahbaz, Hafiz Muhammad; Kim, Sun-Hyoung; Lee, Mijin; Lee, Wooseong; Oh, Jong-Won; Lee, Dong-Un; Park, Jiyong

    2016-12-05

    Human norovirus (HuNoV) is the primary cause of viral gastroenteritis worldwide. Fresh blueberries are among high risk foods associated with norovirus related outbreaks. Therefore, it is important to assess intervention strategies to reduce the risk of foodborne illness. The disinfection efficiency of decontamination methods is difficult to evaluate for fruits and vegetables due to an inconsistent degree of contamination and irregular surface characteristics. The inactivation efficiency and mechanism of murine norovirus 1 (MNV-1, a surrogate for HuNoV) was studied on an experimentally prepared solidified agar matrix (SAM) to simulate blueberries using different wavelengths (A, B, C) of UV light both with and without TiO 2 photocatalysis (TP). MNV-1 was inoculated on exterior and interior of SAM and inactivation efficiencies of different treatments were investigated using a number of assays. Initial inoculum levels of MNV-1 on the SAM surface and interior were 5.2logPFU/mL. UVC with TiO 2 (UVC-TP) achieved the highest level of viral reduction for both externally inoculated and internalized MNV-1. Externally inoculated MNV-1 was reduced to non-detectable levels after UVC-TP treatment for 5min while there was still a 0.9 log viral titer after UVC alone. For internalized MNV-1, 3.2 log and 2.7 log reductions were obtained with UVC-TP and UVC alone treatments for 10min, respectively. The Weibull model was applied to describe the inactivation behavior of MNV-1, and the model showed a good fit to the data. An excellent correlation between the steady-state concentration of OH radicals ([OH] ss ) and viral inactivation was quantified using a para-chlorobenzoic acid (pCBA) probe compound, suggesting that OH radicals produced in the UV-TP reaction were the major species for MNV-1 inactivation. Transmission electron microscopy images showed that the structure of viral particles was completely disrupted with UVC-TP and UVC alone. SDS-PAGE analysis showed that the major capsid protein VP1 was degraded after UVC-TP and UVC alone. Real-time RT-qPCR analysis showed that UVC-TP and UVC alone caused a reduction in the level of viral genomic RNA. Propidium monoazide (PMA) pretreatment RT-qPCR analysis showed that UVC-TP caused damage to the viral capsid protein in addition to viral genomic RNA. UVC both with and without TiO 2 was more effective for MNV-1 inactivation than UVB and UVA. Thus, UVC-TP disinfection aimed to reduce levels of food-borne viruses can inactivate viruses present on the surface and internalized in the interior of blueberries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. γH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway.

    PubMed

    Tu, Wen-Zhi; Li, Bing; Huang, Bo; Wang, Yu; Liu, Xiao-Dan; Guan, Hua; Zhang, Shi-Meng; Tang, Yan; Rang, Wei-Qing; Zhou, Ping-Kun

    2013-11-01

    Phosphorylated H2AX is considered to be a biomarker for DNA double-strand breaks (DSB), but recent evidence suggests that γH2AX does not always indicate the presence of DSB. Here we demonstrate the bimodal dynamic of H2AX phosphorylation induced by ionizing radiation, with the second peak appearing when G2/M arrest is induced. An increased level of γH2AX occurred in mitotic cells, and this increase was attenuated by DNA-PKcs inactivation or Chk2 depletion, but not by ATM inhibition. The phosphorylation-mimic CHK2-T68D abrogated the attenuation of mitotic γH2AX induced by DNA-PKcs inactivation. Thus, the DNA-PKcs/CHK2 pathway mediates the mitotic phosphorylation of H2AX in the absence of DNA damage. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Using Limes and Synthetic Psoralens to Enhance Solar Disinfection of Water (SODIS): A Laboratory Evaluation with Norovirus, Escherichia coli, and MS2

    PubMed Central

    Harding, Alexander S.; Schwab, Kellogg J.

    2012-01-01

    We investigated the use of psoralens and limes to enhance solar disinfection of water (SODIS) using an UV lamp and natural sunlight experiments. SODIS conditions were replicated using sunlight, 2 L polyethylene terephthalate (PET) bottles, and tap water with Escherichia coli, MS2 bacteriophage, and murine norovirus (MNV). Psoralens and lime acidity both interact synergistically with UV radiation to accelerate inactivation of microbes. Escherichia coli was ablated > 6.1 logs by SODIS + Lime Slurry and 5.6 logs by SODIS + Lime Juice in 30-minute solar exposures, compared with a 1.5 log reduction with SODIS alone (N = 3; P < 0.001). MS2 was inactivated > 3.9 logs by SODIS + Lime Slurry, 1.9 logs by SODIS + Lime Juice, and 1.4 logs by SODIS in 2.5-hour solar exposures (N = 3; P < 0.05). MNV was resistant to SODIS, with < 2 log reductions after 6 hours. Efficacy of SODIS against human norovirus should be investigated further. PMID:22492137

  3. Cross-Resistance of UV- or Chlorine Dioxide-Resistant Echovirus 11 to Other Disinfectants

    PubMed Central

    Zhong, Qingxia; Carratalà, Anna; Ossola, Rachele; Bachmann, Virginie; Kohn, Tamar

    2017-01-01

    The emergence of waterborne viruses with resistance to disinfection has been demonstrated in the laboratory and in the environment. Yet, the implications of such resistance for virus control remain obscure. In this study we investigate if viruses with resistance to a given disinfection method exhibit cross-resistance to other disinfectants. Chlorine dioxide (ClO2)- or UV-resistant populations of echovirus 11 were exposed to five inactivating treatments (free chlorine, ClO2, UV radiation, sunlight, and heat), and the extent of cross-resistance was determined. The ClO2-resistant population exhibited cross-resistance to free chlorine, but to none of the other inactivating treatments tested. We furthermore demonstrated that ClO2 and free chlorine act by a similar mechanism, in that they mainly inhibit the binding of echovirus 11 to its host cell. As such, viruses with host binding mechanisms that can withstand ClO2 treatment were also better able to withstand oxidation by free chlorine. Conversely, the UV-resistant population was not significantly cross-resistant to any other disinfection treatment. Overall, our results indicate that viruses with resistance to multiple disinfectants exist, but that they can be controlled by inactivating methods that operate by a distinctly different mechanism. We therefore suggest to utilize two disinfection barriers that act by different mechanisms in order to control disinfection-resistant viruses. PMID:29046672

  4. Stimulation of phagocytosis by sulforaphane.

    PubMed

    Suganuma, Hiroyuki; Fahey, Jed W; Bryan, Kelley E; Healy, Zachary R; Talalay, Paul

    2011-02-04

    Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2(-/-) mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region.

    PubMed

    Chureau, Corinne; Chantalat, Sophie; Romito, Antonio; Galvani, Angélique; Duret, Laurent; Avner, Philip; Rougeulle, Claire

    2011-02-15

    X chromosome inactivation (XCI) is an essential epigenetic process which involves several non-coding RNAs (ncRNAs), including Xist, the master regulator of X-inactivation initiation. Xist is flanked in its 5' region by a large heterochromatic hotspot, which contains several transcription units including a gene of unknown function, Ftx (five prime to Xist). In this article, we describe the characterization and functional analysis of murine Ftx. We present evidence that Ftx produces a conserved functional long ncRNA, and additionally hosts microRNAs (miR) in its introns. Strikingly, Ftx partially escapes X-inactivation and is upregulated specifically in female ES cells at the onset of X-inactivation, an expression profile which closely follows that of Xist. We generated Ftx null ES cells to address the function of this gene. In these cells, only local changes in chromatin marks are detected within the hotspot, indicating that Ftx is not involved in the global maintenance of the heterochromatic structure of this region. The Ftx mutation, however, results in widespread alteration of transcript levels within the X-inactivation center (Xic) and particularly important decreases in Xist RNA levels, which were correlated with increased DNA methylation at the Xist CpG island. Altogether our results indicate that Ftx is a positive regulator of Xist and lead us to propose that Ftx is a novel ncRNA involved in XCI.

  6. Parameter and observation importance in modelling virus transport in saturated porous media - Investigations in a homogenous system

    USGS Publications Warehouse

    Barth, Gilbert R.; Hill, M.C.

    2005-01-01

    This paper evaluates the importance of seven types of parameters to virus transport: hydraulic conductivity, porosity, dispersivity, sorption rate and distribution coefficient (representing physical-chemical filtration), and in-solution and adsorbed inactivation (representing virus inactivation). The first three parameters relate to subsurface transport in general while the last four, the sorption rate, distribution coefficient, and in-solution and adsorbed inactivation rates, represent the interaction of viruses with the porous medium and their ability to persist. The importance of four types of observations to estimate the virus-transport parameters are evaluated: hydraulic heads, flow, temporal moments of conservative-transport concentrations, and virus concentrations. The evaluations are conducted using one- and two-dimensional homogeneous simulations, designed from published field experiments, and recently developed sensitivity-analysis methods. Sensitivity to the transport-simulation time-step size is used to evaluate the importance of numerical solution difficulties. Results suggest that hydraulic conductivity, porosity, and sorption are most important to virus-transport predictions. Most observation types provide substantial information about hydraulic conductivity and porosity; only virus-concentration observations provide information about sorption and inactivation. The observations are not sufficient to estimate these important parameters uniquely. Even with all observation types, there is extreme parameter correlation between porosity and hydraulic conductivity and between the sorption rate and in-solution inactivation. Parameter estimation was accomplished by fixing values of porosity and in-solution inactivation.

  7. Characterizing Bacteriophage PR772 as a Potential Surrogate for Adenovirus in Water Disinfection: A Comparative Analysis of Inactivation Kinetics and Replication Cycle Inhibition by Free Chlorine.

    PubMed

    Gall, Aimee M; Shisler, Joanna L; Mariñas, Benito J

    2016-03-01

    Elucidating mechanisms by which pathogenic waterborne viruses become inactivated by drinking water disinfectants would facilitate the development of sensors to detect infectious viruses and novel disinfection strategies to provide safe water. Using bacteriophages as surrogates for human pathogenic viruses could assist in elucidating these mechanisms; however, an appropriate viral surrogate for human adenovirus (HAdV), a medium-sized virus with a double-stranded DNA genome, needs to be identified. Here, we characterized the inactivation kinetics of bacteriophage PR772, a member of the Tectiviridae family with many similarities in structure and replication to HAdV. The inactivation of PR772 and HAdV by free chlorine had similar kinetics that could be represented with a model previously developed for HAdV type 2 (HAdV-2). We developed and tested a quantitative assay to analyze several steps in the PR772 replication cycle to determine if both viruses being inactivated at similar rates resulted from similar replication cycle events being inhibited. Like HAdV-2, we observed that PR772 inactivated by free chlorine still attached to host cells, and viral DNA synthesis and early and late gene transcription were inhibited. Consequently, free chlorine exposure inhibited a replication cycle event that was post-binding but took place prior to early gene synthesis for both PR772 and HAdV-2.

  8. Survival of Salmonella typhimurium and Escherichia coli O157:H7 in poultry manure and manure slurry at sublethal temperatures.

    PubMed

    Himathongkham, S; Riemann, H; Bahari, S; Nuanualsuwan, S; Kass, P; Cliver, D O

    2000-01-01

    Exponential inactivation was observed for Salmonella typhimurium and Escherichia coli O157:H7 in poultry manure with decimal reduction times ranging from half a day at 37 C to 1-2 wk at 4 C. There was no material difference in inactivation rates between S. typhimurium and E. coli O157:H7. Inactivation was slower in slurries made by mixing two parts of water with one part of manure; decimal reduction times (time required for 90% destruction) ranged from 1-2 days at 37 C to 6-22 wk at 4 C. Escherichia coli O157:H7 consistently exhibited slightly slower inactivation than S. typhimurium. Log decimal reduction time for both strains was a linear function of storage temperature for manure and slurries. Chemical analysis indicated that accumulation of free ammonia in poultry manure was an important factor in inactivation of the pathogens. This finding was experimentally confirmed for S. typhimurium by adding ammonia directly to peptone water or to bovine manure, which was naturally low in ammonia, and adjusting pH to achieve predetermined levels of free ammonia.

  9. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  10. Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins

    PubMed Central

    Yun, Thomas H.; Cott, Jessica E.; Tapping, Richard I.; Slauch, James M.

    2009-01-01

    The immune response to infection includes activation of the blood clotting system, leading to extravascular fibrin deposition to limit the spread of invasive microorganisms. Some bacteria have evolved mechanisms to counteract this host response. Pla, a member of the omptin family of Gram-negative bacterial proteases, promotes the invasiveness of the plague bacterium, Yersinia pestis, by activating plasminogen to plasmin to digest fibrin. We now show that the endogenous anticoagulant tissue factor pathway inhibitor (TFPI) is also highly sensitive to proteolysis by Pla and its orthologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium. Using gene deletions, we demonstrate that bacterial inactivation of TFPI requires omptin expression. TFPI inactivation is mediated by proteolysis since Western blot analysis showed that TFPI cleavage correlated with loss of anticoagulant function in clotting assays. Rates of TFPI inactivation were much higher than rates of plasminogen activation, indicating that TFPI is a better substrate for omptins. We hypothesize that TFPI has evolved sensitivity to proteolytic inactivation by bacterial omptins to potentiate procoagulant responses to bacterial infection. This may contribute to the hemostatic imbalance in disseminated intravascular coagulation and other coagulopathies accompanying severe sepsis. PMID:18988866

  11. Association of Exon 10A and 10B inactivating mutation of follicle stimulating hormone receptor gene (FSHR) and Polycystic Ovarian Syndrome in Vellore cohort

    NASA Astrophysics Data System (ADS)

    Sekar, Nishu; Kulkarni, Rucha; Ozalkar, Sharvari; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.

    2017-11-01

    Polycystic ovarian syndrome is the most common heterogenous endocrine disorder in women. Follicle stimulating hormone receptor is associated with normal development as well as maturation of follicles and triggers estrogen production in granulosa cells of the ovary. Inactivating mutation in FSHR gene correlated with reduction of ovarian function in women is due to damage to receptor function. This study aims to investigate whether inactivating mutations, in follicle stimulating hormone receptor gene is related to polycystic ovarian morphology in women with PCOS. Genomic DNA isolated from 15 subjects from Sandhya Hospital, Vellore (10 patients with PCOS and 5 healthy controls) was taken for this study. Patient data included a clinical report, hormonal levels, and ovarian morphological details. DNA isolation was followed by DNA amplification by polymerase chain reaction using Exon 10 A and Exon 10 B primers. The PCR-RFLP analysis was performed using Dde1 restriction enzyme. Here we discuss inactivating mutation found in Exon 10 of FSHR gene in patients with PCOS.The absence of inactivating mutation was observed through PCR-RFLP study on Exon 10A and Exon 10B.

  12. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp.

    PubMed

    Myasnik, M; Manasherob, R; Ben-Dov, E; Zaritsky, A; Margalith, Y; Barak, Z

    2001-08-01

    Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280--330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h.

  13. Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa

    PubMed Central

    2011-01-01

    Background Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Presentation of the hypothesis Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. Testing the Hypothesis The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming units or quantitative mRNA RT-PCR. Implications of the hypothesis The ancestral varicella-zoster virus, most probably a tropical genotype, co-migrated with man as he left Africa approximately 200,000 years ago. For this virus to have lost the selective advantage of resistance to ultra-violet radiation, the hypothesis would predict that the temperate, ultra-violet sensitive virus should have acquired another selective advantage as an evolutionary trade-off. One obvious advantage could be an increased reactivation rate as zoster to set up more rounds of chickenpox transmission. If this were so, the mechanism responsible for resistance to ultra-violet radiation might also be involved in reactivation and latency. This could then provide the first insight into a genetic correlate of the survival strategy of this virus. PMID:21513563

  14. Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Anken, Ralf H.; Lu, Jinying; Liu, Yongding

    2010-04-01

    The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.

  15. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process.

    PubMed

    Lee, O-Mi; Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun; Yu, Seungho

    2015-09-15

    Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    PubMed

    Kuipers, Gitta K; Slotman, Ben J; Reitsma-Wijker, Carola A; van Andel, Rob J; Poldervaart, Hester A; Lafleur, M Vincent M

    2004-12-21

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals which can also damage DNA. It is known that the amino acid phenylalanine is able to react with water radicals, resulting in the production of secondary phenylalanine radicals which can damage and inactivate DNA. In a previous study the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions was studied. Under anoxic irradiation conditions different amounts and types of reactive water-derived radicals are formed compared to oxic conditions and also different phenylalanine radicals are formed. Therefore, this study examines the influence of the presence of phenylalanine under anoxic conditions on the gamma-radiation-induced mutation spectrum. The results indicate that phenylalanine radicals are damaging to DNA, but less effective compared to primary water radicals. On the mutational level, in the presence of phenylalanine radicals under anoxic conditions, the amount of mutations on G:C base pairs was significantly decreased as compared to oxic conditions. Furthermore, the results of this study indicate that nucleotide excision repair is involved in repair of both inactivating and mutagenic damage induced by phenylalanine radicals under anoxic conditions.

  17. Remote monitoring of chlorophyll fluorescence in two reef corals during the 2005 bleaching event at Lee Stocking Island, Bahamas

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Warner, M.; Stabenau, E.; Hendee, J.; Lesser, M.; Jankulak, M.

    2009-03-01

    Zooxanthellae fluorescence was measured in situ, remotely, and in near real-time with a pulse amplitude modulated (PAM) fluorometer for a colony of Siderastrea siderea and Agaricia tenuifolia at Lee Stocking Island, Bahamas during the Caribbean-wide 2005 bleaching event. These colonies displayed evidence of photosystem II (PS II) inactivation coincident with thermal stress and seasonally high doses of solar radiation. Hurricane-associated declines in temperature and light appear to have facilitated the recovery of maximum quantum yield of PS II within these two colonies, although both corals responded differently to individual storms. PAM fluorometry, coupled with long-term measurement of in situ light and temperature, provides much more detail of coral photobiology on a seasonal time scale and during possible bleaching conditions than sporadic, subjective, and qualitative observations. S. siderea displayed evidence of PS II inactivation over a month prior to the issuing of a satellite-based, sea surface temperature (SST) bleaching alert by the National Oceanic and Atmospheric Administration (NOAA). In fact, recovery had already begun in S. siderea when the bleaching alert was issued. Fluorescence data for A. tenuifolia were difficult to interpret because the shaded parts of a colony were monitored and thus did not perfectly coincide with thermal stress and seasonally high doses of solar radiation as in S. siderea. These results further emphasize the limitations of solely monitoring SST (satellite or in situ) as a bleaching indicator without considering the physiological status of coral-zooxanthellae symbioses.

  18. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves.

    PubMed

    Wait, Isaac W; Blatchley, Ernest R

    2010-11-01

    The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.

  19. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate.

    PubMed

    Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl

    2017-07-29

    This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.

  20. Visualization and Modelling of the Thermal Inactivation of Bacteria in a Model Food

    PubMed Central

    Bellara, Sanjay R.; Fryer, Peter J.; McFarlane, Caroline M.; Thomas, Colin R.; Hocking, Paul M.; Mackey, Bernard M.

    1999-01-01

    A large number of incidents of food poisoning have been linked to undercooked meat products. The use of mathematical modelling to describe heat transfer within foods, combined with data describing bacterial thermal inactivation, may prove useful in developing safer food products while minimizing thermal overprocessing. To examine this approach, cylindrical agar blocks containing immobilized bacteria (Salmonella typhimurium and Brochothrix thermosphacta) were used as a model system in this study. The agar cylinders were subjected to external conduction heating by immersion in a water bath. They were then incubated, sliced open, and examined by image analysis techniques for regions of no bacterial growth. A finite-difference scheme was used to model thermal conduction and the consequent bacterial inactivation. Bacterial inactivation rates were modelled with values for the time required to reduce bacterial number by 90% (D) and the temperature increase required to reduce D by 90% taken from the literature. Model simulation results agreed well with experimental results for both bacteria, demonstrating the utility of the technique. PMID:10388708

  1. TnBP⁄Triton X-45 Treatment of Plasma for Transfusion Efficiently Inactivates Hepatitis C Virus

    PubMed Central

    Chou, Ming-Li; Burnouf, Thierry; Chang, Shun-Pang; Hung, Ting-Chun; Lin, Chun-Ching; Richardson, Christopher D.; Lin, Liang-Tzung

    2015-01-01

    Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human plasma-derived products. PMID:25658612

  2. Selection of inactivation medium for fungal spores in clinical wastes by supercritical carbon dioxide.

    PubMed

    Noman, Efaq; Norulaini Nik Ab Rahman, Nik; Al-Gheethi, Adel; Nagao, Hideyuki; Talip, Balkis A; Ab Kadir, Omar

    2018-05-21

    The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO 2 ). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO 2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO 2 .

  3. Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water.

    PubMed

    Guo, Li; Xu, Ruobing; Gou, Lu; Liu, Zhichao; Zhao, Yiming; Liu, Dingxin; Zhang, Lei; Chen, Hailan; Kong, Michael G

    2018-06-18

    Viruses are serious pathogenic contamination that severely affect the environment and human health. Cold atmospheric-pressure plasma efficiently inactivates pathogenic bacteria, however, the mechanism of virus inactivation by plasma is not fully understood. In this study, surface plasma in argon mixed with 1% air and plasma-activated water were used to treat water containing bacteriophages. Both agents efficiently inactivated bacteriophages T4, Φ174, and MS2 in a time-dependent manner. Prolonged storage had marginal effects on the anti-viral activity of plasma-activated water. DNA and protein analysis revealed that the reactive species generated by plasma damaged both nucleic acid and proteins, in consistent with the morphological examination showing that plasma treatment caused the aggregation of bacteriophages. The inactivation of bacteriophages was alleviated by the singlet oxygen scavengers, demonstrating that singlet oxygen played a primary role in this process. Our findings provide a potentially effective disinfecting strategy to combat the environmental viruses using cold atmospheric-pressure plasma and plasma-activated water. Importance Contamination with pathogenic and infectious viruses severely threaten human health and animal husbandry. Current methods for disinfection have different disadvantages, such as inconvenience and contamination of disinfection by-products (e.g. chlorine disinfection). In this study, atmospheric surface plasma in argon mixed with air and plasma-activated water were found to efficiently inactivate bacteriophages, and plasma-activated water still had strong anti-viral activity after prolonged storage. Furthermore, it was shown that bacteriophage inactivation was associated with the damage to nucleic acid and proteins by singlet oxygen. The understanding of the biological effects of plasma-based treatment is useful to inform the development of plasma into a novel disinfecting strategy with convenience and no by-product. Copyright © 2018 Guo et al.

  4. Influenza Virus Inactivation for Studies of Antigenicity and Phenotypic Neuraminidase Inhibitor Resistance Profiling ▿

    PubMed Central

    Jonges, Marcel; Liu, Wai Ming; van der Vries, Erhard; Jacobi, Ronald; Pronk, Inge; Boog, Claire; Koopmans, Marion; Meijer, Adam; Soethout, Ernst

    2010-01-01

    Introduction of a new influenza virus in humans urges quick analysis of its virological and immunological characteristics to determine the impact on public health and to develop protective measures for the human population. At present, however, the necessity of executing pandemic influenza virus research under biosafety level 3 (BSL-3) high-containment conditions severely hampers timely characterization of such viruses. We tested heat, formalin, Triton X-100, and β-propiolactone treatments for their potencies in inactivating human influenza A(H3N2) and avian A(H7N3) viruses, as well as seasonal and pandemic A(H1N1) virus isolates, while allowing the specimens to retain their virological and immunological properties. Successful heat inactivation coincided with the loss of hemagglutinin (HA) and neuraminidase (NA) characteristics, and β-propiolactone inactivation reduced the hemagglutination titer and NA activity of the human influenza virus 10-fold or more. Although Triton X-100 treatment resulted in inconsistent HA activity, the NA activities in culture supernatants were enhanced consistently. Nonetheless, formalin treatment permitted the best retention of HA and NA properties. Triton X-100 treatment proved to be the easiest-to-use influenza virus inactivation protocol for application in combination with phenotypic NA inhibitor susceptibility assays, while formalin treatment preserved B-cell and T-cell epitope antigenicity, allowing the detection of both humoral and cellular immune responses. In conclusion, we demonstrated successful influenza virus characterization using formalin- and Triton X-100-inactivated virus samples. Application of these inactivation protocols limits work under BSL-3 conditions to virus culture, thus enabling more timely determination of public health impact and development of protective measures when a new influenza virus, e.g., pandemic A(H1N1)v virus, is introduced in humans. PMID:20089763

  5. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.

    PubMed

    Holmqvist, Mats H; Cao, Jie; Hernandez-Pineda, Ricardo; Jacobson, Michael D; Carroll, Karen I; Sung, M Amy; Betty, Maria; Ge, Pei; Gilbride, Kevin J; Brown, Melissa E; Jurman, Mark E; Lawson, Deborah; Silos-Santiago, Inmaculada; Xie, Yu; Covarrubias, Manuel; Rhodes, Kenneth J; Distefano, Peter S; An, W Frank

    2002-01-22

    The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular K-channel inactivation suppressor (KIS) domain located in the first 34 aa of an additional KChIP (KChIP4a). Coexpression of KChIP4a with Kv4 alpha-subunits abolishes fast inactivation of the Kv4 currents in various cell types, including cerebellar granule neurons. Kinetic analysis shows that the KIS domain delays Kv4.3 opening, but once the channel is open, it disrupts rapid inactivation and slows Kv4.3 closing. Accordingly, KChIP4a increases the open probability of single Kv4.3 channels. The net effects of KChIP4a and KChIP1-3 on Kv4 gating are quite different. When both KChIP4a and KChIP1 are present, the Kv4.3 current shows mixed inactivation profiles dependent on KChIP4a/KChIP1 ratios. The KIS domain effectively converts the A-type Kv4 current to a slowly inactivating delayed rectifier-type potassium current. This conversion is opposite to that mediated by the Kv1-specific "ball" domain of the Kv beta 1 subunit. Together, these results demonstrate that specific auxiliary subunits with distinct functions actively modulate gating of potassium channels that govern membrane excitability.

  6. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  7. Prevention of abortion in cattle following vaccination against bovine herpesvirus 1: A meta-analysis.

    PubMed

    Newcomer, Benjamin W; Cofield, L Grady; Walz, Paul H; Givens, M Daniel

    2017-03-01

    Bovine herpesvirus 1 is ubiquitous in cattle populations and is the cause of several clinical syndromes including respiratory disease, genital disease, and late-term abortions. Control of the virus in many parts of the world is achieved primarily through vaccination with either inactivated or modified-live viral vaccines. The purpose of this meta-analysis was to determine the cumulative efficacy of BoHV-1 vaccination to prevent abortion in pregnant cattle. Germane articles for inclusion in the analysis were identified through four online scientific databases and the examination of three review and ten primary study article reference lists. A total of 15 studies in 10 manuscripts involving over 7500 animals were included in the meta-analysis. Risk ratio effect sizes were used in random effects, weighted meta-analyses to assess the impact of vaccination. Subgroup analyses were performed based on type of vaccine, MLV or inactivated, and the type of disease challenge, experimentally induced compared to field studies. A 60% decrease in abortion risk in vaccinated cattle was demonstrated. The greatest decrease in abortion risk was seen in studies with intentional viral challenge although vaccination also decreased abortion risk in field studies. Both inactivated and modified-live viral vaccines decreased abortion risk. This meta-analysis provides quantitative support for the benefit of bovine herpesvirus 1 vaccination in the prevention of abortion. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions.

    PubMed

    Meisel, Eshcar; Tobelaim, William; Dvir, Meidan; Haitin, Yoni; Peretz, Asher; Attali, Bernard

    2018-01-01

    Inactivation is an intrinsic property of numerous voltage-gated K + (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.

  9. Severe XIST hypomethylation clearly distinguishes (SRY+) 46,XX-maleness from Klinefelter syndrome.

    PubMed

    Poplinski, Andreas; Wieacker, Peter; Kliesch, Sabine; Gromoll, Jörg

    2010-01-01

    46,XX-maleness affects 1 in 20 000 live male newborns resulting in infertility and hypergonadotrophic hypogonadism. Although the phenotypes of XX-males have been well described, the molecular nature of the X chromosomes remains elusive. We assessed the X inactivation status by DNA methylation analysis of four informative loci and compared those to Klinefelter syndrome (KS) and Turner syndrome. Patient cohort consisted of ten sex-determining region of the Y (SRY+) XX-males, two (SRY-) XX-males, ten 47,XXY Klinefelter men, six 45,X Turner females and ten male and female control individuals each. Methylation analysis was carried out by bisulphite sequencing of DNA from peripheral blood lymphocytes analysing X-inactive-specific transcript (XIST), phosphoglycerate kinase 1 (PGK1), ferritin, heavy peptide-like 17 (FTHL17) and short stature homeobox (SHOX). XIST methylation was 18% in (SRY+) XX-males, and thus they were severely hypomethylated compared to (SRY-) XX-males (48%; P<0.01), Klinefelter men (44%; P<0.01) and female controls (47%; P<0.01). Turner females and male controls displayed a high degree of XIST methylation of 98 and 94% respectively. Methylation of PGK1, undergoing X inactivation, was not significantly reduced in (SRY+) XX-males compared to female controls in spite of severe XIST hypomethylation (51 vs 69%; P>0.05). FTHL17, escaping X inactivation, but undergoing cell-type-specific inactivation was similarly methylated in XX-males (89%), KS patients (87%) and female controls (90%). SHOX, an X inactivation escapee located in the pseudoautosomal region, displays similarly low degrees of methylation for XX-males (7%), KS patients (7%) and female controls (9%). XIST hypomethylation clearly distinguishes (SRY+) XX-males from Klinefelter men. It does not, however, impair appropriate epigenetic regulation of representative X-linked loci.

  10. Adjuvant effects mediated by the carbohydrate recognition domain of Agrocybe aegerita lectin interacting with avian influenza H9N2 viral surface glycosylated proteins.

    PubMed

    Ma, Li-Bao; Xu, Bao-Yang; Huang, Min; Sun, Lv-Hui; Yang, Qing; Chen, Yi-Jie; Yin, Ya-Lin; He, Qi-Gai; Sun, Hui

    To evaluate the potential adjuvant effect of Agrocybe aegerita lectin (AAL), which was isolated from mushroom, against a virulent H 9 N 2 strain in vivo and in vitro. In trial 1, 50 BALB/c male mice (8 weeks old) were divided into five groups (n=10 each group) which received a subcutaneous injection of inactivated H 9 N 2 (control), inactivated H 9 N 2 +0.2% (w/w) alum, inactivated H 9 N 2 +0.5 mg recombinant AAL/kg body weight (BW), inactivated H 9 N 2 +1.0 mg AAL/kg BW, and inactivated H 9 N 2 +2.5 mg AAL/kg BW, respectively, four times at 7-d intervals. In trial 2, 30 BALB/c male mice (8 weeks old) were divided into three groups (n=10 each group) which received a subcutaneous injection of inactivated H 9 N 2 (control), inactivated H 9 N 2 +2.5 mg recombinant wild-type AAL (AAL-wt)/kg BW, and inactivated H 9 N 2 +2.5 mg carbohydrate recognition domain (CRD) mutant AAL (AAL-mutR63H)/kg BW, respectively, four times at 7-d intervals. Seven days after the final immunization, serum samples were collected from each group for analysis. Hemagglutination assay, immunogold electron microscope, lectin blotting, and co-immunoprecipitation were used to study the interaction between AAL and H 9 N 2 in vitro. IgG, IgG1, and IgG2a antibody levels were significantly increased in the sera of mice co-immunized with inactivated H 9 N 2 and AAL when compared to mice immunized with inactivated H 9 N 2 alone. No significant increase of the IgG antibody level was detected in the sera of the mice co-immunized with inactivated H 9 N 2 and AAL-mutR63H. Moreover, AAL-wt, but not mutant AAL-mutR63H, adhered to the surface of H 9 N 2 virus. The interaction between AAL and the H 9 N 2 virus was further demonstrated to be associated with the CRD of AAL binding to the surface glycosylated proteins, hemagglutinin and neuraminidase. Our findings indicated that AAL could be a safe and effective adjuvant capable of boosting humoral immunity against H 9 N 2 viruses in mice through its interaction with the viral surface glycosylated proteins, hemagglutinin and neuraminidase.

  11. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores

    PubMed Central

    2013-01-01

    Background Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs’ antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores. Results and discussion The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease). Conclusions The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis. PMID:23965258

  12. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2014-09-15

    The photo-disinfection of water from two different wells (W1, pH: 4.6-5.1 ± 0.02) and (W2 pH: 5.6-5.7 ± 0.02) was carried out during the rainy season at Ouagadougou-Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO3(-) concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO3(-) concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and ammonia. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dynamic Perturbation of the Active Site Determines Reversible Thermal Inactivation in Glycoside Hydrolase Family 12.

    PubMed

    Jiang, Xukai; Li, Wen; Chen, Guanjun; Wang, Lushan

    2017-02-27

    The temperature dependence of enzyme catalysis is highly debated. Specifically, how high temperatures induce enzyme inactivation has broad implications for both fundamental and applied science. Here, we explored the mechanism of the reversible thermal inactivation in glycoside hydrolase family 12 (GH12) using comparative molecular dynamics simulations. First, we investigated the distribution of structural flexibility over the enzyme and found that the active site was the general thermal-sensitive region in GH12 cellulases. The dynamic perturbation of the active site before enzyme denaturation was explored through principal-component analysis, which indicated that variations in the collective motion and conformational ensemble of the active site may precisely correspond to enzyme transition from its active form to the inactive form. Furthermore, the degree of dynamic perturbation of the active site was found to be negatively correlated with the melting temperatures of GH12 enzymes, further proving the importance of the dynamic stability of the active site. Additionally, analysis of the residue-interaction network revealed that the active site in thermophilic enzyme was capable of forming additional contacts with other amino acids than those observed in the mesophilic enzyme. These interactions are likely the key mechanisms underlying the differences in rigidity of the active site. These findings provide further biophysical insights into the reversible thermal inactivation of enzymes and potential applications in future protein engineering.

  14. Ultraviolet-Induced Decrease in Integration of Haemophilus influenzae Transforming Deoxyribonucleic Acid in Sensitive and Resistant Cells

    PubMed Central

    Muhammed, Amir; Setlow, Jane K.

    1970-01-01

    The decrease in integration of transforming deoxyribonucleic acid (DNA) caused by ultraviolet irradiation of the DNA was found to be independent of the presence or absence of excision repair in the recipient cell. Much of the ultraviolet-induced inhibition of integration resulted from the presence in the transforming DNA of pyrimidine dimers, as judged by the photoreactivability of the inhibition with yeast photoreactivating enzyme. The inhibition of integration made only a small contribution to the inactivation of transforming ability of the DNA by ultraviolet radiation. PMID:5308769

  15. Mechanism of lethal action of 2,450-MHz radiation on microorganisms.

    PubMed Central

    Vela, G R; Wu, J F

    1979-01-01

    Various bacteria, actinomycetes, fungi, and bacteriophages were exposed to microwaves of 2,450 +/- 20 MHz in the presence and in the absence of water. It was found that microorganisms were inactivated only when in the presence of water and that dry or lyophilized organisms were not affected even by extended exposures. The data presented here prove that microorganisms are killed by "thermal effect" only and that, most likely, there is no "nonthermal effect"; cell constituents other than water do not absorb sufficient energy to kill microbial cells. PMID:453828

  16. Liquid Water Restricts Habitability in Extreme Deserts.

    PubMed

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  17. The ultraviolet environment of Mars: biological implications past, present, and future.

    PubMed

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  18. The ultraviolet environment of Mars: biological implications past, present, and future

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  19. Influence of gamma radiation onto polymeric matrix with papain

    NASA Astrophysics Data System (ADS)

    Zulli, Gislaine; Lopes, Patrícia Santos; Velasco, Maria Valéria Robles; Alcântara, Mara Tânia Silva; Rogero, Sizue Ota; Lugao, Ademar Benévolo; Mathor, Monica Beatriz

    2010-03-01

    Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed; the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied.

  20. Application of carrier testing to genetic counseling for X-linked agammaglobulinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.C.; Nachtman, R.G.; Belmont, J.W.

    Bruton X-linked agammaglobulinemia (XLA) is a phenotypically recessive genetic disorder of B lymphocyte development. Female carriers of XLA, although asymptomatic, have a characteristic B cell lineage-specific skewing of the pattern of X inactivation. Skewing apparently results from defective growth and maturation of B cell precursors bearing a mutant active X chromosome. In this study, carrier status was tested in 58 women from 22 families referred with a history of agammaglobulinemia. Primary carrier analysis to examine patterns of X inactivation in CD19[sup +] peripheral blood cells (B lymphocytes) was conducted using quantitative PCR at the androgen-receptor locus. Obligate carriers of XLAmore » demonstrated >95% skewing of X inactivation in peripheral blood CD19[sup +] cells but not in CD19[sup [minus

  1. Mold and aflatoxin reduction by gamma radiation of packed hot peppers and their evolution during storage.

    PubMed

    Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Ariño, Agustin

    2012-08-01

    The effect of gamma radiation on moisture content, total mold counts, Aspergillus counts, and aflatoxins of three hot pepper hybrids (Sky Red, Maha, and Wonder King) was investigated. Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and stored at 25°C for 90 days. Gamma radiation proved to be effective in reducing total mold and Aspergillus counts in a dose-dependent relationship. Total mold counts in irradiated peppers immediately after treatments were significantly lowered compared with those in nonirradiated samples, achieving 90 and 99% reduction at 2- and 4-kGy doses, respectively. Aspergillus counts were significantly reduced, by 93 and 97%, immediately after irradiation at doses of 2 and 4 kGy, respectively. A radiation dose of 6 kGy completely eliminated the population of total molds and Aspergillus fungi. The evolution of total molds in control and irradiated samples indicated no further fungal proliferation during 3 months of storage at 25°C. Aflatoxin levels were slightly affected by radiation doses of 2 and 4 kGy and showed a nonsignificant reduction of 6% at the highest radiation dose of 6 kGy. The distinct effectiveness of gamma radiation in molds and aflatoxins can be explained by the target theory of food irradiation, which states that the likelihood of a microorganism or a molecule being inactivated by gamma rays increases as its size increases.

  2. Inactivation of West Nile Virus in Serum with Heat, Ionic Detergent, and Reducing Agent for Proteomic Applications (Open Access Publisher’s Version)

    DTIC Science & Technology

    2017-05-19

    LightCycler® 96 desktop software. Positive and negative samples were identified using the “ Qualitative Detection” analysis function using the default...Institute of Infectious Diseases, Fort Detrick, MD 21702, United States A R T I C L E I N F O Keywords: West Nile virus Virus inactivation Sample buffer... samples using a commercially available SDS- PAGE sample buffer for proteomic studies. Using this method, we demonstrate its utility by identification

  3. Predominance of null mutations in ataxia-telangiectasia.

    PubMed

    Gilad, S; Khosravi, R; Shkedy, D; Uziel, T; Ziv, Y; Savitsky, K; Rotman, G; Smith, S; Chessa, L; Jorgensen, T J; Harnik, R; Frydman, M; Sanal, O; Portnoi, S; Goldwicz, Z; Jaspers, N G; Gatti, R A; Lenoir, G; Lavin, M F; Tatsumi, K; Wegner, R D; Shiloh, Y; Bar-Shira, A

    1996-04-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity and cancer predisposition. The responsible gene, ATM, was recently identified by positional cloning and found to encode a putative 350 kDa protein with a Pl 3-kinase-like domain, presumably involved in mediating cell cycle arrest in response to radiation-induced DNA damage. The nature and location of A-T mutations should provide insight into the function of the ATM protein and the molecular basis of this pleiotropic disease. Of 44 A-T mutations identified by us to date, 39 (89%) are expected to inactivate the ATM protein by truncating it, by abolishing correct initiation or termination of translation, or by deleting large segments. Additional mutations are four smaller in-frame deletions and insertions, and one substitution of a highly conserved amino acid at the Pl 3-kinase domain. The emerging profile of mutations causing A-T is thus dominated by those expected to completely inactivate the ATM protein. ATM mutations with milder effects may result in phenotypes related, but not identical, to A-T.

  4. Blue light induced free radicals from riboflavin on E. coli DNA damage.

    PubMed

    Liang, Ji-Yuan; Yuann, Jeu-Ming P; Cheng, Chien-Wei; Jian, Hong-Lin; Lin, Chin-Chang; Chen, Liang-Yu

    2013-02-05

    The micronutrients in many cellular processes, riboflavin (vitamin B(2)), FMN, and FAD are photo-sensitive to UV and visible light to generate reactive oxygen species (ROS). The riboflavin photochemical treatment with UV light has been applied for the inactivation of microorganisms to serve as an effective and safe technology. Ultra-violet or high-intensity radiation is, however, considered as a highly risky practice. This study was working on the application of visible LED lights to riboflavin photochemical reactions to development an effective antimicrobial treatment. The photosensitization of bacterial genome with riboflavin was investigated in vitro and in vivo by light quality and irradiation dosage. The riboflavin photochemical treatment with blue LED light was proved to be able to inactivate E. coli by damaging nucleic acids with ROS generated. Riboflavin is capable of intercalating between the bases of bacterial DNA or RNA and absorbs lights in the visible regions. LED light illumination could be a more accessible and safe practice for riboflavin photochemical treatments to achieve hygienic requirements in vitro. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1.

    PubMed

    Boddy, M N; Lopez-Girona, A; Shanahan, P; Interthal, H; Heyer, W D; Russell, P

    2000-12-01

    Cds1, a serine/threonine kinase, enforces the S-M checkpoint in the fission yeast Schizosaccharomyces pombe. Cds1 is required for survival of replicational stress caused by agents that stall replication forks, but how Cds1 performs these functions is largely unknown. Here we report that the forkhead-associated-1 (FHA1) protein-docking domain of Cds1 interacts with Mus81, an evolutionarily conserved damage tolerance protein. Mus81 has an endonuclease homology domain found in the XPF nucleotide excision repair protein. Inactivation of mus81 reveals a unique spectrum of phenotypes. Mus81 enables survival of deoxynucleotide triphosphate starvation, UV radiation, and DNA polymerase impairment. Mus81 is essential in the absence of Bloom's syndrome Rqh1 helicase and is required for productive meiosis. Genetic epistasis studies suggest that Mus81 works with recombination enzymes to properly replicate damaged DNA. Inactivation of Mus81 triggers a checkpoint-dependent delay of mitosis. We propose that Mus81 is involved in the recruitment of Cds1 to aberrant DNA structures where Cds1 modulates the activity of damage tolerance enzymes.

  6. Decontamination Efficiency of a DBD Lamp Containing an UV-C Emitting Phosphor.

    PubMed

    Caillier, Bruno; Caiut, José Maurício Almeida; Muja, Cristina; Demoucron, Julien; Mauricot, Robert; Dexpert-Ghys, Jeanette; Guillot, Philippe

    2015-01-01

    Among different physical and chemical agents, the UV radiation appears to be an important route for inactivation of resistant microorganisms. The present study introduces a new mercury-free Dielectric Barrier Discharge (DBD) flat lamp, where the biocide action comes from the UV emission produced by rare-earth phosphor obtained by spray pyrolysis, following plasma excitation. In this study, the emission intensity of the prototype lamp is tuned by controlling gas pressure and electrical power, 500 mbar and 15 W, corresponding to optimal conditions. In order to characterize the prototype lamp, the energetic output, temperature increase following lamp ignition and ozone production of the source were measured. The bactericidal experiments carried out showed excellent results for several gram-positive and gram-negative bacterial strains, thus demonstrating the high decontamination efficiency of the DBD flat lamp. Finally, the study of the external morphology of the microorganisms after the exposure to the UV emission suggested that other mechanisms than the bacterial DNA damage could be involved in the inactivation process. © 2015 The American Society of Photobiology.

  7. Conventional and advanced oxidation processes used in disinfection of treated urban wastewater.

    PubMed

    Rodríguez-Chueca, J; Ormad, M P; Mosteo, R; Sarasa, J; Ovelleiro, J L

    2015-03-01

    The purpose of the current study is to compare the inactivation of Escherichia coli in wastewater effluents using conventional treatments (chlorination) and advanced oxidation processes (AOPs) such as UV irradiation, hydrogen peroxide (H2O2)/solar irradiation, and photo-Fenton processes. In addition, an analysis of the operational costs of each treatment is carried out taking into account the optimal dosages of chemicals used. Total inactivation of bacteria (7.5 log) was achieved by means of chlorination and UV irradiation. However, bacterial regrowth was observed 6 hours after the completion of UV treatment, obtaining a disinfection value around 3 to 4 log. On the other hand, the combination H2O2/solar irradiation achieved a maximum inactivation of E. coli of 3.30 ± 0.35 log. The photo-Fenton reaction achieved a level of inactivation of 4.87 ± 0.10 log. The order of disinfection, taking into account the reagent/cost ratio of each treatment, is as follows: chlorination > UV irradiation > photo-Fenton > H2O2/sunlight irradiation.

  8. Variable X-chromosome inactivation and enlargement of pericentral glutamine synthetase zones in the liver of heterozygous females with OTC deficiency.

    PubMed

    Musalkova, Dita; Sticova, Eva; Reboun, Martin; Sokolova, Jitka; Krijt, Jakub; Honzikova, Jitka; Gurka, Jiri; Neroldova, Magdalena; Honzik, Tomas; Zeman, Jiri; Jirsa, Milan; Dvorakova, Lenka; Hrebicek, Martin

    2018-06-01

    Ornithine transcarbamylase (OTC) deficiency is an X-linked disorder that causes recurrent and life-threatening episodes of hyperammonemia. The clinical picture in heterozygous females is highly diverse and derives from the genotype and the degree of inactivation of the mutated X chromosome in hepatocytes. Here, we describe molecular genetic, biochemical, and histopathological findings in the livers explanted from two female patients with late-onset OTC deficiency. Analysis of X-inactivation ratios by DNA methylation-based assays showed remarkable intra-organ variation ranging from 46:54 to 82:18 (average 70:30, n = 37), in favor of the active X chromosome carrying the mutation c.583G>C (p.G195R), in the first patient and from 75:25 to 90:10 (average 82:18, n = 20) in favor of the active X chromosome carrying the splicing mutation c.663+1G>A in the second patient. The X-inactivation ratios in liver samples correlated highly with the proportions of OTC-positive hepatocytes calculated from high-resolution image analyses of the immunohistochemically detected OTC in frozen sections that was performed on total area > 5 cm 2 . X-inactivation ratios in blood in both female patients corresponded to the lower limit of the liver values. Our data indicate that the proportion of about 20-30% of hepatocytes expressing the functional OTC protein is not sufficient to maintain metabolic stability. X-inactivation ratios assessed in liver biopsies taken from heterozygous females with X-linked disorders should not be considered representative of the whole liver.

  9. Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags.

    PubMed

    Dunlop, P S M; Ciavola, M; Rizzo, L; Byrne, J A

    2011-11-01

    Solar disinfection (SODIS) of Escherichia coli suspensions in low-density polyethylene bag reactors was investigated as a low-cost disinfection method suitable for application in developing countries. The efficiency of a range of SODIS reactor configurations was examined (single skin (SS), double skin, black-backed single skin, silver-backed single skin (SBSS) and composite-backed single skin) using E. coli suspended in model and real surface water. Titanium dioxide was added to the reactors to improve the efficiency of the SODIS process. The effect of turbidity was also assessed. In addition to viable counts, E. coli injury was characterised through spread-plate analysis using selective and non-selective media. The optimal reactor configuration was determined to be the SBSS bag (t(50)=9.0min) demonstrating the importance of UVA photons, as opposed to infrared in the SODIS disinfection mechanism. Complete inactivation (6.5-log) was achieved in the presence of turbidity (50NTU) using the SBSS bag within 180min simulated solar exposure. The addition of titanium dioxide (0.025gL(-1)) significantly enhanced E. coli inactivation in the SS reactor, with 6-log inactivation observed within 90min simulated solar exposure. During the early stages of both SODIS and photocatalytic disinfection, injured E. coli were detected; however, irreversible injury was caused and re-growth was not observed. Experiments under solar conditions were undertaken with total inactivation (6.5-log) observed in the SS reactor within 240min, incomplete inactivation (4-log) was observed in SODIS bottles exposed to the same solar conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Inactivation of Hippo Pathway Is Significantly Associated with Poor Prognosis in Hepatocellular Carcinoma.

    PubMed

    Sohn, Bo Hwa; Shim, Jae-Jun; Kim, Sang-Bae; Jang, Kyu Yun; Kim, Soo Mi; Kim, Ji Hoon; Hwang, Jun Eul; Jang, Hee-Jin; Lee, Hyun-Sung; Kim, Sang-Cheol; Jeong, Woojin; Kim, Sung Soo; Park, Eun Sung; Heo, Jeonghoon; Kim, Yoon Jun; Kim, Dae-Ghon; Leem, Sun-Hee; Kaseb, Ahmed; Hassan, Manal M; Cha, Minse; Chu, In-Sun; Johnson, Randy L; Park, Yun-Yong; Lee, Ju-Seog

    2016-03-01

    The Hippo pathway is a tumor suppressor in the liver. However, the clinical significance of Hippo pathway inactivation in HCC is not clearly defined. We analyzed genomic data from human and mouse tissues to determine clinical relevance of Hippo pathway inactivation in HCC. We analyzed gene expression data from Mst1/2(-/-) and Sav1(-/-) mice and identified a 610-gene expression signature reflecting Hippo pathway inactivation in the liver [silence of Hippo (SOH) signature]. By integrating gene expression data from mouse models with those from human HCC tissues, we developed a prediction model that could identify HCC patients with an inactivated Hippo pathway and used it to test its significance in HCC patients, via univariate and multivariate Cox analyses. HCC patients (National Cancer Institute cohort, n = 113) with the SOH signature had a significantly poorer prognosis than those without the SOH signature [P < 0.001 for overall survival (OS)]. The significant association of the signature with poor prognosis was further validated in the Korean (n = 100, P = 0.006 for OS) and Fudan University cohorts (n = 242, P = 0.001 for OS). On multivariate analysis, the signature was an independent predictor of recurrence-free survival (HR, 1.6; 95% confidence interval, 1.12-2.28: P = 0.008). We also demonstrated significant concordance between the SOH HCC subtype and the hepatic stem cell HCC subtype that had been identified in a previous study (P < 0.001). Inactivation of the Hippo pathway in HCC is significantly associated with poor prognosis. ©2015 American Association for Cancer Research.

  11. Metal-free virucidal effects induced by g-C3N4 under visible light irradiation: Statistical analysis and parameter optimization.

    PubMed

    Zhang, Chi; Li, Yi; Zhang, Wenlong; Wang, Peifang; Wang, Chao

    2018-03-01

    Waterborne viruses with a low infectious dose and a high pathogenic potential pose a serious risk for humans all over the world, calling for a cost-effective and environmentally-friendly inactivation method. Optimizing operational parameters during the disinfection process is a facile and efficient way to achieve the satisfactory viral inactivation efficiency. Here, the antiviral effects of a metal-free visible-light-driven graphitic carbon nitride (g-C 3 N 4 ) photocatalyst were optimized by varying operating parameters with response surface methodology (RSM). Twenty sets of viral inactivation experiments were performed by changing three operating parameters, namely light intensity, photocatalyst loading and reaction temperature, at five levels. According to the experimental data, a semi-empirical model was developed with a high accuracy (determination coefficient R 2  = 0.9908) and then applied to predict the final inactivation efficiency of MS2 (a model virus) after 180 min exposure to the photocatalyst and visible light illumination. The corresponding optimal values were found to be 199.80 mW/cm 2 , 135.40 mg/L and 24.05 °C for light intensity, photocatalyst loading and reaction temperature, respectively. Under the optimized conditions, 8 log PFU/mL of viruses could be completely inactivated by g-C 3 N 4 without regrowth within 240 min visible light irradiation. Our study provides not only an extended application of RSM in photocatalytic viral inactivation but also a green and effective method for water disinfection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.

    PubMed

    Barlow, J N; Zhang, Z; John, P; Baldwin, J E; Schofield, C J

    1997-03-25

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final step in the biosynthesis of the plant signaling molecule ethylene. It is a member of the ferrous iron dependent family of oxidases and dioxygenases and is unusual in that it displays a very short half-life under catalytic conditions, typically less than 20 min, and a requirement for CO2 as an activator. The rates of inactivation of purified, recombinant ACC oxidase from tomato under various combinations of substrates and cofactors were measured. Inactivation was relatively slow in the presence of buffer alone (t1/2 > 1 h), but fast in the presence of ferrous iron and ascorbate (t1/2 approximately 10 min). The rate of iron/ascorbate-mediated inactivation was increased by the addition of ACC, unaffected by the addition of CO2 at saturation (supplied as bicarbonate) but decreased by the addition of catalase or ACC + CO2 at saturation (supplied as bicarbonate). Iron/ascorbate-mediated inactivation was accompanied by partial proteolysis as observed by SDS-PAGE analysis. The fragmentation pattern was altered when ACC was also included, suggesting that ACC can bind to ACC oxidase in the absence of bicarbonate. N-terminal sequencing of fragments resulted in identification of an internal cleavage site which we propose is proximate to active-site bound iron. Thus, ACC oxidase inactivates via relatively slow partial unfolding of the catalytically active conformation, oxidative damage mediated via hydrogen peroxide which is catalase protectable and oxidative damage to the active site which results in partial proteolysis and is not catalase protectable.

  13. Inhibition of Clostridium difficile toxin A and B by 1,2-cyclohexanedione modification of an arginine residue.

    PubMed

    Balfanz, J; Rautenberg, P

    1989-12-29

    Toxin A (enterotoxin) and toxin B (cytotoxin) of Clostridium difficile were both inactivated by the arginine specific reagent 1,2-cyclohexanedione. Molecular stability during the inactivation process was demonstrated by SDS-PAGE analysis showing the same migration rates for modified and unmodified forms of the 230 kDa toxin A and of the 250 kDa toxin B. Cytotoxicity of both toxins as well as mouse lethality of the enterotoxin were drastically decreased as a result of the arginine modification. The reaction followed pseudo-first-order kinetics. Analysis of the data suggested that modification of a single arginine residue was sufficient to abolish the activity of both toxins.

  14. Voltage-clamp analysis of membrane currents and excitation-contraction coupling in a crustacean muscle.

    PubMed

    Weiss, T; Erxleben, C; Rathmayer, W

    2001-01-01

    A single fibre preparation from the extensor muscle of a marine isopod crustacean is described which allows the analysis of membrane currents and simultaneously recorded contractions under two-electrode voltage-clamp conditions. We show that there are three main depolarisation-gated currents, two are outward and carried by K+, the third is an inward Ca2+ current, I(Ca). Normally, the K+ currents which can be isolated by using K+ channel blockers, mask I(Ca). I(Ca) activates at potentials more positive than -40 mV, is maximal around 0 mV, and shows strong inactivation at higher depolarisation. Inactivation depends on current rather than voltage. Ba2+, Sr2+ and Mg2+ can substitute for Ca2+. Ba2+ currents are about 80% larger than Ca2+ currents and inactivate little. The properties of I(Ca) characterise it as a high threshold L-type current. The outward current consists primarily of a fast, transient A current, I(K(A)) and a maintained, delayed rectifier current, I(K(V)). In some fibres, a small Ca2+-dependent K+ current is also present. I(K(A)) activates fast at depolarisation above -45 mV, shows pronounced inactivation and is almost completely inactivated at holding potentials more positive than -40 mV. I(K(A)) is half-maximally blocked by 70 microM 4-aminopyridine (4-AP), and 70 mM tetraethylammonium (TEA). I(K(V)) activates more slowly, at about -30 mV, and shows no inactivation. It is half-maximally blocked by 2 mM TEA but rather insensitive to 4-AP. Physiologically, the two K+ currents prevent all-or-nothing action potentials and determine the graded amplitude of active electrical responses and associated contractions. Tension development depends on and is correlated with depolarisation-induced Ca2+ influx mediated by I(Ca). The voltage dependence of peak tension corresponds directly to the voltage dependence of the integrated I(Ca). The threshold potential for contraction is at about -38 mV. Peak tension increases with increasing voltage steps, reaches maximum at around 0 mV, and declines with further depolarisation.

  15. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    PubMed Central

    Bohmeier, Maria; Perras, Alexandra K.; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S.; Pukall, Rüdiger; Vannier, Pauline; Marteinsson, Viggo T.; Monaghan, Euan P.; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2017-01-01

    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today. PMID:29069099

  16. Combining Lactic Acid Spray with Near-Infrared Radiation Heating To Inactivate Salmonella enterica Serovar Enteritidis on Almond and Pine Nut Kernels

    PubMed Central

    Ha, Jae-Won

    2015-01-01

    The aim of this study was to investigate the efficacy of near-infrared radiation (NIR) heating combined with lactic acid (LA) sprays for inactivating Salmonella enterica serovar Enteritidis on almond and pine nut kernels and to elucidate the mechanisms of the lethal effect of the NIR-LA combined treatment. Also, the effect of the combination treatment on product quality was determined. Separately prepared S. Enteritidis phage type (PT) 30 and non-PT 30 S. Enteritidis cocktails were inoculated onto almond and pine nut kernels, respectively, followed by treatments with NIR or 2% LA spray alone, NIR with distilled water spray (NIR-DW), and NIR with 2% LA spray (NIR-LA). Although surface temperatures of nuts treated with NIR were higher than those subjected to NIR-DW or NIR-LA treatment, more S. Enteritidis survived after NIR treatment alone. The effectiveness of NIR-DW and NIR-LA was similar, but significantly more sublethally injured cells were recovered from NIR-DW-treated samples. We confirmed that the enhanced bactericidal effect of the NIR-LA combination may not be attributable to cell membrane damage per se. NIR heat treatment might allow S. Enteritidis cells to become permeable to applied LA solution. The NIR-LA treatment (5 min) did not significantly (P > 0.05) cause changes in the lipid peroxidation parameters, total phenolic contents, color values, moisture contents, and sensory attributes of nut kernels. Given the results of the present study, NIR-LA treatment may be a potential intervention for controlling food-borne pathogens on nut kernel products. PMID:25911473

  17. Comparative Sequence Analysis of the X-Inactivation Center Region in Mouse, Human, and Bovine

    PubMed Central

    Chureau, Corinne; Prissette, Marine; Bourdet, Agnès; Barbe, Valérie; Cattolico, Laurence; Jones, Louis; Eggen, André; Avner, Philip; Duret, Laurent

    2002-01-01

    We have sequenced to high levels of accuracy 714-kb and 233-kb regions of the mouse and bovine X-inactivation centers (Xic), respectively, centered on the Xist gene. This has provided the basis for a fully annotated comparative analysis of the mouse Xic with the 2.3-Mb orthologous region in human and has allowed a three-way species comparison of the core central region, including the Xist gene. These comparisons have revealed conserved genes, both coding and noncoding, conserved CpG islands and, more surprisingly, conserved pseudogenes. The distribution of repeated elements, especially LINE repeats, in the mouse Xic region when compared to the rest of the genome does not support the hypothesis of a role for these repeat elements in the spreading of X inactivation. Interestingly, an asymmetric distribution of LINE elements on the two DNA strands was observed in the three species, not only within introns but also in intergenic regions. This feature is suggestive of important transcriptional activity within these intergenic regions. In silico prediction followed by experimental analysis has allowed four new genes, Cnbp2, Ftx, Jpx, and Ppnx, to be identified and novel, widespread, complex, and apparently noncoding transcriptional activity to be characterized in a region 5′ of Xist that was recently shown to attract histone modification early after the onset of X inactivation. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AJ421478, AJ421479, AJ421480, and AJ421481. Online supplemental data are available at http://pbil.univ-lyon1.fr/datasets/Xic2002/data.html and www.genome.org.] PMID:12045143

  18. Characterization of X Chromosome Inactivation Using Integrated Analysis of Whole-Exome and mRNA Sequencing

    PubMed Central

    Szelinger, Szabolcs; Malenica, Ivana; Corneveaux, Jason J.; Siniard, Ashley L.; Kurdoglu, Ahmet A.; Ramsey, Keri M.; Schrauwen, Isabelle; Trent, Jeffrey M.; Narayanan, Vinodh; Huentelman, Matthew J.; Craig, David W.

    2014-01-01

    In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation. PMID:25503791

  19. A new mode of regulation of N-type inactivation in a Caenorhabditis elegans voltage-gated potassium channel.

    PubMed

    Cai, Shi-Qing; Sesti, Federico

    2007-06-22

    N-type inactivation in voltage-gated K+ (Kv) channels is a widespread means to modulate neuronal excitability and signaling. Here we have shown a novel mechanism of N-type inactivation in a Caenorhabditis elegans Kv channel. The N-terminal sequence of KVS-1 contains a domain of 22 amino acids that resembles the inactivation ball in A-type channels, which is preceded by a domain of eighteen amino acids. Wild type KVS-1 currents can be described as A-type; however, their kinetics are significantly (approximately 5-fold) slower. When the putative inactivation ball is deleted, the current becomes non-inactivating. Inactivation is restored in non-inactivating channels by diffusion of the missing inactivation domain in the cytoplasm. Deletion of the domain in front of the ball speeds inactivation kinetics approximately 5-fold. We conclude that KVS-1 is the first example of a novel type of Kv channel simultaneously possessing an N-inactivating ball preceded by an N inactivation regulatory domain (NIRD) that acts to slow down inactivation through steric mechanisms.

  20. Effects of Toll-Like Receptor Stimulation on Eosinophilic Infiltration in Lungs of BALB/c Mice Immunized with UV-Inactivated Severe Acute Respiratory Syndrome-Related Coronavirus Vaccine

    PubMed Central

    Iwata-Yoshikawa, Naoko; Uda, Akihiko; Suzuki, Tadaki; Tsunetsugu-Yokota, Yasuko; Sato, Yuko; Morikawa, Shigeru; Tashiro, Masato; Sata, Tetsutaro; Hasegawa, Hideki

    2014-01-01

    ABSTRACT Severe acute respiratory syndrome-related coronavirus (SARS-CoV) is an emerging pathogen that causes severe respiratory illness. Whole UV-inactivated SARS-CoV (UV-V), bearing multiple epitopes and proteins, is a candidate vaccine against this virus. However, whole inactivated SARS vaccine that includes nucleocapsid protein is reported to induce eosinophilic infiltration in mouse lungs after challenge with live SARS-CoV. In this study, an ability of Toll-like receptor (TLR) agonists to reduce the side effects of UV-V vaccination in a 6-month-old adult BALB/c mouse model was investigated, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. Immunization of adult mice with UV-V, with or without alum, resulted in partial protection from lethal doses of SARS-CoV challenge, but extensive eosinophil infiltration in the lungs was observed. In contrast, TLR agonists added to UV-V vaccine, including lipopolysaccharide, poly(U), and poly(I·C) (UV-V+TLR), strikingly reduced excess eosinophilic infiltration in the lungs and induced lower levels of interleukin-4 and -13 and eotaxin in the lungs than UV-V-immunization alone. Additionally, microarray analysis showed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-V-immunized but not in UV-V+TLR-immunized mice. In particular, CD11b+ cells in the lungs of UV-V-immunized mice showed the upregulation of genes associated with the induction of eosinophils after challenge. These findings suggest that vaccine-induced eosinophil immunopathology in the lungs upon SARS-CoV infection could be avoided by the TLR agonist adjuvants. IMPORTANCE Inactivated whole severe acute respiratory syndrome-related coronavirus (SARS-CoV) vaccines induce neutralizing antibodies in mouse models; however, they also cause increased eosinophilic immunopathology in the lungs upon SARS-CoV challenge. In this study, the ability of adjuvant Toll-like receptor (TLR) agonists to reduce the side effects of UV-inactivated SARS-CoV vaccination in a BALB/c mouse model was tested, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. We found that TLR stimulation reduced the high level of eosinophilic infiltration that occurred in the lungs of mice immunized with UV-inactivated SARS-CoV. Microarray analysis revealed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-inactivated SARS-CoV-immunized mice. This study may be helpful for elucidating the pathogenesis underlying eosinophilic infiltration resulting from immunization with inactivated vaccine. PMID:24850731

  1. DNA Polymerase λ Inactivation by Oxidized Abasic Sites&

    PubMed Central

    Stevens, Adam J.; Guan, Lirui; Bebenek, Katarzyna; Kunkel, Thomas A.; Greenberg, Marc M.

    2013-01-01

    Base excision repair plays a vital role in maintaining genomic integrity in mammalian cells. DNA polymerase λ is believed to play a backup role to DNA polymerase β in base excision repair. Two oxidized abasic lesions that are produced by a variety of DNA damaging agents, including several antitumor antibiotics, the C4′-oxidized abasic site following Ape1 incision (pC4-AP) and 5′-(2-phosphoryl-1,4-dioxobutane) (DOB), irreversibly inactivate Pol β and Pol λ. The interactions of DOB and pC4-AP with Pol λ are examined in detail using DNA substrates containing these lesions at defined sites. Single turnover kinetic experiments show that Pol λ excises DOB almost 13-times more slowly than a 5′-phosphorylated 2-deoxyribose (dRP). pC4-AP is excised approximately twice as fast as DOB. The absolute rate constants are considerably slower than those reported for Pol β at the respective reactions, suggesting that Pol λ may be an inefficient backup in BER. DOB inactivates Pol λ approximately 3-fold less efficiently than it does Pol β and the difference is attributable to a higher KI (33 ± 7 nM). Inactivation of Pol λ’s lyase activity by DOB also prevents the enzyme from carrying out polymerization following preincubation of the protein and DNA. Mass spectral analysis of GluC digested Pol λ inactivated by DOB shows that Lys324 is modified. There is inferential support that Lys312 may also be modified. Both residues are within the Pol λ lyase active site. Protein modification involves reaction with released but-2-ene-1,4-dial. When acting on pC4-AP, Pol λ achieves approximately 4 turnovers on average before being inactivated. Lyase inactivation by pC4-AP is also accompanied by loss of polymerase activity and mass spectrometry indicates that Lys312 and Lys324 are modified by the lesion. The ability of DOB and pC4-AP to inactivate Pol λ provides additional evidence that these lesions are significant sources of the cytotoxicity of DNA damaging agents that produce them. PMID:23330920

  2. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan

    USGS Publications Warehouse

    Liu, L.; Phanikumar, M.S.; Molloy, S.L.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.; Schwab, D.J.; Rose, J.B.

    2006-01-01

    To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risks associated with swimming, the near-shore waters of Lake Michigan and two tributaries discharging into it were examined for bacterial indicators of human fecal pollution. The enterococcus human fecal pollution marker, which targets a putative virulence factorthe enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) in the tributaries draining into Lake Michigan and in 6/30 samples (20%) in Lake Michigan beaches. This was indicative of human fecal pollution being transported in the tributaries and occurrence at Lake Michigan beaches. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, E. coli and enterococci) was used. Enterococci appear to survive longer than E. coli, which was described using an overall first-order inactivation coefficient in the range 0.5−2.0 per day. Our analysis suggests that the majority of fecal indicator bacteria variation can be explained based on loadings from the tributaries. Sunlight is a major contributor to inactivation in the surf-zone and the formulation based on sunlight, temperature and sedimentation is preferred over the first-order inactivation formulation.

  3. Effect of ohmic heating of soymilk on urease inactivation and kinetic analysis in holding time.

    PubMed

    Li, Fa-De; Chen, Chen; Ren, Jie; Wang, Ranran; Wu, Peng

    2015-02-01

    To verify the effect of the ohmic heating on the urease activity in the soymilk, the ohmic heating methods with the different electrical field conditions (the frequency and the voltage ranging from 50 to 10 kHz and from 160 to 220 V, respectively) were employed. The results showed that if the value of the urease activity measured with the quantitative spectrophotometry method was lower than 16.8 IU, the urease activity measured with the qualitative method was negative. The urease activity of the sample ohmically heated was significantly lower than that of the sample conventionally heated (P < 0.01) at the same target temperature. It was concluded that the electrical field enhanced the urease inactivation. In addition, the inactivation kinetics of the urease in the soymilk could be described with a biphasic model during holding time at a target temperature. Thus, it was concluded that the urease in the soymilk would contain 2 isoenzymes, one is the thermolabile fraction, the other the thermostable fraction, and that the thermostable isoenzyme could not be completely inactivated when the holding time increased, whether the soymilk was cooked with the conventional method or with the ohmic heating method. Therefore, the electric field had no effect on the inactivation of the thermostable isoenzyme of the urease. © 2015 Institute of Food Technologists®

  4. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed

    Rose, C; Camus, A; Schwartz, J C

    1988-11-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide.

  5. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed Central

    Rose, C; Camus, A; Schwartz, J C

    1988-01-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide. PMID:3186727

  6. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.

    PubMed

    Fineberg, Jeffrey D; Ritter, David M; Covarrubias, Manuel

    2012-11-01

    A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity.

  7. Effect of electron beam and gamma radiation on drug-susceptible and drug-resitant listeria monocytogenes strains in salmon under different temperature.

    PubMed

    Skowron, Krzysztof; Grudlewska, Katarzyna; Gryń, Grzegorz; Skowron, Karolina Jadwiga; Świeca, Agnieszka; Paluszak, Zbigniew; Zimek, Zbigniew; Rafalski, Andrzej; Gospodarek-Komkowska, Eugenia

    2018-05-04

    To investigate the effect of gamma radiation and high energy electron beam doses on the inactivation of antibiotic-susceptible and antibiotic-resistant Listeria monocytogenes strains inoculated on the surface of raw salmon fillets stored at different temperature (-20°C, 4°C and 25°C). The population of bacteria strains resistance to penicillin, ampicillin, meropenem, erythromycin and trimethoprim-sulfamethoxazole was generated. When using gamma irradiation, the theoretical lethal dose ranged from 1.44 to 5.68 kGy and for electron beam the values ranged from 2.99 to 6.83 kGy. The theoretical lethal dose for both radiation methods was higher for antibiotic-resistant strains. Gamma radiation proved to be a more effective method for extending salmon fillet shelf-life. The evaluation of PFGE electrophoregram revealed that the repair of radiation-caused DNA damage occurred faster in antibiotic-resistant L. monocytogenes strains. The number of live L. monocytogenes cells, 40 hours after irradiation, also was higher in antibiotic-resistant strain suspension. The present study showed that gamma radiation was more effective in the elimination of the tested microorganisms and food preservation, than a high energy electron beam. The antibiotic-resistant L. monocytogenes strains were more resistant to both radiation methods. There are a lot of research on the effect of radiation on the number of bacteria in food products. However, there is almost no information about the effect of strain properties, such as drug susceptibility, virulence, etc., on their resistance to ionizing radiation. An increasing number of drug resistant bacterial strains isolated from food, encourages to take up this research subject. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Chung, Yong Jae; Kang, Dai Ill; Lee, Kyu Shik; Lee, Ju-Woon

    2012-08-01

    Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi.

  9. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Minjeong; Ryu, Sangryeol; Kim, Dongho

    2008-09-01

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold ( CT) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared CT values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  10. Liquid Water Restricts Habitability in Extreme Deserts

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  11. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.

    PubMed

    Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R

    2001-02-01

    The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.

  12. Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90.

    PubMed Central

    Conconi, M; Petropoulos, I; Emod, I; Turlin, E; Biville, F; Friguet, B

    1998-01-01

    Heat-shock protein 90 (Hsp 90) has been implicated in both protection against oxidative inactivation and inhibition of the multicatalytic proteinase (MCP, also known as 20 S proteasome). We report here that the protective and inhibitory effects of Hsp 90 depend on the activation state of the proteasome. Hsp 90 (and also alpha-crystallin) inhibits the N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activity (Cbz=benzyloxycarbonyl; MCA=7-amido-4-methylcoumarin) when the rat liver MCP is in its latent form, but no inhibitory effects are observed when the MCP is in its active form. Metal-catalysed oxidation of the active MCP inactivates the Ala-Ala-Phe-MCA-hydrolysing (chymotrypsin-like), N-Boc-Leu-Ser-Thr-Arg-MCA-hydrolysing (trypsin-like; Boc=t-butyloxycarbonyl), N-Cbz-Leu-Leu-Glu-beta-naphthylamine-hydrolysing (peptidylglutamyl-peptide hydrolase) and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities, whereas these activities are actually increased when the MCP is in its latent form. Hsp 90 protects against oxidative inactivation of the trypsin-like and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities of the MCP active form, and alpha-crystallin protects the trypsin-like activity. The specificity of the Hsp 90-mediated protection was assessed by a quantitative analysis of the two-dimensional electrophoretic pattern of MCP subunits before and after oxidation of the MCP, in the presence or absence of Hsp 90. Treatment of the FAO hepatoma cell line with iron and ascorbate was found to inactivate the MCP. Hsp 90 overexpression obtained by challenging the cells with iron was associated with a decreased susceptibility to oxidative inactivation of the MCP trypsin-like activity. Depletion of Hsp 90 by using antisense oligonucleotides resulted in an increased susceptibility to oxidative inactivation of the MCP trypsin-like activity, providing evidence for the physiological relevance of Hsp 90-mediated protection of the MCP. PMID:9657982

  13. Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90.

    PubMed

    Conconi, M; Petropoulos, I; Emod, I; Turlin, E; Biville, F; Friguet, B

    1998-07-15

    Heat-shock protein 90 (Hsp 90) has been implicated in both protection against oxidative inactivation and inhibition of the multicatalytic proteinase (MCP, also known as 20 S proteasome). We report here that the protective and inhibitory effects of Hsp 90 depend on the activation state of the proteasome. Hsp 90 (and also alpha-crystallin) inhibits the N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activity (Cbz=benzyloxycarbonyl; MCA=7-amido-4-methylcoumarin) when the rat liver MCP is in its latent form, but no inhibitory effects are observed when the MCP is in its active form. Metal-catalysed oxidation of the active MCP inactivates the Ala-Ala-Phe-MCA-hydrolysing (chymotrypsin-like), N-Boc-Leu-Ser-Thr-Arg-MCA-hydrolysing (trypsin-like; Boc=t-butyloxycarbonyl), N-Cbz-Leu-Leu-Glu-beta-naphthylamine-hydrolysing (peptidylglutamyl-peptide hydrolase) and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities, whereas these activities are actually increased when the MCP is in its latent form. Hsp 90 protects against oxidative inactivation of the trypsin-like and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities of the MCP active form, and alpha-crystallin protects the trypsin-like activity. The specificity of the Hsp 90-mediated protection was assessed by a quantitative analysis of the two-dimensional electrophoretic pattern of MCP subunits before and after oxidation of the MCP, in the presence or absence of Hsp 90. Treatment of the FAO hepatoma cell line with iron and ascorbate was found to inactivate the MCP. Hsp 90 overexpression obtained by challenging the cells with iron was associated with a decreased susceptibility to oxidative inactivation of the MCP trypsin-like activity. Depletion of Hsp 90 by using antisense oligonucleotides resulted in an increased susceptibility to oxidative inactivation of the MCP trypsin-like activity, providing evidence for the physiological relevance of Hsp 90-mediated protection of the MCP.

  14. Genetic characterization in symptomatic female DMD carriers: lack of relationship between X-inactivation, transcriptional DMD allele balancing and phenotype

    PubMed Central

    2012-01-01

    Background Although Duchenne and Becker muscular dystrophies, X-linked recessive myopathies, predominantly affect males, a clinically significant proportion of females manifesting symptoms have also been reported. They represent an heterogeneous group characterized by variable degrees of muscle weakness and/or cardiac involvement. Though preferential inactivation of the normal X chromosome has long been considered the principal mechanism behind disease manifestation in these females, supporting evidence is controversial. Methods Eighteen females showing a mosaic pattern of dystrophin expression on muscle biopsy were recruited and classified as symptomatic (7) or asymptomatic (11), based on the presence or absence of muscle weakness. The causative DMD gene mutations were identified in all cases, and the X-inactivation pattern was assessed in muscle DNA. Transcriptional analysis in muscles was performed in all females, and relative quantification of wild-type and mutated transcripts was also performed in 9 carriers. Dystrophin protein was quantified by immunoblotting in 2 females. Results The study highlighted a lack of relationship between dystrophic phenotype and X-inactivation pattern in females; skewed X-inactivation was found in 2 out of 6 symptomatic carriers and in 5 out of 11 asymptomatic carriers. All females were characterized by biallelic transcription, but no association was found between X-inactivation pattern and allele transcriptional balancing. Either a prevalence of wild-type transcript or equal proportions of wild-type and mutated RNAs was observed in both symptomatic and asymptomatic females. Moreover, very similar levels of total and wild-type transcripts were identified in the two groups of carriers. Conclusions This is the first study deeply exploring the DMD transcriptional behaviour in a cohort of female carriers. Notably, no relationship between X-inactivation pattern and transcriptional behaviour of DMD gene was observed, suggesting that the two mechanisms are regulated independently. Moreover, neither the total DMD transcript level, nor the relative proportion of the wild-type transcript do correlate with the symptomatic phenotype. PMID:22894145

  15. Effectiveness of irradiation treatments in inactivating Listeria monocytogenes on fresh vegetables at refrigeration temperature.

    PubMed

    Bari, M L; Nakauma, M; Todoriki, S; Juneja, Vijay K; Isshiki, K; Kawamoto, S

    2005-02-01

    Ionizing radiation can be effective in controlling the growth of food spoilage and foodborne pathogenic bacteria. This study reports on an investigation of the effectiveness of irradiation treatment to eliminate Listeria monocytogenes on laboratory-inoculated broccoli, cabbage, tomatoes, and mung bean sprouts. Irradiation of broccoli and mung bean sprouts at 1.0 kGy resulted in reductions of approximately 4.88 and 4.57 log CFU/g, respectively, of a five-strain cocktail of L. monocytogenes. Reductions of approximately 5.25 and 4.14 log CFU/g were found with cabbage and tomato, respectively, at a similar dose. The appearance, color, texture, taste, and overall acceptability did not undergo significant changes after 7 days of postirradiation storage at 4 degrees C, in comparison with control samples. Therefore, low-dose ionizing radiation treatment could be an effective method for eliminating L. monocytogenes on fresh and fresh-cut produce.

  16. An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants.

    PubMed

    Jesus, Vânia; Martins, Diana; Branco, Tatiana; Valério, Nádia; Neves, Maria G P M S; Faustino, Maria A F; Reis, Luís; Barreal, Esther; Gallego, Pedro P; Almeida, Adelaide

    2018-02-14

    In the last decade, the worldwide production of kiwi fruit has been highly affected by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogenic bacterium; this has led to severe economic losses that are seriously affecting the kiwi fruit trade. The available treatments for this disease are still scarce, with the most common involving frequently spraying the orchards with copper derivatives, in particular cuprous oxide (Cu 2 O). However, these copper formulations should be avoided due to their high toxicity; therefore, it is essential to search for new approaches for controlling Psa. Antimicrobial photodynamic therapy (aPDT) may be an alternative approach to inactivate Psa. aPDT consists in the use of a photosensitizer molecule (PS) that absorbs light and by transference of the excess of energy or electrons to molecular oxygen forms highly reactive oxygen species (ROS) that can affect different molecular targets, thus being very unlikely to lead to the development of microbe resistance. The aim of the present study was to evaluate the effectiveness of aPDT to photoinactivate Psa, using the porphyrin Tetra-Py + -Me and different light intensities. The degree of inactivation of Psa was assessed using the PS at 5.0 μM under low irradiance (4.0 mW cm -2 ). Afterward, ex vivo experiments, using artificially contaminated kiwi leaves, were conducted with a PS at 50 μM under 150 mW cm -2 and sunlight irradiation. A reduction of 6 log in the in vitro assays after 90 min of irradiation was observed. In the ex vivo tests, the decrease was lower, approximately 1.8 log reduction at an irradiance of 150 mW cm -2 , 1.2 log at 4.0 mW cm -2 , and 1.5 log under solar radiation. However, after three successive cycles of treatment under 150 mW cm -2 , a 4 log inactivation was achieved. No negative effects were observed on leaves after treatment. Assays using Cu 2 O were also performed at the recommended concentration by law (50 g h L -1 ) and at concentrations 10 times lower, in which at both concentrations, Psa was efficiently inactivated (5 log inactivation) after a few minutes of treatment, but negative effects were observed on the leaves after treatment.

  17. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater.

    PubMed

    Aguas, Yelitza; Hincapie, Margarita; Fernández-Ibáñez, Pilar; Polo-López, María Inmaculada

    2017-12-31

    The interest in developing alternative water disinfection methods that increase the access to irrigation water free of pathogens for agricultural purposes is increasing in the last decades. Advanced Oxidation Processes (AOPs) have been demonstrated to be very efficient for the abatement of several kind of pathogens in contaminated water. The purpose of the current study was to evaluate and compare the capability of several solar AOPs for the inactivation of resistant spores of agricultural fungi. Solar photoassisted H 2 O 2 , solar photo-Fenton at acid and near-neutral pH, and solar heterogeneous photocatalysis using TiO 2, with and without H 2 O 2 , have been studied for the inactivation of spores of Curvularia sp., a phytopathogenic fungi worldwide found in soils and crops. Different concentrations of reagents and catalysts were evaluated at bench scale (solar vessel reactors, 200mL) and at pilot plant scale (solar Compound Parabolic Collector-CPC reactor, 20L) under natural solar radiation using distilled water (DW) and real secondary effluents (SE) from a municipal wastewater treatment plant. Inactivation order of Curvularia sp. in distilled water was determined, i.e. TiO 2 /H 2 O 2 /sunlight (100/50mgL -1 )>H 2 O 2 /sunlight (40mgL -1 )>TiO 2 /sunlight (100mgL -1 )>photo-Fenton with 5/10mgL -1 of Fe 2+ /H 2 O 2 at pH3 and near-neutral pH. For the case of SE, at near neutral pH, the most efficient solar process was H 2 O 2 /Solar (60mgL -1 ); nevertheless, the best Curvularia sp. inactivation rate was obtained with photo-Fenton (10/20mgL -1 of Fe 2+ /H 2 O 2 ) requiring a previous water adicification to pH3, within 300 and 210min of solar treatment, respectively. These results show the efficiency of solar AOPs as a feasible option for the inactivation of resistant pathogens in water for crops irrigation, even in the presence of organic matter (average Dissolved Organic Carbon (DOC): 24mgL -1 ), and open a window for future wastewater reclamation and irrigation use. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Flash Inactivation of Oxygen Evolution

    PubMed Central

    Frasch, Wayne D.; Cheniae, George M.

    1980-01-01

    Brief saturating light flashes were used to probe the mechanism of inactivation of O2 evolution by Tris in chloroplasts. Maximum inactivation with a single flash and an oscillation with period of four on subsequent flashes was observed. Analyses of the oscillations suggested that only the charge-collecting O2-evolving catalyst of photosystem II (S2-state) was a target of inactivation by Tris. This conclusion was supported by the following observations: (a) hydroxylamine preequilibration caused a three-flash delay in the inactivation pattern; (b) the lifetimes of the Tris-inactivable and S2-states were similar; and (c) reagents accelerating S2 deactivation decreased the lifetime of the inactivable state. Inactivation proved to be moderated by F, the precursor of Signal IIs, as shown by a one flash delay with chloroplasts having high abundance of F. Evidence was obtained for cooperativity effects in inactivation and NH3 was shown to be a competitive inhibitor of the Tris-induced inactivation. S2-dependent inactivation was inhibited by glutaraldehyde fixation of chloroplasts, possibly suggesting that inactivation proceeds via conformational changes of the S2-state. PMID:16661270

  19. Inactivation of coliphage Q beta by potassium ferrate.

    PubMed

    Kazama, F

    1994-05-15

    The kinetics of inactivation of a bacteriophage by potassium ferrate were studied with the F-specific RNA-coliphage Q beta. Inactivation in phosphate buffer (pH 6, 7 and 8) containing ferrate could be described by Hom's model. The inactivation rate depended on the pH. However, the relative effects of ferrate concentration and exposure time on inactivation were not affected by a change in pH from 6 to 8. In a study of the mechanism by which ferrate inactivated the virus, the efficiency of viral inactivation after ferrate decomposed in buffer was assayed. Inactivation was still effective and still followed Hom's equation after the complete decomposition of ferrate ion; however, the efficiency of that inactivation disappeared when sodium thiosulfate was added, suggesting that long-lived oxidative intermediates capable of viral inactivation were generated during the decomposition of ferrate ions.

  20. DIRECT AND INDIRECT BIOLOGICAL EFFECTS OF RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobitz, H.

    1961-01-01

    The primary physical processes, ionization and excitation, induced by radiation in biological materials are discussed. Their effects in causing reduction, decarboxylation, and depolymerization in proteins and deoxyribonucleic acid of the cell nucleus are examined. The action of radiation doses of 100,000- 600,000 r on pollen of Digitalis purpurea maintained at room temperature and at approximates 190 deg C showed that biological activity was destroyed by doses >200,000 r at room temperature, but at approximates 190 deg the pollen retained some activity even after the highest dose. A similar effect was seen with Bacterium cadaveris cells, about 0.5% of which survivedmore » 50000 r given at l8O deg whereas no cells survived 20000 r given at 4 deg . The presence of 1% cysteamine at the higher temperature increased survival 20-fold. Cytochrome c showed markedly different responses to radiation in dry form as compared with aqueous solution. The anhydrous enzyme showed a linear decline in log activity with radiation dose but in aqueous solution the activity declined more slowly at higher doses. The radiation dose to-produce 50% inactivation was 4 x 10/sup 7/ r in dry form and 6 x 10/sup 5/ r in solution, a 67-fold difference. The results suggest that diffusion of the free radicals (H: or OH:) produced in the primary process is considerably hindered at low temperature and by the absence of water. (H.H.D.)« less

  1. Wnt Inactivation for Liver Cancer Therapy | Center for Cancer Research

    Cancer.gov

    Hepatocellular carcinoma (HCC) is the fifth most common and third most deadly type of cancer in the world. The majority of cases occur in Asia and Africa, resulting in most cases being diagnosed only at advanced stages of the disease when drug resistance is high. HCC typically follows damage to the liver such as cirrhosis, making radiation and chemotherapy a more challenging prospect. Surgery is also not a very viable option because less than one in four carcinomas can be completely removed. The limitations in these treatment modalities create the need for alternative therapeutic approaches.

  2. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    PubMed

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  3. Defective Fast Inactivation Recovery of Nav1.4 in Congenital Myasthenic Syndrome

    PubMed Central

    Arnold, W. David; Feldman, Daniel H.; Ramirez, Sandra; He, Liuyuan; Kassar, Darine; Quick, Adam; Klassen, Tara L.; Lara, Marian; Nguyen, Joanna; Kissel, John T.; Lossin, Christoph; Maselli, Ricardo A.

    2015-01-01

    Objective To describe the unique phenotype and genetic findings in a 57-year-old female with a rare form of congenital myasthenic syndrome (CMS) associated with longstanding muscle fatigability, and to investigate the underlying pathophysiology. Methods We used whole-cell voltage clamping to compare the biophysical parameters of wild-type and Arg1457His-mutant Nav1.4. Results Clinical and neurophysiological evaluation revealed features consistent with CMS. Sequencing of candidate genes indicated no abnormalities. However, analysis of SCN4A, the gene encoding the skeletal muscle sodium channel Nav1.4, revealed a homozygous mutation predicting an arginine-to-histidine substitution at position 1457 (Arg1457His), which maps to the channel’s voltage sensor, specifically D4/S4. Whole-cell patch clamp studies revealed that the mutant required longer hyperpolarization to recover from fast inactivation, which produced a profound use-dependent current attenuation not seen in the wild type. The mutant channel also had a marked hyperpolarizing shift in its voltage dependence of inactivation as well as slowed inactivation kinetics. Interpretation We conclude that Arg1457His compromises muscle fiber excitability. The mutant fast-inactivates with significantly less depolarization, and it recovers only after extended hyperpolarization. The resulting enhancement in its use dependence reduces channel availability, which explains the patient’s muscle fatigability. Arg1457His offers molecular insight into a rare form of CMS precipitated by sodium channel inactivation defects. Given this channel’s involvement in other muscle disorders such as paramyotonia congenita and hyperkalemic periodic paralysis, our study exemplifies how variations within the same gene can give rise to multiple distinct dysfunctions and phenotypes, revealing residues important in basic channel function. PMID:25707578

  4. Identification of Two myo-Inositol Transporter Genes of Bacillus subtilis

    PubMed Central

    Yoshida, Ken-Ichi; Yamamoto, Yoshiyuki; Omae, Kaoru; Yamamoto, Mami; Fujita, Yasutaro

    2002-01-01

    Among hundreds of mutants constructed systematically by the Japanese groups participating in the functional analysis of the Bacillus subtilis genome project, we found that a mutant with inactivation of iolT (ydjK) exhibited a growth defect on myo-inositol as the sole carbon source. The putative product of iolT exhibits significant similarity with many bacterial sugar transporters in the databases. In B. subtilis, the iolABCDEFGHIJ and iolRS operons are known to be involved in inositol utilization, and its transcription is regulated by the IolR repressor and induced by inositol. Among the iol genes, iolF was predicted to encode an inositol transporter. Inactivation of iolF alone did not cause such an obvious growth defect on inositol as the iolT inactivation, while simultaneous inactivation of the two genes led to a more severe defect than the single iolT inactivation. Determination of inositol uptake by the mutants revealed that iolT inactivation almost completely abolished uptake, but uptake by IolF itself was slightly detectable. These results, as well as the Km and Vmax values for the IolT and IolF inositol transporters, indicated that iolT and iolF encode major and minor inositol transporters, respectively. Northern and primer extension analyses of iolT transcription revealed that the gene is monocistronically transcribed from a promoter likely recognized by ςsgr;A RNA polymerase and negatively regulated by IolR as well. The interaction between IolR and the iolT promoter region was analyzed by means of gel retardation and DNase I footprinting experiments, it being suggested that the mode of interaction is quite similar to that found for the promoter regions of the iol divergon. PMID:11807058

  5. X chromosome inactivation in a female carrier of a 1.28 Mb deletion encompassing the human X inactivation centre.

    PubMed

    de Hoon, B; Splinter, Erik; Eussen, B; Douben, J C W; Rentmeester, E; van de Heijning, M; Laven, J S E; de Klein, J E M M; Liebelt, J; Gribnau, J

    2017-11-05

    X chromosome inactivation (XCI) is a mechanism specifically initiated in female cells to silence one X chromosome, thereby equalizing the dose of X-linked gene products between male and female cells. XCI is regulated by a locus on the X chromosome termed the X-inactivation centre (XIC). Located within the XIC is XIST , which acts as a master regulator of XCI. During XCI, XIST is upregulated on the inactive X chromosome and chromosome-wide cis spreading of XIST leads to inactivation. In mouse, the Xic comprises Xist and all cis -regulatory elements and genes involved in Xist regulation. The activity of the XIC is regulated by trans -acting factors located elsewhere in the genome: X-encoded XCI activators positively regulating XCI, and autosomally encoded XCI inhibitors providing the threshold for XCI initiation. Whether human XCI is regulated through a similar mechanism, involving trans -regulatory factors acting on the XIC has remained elusive so far. Here, we describe a female individual with ovarian dysgenesis and a small X chromosomal deletion of the XIC. SNP-array and targeted locus amplification (TLA) analysis defined the deletion to a 1.28 megabase region, including XIST and all elements and genes that perform cis -regulatory functions in mouse XCI. Cells carrying this deletion still initiate XCI on the unaffected X chromosome, indicating that XCI can be initiated in the presence of only one XIC. Our results indicate that the trans -acting factors required for XCI initiation are located outside the deletion, providing evidence that the regulatory mechanisms of XCI are conserved between mouse and human.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Authors.

  6. Identification of the residue in human CYP3A4 that is covalently modified by bergamottin and the reactive intermediate that contributes to the grapefruit juice effect.

    PubMed

    Lin, Hsia-Lien; Kenaan, Cesar; Hollenberg, Paul F

    2012-05-01

    Previous studies have demonstrated that bergamottin (BG), a component of grapefruit juice, is a mechanism-based inactivator of CYP3A4 and contributes, in part, to the grapefruit juice-drug interaction. Although the covalent binding of [(14)C]BG to the CYP3A4 apoprotein has been demonstrated by SDS-polyacrylamide gel electrophoresis, the identity of the modified amino acid residue and the reactive intermediate species of BG responsible for the inactivation have not been reported. In the present study, we show that inactivation of CYP3A4 by BG results in formation of a modified apoprotein-3A4 and a GSH conjugate, both exhibiting mass increases of 388 Da, which corresponds to the mass of 6',7'-dihydroxybergamottin (DHBG), a metabolite of BG, plus one oxygen atom. To identify the adducted residue, BG-inactivated 3A4 was digested with trypsin, and the digests were then analyzed by liquid chromatography-tandem mass spectrometry (MS/MS). A mass shift of 388 Da was used for the SEQUEST database search, which revealed a mass increase of 388 Da for the peptide with the sequence (272)LQLMIDSQNSK(282), and MS/MS analysis of the adducted peptide demonstrated that Gln273 is the residue modified. Mutagenesis studies showed that the Gln273 to Val mutant was resistant to inactivation by BG and DHBG and did not generate two of the major metabolites of BG formed by 3A4 wild type. In conclusion, we have determined that the reactive intermediate, oxygenated DHBG, covalently binds to Gln273 and thereby contributes to the mechanism-based inactivation of CYP3A4 by BG.

  7. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels

    PubMed Central

    Fineberg, Jeffrey D.; Ritter, David M.

    2012-01-01

    A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity. PMID:23109714

  8. Evaluation of Combined Peracetic acid and UV treatment for ...

    EPA Pesticide Factsheets

    The current study evaluates the effectiveness of the combined application of Peracetic acid and ultraviolet radiation as alternative disinfectant agents to the traditional chlorination of wastewater effluents. Various pathogens (E. coli, enterococci and fecal coliforms) were evaluated in the study. Four experiments were conducted using low to high PAA levels and UV dosages. E. coli and enterococci were resistant to low to moderate PAA dosage (0.5- 1 mg/L). These microbes can be removed effectively at high PAA dosage (2.5 mg/L) with 30 min contact time. Fecal coliforms were completely inactivated even at a low PAA dose of 0.7 mg/L. E. coli was more susceptible to UV disinfection than enterococci at low UV dosages. Enterococci required at least 40 mJ/cm2 for 2.5 log inactivation. In combined PAA + UV treatment, low UV intensities between 7 – 40 mJ/cm2 showed poor disinfection performance at a low PAA concentration of 1.5 mg/L. High UV intensities of 120 and 60 mJ/cm2 inactivated all the pathogens to below detection levels even at low to moderate PAA (0.7 mg/L and 1 mg/L) pretreatment concentration. Combined PAA + UV treatment at 1 mg/L (for 15 and 30 min contact time) + 120 and 60 mJ/cm2 did not show any regrowth of microbes, whereas PAA only disinfection with 15 min contact time showed regrowth of enterococci and fecal coliforms. UV only disinfection showed E. coli regrowth. • This pilot scale study was designed for providing necessary parameter optimization

  9. Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ready-to-bake cookie dough by gamma and electron beam irradiation.

    PubMed

    Jeong, Seul-Gi; Kang, Dong-Hyun

    2017-06-01

    This study was conducted to investigate the efficacy of gamma and electron beam irradiation to inactivate foodborne pathogens in ready-to-bake cookie dough and to determine the effect on quality by measuring color and texture changes. Cookie dough inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, or Listeria monocytogenes was subjected to gamma and electron beam irradiation, with doses ranging from 0 to 3 kGy. As the radiation dose increased, the inactivation effect increased among all tested pathogens. After 3.0 kGy of gamma and electron beam irradiation, numbers of inoculated pathogens were reduced to below the detection limit (1 log CFU/g). The D 10 -values of E. coli O157:H7, S. Typhimurium, and L. monocytogenes in cookie dough treated with gamma rays were 0.53, 0.51, and 0.71 kGy, respectively, which were similar to those treated by electron beam with the same dose. Based on the D 10 -value of pathogens in cookie dough, L. monocytogenes showed more resistance to both treatments than did E. coli O157:H7 and S. Typhimurium. Color values and textural characteristics of irradiated cookie dough were not significantly (P > 0.05) different from the control. These results suggest that irradiation can be applied to control pathogens in ready-to-bake cookie dough products without affecting quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Determination of Time Dependent Virus Inactivation Rates

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Vogler, E. T.

    2003-12-01

    A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.

  11. M-BAND Analysis of Chromosome Aberration Induced by Fe-Ions in Human Epithelial Cells Cultured in 3-Dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelia cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultued at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures. Therefore, the RBE for chromosome aberrations obtained in a 2D model may not represent accurately the RBE for tissues.

  12. Role of Androgen Receptor CAG Repeat Polymorphism and X-Inactivation in the Manifestation of Recurrent Spontaneous Abortions in Indian Women

    PubMed Central

    Aruna, Meka; Dasgupta, Shilpi; Sirisha, Pisapati V. S.; Andal Bhaskar, Sadaranga; Tarakeswari, Surapaneni; Singh, Lalji; Reddy, B. Mohan

    2011-01-01

    The aim of the present study was to investigate the role of CAG repeat polymorphism and X-chromosome Inactivation (XCI) pattern in Recurrent Spontaneous Abortions among Indian women which has not been hitherto explored. 117 RSA cases and 224 Controls were included in the study. Cases were recruited from two different hospitals - Lakshmi Fertility Clinic, Nellore and Fernandez Maternity Hospital, Hyderabad. Controls were roughly matched for age, ethnicity and socioeconomic status. The CAG repeats of the Androgen Receptor gene were genotyped using a PCR-based assay and were analysed using the GeneMapper software to determine the CAG repeat length. XCI analysis was also carried out to assess the inactivation percentages. RSA cases had a significantly greater frequency of allele sizes in the polymorphic range above 19 repeats (p = 0.006), which is the median value of the controls, and in the biallelic mean range above 21 repeats (p = 0.002). We found no evidence of abnormal incidence of skewed X-inactivation. We conclude that longer CAG repeat lengths are associated with increased odds for RSA with statistical power estimated to be ∼90%. PMID:21423805

  13. Modelling the influence of total suspended solids on E. coli removal in river water.

    PubMed

    Qian, Jueying; Walters, Evelyn; Rutschmann, Peter; Wagner, Michael; Horn, Harald

    2016-01-01

    Following sewer overflows, fecal indicator bacteria enter surface waters and may experience different lysis or growth processes. A 1D mathematical model was developed to predict total suspended solids (TSS) and Escherichia coli concentrations based on field measurements in a large-scale flume system simulating a combined sewer overflow. The removal mechanisms of natural inactivation, UV inactivation, and sedimentation were modelled. For the sedimentation process, one, two or three particle size classes were incorporated separately into the model. Moreover, the UV sensitivity coefficient α and natural inactivation coefficient kd were both formulated as functions of TSS concentration. It was observed that the E. coli removal was predicted more accurately by incorporating two particle size classes. However, addition of a third particle size class only improved the model slightly. When α and kd were allowed to vary with the TSS concentration, the model was able to predict E. coli fate and transport at different TSS concentrations accurately and flexibly. A sensitivity analysis revealed that the mechanisms of UV and natural inactivation were more influential at low TSS concentrations, whereas the sedimentation process became more important at elevated TSS concentrations.

  14. The devil is in the details: Transposable element analysis of the Tasmanian devil genome.

    PubMed

    Nilsson, Maria A

    2016-01-01

    The third marsupial genome was sequenced from the Tasmanian devil ( Sarcophilus harrisii ), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the L ong IN terspersed E lement 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the S hort IN terspersed E lements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.

  15. The devil is in the details: Transposable element analysis of the Tasmanian devil genome

    PubMed Central

    Nilsson, Maria A.

    2016-01-01

    ABSTRACT The third marsupial genome was sequenced from the Tasmanian devil (Sarcophilus harrisii), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the Long INterspersed Element 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the Short INterspersed Elements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome. PMID:27066301

  16. N-terminal RASSF family

    PubMed Central

    Underhill-Day, Nicholas; Hill, Victoria

    2011-01-01

    Epigenetic inactivation of tumor suppressor genes is a hallmark of cancer development. RASSF1A (Ras Association Domain Family 1 isoform A) tumor suppressor gene is one of the most frequently epigenetically inactivated genes in a wide range of adult and children's cancers and could be a useful molecular marker for cancer diagnosis and prognosis. RASSF1A has been shown to play a role in several biological pathways, including cell cycle control, apoptosis and microtubule dynamics. RASSF2, RASSF4, RASSF5 and RASSF6 are also epigenetically inactivated in cancer but have not been analyzed in as wide a range of malignancies as RASSF1A. Recently four new members of the RASSF family were identified these are termed N-Terminal RASSF genes (RASSF7–RASSF10). Molecular and biological analysis of these newer members has just begun. This review highlights what we currently know in respects to structural, functional and molecular properties of the N-Terminal RASSFs. PMID:21116130

  17. Development and Testing of a Method for Validating Chemical Inactivation of Ebola Virus.

    PubMed

    Alfson, Kendra J; Griffiths, Anthony

    2018-03-13

    Complete inactivation of infectious Ebola virus (EBOV) is required before a sample may be removed from a Biosafety Level 4 laboratory. The United States Federal Select Agent Program regulations require that procedures used to demonstrate chemical inactivation must be validated in-house to confirm complete inactivation. The objective of this study was to develop a method for validating chemical inactivation of EBOV and then demonstrate the effectiveness of several commonly-used inactivation methods. Samples containing infectious EBOV ( Zaire ebolavirus ) in different matrices were treated, and the sample was diluted to limit the cytopathic effect of the inactivant. The presence of infectious virus was determined by assessing the cytopathic effect in Vero E6 cells. Crucially, this method did not result in a loss of infectivity in control samples, and we were able to detect less than five infectious units of EBOV ( Zaire ebolavirus ). We found that TRIzol LS reagent and RNA-Bee inactivated EBOV in serum; TRIzol LS reagent inactivated EBOV in clarified cell culture media; TRIzol reagent inactivated EBOV in tissue and infected Vero E6 cells; 10% neutral buffered formalin inactivated EBOV in tissue; and osmium tetroxide vapors inactivated EBOV on transmission electron microscopy grids. The methods described herein are easily performed and can be adapted to validate inactivation of viruses in various matrices and by various chemical methods.

  18. Mildly Acidic pH Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex Virus 1 Glycoprotein B and Inactivation of Viral Entry.

    PubMed

    Weed, Darin J; Pritchard, Suzanne M; Gonzalez, Floricel; Aguilar, Hector C; Nicola, Anthony V

    2017-03-01

    Herpes simplex virus (HSV) entry into a subset of cells requires endocytosis and endosomal low pH. Preexposure of isolated virions to mildly acidic pH of 5 to 6 partially inactivates HSV infectivity in an irreversible manner. Acid inactivation is a hallmark of viruses that enter via low-pH pathways; this occurs by pretriggering conformational changes essential for fusion. The target and mechanism(s) of low-pH inactivation of HSV are unclear. Here, low-pH-treated HSV-1 was defective in fusion activity and yet retained normal levels of attachment to cell surface heparan sulfate and binding to nectin-1 receptor. Low-pH-triggered conformational changes in gB reported to date are reversible, despite irreversible low-pH inactivation. gB conformational changes and their reversibility were measured by antigenic analysis with a panel of monoclonal antibodies and by detecting changes in oligomeric conformation. Three-hour treatment of HSV-1 virions with pH 5 or multiple sequential treatments at pH 5 followed by neutral pH caused an irreversible >2.5 log infectivity reduction. While changes in several gB antigenic sites were reversible, alteration of the H126 epitope was irreversible. gB oligomeric conformational change remained reversible under all conditions tested. Altogether, our results reveal that oligomeric alterations and fusion domain changes represent distinct conformational changes in gB, and the latter correlates with irreversible low-pH inactivation of HSV. We propose that conformational change in the gB fusion domain is important for activation of membrane fusion during viral entry and that in the absence of a host target membrane, this change results in irreversible inactivation of virions. IMPORTANCE HSV-1 is an important pathogen with a high seroprevalence throughout the human population. HSV infects cells via multiple pathways, including a low-pH route into epithelial cells, the primary portal into the host. HSV is inactivated by low-pH preexposure, and gB, a class III fusion protein, undergoes reversible conformational changes in response to low-pH exposure. Here, we show that low-pH inactivation of HSV is irreversible and due to a defect in virion fusion activity. We identified an irreversible change in the fusion domain of gB following multiple sequential low-pH exposures or following prolonged low-pH treatment. This change appears to be separable from the alteration in gB quaternary structure. Together, the results are consistent with a model by which low pH can have an activating or inactivating effect on HSV depending on the presence of a target membrane. Copyright © 2017 American Society for Microbiology.

  19. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.

    PubMed

    Dulermo, Thierry; Lazar, Zbigniew; Dulermo, Rémi; Rakicka, Magdalena; Haddouche, Ramedane; Nicaud, Jean-Marc

    2015-09-01

    The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica. Copyright © 2015. Published by Elsevier B.V.

  20. Inactivation of Caliciviruses

    PubMed Central

    Nims, Raymond; Plavsic, Mark

    2013-01-01

    The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses) display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus) are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses. PMID:24276023

  1. Development of a method for the characterization and operation of UV-LED for water treatment.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2017-10-01

    Tremendous improvements in semiconductor technology have made ultraviolet light-emitting diodes (UV-LEDs) a viable alternative to conventional UV sources for water treatment. A robust and validated experimental protocol for studying the kinetics of microorganism inactivation is key to the further development of UV-LEDs for water treatment. This study proposes a protocol to operate UV-LEDs and control their output as a polychromatic radiation source. In order to systematically develop this protocol, the results of spectral power distribution, radiation profile, and radiant power measurements of a variety of UV-LEDs are presented. A wide range of UV-LEDs was selected for this study, covering various UVA, UVB, and UVC wavelengths, viewing angles from 3.5° to 135°, and a variety of output powers. The effects of operational conditions and measurement techniques were investigated on these UV-LEDs using a specially designed and fabricated setup. Operating conditions, such as the UV-LED electrical current and solder temperature, were found to significantly affect the power and peak wavelength output. The measurement techniques and equipment, including the detector size, detector distance from the UV-LED, and potential reflection from the environment, were shown to influence the results for many of the UV-LEDs. The results obtained from these studies were analyzed and applied to the development of a protocol for UV-LED characterization. This protocol is presented as a guideline that allows the operation and control of UV-LEDs in any structure, as well as accurately measuring the UV-LED output. Such information is essential for performing a reliable UV-LED assessment for the inactivation of microorganisms and for obtaining precise kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor.

    PubMed

    Polo-López, M I; Fernández-Ibáñez, P; Ubomba-Jaswa, E; Navntoft, C; García-Fernández, I; Dunlop, P S M; Schmid, M; Byrne, J A; McGuigan, K G

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Comparison between the effects of ultrasound and gamma-rays on the inactivation of Saccharomyces cerevisiae: analyses of cell membrane permeability and DNA or RNA synthesis by flow cytometry.

    PubMed

    Oyane, Ikuko; Takeda, Tomo; Oda, Yasunori; Sakata, Takashi; Furuta, Masakazu; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokuro

    2009-04-01

    The effects of 200 kHz ultrasonic irradiation on DNA or RNA formation and membrane permeability of yeast cells were investigated by flow cytometry and compared with those of (60)Co gamma-ray radiation. Colony counting analyses were also performed for comparison. It was observed that the colony-forming activity of yeast cells was not affected by small doses of ultrasonic irradiation, but was closely related to the amounts of sonolytically formed hydrogen peroxide at concentrations of more than 80 microM. On the other hand, gamma-rays directly retarded colony-forming ability in addition to the effects of radiolytically formed hydrogen peroxide. The results obtained by flow cytometry also indicated that the amounts of DNA or RNA formed decreased with an increase in ultrasonic irradiation time without any threshold. These results indicated that flow cytometry can show early growth activities, but that colony counting analyses are insufficient to evaluate continuous and quantitative changes in these activities. In addition, by analyzing the amounts of DNA or RNA formed in the presence of the same amount of hydrogen peroxide, it was found that DNA or RNA formation behavior in the presence of hydrogen peroxide with no irradiation was similar to that following ultrasonic irradiation. These results suggested that similar chemical effects due to the formation of hydrogen peroxide were produced during ultrasonic irradiation. In addition, physical effects of ultrasound, such as shock wave, hardly contributed to cell inactivation and cell membrane damage, because relatively high frequency ultrasound was used here. In the case of gamma-ray radiation, direct physical effects on the cells were clearly observed.

  4. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies

    PubMed Central

    2010-01-01

    Background Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. Results A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. Conclusions The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the evolutionary transition from a free-living ancestor to a host-dependent lifestyle, with a massive proliferation of mobile genetic elements mainly of phage origin although with minor impact in the process of gene inactivation that is taking place in this bacterial genome. The metabolic analysis of the whole endosymbiotic consortia of tsetse flies have revealed a possible phenomenon of metabolic complementation between primary and secondary endosymbionts that can contribute to explain the co-existence of both bacterial endosymbionts in the context of the tsetse host. PMID:20649993

  5. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  6. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  7. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  8. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  9. Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development

    PubMed Central

    Li, Hongjie; Watford, Wendy; Li, Cuiling; Parmelee, Alissa; Bryant, Mark A.; Deng, Chuxia; O’Shea, John; Lee, Sean Bong

    2007-01-01

    Ewing sarcoma gene EWS encodes a putative RNA-binding protein with proposed roles in transcription and splicing, but its physiological role in vivo remains undefined. Here, we have generated Ews-deficient mice and demonstrated that EWS is required for the completion of B cell development and meiosis. Analysis of Ews–/– lymphocytes revealed a cell-autonomous defect in precursor B lymphocyte (pre–B lymphocyte) development. During meiosis, Ews-null spermatocytes were deficient in XY bivalent formation and showed reduced meiotic recombination, resulting in massive apoptosis and complete arrest in gamete maturation. Inactivation of Ews in mouse embryonic fibroblasts resulted in premature cellular senescence, and the mutant animals showed hypersensitivity to ionizing radiation. Finally, we showed that EWS interacts with lamin A/C and that loss of EWS results in a reduced lamin A/C expression. Our findings reveal essential functions for EWS in pre–B cell development and meiosis, with proposed roles in DNA pairing and recombination/repair mechanisms. Furthermore, we demonstrate a novel role of EWS in cellular senescence, possibly through its interaction and modulation of lamin A/C. PMID:17415412

  10. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  11. Identification of irradiated refrigerated pork with the DNA comet assay

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.; Villavicencio, A. L. C. H.

    2004-09-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells (``Comet Assay'') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a 60Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sa~o Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6°C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA ``Comet Assay''. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  12. Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caratto, V.; CNR-SPIN, Corso Perrone 24, 16156 Genova; Aliakbarian, B.

    2013-06-01

    Highlights: ► Photocatalytic deactivation of Escherichia coli in presence of TiO{sub 2} nanoparticles ► The presence of catalyst is less important when the radiation is in the UV range ► Rutile has an higher efficiency respect to anatase under visible light. - Abstract: The photocatalytic deactivation of Escherichia coli HB101 by two different structures of TiO{sub 2}, rutile and anatase (used separately and in a 1:1 mixture), was examined. The microorganism was deposited on a filter membrane containing 520 mg/m{sup 2} of TiO{sub 2} and then irradiated by a neon lamp. In order to study the rate of deactivation ofmore » the microorganism we studied four different exposure times: 20, 40, 60 and 90 min. The results showed that rutile has an antimicrobial activity higher than anatase, while the mixture had values near to the average between them in every condition. The highest difference in the inactivation capacity of the two structures is observable at shorter times. The effect of the different crystal phases was evaluated by Scanning Electron Microscopy.« less

  13. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  14. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films.

    PubMed

    Ha, Jae-Won; Back, Kyeong-Hwan; Kim, Yoon-Hee; Kang, Dong-Hyun

    2016-08-01

    In this study, the efficacy of using UV-C light to inactivate sliced cheese inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and, packaged with 0.07 mm films of polyethylene terephthalate (PET), polyvinylchloride (PVC), polypropylene (PP), and polyethylene (PE) was investigated. The results show that compared with PET and PVC, PP and PE films showed significantly reduced levels of the three pathogens compared to inoculated but non-treated controls. Therefore, PP and PE films of different thicknesses (0.07 mm, 0.10 mm, and 0.13 mm) were then evaluated for pathogen reduction of inoculated sliced cheese samples. Compared with 0.10 and 0.13 mm, 0.07 mm thick PP and PE films did not show statistically significant reductions compared to non-packaged treated samples. Moreover, there were no statistically significant differences between the efficacy of PP and PE films. These results suggest that adjusted PP or PE film packaging in conjunction with UV-C radiation can be applied to control foodborne pathogens in the dairy industry. Copyright © 2016. Published by Elsevier Ltd.

  15. Sensitization of cancer cells to radiation by selenadiazole derivatives by regulation of ROS-mediated DNA damage and ERK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qiang; Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou; Zhou, Yangliang

    2014-06-20

    Highlights: • Selenadiazole derivatives could be used as an effective and low toxic sensitizer for radiotherapy. • Selenadiazole derivatives enhances radiation-induced growth inhibition on A375 cells through induction of G2/M arrest. • ROS-mediated signaling pathways play important roles in radiosensitization of selenadiazole derivatives. - Abstract: X-ray-based radiotherapy represents one of the most effective ways in treating human cancers. However, radioresistance and side effect remain as the most challenging issue. This study describes the design and application of novel selenadiazole derivatives as radiotherapy sensitizers to enhance X-ray-induced inhibitory effects on A375 human melanoma and Hela human cervical carcinoma cells. The resultsmore » showed that, pretreatment of the cells with selenadiazole derivatives dramatically enhance X-ray-induced growth inhibition and colony formation. Flow cytometry analysis indicates that the sensitization by selenadiazole derivatives was mainly caused by induction of G2/M cell cycle arrest. Results of Western blotting demonstrated that the combined treatment-induced A375 cells growth inhibition was achieved by triggering reactive oxygen species-mediated DNA damage involving inactivation of AKT and MAPKs. Further investigation revealed that selenadiazole derivative in combination with X-ray could synergistically inhibit the activity of thioredoxin reductase-1 in A375 cells. Taken together, these results suggest that selenadiazole derivatives can act as novel radiosensitizer with potential application in combating human cancers.« less

  16. C/EBPα expression is downregulated in human nonmelanoma skin cancers and inactivation of C/EBPα confers susceptibility to UVB-induced skin squamous cell carcinomas.

    PubMed

    Thompson, Elizabeth A; Zhu, Songyun; Hall, Jonathan R; House, John S; Ranjan, Rakesh; Burr, Jeanne A; He, Yu-Ying; Owens, David M; Smart, Robert C

    2011-06-01

    Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G(1) checkpoint, and diminished or ablated expression of C/EBPα results in G(1) checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB.

  17. C/EBPα Expression Is Downregulated in Human Nonmelanoma Skin Cancers and Inactivation of C/EBPα Confers Susceptibility to UVB-Induced Skin Squamous Cell Carcinomas

    PubMed Central

    Thompson, Elizabeth A.; Zhu, Songyun; Hall, Jonathan R.; House, John S.; Ranjan, Rakesh; Burr, Jeanne A.; He, Yu-Ying; Owens, David M.; Smart, Robert C.

    2012-01-01

    Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G1 checkpoint, and diminished or ablated expression of C/EBPα results in G1 checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB. PMID:21346772

  18. Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States

    PubMed Central

    Jo, Sooyeon

    2017-01-01

    Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at −120 mV (3% inhibition by 100 µM lacosamide) but greatly enhanced at −80 mV (43% inhibition by 100 µM lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at −120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at −40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µM lidocaine or 300 µM carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding. PMID:28119481

  19. Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States.

    PubMed

    Jo, Sooyeon; Bean, Bruce P

    2017-04-01

    Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at -120 mV (3% inhibition by 100 µ M lacosamide) but greatly enhanced at -80 mV (43% inhibition by 100 µ M lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at -120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at -40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µ M lidocaine or 300 µ M carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Germination and Inactivation of Alicyclobacillus acidoterrestris Spores Induced by Moderate Hydrostatic Pressure.

    PubMed

    Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J

    2015-01-01

    Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

  1. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    PubMed

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors

    PubMed Central

    Hume, Adam J.; Ames, Joshua; Rennick, Linda J.; Duprex, W. Paul; Marzi, Andrea; Tonkiss, John; Mühlberger, Elke

    2016-01-01

    Effective inactivation of biosafety level 4 (BSL-4) pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using “worst-case scenario” procedures to ensure complete sample inactivation. PMID:27455307

  3. Inactivation of Heterosigma akashiwo in ballast water by circular orifice plate-generated hydrodynamic cavitation.

    PubMed

    Feng, Daolun; Zhao, Jie; Liu, Tian

    2016-01-01

    The discharge of alien ballast water is a well-known, major reason for marine species invasion. Here, circular orifice plate-generated hydrodynamic cavitation was used to inactivate Heterosigma akashiwo in ballast water. In comparison with single- and multihole orifice plates, the conical-hole orifice plate yielded the highest inactivation percentage, 51.12%, and consumed only 6.84% energy (based on a 50% inactivation percentage). Repeating treatment, either using double series-connection or circling inactivation, elevated the inactivation percentage, yet consumed much more energy. The results indicate that conical-hole-generated hydrodynamic cavitation shows great potential as a pre-inactivation method for ballast water treatment.

  4. Capsid functions of inactivated human picornaviruses and feline calicivirus.

    PubMed

    Nuanualsuwan, Suphachai; Cliver, Dean O

    2003-01-01

    The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72 degrees C), and physiological temperature (37 degrees C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37 degrees C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72 degrees C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37 degrees C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72 degrees C inactivation is the capsid and that the target of thermal inactivation (37 degrees C versus 72 degrees C) is temperature dependent.

  5. A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation

    PubMed Central

    Cote, Christopher K.; Buhr, Tony; Bernhards, Casey B.; Bohmke, Matthew D.; Calm, Alena M.; Esteban-Trexler, Josephine S.; Hunter, Melissa; Katoski, Sarah E.; Kennihan, Neil; Klimko, Christopher P.; Miller, Jeremy A.; Minter, Zachary A.; Pfarr, Jerry W.; Prugh, Amber M.; Quirk, Avery V.; Rivers, Bryan A.; Shea, April A.; Shoe, Jennifer L.; Sickler, Todd M.; Young, Alice A.; Fetterer, David P.; Welkos, Susan L.; McPherson, Derrell; Fountain, Augustus W.

    2018-01-01

    ABSTRACT In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10−6. Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques. IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism. PMID:29654186

  6. Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology.

    PubMed

    Johnston, Calum; Bootsma, Hester J; Aldridge, Christine; Manuse, Sylvie; Gisch, Nicolas; Schwudke, Dominik; Hermans, Peter W M; Grangeasse, Christophe; Polard, Patrice; Vollmer, Waldemar; Claverys, Jean-Pierre

    2015-01-01

    CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.

  7. In Vitro Cytotoxicity of Low-Dose-Rate Radioimmunotherapy by the Alpha-Emitting Radioimmunoconjugate Thorium-227-DOTA-Rituximab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahle, Jostein, E-mail: jostein.dahle@rr-research.n; Krogh, Cecilie; Melhus, Katrine B.

    2009-11-01

    Purpose: To determine whether the low-dose-rate alpha-particle-emitting radioimmunoconjugate {sup 227}Th-1,4,7,10-p-isothiocyanato-benzyl-tetraazacyclododecane-1,4,7, 10-tetraacetic acid (DOTA)-rituximab can be used to inactivate lymphoma cells growing as single cells and small colonies. Methods and Materials: CD20-positive lymphoma cell lines were treated with {sup 227}Th-DOTA-rituximab for 1-5 weeks. To simulate the in vivo situation with continuous but decreasing supply of radioimmunoconjugates from the blood pool, the cells were not washed after incubation with {sup 227}Th-DOTA-rituximab, but half of the medium was replaced with fresh medium, and cell concentration and cell-bound activity were determined every other day after start of incubation. A microdosimetric model was established tomore » estimate the average number of hits in the nucleus for different localizations of activity. Results: There was a specific targeted effect on cell growth of the {sup 227}Th-DOTA-rituximab treatment. Although the cells were not washed after incubation with {sup 227}Th-DOTA-rituximab, the average contribution of activity in the medium to the mean dose was only 6%, whereas the average contribution from activity on the cells' own surface was 78%. The mean dose rates after incubation with 800 Bq/mL {sup 227}Th-DOTA-rituximab varied from 0.01 to 0.03 cGy/min. The average delay in growing from 10{sup 5} to 10{sup 7} cells/mL was 15 days when the cells were treated with a mean absorbed radiation dose of 2 Gy alpha-particle radiation from {sup 227}Th-DOTA-rituximab, whereas it was 11 days when the cells were irradiated with 6 Gy of X-radiation. The relative biologic effect of the treatment was estimated to be 2.9-3.4. Conclusions: The low-dose-rate radioimmunoconjugate {sup 227}Th-DOTA-rituximab is suitable for inactivation of single lymphoma cells and small colonies of lymphoma cells.« less

  8. Modulation of slow inactivation in human cardiac Kv1.5 channels by extra- and intracellular permeant cations

    PubMed Central

    Fedida, David; Maruoka, Neil D; Lin, Shunping

    1999-01-01

    The properties and regulation of slow inactivation by intracellular and extracellular cations in the human heart K+ channel hKv1.5 have been investigated. Extensive NH2- and COOH-terminal deletions outside the central core of transmembrane domains did not affect the degree of inactivation. The voltage dependence of steady-state inactivation curves of hKv1.5 channels was unchanged in Rb+ and Cs+, compared with K+, but biexponential inactivation over 10 s was reduced from ∼100% of peak current in Na+ to ∼65% in K+, ∼50% in Rb+ and ∼30% in Cs+. This occurred as a result of a decrease in both fast and slow components of inactivation, with little change in inactivation time constants. Changes in extracellular cation species and concentration (5-300 mM) had only small effects on the rates of inactivation and recovery from inactivation (τrecovery∼1 s). Mutation of residues at a putative regulatory site at R487 in the outer pore mouth did not affect slow inactivation or recovery from inactivation of hKv1.5, although sensitivity to extracellular TEA was conferred. Symmetrical reduction of both intra- and extracellular cation concentrations accelerated and augmented both components of inactivation of K+ (Kd = 34.7 mM) and Cs+ (Kd = 20.5 mM) currents. These effects could be quantitatively accounted for by unilateral reduction of intracellular K+ (Ki+) (Kd = 43.4 mM) or Csi+ with constant 135 mM external ion concentrations. We conclude that inactivation and recovery from inactivation in hKv1.5 were not typically C-type in nature. However, the ion species dependence of inactivation was still closely coupled to ion permeation through the pore. Intracellular ion modulatory actions were more potent than extracellular actions, although still of relatively low affinity. These results suggest the presence of ion binding sites capable of regulating inactivation located on both intracellular and extracellular sides of the pore selectivity filter. PMID:10050000

  9. Survivability of immunoassay reagents exposed to the space radiation environment on board the ESA BIOPAN-6 platform as a prelude to performing immunoassays on Mars.

    PubMed

    Derveni, Mariliza; Allen, Marjorie; Sawakuchi, Gabriel O; Yukihara, Eduardo G; Richter, Lutz; Sims, Mark R; Cullen, David C

    2013-01-01

    The Life Marker Chip (LMC) instrument is an immunoassay-based sensor that will attempt to detect signatures of life in the subsurface of Mars. The molecular reagents at the core of the LMC have no heritage of interplanetary mission use; therefore, the design of such an instrument must take into account a number of risk factors, including the radiation environment that will be encountered during a mission to Mars. To study the effects of space radiation on immunoassay reagents, primarily antibodies, a space study was performed on the European Space Agency's 2007 BIOPAN-6 low-Earth orbit (LEO) space exposure platform to complement a set of ground-based radiation studies. Two antibodies were used in the study, which were lyophilized and packaged in the intended LMC format and loaded into a custom-made sample holder unit that was mounted on the BIOPAN-6 platform. The BIOPAN mission went into LEO for 12 days, after which all samples were recovered and the antibody binding performance was measured via enzyme-linked immunosorbent assays (ELISA). The factors expected to affect antibody performance were the physical conditions of a space mission and the exposure to space conditions, primarily the radiation environment in LEO. Both antibodies survived inactivation by these factors, as concluded from the comparison between the flight samples and a number of shipping and storage controls. This work, in combination with the ground-based radiation tests on representative LMC antibodies, has helped to reduce the risk of using antibodies in a planetary exploration mission context.

  10. Survival of microorganisms in space protected by meteorite material: results of the experiment 'EXOBIOLOGIE' of the PERSEUS mission.

    PubMed

    Rettberg, P; Eschweiler, U; Strauch, K; Reitz, G; Horneck, G; Wanke, H; Brack, A; Barbier, B

    2002-01-01

    During the early evolution of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life we have performed space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. The protective effects of anorganic substances like artificial or real meteorites were determined on the MIR station. In the experiment EXOBIOLOGIE of the French PERSEUS mission (1999) it was found that very thin layers of anorganic material did not protect spores against the deleterious effects of energy-rich UV radiation in space to the expected amount, but that layers of UV radiation inactivated spores serve as a UV-shield by themselves, so that a hypothetical interplanetary transfer of life by the transport of microorganisms inside rocks through the solar system cannot be excluded, but requires the shielding of a substantial mass of anorganic substances. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  11. Radiation track, DNA damage and response—a review

    NASA Astrophysics Data System (ADS)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  12. Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium

    PubMed Central

    González-Pérez, Vivian; Neely, Alan; Tapia, Christian; González-Gutiérrez, Giovanni; Contreras, Gustavo; Orio, Patricio; Lagos, Verónica; Rojas, Guillermo; Estévez, Tania; Stack, Katherine; Naranjo, David

    2008-01-01

    After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches—the so called C inactivation—is a constriction of the external mouth of the channel pore that prevents K+ ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was −90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814–826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a “foot in the door” mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics. PMID:19029372

  13. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water.

    PubMed

    Abeledo-Lameiro, María Jesús; Ares-Mazás, Elvira; Gómez-Couso, Hipólito

    2016-10-01

    Cryptosporidium is a genus of enteric protozoan parasites of medical and veterinary importance, whose oocysts have been reported to occur in different types of water worldwide, offering a great resistant to the water treatment processes. Heterogeneous solar photocatalysis using titanium dioxide (TiO2) slurry was evaluated on inactivation of Cryptosporidium parvum oocysts in water. Suspensions of TiO2 (0, 63, 100 and 200mg/L) in distilled water (DW) or simulated municipal wastewater treatment plant (MWTP) effluent spiked with C. parvum oocysts were exposed to simulated solar radiation. The use of TiO2 slurry at concentrations of 100 and 200mg/L in DW yielded a high level of oocyst inactivation after 5h of exposure (4.16±2.35% and 15.03±4.54%, respectively, vs 99.33±0.58%, initial value), representing a good improvement relative to the results obtained in the samples exposed without TiO2 (51.06±9.35%). However, in the assays carried out using simulated MWTP effluent, addition of the photocatalyst did not offer better results. Examination of the samples under bright field and epifluorescence microscopy revealed the existence of aggregates comprising TiO2 particles and parasitic forms, which size increased as the concentration of catalyst and the exposure time increased, while the intensity of fluorescence of the oocyst walls decreased. After photocatalytic disinfection process, the recovery of TiO2 slurry by sedimentation provided a substantial reduction in the parasitic load in treated water samples (57.81±1.10% and 82.10±2.64% for 200mg/L of TiO2 in DW and in simulated MWTP effluent, respectively). Although further studies are need to optimize TiO2 photocatalytic disinfection against Cryptosporidium, the results obtained in the present study show the effectiveness of solar photocatalysis using TiO2 slurry in the inactivation of C. parvum oocysts in distilled water. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53

    PubMed Central

    Chen, Bo; Simpson, Dennis A.; Zhou, Yingchun; Mitra, Amritava; Mitchell, David L.; Cordeiro-Stone, Marila; Kaufmann, William K.

    2015-01-01

    After treatment with ultraviolet radiation (UV), human fibroblasts that express the HPV type 16 E6 oncoprotein display defects in repair of cyclobutane pyrimidine dimers, hypersensitivity to inactivation of clonogenic survival and an inability to sustain DNA replication. To determine whether these effects are specific to depletion of p53 or inactivation of its function, fibroblast lines were constructed with ectopic expression of a dominant-negative p53 allele (p53-H179Q) to inactivate function or a short-hairpin RNA (p53-RNAi) to deplete expression of p53. Only the expression of HPV16E6 sensitized fibroblasts to UV or the chemical carcinogen, benzo[a]pyrene diolepoxide I (BPDE). Carcinogen-treated cells expressing p53-H179Q or p53-RNAi were resistant to inactivation of colony formation and did not suffer replication arrest. CHK1 is a key checkpoint kinase in the response to carcinogen-induced DNA damage. Control and p53-RNAi-expressing fibroblasts displayed phosphorylation of Ser345 on CHK1 45–120 min after carcinogen treatment with a return to near baseline phosphorylation by 6 h after treatment. HPV16E6-expressing fibroblasts displayed enhanced and sustained phosphorylation of CHK1. This was associated with enhanced phosphorylation of Thr68 on CHK2 and Ser139 on H2AX, both markers of severe replication stress and DNA double strand breaks. Incubation with the phosphatase inhibitor okadaic acid produced more phosphorylation of CHK1 in UV-treated HPV16E6-expressing cells than in p53-H179Q-expressing cells suggesting that HPV16E6 may interfere with the recovery of coupled DNA replication at replication forks that are stalled at [6-4]pyrimidine-pyrimidone photoproducts and BPDE-DNA adducts. The results indicate that HPV16E6 targets a protein or proteins other than p53 to deregulate the activity of CHK1 in carcinogen-damaged cells. PMID:19411857

  15. Quasi-specific access of the potassium channel inactivation gate

    PubMed Central

    Venkataraman, Gaurav; Srikumar, Deepa; Holmgren, Miguel

    2014-01-01

    Many voltage-gated potassium channels open in response to membrane depolarization and then inactivate within milliseconds. Neurons use these channels to tune their excitability. In Shaker K+ channels, inactivation is caused by the cytoplasmic amino terminus, termed the inactivation gate. Despite having four such gates, inactivation is caused by the movement of a single gate into a position that occludes ion permeation. The pathway that this single inactivation gate takes into its inactivating position remains unknown. Here we show that a single gate threads through the intracellular entryway of its own subunit, but the tip of the gate has sufficient freedom to interact with all four subunits deep in the pore, and does so with equal probability. This pathway demonstrates that flexibility afforded by the inactivation peptide segment at the tip of the N-terminus is used to mediate function. PMID:24909510

  16. Planetary quarantine program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A quantitative means was developed to investigate the sensitivity of current spacecraft sterilization plans to variations in D-values. A quantitative expression was derived to represent the distribution of D-values among a population of naturally occurring organisms. An investigation was made of (1) the inactivation of both Bacillus subtilis var. niger spores and Cape Kennedy soil spores by gamma-radiation at room temperature in a nitrogen environment, and (2) the thermoradiation resistance of Cape Kennedy soil spores at elevated temperatures below 125 C. The relation between standard survival experiments with bacterial spores in soils and results obtained on spacecraft surfaces is discussed. Sporocidal properties of aqueous formaldehyde can be increased by elevating the temperature.

  17. Laser inactivation of pathogenic viruses in water

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-03-01

    Currently there is a situation that makes it difficult to provide the population with quality drinking water for the sanitary-hygienic requirements. One of the urgent problems is the need for water disinfection. Since the emergence of microorganisms that are pathogens transmitted through water such as typhoid, cholera, etc. requires constant cleansing of waters against pathogenic bacteria. In the water treatment process is destroyed up to 98% of germs, but among the remaining can be pathogenic viruses, the destruction of which requires special handling. As a result, the conducted research the following methods have been proposed for combating harmful microorganisms: sterilization of water by laser radiation and using a UV lamp.

  18. Innovative methods of energy transfer.

    PubMed

    McBee, L E

    1996-09-01

    Energy is utilized in many forms for processing egg products and other foods. Energy in the form of heat has commonly been used to kill microorganisms and pasteurize eggs. Transfer of energy by convection and conduction is limited by the properties of the egg product. Energy transfer by radiation is being used to advantage in the development of innovative methods to kill or inactivate microorganisms. A review of the electromagnetic spectrum reveals underutilized forms of energy with unique properties. Specific frequencies and method of application are selected for their ability to focus energy toward the destruction of microorganisms and the production of safe food products for the public.

  19. Computer simulation of the processes of inactivation of bacterial cells by dynamic low-coherent speckles

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zhihong, Zhang; Sibo, Zhou; Luo, Qingming; Zudina, Irina; Bednov, Andrey

    2006-05-01

    Biochemical, biophysical and optical aspects of interaction of low-coherent light with bacterial cells have been discussed. Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are connected with speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out.

  20. Effect of Sodium Fluorescein and Plating Medium on Recovery of Irradiated Escherichia coli and Serratia marcescens from Aerosols

    PubMed Central

    Dorsey, Emerson L.; Berendt, Richard F.; Neff, Everett L.

    1970-01-01

    Irradiation of aerosols of either Escherichia coli or Serratia marcescens with simulated solar (xenon) radiation caused a significant decrease in viability. When sodium fluorescein was employed to determine the physical loss of organisms from the aerosol, an additional adverse effect upon survival was noted. The decay curves indicated that at least two mechanisms of inactivation were operative, one due to aerosolization, the other to irradiation. After collection from aerosols, both species of microorganisms grew better on blood agar base than on Casitone agar, but this finding did not appear to be related to the effect of irradiation. PMID:4922085

  1. An initiation-promotion model of tumour prevalence from high-charge and energy radiations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1994-01-01

    A repair/misrepair kinetic model for multiple radiation-induced lesions (mutation inactivation) is coupled to a two-mutation model of initiation-promotion in tissue to provide a parametric description of tumour prevalence in the mouse Harderian gland from high-energy and charge radiations. Track-structure effects are considered using an action-cross section model. Dose-response curves are described for gamma rays and relativistic ions, and good agreement with experiment is found. The effects of nuclear fragmentation are also considered for high-energy proton and alpha-particle exposures. The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. Radiosensitivity parameters found in the model for an initiation mutation (sigma 0 = 7.6 x 10(-10) cm2 and D0 = 148.0 Gy) are somewhat different than previously observed for neoplastic transformation of C3H10T1/2 cell cultures (sigma 0 = 0.7 x 10(-10) cm2 and D0 = 117.0 Gy). We consider the two hypotheses that radiation acts solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma rays and relativistic Fe ions. For fractionated Fe exposures, an inverse-dose-rate effect is provided by a promotion hypothesis with an increase of 30% or more, dependent on the dose level and fractionation schedule, using a mutation rate for promotion similar to that of single-gene mutations.

  2. FTA liver impressions as DNA template for detecting and genotyping fowl adenovirus.

    PubMed

    Moscoso, Hugo; Bruzual, Jose J; Sellers, Holly; Hofacre, Charles L

    2007-03-01

    The feasibility of using liver impressions on Flinders Technology Associates (FTA filter paper for the collection, inactivation, and molecular analysis of fowl adenovirus (FAV) was evaluated. FAV I European Union (EU) serotype 1 spotted on FTA was shown to be inactivated using specific-pathogen-free (SPF) primary chicken embryo liver cell culture as indicated by absence of cytopathic effect. Sensitivity of the polymerase chain reaction (PCR) test using tenfold dilutions of allantoic fluid from 100 to 10-4 for the detection of adenovirus serotype 1 on FTA cards was determined to be 0.0005 mean tissue culture infectious dose per FTA spot. The stability of the DNA from liver impressions on the FTA was found to be 198 days when stored at -20 degrees C. In a trial, inclusion body hepatitis (IBH) was experimentally reproduced in SPF chickens inoculated with FAV I EU serogroup 1, 4, 8, or 11, which presented weakness, pallor, depression, dehydration, and mortality within 6 days after inoculation. PCR performed on FTA liver impressions from the inoculated birds was able to detect all four viruses, and the nucleotide sequence analysis of the amplified PCR products (1219 bp of the hexone gene) revealed the expected serotypes. In addition to the trial, 55 clinical samples were analyzed from liver impressions on FTA cards, and FAV was detected in 11 of 55 (20%). Sequencing analysis showed that the viruses were EU serotypes 4, 5, 9, and 10. The results demonstrate that FTA filter paper inactivates the FAV I and maintains the DNA template for molecular analysis.

  3. Microbial Inactivation for Safe and Rapid Diagnostics of Infectious Samples ▿ †

    PubMed Central

    Sagripanti, Jose-Luis; Hülseweh, Birgit; Grote, Gudrun; Voß, Luzie; Böhling, Katrin; Marschall, Hans-Jürgen

    2011-01-01

    The high risk associated with biological threat agents dictates that any suspicious sample be handled under strict surety and safety controls and processed under high-level containment in specialized laboratories. This study attempted to find a rapid, reliable, and simple method for the complete inactivation of a wide range of pathogens, including spores, vegetative bacteria, and viruses, while preserving microbial nucleic acid fragments suitable for PCRs and proteinaceous epitopes for detection by immunoassays. Formaldehyde, hydrogen peroxide, and guanidium thiocyanate did not completely inactivate high titers of bacterial spores or viruses after 30 min at 21°C. Glutaraldehyde and sodium hypochlorite showed high microbicidal activity but obliterated the PCR or enzyme-linked immunosorbent assay (ELISA) detection of bacterial spores or viruses. High-level inactivation (more than 6 log10) of bacterial spores (Bacillus atrophaeus), vegetative bacteria (Pseudomonas aeruginosa), an RNA virus (the alphavirus Pixuna virus), or a DNA virus (the orthopoxvirus vaccinia virus) was attained within 30 min at 21°C by treatment with either peracetic acid or cupric ascorbate with minimal hindrance of subsequent PCR tests and immunoassays. The data described here should provide the basis for quickly rendering field samples noninfectious for further analysis under lower-level containment and considerably lower cost. PMID:21856830

  4. Liquid-phase study of ozone inactivation of Venezuelan equine encephalomyelitis virus.

    PubMed Central

    Akey, D H; Walton, T E

    1985-01-01

    Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses. PMID:4083884

  5. Liquid-phase study of ozone inactivation of Venezuelan equine encephalomyelitis virus.

    PubMed

    Akey, D H; Walton, T E

    1985-10-01

    Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses.

  6. Inactivation of chloroplast H(+)-ATPase by modification of Lys beta 359, Lys alpha 176 and Lys alpha 266.

    PubMed

    Horbach, M; Meyer, H E; Bickel-Sandkötter, S

    1991-09-01

    Treatment of isolated, latent chloroplast ATPase with pyridoxal-5-phosphate (pyridoxal-P) in presence of Mg2+ causes inhibition of dithiothreitol-activated plus heat-activated ATP hydrolysis. The amount of [3H]pyridoxal-P bound to chloroplast coupling factor 1 (CF1) was estimated to run up to 6 +/- 1 pyridoxal-P/enzyme, almost equally distributed between the alpha- and beta-subunits. Inactivation, however, is complete after binding of 1.5-2 pyridoxal-P/CF1, suggesting that two covalently modified lysines prevent the activation of the enzyme. ADP as well as ATP in presence of Mg2+ protects the enzyme against inactivation and concomittantly prevents incorporation of a part of the 3H-labeled pyridoxal-P into beta- and alpha-subunits. Phosphate prevents labeling of the alpha-subunit, but has only a minor effect on protection against inactivation. The data indicate a binding site at the interface between the alpha- and beta-subunits. Cleavage of the pyridoxal-P-labeled subunits with cyanogen bromide followed by sequence analysis of the labeled peptides led to the detection of Lys beta 359, Lys alpha 176 and Lys alpha 266, which are closely related to proposed nucleotide-binding regions of the alpha- and beta-subunits.

  7. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus

    PubMed Central

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro

    2016-01-01

    Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066

  8. Expression and mutational analysis of Cip/Kip family in early glottic cancer.

    PubMed

    Kim, D-K; Lee, J H; Lee, O J; Park, C H

    2015-02-01

    Genetic alteration of cyclin-dependent kinase inhibitors has been associated with carcinogenesis mechanisms in various organs. This study aimed to evaluate the expression and mutational analysis of Cip/Kip family cyclin-dependent kinase inhibitors (p21CIP1/WAF1, p27KIP1 and p57KIP2) in early glottic cancer. Expressions of Cip/Kip family and p53 were determined by quantitative reverse transcription polymerase chain reaction and densitometry. For the analysis of p21 inactivation, sequence alteration was assessed using single-strand conformational polymorphism polymerase chain reaction. Additionally, the inactivation mechanism of p27 and p57 were investigated using DNA methylation analysis. Reduced expression of p27 and p57 were detected in all samples, whereas the expression of p21 was incompletely down-regulated in 6 of 11 samples. Additionally, single-strand conformational polymorphism polymerase chain reaction analysis showed the p53 mutation at exon 6. Methylation of p27 and p57 was detected by DNA methylation assay. Our results suggest that the Cip/Kip family may have a role as a molecular mechanism of carcinogenesis in early glottic cancer.

  9. Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies.

    PubMed

    Mathes, C; Rosenthal, J J; Armstrong, G M; Gilly, W F

    1997-04-01

    Inactivation of delayed rectifier K conductance (gk) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (approximately -10 mV in 50-70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12-18 degrees C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at -10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12 degrees C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kvl channels studied in heterologous expression systems.

  10. A specific inactivator of mammalian C'4 isolated from nurse shark (Ginglymostoma cirratum) serum.

    PubMed

    Jensen, J A

    1969-08-01

    A material which specifically inactivates mammalian C'4 was isolated from low ionic strength precipitates of nurse shark serum. The C'4 inactivator was not detected in whole serum. The conditions of its generation and its immunoelectrophoretic behavior seem to indicate that it is an enzymatically formed cleavage product of a precursor contained in whole shark serum. The inactivator was partially purified and characterized. It had an S-value of 3.3 (sucrose gradient) which was in agreement with its retardation on gel filtration, was stable between pH 5.0 and 10.0, had a half-life of 5 min at 56 degrees C, pH 7.5, was inactivated by trypsin and was nontoxic. Its powerful anticomplementary activity in vitro and in vivo was solely due to the rapid inactivation of C'4; no other complement components were affected. No cofactor requirement was observed for the equally rapid inactivation of highly purified human and guinea pig C'4. The kinetics of C'4 inactivation and TAME hydrolysis, the greater anodic mobility of inactivated human C'4, and the influence of temperature on the rate of inactivation suggest that the inactivator is an enzyme and C'4 its substrate. This conclusion was supported by the more recent detection of a split product of C'4. Intravenous administration of the C'4 inactivator could prevent lethal Forssman shock and suppress the Arthus reaction in guinea pigs; it prolonged significantly the rejection time of renal xenografts but had no detectable effect on passive cutaneous anaphylaxis. Anaphylatoxin could be generated in C'4 depleted guinea pig serum with the cobra venom factor, but not with immune precipitates. The possible relationship between C'1 esterase and the C'4 inactivator is discussed on the basis of similarities and dissimilarities.

  11. Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies

    PubMed Central

    Mathes, Chris; Rosenthal, Joshua J.C.; Armstrong, Clay M.; Gilly, William F.

    1997-01-01

    Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems. PMID:9101403

  12. The antiallergic effect of kefir Lactobacilli.

    PubMed

    Hong, Wei-Sheng; Chen, Yen-Po; Chen, Ming-Ju

    2010-10-01

    This study demonstrated that oral feeding of heat-inactivated Lactobacillus (L b.) kefiranofaciens M1 from kefir grains effectively inhibited immunoglobulin (Ig) E production in response to ovalbumin (OVA) in vivo. The pattern of cytokine production by splenocyte cells revealed that the levels of cytokines produced by T helper (Th) 1 cells increased, and those of cytokines produced by Th2 cells decreased in the heat-inactivated M1 feeding group. These findings indicated that Lactobacillus kefiranofaciens M1 in the kefir played an important role in antiallergic activities. By additional analysis using flow cytometry and microarray, the mechanism of suppression of IgE production by oral feeding of the heat-inactivated M1 probably occurs because of upregulation of the expression of Cd2, Stat4, and Ifnr leading to skewing the Th1/Th2 balance toward Th1 dominance, elevation of the CD4(+)CD25(+) regulatory T (Treg) percentage, and reduction of activated CD19(+) B cells. Downregulation of complement system and components was also involved in suppression of IgE production. Practical Application: Kefir has long been considered good for health. Its health benefits include immunoregulatory effects. However, there is a lack of knowledge concerning the immunoregulatory effects induced by kefir lactic acid bacteria (LAB). Our data clearly demonstrated the antiallergic activity of kefir LAB, Lactobacillus (L b.) kefiranofaciens M1. By additional analysis using flow cytometry and microarray, the possible mechanism of suppression of IgE production by oral feeding of the heat-inactivated M1 was also elucidated. Our findings indicated that Lactobacillus kefiranofaciens M1 may have a great potential for utilization in functional food products.

  13. Is a 7-day Helicobater pylori treatment enough for eradication and inactivation of gastric inflammatory activity?

    PubMed Central

    Robles-Jara, Carlos; Robles-Medranda, Carlos; Moncayo, Manuel; Landivar, Byron; Parrales, Johnny

    2008-01-01

    AIM: To compare the efficacy of a 7-d vs 10-d triple therapy regarding H pylori eradication, endoscopic findings and histological gastric inflammatory inactivation in the Ecuadorian population. METHODS: 136 patients with dyspepsia and H pylori infection were randomized in 2 groups (68 per group): group 1, 7-d therapy; group 2, 10-d therapy. Both groups received the same medication and daily dosage: omeprazole 20 mg bid, clarithromycin 500 mg bid and amoxicillin 1 g bid. Endoscopy was performed for histological assessment and H pylori infection status before and 8 wk after treatment. RESULTS: H pylori was eradicated in 68% of group 1 vs 83.8% of group 2 for the intention-to-treat analysis (ITT) (P = 0.03; OR = 2.48; 95% CI, 1.1-5.8), and 68% in group 1 vs 88% in group 2 for the per-protocol analysis (PP) (P = 0.008; OR = 3.66; 95% CI, 1.4-10). Endoscopic gastric mucosa normalization was observed in 56.9% in group 1 vs 61.2% in group 2 for ITT, with similar results for the PP, the difference being statistically not significant. The rate of inflammatory inactivation was 69% in group 1 vs 88.7% in group 2 for ITT (P = 0.007; OR = 3.00; 95% CI, 1.2-7.5), and 69% in group 1 vs 96% in group 2 for PP (P = 0.0002; OR = 7.25; 95% CI, 2-26). CONCLUSION: In this Ecuadorian population, the 10-d therapy was more effective than the 7-d therapy for H pylori eradication as well as for gastric mucosa inflammatory inactivation. PMID:18473407

  14. Measuring pKa of activation and pKi of inactivation for influenza hemagglutinin from kinetics of membrane fusion of virions and of HA expressing cells.

    PubMed

    Mittal, Aditya; Shangguan, Tong; Bentz, Joe

    2002-11-01

    The data for the pH dependence of lipid mixing between influenza virus (A/PR/8/34 strain) and fluorescently labeled liposomes containing gangliosides has been analyzed using a comprehensive mass action kinetic model for hemaglutinin (HA)-mediated fusion. Quantitative results obtained about the architecture of HA-mediated membrane fusion site from this analysis are in agreement with the previously reported results from analyses of data for HA-expressing cells fusing with various target membranes. Of the eight or more HAs forming a fusogenic aggregate, only two have to undergo the "essential" conformational change needed to initiate fusion. The mass action kinetic model has been extended to allow the analysis of the pKa for HA activation and pKi for HA inactivation. Inactivation and activation of HA following protonation were investigated for various experimental systems involving different strains of HA (A/PR/8/34, X:31, A/Japan). We find that the pKa for the final protonation site on each monomer of the trimer molecule is 5.6 to 5.7, irrespective of the strain. We also find that the pKi for the PR/8 strain is 4.8 to 4.9. The inactivation rate constants for HA, measured from experiments done with PR/8 virions fusing with liposomes and X:31 HA-expressing cells fusing with red blood cells, were both found to be of the order of 10(-4) s(-1). This number appears to be the minimal rate for HA's essential conformational change at low HA surface density. At high HA surface densities, we find evidence for cooperativity in the conformational change, as suggested by other studies.

  15. Measuring pKa of activation and pKi of inactivation for influenza hemagglutinin from kinetics of membrane fusion of virions and of HA expressing cells.

    PubMed Central

    Mittal, Aditya; Shangguan, Tong; Bentz, Joe

    2002-01-01

    The data for the pH dependence of lipid mixing between influenza virus (A/PR/8/34 strain) and fluorescently labeled liposomes containing gangliosides has been analyzed using a comprehensive mass action kinetic model for hemaglutinin (HA)-mediated fusion. Quantitative results obtained about the architecture of HA-mediated membrane fusion site from this analysis are in agreement with the previously reported results from analyses of data for HA-expressing cells fusing with various target membranes. Of the eight or more HAs forming a fusogenic aggregate, only two have to undergo the "essential" conformational change needed to initiate fusion. The mass action kinetic model has been extended to allow the analysis of the pKa for HA activation and pKi for HA inactivation. Inactivation and activation of HA following protonation were investigated for various experimental systems involving different strains of HA (A/PR/8/34, X:31, A/Japan). We find that the pKa for the final protonation site on each monomer of the trimer molecule is 5.6 to 5.7, irrespective of the strain. We also find that the pKi for the PR/8 strain is 4.8 to 4.9. The inactivation rate constants for HA, measured from experiments done with PR/8 virions fusing with liposomes and X:31 HA-expressing cells fusing with red blood cells, were both found to be of the order of 10(-4) s(-1). This number appears to be the minimal rate for HA's essential conformational change at low HA surface density. At high HA surface densities, we find evidence for cooperativity in the conformational change, as suggested by other studies. PMID:12414698

  16. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.

    PubMed

    Mega, T; Nishijima, T; Ikenaka, T

    1990-04-01

    beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.

  17. Sunlight inactivation of somatic coliphage in the presence of natural organic matter.

    PubMed

    Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong

    2016-01-15

    Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Bacterial inactivation of the anticancer drug doxorubicin.

    PubMed

    Westman, Erin L; Canova, Marc J; Radhi, Inas J; Koteva, Kalinka; Kireeva, Inga; Waglechner, Nicholas; Wright, Gerard D

    2012-10-26

    Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Evaluation of FTA paper and phenol for storage, extraction and molecular characterization of infectious bursal disease virus.

    PubMed

    Purvis, Linda B; Villegas, Pedro; Perozo, Francisco

    2006-12-01

    Infectious bursal disease virus (IBDV) is an important poultry pathogen and is distributed world wide that can cause immune suppression and lesions of the bursa of Fabricius. The main component of the virus, VP2, is not only responsible for the bird's immune response, but is important for the molecular identification of this virus as well. The nucleic acid of the virus must be adequately preserved to be analyzed by reverse-transcriptase PCR (RT-PCR) and sequenced for the molecular characterization of the field strain. Phenol inactivation has been the standard for IBDV tissue collection and international shipment; however, there have been some reports of interference with molecular detection capabilities when using phenol. Phenol is also a hazardous chemical and must be handled and shipped carefully. The ability to use the Flinders Technology Associates filter paper (FTA card) for inactivation of several avian pathogens has been proven previously, however no work has been published on its use in IBDV nucleic acid detection. Bursas from experimentally infected birds was imprinted on FTA cards, and then placed in phenol. Samples were evaluated and compared based on molecular detection capabilities between the two inactivation methods. The nucleic acid of the virus was detected in 85% of the FTA card inactivated samples compared to 71% in the phenol inactivated samples. Sequence analysis was performed on samples inactivated by both methods and no differences were found. When comparing the RNA stability at different temperatures, euthanized IBDV infected birds were held at two different temperatures before sampling. No differences were detected for FTA sampling; however, for tissues in phenol the nucleic acid was only detectable up to 2 h post-mortem in the tissues held at 4 degrees C prior to sampling. These findings indicate that the FTA card is an efficient and reliable alternative collection method for molecular detection and characterization of IBDV.

  20. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the saccade-related premotor centers in the brainstem. PMID:27351741

  1. Affinity alkylation of the active site of C/sub 21/ steroid side-chain cleavage cytochrome P-450 from neonatal porcine testis: a unique cysteine residue alkylated by 17-(bromoacetoxy)progesterone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onoda, M.; Haniu, M.; Yanagibashi, K.

    1987-01-27

    The affinity alkylating progesterone analogue 17-(bromoacetoxy)progesterone has been used to label the active site of a microsomal cytochrome P-450 enzyme from neonatal pig testis. The enzyme causes removal of the C/sub 20/ and C/sub 21/ side chains from the substrates progesterone and pregnenolone by catalyzing both 17-hydroxylase and C/sub 17,20/-lyase reactions, which produce the corresponding C/sub 1//sup 9/ steroidal precursors of testosterone. The progesterone analogue causes simultaneous inactivation of the two catalytic activities of the enzyme by a first-order kinetic process that obeys saturation kinetics. Progesterone and 17-hydroxyprogesterone each protect the enzyme against inactivation. The progesterone analogue is a competitivemore » inhibitor of the enzyme with K/sub i/ values of 8.4 ..mu..M and 7.8 ..mu..M for progesterone and 17-hydroxyprogesterone, respectively. The enzyme inactivation and kinetic data are consistent with a theory proposing that the analogue and the two substrates compete for the same active site. The radioactive analogue 17-((/sup 14/C)bromoacetoxy)progesterone causes inactivation of the enzyme with incorporation of 1.5-2.2 mol of the analogue per mole of inactivated enzyme. When this experiment is carried out in the presence of a substrate, then 0.9-1.2 mol of radioactive analogue is incorporated per mole of inactivated enzyme. The data suggest that the analogue can bind to two different sites, one of which is related to the catalytic site. Radiolabeled enzyme samples, from reactions of the /sup 14/C-labeled analogue with the enzyme alone or with enzyme in the presence of a substrate, were subjected to amino acid analysis and also in tryptic digestion and peptide mapping.« less

  2. A Conducting State with Properties of a Slow Inactivated State in a Shaker K+ Channel Mutant

    PubMed Central

    Olcese, Riccardo; Sigg, Daniel; Latorre, Ramon; Bezanilla, Francisco; Stefani, Enrico

    2001-01-01

    In Shaker K+ channel, the amino terminus deletion Δ6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Δ6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about −30 mV, suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to −90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 ms. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive. PMID:11158167

  3. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies.

    PubMed

    Amin, Rehab M; Bhayana, Brijesh; Hamblin, Michael R; Dai, Tianhong

    2016-07-01

    Pseudomonas aeruginosa is among the most common pathogens that cause nosocomial infections and is responsible for about 10% of all hospital-acquired infections. In the present study, we investigated the potential development of tolerance of P. aeruginosa to antimicrobial blue light by carrying 10 successive cycles of sublethal blue light inactivation. The high-performance liquid chromatographic (HPLC) analysis was performed to identify endogenous porphyrins in P. aeruginosa cells. In addition, we tested the effectiveness of antimicrobial blue light in a mouse model of nonlethal skin abrasion infection by using a bioluminescent strain of P. aeruginosa. The results demonstrated that no tolerance was developed to antimicrobial blue light in P. aeruginosa after 10 cycles of sub-lethal inactivation. HPLC analysis showed that P. aeruginosa is capable of producing endogenous porphyrins in particularly, coproporphyrin III, which are assumed to be responsible for the photodynamic effects of blue light alone. P. aeruginosa infection was eradicated by antimicrobial blue light alone (48 J/cm(2) ) without any added photosensitizer molecules in the mouse model. In conclusion, endogenous photosensitization using blue light should gain considerable attention as an effective and safe alternative antimicrobial therapy for skin infections. Lasers Surg. Med. 48:562-568, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Rett syndrome in a 47,XXX patient with a de novo MECP2 mutation.

    PubMed

    Hammer, Sara; Dorrani, Naghmeh; Hartiala, Jaana; Stein, Stuart; Schanen, N Carolyn

    2003-10-15

    Rett syndrome is caused by mutation in MECP2, a gene located on Xq28 and subject to X-inactivation. MECP2 encodes methyl CpG-binding protein 2, a widely expressed transcriptional repressor of methylated DNA. Mutations in MECP2 are primarily de novo events in the male germ line and thus lead to an excess of affected females. Here we report the identification of a unique 47,XXX girl with relatively mild atypical Rett syndrome leading initially to a diagnosis of infantile autism with regression. Mutation analysis of the MECP2 gene identified a de novo MECP2 mutation, L100V. Examination of a panel of X-linked microsatellite markers indicated that her supernumerary X chromosome is maternally derived. X-inactivation patterns were determined by analysis of methylation of the androgen receptor locus, and indicated preferential inactivation of her paternal allele. The parental origin of her MECP2 mutation could not be determined because she was uninformative for intronic polymorphisms flanking her mutation. This is the first reported case of sex chromosome trisomy and MECP2 mutation in a female, and it illustrates the importance of allele dosage on the severity of Rett syndrome phenotype. Copyright 2003 Wiley-Liss, Inc.

  5. Single-molecule Analysis of Inhibitory Pausing States of V1-ATPase*

    PubMed Central

    Uner, Naciye Esma; Nishikawa, Yoshihiro; Okuno, Daichi; Nakano, Masahiro; Yokoyama, Ken; Noji, Hiroyuki

    2012-01-01

    V1-ATPase, the hydrophilic V-ATPase domain, is a rotary motor fueled by ATP hydrolysis. Here, we found that Thermus thermophilus V1-ATPase shows two types of inhibitory pauses interrupting continuous rotation: a short pause (SP, 4.2 s) that occurred frequently during rotation, and a long inhibitory pause (LP, >30 min) that terminated all active rotations. Both pauses occurred at the same angle for ATP binding and hydrolysis. Kinetic analysis revealed that the time constants of inactivation into and activation from the SP were too short to represent biochemically predicted ADP inhibition, suggesting that SP is a newly identified inhibitory state of V1-ATPase. The time constant of inactivation into LP was 17 min, consistent with one of the two time constants governing the inactivation process observed in bulk ATPase assay. When forcibly rotated in the forward direction, V1 in LP resumed active rotation. Solution ADP suppressed the probability of mechanical activation, suggesting that mechanical rotation enhanced inhibitory ADP release. These features were highly consistent with mechanical activation of ADP-inhibited F1, suggesting that LP represents the ADP-inhibited state of V1-ATPase. Mechanical activation largely depended on the direction and angular displacement of forced rotation, implying that V1-ATPase rotation modulates the off rate of ADP. PMID:22736762

  6. Deletion of the TNFAIP3/A20 gene detected by FICTION analysis in classical Hodgkin lymphoma

    PubMed Central

    2012-01-01

    Background The TNFAIP3 gene, which encodes a ubiquitin-modifying enzyme (A20) involved in the negative regulation of NF-κB signaling, is frequently inactivated by gene deletions/mutations in a variety of B-cell malignancies. However, the detection of this in primary Hodgkin lymphoma (HL) specimens is hampered by the scarcity of Hodgkin Reed-Sternberg (HR-S) cells even after enrichment by micro-dissection. Methods We used anti-CD30 immunofluorescence with fluorescence in-situ hybridization (FISH) to evaluate the relative number of TNFAIP3/CEP6 double-positive signals in CD30-positive cells. Results From a total of 47 primary classical Hodgkin lymphoma (cHL) specimens, 44 were evaluable. We found that the relative numbers of TNFAIP3/CD30 cells were distributed among three groups, corresponding to those having homozygous (11%), heterozygous (32%), and no (57%) deletions in TNFAIP3. This shows that TNFAIP3 deletions could be sensitively detected using our chosen methods. Conclusions Comparing the results with mutation analysis, TNFAIP3 inactivation was shown to have escaped detection in many samples with homozygous deletions. This suggests that TNFAIP3 inactivation in primary cHL specimens might be more frequent than previously reported. PMID:23039325

  7. Expression of mismatch repair gene PMS2 in nasopharyngeal carcinoma and regulation by glycogen synthase kinase-3β in vivo and in vitro.

    PubMed

    Fang, Jugao; Lei, Wenbin; Huang, Xiaoming; Li, Pingdong; Chen, Xiaohong; Zhu, Xiaolin; Wen, Weiping; Li, Huabin

    2012-02-01

    To evaluate the expression of mismatch repair gene PMS2 in human nasopharyngeal carcinoma (NPC) tissues and evaluate the effect of glycogen synthase kinase (GSK)-3β on PMS2 production in vivo and in vitro. The expression of PMS2 and inactivated phosphorylated GSK-3β(s9) was examined by immunohistochemical staining in 25 NPC tissues and the relation was determined by correlation analysis. The effect of GSK-3β transfection in CNE-2 cells on PMS2 production as well as cell apoptosis and chemosensitization were evaluated using small interference RNA (siRNA), immunoblotting and flow cytometric analysis in vitro. The expression of inactivated phosphorylated GSK-3β(s9) was found to negative correlated with PMS2 in vivo. And transfected GSK-3β was found to be able to enhance PMS2 production, and increase cell apoptosis in CNE-2 cells in combination with cisplatin administration in vitro. Inactivation of GSK-3β might be important for NPC tumorgenesis through negatively regulating PMS2 production, and enhanced PMS2 production by GSK-3β is beneficial for understanding the NPC tumorgenesis and developing potential strategy for future therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. The effects of ionic strength and organic matter on virus inactivation at low temperatures: general likelihood uncertainty estimation (GLUE) as an alternative to least-squares parameter optimization for the fitting of virus inactivation models

    NASA Astrophysics Data System (ADS)

    Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin

    2017-06-01

    This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.

  9. Inactivation of enterococci and fecal coliforms from sewage and meatworks effluents in seawater chambers.

    PubMed Central

    Sinton, L W; Davies-Colley, R J; Bell, R G

    1994-01-01

    Inactivation in sunlight of fecal coliforms (FC) and enterococci (Ent) from sewage and meatworks effluents was measured in 300-liter effluent-seawater mixtures (2% vol/vol) held in open-topped chambers. Dark inactivation rates (kDs) were measured (from log-linear survival curves) in enclosed chambers and 6-liter pots. The kD for FC was 2 to 4 times that for Ent, and inactivation was generally slower at lower temperatures. Sunlight inactivation was described in terms of shoulder size (n) and the slope (k) of the log-linear portion of the survival curve as a function of global solar insolation and UV-B fluence. The n values tended to be larger for Ent than for FC, and the k values for FC were around twice those for Ent in both effluent-seawater mixtures. The combined sunlight data showed a general inactivation rate (k) ranking in effluent-seawater mixtures of meatworks FC > sewage FC > meatworks Ent > sewage Ent. Describing 90% inactivation in terms of insolation (S90) gave far less seasonal variation than T90 (time-dependent) values. However, there were significant differences in inactivation rates between experiments, indicating the contribution to inactivation of factors other than insolation. Inactivation rates under different long-pass optical filters decreased with the increase in the spectral cutoff wavelength (lambda 50) of the filters and indicated little contribution by UV-B to total inactivation. Most inactivation appeared to be caused by two main regions of the solar spectrum--between 318 and 340 nm in the UV region and > 400 nm in the visible region. PMID:8031097

  10. Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics

    PubMed Central

    Cheng, Cuilin; Baranenko, Denis; Wang, Jiaping; Li, Yongzhi; Lu, Weihong

    2018-01-01

    The active compounds in Acanthopanax senticosus (AS) have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS) were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC) of mouse brain included tubulin protein family (α-, β-tubulin subunits), dihydropyrimidinase-related protein 2 (CRMP2), γ-actin, 14-3-3 protein family (14-3-3ζ, ε), heat shock protein 90β (HSP90β), and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B), Neurotrophin, Rap1 (Ras-related protein RAP-1A), gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1) signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could be effective through the blood–brain barrier in the future. PMID:29342911

  11. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties ofmore » rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.« less

  12. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    PubMed

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  13. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells.

    PubMed

    Nagarkar-Jaiswal, Sonal; Manivannan, Sathiya N; Zuo, Zhongyuan; Bellen, Hugo J

    2017-05-31

    Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila . Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase -dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ , encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail.

  14. Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2006-03-28

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  15. Selective destruction of cells infected with human immunodeficiency virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2003-09-30

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Undeen, A.H.; Vander Meer, R.K.

    Spores of Nosema algerae Vavra and Undeen were subjected to various dosages of 254 nm ultraviolet radiation (UV). Very high dosages of UV were required to block germination. Germination was normal immediately after UV dosages of 0.2 to 1.0 J/cm2, followed by a delayed effect in which both percentage germination and the intrasporal concentration of trehalose decreased with time after UV exposure. Although a few spores were germinated, most of them were inactivated (rendered temporarily unable to germinate) by exposure to UV of 1.1 J/cm2. Ultraviolet radiation between 1.1 and 3.4 J/cm2 stimulated spores to germinate. However, spores were completelymore » unable to germinate immediately after exposure to dosages above 3.8 J/cm2. Ammonia had little effect on stimulation by UV but was inhibitory to germination after stimulation had occurred. These results demonstrate that UV behaves like a germination stimulus and are discussed in terms of the hypothesis that germination is initiated by the breakdown of barriers between trehalose and trehalase.« less

  17. Radiation sensitivity of bacteria and virus in porcine xenoskin for dressing agent

    NASA Astrophysics Data System (ADS)

    Jo, Eu-Ri; Jung, Pil-Mun; Choi, Jong-il; Lee, Ju-Woon

    2012-08-01

    In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106-107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105-106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.

  18. Studies on the resistance/reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts exposed to medium-pressure ultraviolet radiation.

    PubMed

    Belosevic, M; Craik, S A; Stafford, J L; Neumann, N F; Kruithof, J; Smith, D W

    2001-10-16

    The ex vivo and in vivo reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts after exposure to different doses of ultraviolet (UV) radiation was determined using animal infectivity. The infectivity of UV-treated parasites stored for 1-4 days (G. muris) or 1-17 days (C. parvum) at room temperature in the dark was similar to that of organisms administered immediately after UV treatment, indicating that the parasites did not reactivate ex vivo. In contrast, we observed in vivo reactivation of G. muris in three of seven independent animal infectivity experiments, when parasites were treated with relatively low doses of medium-pressure UV (<25 mJ/cm(2)). Our observations indicate that G. muris cysts and C. parvum oocysts exposed to medium-pressure UV doses of 60 mJ/cm(2) or higher did not exhibit resistance to and/or reactivation following treatment. This suggests that when appropriate doses of UV are used, significant and permanent inactivation of these parasites may be achieved.

  19. Evaluation of the Efficiency of the Sample Inactivation Reagent in the Abbott RealTime MTB Assay for Inactivation of Mycobacterium tuberculosis

    PubMed Central

    Wallis, Carole; Pahalawatta, Vihanga; Frank, Andrea; Ramdin, Neeshan; Viana, Raquel; Abravaya, Klara; Leckie, Gregor; Tang, Ning

    2015-01-01

    The Abbott RealTime MTB assay is a nucleic acid amplification test (NAAT) for the detection of Mycobacterium tuberculosis complex DNA. The sample inactivation procedure used in the assay, consisting of one part sample treated with 3 parts inactivation reagent for 60 min, effectively reduced viscosity and inactivated M. tuberculosis in clinical specimens. PMID:26085611

  20. N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt, as an inactivator of hepatitis B surface antigen.

    PubMed Central

    Sugimoto, Y; Toyoshima, S

    1979-01-01

    N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt (CAE), exhibited a strong inactivating effect on hepatitis B surface antigen. Concentrations of CAE required for 50 and 100% inactivation of the antigen were 0.01 to 0.025% and 0.025 to 0.05% respectively. CAE completely inactivated hepatitis B surface antigen at the lowest concentration compared with various compounds including about 500 amino acid derivatives, sodium hypochlorite, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, and some detergents. Furthermore, CAE inactivated vaccinia virus, herpes simplex virus, and influenza virus, whereas poliovirus was not inactivated at all. The results suggest that the inactivating effects of CAE are related to interaction with lipid-containing viral envelopes. PMID:228595

Top