Science.gov

Sample records for radiation induced cardiotoxicity

  1. Radiation recall reaction causing cardiotoxicity.

    PubMed

    Masri, Sofia Carolina; Misselt, Andrew James; Dudek, Arkadiusz; Konety, Suma H

    2014-01-01

    Radiation recall phenomenon is a tissue reaction that develops within a previously irradiated area, precipitated by the subsequent administration of certain chemotherapeutic agents. It commonly affects the skin, but can also involve internal organs with functional consequences. To our best knowledge, this phenomenon has never been reported as a complication on the heart and should be consider as a potential cause of cardiotoxicity. PMID:24755097

  2. Pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity

    PubMed Central

    Chung, Woo-Baek; Youn, Ho-Joong

    2016-01-01

    Cardiotoxicity is a well-known complication following treatment with anthracyclines. However, they are still widely used in chemotherapy for breast cancer, lymphoma, leukemia, and sarcoma, among others. Patient clinical characteristics, such as age, sex, comorbidities, anthracycline dose and infusion schedule, and the combined anti-cancer agents used, are diverse among cancer types. It is difficult to recommend guidelines for the prevention or management of anthracycline-induced cardiotoxicity applicable to all cancer types. Therefore, anthracycline-induced cardiotoxicity remains a major limitation in the proper management of cancer patients treated with an anthracycline-combined regimen. Efforts have been extensive to determine the mechanism and treatment of anthracycline-induced cardiotoxicity. Because cardiotoxicity causes irreversible damage to the myocardium, prevention is a more effective approach than treatment of cardiotoxicity after symptomatic or asymptomatic cardiac dysfunction develops. This article will review the pathophysiological mechanisms of anthracycline-induced cardiotoxicity and strategies for protecting the myocardium from anthracycline. PMID:27378126

  3. Drug-induced mitochondrial dysfunction and cardiotoxicity.

    PubMed

    Varga, Zoltán V; Ferdinandy, Peter; Liaudet, Lucas; Pacher, Pál

    2015-11-01

    Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities. PMID:26386112

  4. Evaluation of azithromycin induced cardiotoxicity in rats

    PubMed Central

    Atli, Ozlem; Ilgin, Sinem; Altuntas, Hakan; Burukoglu, Dilek

    2015-01-01

    Although there are possible cardiovascular adverse effects associated with the azithromycin treatment according to some case reports and cohort studies, there is no experimental study evaluating cardiotoxicity in repeated pharmacological doses of this drug. In our study, 15 mg/kg and 30 mg/kg azithromycin were orally administered to rats for 14 days to evaluate the cardiotoxicity of this drug. ECGs of the azithromycin-treated and control animals were recorded. Blood samples were assayed to determine LDH and CK-MB levels. Additionally, CAT, SOD, GSH and MDA levels of heart tissues were measured. According to our ECG recordings, decreased heart rate, prolonged PR and QT intervals, QRS complex and T wave abnormalities were observed in 30 mg/kg azithromycin-administered group significantly when compared with control group. Plasma CK-MB and LDH levels were increased in 30 mg/kg azithromycin-administered group significantly when compared to the control group. In heart tissues, CAT, SOD and GSH levels were decreased while MDA levels were increased in both azithromycin-administered groups significantly when compared with the control group. In conclusion, our findings supported the possible cardiotoxicity risk with azithromycin treatment and also, oxidative stress, which was induced by azithromycin in our study, was thought to be occurred secondary to cardiac toxicity of the drug. PMID:26064263

  5. Cardio-Oncology: A Focused Review of Anthracycline-, Human Epidermal Growth Factor Receptor 2 Inhibitor–, and Radiation-Induced Cardiotoxicity and Management

    PubMed Central

    Domercant, Jean; Polin, Nichole; Jahangir, Eiman

    2016-01-01

    Background: Cardio-oncology is a collaborative approach between cardiologists and oncologists in the treatment of patients with cancer and heart disease. Radiation and chemotherapy have played a major role in the decreased cancer-related mortality achieved in the past 2 decades. However, anthracycline-, tyrosine kinase-, and radiation-based therapies are each associated with independent cardiovascular (CV) risks, and these risks are cumulative when these therapies are used in combination. Methods: We analyzed several published articles, studies, and guidelines to provide a focused review of cardiotoxicity associated with anthracyclines, human epidermal growth factor receptor 2 inhibitors, and radiation therapy and its management. Results: The focus on CV risk among individuals being treated with cardiotoxic agents is important because once the cancer is cured, CV disease becomes the number 1 cause of death among cancer survivors. Cardio-oncology focuses on assessing CV risk prior to starting therapy, optimizing modifiable risk factors, and providing surveillance and treatment for any early signs of cardiotoxicity in patients undergoing radiation and chemotherapy. A collaborative approach between oncologists and cardiologists is integral to the optimal care of patients with cancer. Although radiation and chemotherapy treatments have evolved with the aim of targeting cancer cells while having minimal effect on the heart, the increased risk of cardiomyopathy in patients receiving these treatments remains significant. Conclusion: Proper screening and treatment of cardiotoxicity are essential for patients with cancer. As cardiac diseases and cancer remain the first and second causes of mortality in developed nations, respectively, cardio-oncology is the answer to this group of individuals who are especially vulnerable to both causes of mortality.

  6. Cardio-Oncology: A Focused Review of Anthracycline-, Human Epidermal Growth Factor Receptor 2 Inhibitor–, and Radiation-Induced Cardiotoxicity and Management

    PubMed Central

    Domercant, Jean; Polin, Nichole; Jahangir, Eiman

    2016-01-01

    Background: Cardio-oncology is a collaborative approach between cardiologists and oncologists in the treatment of patients with cancer and heart disease. Radiation and chemotherapy have played a major role in the decreased cancer-related mortality achieved in the past 2 decades. However, anthracycline-, tyrosine kinase-, and radiation-based therapies are each associated with independent cardiovascular (CV) risks, and these risks are cumulative when these therapies are used in combination. Methods: We analyzed several published articles, studies, and guidelines to provide a focused review of cardiotoxicity associated with anthracyclines, human epidermal growth factor receptor 2 inhibitors, and radiation therapy and its management. Results: The focus on CV risk among individuals being treated with cardiotoxic agents is important because once the cancer is cured, CV disease becomes the number 1 cause of death among cancer survivors. Cardio-oncology focuses on assessing CV risk prior to starting therapy, optimizing modifiable risk factors, and providing surveillance and treatment for any early signs of cardiotoxicity in patients undergoing radiation and chemotherapy. A collaborative approach between oncologists and cardiologists is integral to the optimal care of patients with cancer. Although radiation and chemotherapy treatments have evolved with the aim of targeting cancer cells while having minimal effect on the heart, the increased risk of cardiomyopathy in patients receiving these treatments remains significant. Conclusion: Proper screening and treatment of cardiotoxicity are essential for patients with cancer. As cardiac diseases and cancer remain the first and second causes of mortality in developed nations, respectively, cardio-oncology is the answer to this group of individuals who are especially vulnerable to both causes of mortality. PMID:27660573

  7. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management.

    PubMed

    Barry, Elly; Alvarez, Jorge A; Scully, Rebecca E; Miller, Tracie L; Lipshultz, Steven E

    2007-06-01

    Although effective anti-neoplastic agents, anthracyclines are limited by their well recognized and pervasive cardiotoxic effects. The incidence of late progressive cardiovascular disease in long-term survivors of cancer is established and may contribute to heart failure and death. To maximize the benefits of these drugs, a high-risk population has been identified and new strategies have been investigated to minimize toxic effects, including limiting the cumulative dose, controlling the rate of administration and using liposomal preparations and novel anthracycline analogues. Dexrazoxane also shows promise as a cardioprotectant during treatment. This paper reviews these strategies, as well as medications used to manage anthracycline-induced cardiotoxicity, and functional and biochemical means of monitoring cardiotoxicity, including echocardiography, radionuclide scans and biomarker analysis. The treatment of adult cancer survivors who have had anthracycline-related cardiotoxicity has not been systematically studied. Empirically, anthracycline-associated cardiac dysfunction is treated very similarly to other forms of heart failure. These treatments include avoiding additional cardiotoxic regimens, controlling hypertension, lifestyle changes, medications and heart transplantation.

  8. Crocin treatment prevents doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Razmaraii, Nasser; Babaei, Hossein; Mohajjel Nayebi, Alireza; Assadnassab, Gholamreza; Ashrafi Helan, Javad; Azarmi, Yadollah

    2016-07-15

    Doxorubicin (DOX)-induced cardiotoxicity is well-known as a serious complication of chemotherapy in patients with cancer. It is unknown whether crocin (CRO), main component of Crocus sativus L. (Saffron), could reduce the severity of DOX-induced cardiotoxicity. Therefore, this study was undertaken to assess the protective impact of CRO on DOX-induced cardiotoxicity in rats. The rats were divided into four groups: control, DOX (2mg/kg/48h, for 12days), and CRO groups that receiving DOX as in group 2 and CRO (20 and 40mg/kg/24h, for 20days) starting 4days prior to first DOX injection and throughout the study. Echocardiographic, electrocardiographic and hemodynamic studies, along with histopathological examination and MTT test were carried out. Our findings demonstrate that DOX resulted in cardiotoxicity manifested by decreased the left ventricular (LV) systolic and diastolic pressures, rate of rise/drop of LV pressure, ejection fraction, fractional shortening and contractility index, as compared to control group. In addition, histopathological analysis of heart confirmed adverse structural changes in myocardial cells following DOX administration. The results also showed that CRO treatment significantly improved DOX-induced heart damage, structural changes in the myocardium and ventricular function. In addition, CRO did not affect the in vitro antitumor activity of DOX. Taken together, our data confirm that CRO is protective against cardiovascular-related disorders produced by DOX, and clinical studies are needed to examine these findings in human. PMID:27297631

  9. In Vivo Cardiotoxicity Induced by Sodium Aescinate in Zebrafish Larvae.

    PubMed

    Liang, Jinfeng; Jin, Wangdong; Li, Hongwen; Liu, Hongcui; Huang, Yanfeng; Shan, Xiaowen; Li, Chunqi; Shan, Letian; Efferth, Thomas

    2016-01-01

    Sodium aescinate (SA) is a widely-applied triterpene saponin product derived from horse chestnut seeds, possessing vasoactive and organ-protective activities with oral or injection administration in the clinic. To date, no toxicity or adverse events in SA have been reported, by using routine models (in vivo or in vitro), which are insufficient to predict all aspects of its pharmacological and toxicological actions. In this study, taking advantage of transparent zebrafish larvae (Danio rerio), we evaluated cardiovascular toxicity of SA at doses of 1/10 MNLC, 1/3 MNLC, MNLC and LC10 by yolk sac microinjection. The qualitative and quantitative cardiotoxicity in zebrafish was assessed at 48 h post-SA treatment, using specific phenotypic endpoints: heart rate, heart rhythm, heart malformation, pericardial edema, circulation abnormalities, thrombosis and hemorrhage. The results showed that SA at 1/10 MNLC and above doses could induce obvious cardiac and pericardial malformations, whilst 1/3 MNLC and above doses could induce significant cardiac malfunctions (heart rate and circulation decrease/absence), as compared to untreated or vehicle-treated control groups. Such cardiotoxic manifestations occurred in more than 50% to 100% of all zebrafish treated with SA at MNLC and LC10. Our findings have uncovered the potential cardiotoxicity of SA for the first time, suggesting more attention to the risk of its clinical application. Such a time- and cost-saving zebrafish cardiotoxicity assay is very valid and reliable for rapid prediction of compound toxicity during drug research and development. PMID:26907249

  10. Effect of disulfiram on ketamine-induced cardiotoxicity in rats

    PubMed Central

    Cetin, Nihal; Suleyman, Bahadir; Altuner, Durdu; Kuyrukluyildiz, Ufuk; Ozcicek, Fatih; Coskun, Resit; Kurt, Nazahat; Suleyman, Halis

    2015-01-01

    It is known that ketamine increases the production of catecholamines, causing oxidative damage to the heart. Suppression of the production of catecholamines by disulfiram, a drug with antioxidant properties, indicates that disulfiram may decrease ketamine-induced cardiotoxicity. The objective of the present study was to investigate the effect of disulfiram on ketamine-induced cardiotoxicity in rats. Disulfiram was administered by oral gavage in doses of 25 mg/kg to rats in the DK-25 group and 50 mg/kg to rats in the DK-50 group. Distilled water was applied in the ketamine control (KC) and healthy (HG) rat groups. At one hour after drug administration and subsequently at ten-minute intervals, a 60 mg/kg dose of ketamine was intraperitoneally injected in the rats in all groups other than HG, and anesthesia was maintained for three hours. Disulfiram prevented both increase in the levels of parameters indicating oxidative and myocardial damage and decrease of antioxidant levels in the heart tissue with ketamine in a dose-dependent manner. Disulfiram better prevented occurrence of cardiotoxicity with ketamine in the 50 mg/kg dose than in the 25 mg/kg dose. It is concluded that disulfiram may usefully be applied in clinical practice in the prevention of cardiotoxicity as observed during anesthesia with ketamine. PMID:26550292

  11. Chemotherapy-Induced Cardiotoxicity: Overview of the Roles of Oxidative Stress

    PubMed Central

    Angsutararux, Paweorn; Luanpitpong, Sudjit; Issaragrisil, Surapol

    2015-01-01

    Chemotherapy-induced cardiotoxicity is a serious complication that poses a serious threat to life and limits the clinical use of various chemotherapeutic agents, particularly the anthracyclines. Understanding molecular mechanisms of chemotherapy-induced cardiotoxicity is a key to effective preventive strategies and improved chemotherapy regimen. Although no reliable and effective preventive treatment has become available, numerous evidence demonstrates that chemotherapy-induced cardiotoxicity involves the generation of reactive oxygen species (ROS). This review provides an overview of the roles of oxidative stress in chemotherapy-induced cardiotoxicity using doxorubicin, which is one of the most effective chemotherapeutic agents against a wide range of cancers, as an example. Current understanding in the molecular mechanisms of ROS-mediated cardiotoxicity will be explored and discussed, with emphasis on cardiomyocyte apoptosis leading to cardiomyopathy. The review will conclude with perspectives on model development needed to facilitate further progress and understanding on chemotherapy-induced cardiotoxicity. PMID:26491536

  12. Echocardiography and Alternative Cardiac Imaging Strategies for Long-Term Cardiotoxicity Surveillance of Cancer Survivors Treated with Chemotherapy and/or Radiation Exposure.

    PubMed

    Garg, Vinisha; Vorobiof, Gabriel

    2016-08-01

    Cardiotoxicity from chemotherapy is a leading cause of morbidity and mortality in cancer survivors. Cardiotoxic effects include left ventricular systolic dysfunction, coronary artery disease, hypertension, bradycardia, arrhythmias, pericardial disease, valvular disease, and radiation-induced restrictive cardiomyopathy. Noninvasive cardiac imaging has been at the forefront of detecting cardiotoxicity in patients receiving chemotherapeutic agents known to adversely affect cardiac structure and function. Regimens for cardiotoxicity surveillance prior to and during chemotherapy administration have been proposed; however, optimal screening for and treatment of long-term cancer survivors have yet to be clarified. This review focuses on the most common imaging modalities for assessing cardiac dysfunction along with newer imaging technologies, and reviews suggested long-term surveillance strategies in cancer survivors following chemotherapy and radiation therapy.

  13. Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Krishnamurthy, Bhaskar; Rani, Neha; Bharti, Saurabh; Golechha, Mahaveer; Bhatia, Jagriti; Nag, Tapas Chandra; Ray, Ruma; Arava, Sudheer; Arya, Dharamvir Singh

    2015-07-25

    The clinical use of doxorubicin is associated with dose limiting cardiotoxicity. This is a manifestation of free radical production triggered by doxorubicin. Therefore, we evaluated the efficacy of febuxostat, a xanthine oxidase inhibitor and antioxidant, in blocking cardiotoxicity associated with doxorubicin in rats. Male albino Wistar rats were divided into four groups: control (normal saline 2.5mL/kg/dayi.p. on alternate days, a total of 6 doses); Doxorubicin (2.5mg/kg/dayi.p. on alternate days, a total of 6 doses), Doxorubicin+Febuxostat (10mg/kg/day oral) and Doxorubicin+Carvedilol (30mg/kg/day oral) for 14days. Febuxostat significantly ameliorated the doxorubicin-induced deranged cardiac functions as there was significant improvement in arterial pressures, left ventricular end diastolic pressure and inotropic and lusitropic states of the myocardium. These changes were well substantiated with biochemical findings, wherein febuxostat prevented the depletion of non-protein sulfhydryls level, with increased manganese superoxide dismutase level and reduced cardiac injury markers (creatine kinase-MB and B-type natriuretic peptide levels) and thiobarbituric acid reactive substances level. Febuxostat also exhibited significant anti-inflammatory (decreased expression of NF-κBp65, IKK-β and TNF-α) and anti-apoptotic effect (increased Bcl-2 expression and decreased Bax and caspase-3 expression and TUNEL positivity). Hematoxylin and Eosin, Masson Trichome, Picro Sirius Red and ultrastructural studies further corroborated with hemodynamic and biochemical findings showing that febuxostat mitigated doxorubicin-induced increases in inflammatory cells, edema, collagen deposition, interstitial fibrosis, perivascular fibrosis and mitochondrial damage and better preservation of myocardial architecture. In addition, all these changes were comparable to those produced by carvedilol. Thus, our results suggest that the antioxidant and anti-apoptotic effect of febuxostat

  14. Berberine attenuates doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Zhao, X; Zhang, J; Tong, N; Liao, X; Wang, E; Li, Z; Luo, Y; Zuo, H

    2011-01-01

    This study investigated the effects of berberine, a natural alkaloid, on doxorubicin-induced cardiotoxicity in mice. Mice were injected intraperitoneally with saline 10 ml/kg (n = 10), doxorubicin 2.5 mg/kg (n = 10), 60 mg/kg berberine 1 h before doxorubicin 2.5 mg/kg (n = 10), or 60 mg/kg berberine alone (n = 10) every other day for 14 days. Body weight, general condition and mortality were recorded over the 14-day study period. Electro cardiography was performed before the start of treatment and after 14 days and plasma lactate dehydrogenase (LDH) activity was measured after 14 days. At the end of the study period the heart was excised and examined histologically. An increase in mortality, an initial decrease in body weight, increased LDH activity, prolongation of QRS duration and increased myocardial injury were seen in the doxorubicin-treated group compared with the saline control group. These changes were significantly attenuated by pretreatment with berberine. The study suggests that berberine may have a potential protective role against doxorubicin-induced cardiotoxicity in mice. PMID:22117972

  15. Diazoxide protects against doxorubicin-induced cardiotoxicity in the rat

    PubMed Central

    2014-01-01

    Aim Chemotherapy with doxorubicin is limited by cardiotoxicity. Free radical generation and mitochondrial dysfunction are thought to contribute to doxorubicin-induced cardiac failure. In this study we wanted to investigate if opening of mitochondrial KATP-channels by diazoxide is protective against doxorubicin cardiotoxicity, and if 5-hydroxydecanoate (5-HD), a selective mitochondrial KATP-channel antagonist, abolished any protection by this intervention. Methods Wistar rats were divided into 7 groups (n = 6) and followed for 10 days with 5 intervention groups including the following treatments: (1) Diazoxide and doxorubicin, (2) diazoxide and 5-hydroxydecanoate (5-HD), (3) 5-HD and doxorubicin, (4) diazoxide and saline and (5) 5-HD and saline. On day 1, 3, 5 and 7 the animals received intraperitoneal (i.p.) injections with 10 mg/kg diazoxide and/or 40 mg/kg 5-HD, 30 minutes before i.p. injections with 3.0 mg/kg doxorubicin. One control group received only saline injections and the other control group received saline 30 minutes prior to 3.0 mg/kg doxorubicin. On day 10 the hearts were excised and Langendorff-perfused. Cardiac function was assessed by an intraventricular balloon and biochemical effects by release of hydrogen peroxide (H2O2) and troponin-T (TnT) in effluate from the isolated hearts, and by myocardial content of doxorubicin. Results Doxorubicin treatment produced a significant loss in left ventricular developed pressure (LVDP) (p < 0.05) and an increase in both H2O2 and TnT release in effluate (p < 0.05). Diazoxide significantly attenuated the decrease in LVDP (p < 0.05) and abolished the increased release of H2O2 and TnT (p < 0.05). 5-HD abolished the effects of pretreatment with diazoxide, and these effects were not associated with reduced myocardial accumulation of doxorubicin. Conclusions Pretreatment with diazoxide attenuates doxorubicin-induced cardiac dysfunction in the rat, measured by physiological indices and Tn

  16. Amelioration of doxorubicin‑induced cardiotoxicity by resveratrol.

    PubMed

    Al-Harthi, Sameer E; Alarabi, Ohoud M; Ramadan, Wafaa S; Alaama, Mohamed N; Al-Kreathy, Huda M; Damanhouri, Zoheir A; Khan, Lateef M; Osman, Abdel-Moneim M

    2014-09-01

    Doxorubicin (DOX), is a highly active anticancer agent, but its clinical use is limited by its severe cardiotoxic side‑effects associated with increased oxidative stress and apoptosis. Resveratrol (RSVL) is a naturally occurring polyphenolic compound (trans-3,5,4'-trihydroxystilbene) found primarily in root extracts of the oriental plant Polygonum cuspidatum and of numerous additional plant species. It has recently been shown that RSVL has a number of beneficial effects in different biological systems, which include anti-oxidant, antineoplastic, anticarcinogenic, cardioprotective and antiviral effects. In this study, we examined whether RSVL has protective effects against DOX‑induced free radical production and cardiotoxicity in male rats. The tested dose of DOX (20 mg/kg) caused a significant increase in the serum activities of the cardiac enzymes lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) and the level of malondialdehyde (MDA) in the heart tissue. However, there was a significant decrease in the glutathione level in the heart tissue. Simultaneous treatment of rats with RSVL [10 mg/kg, intraperitoneal (i.p.) injection] reduced the activity of LDH and CPK and significantly reduced MDA production in the heart. The total antioxidant capacity was increased following RSVL administration. Electron microscopy examination of the heart tissue showed that DOX treatment results in massive fragmentation and lysis of the myofibrils, and that mitochondria show either vacuolization or complete loss of the cristae. Simultaneous treatment with RSVL ameliorated the effect of DOX administration on cardiac tissue, with cardiomyocytes appearing normal compared to the control samples, and mitochondria retaining their normal structure. PMID:25059399

  17. Protective effect of silymarin against chemical-induced cardiotoxicity

    PubMed Central

    Razavi, Bibi Marjan; Karimi, Gholamreza

    2016-01-01

    Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that administration of antioxidants may be useful in ameliorating cardiac toxicity. Silymarin, a polyphenolic flavonoid has been shown to have utility in several cardiovascular disorders. In this review, various studies in scientific databases regarding the preventive effects of silymarin against cardiotoxicity induced by chemicals were introduced. Although there are many studies representing the valuable effects of silymarin in different diseases, the number of researches relating to the possible cardiac protective effects of silymarin against drugs induced toxicity is rather limited. Results of these studies show that silymarin has a broad spectrum of cardiac protective activity against toxicity induced by some chemicals including metals, environmental pollutants, oxidative agents and anticancer drugs. Further studies are needed to establish the utility of silymarin in protection against cardiac toxicity. PMID:27803777

  18. Dietary trans fats enhance doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Mong, Mei-chin; Hsia, Te-chun; Yin, Mei-chin

    2013-10-01

    This study investigated the combined effects of trans fat diet (TFD) and doxorubicin upon cardiac oxidative, inflammatory, and coagulatory stress. TFD increased trans fatty acid deposit in heart (P < 0.05), and decreased protein C and antithrombin-III activities in circulation (P < 0.05). TFD plus doxorubicin treatment elevated activities of plasminogen activator inhibitor-1, lactate dehydrogenase, and creatine phosphokinase (P < 0.05). This combination also raised xanthine oxidase activity, and enhanced cardiac levels of reactive oxygen species, interleukin (IL)-6, IL-10, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 than TFD or doxorubicin treatment alone (P < 0.05). TFD alone increased cardiac nuclear factor kappa B (NF-κB) activity (P < 0.05), but failed to affect expression of NF-κB and mitogen-activated protein kinase (MAPK) (P > 0.05). Doxorubicin treatment alone augmented cardiac activity, mRNA expression, and protein production of NF-κB and MAPK (P < 0.05). TFD plus doxorubicin treatment further upregulated cardiac expression of NF-κB p65, p-p38, and p-ERK1/2 (P < 0.05). These findings suggest that TFD exacerbates doxorubicin-induced cardiotoxicity.

  19. New signal transduction paradigms in anthracycline-induced cardiotoxicity.

    PubMed

    Ghigo, Alessandra; Li, Mingchuan; Hirsch, Emilio

    2016-07-01

    Anthracyclines, such as doxorubicin, are the most potent and widely used chemotherapeutic agents for the treatment of a variety of human cancers, including solid tumors and hematological malignancies. However, their clinical use is hampered by severe cardiotoxic side effects and cancer therapy-related heart disease has become a leading cause of morbidity and mortality among cancer survivors. The identification of therapeutic strategies limiting anthracycline cardiotoxicity with preserved antitumor efficacy thus represents the current challenge of cardio-oncologists. Anthracycline cardiotoxicity has been originally ascribed to the ability of this class of drugs to disrupt iron metabolism and generate excess of reactive oxygen species (ROS). However, small clinical trials with iron chelators and anti-oxidants failed to provide any benefit and suggested that doxorubicin cardiotoxicity is not solely due to redox cycling. New emerging explanations include anthracycline-dependent regulation of major signaling pathways controlling DNA damage response, cardiomyocyte survival, cardiac inflammation, energetic stress and gene expression modulation. This review will summarize recent studies unraveling the complex web of mechanisms of doxorubicin-mediated cardiotoxicity, and identifying new druggable players for the prevention of heart disease in cancer patients. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  20. Protective effect of Syzygium cumini against pesticide-induced cardiotoxicity.

    PubMed

    Atale, Neha; Gupta, Khushboo; Rani, Vibha

    2014-01-01

    Pesticide-induced toxicity is a serious issue which has resulted in plethora of diseases all over the world. The organophosphate pesticide malathion has caused many incidents of poisoning such as cardiac manifestations. The present study was designed to evaluate the effect of Syzygium cumini on malathion-induced cardiotoxicity. Dose optimization of malathion and polyphenols such as curcumin, (−)-epicatechin, gallic acid, butylated hydroxyl toluene, etc. was done by MTT cell proliferation assay. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were analyzed by different techniques. S. cumini methanolic pulp extract (MPE), a naturally derived gallic acid-enriched antioxidant was taken to study its effect on malathion-induced toxicity. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were also analyzed. Twenty micrograms per milliliter LD50 dose of malathion was found to cause stress-mediated responses in H9C2 cell line. Among all the polyphenols, gallic acid showed the most significant protection against stress. Gallic acid-enriched methanolic S. cumini pulp extract (MPE) showed 59.76 % ± 0.05, 81.61 % ± 1.37, 73.33 % ± 1.33, 77.19 % ± 2.38 and 64.19 % ± 1.43 maximum inhibition for DPPH, ABTS, NO, H2O2 and superoxide ion, respectively, as compared to ethanolic pulp extract and aqueous pulp extract. Our study suggests that S. cumini MPE has the ability to protect against the malathion-mediated oxidative stress in cardiac myocytes. PMID:24659402

  1. Herb-induced cardiotoxicity from accidental aconitine overdose.

    PubMed

    Sheth, Sujata; Tan, Elaine Ching Ching; Tan, Hock Heng; Tay, Leslie

    2015-07-01

    Patients who overdose on aconite can present with life-threatening ventricular arrhythmia. Aconite must be prepared and used with caution to avoid cardiotoxic effects that can be fatal. We herein describe a case of a patient who had an accidental aconite overdose but survived with no lasting effects. The patient had prepared Chinese herbal medication to treat his pain, which resulted in an accidental overdose of aconite with cardiotoxic and neurotoxic effects. The patient had ventricular tachycardia, bidirectional ventricular tachycardia and ventricular fibrillation. Following treatment with anti-arrhythmic medications, defibrillation and cardiopulmonary resuscitation, he made an uneventful recovery, with no further cardiac arrhythmias reported. PMID:26243980

  2. Protective effect of CardiPro against doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Mohan, I K; Kumar, K V; Naidu, M U R; Khan, M; Sundaram, C

    2006-03-01

    The effect of CardiPro, a polyherbal formulation, with an antioxidant property, has been studied on doxorubicin (DXR)-induced cardiotoxicity in mice. CardiPro (150 mg/kg b.w., twice daily was administered orally for 7 weeks along with four equal injections (each containing 4.0 mg/kg b.w., DXR) intraperitoneally, once weekly (cumulative dose 16 mg/kg). After a 3-week post DXR treatment period, cardiotoxicity was assessed by noting mortality, volume of ascites, liver congestion, changes in heart weight, myocardial lipid peroxidation, antioxidant enzymes and histology of heart. DXR-treated animals showed higher mortality (50%) and more ascites. Myocardial SOD and glutathione peroxidase activity were decreased and lipid peroxidation was increased. Histology of heart of DXR-treated animals showed loss of myofibrils and focal cytoplasmic vacuolization. CardiPro significantly protected the mice from DXR-induced cardiotoxic effects as evidenced by lower mortality (25%), less ascites, myocardial lipid peroxidation, normalization of antioxidant enzymes and minimal damage to the heart histologically. Our data confirm the earlier reports that DXR cardiotoxicity is associated with the free radical-induced tissue damage. Administration of CardiPro, with an antioxidant property, protected the DXR-induced cardiotoxicity in mice. PMID:16492523

  3. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin.

    PubMed

    Govender, Jenelle; Loos, Ben; Marais, Erna; Engelbrecht, Anna-Mart

    2014-11-01

    Anthracyclines, such as doxorubicin, are among the most valuable treatments for various cancers, but their clinical use is limited due to detrimental side effects such as cardiotoxicity. Doxorubicin-induced cardiotoxicity is emerging as a critical issue among cancer survivors and is an area of much significance to the field of cardio-oncology. Abnormalities in mitochondrial functions such as defects in the respiratory chain, decreased adenosine triphosphate production, mitochondrial DNA damage, modulation of mitochondrial sirtuin activity and free radical formation have all been suggested as the primary causative factors in the pathogenesis of doxorubicin-induced cardiotoxicity. Melatonin is a potent antioxidant, is nontoxic, and has been shown to influence mitochondrial homeostasis and function. Although a number of studies support the mitochondrial protective role of melatonin, the exact mechanisms by which melatonin confers mitochondrial protection in the context of doxorubicin-induced cardiotoxicity remain to be elucidated. This review focuses on the role of melatonin on doxorubicin-induced bioenergetic failure, free radical generation, and cell death. A further aim is to highlight other mitochondrial parameters such as mitophagy, autophagy, mitochondrial fission and fusion, and mitochondrial sirtuin activity, which lack evidence to support the role of melatonin in the context of cardiotoxicity. PMID:25230823

  4. In Vivo Protective Effects of Diosgenin against Doxorubicin-Induced Cardiotoxicity

    PubMed Central

    Chen, Chih-Tai; Wang, Zhi-Hong; Hsu, Cheng-Chin; Lin, Hui-Hsuan; Chen, Jing-Hsien

    2015-01-01

    Doxorubicin (DOX) induces oxidative stress leading to cardiotoxicity. Diosgenin, a steroidal saponin of Dioscorea opposita, has been reported to have antioxidant activity. Our study was aimed to find out the protective effect of diosgenin against DOX-induced cardiotoxicity in mice. DOX treatment led to a significant decrease in the ratio of heart weight to body weight, and increases in the blood pressure and the serum levels of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and creatine kinase myocardial bound (CK-MB), markers of cardiotoxicity. In the heart tissue of the DOX-treated mice, DOX reduced activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GPx), were recovered by diosgenin. Diosgenin also decreased the serum levels of cardiotoxicity markers, cardiac levels of thiobarbituric acid relative substances (TBARS) and reactive oxygen species (ROS), caspase-3 activation, and mitochondrial dysfunction, as well as the expression of nuclear factor kappa B (NF-κB), an inflammatory factor. Moreover, diosgenin had the effects of increasing the cardiac levels of cGMP via modulation of phosphodiesterase-5 (PDE5) activity, and in improving myocardial fibrosis in the DOX-treated mice. Molecular data showed that the protective effects of diosgenin might be mediated via regulation of protein kinase A (PKA) and p38. Our data imply that diosgenin possesses antioxidant and anti-apoptotic activities, and cGMP modulation effect, which in turn protect the heart from the DOX-induced cardiotoxicity. PMID:26091236

  5. In Vivo Protective Effects of Diosgenin against Doxorubicin-Induced Cardiotoxicity.

    PubMed

    Chen, Chih-Tai; Wang, Zhi-Hong; Hsu, Cheng-Chin; Lin, Hui-Hsuan; Chen, Jing-Hsien

    2015-06-01

    Doxorubicin (DOX) induces oxidative stress leading to cardiotoxicity. Diosgenin, a steroidal saponin of Dioscorea opposita, has been reported to have antioxidant activity. Our study was aimed to find out the protective effect of diosgenin against DOX-induced cardiotoxicity in mice. DOX treatment led to a significant decrease in the ratio of heart weight to body weight, and increases in the blood pressure and the serum levels of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and creatine kinase myocardial bound (CK-MB), markers of cardiotoxicity. In the heart tissue of the DOX-treated mice, DOX reduced activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GPx), were recovered by diosgenin. Diosgenin also decreased the serum levels of cardiotoxicity markers, cardiac levels of thiobarbituric acid relative substances (TBARS) and reactive oxygen species (ROS), caspase-3 activation, and mitochondrial dysfunction, as well as the expression of nuclear factor kappa B (NF-κB), an inflammatory factor. Moreover, diosgenin had the effects of increasing the cardiac levels of cGMP via modulation of phosphodiesterase-5 (PDE5) activity, and in improving myocardial fibrosis in the DOX-treated mice. Molecular data showed that the protective effects of diosgenin might be mediated via regulation of protein kinase A (PKA) and p38. Our data imply that diosgenin possesses antioxidant and anti-apoptotic activities, and cGMP modulation effect, which in turn protect the heart from the DOX-induced cardiotoxicity. PMID:26091236

  6. Biomarkers for Presymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer Patients.

    PubMed

    Todorova, Valentina K; Makhoul, Issam; Siegel, Eric R; Wei, Jeanne; Stone, Annjanette; Carter, Weleetka; Beggs, Marjorie L; Owen, Aaron; Klimberg, V Suzanne

    2016-01-01

    Cardiotoxicity of doxorubicin (DOX) remains an important health concern. DOX cardiotoxicity is cumulative-dose-dependent and begins with the first dose of chemotherapy. No biomarker for presymptomatic detection of DOX cardiotoxicity has been validated. Our hypothesis is that peripheral blood cells (PBC) gene expression induced by the early doses of DOX-based chemotherapy could identify potential biomarkers for presymptomatic cardiotoxicity in cancer patients. PBC gene expression of 33 breast cancer patients was conducted before and after the first cycle of DOX-based chemotherapy. Cardiac function was evaluated before the start of chemotherapy and at its completion. Differentially expressed genes (DEG) of patients who developed DOX-associated cardiotoxicity after the completion of chemotherapy were compared with DEG of patients who did not. Ingenuity database was used for functional analysis of DEG. Sixty-sevens DEG (P<0.05) were identified in PBC of patients with DOX-cardiotoxicity. Most of DEG encode proteins secreted by activated neutrophils. The functional analysis of the DEG showed enrichment for immune- and inflammatory response. This is the first study to identify the PBC transcriptome signature associated with a single dose of DOX-based chemotherapy in cancer patients. We have shown that PBC transcriptome signature associated with one dose of DOX chemotherapy in breast cancer can predict later impairment of cardiac function. This finding may be of value in identifying patients at high or low risk for the development of DOX cardiotoxicity during the initial doses of chemotherapy and thus to avoid the accumulating toxic effects from the subsequent doses during treatment. PMID:27490685

  7. Biomarkers for Presymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer Patients

    PubMed Central

    Todorova, Valentina K.; Makhoul, Issam; Siegel, Eric R.; Wei, Jeanne; Stone, Annjanette; Carter, Weleetka; Beggs, Marjorie L.; Owen, Aaron; Klimberg, V. Suzanne

    2016-01-01

    Cardiotoxicity of doxorubicin (DOX) remains an important health concern. DOX cardiotoxicity is cumulative-dose-dependent and begins with the first dose of chemotherapy. No biomarker for presymptomatic detection of DOX cardiotoxicity has been validated. Our hypothesis is that peripheral blood cells (PBC) gene expression induced by the early doses of DOX-based chemotherapy could identify potential biomarkers for presymptomatic cardiotoxicity in cancer patients. PBC gene expression of 33 breast cancer patients was conducted before and after the first cycle of DOX-based chemotherapy. Cardiac function was evaluated before the start of chemotherapy and at its completion. Differentially expressed genes (DEG) of patients who developed DOX-associated cardiotoxicity after the completion of chemotherapy were compared with DEG of patients who did not. Ingenuity database was used for functional analysis of DEG. Sixty-sevens DEG (P<0.05) were identified in PBC of patients with DOX-cardiotoxicity. Most of DEG encode proteins secreted by activated neutrophils. The functional analysis of the DEG showed enrichment for immune- and inflammatory response. This is the first study to identify the PBC transcriptome signature associated with a single dose of DOX-based chemotherapy in cancer patients. We have shown that PBC transcriptome signature associated with one dose of DOX chemotherapy in breast cancer can predict later impairment of cardiac function. This finding may be of value in identifying patients at high or low risk for the development of DOX cardiotoxicity during the initial doses of chemotherapy and thus to avoid the accumulating toxic effects from the subsequent doses during treatment. PMID:27490685

  8. Biomarkers for Presymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer Patients.

    PubMed

    Todorova, Valentina K; Makhoul, Issam; Siegel, Eric R; Wei, Jeanne; Stone, Annjanette; Carter, Weleetka; Beggs, Marjorie L; Owen, Aaron; Klimberg, V Suzanne

    2016-01-01

    Cardiotoxicity of doxorubicin (DOX) remains an important health concern. DOX cardiotoxicity is cumulative-dose-dependent and begins with the first dose of chemotherapy. No biomarker for presymptomatic detection of DOX cardiotoxicity has been validated. Our hypothesis is that peripheral blood cells (PBC) gene expression induced by the early doses of DOX-based chemotherapy could identify potential biomarkers for presymptomatic cardiotoxicity in cancer patients. PBC gene expression of 33 breast cancer patients was conducted before and after the first cycle of DOX-based chemotherapy. Cardiac function was evaluated before the start of chemotherapy and at its completion. Differentially expressed genes (DEG) of patients who developed DOX-associated cardiotoxicity after the completion of chemotherapy were compared with DEG of patients who did not. Ingenuity database was used for functional analysis of DEG. Sixty-sevens DEG (P<0.05) were identified in PBC of patients with DOX-cardiotoxicity. Most of DEG encode proteins secreted by activated neutrophils. The functional analysis of the DEG showed enrichment for immune- and inflammatory response. This is the first study to identify the PBC transcriptome signature associated with a single dose of DOX-based chemotherapy in cancer patients. We have shown that PBC transcriptome signature associated with one dose of DOX chemotherapy in breast cancer can predict later impairment of cardiac function. This finding may be of value in identifying patients at high or low risk for the development of DOX cardiotoxicity during the initial doses of chemotherapy and thus to avoid the accumulating toxic effects from the subsequent doses during treatment.

  9. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-11-15

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD{sub 100} dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-{alpha} and plasma adiponectin increased cardiac fatty acid oxidation (666.9 {+-}14.0 nmol/min/g heart in ad libitum versus 1035.6 {+-} 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMP{alpha}2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 {+-} 2.1 {mu}mol/g heart in ad libitum versus 26.7 {+-} 1.9 {mu}mol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway.

  10. The chemopreventive potential of lycopene against atrazine-induced cardiotoxicity: modulation of ionic homeostasis

    PubMed Central

    Lin, Jia; Li, Hui-Xin; Xia, Jun; Li, Xue-Nan; Jiang, Xiu-Qing; Zhu, Shi-Yong; Ge, Jing; Li, Jin-Long

    2016-01-01

    People who drink water contaminated with atrazine (ATR) over many years can experience problems with their cardiovascular system. Lycopene (LYC) has been shown to exhibit cardiovascular disease preventive effects. However, chemopreventive potential of LYC against ATR-induced cardiotoxicity remains unclear. To determine the effects of ATR and/or LYC on heart, mice were treated with ATR (50 mg/kg or 200 mg/kg) and/or LYC (5 mg/kg) by intragastric administration for 21 days. Histopathological and biochemical analyses, including analysis of ion concentrations (Na+, K+, Ca2+ and Mg2+), ATPases (Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) activities and the transcription of their subunits, were performed on heart. The results revealed that ATR led to decreased Creative Kinase (CK) activity and increased histological alterations. Furthermore, a significant change in Na+, K+ and Ca2+ content and the down-regulation of Na+-K+-ATPase and Ca2+-ATPase activities and the mRNA expression of their subunits were observed in ATR-exposed mice. Notably, supplementary LYC significantly protected the heart against ATR-induced damage. In conclusion, ATR induced cardiotoxicity by modulating cardiac ATPase activity and the transcription of its subunits, thereby triggering ionic disturbances. However, supplementary LYC significantly combated ATR-induced cardiotoxicity via the regulation of ATPase activity and subunit transcription. Thus, LYC exhibited a significant chemopreventive potential against ATR-induced cardiotoxicity. PMID:27112537

  11. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-09-15

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating

  12. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish.

    PubMed

    Zhu, Jun-Jing; Xu, Yi-Qiao; He, Jian-Hui; Yu, Hang-Ping; Huang, Chang-Jiang; Gao, Ji-Min; Dong, Qiao-Xiang; Xuan, Yao-Xian; Li, Chun-Qi

    2014-02-01

    Cardiovascular toxicity is a major challenge for the pharmaceutical industry and predictive screening models to identify and eliminate pharmaceuticals with the potential to cause cardiovascular toxicity in humans are urgently needed. In this study, taking advantage of the transparency of larval zebrafish, Danio rerio, we assessed cardiovascular toxicity of seven known human cardiotoxic drugs (aspirin, clomipramine hydrochloride, cyclophosphamide, nimodipine, quinidine, terfenadine and verapamil hydrochloride) and two non-cardiovascular toxicity drugs (gentamicin sulphate and tetracycline hydrochloride) in zebrafish using six specific phenotypic endpoints: heart rate, heart rhythm, pericardial edema, circulation, hemorrhage and thrombosis. All the tested drugs were delivered into zebrafish by direct soaking and yolk sac microinjection, respectively, and cardiovascular toxicity was quantitatively or qualitatively assessed at 4 and 24 h post drug treatment. The results showed that aspirin accelerated the zebrafish heart rate (tachycardia), whereas clomipramine hydrochloride, cyclophosphamide, nimodipine, quinidine, terfenadine and verapamil hydrochloride induced bradycardia. Quinidine and terfenadine also caused atrioventricular (AV) block. Nimodipine treatment resulted in atrial arrest with much slower but regular ventricular heart beating. All the tested human cardiotoxic drugs also induced pericardial edema and circulatory disturbance in zebrafish. There was no sign of cardiovascular toxicity in zebrafish treated with non-cardiotoxic drugs gentamicin sulphate and tetracycline hydrochloride. The overall prediction success rate for cardiotoxic drugs and non-cardiotoxic drugs in zebrafish were 100% (9/9) as compared with human results, suggesting that zebrafish is an excellent animal model for rapid in vivo cardiovascular toxicity screening. The procedures we developed in this report for assessing cardiovascular toxicity in zebrafish were suitable for drugs delivered

  13. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    SciTech Connect

    Conklin, Daniel J.; Haberzettl, Petra; Jagatheesan, Ganapathy; Baba, Shahid; Merchant, Michael L.; Prough, Russell A.; Williams, Jessica D.; Prabhu, Sumanth D.; Bhatnagar, Aruni

    2015-06-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized and

  14. CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism.

    PubMed

    Maayah, Zaid H; Althurwi, Hassan N; Abdelhamid, Ghada; Lesyk, Gabriela; Jurasz, Paul; El-Kadi, Ayman O S

    2016-03-01

    Doxorubicin (DOX) has been reported to be a very potent and effective anticancer agent. However, clinical treatment with DOX has been greatly limited due to its cardiotoxicity. Furthermore, several studies have suggested a role for cytochrome P450 1B1 (CYP1B1) and mid-chain hydroxyeicosatetraenoic acids (mid-chain HETEs) in DOX-induced cardiac toxicity. Therefore, we hypothesized that DOX induced cardiotoxicity is mediated through the induction of CYP1B1 and its associated mid-chain HETEs metabolite. To test our hypothesis, Sprague-Dawley rats and RL-14 cells were treated with DOX in the presence and absence of 2,3',4,5'-tetramethoxystilbene (TMS), a selective CYP1B1 inhibitor. Thereafter, cardiotoxicity parameters were determined using echocardiography, histopathology, and gene expression. Further, the level of mid-chain HETEs was quantified using liquid chromatography-electron spray ionization-mass spectrometry. Our results showed that DOX induced cardiotoxicity in vivo and in vitro as evidenced by deleterious changes in echocardiography, histopathology, and hypertrophic markers. Importantly, the TMS significantly reversed these changes. Moreover, the DOX-induced cardiotoxicity was associated with a proportional increase in the formation of cardiac mid-chain HETEs both in vivo and in our cell culture model. Interestingly, the inhibition of cardiotoxicity by TMS was associated with a dramatic decrease in the formation of cardiac mid-chain HETEs suggesting a mid-chain HETEs-dependent mechanism. Mechanistically, the protective effect of TMS against DOX-induced cardiotoxicity was mediated through the inhibition of mitogen activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). In conclusion, our study provides the first evidence that the inhibition of CYP1B1 and mid-chain HETE formation attenuate DOX-induced cardiotoxicity.

  15. Protective effects of berberine against doxorubicin-induced cardiotoxicity in rats by inhibiting metabolism of doxorubicin.

    PubMed

    Hao, Gang; Yu, Yunli; Gu, Bingren; Xing, Yiwen; Xue, Man

    2015-01-01

    1. The clinical use of doxorubicin, an effective anticancer drug, is severely hampered by its cardiotoxicity. Berberine, a botanical alkaloid, has been reported to possess cardioprotective and antitumor effects. In this study, we investigated the cardioprotective effect of berberine on doxorubicin-induced cardiotoxicity and the effect of berberine on the metabolism of doxorubicin. 2. Adult male Sprague-Dawley rats were administered doxorubicin in the presence or absence of berberine for 2 weeks. Administration of berberine effectively prevented doxorubicin-induced body weight reduction and mortality in rats. 3. Berberine reduced the activity of myocardial enzymes, including aspartate aminotransferase (AST), creatine kinase (CK), CK isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Echocardiographic examination further demonstrated that berberine effectively ameliorated cardiac dysfunction induced by doxorubicin. 4. Berberine inhibited the metabolism of doxorubicin in the cytoplasm of rat heart and reduced the accumulation of doxorubicinol (a secondary alcohol metabolite of doxorubicin) in heart. 5. These data showed that berberine alleviated the doxorubicin-induced cardiotoxicity in rats via inhibition of the metabolism of doxorubicin and reduced accumulation of doxorubicinol selectively in hearts.

  16. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Elberry, Ahmed A; Abdel-Naim, Ashraf B; Abdel-Sattar, Essam A; Nagy, Ayman A; Mosli, Hisham A; Mohamadin, Ahmed M; Ashour, Osama M

    2010-05-01

    Doxorubicin (DOX) is a widely used cancer chemotherapeutic agent. However, it generates free oxygen radicals that result in serious dose-limiting cardiotoxicity. Supplementations with berries were proven effective in reducing oxidative stress associated with several ailments. The aim of the current study was to investigate the potential protective effect of cranberry extract (CRAN) against DOX-induced cardiotoxicity in rats. CRAN was given orally to rats (100mg/kg/day for 10 consecutive days) and DOX (15mg/kg; i.p.) was administered on the seventh day. CRAN protected against DOX-induced increased mortality and ECG changes. It significantly inhibited DOX-provoked glutathione (GSH) depletion and accumulation of oxidized glutathione (GSSG), malondialdehyde (MDA), and protein carbonyls in cardiac tissues. The reductions of cardiac activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were significantly mitigated. Elevation of cardiac myeloperoxidase (MPO) activity in response to DOX treatment was significantly hampered. Pretreatment of CRAN significantly guarded against DOX-induced rise of serum lactate dehydrogenase (LDH), creatine phosphokinase (CK), creatine kinase-MB (CK-MB) as well as troponin I level. CRAN alleviated histopathological changes in rats' hearts treated with DOX. In conclusion, CRAN protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to CRAN's antioxidant activity.

  17. Tert-butylhydroquinone ameliorates doxorubicin-induced cardiotoxicity by activating Nrf2 and inducing the expression of its target genes

    PubMed Central

    Wang, Lin-Feng; Su, Su-Wen; Wang, Lei; Zhang, Guo-Qiang; Zhang, Rong; Niu, Yu-Jie; Guo, Yan-Su; Li, Chun-Yan; Jiang, Wen-Bo; Liu, Yi; Guo, Hui-Cai

    2015-01-01

    Oxidative stress plays an important role in doxorubicin (DOX)-induced cardiotoxicity. Nuclear factor E2-related factor-2 (Nrf2) is a transcription factor that orchestrates the antioxidant and cytoprotective responses to oxidative stress. In the present study, we tested whether tert-butylhydroquinone (tBHQ) could protect against DOX-induced cardiotoxicity in vivo and, if so, whether the protection was associated with the up-regulation of the Nrf2 pathway. The results showed that treatment with tBHQ significantly decreased the DOX-induced cardiac injury in wild-type mice. Moreover, tBHQ ameliorated the DOX-induced oxidative stress and apoptosis. Further studies suggested that tBHQ increased the nuclear accumulation of Nrf2 and the Nrf2-regulated gene expression, including heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxido-reductase-1 (NQO-1) expression. Knocking out Nrf2 in mice abolished the protective effect of tBHQ on the DOX-induced cardiotoxicity. These results indicate that tBHQ has a beneficial effect on DOX-induced cardiotoxicity, and this effect was associated with the enhanced expression of Nrf2 and its downstream antioxidant genes, HO-1 and NQO-1. PMID:26692920

  18. Cardioprotective effect of green tea extract on doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Khan, Gyas; Haque, Syed Ehtaishamul; Anwer, Tarique; Ahsan, Mohd Neyaz; Safhi, Mohammad M; Alam, M F

    2014-01-01

    The in vivo antioxidant properties of green tea extract (GTE) were investigated against doxorubicin (DOX) induced cardiotoxicity in rats. In this experiment, 48 Wistar albino rats (200-250 g) were divided into eight groups (n = 6). Control group received normal saline for 30 days. Cardiotoxicity was induced by DOX (20 mg/kg ip.), once on 29th day of study and were treated with GTE (100, 200 and 400 mg/kg, p.o.) for 30 days. Aspartate aminotransferase (AST), creatinine kinase (CK), lactate dehydrogenase (LDH), lipid peroxidation (LPO), cytochrome P450 (CYP), blood glutathione, tissue glutathione, enzymatic and non-enzymatic antioxidants were evaluated along with histopathological studies. DOX treated rats showed a significant increased levels of AST, CK, LDH, LPO and CYP, which were restored by oral administration of GTE at doses 100, 200 and 400 mg/kg for 30 days. Moreover, GTE administration significantly increased the activities of glutathione peroxidase (GPX), glutathione reductase (GR), glutathione s-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), in heart, which were reduced by DOX treatment. In this study, we have found that oral administration of GTE prevented DOX-induced cardiotoxicity by accelerating heart antioxidant defense mechanisms and down regulating the LPO levels to the normal levels.

  19. Protective effect of bilberry (Vaccinium myrtillus) against doxorubicin-induced oxidative cardiotoxicity in rats

    PubMed Central

    Ashour, Osama M.; Elberry, Ahmed A.; Alahdal, Abdulrahman M.; Al Mohamadi, Ameen M.; Nagy, Ayman A.; Abdel-Naim, Ashraf B.; Abdel-Sattar, Essam A.; Mohamadin, Ahmed M.

    2011-01-01

    Summary Background Doxorubicin (DOX) is a commonly used chemotherapeutic agent. It is associated with serious dose-limiting cardiotoxicity, which is at least partly caused by generation of reactive oxygen species (ROS). Supplementations with bilberries were effective in reducing oxidative stress in many tissue injuries due their high content of antioxidants. The present study investigated the potential protective effect of bilberry extract against DOX-induced cardiotoxicity in rats. Material/Methods Rats were treated orally with a methanolic extract of bilberry for 10 days. DOX was injected intraperitoneally on day 7. Twenty-four hours after the last bilberry administration, rats were subjected to ECG study. Blood was then withdrawn and cardiac tissues were dissected for assessment of oxidative stress and cardiac tissue injury. Cardiac tissues were also subjected to histopathological examination. Results Bilberry extract significantly inhibited DOX-provoked reduced glutathione depletion and accumulation of oxidized glutathione, malondialdehyde and protein carbonyls in cardiac tissues. This was accompanied by significant amelioration of reduced cardiac catalase, superoxide dismutase, and glutathione peroxidase activities; and increased cardiac myeloperoxidase activity in response to DOX challenge. Pretreatment with bilberry significantly guarded against DOX-induced increase in serum activities of lactate dehydrogenase, creatine phosphokinase and creatine kinase-MB, as well as the level of troponin I. Bilberry alleviated ECG changes in rats treated with DOX and attenuated its pathological changes. Conclusions Bilberry protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to its antioxidant activity. PMID:21455099

  20. Subclinical Cardiotoxicity Detected by Strain Rate Imaging up to 14 months After Breast Radiation Therapy

    SciTech Connect

    Erven, Katrien; Florian, Anca; Slagmolen, Pieter; Sweldens, Caroline; Jurcut, Ruxandra; Wildiers, Hans; Voigt, Jens-Uwe; Weltens, Caroline

    2013-04-01

    Purpose: Strain rate imaging (SRI) is a new echocardiographic modality that enables accurate measurement of regional myocardial function. We investigated the role of SRI and troponin I (TnI) in the detection of subclinical radiation therapy (RT)-induced cardiotoxicity in breast cancer patients. Methods and Materials: This study prospectively included 75 women (51 left-sided and 24 right-sided) receiving adjuvant RT to the breast/chest wall and regional lymph nodes. Sequential echocardiographs with SRI were obtained before RT, immediately after RT, and 8 and 14 months after RT. TnI levels were measured on the first and last day of RT. Results: Mean heart and left ventricle (LV) doses were both 9 ± 4 Gy for the left-sided patients and 4 ± 4 Gy and 1 ± 0.4 Gy, respectively, for the right-sided patients. A decrease in strain was observed at all post-RT time points for left-sided patients (−17.5% ± 1.9% immediately after RT, −16.6% ± 1.4% at 8 months, and −17.7% ± 1.9% at 14 months vs −19.4% ± 2.4% before RT, P<.01) but not for right-sided patients. When we considered left-sided patients only, the highest mean dose was given to the anterior left ventricular (LV) wall (25 ± 14 Gy) and the lowest to the inferior LV wall (3 ± 3 Gy). Strain of the anterior wall was reduced after RT (−16.6% ± 2.3% immediately after RT, −16% ± 2.6% at 8 months, and −16.8% ± 3% at 14 months vs −19% ± 3.5% before RT, P<.05), whereas strain of the inferior wall showed no significant change. No changes were observed with conventional echocardiography. Furthermore, mean TnI levels for the left-sided patients were significantly elevated after RT compared with before RT, whereas TnI levels of the right-sided patients remained unaffected. Conclusions: In contrast to conventional echocardiography, SRI detected a regional, subclinical decline in cardiac function up to 14 months after breast RT. It remains to be determined whether these changes are related to clinical

  1. Monohydroxyethylrutoside as protector against chronic doxorubicin-induced cardiotoxicity.

    PubMed Central

    van Acker, S. A.; Kramer, K.; Grimbergen, J. A.; van den Berg, D. J.; van der Vijgh, W. J.; Bast, A.

    1995-01-01

    1. The clinical use of the antitumour agent, doxorubicin, is largely limited by the development of a cumulative dose-related cardiotoxicity. This toxicity is generally believed to be caused by the formation of oxygen free radicals. In earlier studies it was established that flavonoids, naturally occurring antioxidants, can provide some degree of protection. In this study we investigated whether 7-monohydroxyethylrutoside (monoHER), a powerful antioxidative flavonoid with extremely low toxicity, can provide protection to an extent comparable to the clinically successful Cardioxane (ICRF-187). 2. Balb/c mice of 20-25 g were equipped i.p. with a telemeter to measure ECG. They were given 6 i.v. doses of doxorubicin (4 mg kg-1) at weekly intervals. ICRF-187 (50 mg kg-1) or monoHER (500 mg kg-1) were administered i.p. 1 h before doxorubicin administration. In the 2 monoHER groups the treatment continued with either 1 or 4 additional injections per week. A saline and monoHER treated group served as controls. After these 6 weeks, they were observed for another 2 weeks. 3. At the end of this study (week 8) the ST interval had increased by 16.7 +/- 2.7 ms (mean +/- s.e. mean) in doxorubicin-treated mice. At that time, the ST interval had increased by only 1.8 +/- 0.9 ms in ICRF-187 co-mediated mice and in monoHER co-medicated mice by only 1.7 +/- 0.8 and 5.1 +/- 1.7 ms (5- and 2-day schedule, respectively, all P < 0.001 relative to doxorubicin and not significantly different from control). The ECG of the control animals did not change during the entire study.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582554

  2. NLRP3 Deficiency Reduces Macrophage Interleukin-10 Production and Enhances the Susceptibility to Doxorubicin-induced Cardiotoxicity

    PubMed Central

    Kobayashi, Motoi; Usui, Fumitake; Karasawa, Tadayoshi; Kawashima, Akira; Kimura, Hiroaki; Mizushina, Yoshiko; Shirasuna, Koumei; Mizukami, Hiroaki; Kasahara, Tadashi; Hasebe, Naoyuki; Takahashi, Masafumi

    2016-01-01

    NLRP3 inflammasomes recognize non-microbial danger signals and induce release of proinflammatory cytokine interleukin (IL)-1β, leading to sterile inflammation in cardiovascular disease. Because sterile inflammation is involved in doxorubicin (Dox)-induced cardiotoxicity, we investigated the role of NLRP3 inflammasomes in Dox-induced cardiotoxicity. Cardiac dysfunction and injury were induced by low-dose Dox (15 mg/kg) administration in NLRP3-deficient (NLRP3−/−) mice but not in wild-type (WT) and IL-1β−/− mice, indicating that NLRP3 deficiency enhanced the susceptibility to Dox-induced cardiotoxicity independent of IL-1β. Although the hearts of WT and NLRP3−/− mice showed no significant difference in inflammatory cell infiltration, macrophages were the predominant inflammatory cells in the hearts, and cardiac IL-10 production was decreased in Dox-treated NLRP3−/− mice. Bone marrow transplantation experiments showed that bone marrow-derived cells contributed to the exacerbation of Dox-induced cardiotoxicity in NLRP3−/− mice. In vitro experiments revealed that NLRP3 deficiency decreased IL-10 production in macrophages. Furthermore, adeno-associated virus-mediated IL-10 overexpression restored the exacerbation of cardiotoxicity in the NLRP3−/− mice. These results demonstrated that NLRP3 regulates macrophage IL-10 production and contributes to the pathophysiology of Dox-induced cardiotoxicity, which is independent of IL-1β. Our findings identify a novel role of NLRP3 and provided new insights into the mechanisms underlying Dox-induced cardiotoxicity. PMID:27225830

  3. Potential Effects of Pomegranate on Lipid Peroxidation and Pro-inflammatory Changes in Daunorubicin-induced Cardiotoxicity in Rats

    PubMed Central

    Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.

    2016-01-01

    Background: Daunorubicin-induced acute cardiotoxicity caused by oxidative stress and free radical formation. Pomegranate possessed a significant in vitro free radical scavenging activity. Therefore, the aim of this study was estimations of the role of pomegranate effects in daunorubicin-induced cardiotoxicity. Methods: A total of 21 Sprague male rats were allocated into three groups, seven animals in each group. Group A: Control group received distilled water. Group B: Treated group with daunorubicin 20 mg/kg via intraperitoneal injection daily for the 12th day for total cumulative dose of 240 mg/kg. Group C: Pretreatment group with pomegranate 25 mg/kg for 6 days orally, then daunorubicin 20 mg/kg administrated concomitantly for the next 6 days with a cumulative dose of 120 mg/kg. Cardiac troponin I([cTn I] pg/ml), malondialdehyde (MDA) (ng/ml), interleukin 17 (IL-17 pg/ml), and cardiac lactate dehydrogenase (LDH) (pm/ml), all these biomarkers were used to measure the severity of cardiotoxicity. Results: Daunorubicin at a dose of 20 mg/kg lead to pronounced cardiac damage that reflected on through elevations of serum cTn and serum LDH levels significantly P < 0.01, it induced lipid peroxidation during cardiotoxicity that reflected through an elevation in the serum MDA significantly P < 0.01, moreover, daunorubicin induces pro-inflammatory changes in cardiotoxicity; it raises the IL-17 serum level significantly P < 0.01 as compared with control. Pomegranate pretreatment demonstrated a significant cardioprotection from daunorubicin-induced cardiotoxicity; it attenuated the cardiac damage through reduction of cTn, LDH, MDA, and serum IL-17 level significantly P < 0.01 as compared with daunorubicin-treated group. Conclusions: Pomegranate demonstrated significant cardioprotection in daunorubicin-induced cardiotoxicity through reduction of oxidative stress, lipid peroxidation, pro-inflammatory, and cardiac injury biomarkers. PMID:27413516

  4. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  5. ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac apoptosis and oxidative stress

    PubMed Central

    Gao, Yawen; Xu, Yan; Hua, Songwen; Zhou, Shenghua; Wang, Kangkai

    2015-01-01

    The anthracycline chemotherapy drug doxorubicin (DOX) is cardiotoxic. This study aimed to explore the effect of acetaldehyde dehydrogenase 2 (ALDH2), a detoxifying protein, on DOX-induced cardiotoxicity and unveil the underlying mechanisms. BALB/c mice were randomly divided in four groups: control group (no treatment), DOX group (DOX administration for myocardial damage induction), DOX + Daidzin group (DOX administration + Daidzin, an ALDH2 antagonist) and DOX + Alda-1 group (DOX administration + Alda-1, an ALDH2 agonist). Then, survival, haemodynamic parameters, expression of pro- and anti-apoptosis markers, reactive oxygen species (ROS) and 4-Hydroxynonenal (4-HNE) levels, expression and localization of NADPH oxidase 2 (NOX2) and its cytoplasmic subunit p47PHOX, and ALDH2 expression and activity were assessed. Mortality rates of 0, 35, 5, and 70% were obtained in the control, DOX, DOX + Alda-1, and DOX + Daidzin groups, respectively, at the ninth weekend. Compared with control animals, DOX treatment resulted in significantly reduced left ventricular systolic pressure (LVSP) and ± dp/dt, and overtly increased left ventricular end-diastolic pressure (LVEDP); increased Bax expression and caspase-3/7 activity, and reduced Bcl-2 expression in the myocardium; increased ROS (about 2 fold) and 4-HNE adduct (3 fold) levels in the myocardium; increased NOX2 protein expression and membrane translocation of P47PHOX. These effects were aggravated in the DOX + Daidzin group, DOX + Alda-1 treated animals showed partial or complete alleviation. Finally, Daidzin further reduced the DOX-repressed ALDH2 activity, which was partially rescued by Alda-1. These results indicated that ALDH2 attenuates DOX-induced cardiotoxicity by inhibiting oxidative stress, NOX2 expression and activity, and reducing myocardial apoptosis. PMID:26221217

  6. Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats.

    PubMed

    El-Agamy, Dina S; Abo-Haded, Hany M; Elkablawy, Mohamed A

    2016-08-01

    There is a large body of evidence suggesting that inhibitors of dipeptidyl peptidase-4, such as sitagliptin, may exhibit beneficial effects against different inflammatory disorders. This investigation was conducted to elucidate the potential ability of sitagliptin to counteract the injurious effects of doxorubicin in cardiac tissue. Male Wistar rats were pretreated with sitagliptin for 10 days then treated with a single dose of doxorubicin (20 mg/kg, i.p). Electrocardiography, biochemical estimation of serum and tissue markers, and histo- and immunopathological examinations were done. Results have shown that supplementation with sitagliptin resulted in significant improvement of cardiac function with contaminant decrease in serum markers of doxorubicin-induced cardiotoxicity. These results were supported by the histopathological results. Furthermore, a marked protection against oxidative stress was evident through reduction of lipid peroxidation and prevention of reduced glutathione content depletion and superoxide dismutase activity reduction in cardiac tissue of rats pretreated with sitagliptin in combination with doxorubicin. Moreover, sitagliptin ameliorated the activation of nuclear factor kappa-B and the release of inflammatory cytokines, tumour necrosis factor-alpha and nitric oxide. Finally, sitagliptin attenuated doxorubicin-induced increase in the expression of pro-apoptotic protein Bax and in the apoptotic marker, caspase-3. Collectively, these data indicate that sitagliptin pretreatment could alleviate doxorubicin-induced cardiotoxicity via reducing oxidative damage and its subsequent inflammation and apoptosis. PMID:27037281

  7. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes

    PubMed Central

    Maillet, Agnes; Tan, Kim; Chai, Xiaoran; Sadananda, Singh N.; Mehta, Ashish; Ooi, Jolene; Hayden, Michael R.; Pouladi, Mahmoud A.; Ghosh, Sujoy; Shim, Winston; Brunham, Liam R.

    2016-01-01

    Doxorubicin is a highly efficacious anti-cancer drug but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity (DIC) remain incompletely understood. We investigated the characteristics and molecular mechanisms of DIC in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). We found that doxorubicin causes dose-dependent increases in apoptotic and necrotic cell death, reactive oxygen species production, mitochondrial dysfunction and increased intracellular calcium concentration. We characterized genome-wide changes in gene expression caused by doxorubicin using RNA-seq, as well as electrophysiological abnormalities caused by doxorubicin with multi-electrode array technology. Finally, we show that CRISPR-Cas9-mediated disruption of TOP2B, a gene implicated in DIC in mouse studies, significantly reduces the sensitivity of hPSC-CMs to doxorubicin-induced double stranded DNA breaks and cell death. These data establish a human cellular model of DIC that recapitulates many of the cardinal features of this adverse drug reaction and could enable screening for protective agents against DIC as well as assessment of genetic variants involved in doxorubicin response. PMID:27142468

  8. Protective effect of melatonin against Adriamycin-induced cardiotoxicity.

    PubMed

    Zhang, Yan; Li, Lixin; Xiang, Cheng; Ma, Zhiqian; Ma, Tian; Zhu, Shuchai

    2013-05-01

    The aim of this in vivo study was to explore the protective properties of melatonin against Adriamycin-induced myocardial toxicity. A rat model of breast cancer was established and the rats were randomly divided into the blank group (Blank), the solvent group [Diss; dehydrated alcohol: physiological saline (1:9)], the Adriamycin group (ADM), the melatonin group (MLT) and the melatonin + Adriamycin group (M+A). The concentrations of lipid peroxide (LPO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in myocardial tissues were detected, the changes in myocardial tissues were observed using light microscopy and electron microscopy, and the 1-month survival rates of each group of rats were compared. Breast cancer was established in 116 rats. In the ADM group, the concentration of LPO was higher and the concentrations of SOD and GSH-Px were significantly lower than those in the blank group. In the M+A group, compared with the ADM group, the concentration of LPO was lower (P<0.05) and the concentrations of SOD and GSH-Px were higher (P<0.05). It was observed using light and electron microscopy that the myocardial injuries to the M+A group were significantly alleviated in comparison with those in the ADM group; the 1-month survival rate in the M+A group was higher than that in the ADM group. Melatonin may have a protective role in the myocardium by reducing Adriamycin-induced myocardial oxidative damage. PMID:23737906

  9. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting the expression of peroxiredoxin III in H9c2 cells.

    PubMed

    Liu, Mi-Hua; Lin, Xiao-Long; Yuan, Cong; He, Jun; Tan, Tian-Ping; Wu, Shao-Jian; Yu, Shan; Chen, Li; Liu, Jun; Tian, Wei; Chen, Yu-Dan; Fu, Hong-Yun; Li, Jian; Zhang, Yuan

    2016-01-01

    Doxorubicin (DOX) is a widely used chemotherapeutic agent, which can give rise to severe cardiotoxicity, limiting its clinical use. Preliminary evidence suggests that hydrogen sulfide (H2S) may exert protective effects on DOX‑induced cardiotoxicity. Therefore, the aim of the present study was to investigate whether peroxiredoxin III is involved in the cardioprotection of H2S against DOX‑induced cardiotoxicity. The results demonstrated that DOX not only markedly induced injuries, including cytotoxicity and apoptosis, it also increased the expression levels of peroxiredoxin III. Notably, pretreatment with sodium hydrosulfide significantly attenuated the DOX‑induced decrease in cell viability and increase in apoptosis, and also reversed the increased expression levels of peroxiredoxin III in H9c2 cardiomyocytes. In addition, pretreatment of the H9c2 cells with N‑acetyl‑L‑cysteine, a scavenger of reactive oxygen species, prior to exposure to DOX markedly decreased the expression levels of peroxiredoxin III. In conclusion, the results of the present study suggested that exogenous H2S attenuates DOX‑induced cardiotoxicity by inhibiting the expression of peroxiredoxin III in H9c2 cells. In the present study, the apoptosis of H9c2 cardiomyocytes was assessed using an methyl thiazolyl tetrazolium assay and Hoechst staining. The levels of Prx III and cystathionine-γ-lyase were examined by western blotting.

  10. The possible protective effect of L-carnitine on tilmicosin-induced cardiotoxicity in mice.

    PubMed

    Kart, A; Yapar, K; Karapehlivan, M; Citil, M

    2007-04-01

    The protective effect of L-carnitine was investigated against tilmicosin-induced cardiotoxic effects including blood creatine kinase (CK), CK-MB, total sialic acid as well as the alterations in glutathione and malondialdehyde concentrations in mice. Thirty-two Balb/C mice were divided into four groups including group 1 (control), group 2 (L-carnitine, s.c., 500 mg/kg for 5 days), group 3 (tilmicosin, s.c., single dose of 75 mg/kg) and group 4 (L-carnitine plus tilmicosin). Serum CK, CK-MB and malondialdehyde (MDA) levels were significantly (P < 0.05) higher in group 3 compared with those of other groups. Total sialic acid level in group 3 was found to be significantly (P < 0.05) higher than that in groups 1 and 2, as well. Contrary to these results, glutathione level in group 3 was found to be significantly (P < 0.05) lower than that in groups 1 and 2. In group 4, serum CK, CK-MB, MDA and total sialic acid levels were found to be significantly (P < 0.05) lower than those in group 3. These results suggest that tilmicosin is cardiotoxic in mice as evidenced by higher total sialic acid, CK and CK-MB. In addition, tilmicosin caused the decrease in glutathione and increase in MDA levels. However, administration of L-carnitine could ameliorate these adverse toxic effects of tilmicosin in mice.

  11. Astragalus Polysaccharide Suppresses Doxorubicin-Induced Cardiotoxicity by Regulating the PI3k/Akt and p38MAPK Pathways

    PubMed Central

    Cao, Yuan; Ruan, Yang; Shen, Tao; Huang, Xiuqing; Li, Meng; Yu, Weiwei; Zhu, Yuping; Man, Yong; Wang, Shu; Li, Jian

    2014-01-01

    Background. Doxorubicin, a potent chemotherapeutic agent, is associated with acute and chronic cardiotoxicity, which is cumulatively dose-dependent. Astragalus polysaccharide (APS), the extract of Astragalus membranaceus with strong antitumor and antiglomerulonephritis activity, can effectively alleviate inflammation. However, whether APS could ameliorate chemotherapy-induced cardiotoxicity is not understood. Here, we investigated the protective effects of APS on doxorubicin-induced cardiotoxicity and elucidated the underlying mechanisms of the protective effects of APS. Methods. We analyzed myocardial injury in cancer patients who underwent doxorubicin chemotherapy and generated a doxorubicin-induced neonatal rat cardiomyocyte injury model and a mouse heart failure model. Echocardiography, reactive oxygen species (ROS) production, TUNEL, DNA laddering, and Western blotting were performed to observe cell survival, oxidative stress, and inflammatory signal pathways in cardiomyocytes. Results. Treatment of patients with the chemotherapeutic drug doxorubicin led to heart dysfunction. Doxorubicin reduced cardiomyocyte viability and induced C57BL/6J mouse heart failure with concurrent elevated ROS generation and apoptosis, which, however, was attenuated by APS treatment. In addition, there was profound inhibition of p38MAPK and activation of Akt after APS treatment. Conclusions. These results demonstrate that APS could suppress oxidative stress and apoptosis, ameliorating doxorubicin-mediated cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways. PMID:25386226

  12. An Engineered Bivalent Neuregulin Protects Against Doxorubicin-Induced Cardiotoxicity with Reduced Pro-Neoplastic Potential

    PubMed Central

    Jay, Steven M.; Murthy, Ashwin C.; Hawkins, Jessica F.; Wortzel, Joshua R.; Steinhauser, Matthew L.; Alvarez, Luis M.; Gannon, Joseph; Macrae, Calum A.; Griffith, Linda G.; Lee, Richard T.

    2013-01-01

    Background Doxorubicin (DOXO) is an effective anthracycline chemotherapeutic, but its use is limited by cumulative dose-dependent cardiotoxicity. Neuregulin-1β (NRG1B) is an ErbB receptor family ligand that is effective against DOXO-induced cardiomyopathy in experimental models but is also pro-neoplastic. We previously showed that an engineered bivalent neuregulin-1β (NN) has reduced pro-neoplastic potential compared to the epidermal growth factor (EGF)-like domain of NRG1B (NRG), an effect mediated by receptor biasing towards ErbB3 homotypic interactions uncommonly formed by native NRG1B. Here, we hypothesized that a newly formulated, covalent NN would be cardioprotective with reduced pro-neoplastic effects compared to NRG. Methods and Results NN was expressed as a maltose-binding protein fusion in E. coli. As established previously, NN stimulated anti-neoplastic or cytostatic signaling and phenotype in cancer cells, whereas NRG stimulated pro-neoplastic signaling and phenotype. In neonatal rat cardiomyocytes (NRCM), NN and NRG induced similar downstream signaling. NN, like NRG, attenuated the double-stranded DNA breaks associated with DOXO exposure in NRCM and human cardiomyocytes derived from induced pluripotent stem cells. NN treatment significantly attenuated DOXO-induced decrease in fractional shortening as measured by blinded echocardiography in mice in a chronic cardiomyopathy model (57.7% ± 0.6% vs. 50.9% ± 2.6%, P=0.004), whereas native NRG had no significant effect (49.4% ± 3.7% vs. 50.9% ± 2.6%, P=0.813). Conclusions NN is a cardioprotective agent that promotes cardiomyocyte survival and improves cardiac function in DOXO-induced cardiotoxicity. Given the reduced pro-neoplastic potential of NN versus NRG, NN has translational potential for cardioprotection in cancer patients receiving anthracyclines. PMID:23757312

  13. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    SciTech Connect

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  14. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice

    SciTech Connect

    Guenancia, Charles; Li, Na; Hachet, Olivier; Rigal, Eve; Cottin, Yves; Dutartre, Patrick; Rochette, Luc; Vergely, Catherine

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran–iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran–iron (15 mg/kg) for 3 weeks (D0–D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6 mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran–iron (125–1000 μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+ 22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. - Highlights: • The effects of iron on cardiomyocytes were opposite to those on cancer cell lines. • In our model, iron overload did not potentiate anthracycline cardiotoxicity. • Chronic oxidative stress induced by iron could mitigate doxorubicin cardiotoxicity. • The role of iron in

  15. Multiple impairments of cutaneous nociceptor function induced by cardiotoxic doses of Adriamycin in the rat.

    PubMed

    Boros, Krisztina; Jancsó, Gábor; Dux, Mária; Fekécs, Zoltán; Bencsik, Péter; Oszlács, Orsolya; Katona, Márta; Ferdinandy, Péter; Nógrádi, Antal; Sántha, Péter

    2016-09-01

    Besides their deleterious action on cardiac muscle, anthracycline-type cytostatic agents exert significant neurotoxic effects on primary sensory neurons. Since cardiac sensory nerves confer protective effects on heart muscle and share common traits with cutaneous chemosensitive nerves, this study examined the effects of cardiotoxic doses of adriamycin on the function and morphology of epidermal nerves. Sensory neurogenic vasodilatation, plasma extravasation, and the neural CGRP release evoked by TRPV1 and TRPA1 agonists in vitro were examined by using laser Doppler flowmetry, the Evans blue technique, and ELISA, respectively. Carrageenan-induced hyperalgesia was assessed with the Hargreaves method. Immunohistochemistry was utilized to study cutaneous innervation. Adriamycin treatment resulted in profound reductions in the cutaneous neurogenic sensory vasodilatation and plasma extravasation evoked by the TRPV1 and TRPA1 agonists capsaicin and mustard oil, respectively. The in vitro capsaicin-, but not high potassium-evoked neural release of the major sensory neuropeptide, CGRP, was markedly attenuated after adriamycin treatment. Carrageenan-induced inflammatory hyperalgesia was largely abolished following the administration of adriamycin. Immunohistochemistry revealed a substantial loss of epidermal TRPV1-expressing nociceptive nerves and a marked thinning of the epidermis. These findings indicate impairments in the functions of TRPV1 and TRPA1 receptors expressed on cutaneous chemosensitive nociceptive nerves and the loss of epidermal axons following the administration of cardiotoxic doses of adriamycin. Monitoring of the cutaneous nociceptor function in the course of adriamycin therapy may well be of predictive value for early detection of the deterioration of cardiac nerves which confer protection against the deleterious effects of the drug. PMID:27342418

  16. The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity

    PubMed Central

    Lazzarini, Edoardo; Balbi, Carolina; Altieri, Paola; Pfeffer, Ulrich; Gambini, Elisa; Canepa, Marco; Varesio, Luigi; Bosco, Maria Carla; Coviello, Domenico; Pompilio, Giulio; Brunelli, Claudio; Cancedda, Ranieri; Ameri, Pietro; Bollini, Sveva

    2016-01-01

    The anthracycline doxorubicin (Dox) is widely used in oncology, but it may cause a cardiomyopathy with bleak prognosis that cannot be effectively prevented. The secretome of human amniotic fluid-derived stem cells (hAFS) has previously been demonstrated to significantly reduce ischemic cardiac damage. Here it is shown that, following hypoxic preconditioning, hAFS conditioned medium (hAFS-CM) antagonizes senescence and apoptosis of cardiomyocytes and cardiac progenitor cells, two major features of Dox cardiotoxicity. Mechanistic studies with mouse neonatal ventricular cardiomyocytes (mNVCM) reveal that hAFS-CM inhibition of Dox-elicited senescence and apoptosis is associated with decreased DNA damage, nuclear translocation of NF-kB, and upregulation of the NF-kB controlled genes, Il6 and Cxcl1, promoting mNVCM survival. Furthermore, hAFS-CM induces expression of the efflux transporter, Abcb1b, and Dox extrusion from mNVCM. The PI3K/Akt signaling cascade, upstream of NF-kB, is potently activated by hAFS-CM and pre-treatment with a PI3K inhibitor abrogates NF-kB accumulation into the nucleus, modulation of Il6, Cxcl1 and Abcb1b, and prevention of Dox-initiated senescence and apoptosis in response to hAFS-CM. These results support the concept that hAFS are a valuable source of cardioprotective factors and lay the foundations for the development of a stem cell-based paracrine treatment of chemotherapy-related cardiotoxicity. PMID:27444332

  17. The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity.

    PubMed

    Lazzarini, Edoardo; Balbi, Carolina; Altieri, Paola; Pfeffer, Ulrich; Gambini, Elisa; Canepa, Marco; Varesio, Luigi; Bosco, Maria Carla; Coviello, Domenico; Pompilio, Giulio; Brunelli, Claudio; Cancedda, Ranieri; Ameri, Pietro; Bollini, Sveva

    2016-01-01

    The anthracycline doxorubicin (Dox) is widely used in oncology, but it may cause a cardiomyopathy with bleak prognosis that cannot be effectively prevented. The secretome of human amniotic fluid-derived stem cells (hAFS) has previously been demonstrated to significantly reduce ischemic cardiac damage. Here it is shown that, following hypoxic preconditioning, hAFS conditioned medium (hAFS-CM) antagonizes senescence and apoptosis of cardiomyocytes and cardiac progenitor cells, two major features of Dox cardiotoxicity. Mechanistic studies with mouse neonatal ventricular cardiomyocytes (mNVCM) reveal that hAFS-CM inhibition of Dox-elicited senescence and apoptosis is associated with decreased DNA damage, nuclear translocation of NF-kB, and upregulation of the NF-kB controlled genes, Il6 and Cxcl1, promoting mNVCM survival. Furthermore, hAFS-CM induces expression of the efflux transporter, Abcb1b, and Dox extrusion from mNVCM. The PI3K/Akt signaling cascade, upstream of NF-kB, is potently activated by hAFS-CM and pre-treatment with a PI3K inhibitor abrogates NF-kB accumulation into the nucleus, modulation of Il6, Cxcl1 and Abcb1b, and prevention of Dox-initiated senescence and apoptosis in response to hAFS-CM. These results support the concept that hAFS are a valuable source of cardioprotective factors and lay the foundations for the development of a stem cell-based paracrine treatment of chemotherapy-related cardiotoxicity. PMID:27444332

  18. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes

    PubMed Central

    Liu, Mi-Hua; Shan, Jian; Li, Jian; Zhang, Yuan; Lin, Xiao-Long

    2016-01-01

    Doxorubicin (DOX) is an efficient drug used in cancer therapy; however, it can induce severe cytotoxicity, which limits its clinical application. In the present study, the effects of resveratrol (RES) on sirtuin 1 (SIRT1) activation in mediating DOX-induced cytotoxicity in H9c2 cardiac cells was investigated. H9c2 cells were exposed to 5 µM DOX for 24 h to establish a model of DOX cardiotoxicity. Apoptosis of H9c2 cardiomyocytes was assessed using the MTT assay and Hoechst nuclear staining. The results demonstrated that pretreating H9c2 cells with RES prior to the exposure of DOX resulted in increased cell viability and a decreased quantity of apoptotic cells. Western blot analysis demonstrated that DOX decreased the expression level of SIRT1. These effects were significantly alleviated by co-treatment with RES. In addition, the results demonstrated that DOX administration amplified forkhead box O1 (FoxO1) and P53 expression levels in H9c2 cells. RES was also found to protect against DOX-induced increases of FoxO1 and P53 expression levels in H9c2 cells. Furthermore, the protective effects of RES were arrested by the SIRT1 inhibitor nicotinamide. In conclusion, the results demonstrated that RES protected H9c2 cells against DOX-induced injuries via SIRT1 activation. PMID:27446329

  19. Modulating Effects of Spirulina platensis against Tilmicosin-Induced Cardiotoxicity in Mice

    PubMed Central

    Ibrahim, Abdelaziz E.; Abdel-Daim, Mohamed Mohamed

    2015-01-01

    Objective Tilmicosin (TIL) is a long-acting macrolide antibiotic used to treat cattle for pathogens that cause bovine respiratory disease. However, overdoses of this medication have been reported to induce cardiac damage. Our experimental objective was to evaluate the protective effects of Spirulina platensis (SP) administration against TIL-induced cardiotoxicity in mice. Materials and Methods Our experimental in vivo animal study used 40 male albino mice that were divided into five groups of eight mice per group. The first group served as a control group and was injected with saline. The second group received SP at dose of 1000 mg/kg body weight for five days. The third group received a single dose of TIL (75 mg/kg, subcutaneously). Groups 4 and 5 were given SP at doses of 500 and 1000 mg/kg body weight for five consecutive days just before administration of TIL at the same dose and regimen used for group 3. Results TIL treated animals showed a significant increase in serum cardiac injury biomarkers as well as cardiac lipid peroxidation, however they had evidence of an inhibition in antioxidant biomarkers. SP normalized elevated serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), and CK-MB. Furthermore, SP reduced TIL-induced lipid peroxidation and oxidative stress in a dose-dependent manner. Conclusion Administration of SP minimized the toxic effects of TIL by its free radicalscavenging and potent antioxidant activity. PMID:25870843

  20. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    SciTech Connect

    Sirenko, Oksana; Cromwell, Evan F.; Crittenden, Carole; Wignall, Jessica A.; Wright, Fred A.; Rusyn, Ivan

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. A number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation

  1. Antioxidant and anti-apoptotic effects of onion (Allium cepa) extract on doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Alpsoy, Seref; Aktas, Cevat; Uygur, Ramazan; Topcu, Birol; Kanter, Mehmet; Erboga, Mustafa; Karakaya, Osman; Gedikbasi, Asuman

    2013-03-01

    The aim of this study was to investigate the antioxidant and anti-apoptotic effects of onion (Allium cepa) extracts (ACE) on doxorubicin (DOX)-induced cardiotoxicity. The rats in the ACE-pretreated group were given a daily dose of 1 ml ACE for 14 days. To induce cardiotoxicity, DOX (30 mg kg(-1) body weight) was injected intraperitoneally by a single dose and the rats were sacrificed after 48 h. To date, no such studies have been performed on the cardioprotective and anti-apoptotic potential of ACE on DOX-induced cardiotoxicity. Our data indicate a significant reduction in the activity of in situ identification of apoptosis using terminal dUTP nick end-labeling in cardiomyocytes of the DOX-treated group with ACE therapy. The DOX-treated with ACE groups showed a significant decrease in malondialdehyde levels, and increased activities of superoxide dismutase, glutathione and glutathione peroxidase in comparison with the DOX-treated group. Creatine kinase, creatine kinase MB, lactate dehydrogenase activities and cardiac troponin I levels were significantly decreased in the DOX + ACE group in comparison with the DOX group. These biochemical and histological disturbances were effectively attenuated on pretreatment with ACE. The present study showed that ACE may be a suitable cardioprotector against toxic effects of DOX.

  2. Cardioprotective effect of Saraca indica against cyclophosphamide induced cardiotoxicity in rats: A biochemical, electrocardiographic and histopathological study

    PubMed Central

    Viswanatha Swamy, A. H. M.; Patel, U. M.; Koti, B. C.; Gadad, P. C.; Patel, N. L.; Thippeswamy, A. H. M.

    2013-01-01

    Objectives: Cardioprotective activity of alcoholic extract of Saraca indica (SI) bark was investigated against cyclophosphamide induced cardiotoxicity. Materials and Methods: Cardiotoxicity was induced in Wistar rats by administering cyclophosphamide (200 mg/kg, i.p.) single injection on first day of experimental period. Saraca indica (200 and 400 mg/kg, p.o.) was administered immediately after administration of cyclophosphamide on first day and daily for 10 days. The general observations and mortality were measured. Results: Cyclophosphamide administration significantly (p < 0.05) increased lipid peroxidation (LPO) and decreased the levels of antioxidant markers such as reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). Cyclophosphamide elevated the levels of biomarker enzymes like creatine kinase (CK), creatine kinase isoenzyme MB (CK-MB), lactate dehydrogenase (LDH), aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP). Further, the cyclophosphamide treated rats showed changes in electrocardiogram (ECG) along with increased levels of cholesterol and triglycerides. Treatment with Saraca indica significantly (p < 0.05) reversed the status of cardiac biomarkers, ECG, oxidative enzymes and lipid profile in cyclophosphamide induced cardiotoxicity. Potential cardioprotective effect of Saraca indica was supported by histopathological examination that reduced severity of cellular damage of the myocardium. Conclusion: The biochemical, ECG and histopathology reports support the cardioprotective effect of Saraca indica which could be attributed to antioxidant activity. PMID:23543849

  3. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice.

    PubMed

    Guenancia, Charles; Li, Na; Hachet, Olivier; Rigal, Eve; Cottin, Yves; Dutartre, Patrick; Rochette, Luc; Vergely, Catherine

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran-iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran-iron (15mg/kg) for 3weeks (D0-D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran-iron (125-1000μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice.

  4. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice.

    PubMed

    Guenancia, Charles; Li, Na; Hachet, Olivier; Rigal, Eve; Cottin, Yves; Dutartre, Patrick; Rochette, Luc; Vergely, Catherine

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran-iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran-iron (15mg/kg) for 3weeks (D0-D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran-iron (125-1000μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. PMID:25711856

  5. Mechanisms of cardioprotective effect of aged garlic extract against Doxorubicin-induced cardiotoxicity.

    PubMed

    Alkreathy, Huda M; Damanhouri, Zoheir A; Ahmed, Nessar; Slevin, Mark; Osman, Abdel-Moneim M

    2012-12-01

    Aged garlic has been extensively studied and has been shown to have a number of medicinal properties, including immunomodulatory, hepatoprotective, antimutagenic, anticarcinogenic, and antioxidant effects. The objective of this study was to investigate the mechanisms of the cardioprotective effect of aged garlic extract (AGE), a widely used herbal medicine with potent antioxidant activity, against doxorubicin-induced cardiotoxicity. Moreover, the study investigated if the cardioprotective effect of AGE might be at the expense of the antitumor effect of the anticancer drug doxorubicin (DOX). Primary cultured neonatal rat cardiac myocytes were treated with DOX, AGE, and their combination for 24 hours. DOX increased p53 and caspase 3 activity-induced apoptotic cell death, whereas AGE pretreatment suppressed the action of DOX. AGE pretreatment did not interfere with the cytotoxic activity of DOX, but it increased the DOX uptake into tumor cells and increased the long term survivors of tumor-bearing mice from 30% to 70%. In conclusion, DOX impairs viability of cardiac myocytes, at least partially by activating the p53-mediated apoptotic signaling. AGE can effectively and extensively counteract this action of DOX and may potentially protect the heart from severe toxicity of DOX. At the same time, AGE did not interfere with antitumor activity of DOX. PMID:22172987

  6. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: by disturbing expression of the transcriptional regulators.

    PubMed

    Du, Zhongkun; Wang, Guowei; Gao, Shixiang; Wang, Zunyao

    2015-04-01

    As a result of the ban on some brominated flame retardants (BFRs), the use of organophosphate flame retardants (OPFRs) increases, and they are detected in multi-environment media at higher frequency and concentrations. However, the toxicity data of OPFRs, especially those on developmental toxicology are quite limited, which prevents an accurate evaluation of their environmental and health risk. Because a previous study reported that two aryl-OPFRs induced cardiotoxicity during zebrafish embryogenesis, we designed experiments to compare the heart developmental toxicity of a series of aryl-OPFRs with alkyl-OPFRs and explored possible internal mechanism. First, acute toxicity of 9 frequently used OPFRs were studied with zebrafish embryos (2-96 hpf). By comparing the LC50 and EC50 (pericardium edema) data, two aryl-OPFRs, triphenyl phosphate (TPhP) and cresyl diphenyl phosphate (CDP) showed greater heart developmental toxicity than the others. It was also found that the acute toxicity of OPFRs varied mainly depending on their hydrophobicity. Further study on the cardiotoxicity of TPhP and CDP showed that the cardiac looping progress can be impeded by 0.10mg/L TPhP or CDP exposure. Bradycardia and reduction of myocardium were also observed in 0.50 and 1.0mg/L TPhP groups and 0.10, 0.50, and 1.0mg/L CDP groups. 0-48 hpf is the vulnerable window of zebrafish cardiogenesis that can be easily affected by TPhP and CDP. RT-qPCR measurement on the expressions of key transcriptional regulators in cardiogenesis showed that BMP4, NKX2-5, and TBX5 were significantly inhibited at the exposure points of 12 hpf and 24 hpf which may be the internal factors related to the heart developmental toxicity. As zebrafish is a good model organism for human health study, the present results call for a greater attention to the health risk of fetus in pregnant women exposed to such OPFRs. PMID:25661707

  7. Benefits of antihypertensive medications for anthracycline- and trastuzumab-induced cardiotoxicity in patients with breast cancer: Insights from recent clinical trials

    PubMed Central

    Rygiel, Katarzyna

    2016-01-01

    Advances in oncologic therapies have allowed many patients with breast cancer to achieve better outcomes and longer survival. However, this progress has been tempered by cardiotoxicity, associated with anticancer therapies, ranging from subclinical abnormalities to irreversible life-threatening complications, such as congestive heart failure or cardiomyopathy. In particular, exposure to chemotherapy (CHT), including anthracyclines and trastuzumab, can lead to cardiac dysfunction with short- or long-term consequences, among patients with breast cancer. The aim of this study is to highlight the potential role of commonly used cardiac medications in the prevention of anthracycline- and trastuzumab-mediated cardiotoxicity, in women with breast cancer, based on evidence from recent clinical trials. This overview is focused on the use of antihypertensive medications, such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, outlining their cardioprotective effects in this patient population. In addition, the importance of biomarkers and modern imaging tests, as potential tools for detection and monitoring of cardiac dysfunction, induced by CHT, as well as some practical preventive and therapeutic strategies for cardio-oncology treatment teams, involved in the management of a growing number of women with breast cancer have been outlined. The content of this overview is based on a literature search of PubMed, within the last 5 years, mostly in relevance to the human epidermal growth factor receptor 2-positive patients with breast cancer, treated with anthracycline or trastuzumab therapy (in addition to surgery and/or radiation therapy [RT] regimen). PMID:27721532

  8. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer.

    PubMed

    Aminkeng, Folefac; Bhavsar, Amit P; Visscher, Henk; Rassekh, Shahrad R; Li, Yuling; Lee, Jong W; Brunham, Liam R; Caron, Huib N; van Dalen, Elvira C; Kremer, Leontien C; van der Pal, Helena J; Amstutz, Ursula; Rieder, Michael J; Bernstein, Daniel; Carleton, Bruce C; Hayden, Michael R; Ross, Colin J D

    2015-09-01

    Anthracyclines are used in over 50% of childhood cancer treatment protocols, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively. Candidate gene studies have reported genetic associations with ACT, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10(-8), odds ratio (95% confidence interval) = 4.7 (2.7-8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction.

  9. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer.

    PubMed

    Aminkeng, Folefac; Bhavsar, Amit P; Visscher, Henk; Rassekh, Shahrad R; Li, Yuling; Lee, Jong W; Brunham, Liam R; Caron, Huib N; van Dalen, Elvira C; Kremer, Leontien C; van der Pal, Helena J; Amstutz, Ursula; Rieder, Michael J; Bernstein, Daniel; Carleton, Bruce C; Hayden, Michael R; Ross, Colin J D

    2015-09-01

    Anthracyclines are used in over 50% of childhood cancer treatment protocols, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively. Candidate gene studies have reported genetic associations with ACT, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10(-8), odds ratio (95% confidence interval) = 4.7 (2.7-8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction. PMID:26237429

  10. Cardiotoxicity of anthracycline therapy: current perspectives

    PubMed Central

    Valcovici, Mihaela; Serban, Corina; Dragan, Simona

    2016-01-01

    Anthracyclines, especially doxorubicin and daunorubicin, are the drugs of first choice in the treatment of patients with hematologic malignancies, soft-tissue sarcomas, and solid tumors. Unfortunately, the use of anthracyclines is limited by their dose-dependent and cumulative cardiotoxicity. The molecular mechanism responsible for anthracycline-induced cardiotoxicity remains poorly understood, although experimental and clinical studies have shown that oxidative stress plays the main role. Hence, antioxidant agents, especially dexrazoxane, and also other drug classes (statins, β-blockers) proved to have a beneficial effect in protecting against anthracycline-induced cardiotoxicity. According to previous clinical trials, the major high-risk factors for anthracycline-induced cardiotoxicity are age, body weight, female gender, radiotherapy, and other diseases such as Down syndrome, familial dilated cardiomyopathy, diabetes and hypertension. Consequently, further studies are needed to elucidate the molecular pathogenesis of anthracycline-induced cardiotoxicity and also to discover new cardioprotective agents against anthracycline-induced cardiotoxicity. PMID:27186191

  11. Cardiotoxicity of anthracycline therapy: current perspectives.

    PubMed

    Valcovici, Mihaela; Andrica, Florina; Serban, Corina; Dragan, Simona

    2016-04-01

    Anthracyclines, especially doxorubicin and daunorubicin, are the drugs of first choice in the treatment of patients with hematologic malignancies, soft-tissue sarcomas, and solid tumors. Unfortunately, the use of anthracyclines is limited by their dose-dependent and cumulative cardiotoxicity. The molecular mechanism responsible for anthracycline-induced cardiotoxicity remains poorly understood, although experimental and clinical studies have shown that oxidative stress plays the main role. Hence, antioxidant agents, especially dexrazoxane, and also other drug classes (statins, β-blockers) proved to have a beneficial effect in protecting against anthracycline-induced cardiotoxicity. According to previous clinical trials, the major high-risk factors for anthracycline-induced cardiotoxicity are age, body weight, female gender, radiotherapy, and other diseases such as Down syndrome, familial dilated cardiomyopathy, diabetes and hypertension. Consequently, further studies are needed to elucidate the molecular pathogenesis of anthracycline-induced cardiotoxicity and also to discover new cardioprotective agents against anthracycline-induced cardiotoxicity. PMID:27186191

  12. Total Flavonoids from Clinopodium chinense (Benth.) O. Ktze Protect against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo

    PubMed Central

    Chen, Rong Chang; Xu, Xu Dong; Zhi Liu, Xue; Sun, Gui Bo; Zhu, Yin Di; Dong, Xi; Wang, Jian; Zhang, Hai Jing; Zhang, Qiang; Sun, Xiao Bo

    2015-01-01

    Doxorubicin has cardiotoxic effects that limit its clinical benefit in cancer patients. This study aims to investigate the protective effects of the total flavonoids from Clinopodium chinense (Benth.) O. Ktze (TFCC) against doxorubicin- (DOX-) induced cardiotoxicity. Male rats were intraperitoneally injected with a single dose of DOX (3 mg/kg) every 2 days for three injections. Heart samples were collected 2 weeks after the last DOX dose and then analyzed. DOX delayed body and heart growth and caused cardiac tissue injury, oxidative stress, apoptotic damage, mitochondrial dysfunction, and Bcl-2 expression disturbance. Similar experiments in H9C2 cardiomyocytes showed that doxorubicin reduced cell viability, increased ROS generation and DNA fragmentation, disrupted mitochondrial membrane potential, and induced apoptotic cell death. However, TFCC pretreatment suppressed all of these adverse effects of doxorubicin. Signal transduction studies indicated that TFCC suppressed DOX-induced overexpression of p53 and phosphorylation of JNK, p38, and ERK. Studies with LY294002 (a PI3K/AKT inhibitor) demonstrated that the mechanism of TFCC-induced cardioprotection also involves activation of PI3K/AKT. These findings indicated the potential clinical application of TFCC in preventing DOX-induced cardiac oxidative stress. PMID:25784945

  13. Total Flavonoids from Clinopodium chinense (Benth.) O. Ktze Protect against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo.

    PubMed

    Chen, Rong Chang; Xu, Xu Dong; Zhi Liu, Xue; Sun, Gui Bo; Zhu, Yin Di; Dong, Xi; Wang, Jian; Zhang, Hai Jing; Zhang, Qiang; Sun, Xiao Bo

    2015-01-01

    Doxorubicin has cardiotoxic effects that limit its clinical benefit in cancer patients. This study aims to investigate the protective effects of the total flavonoids from Clinopodium chinense (Benth.) O. Ktze (TFCC) against doxorubicin- (DOX-) induced cardiotoxicity. Male rats were intraperitoneally injected with a single dose of DOX (3 mg/kg) every 2 days for three injections. Heart samples were collected 2 weeks after the last DOX dose and then analyzed. DOX delayed body and heart growth and caused cardiac tissue injury, oxidative stress, apoptotic damage, mitochondrial dysfunction, and Bcl-2 expression disturbance. Similar experiments in H9C2 cardiomyocytes showed that doxorubicin reduced cell viability, increased ROS generation and DNA fragmentation, disrupted mitochondrial membrane potential, and induced apoptotic cell death. However, TFCC pretreatment suppressed all of these adverse effects of doxorubicin. Signal transduction studies indicated that TFCC suppressed DOX-induced overexpression of p53 and phosphorylation of JNK, p38, and ERK. Studies with LY294002 (a PI3K/AKT inhibitor) demonstrated that the mechanism of TFCC-induced cardioprotection also involves activation of PI3K/AKT. These findings indicated the potential clinical application of TFCC in preventing DOX-induced cardiac oxidative stress.

  14. Plasma metabolic profiling analysis of cyclophosphamide-induced cardiotoxicity using metabolomics coupled with UPLC/Q-TOF-MS and ROC curve.

    PubMed

    Yin, Jia; Xie, Jiabin; Guo, Xuejun; Ju, Liang; Li, Yubo; Zhang, Yanjun

    2016-10-15

    Cyclophosphamide (CY) is a commonly-used nitrogen mustard alkylating agent, but its clinical application is severely limited by its cardiotoxicity. Since the development of metabolomics, the change of metabolite profiles caused by cyclophosphamide has been studied by metabolomics and has gained much attention. In this study, we analyzed rat plasma samples collected one, three and five days after cyclophosphamide administration using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Multiple statistical analyses, such as principal component analysis (PCA) and partial least squares - discriminant analysis (PLS-DA), were used to examine metabolite profile changes in plasma samples in order to screen for potential cardiotoxicity biomarkers and metabolic pathways. Levels of a dozen of metabolites changed significantly in plasma from the CY-treated group after one, three, and five days compared with the control group treated with normal saline (NS). Receiver operator characteristic (ROC) curve analysis suggested that the total 16 metabolites play important roles in different times of CY-induced cardiotoxicity respectively. Our results suggest that these metabolites in linoleic acid metabolism and glycerol phospholipid metabolism may be related to CY-induced cardiotoxicity. These metabolites could act as sensitive biomarkers for CY-induced cardiotoxicity and be useful for investigating toxic mechanisms. They may also lay a foundation for clinical use of cyclophosphamide. PMID:27649503

  15. Synergistic protective role of mirazid (Commiphora molmol) and ascorbic acid against tilmicosin-induced cardiotoxicity in mice.

    PubMed

    Abdel-Daim, Mohamed M; Ghazy, Emad W; Fayez, Mostafa

    2015-01-01

    Tilmicosin (TIL) is a long-acting macrolide antibiotic approved for the treatment of cattle with Bovine Respiratory Disease. However, overdose of TIL has been reported to induce cardiotoxicity. The purpose of our experiment was to evaluate the protective effects of Commiphora molmol (mirazid (MRZ); myrrh) and (or) ascorbic acid (AA) against TIL-induced cardiotoxicity in mice. MRZ and AA were orally administered using stomach gavage, either alone or in combination for 5 consecutive days, followed with a single TIL overdose. TIL overdose induced a significant increase in serum levels of cardiac damage biomarkers (AST, LDH, CK, CK-MB, and cTnT), as well as cardiac lipid peroxidation, but cardiac levels of antioxidant biomarkers (GSH, SOD, CAT, and TAC) were decreased. Both MRZ and AA tended to normalize the elevated serum levels of cardiac injury biomarkers. Furthermore, MRZ and AA reduced TIL-induced lipid peroxidation and oxidative stress parameters. MRZ and AA combined produced a synergistic cardioprotective effect. We conclude that myrrh and (or) vitamin C administration minimizes the toxic effects of TIL through their free-radical-scavenging and potent antioxidant activities.

  16. Rutin potentially attenuates fluoride-induced oxidative stress-mediated cardiotoxicity, blood toxicity and dyslipidemia in rats.

    PubMed

    Umarani, V; Muvvala, Sudhakar; Ramesh, A; Lakshmi, B V S; Sravanthi, N

    2015-02-01

    This study was undertaken to evaluate cardio protective effect of rutin against sodium fluoride (NaF)-induced oxidative stress-mediated cardiotoxicity and blood toxicity. Cardiac injury was induced by daily administration of NaF 600 ppm in distilled water for four weeks. The animals exposed to NaF exhibited a significant increase in levels of cardiac serum markers, lipid peroxidative markers, serum total cholesterol, LDL, triglycerides and decrease in HDL levels. Decrease in hematological parameters, namely hemoglobin, red blood cells, mean corpuscular volume, mean corpuscular hemoglobin (MCH), MCH count and increase in white blood cells and erythrocyte sedimentation levels were also observed. Marked histopathological lesions and increased DNA fragmentation in cardiac tissues were observed. Activity of antioxidants-catalase, superoxide dismutase and reduced glutathione contents were decreased (p < 0.01), whereas lipid peroxidation product (malondialdehyde) was increased. A significant decrease in body and heart weight was also observed. Treatment with rutin effectively ameliorated the alterations in the studied parameters of rat through its antioxidant nature. There was also significant improvement in hematological parameters. Thus, results of this study clearly demonstrated that treatment with rutin against NaF intoxication has a significant role in protecting F-induced cardiotoxicity, blood toxicity and dyslipidemia in rats.

  17. Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection.

    PubMed

    Deidda, Martino; Madonna, Rosalinda; Mango, Ruggiero; Pagliaro, Pasquale; Bassareo, Pier P; Cugusi, Lucia; Romano, Silvio; Penco, Maria; Romeo, Francesco; Mercuro, Giuseppe

    2016-05-01

    Despite advances in supportive and protective therapy for myocardial function, heart failure caused by various clinical conditions, including cardiomyopathy due to antineoplastic therapy, remains a major cause of morbidity and mortality. Because of the limitations associated with current therapies, investigators have been searching for alternative treatments that can effectively repair the damaged heart and permanently restore its function. Damage to the heart can result from both traditional chemotherapeutic agents, such as anthracyclines, and new targeted therapies, such as trastuzumab. Because of this unresolved issue, investigators are searching for alternative therapeutic strategies. In this article, we present state-of-the-art technology with regard to the genomic and epigenetic mechanisms underlying cardiotoxicity and cardioprotection, the role of anticancer in influencing the redox (reduction/oxidation) balance and the function of stem cells in the repair/regeneration of the adult heart. These findings, although not immediately transferable to clinical applications, form the basis for the development of personalized medicine based on the prevention of cardiotoxicity with the use of genetic testing. Proteomics, metabolomics and investigations on reactive oxygen species-dependent pathways, particularly those that interact with the production of NO and energy metabolism, appear to be promising for the identification of early markers of cardiotoxicity and for the development of cardioprotective agents. Finally, autologous cardiac stem and progenitor cells may represent future contributions in the field of myocardial protection and recovery in the context of antiblastic therapy. PMID:27183528

  18. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    SciTech Connect

    Tikoo, Kulbhushan Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Our results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.

  19. Arsenic cardiotoxicity: An overview.

    PubMed

    Alamolhodaei, Nafiseh Sadat; Shirani, Kobra; Karimi, Gholamreza

    2015-11-01

    Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity.

  20. Effect of Metformin and Sitagliptin on Doxorubicin-Induced Cardiotoxicity in Rats: Impact of Oxidative Stress, Inflammation, and Apoptosis

    PubMed Central

    Kelleni, Mina Thabet; Amin, Entesar Farghaly; Abdelrahman, Aly Mohamed

    2015-01-01

    Doxorubicin (DOX) is a widely used antineoplastic drug whose efficacy is limited by its cardiotoxicity. The aim of this study was to investigate the possible protective role of the antidiabetic drugs metformin (250 mg/kg dissolved in DW p.o. for seven days) and sitagliptin (10 mg/kg dissolved in DW p.o. for seven days) in a model of DOX-induced (single dose 15 mg/kg i.p. at the fifth day) cardiotoxicity in rats. Results of our study revealed that pretreatment with metformin or sitagliptin produced significant (P < 0.05) cardiac protection manifested by a significant decrease in serum levels of LDH and CK-MB enzymes and cardiac MDA and total nitrites and nitrates levels, a significant increase in cardiac SOD activity, and remarkable improvement in the histopathological features as well as a significant reduction in the immunohistochemical expression of COX-2, iNOS, and caspase-3 enzymes as compared to DOX group. These results may suggest using metformin and/or sitagliptin as preferable drugs for diabetic patients suffering from cancer and receiving DOX in their chemotherapy regimen. PMID:26880912

  1. Effect of Metformin and Sitagliptin on Doxorubicin-Induced Cardiotoxicity in Rats: Impact of Oxidative Stress, Inflammation, and Apoptosis.

    PubMed

    Kelleni, Mina Thabet; Amin, Entesar Farghaly; Abdelrahman, Aly Mohamed

    2015-01-01

    Doxorubicin (DOX) is a widely used antineoplastic drug whose efficacy is limited by its cardiotoxicity. The aim of this study was to investigate the possible protective role of the antidiabetic drugs metformin (250 mg/kg dissolved in DW p.o. for seven days) and sitagliptin (10 mg/kg dissolved in DW p.o. for seven days) in a model of DOX-induced (single dose 15 mg/kg i.p. at the fifth day) cardiotoxicity in rats. Results of our study revealed that pretreatment with metformin or sitagliptin produced significant (P < 0.05) cardiac protection manifested by a significant decrease in serum levels of LDH and CK-MB enzymes and cardiac MDA and total nitrites and nitrates levels, a significant increase in cardiac SOD activity, and remarkable improvement in the histopathological features as well as a significant reduction in the immunohistochemical expression of COX-2, iNOS, and caspase-3 enzymes as compared to DOX group. These results may suggest using metformin and/or sitagliptin as preferable drugs for diabetic patients suffering from cancer and receiving DOX in their chemotherapy regimen. PMID:26880912

  2. Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F{sub 1} mouse model

    SciTech Connect

    Desai, Varsha G.; Herman, Eugene H.; Moland, Carrie L.; Branham, William S.; Lewis, Sherry M.; Davis, Kelly J.; George, Nysia I.; Lee, Taewon; Kerr, Susan; Fuscoe, James C.

    2013-01-01

    Serum levels of cardiac troponins serve as biomarkers of myocardial injury. However, troponins are released into the serum only after damage to cardiac tissue has occurred. Here, we report development of a mouse model of doxorubicin (DOX)-induced chronic cardiotoxicity to aid in the identification of predictive biomarkers of early events of cardiac tissue injury. Male B6C3F{sub 1} mice were administered intravenous DOX at 3 mg/kg body weight, or an equivalent volume of saline, once a week for 4, 6, 8, 10, 12, and 14 weeks, resulting in cumulative DOX doses of 12, 18, 24, 30, 36, and 42 mg/kg, respectively. Mice were sacrificed a week following the last dose. A significant reduction in body weight gain was observed in mice following exposure to a weekly DOX dose for 1 week and longer compared to saline-treated controls. DOX treatment also resulted in declines in red blood cell count, hemoglobin level, and hematocrit compared to saline-treated controls after the 2nd weekly dose until the 8th and 9th doses, followed by a modest recovery. All DOX-treated mice had significant elevations in cardiac troponin T concentrations in plasma compared to saline-treated controls, indicating cardiac tissue injury. Also, a dose-related increase in the severity of cardiac lesions was seen in mice exposed to 24 mg/kg DOX and higher cumulative doses. Mice treated with cumulative DOX doses of 30 mg/kg and higher showed a significant decline in heart rate, suggesting drug-induced cardiac dysfunction. Altogether, these findings demonstrate the development of DOX-induced chronic cardiotoxicity in B6C3F{sub 1} mice. -- Highlights: ► 24 mg/kg was a cumulative cardiotoxic dose of doxorubicin in male B6C3F{sub 1} mice. ► Doxorubicin-induced hematological toxicity was in association with splenomegaly. ► Doxorubicin induced severe testicular toxicity in B6C3F{sub 1} male mice.

  3. Terminalia arjuna (Roxb.) Wight & Arn. augments cardioprotection via antioxidant and antiapoptotic cascade in isoproterenol induced cardiotoxicity in rats.

    PubMed

    Shukla, Santosh K; Sharma, Suman B; Singh, Usha R; Ahmad, Sayeed; Dwivedi, Shridhar

    2015-12-01

    Worldwide, Ischemic heart disease (IHD) affects a large population. Implication of myocardial infarction (MI) and its multiple pathophysiology in cardiac function is well known. Further, isoproterenol (ISP) is known to induce MI. Today, there is an urgent need for effective drug that could limit the myocardial injury. Therapeutic intervention with antioxidants has been shown useful in preventing the deleterious changes produced by ISP. Here, we investigated the protective effects of oral pre-treatment of hydroalcoholic extract of bark of Terminalia arjuna (HETA) on biochemical and apoptotic changes during cardiotoxicity induced by isoproterenol (ISP) in rats. HETA was orally administered at a dose of 100, 200 and 400 mg/kg body wt., for 30 days with concurrent administration of ISP (85 mg/kg body wt.) on days 28th and 29th at an interval of 24 h. ISP caused deleterious changes in the myocardium and significantly increased (P < 0.05) malondialdehyde, serum glutamate oxaloacitate transaminase, creatine kinase-MB, lactate dehydrogenase and troponin-I. However, it significantly decreased (P < 0.05) glutathione and superoxide dismutase compared to healthy control. Oral pre-treatment of HETA for 30 days significantly decreased (P < 0.05) the biochemical parameters of oxidative stress and cardiac markers as compared to ISP control. Histopathological findings also revealed that architecture of the myocardium was restored towards normal in HETA pre-treated group. Overall, the present study has shown that the hydroalcoholic extract of bark of T. arjuna (HETA) attenuates oxidative stress, apoptosis and improves antioxidant status in ISP-induced cardiotoxicity in rats. PMID:26742326

  4. Terminalia arjuna (Roxb.) Wight & Arn. augments cardioprotection via antioxidant and antiapoptotic cascade in isoproterenol induced cardiotoxicity in rats.

    PubMed

    Shukla, Santosh K; Sharma, Suman B; Singh, Usha R; Ahmad, Sayeed; Dwivedi, Shridhar

    2015-12-01

    Worldwide, Ischemic heart disease (IHD) affects a large population. Implication of myocardial infarction (MI) and its multiple pathophysiology in cardiac function is well known. Further, isoproterenol (ISP) is known to induce MI. Today, there is an urgent need for effective drug that could limit the myocardial injury. Therapeutic intervention with antioxidants has been shown useful in preventing the deleterious changes produced by ISP. Here, we investigated the protective effects of oral pre-treatment of hydroalcoholic extract of bark of Terminalia arjuna (HETA) on biochemical and apoptotic changes during cardiotoxicity induced by isoproterenol (ISP) in rats. HETA was orally administered at a dose of 100, 200 and 400 mg/kg body wt., for 30 days with concurrent administration of ISP (85 mg/kg body wt.) on days 28th and 29th at an interval of 24 h. ISP caused deleterious changes in the myocardium and significantly increased (P < 0.05) malondialdehyde, serum glutamate oxaloacitate transaminase, creatine kinase-MB, lactate dehydrogenase and troponin-I. However, it significantly decreased (P < 0.05) glutathione and superoxide dismutase compared to healthy control. Oral pre-treatment of HETA for 30 days significantly decreased (P < 0.05) the biochemical parameters of oxidative stress and cardiac markers as compared to ISP control. Histopathological findings also revealed that architecture of the myocardium was restored towards normal in HETA pre-treated group. Overall, the present study has shown that the hydroalcoholic extract of bark of T. arjuna (HETA) attenuates oxidative stress, apoptosis and improves antioxidant status in ISP-induced cardiotoxicity in rats.

  5. Gp130-mediated STAT3 activation by S-propargyl-cysteine, an endogenous hydrogen sulfide initiator, prevents doxorubicin-induced cardiotoxicity.

    PubMed

    Wu, J; Guo, W; Lin, S-Z; Wang, Z-J; Kan, J-T; Chen, S-Y; Zhu, Y-Z

    2016-01-01

    Doxorubicin (Dox) could trigger a large amount of apoptotic cells in the myocardium, which leads to dilated cardiomyopathy and heart failure. S-propargyl-cysteine (SPRC), a producing agent of endogenous hydrogen sulfide (H2S), possesses cardioprotective efficacy. However, the specific effect and mechanism of SPRC in Dox-induced cardiotoxicity remain elusive. Given gp130 with its main downstream signaling molecule, signal transducer and activator of transcription 3 (STAT3), is involved in cardiac myocyte survival and growth; the present study was performed to elucidate whether SPRC counteracts Dox-induced cardiotoxicity, and if so, whether the gp130/STAT3 pathway is involved in this cardioprotective activity. SPRC stimulated the activation of STAT3 via gp130-mediated transduction tunnel in vitro and in vivo. In Dox-stimulated cardiotoxicity, SPRC enhanced cell viability, restored expression of gp130/STAT3-regulated downstream genes, inhibited apoptosis and oxidative stress, and antagonized mitochondrial dysfunction and intracellular Ca(2+) overload. Intriguingly, blockade of gp130/STAT3 signaling abrogated all these beneficial capacities of SPRC. Our findings present the first piece of evidence for the therapeutic properties of SPRC in alleviating Dox cardiotoxicity, which could be attributed to the activation of gp130-mediated STAT3 signaling. This will offer a novel molecular basis and therapeutic strategy of H2S donor for the treatment of heart failure. PMID:27537522

  6. The protective effect of thiamine pyrophosphate, but not thiamine, against cardiotoxicity induced with cisplatin in rats.

    PubMed

    Coskun, Resit; Turan, Mehmet Ibrahim; Turan, Isil Siltelioglu; Gulapoglu, Mine

    2014-07-01

    This study investigated the effect of thiamine pyrophosphate on oxidative damage associated with cardiotoxicity caused by cisplatin (CIS), an antineoplastic agent, in rats, and compared this with thiamine. Animals used in the study were divided into four groups of 6 rats each. These represented a control group receiving 5 mg/kg of CIS, study groups receiving 20 mg/kg of thiamine pyrophosphate plus 5 mg/kg of cisplatin (CTPG) or 20 mg/kg of thiamine plus 5 mg/kg of cisplatin and a healthy (H) group. All doses were administered intraperitoneally once a day for 14 days. Malondialdehyde, total glutathione and products of DNA injury results were similar in the CTPG and H groups (p > 0.05). Creatinine kinase, creatine kinase MB and troponin 1 levels were similar in the CTPG and H groups (p > 0.05). Thiamine pyrophosphate prevented CIS-associated oxidative stress and heart injury, whereas thiamine did not prevent these.

  7. BGP-15, a PARP-inhibitor, prevents imatinib-induced cardiotoxicity by activating Akt and suppressing JNK and p38 MAP kinases.

    PubMed

    Sarszegi, Zsolt; Bognar, Eszter; Gaszner, Balazs; Kónyi, Attila; Gallyas, Ferenc; Sumegi, Balazs; Berente, Zoltan

    2012-06-01

    In this study, we investigate the cardiotoxic effects of the well-known cytostatic agent imatinib mesylate (Gleevec), and presented evidence for the cardioprotective effect of BGP-15 which is a novel insulin sensitizer. The cardiotoxic effect of imatinib mesylate was assessed in Langendorff rat heart perfusion system. The cardiac high-energy phosphate levels (creatine phosphate (PCr) and ATP) were monitored in situ by (31)P NMR spectroscopy. The protein oxidation, lipid peroxidation, and the activation of signaling pathways were determined from the freeze-clamped hearts. Prolonged treatment of the heart with imatinib mesylate (20 mg/kg) resulted in cardiotoxicity, which were characterized by the depletion of high-energy phosphates (PCr and ATP), and significantly increased protein oxidation and lipid peroxidation. Imatinib mesylate treatment-induced activation of MAP kinases (including ERK1/2, p38, and JNK) and the phosphorylation of Akt and GSK-3beta. BGP-15 (200 μM) prevented the imatinib mesylate-induced oxidative damages, attenuated the depletion of high-energy phosphates, altered the signaling effect of imatinib mesylate by preventing p38 MAP kinase and JNK activation, and induced the phosphorylation of Akt and GSK-3beta. The suppressive effect of BGP-15 on p38 and JNK activation could be significant because these kinases contribute to the cell death and inflammation in the isolated perfused heart.

  8. TXNIP/TRX/NF-κB and MAPK/NF-κB pathways involved in the cardiotoxicity induced by Venenum Bufonis in rats

    PubMed Central

    Bi, Qi-rui; Hou, Jin-jun; Qi, Peng; Ma, Chun-hua; Feng, Rui-hong; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Zheng, Yuan-yuan; Wu, Wan-ying; Guo, De-an

    2016-01-01

    Venenum Bufonis (VB) is a widely used traditional medicine with serious cardiotoxic effects. The inflammatory response has been studied to clarify the mechanism of the cardiotoxicity induced by VB for the first time. In the present study, Sprague Dawley (SD) rats, were administered VB (100, 200, and 400 mg/kg) intragastrically, experienced disturbed ECGs (lowered heart rate and elevated ST-segment), increased levels of serum indicators (creatine kinase (CK), creatine kinase isoenzyme-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and serum interleukin (IL-6, IL-1β, TNF-α) at 2 h, 4 h, 6 h, 8 h, 24 h, and 48 h, which reflected that an inflammatory response, together with cardiotoxicity, were involved in VB-treated rats. In addition, the elevated serum level of MDA and the down-regulated SOD, CAT, GSH, and GPx levels indicated the appearance of oxidative stress in the VB-treated group. Furthermore, based on the enhanced expression levels of TXNIP, p-NF-κBp65, p-IκBα, p-IKKα, p-IKKβ, p-ERK, p-JNK, and p-P38 and the obvious myocardial degeneration, it is proposed that VB-induced cardiotoxicity may promote an inflammatory response through the TXNIP/TRX/NF-κB and MAPK/NF-κB pathways. The observed inflammatory mechanism induced by VB may provide a theoretical reference for the toxic effects and clinical application of VB. PMID:26961717

  9. A discovery study of daunorubicin induced cardiotoxicity in a sample of acute myeloid leukemia patients prioritizes P450 oxidoreductase polymorphisms as a potential risk factor

    PubMed Central

    Lubieniecka, Joanna M.; Graham, Jinko; Heffner, Daniel; Mottus, Randy; Reid, Ronald; Hogge, Donna; Grigliatti, Tom A.; Riggs, Wayne K.

    2013-01-01

    Anthracyclines are very effective chemotherapeutic agents; however, their use is hampered by the treatment-induced cardiotoxicity. Genetic variants that help define patient's sensitivity to anthracyclines will greatly improve the design of optimal chemotherapeutic regimens. However, identification of such variants is hampered by the lack of analytical approaches that address the complex, multi-genic character of anthracycline induced cardiotoxicity (AIC). Here, using a multi-SNP based approach, we examined 60 genes coding for proteins involved in drug metabolism and efflux and identified the P450 oxidoreductase (POR) gene to be most strongly associated with daunorubicin induced cardiotoxicity in a population of acute myeloid leukemia (AML) patients (FDR adjusted p-value of 0.15). In this sample of cancer patients, variation in the POR gene is estimated to account for some 11.6% of the variability in the drop of left ventricular ejection fraction (LVEF) after daunorubicin treatment, compared to the estimated 13.2% accounted for by the cumulative dose and ethnicity. In post-hoc analysis, this association was driven by 3 SNPs—the rs2868177, rs13240755, and rs4732513—through their linear interaction with cumulative daunorubicin dose. The unadjusted odds ratios (ORs) and confidence intervals (CIs) for rs2868177 and rs13240755 were estimated to be 1.89 (95% CI: 0.7435–4.819; p = 0.1756) and 3.18 (95% CI: 1.223–8.27; p = 0.01376), respectively. Although the contribution of POR variants is expected to be overestimated due to the multiple testing performed in this small pilot study, given that cumulative anthracycline dose is virtually the only factor used clinically to predict the risk of cardiotoxicity, the contribution that genetic analyses of POR can make to the assessment of this risk is worthy of follow up in future investigations. PMID:24273552

  10. TXNIP/TRX/NF-κB and MAPK/NF-κB pathways involved in the cardiotoxicity induced by Venenum Bufonis in rats.

    PubMed

    Bi, Qi-Rui; Hou, Jin-Jun; Qi, Peng; Ma, Chun-Hua; Feng, Rui-Hong; Yan, Bing-Peng; Wang, Jian-Wei; Shi, Xiao-Jian; Zheng, Yuan-Yuan; Wu, Wan-Ying; Guo, De-An

    2016-01-01

    Venenum Bufonis (VB) is a widely used traditional medicine with serious cardiotoxic effects. The inflammatory response has been studied to clarify the mechanism of the cardiotoxicity induced by VB for the first time. In the present study, Sprague Dawley (SD) rats, were administered VB (100, 200, and 400 mg/kg) intragastrically, experienced disturbed ECGs (lowered heart rate and elevated ST-segment), increased levels of serum indicators (creatine kinase (CK), creatine kinase isoenzyme-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and serum interleukin (IL-6, IL-1β, TNF-α) at 2 h, 4 h, 6 h, 8 h, 24 h, and 48 h, which reflected that an inflammatory response, together with cardiotoxicity, were involved in VB-treated rats. In addition, the elevated serum level of MDA and the down-regulated SOD, CAT, GSH, and GPx levels indicated the appearance of oxidative stress in the VB-treated group. Furthermore, based on the enhanced expression levels of TXNIP, p-NF-κBp65, p-IκBα, p-IKKα, p-IKKβ, p-ERK, p-JNK, and p-P38 and the obvious myocardial degeneration, it is proposed that VB-induced cardiotoxicity may promote an inflammatory response through the TXNIP/TRX/NF-κB and MAPK/NF-κB pathways. The observed inflammatory mechanism induced by VB may provide a theoretical reference for the toxic effects and clinical application of VB. PMID:26961717

  11. Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes.

    PubMed

    Won, Kyung-Jong; Lin, Hai Yue; Jung, Soohyun; Cho, Soo Min; Shin, Ho-Chul; Bae, Young Min; Lee, Seung Hyun; Kim, Hyun-Jung; Jeon, Byeong Hwa; Kim, Bokyung

    2012-04-01

    Effects of miconazole, an azole antifungal, have not been fully determined in cardiomyocytes. We therefore identified the transcriptome in neonatal rat cardiomyocytes responding to miconazole using DNA microarray analysis and selected a gene and investigated its role in cardiomyocytes. Miconazole dose-dependently increased the levels of superoxide (O(2)(-)) and apoptosis in cardiomyocytes; these increases were inhibited by treatment with antioxidants. The DNA microarray revealed that 4163 genes were upregulated and 4829 genes downregulated by more than threefold in miconazole-treated cardiomyocytes compared with the vehicle-treated control. Moreover, redox homeostasis-, oxidative stress-, and reactive oxygen species (ROS)-related categories of genes were strongly affected by miconazole treatment. Among genes overlapped in all these categories, apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1), a redox-related gene, was prominent and was diminished in the miconazole-treated group. Changes in the O(2)(-) production and apoptosis induction in response to miconazole were inhibited in cardiomyocytes transfected with adenoviral APE/Ref-1. Overexpression of APE/Ref-1 reversed the reduction in beating frequency induced by miconazole. Our results demonstrate that miconazole may induce rat cardiotoxicity via a ROS-mediated pathway, which is initiated by the inhibition of APE/Ref-1 expression. This possible new adverse event in cardiomyocyte function caused by miconazole may provide a basis for the development of novel antifungal agents.

  12. Values of using QTc and N-terminal fragment of B-type natriuretic peptide as markers for early detection of acute antipsychotic drugs-induced cardiotoxicity.

    PubMed

    Khalaf, Mohamed A M; Abdelrahman, Tarek M; Abbas, Mohamed F

    2011-03-01

    We aimed at studying the acute cardiotoxicity of the most commonly used antipsychotics in Egypt using QTc interval and NT-proBNP as markers for the early detection of such cases. Eighty-two admitted patients, at El-Minia PCC (period from 1-7-2005 to 30-6-2010), were classified into 3 groups: I: acute thioridazine overdose (n = 28), II: acute pimozide overdose (n = 23), and III: acute clozapine overdose (n = 31). Patients were investigated for NT-proBNP level and QTc on admission (day 0) and after 24 h (day 1). All the studied drugs had the ability to induce cardiotoxicity in the form of hypotension and dysrhythmias. Thioridazine and pimozide had potentially serious cardiotoxic effects than clozapine. NT-proBNP levels were elevated significantly in all groups on days 0 and 1 when compared with the reference value and a significant decrease in the same parameter on day 1 when compared with that of day 0 within the same group. QTc showed a significant prolongation in all studied groups on days 0 and 1, and there was a significant shortening of QTc on day 1 when compared with that of day 0 within the same group. A significant positive correlation of NT-proBNP level elevation with QTc prolongation was reported in all groups on days 0 and 1. Serious dysrhythmias were associated with QTc prolongation greater than 500 ms. And it was concluded that NT-proBNP, in adjunction with QTc measurement, may be a valuable and sensitive laboratory biomarker to predict cardiotoxicity of antipsychotic overdose. Larger multicenter studies are still needed to verify this possible relationship.

  13. Evaluation of the Cardiotoxicity of Mitragynine and Its Analogues Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Wu, Jianjun; Jamil, Mohd Fadzly Amar; Tan, Mei Lan; Adenan, Mohd Ilham; Wong, Philip; Shim, Winston

    2014-01-01

    Introduction Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Methods and Results The rapid delayed rectifier potassium current (IKr), L-type Ca2+ current (ICa,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant IKr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed IKr in hiPSC-CMs by 67% ∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression,and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine. Conclusions Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of IKr in human cardiomyocytes. PMID:25535742

  14. The Early Predictive Value of Right Ventricular Strain in Epirubicin-Induced Cardiotoxicity in Patients with Breast Cancer

    PubMed Central

    Chang, Wei-Ting; Shih, Jhih-Yuan; Feng, Yin-Hsun; Chiang, Chun-Yen; Kuo, Yu Hsuan; Chen, Wei-Yu; Wu, Hong-Chang; Cheng, Juei-Tang; Wang, Jhi-Joung; Chen, Zhih-Cherng

    2016-01-01

    Background As cancer therapies have improved, patient life spans have been extended but quality of life has been threatened by chemotherapy induced cardiotoxicity. Most cardiac complications remain unobserved until specific symptoms develop. Speckle-tracking echocardiography is a sensitive imaging modality in detecting early occult myocardial dysfunction. Methods A total number of 35 patients newly diagnosed with breast cancer and preparing for epirubicin therapy were prospectively recruited. Echocardiography, including speckle-tracking echocardiography, was performed sequentially at baseline (T1), after the first cycle (T2) and after the third cycle (T3) of epirubicin. At each visit, the severity of dyspnea was evaluated by the assessment scale. Results Compared with the baseline, right ventricular longitudinal strain (RVLS_FW) at T2 significantly declined (-22.49 ± 4.97 vs. -18.48 ± 4.46, p = 0.001), which was also positively associated with the development of dyspnea (R2 = 0.8, p = 0.01). At T3, both the left ventricular global longitudinal strain and RVLS_FW were significantly impaired (-21.4 ± 4.12 vs. -16.94 ± 6.81%; -22.49 ± 4.97 vs. -16.86 ± 7.27%, p = 0.01; 0.001, respectively). Also, the accumulating dose of epirubicin positively correlated with the development of dyspnea (R2 = 0.38, p = 0.04) and the decline of RVLS_FW (R2 = 0.53, p = 0.02). Notably, compared with the other echocardiographic parameters only RVLS_FW at the early stage (T2) significantly correlated with the development of dyspnea (odds ratio: 1.84, 95% confidence interval: 1.22-2.78, p = 0.04). Conclusions RVLS_FW sensitively predicts dyspnea development in breast cancer patients receiving epirubicin therapy. However, larger scale studies are required to validate its role in long-term patient survival. PMID:27713603

  15. Allylamine Cardiotoxicity

    PubMed Central

    Boor, Paul J.; Nelson, Thomas J.; Chieco, Pasquale

    1980-01-01

    The progression of cardiac lesions induced in the rat by allylamine administration (0.1% in drinking water) was studied histopathologically and histochemically. Early changes (4-8 days) consisted of piecemeal acute apical and subendocardial myocardial necrosis with morphologic features of coagulation necrosis and myocytolysis. These early lesions progressed and coalesced; resolution of the subendocardial necrosis was associated with remarkably proliferative fibroblastic tissus. Late lesions (21 days to 3 months) consisted of extensive dense fibrous tissue with adjacent continuing focal necrosis and organization. Although vascular alterations were not present during the early course of injury, after 21 days an exuberant proliferation of cells, predominantly within the intima of intramyocardial smaller arteries and not associated with total occlusion or thrombosis, became evident. Other late lesions included rare intraventricular mural thrombi and cartilagenous metaplasia of trabeculae carnae. Early histochemical alterations (3 days) included focal myocardial cell “calcification,” demonstrated by the alizarin red S stain, and increased monoamine oxidase (MAO) staining in apical subendocardium and periarterial myocytes. As necrosis continued and fibrosis developed (7-21 days) MAO dramatically increased in pericicatricial and periarterial cells. Biochemical measurement of myocardial MAO showed an initial drop in activity, followed by a steady rise to high activity (21 days), especially toward a Type “B” MAO substrate. Although there are many similarities between allylamine-induced myocardial necrosis and ischemic or catecholamine-induced myocardial damage, other unusual findings—especially the early histochemical and chemical MAO alterations and the proliferative late vascular and cicatricial lesions—suggest that the primary pathophysiologic effect of allylamine, mediated through the MAO system, is on the medial smooth muscle of intramyocardial arteries

  16. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    SciTech Connect

    Doherty, Kimberly R. Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  17. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types.

    PubMed

    Doherty, Kimberly R; Talbert, Dominique R; Trusk, Patricia B; Moran, Diarmuid M; Shell, Scott A; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability.

  18. Capparis spinosa reduces Doxorubicin-induced cardio-toxicity in cardiomyoblast cells

    PubMed Central

    Mousavi, Seyed Hadi; Hosseini, Azar; Bakhtiari, Elham; Rakhshandeh, Hassan

    2016-01-01

    Objective: Doxorubicin (DOX) is an effective anticancer drug but its clinical application is limited because it induces apoptosis in cardiomyocytes and leads to permanent degenerative cardiomyopathy and heart failure possibly due to oxidative stress. Recent studies showed that Capparis spinosa (C. spinose) exhibits potent antioxidant activity. So, in this study, we explored the protective effect of hydro-alcoholic extract of C. spinosa against DOX-induced cytotoxicity in H9c2 cells. Materials and Methods: Cell viability was quantified by MTT assay. Apoptotic cells were determined using flow cytometry (sub-G1 peak) evaluation of DNA fragmentation following PI staining. Cells were cultured with 5 μM DOX for 24 hr to induce cell damage. H9c2 cells were pretreated with different concentrations (6-200 μg/ml) of C. spinosa extract for 4 hr before DOX treatment in all trials. Results: Pretreatment with 25, 50, 100 and 200 µg/ml of C. spinosa could increase the viability of H9C2 cells to 72.63±2.8% (p<0.05), 77.37±1.8% (p<0.05), 83.56±2.6% (p<0.001) and 90.9±0.5% (p<0.001) of control, respectively. Also, C. spinosa decreased apoptotic induction significantly, at the doses of 50 µg/ml (p<0.05), 100 µg/ml (p<0.01) and 200 µg/ml (p<0.001) Conclusion: Our results showed that C. spinosa could exert cardioprotective effects against DOX-induced toxicity that might be mediated via its antioxidant activity. PMID:27761417

  19. Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats

    PubMed Central

    Malekinejad, Hassan; Ahsan, Sima; Delkhosh-Kasmaie, Fatemeh; Cheraghi, Hadi; Rezaei-Golmisheh, Ali; Janbaz-Acyabar, Hamed

    2016-01-01

    Objective(s): Paclitaxel is a potent chemotherapy agent with severe side effects, including allergic reactions, cardiovascular problems, complete hair loss, joint and muscle pain, which may limit its use and lower its efficiency. The cardioprotective effect of royal jelly was investigated on paclitaxel-induced damages. Materials and Methods: Adult male Wistar rats were divided into control and test groups (n=8). The test group was assigned into five subgroups; 4 groups, along with paclitaxel administration (7.5 mg/kg BW, weekly), received various doses of royal jelly (50, 100, and 150 mg/kg BW) for 28 consecutive days. The last group received only royal jelly at 100 mg/kg. In addition to oxidative and nitrosative stress biomarkers, the creatine kinase (CK-BM) level was also determined. To show the cardioprotective effect of royal jelly on paclitaxel-induced damages, histopathological examinations were conducted. Results: Royal jelly lowered the paclitaxel-elevated malondialdehyde and nitric oxide levels in the heart. Royal jelly could also remarkably reduce the paclitaxel-induced cardiac biomarker of creatine kinase (CK-BM) level and pathological injuries such as diffused edema, hemorrhage, congestion, hyaline exudates, and necrosis. Moreover, royal jelly administration in a dose-dependent manner resulted in a significant (P<0.05) increase in the paclitaxel-reduced total antioxidant capacity. Conclusion: Our data suggest that the paclitaxel-induced histopathological and biochemical alterations could be protected by the royal jelly administration. The cardioprotective effect of royal jelly may be related to the suppression of oxidative and nitrosative stress. PMID:27081469

  20. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity.

    PubMed

    Ahmad, Shama; Ahmad, Aftab; Hendry-Hofer, Tara B; Loader, Joan E; Claycomb, William C; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L; Chandler, Joshua D; Day, Brian J; Veress, Livia A; White, Carl W

    2015-04-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.

  1. Noninvasive early detection of anthracycline-induced cardiotoxicity in patients with hematologic malignancies using the phased tracking method.

    PubMed

    Saito, Yoshiko; Susukida, Ikuko; Uzuka, Yoshiro; Kanai, Hiroshi

    2016-09-01

    Anthracyclines are among the most effective and widely used anticancer drugs; however, their use is limited by serious cardiotoxicity. Early detection is necessary to prevent the high mortality rate associated with heart failure (HF). We evaluated cardiac function in 142 patients using conventional echocardiography and the phased tracking method (PTM), which was measured using the minute vibration and the rapid motion components, neither of which is recognized in standard M-mode nor in tissue Doppler imaging. For systolic function comparison, we compared left ventricular ejection fraction (LVEF) in conventional echocardiography with the average velocity of ventricular septum myocytes (Vave ) in the PTM. The Vave of 12 healthy volunteers was 1.5 (m/s)/m or more. At baseline of 99 patients, there was a positive correlation between LVEF and Vave in all patients. There were no significant differences in baseline cardiac function between patients with and without HF. There was a negative correlation between the cumulative anthracycline dose and LVEF or Vave among all patients. We determined that Vave 1.5 (m/s)/m was equivalent to LVEF 60%, 1.25 (m/s)/m to 55%, and 1.0 (m/s)/m to 50%. During the follow-up period, there was a pathological decrease in LVEF (<55%) and Vave (<1.25 m/s/m) in patients with HF; decreases in Vave were detected significantly earlier than those in LVEF (P < 0.001). When Vave declined to 1.5 (m/s)/m or less, careful continuous observation and cardiac examination was required. When Vave further declined to 1.0 (m/s)/m or lower, chemotherapy was postponed or discontinued; thus, serious drug-induced cardiomyopathy was avoided in patients who did not relapse. The PTM was superior to echocardiography for early, noninvasive detection and intermediate-term monitoring of left ventricle systolic function associated with anthracycline chemotherapy, among patients with hematologic malignancies. The PTM was an effective laboratory procedure to avoid the

  2. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    PubMed

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (P<0.05 or 0.01) induced by doxorubicin. In rats treated with doxorubicin, taurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (P<0.01). qBase(+) was used to evaluate the stability of eight candidate reference genes for real-time quantitative reverse-transcription PCR. Taurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (P<0.01). Western blotting demonstrated that taurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation.

  3. Pharmacology at work for cardio-oncology: ranolazine to treat early cardiotoxicity induced by antitumor drugs.

    PubMed

    Minotti, Giorgio

    2013-09-01

    Antitumor drugs may cause asymptomatic diastolic dysfunction that introduces a lifetime risk of heart failure or myocardial infarction. Cardio-oncology is the discipline committed to the cardiac surveillance and management of cancer patients and survivors; however, cardio-oncology teams do not always attempt to treat early diastolic dysfunction. Common cardiovascular drugs, such as β blockers or angiotensin-converting enzyme inhibitors or others, would be of uncertain efficacy in diastolic dysfunction. This perspective describes the potential value of ranolazine, an antianginal drug that improves myocardial perfusion by relieving diastolic wall tension and dysfunction. Ranolazine acts by inhibiting the late inward sodium current, and pharmacological reasonings anticipate that antitumor anthracyclines and nonanthracycline chemotherapeutics might well induce anomalous activation of this current. These notions formed the rationale for a clinical study of the efficacy and safety of ranolazine in cancer patients. This study was not designed to demonstrate that ranolazine reduced the lifetime risk of cardiac events; it was designed as a short term proof-of-concept study that probed the following hypotheses: 1) asymptomatic diastolic dysfunction could be detected a few days after patients completed antitumor therapy, and 2) ranolazine was active and safe in relieving echocardiographic and/or biohumoral indices of diastolic dysfunction, measured at 5 weeks or 6 months of ranolazine administration. These facts illustrate the translational value of pharmacology, which goes from identifying therapeutic opportunities to validating hypotheses in clinical settings. Pharmacology is a key to the success of cardio-oncology. PMID:23818683

  4. Liensinine- and Neferine-Induced Cardiotoxicity in Primary Neonatal Rat Cardiomyocytes and Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Yu, Yangyang; Sun, Shennan; Wang, Shifeng; Zhang, Qiao; Li, Ming; Lan, Feng; Li, Shiyou; Liu, Chunsheng

    2016-01-01

    Due to drug-induced potential congestive heart failure and irreversible dilated cardiomyopathies, preclinical evaluation of cardiac dysfunction is important to assess the safety of traditional or novel treatments. The embryos of Nelumbo nucifera Gaertner seeds are a homology of traditional Chinese medicine and food. In this study, we applied the real time cellular analysis (RTCA) Cardio system, which can real-time monitor the contractility of cardiomyocytes (CMs), to evaluate drug safety in rat neonatal CMs and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). This study showed detailed biomechanical CM contractility in vitro, and provided insights into the cardiac dysfunctions associated with liensinine and neferine treatment. These effects exhibited dose and time-dependent recovery. Neferine showed stronger blocking effect in rat neonatal CMs than liensinine. In addition, the effects of liensinine and neferine were further evaluated on hiPS-CMs. Our study also indicated that both liensinine and neferine can cause disruption of calcium homeostasis. For the first time, we demonstrated the potential cardiac side effects of liensinine or neferine. While the same inhibition was observed on hiPS-CMs, more importantly, this study introduced an efficient and effective approach to evaluate the cardiotoxicity of the existing and novel drug candidates. PMID:26840304

  5. High-sensitivity C-reactive protein (hs-CRP) as a biomarker for trastuzumab-induced cardiotoxicity in HER2-positive early-stage breast cancer: a pilot study.

    PubMed

    Onitilo, Adedayo A; Engel, Jessica M; Stankowski, Rachel V; Liang, Hong; Berg, Richard L; Doi, Suhail A R

    2012-07-01

    Monitoring of left ventricular ejection fraction (LVEF) is the current standard for detection of trastuzumab-induced cardiotoxicity; however, time-to-diagnosis and cost of assessment are suboptimal in women with early-stage breast cancer. We assessed the utility of B-type natriuretic peptide (BNP), high-sensitivity C-reactive protein (hs-CRP), and cardiac troponin I (cTnI) as serum biomarkers for early detection of trastuzumab-induced cardiotoxicity. Fifty-four women with human epidermal growth factor receptor 2 (HER2)-positive early-stage breast cancer were prospectively enrolled, and the relationship between elevated serum BNP, hs-CRP, and cTnI levels and clinically significant decreases in LVEF was examined. LVEF was monitored at 3-4 month intervals during trastuzumab treatment. Laboratory testing for candidate biomarkers was repeated every 3 weeks with each cycle of trastuzumab. Trastuzumab-induced cardiotoxicity was defined as a decrease in LVEF of ≥15% or to a value below 50%. A clinically significant decrease in LVEF was observed in 28.6% of women. Abnormal hs-CRP (≥3 mg/L) predicted decreased LVEF with a sensitivity of 92.9% (95% CI 66.1-99.8) and specificity of 45.7% (95% CI 28.8-63.4), and subjects with normal hs-CRP levels (<3 mg/L) have 94.1% negative predictive 94.1% (95% CI 70.3-99.9) suggesting that normal hs-CRP levels may be associated with low future risk for decreased LVEF; however, no association with BNP or cTnI was observed. A false positive would have a relatively low associated cost in breast cancer patients undergoing adjuvant trastuzumab therapy and would indicate continuation of routine observation during treatment through traditional means. The maximum hs-CRP value was observed a median of 78 days prior to detection of cardiotoxicity by decreased LVEF, and those with normal levels were at lower risk for cardiotoxicity. Regular monitoring of hs-CRP holds promise as a biomarker for identifying women with early-stage breast cancer at

  6. Radiation-induced pneumothorax

    SciTech Connect

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis.

  7. Echocardiographic Assessment of Cardiotoxic Effects of Cancer Therapy.

    PubMed

    Bottinor, Wendy J; Migliore, Christopher K; Lenneman, Carrie A; Stoddard, Marcus F

    2016-10-01

    Patients with cancer can present with difficult management issues, as the medicine can sometimes cause sequelae destructive to healthy tissue. As this population lives longer, cardiotoxic effects are beginning to emerge, but the early recognition of this signal can prove difficult, with too late a recognition leading to lifelong cardiac impairment and dysfunction. Cardio-oncology can bridge this difficulty, and echocardiography and its newer imaging abilities are proving efficacious in this population. This article will address common sequelae of cardiotoxic treatment regimens and offer recommendations for echocardiographic surveillance. We recommend echocardiography, preferably three-dimensional and strain imaging, to monitor for cardiotoxic myocardial effects before, during, and after chemotherapy with cardiotoxic drug regimens, particularly anthracycline derivatives. A reduction in left ventricular (LV) global longitudinal strain in all patients, or reduction in LV global circumferential strain or global radial strain in patients at intermediate to high risk for cardiotoxicity, despite normal LV ejection fraction warrants a clinical assessment on the benefits of continuing cardiotoxic chemotherapeutic agents. Lifelong surveillance using echocardiography for cardiotoxicity and radiation-related valvular, pericardial, and coronary artery disease is prudent. PMID:27566332

  8. Myricitrin Protects against Doxorubicin-Induced Cardiotoxicity by Counteracting Oxidative Stress and Inhibiting Mitochondrial Apoptosis via ERK/P53 Pathway

    PubMed Central

    Meng, Xiangbao; Qin, Meng

    2016-01-01

    Doxorubicin (Dox) is one of the most effective and widely used anthracycline antineoplastic antibiotics. Unfortunately, the use of Dox is limited by its cumulative and dose-dependent cardiac toxicity. Myricitrin, a natural flavonoid which is isolated from the ground bark of Myrica rubra, has recently been found to have a strong antioxidative effect. This study aimed to evaluate the possible protective effect of myricitrin against Dox-induced cardiotoxicity and the underlying mechanisms. An in vivo investigation in SD rats demonstrated that myricitrin significantly reduced the Dox-induced myocardial damage, as indicated by the decreases in the cardiac index, amelioration of heart pathological injuries, and decreases in the serum cardiac enzyme levels. In addition, in vitro studies showed that myricitrin effectively reduced the Dox-induced cell toxicity. Further study showed that myricitrin exerted its function by counteracting oxidative stress and increasing the activities of antioxidant enzymes. Moreover, myricitrin suppressed the myocardial apoptosis induced by Dox, as indicated by decreases in the activation of caspase-3 and the numbers of TUNEL-positive cells, maintenance of the mitochondrial membrane potential, and increase in the Bcl-2/Bax ratio. Further mechanism study revealed that myricitrin-induced suppression of myocardial apoptosis relied on the ERK/p53-mediated mitochondrial apoptosis pathway. PMID:27703489

  9. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  10. Radiation-induced schwannomas

    SciTech Connect

    Rubinstein, A.B.; Reichenthal, E.; Borohov, H.

    1989-06-01

    The histopathology and clinical course of three patients with schwannomas of the brain and high cervical cord after therapeutic irradiation for intracranial malignancy and for ringworm of the scalp are described. Earlier reports in the literature indicated that radiation of the scalp may induce tumors in the head and neck. It is therefore suggested that therapeutic irradiation in these instances was a causative factor in the genesis of these tumors.

  11. S100A8 and S100A9 Are Associated with Doxorubicin-Induced Cardiotoxicity in the Heart of Diabetic Mice

    PubMed Central

    Pei, Xiao M.; Tam, Bjorn T.; Sin, Thomas K.; Wang, Feng F.; Yung, Benjamin Y.; Chan, Lawrence W.; Wong, Cesar S.; Ying, Michael; Lai, Christopher W.; Siu, Parco M.

    2016-01-01

    Cardiomyopathy is a clinical problem that occurs in the hearts of type 2 diabetic patients as well as cancer patients undergoing doxorubicin chemotherapy. The number of diabetic cancer patients is increasing but surprisingly the cardiac damaging effects of doxorubicin, a commonly used chemotherapeutic drug, on diabetic hearts have not been well-examined. As the signaling mechanisms of the doxorubicin-induced cardiomyopathy in type 2 diabetic heart are largely unknown, this study examined the molecular signaling pathways that are responsible for the doxorubicin-induced cardiotoxicity in type 2 diabetic hearts. Male 14- to 18-week-old db/db mice were used as the type 2 diabetic model, and age-matched non-diabetic db/+ mice served as controls. The db/+ non-diabetic and db/db diabetic mice were randomly assigned to the following groups: db/+CON, db/+DOX-5d, db/+DOX-7d, db/dbCON, db/dbDOX-5d, and db/dbDOX-7d. Mice assigned to doxorubicin (DOX) group were exposed to an intraperitoneal (i.p.) injection of DOX at a dose of 15 mg/kg to induce cardiomyopathy. Mice in control (CON) groups were i.p. injected with the same volume of saline instead of DOX. Mice were euthanized by overdose of ketamine and xylazine 5 or 7 days after the DOX injection. Microarray analysis was adopted to examine the changes of the whole transcriptional profile in response to doxorubicin exposure in diabetic hearts. Ventricular fractional shortening was examined as an indicator of cardiac function by transthoracic echocardiography. The presence of diabetic cardiomyopathy in db/db mice was evident by the reduction of fractional shortening. There was a further impairment of cardiac contractile function 7 days after the DOX administration in db/db diabetic mice. According to our microarray analysis, we identified a panel of regulatory genes associated with cardiac remodeling, inflammatory response, oxidative stress, and metabolism in the DOX-induced cardiac injury in diabetic heart. The microarray

  12. S100A8 and S100A9 Are Associated with Doxorubicin-Induced Cardiotoxicity in the Heart of Diabetic Mice.

    PubMed

    Pei, Xiao M; Tam, Bjorn T; Sin, Thomas K; Wang, Feng F; Yung, Benjamin Y; Chan, Lawrence W; Wong, Cesar S; Ying, Michael; Lai, Christopher W; Siu, Parco M

    2016-01-01

    Cardiomyopathy is a clinical problem that occurs in the hearts of type 2 diabetic patients as well as cancer patients undergoing doxorubicin chemotherapy. The number of diabetic cancer patients is increasing but surprisingly the cardiac damaging effects of doxorubicin, a commonly used chemotherapeutic drug, on diabetic hearts have not been well-examined. As the signaling mechanisms of the doxorubicin-induced cardiomyopathy in type 2 diabetic heart are largely unknown, this study examined the molecular signaling pathways that are responsible for the doxorubicin-induced cardiotoxicity in type 2 diabetic hearts. Male 14- to 18-week-old db/db mice were used as the type 2 diabetic model, and age-matched non-diabetic db/+ mice served as controls. The db/+ non-diabetic and db/db diabetic mice were randomly assigned to the following groups: db/+CON, db/+DOX-5d, db/+DOX-7d, db/dbCON, db/dbDOX-5d, and db/dbDOX-7d. Mice assigned to doxorubicin (DOX) group were exposed to an intraperitoneal (i.p.) injection of DOX at a dose of 15 mg/kg to induce cardiomyopathy. Mice in control (CON) groups were i.p. injected with the same volume of saline instead of DOX. Mice were euthanized by overdose of ketamine and xylazine 5 or 7 days after the DOX injection. Microarray analysis was adopted to examine the changes of the whole transcriptional profile in response to doxorubicin exposure in diabetic hearts. Ventricular fractional shortening was examined as an indicator of cardiac function by transthoracic echocardiography. The presence of diabetic cardiomyopathy in db/db mice was evident by the reduction of fractional shortening. There was a further impairment of cardiac contractile function 7 days after the DOX administration in db/db diabetic mice. According to our microarray analysis, we identified a panel of regulatory genes associated with cardiac remodeling, inflammatory response, oxidative stress, and metabolism in the DOX-induced cardiac injury in diabetic heart. The microarray

  13. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  14. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    PubMed

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  15. Kv11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical Kv11.1 (hERG) inhibitors

    PubMed Central

    Yu, Z; IJzerman, A P; Heitman, L H

    2015-01-01

    Background and Purpose Drug-induced arrhythmia due to blockade of the Kv11.1 channel (also known as the hERG K+ channel) is a frequent side effect. Previous studies have primarily focused on equilibrium parameters, i.e. affinity or potency, of drug candidates at the channel. The aim of this study was to determine the kinetics of the interaction with the channel for a number of known Kv11.1 blockers and to explore a possible correlation with the affinity or physicochemical properties of these compounds. Experimental Approach The affinity and kinetic parameters of 15 prototypical Kv11.1 inhibitors were evaluated in a number of [3H]-dofetilide binding assays. The lipophilicity (logKW-C8) and membrane partitioning (logKW-IAM) of these compounds were determined by means of HPLC analysis. Key Results A novel [3H]-dofetilide competition association assay was set up and validated, which allowed us to determine the binding kinetics of the Kv11.1 blockers used in this study. Interestingly, the compounds' affinities (Ki values) were correlated to their association rates rather than dissociation rates. Overall lipophilicity or membrane partitioning of the compounds were not correlated to their affinity or rate constants for the channel. Conclusions and Implications A compound's affinity for the Kv11.1 channel is determined by its rate of association with the channel, while overall lipophilicity and membrane affinity are not. In more general terms, our findings provide novel insights into the mechanism of action for a compound's activity at the Kv11.1 channel. This may help to elucidate how Kv11.1-induced cardiotoxicity is governed and how it can be circumvented in the future. PMID:25296617

  16. Cancer Treatment-Related Cardiotoxicity

    Cancer.gov

    Cancer Treatment-Related Cardiotoxicity includes efforts to identify individual toxicity risks and prevention strategies support the National Cancer Insitute's goal of reducing the burden of cancer diagnoses and treatment outcomes.

  17. Cardiotoxicity associated with cancer therapy: pathophysiology and prevention strategies.

    PubMed

    Adão, Rui; de Keulenaer, Gilles; Leite-Moreira, Adelino; Brás-Silva, Carmen

    2013-05-01

    Cardiotoxicity is one of the most significant adverse effects of cancer treatment, and is responsible for considerable morbidity and mortality. Among the effects of chemotherapeutic agents on the cardiovascular system, the most frequent and serious is heart failure with ventricular systolic dysfunction. Other toxic effects include hypertension, thromboembolic disease, pericardial disease, arrhythmias and myocardial ischemia. For several decades, cancer therapy-induced cardiomyopathy was almost exclusively associated with the use of cumulative doses of anthracyclines, which cause permanent damage at the cellular level. However, new therapeutic agents, such as the monoclonal antibody trastuzumab, induce transient reversible myocyte dysfunction which is unrelated to the dose used. Early identification of potential cardiovascular injury, accurate diagnosis of cardiotoxic events and implementation of appropriate monitoring plans are essential in patients with cancer. Close cooperation between cardiologists and oncologists is thus crucial, in order to balance the risks and benefits of cardiotoxic anticancer therapy. In this article we review the various responses to cardiotoxic cancer treatments and their relationship with the main antineoplastic drugs used in clinical practice. In addition, we discuss the main guidelines on detection and monitoring of cardiotoxicity in patients with cancer.

  18. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity.

    PubMed

    Zhang, Jing; Cui, Xiaohai; Yan, Yan; Li, Min; Yang, Ya; Wang, Jiansheng; Zhang, Jia

    2016-01-01

    Anthracyclines, including doxorubicin, epirubicin, daunorubicin and aclarubicin, are widely used as chemotherapeutic agents in the treatment of hematologic and solid tumor, including acute leukemia, lymphoma, breast cancer, gastric cancer, soft tissue sarcomas and ovarian cancer. In the cancer treatment, anthracyclines also can be combined with other chemotherapies and molecular-targeted drugs. The combination of anthracyclines with other therapies is usually the first-line treatment. Anthracyclines are effective and potent agents with a broad antitumor spectrum, but may cause adverse reactions, including hair loss, myelotoxicity, as well as cardiotoxicity. We used hematopoietic stimulating factors to control the myelotoxicity, such as G-CSF, EPO and TPO. However, the cardiotoxicity is the most serious side effect of anthracyclines. Clinical research and practical observations indicated that the cardiotoxicity of anthracyclines is commonly progressive and irreversible. Especially to those patients who have the first time use of anthracyclines, the damage is common. Therefore, early detection and prevention of anthracyclines induced cardiotoxicity are particularly important and has already aroused more attention in clinic. By literature review, we reviewed the research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. PMID:27508008

  19. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity

    PubMed Central

    Zhang, Jing; Cui, Xiaohai; Yan, Yan; Li, Min; Yang, Ya; Wang, Jiansheng; Zhang, Jia

    2016-01-01

    Anthracyclines, including doxorubicin, epirubicin, daunorubicin and aclarubicin, are widely used as chemotherapeutic agents in the treatment of hematologic and solid tumor, including acute leukemia, lymphoma, breast cancer, gastric cancer, soft tissue sarcomas and ovarian cancer. In the cancer treatment, anthracyclines also can be combined with other chemotherapies and molecular-targeted drugs. The combination of anthracyclines with other therapies is usually the first-line treatment. Anthracyclines are effective and potent agents with a broad antitumor spectrum, but may cause adverse reactions, including hair loss, myelotoxicity, as well as cardiotoxicity. We used hematopoietic stimulating factors to control the myelotoxicity, such as G-CSF, EPO and TPO. However, the cardiotoxicity is the most serious side effect of anthracyclines. Clinical research and practical observations indicated that the cardiotoxicity of anthracyclines is commonly progressive and irreversible. Especially to those patients who have the first time use of anthracyclines, the damage is common. Therefore, early detection and prevention of anthracyclines induced cardiotoxicity are particularly important and has already aroused more attention in clinic. By literature review, we reviewed the research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. PMID:27508008

  20. Protective Effects of Carvedilol and Vitamin C against Azithromycin-Induced Cardiotoxicity in Rats via Decreasing ROS, IL1-β, and TNF-α Production and Inhibiting NF-κB and Caspase-3 Expression

    PubMed Central

    El-Shitany, Nagla A.; El-Desoky, Karema

    2016-01-01

    The Food and Drug Administration recently warned of the fatal cardiovascular risks of azithromycin in humans. In addition, a recently published study documented azithromycin-induced cardiotoxicity in rats. This study aimed to justify the exact cardiovascular events accompanying azithromycin administration in rats, focusing on electrocardiographic, biochemical, and histopathological changes. In addition, the underlying mechanisms were studied regarding reactive oxygen species production, cytokine release, and apoptotic cell-death. Finally, the supposed protective effects of both carvedilol and vitamin C were assessed. Four groups of rats were used: (1) control, (2) azithromycin, (3) azithromycin + carvedilol, and (4) azithromycin + vitamin C. Azithromycin resulted in marked atrophy of cardiac muscle fibers and electrocardiographic segment alteration. It increased the heart rate, lactate dehydrogenase, creatine phosphokinase, malondialdehyde, nitric oxide, interleukin-1 beta (IL1-β), tumor necrosis factor alpha (TNF-α), nuclear factor kappa beta (NF-κB), and caspase-3. It decreased reduced glutathione, glutathione peroxidase, and superoxide dismutase. Carvedilol and vitamin C prevented most of the azithromycin-induced electrocardiographic and histopathological changes. Carvedilol and vitamin C decreased lactate dehydrogenase, malondialdehyde, IL1-β, TNF-α, NF-κB, and caspase-3. Both agents increased glutathione peroxidase. This study shows that both carvedilol and vitamin C protect against azithromycin-induced cardiotoxicity through antioxidant, immunomodulatory, and antiapoptotic mechanisms. PMID:27274777

  1. Cardiotoxicity associated with targeted cancer therapies

    PubMed Central

    CHEN, ZI; AI, DI

    2016-01-01

    Compared with traditional chemotherapy, targeted cancer therapy is a novel strategy in which key molecules in signaling pathways involved in carcinogenesis and tumor spread are inhibited. Targeted cancer therapy has fewer adverse effects on normal cells and is considered to be the future of chemotherapy. However, targeted cancer therapy-induced cardiovascular toxicities are occasionally critical issues in patients who receive novel anticancer agents, such as trastuzumab, bevacizumab, sunitinib and imatinib. The aim of this review was to discuss these most commonly used drugs and associated incidence of cardiotoxicities, including left ventricular dysfunction, heart failure, hypertension and thromboembolic events, as well as summarize their respective molecular mechanisms of cardiovascular adverse effects. PMID:27123262

  2. Cardioprotective effect of root extract of Picrorhiza kurroa (Royle Ex Benth) against isoproterenol-induced cardiotoxicity in rats.

    PubMed

    Nandave, Mukesh; Ojha, Shreesh Kumar; Kumari, Santosh; Nag, Tapas Chandra; Mehra, Raj; Narang, Rajiv; Arya, Dharamvir Singh

    2013-09-01

    Normal rats pre-treated with P. kurroa (200 mg/kg) alone did not showed significant change, however, isoproterenol (ISP) administration resulted in hemodynamic and left ventricular dysfunction, oxidative stress, and lipid peroxidation. Such cardiac dysfunction was significantly prevented by P. kurroa root extract pre-treatment. Pre-treatment significantly attenuated the ISP-induced oxidative stress by restoring myocardial superoxide dismutase, catalase, and glutathione peroxidase enzymes except reduced glutathione content. P. kurroa pre-treatment markedly attenuated the ISP-induced rise in lipid peroxidation, thereby prevented leakage of myocyte creatine kinase-MB and lactate dehydrogenase enzymes. The results suggest that P. kurroa root extract possesses significant cardioprotective effect, which may be attributed to its antioxidant, anti-peroxidative, and myocardial preservative properties. PMID:24377128

  3. Genomic Profiling Reveals the Potential Role of TCL1A and MDR1 Deficiency in Chemotherapy-Induced Cardiotoxicity

    PubMed Central

    McCaffrey, Timothy A.; Tziros, Constantine; Lewis, Jannet; Katz, Richard; Siegel, Robert; Weglicki, William; Kramer, Jay; Mak, I. Tong; Toma, Ian; Chen, Liang; Benas, Elizabeth; Lowitt, Alexander; Rao, Shruti; Witkin, Linda; Lian, Yi; Lai, Yinglei; Yang, Zhaoqing; Fu, Sidney W.

    2013-01-01

    Background: Anthracyclines, such as doxorubicin (Adriamycin), are highly effective chemotherapeutic agents, but are well known to cause myocardial dysfunction and life-threatening congestive heart failure (CHF) in some patients. Methods: To generate new hypotheses about its etiology, genome-wide transcript analysis was performed on whole blood RNA from women that received doxorubicin-based chemotherapy and either did, or did not develop CHF, as defined by ejection fractions (EF)≤40%. Women with non-ischemic cardiomyopathy unrelated to chemotherapy were compared to breast cancer patients prior to chemo with normal EF to identify heart failure-related transcripts in women not receiving chemotherapy. Byproducts of oxidative stress in plasma were measured in a subset of patients. Results: The results indicate that patients treated with doxorubicin showed sustained elevations in oxidative byproducts in plasma. At the RNA level, women who exhibited low EFs after chemotherapy had 260 transcripts that differed >2-fold (p<0.05) compared to women who received chemo but maintained normal EFs. Most of these transcripts (201) were not altered in non-chemotherapy patients with low EFs. Pathway analysis of the differentially expressed genes indicated enrichment in apoptosis-related transcripts. Notably, women with chemo-induced low EFs had a 4.8-fold decrease in T-cell leukemia/lymphoma 1A (TCL1A) transcripts. TCL1A is expressed in both cardiac and skeletal muscle, and is a known co-activator for AKT, one of the major pro-survival factors for cardiomyocytes. Further, women who developed low EFs had a 2-fold lower level of ABCB1 transcript, encoding the multidrug resistance protein 1 (MDR1), which is an efflux pump for doxorubicin, potentially leading to higher cardiac levels of drug. In vitro studies confirmed that inhibition of MDR1 by verapamil in rat H9C2 cardiomyocytes increased their susceptibility to doxorubicin-induced toxicity. Conclusions: It is proposed that chemo-induced

  4. The clinically active PARP inhibitor AG014699 ameliorates cardiotoxicity but does not enhance the efficacy of doxorubicin, despite improving tumor perfusion and radiation response in mice.

    PubMed

    Ali, Majid; Kamjoo, Marzieh; Thomas, Huw D; Kyle, Suzanne; Pavlovska, Ivanda; Babur, Muhammed; Telfer, Brian A; Curtin, Nicola J; Williams, Kaye J

    2011-12-01

    AG014699 was the first inhibitor of the DNA repair enzyme PARP-1 to enter clinical trial in cancer patients. In addition to enhancing the cytotoxic effect of DNA-damaging chemotherapies, we have previously shown that AG014699 is vasoactive, thereby having the potential to improve drug biodistribution. The effectiveness of the clinical agent doxorubicin is confounded both by poor tumor penetration and cardiotoxicity elicited via PARP hyperactivation. In this study, we analyzed the impact of AG014699 on doxorubicin tolerance and response in breast (MDA-MB-231) and colorectal (SW620, LoVo) tumor models in vitro and in vivo. As anticipated, AG014699 did not potentiate the response to doxorubicin in vitro. In vivo, AG014699 did not influence the pharmacokinetics of doxorubicin; however, it did ameliorate cardiotoxicity. Both toxicity and extent of amelioration were more pronounced in male than in female mice. AG014699 improved vessel perfusion in both MDA-MB-231 and SW620 tumors; however, this neither led to improved tumor-accumulation of doxorubicin nor enhanced therapeutic response. In contrast, when combined with radiotherapy, AG014699 significantly enhanced response both in vitro and in vivo. Real-time assessment of tumor vessel function and companion histologic studies indicate that doxorubicin causes a profound antivascular effect that counters the positive effect of AG014699 on perfusion. These data indicate that although AG014699 can enhance response to some chemotherapeutic drugs via improved delivery, this does not apply to doxorubicin. PARP inhibitors may still be of use to counter doxorubicin toxicity, and if the gender effect translates from rodents to humans, this would have greater effect in males. PMID:21926192

  5. Errors inducing radiation overdoses.

    PubMed

    Grammaticos, Philip C

    2013-01-01

    There is no doubt that equipments exposing radiation and used for therapeutic purposes should be often checked for possibly administering radiation overdoses to the patients. Technologists, radiation safety officers, radiologists, medical physicists, healthcare providers and administration should take proper care on this issue. "We must be beneficial and not harmful to the patients", according to the Hippocratic doctrine. Cases of radiation overdose are often reported. A series of cases of radiation overdoses have recently been reported. Doctors who were responsible, received heavy punishments. It is much better to prevent than to treat an error or a disease. A Personal Smart Card or Score Card has been suggested for every patient undergoing therapeutic and/or diagnostic procedures by the use of radiation. Taxonomy may also help. PMID:24251304

  6. Radiation-induced disease.

    PubMed

    Bobrow, M

    1993-01-01

    The term radiation covers a wide spectrum of forms of energy, most of which have at one stage or another been suspected of causing human ill health. In general, study of the effects of radiation on health involves a mix of scientific disciplines, from population epidemiology to physics, which are seldom if ever found in a single scientist. As a result, interdisciplinary communication is of the utmost importance, and is a potent source of misunderstanding and misinformation. The forms of radiation which have been most specifically associated with health effects include ionizing and ultraviolet radiation. Claimed effects of electromagnetic and microwave radiation (excluding thermal effects) are too indefinite for detailed consideration. Ionizing radiation is a well-documented mutagen, which clearly causes cancers in humans, and human exposure has been increased by atomic weapons testing and medical and industrial uses of radioactivity. There is also a growing awareness of the possible role of some types of natural radiation, such as radon, in causing disease. Ultraviolet radiation is also associated with cancers, and is suspected of involvement in the increasing incidence of skin cancers in European populations. Factors thought to underlie recent changes in exposure to these mutagens are discussed.

  7. Radiation-induced enteropathy

    SciTech Connect

    Sher, M.E.; Bauer, J. )

    1990-02-01

    The incidence of chronic radiation enteritis appears to have risen in recent years due to the increasing utilization of radiotherapy for abdominal and pelvic malignancies. The etiology, pathogenesis, and management of radiation enteritis are discussed. Two case reports exemplify the progressive nature of the disease. Case 1 demonstrates the classical picture of multiple exacerbations and remissions of partial small bowel obstruction and the eventual need for surgical management ten years after radiation therapy. Case 2 presents the more severe sequelae of an acute perforation with a 14-yr latency period. Predisposing factors in the progression of radiation injury include excessive radiation, underlying cardiovascular disease, fixation of the bowel, and an asthenic habitus. In both cases, radiation injury was localized to a discrete segment of bowel; therefore, resection with a primary end-to-end anastomosis was performed. In addition, diseased bowel was eliminated and, therefore, would not cause further complications such as intractable bleeding or fistula formation. The review focuses on current knowledge which may be applied to the treatment and prevention of radiation enteritis.

  8. Cardiotoxicity | Division of Cancer Prevention

    Cancer.gov

    Damage to the heart (cardiotoxicity), or blood vessels (cardiovascular toxicity) can occur during or after cancer treatment. As treatments have improved, more patients are surviving longer after a diagnosis of cancer than at any time in the past. See the article, Treating Cancer without Harming the Heart. |

  9. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  10. [Ranolazine in the prevention of anthracycline-related cardiotoxicity].

    PubMed

    Corradi, Francesco; Paolini, Luca; De Caterina, Raffaele

    2013-06-01

    Anthracyclines rank among the most effective anticancer drugs. They may however cause a dose-dependent and cumulative cardiotoxicity, eventually leading to heart failure. The antitumoral cytotoxicity of anthracyclines and their cardiotoxicity are believed to be due to different mechanisms, and there is therefore an active search for developing drugs able to protect the heart without impairing their chemotherapeutic efficacy. The foremost hypothesis explaining cardiotoxicity is the anthracycline-dependent production of reactive oxygen species (ROS). A ROS-induced calcium (Ca 2+)-calmodulin-dependent protein kinase II (CaMKII) hyperactivity can cause diastolic Ca2+ overload secondary to the activation of the late sodium (Na+) current (INaL). Furthermore, INaL hyperactivation can initiate a vicious cycle leading to sustained oxidative stress and energetic stress, with serious ATP depletion, similar to that occurring after the exposure of hearts or isolated cardiomyocytes exposed to anthracyclines. We hypothesize that anthracyclines may cause, through a ROS-dependent CaMKII hyperactivation, increased INaL, leading to a vicious cycle that worsens the redox imbalance with resulting mechanical and electrophysiological dysfunction and heart failure. In this light, we here review the molecular and clinical characteristics of ranolazine, the most powerful and selective clinical inhibitor of INaL, and speculate on the possibility that it may be used as an effective drug protecting against anthracycline-related cardiotoxicity. PMID:23748539

  11. Flecainide cardiotoxicity precipitated by electrolyte imbalance. Caution with thiazide diuretics

    PubMed Central

    Khavandi, A; Walker, P R

    2007-01-01

    A man presented with recurrent syncope, weakness and fatigue. His ECG showed marked QRS widening and he had gross hyponatraemia and hypokalaemia. His medications included bendroflumethiazide (long term) and flecainide (started 2 months previously). This presentation was consistent with flacainide cardiotoxicity exacerbated by electrolyte disturbance. The syncopal episodes probably represented life‐threatening arrhythmias. The ECG and symptoms resolved completely once the electrolytes were corrected. Increased cardiotoxicity with hypokalaemia is documented, but not widely recognised. Hyponatraemia‐induced flecainide cardiotoxicity has not been documented. The clinical effects of flecainide are due to use‐dependent block of sodium channels. There are reports that support the use of hypertonic sodium salts to reverse flecainide toxicity via antagonism at the receptor. By this rationale, hyponatraemia would lead to Flecainide toxicity. Flecainide has been shown to reduce salt absorption in animal bowel. It is possible that in combination with bendroflumethiazide it acted synergistically to produce profound electrolyte disturbance. Flecainide cardiotoxicity has a significant mortality and can present non‐specifically. Thus, early recognition is essential. This case demonstrates the importance of strict electrolyte control in patients who are on flecainide. We would discourage concomitant use of flecainide and bendroflumethiazide. PMID:17452686

  12. Ageing is a risk factor in imatinib mesylate cardiotoxicity

    PubMed Central

    Maharsy, Wael; Aries, Anne; Mansour, Omar; Komati, Hiba; Nemer, Mona

    2014-01-01

    Aims Chemotherapy-induced heart failure is increasingly recognized as a major clinical challenge. Cardiotoxicity of imatinib mesylate, a highly selective and effective anticancer drug belonging to the new class of tyrosine kinase inhibitors, is being reported in patients, some progressing to congestive heart failure. This represents an unanticipated challenge that could limit effective drug use. Understanding the mechanisms and risk factors of imatinib mesylate cardiotoxicity is crucial for prevention of cardiovascular complications in cancer patients. Methods and results We used genetically engineered mice and primary rat neonatal cardiomyocytes to analyse the action of imatinib on the heart. We found that treatment with imatinib (200 mg/kg/day for 5 weeks) leads to mitochondrial-dependent myocyte loss and cardiac dysfunction, as confirmed by electron microscopy, RNA analysis, and echocardiography. Imatinib cardiotoxicity was more severe in older mice, in part due to an age-dependent increase in oxidative stress. Mechanistically, depletion of the transcription factor GATA4 resulting in decreased levels of its prosurvival targets Bcl-2 and Bcl-XL was an underlying cause of imatinib toxicity. Consistent with this, GATA4 haploinsufficient mice were more susceptible to imatinib, and myocyte-specific up-regulation of GATA4 or Bcl-2 protected against drug-induced cardiotoxicity. Conclusion The results indicate that imatinib action on the heart targets cardiomyocytes and involves mitochondrial impairment and cell death that can be further aggravated by oxidative stress. This in turn offers a possible explanation for the current conflicting data regarding imatinib cardiotoxicity in cancer patients and suggests that cardiac monitoring of older patients receiving imatinib therapy may be especially warranted. PMID:24504921

  13. Cardiotoxicity in anthracycline therapy: Prevention strategies.

    PubMed

    Cruz, Margarida; Duarte-Rodrigues, Joana; Campelo, Manuel

    2016-06-01

    The increasing use of anthracyclines, together with the longer survival of cancer patients, means the toxic effects of these drugs need to be monitored. In order to detect, prevent or mitigate anthracycline-induced cardiomyopathy, it is essential that all patients undergo a rigorous initial cardiovascular assessment, followed by close monitoring. Several clinical trials have shown the cardioprotective effect of non-pharmacological measures such as exercise, healthy lifestyles, control of risk factors and treatment of comorbidities; a cardioprotective effect has also been observed with pharmacological measures such as beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, statins, dexrazoxane and liposomal formulations. However, there are currently no guidelines for managing prevention in these patients. In this review the authors discuss the state of the art of the assessment, monitoring, and, above all, the prevention of anthracycline-induced cardiotoxicity. PMID:27255173

  14. Cardiotoxicity in anthracycline therapy: Prevention strategies.

    PubMed

    Cruz, Margarida; Duarte-Rodrigues, Joana; Campelo, Manuel

    2016-06-01

    The increasing use of anthracyclines, together with the longer survival of cancer patients, means the toxic effects of these drugs need to be monitored. In order to detect, prevent or mitigate anthracycline-induced cardiomyopathy, it is essential that all patients undergo a rigorous initial cardiovascular assessment, followed by close monitoring. Several clinical trials have shown the cardioprotective effect of non-pharmacological measures such as exercise, healthy lifestyles, control of risk factors and treatment of comorbidities; a cardioprotective effect has also been observed with pharmacological measures such as beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, statins, dexrazoxane and liposomal formulations. However, there are currently no guidelines for managing prevention in these patients. In this review the authors discuss the state of the art of the assessment, monitoring, and, above all, the prevention of anthracycline-induced cardiotoxicity.

  15. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  16. Radiation-induced myelomatosis.

    PubMed

    Cuzick, J

    1981-01-22

    It is well known that radiation can cause myeloid leukemia. However, no excess of chronic lymphocytic leukemia has been observed. Myelomatosis, like chronic lymphocytic leukemia, is a tumor of B lymphocytes. To determine whether this disease has a radiogenic origin, we surveyed all cohorts of persons exposed to radiation for which data on cancer-related mortality are available. An excess of myeloma was found in most cohorts. However, a striking deficit was found in two groups irradiated intensely for uterine neoplasms (three cases observed, 10.71 expected; P = 0.012). All other groups combined had a highly significant excess (50 observed, 22.21 expected; P = 2 X 10(-7)). The largest relative risk appeared among persons receiving internal doses of alpha-particles (14 observed, 3.24 expected; P = 2 X 10(-5)), but a significant excess (13 observed, 6.33 expected; P = 0.026) was also found in patients receiving only therapeutic or diagnostic gamma-rays or x-rays. Most cases occurred 15 to 25 years after exposure. PMID:7442744

  17. Echinochrome A Protects Mitochondrial Function in Cardiomyocytes against Cardiotoxic Drugs

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Lee, Seon Joong; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoryev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a naphthoquinoid pigment from sea urchins that possesses antioxidant, antimicrobial, anti-inflammatory and chelating abilities. Although Ech A is the active substance in the ophthalmic and cardiac drug Histochrome®, its underlying cardioprotective mechanisms are not well understood. In this study, we investigated the protective role of Ech A against toxic agents that induce death of rat cardiac myoblast H9c2 cells and isolated rat cardiomyocytes. We found that the cardiotoxic agents tert-Butyl hydroperoxide (tBHP, organic reactive oxygen species (ROS) inducer), sodium nitroprusside (SNP; anti-hypertension drug), and doxorubicin (anti-cancer drug) caused mitochondrial dysfunction such as increased ROS level and decreased mitochondrial membrane potential. Co-treatment with Ech A, however, prevented this decrease in membrane potential and increase in ROS level. Co-treatment of Ech A also reduced the effects of these cardiotoxic agents on mitochondrial oxidative phosphorylation and adenosine triphosphate level. These findings indicate the therapeutic potential of Ech A for reducing cardiotoxic agent-induced damage. PMID:24828295

  18. Radiation induced estane polymer crosslinking

    SciTech Connect

    Fletcher, M.; Foster, P.

    1997-12-01

    The exposure of polymeric materials to radiation has been known to induce the effects of crosslinking and degradation. The crosslinking phenomena comes about when two long chain polymers become linked together by a primary bond that extends the chain and increases the viscosity, molecular weight and the elastic modules of the polymer. This process has been observed in relatively short periods of time with fairly high doses of radiation, on the order of several megarads/hour. This paper address low dose exposure over long periods of time to determine what the radiation effects are on the polymeric binder material in PBX 9501. An experimental sample of binder material without explosives will be placed into a thermal and radiation field produced from a W-48 put mod 0. Another sample will be placed in a thermal environment without the radiation. The following is the test plan that was submitted to the Pantex process. The data presented here will be from the first few weeks of exposure and this test will be continued over the next few years. Subsequent data will hopefully be presented in the next compatibility and aging conference.

  19. Cancer genetics and the cardiotoxicity of the therapeutics.

    PubMed

    Lal, Hind; Kolaja, Kyle L; Force, Thomas

    2013-01-22

    Cancer genomics has focused on the discovery of mutations and chromosomal structural rearrangements that either increase susceptibility to cancer or support the cancer phenotype. Protein kinases are the most frequently mutated genes in the cancer genome, making them attractive therapeutic targets for drug design. However, the use of some of the kinase inhibitors (KIs) has been associated with toxicities to the heart and vasculature, including acute coronary syndromes and heart failure. Herein we discuss the genetic basis of cancer, focusing on mutations in the kinase genome (kinome) that lead to tumorigenesis. This will allow an understanding of the real and potential power of modern cancer therapeutics. The underlying mechanisms that drive the cardiotoxicity of the KIs are also examined. The preclinical models for predicting cardiotoxicity, including induced pluripotent stem cells and zebrafish, are reviewed, with the hope of eventually being able to identify problematic agents before their use in patients. Finally, the use of biomarkers in the clinic is discussed, and newer strategies (i.e., metabolomics and enhanced imaging strategies) that may allow earlier and more accurate detection of cardiotoxicity are reviewed.

  20. Pathophysiology of cardiotoxicity from target therapy and angiogenesis inhibitors.

    PubMed

    Maurea, Nicola; Coppola, Carmela; Piscopo, Giovanna; Galletta, Francesca; Riccio, Gennaro; Esposito, Emanuela; De Lorenzo, Claudia; De Laurentiis, Michelino; Spallarossa, Paolo; Mercuro, Giuseppe

    2016-05-01

    The progress in cancer therapy and the increase in number of long-term survivors reveal the issue of cardiovascular side-effects of anticancer drugs. Cardiotoxicity has become a significant problem, and the risks of adverse cardiac events induced by systemic drugs need to be seriously considered. Potential cardiovascular toxicities linked to anticancer agents include arrhythmias, myocardial ischemia and infarction, hypertension, thromboembolism, left ventricular dysfunction, and heart failure. It has been shown that several anticancer drugs seriously affect the cardiovascular system, such as ErbB2 inhibitors, vascular endothelial growth factor (VEGF) inhibitors, multitargeted kinase inhibitors, Abelson murine leukemia viral oncogene homolog inhibitors, and others. Each of these agents has a different mechanism through which it affects the cardiovascular system. ErbB2 inhibitors block the ErbB4/ErbB2 heterodimerization pathway triggered by Neuregulin-1, which is essential for cardiomyocyte survival. VEGF signaling is crucial for vascular growth, but it also has a major impact on myocardial function, and the VEGF pathway is also essential for maintenance of cardiovascular homeostasis. Drugs that inhibit the VEGF signaling pathway lead to a net reduction in capillary density and loss of contractile function. Here, we review the mechanisms and pathophysiology of the most significant cardiotoxic effects of ErbB2 inhibitors and antiangiogenic drugs. Moreover, we highlight the role of cardioncology in recognizing these toxicities, developing strategies to prevent or minimize cardiovascular toxicity, and reducing long-term cardiotoxic effects.

  1. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management.

    PubMed

    Harake, Danielle; Franco, Vivian I; Henkel, Jacqueline M; Miller, Tracie L; Lipshultz, Steven E

    2012-07-01

    Advances in cancer treatment have greatly improved survival rates of children with cancer. However, these same chemotherapeutic or radiologic treatments may result in long-term health consequences. Anthracyclines, chemotherapeutic drugs commonly used to treat children with cancer, are known to be cardiotoxic, but the mechanism by which they induce cardiac damage is still not fully understood. A higher cumulative anthracycline dose and a younger age of diagnosis are only a few of the many risk factors that identify the children at increased risk of developing cardiotoxicity. While cardiotoxicity can develop at anytime, starting from treatment initiation and well into adulthood, identifying the best cardioprotective measures to minimize the long-term damage caused by anthracyclines in children is imperative. Dexrazoxane is the only known agent to date, that is associated with less cardiac dysfunction, without reducing the oncologic efficacy of the anthracycline doxorubicin in children. Given the serious long-term health consequences of cancer treatments on survivors of childhood cancers, it is essential to investigate new approaches to improving the safety of cancer treatments. PMID:22871201

  2. Subacute Cardiotoxicity of Yessotoxin: In Vitro and in Vivo Studies.

    PubMed

    Ferreiro, Sara F; Vilariño, Natalia; Carrera, Cristina; Louzao, M Carmen; Cantalapiedra, Antonio G; Santamarina, Germán; Cifuentes, J Manuel; Vieira, Andrés C; Botana, Luis M

    2016-06-20

    Yessotoxin (YTX) is a marine phycotoxin produced by dinoflagellates and accumulated in filter feeding shellfish. Although no human intoxication episodes have been reported, YTX content in shellfish is regulated by many food safety authorities due to their worldwide distribution. YTXs have been related to ultrastructural heart damage in vivo, but the functional consequences in the long term have not been evaluated. In this study, we explored the accumulative cardiotoxic potential of YTX in vitro and in vivo. Preliminary in vitro evaluation of cardiotoxicity was based on the effect on hERG (human ether-a-go-go related gene) channel trafficking. In vivo experiments were performed in rats that received repeated administrations of YTX followed by recordings of electrocardiograms, arterial blood pressure, plasmatic cardiac biomarkers, and analysis of myocardium structure and ultrastructure. Our results showed that an exposure to 100 nM YTX for 12 or 24 h caused an increase of extracellular surface hERG channels. Furthermore, remarkable bradycardia and hypotension, structural heart alterations, and increased plasma levels of tissue inhibitor of metalloproteinases-1 were observed in rats after four intraperitoneal injections of YTX at doses of 50 or 70 μg/kg that were administered every 4 days along a period of 15 days. Therefore, and for the first time, YTX-induced subacute cardiotoxicity is supported by evidence of cardiovascular function alterations related to its repeated administration. Considering international criteria for marine toxin risk estimation and that the regulatory limit for YTX has been recently raised in many countries, YTX cardiotoxicity might pose a health risk to humans and especially to people with previous cardiovascular risk.

  3. Comparative Investigation of Protective Effects of Metyrosine and Metoprolol Against Ketamine Cardiotoxicity in Rats.

    PubMed

    Ahiskalioglu, Ali; Ince, Ilker; Aksoy, Mehmet; Ahiskalioglu, Elif Oral; Comez, Mehmet; Dostbil, Aysenur; Celik, Mine; Alp, Hamit Hakan; Coskun, Resit; Taghizadehghalehjoughi, Ali; Suleyman, Bahadir

    2015-10-01

    This study investigated the effect of metyrosine against ketamine-induced cardiotoxicity in rats and compared the results with the effect of metoprolol. In this study, rats were divided into groups A, B and C. In group A, we investigated the effects of a single dose of metyrosine (150 mg/kg) and metoprolol (20 mg/kg) on single dose ketamine (60 mg/kg)-induced cardiotoxicity. In group B, we investigated the effect of metyrosine and metoprolol, which were given together with ketamine for 30 days. In group C, we investigated the effect of metyrosine and metoprolol given 15 days before ketamine and 30 days together with ketamine on ketamine cardiotoxicity. By the end of this process, we evaluated the effects of the levels of oxidant-antioxidant parameters such as MDA, MPO, 8-OHGua, tGSH, and SOD in addition to CK-MB and TP I on cardiotoxicity in rat heart tissue. The experimental results show that metyrosine prevented ketamine cardiotoxicity in groups A, B and C and metoprolol prevented it in only group C. PMID:25503950

  4. Comparative Investigation of Protective Effects of Metyrosine and Metoprolol Against Ketamine Cardiotoxicity in Rats.

    PubMed

    Ahiskalioglu, Ali; Ince, Ilker; Aksoy, Mehmet; Ahiskalioglu, Elif Oral; Comez, Mehmet; Dostbil, Aysenur; Celik, Mine; Alp, Hamit Hakan; Coskun, Resit; Taghizadehghalehjoughi, Ali; Suleyman, Bahadir

    2015-10-01

    This study investigated the effect of metyrosine against ketamine-induced cardiotoxicity in rats and compared the results with the effect of metoprolol. In this study, rats were divided into groups A, B and C. In group A, we investigated the effects of a single dose of metyrosine (150 mg/kg) and metoprolol (20 mg/kg) on single dose ketamine (60 mg/kg)-induced cardiotoxicity. In group B, we investigated the effect of metyrosine and metoprolol, which were given together with ketamine for 30 days. In group C, we investigated the effect of metyrosine and metoprolol given 15 days before ketamine and 30 days together with ketamine on ketamine cardiotoxicity. By the end of this process, we evaluated the effects of the levels of oxidant-antioxidant parameters such as MDA, MPO, 8-OHGua, tGSH, and SOD in addition to CK-MB and TP I on cardiotoxicity in rat heart tissue. The experimental results show that metyrosine prevented ketamine cardiotoxicity in groups A, B and C and metoprolol prevented it in only group C.

  5. Radiation-induced moyamoya syndrome

    SciTech Connect

    Desai, Snehal S.; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%. Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.

  6. The Potential Cardiotoxic Effects of Exercise.

    PubMed

    La Gerche, André

    2016-04-01

    The emerging controversy related to the potential cardiotoxic effects of high doses of intense exercise need to be considered among the much stronger evidence that supports the pleomorphic benefits of exercise as a whole. However, there is fairly compelling evidence to support the association between long-term sport practice and an increased prevalence of atrial fibrillation and the fact that this relates to a chronic altered atrial substrate. This article was designed to challenge the reader with speculative science that suggests that exercise might promote permanent structural changes in the myocardium which can, in some individuals, predispose to arrhythmias. In terms of long-term health outcomes, it would seem that these small risks are outweighed by the many other benefits of exercise, including a likely decrease in atherosclerotic vascular events, although some recent results have brought into question whether the protective benefits of exercise on vascular events also extends to high-intensity exercise training. Above all else, in this article we sought to highlight current controversies to stimulate research on the many unanswered questions. In particular, there is a lack of adequately powered prospective studies from which we can measure health outcomes and their relationship to exercise-induced cardiac remodelling. PMID:26922291

  7. Radiation-induced leukemias in ankylosing spondylitis

    SciTech Connect

    Toolis, F.; Potter, B.; Allan, N.C.; Langlands, A.O.

    1981-10-01

    Three cases of leukemia occurred in patients with ankylosing spondylitis treated by radiotherapy. In each case, the leukemic process exhibited bizarre features suggesting that radiation is likely to induce atypical forms of leukemia possessing unusual attributes not shared by spontaneously developing leukemia. The likely distinctive aspects of radiation-induced leukemia are discussed.

  8. Roles of oxidative stress and Akt signaling in doxorubicin cardiotoxicity

    SciTech Connect

    Ichihara, Sahoko . E-mail: saho@gene.mie-u.ac.jp; Yamada, Yoshiji; Kawai, Yoshichika; Osawa, Toshihiko; Furuhashi, Koichi; Duan Zhiwen; Ichihara, Gaku

    2007-07-20

    Cardiotoxicity is a treatment-limiting side effect of the anticancer drug doxorubicin (DOX). We have now investigated the roles of oxidative stress and signaling by the protein kinase Akt in DOX-induced cardiotoxicity as well as the effects on such toxicity both of fenofibrate, an agonist of peroxisome proliferator-activated receptor-{alpha}, and of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), an antioxidant. Mice injected intraperitoneally with DOX were treated for 4 days with fenofibrate or PEG-SOD. Fenofibrate and PEG-SOD each prevented the induction of cardiac dysfunction by DOX. Both drugs also inhibited the activation of the transcription factor NF-{kappa}B and increase in lipid peroxidation in the left ventricle induced by DOX, whereas only PEG-SOD inhibited the DOX-induced activation of Akt and Akt-regulated gene expression. These results suggest that fenofibrate and PEG-SOD prevented cardiac dysfunction induced by DOX through normalization of oxidative stress and redox-regulated NF-{kappa}B signaling.

  9. Radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  10. Radiation-pressure-induced nonlinearity in microdroplets.

    PubMed

    Zhang, Peng; Jung, Sunghwan; Lee, Aram; Xu, Yong

    2015-12-01

    High quality (Q) factor whispering gallery modes (WGMs) can induce nonlinear effects in liquid droplets through mechanisms such as radiation pressure, Kerr nonlinearity, and thermal effects. However, such nonlinear effects, especially those due to radiation pressure, have yet to be thoroughly investigated and compared in the literature. In this study, we present an analytical approach that can exactly calculate the droplet deformation induced by the radiation pressure. The accuracy of the analytical approach is confirmed through numerical analyses based on the boundary element method. We show that the nonlinear optofluidic effect induced by the radiation pressure is stronger than the Kerr effect and the thermal effect under a large variety of realistic conditions. Using liquids with ultralow and experimentally attainable interfacial tension, we further confirm the prediction that it may only take a few photons to produce measurable WGM resonance shift through radiation-pressure-induced droplet deformation. PMID:26764829

  11. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  12. Radiation-induced thyroid disease

    SciTech Connect

    Maxon, H.R.

    1985-09-01

    Ionizing radiation has been demonstrated to result in a number of changes in the human thyroid gland. At lower radiation dose levels (between 10 and 1500 rads), benign and malignant neoplasms appear to be the dominant effect, whereas at higher dose levels functional changes and thyroiditis become more prevalent. In all instances, the likelihood of the effect is related to the amount and type of radiation exposure, time since exposure, and host factors such as age, sex, and heredity. The author's current approach to the evaluation of patients with past external radiation therapy to the thyroid is discussed. The use of prophylactic thyroxine (T4) therapy is controversial. While T4 therapy may not be useful in preventing carcinogenesis when instituted many years after radiation exposure, theoretically T4 may block TSH secretion and stimulation of damaged cells to undergo malignant transformation when instituted soon after radiation exposure.

  13. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required.

  14. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium.

    PubMed

    Natarajan, Mohan; Aravindan, Natarajan; Sprague, Eugene A; Mohan, Sumathy

    2016-08-01

    Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited. PMID:27387860

  15. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  16. Radiation-induced sarcoma of the thyroid

    SciTech Connect

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.; Templeton, A.C. )

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  17. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  18. Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations

    SciTech Connect

    Cohen, J.D.; Babiarz, J.E.; Abrams, R.M.; Guo, L.; Kameoka, S.; Chiao, E.; Taunton, J.; Kolaja, K.L.

    2011-11-15

    Sunitinib, an oral tyrosine kinase inhibitor approved to treat advanced renal cell carcinoma and gastrointestinal stroma tumor, is associated with clinical cardiac toxicity. Although the precise mechanism of sunitinib cardiotoxicity is not known, both the key metabolic energy regulator, AMP-activated protein kinase (AMPK), and ribosomal S 6 kinase (RSK) have been hypothesized as causative, albeit based on rodent models. To study the mechanism of sunitinib-mediated cardiotoxicity in a human model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) having electrophysiological and contractile properties of native cardiac tissue were investigated. Sunitinib was cardiotoxic in a dose-dependent manner with an IC{sub 50} in the low micromolar range, observed by a loss of cellular ATP, an increase in oxidized glutathione, and induction of apoptosis in iPSC-CMs. Pretreatment of iPSC-CMs with AMPK activators AICAR or metformin, increased the phosphorylation of pAMPK-T172 and pACC-S79, but only marginally attenuated sunitinib mediated cell death. Furthermore, additional inhibitors of AMPK were not directly cytotoxic to iPSC-CMs up to 250 {mu}M concentrations. Inhibition of RSK with a highly specific, irreversible, small molecule inhibitor (RSK-FMK-MEA) did not induce cytotoxicity in iPSC-CMs below 250 {mu}M. Extensive electrophysiological analysis of sunitinib and RSK-FMK-MEA mediated conduction effects were performed. Taken together, these findings suggest that inhibition of AMPK and RSK are not a major component of sunitinib-induced cardiotoxicity. Although the exact mechanism of cardiotoxicity of sunitinib is not known, it is likely due to inhibition of multiple kinases simultaneously. These data highlight the utility of human iPSC-CMs in investigating the potential molecular mechanisms underlying drug-induced cardiotoxicity. -- Highlights: Black-Right-Pointing-Pointer Cytoxic effect of sunitinib on human stem cell derived cardiomyocytes Black

  19. Triptolide Mitigates Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Yang, Shanmin; Zhang, Mei; Chen, Chun; Cao, Yongbin; Tian, Yeping; Guo, Yangsong; Zhang, Bingrong; Wang, Xiaohui; Yin, Liangjie; Zhang, Zhenhuan; O'Dell, Walter; Okunieff, Paul; Zhang, Lurong

    2015-11-01

    Triptolide (TPL) may mitigate radiation-induced late pulmonary side effects through its inhibition of global pro-inflammatory cytokines. In this study, we evaluated the effect of TPL in C57BL/6 mice, the animals were exposed to radiation with vehicle (15 Gy), radiation with TPL (0.25 mg/kg i.v., twice weekly for 1, 2 and 3 months), radiation and celecoxib (CLX) (30 mg/kg) and sham irradiation. Cultured supernatant of irradiated RAW 264.7 and MLE-15 cells and lung lysate in different groups were enzyme-linked immunosorbent assays at 33 h. Respiratory rate, pulmonary compliance and pulmonary density were measured at 5 months in all groups. The groups exposed to radiation with vehicle and radiation with TPL exhibited significant differences in respiratory rate and pulmonary compliance (480 ± 75/min vs. 378 ± 76/min; 0.6 ± 0.1 ml/cm H2O/p kg vs. 0.9 ± 0.2 ml/cm H2O/p kg). Seventeen cytokines were significantly reduced in the lung lysate of the radiation exposure with TPL group at 5 months compared to that of the radiation with vehicle group, including profibrotic cytokines implicated in pulmonary fibrosis, such as IL-1β, TGF- β1 and IL-13. The radiation exposure with TPL mice exhibited a 41% reduction of pulmonary density and a 25% reduction of hydroxyproline in the lung, compared to that of radiation with vehicle mice. The trichrome-stained area of fibrotic foci and pathological scaling in sections of the mice treated with radiation and TPL mice were significantly less than those of the radiation with vehicle-treated group. In addition, the radiation with TPL-treated mice exhibited a trend of improved survival rate compared to that of the radiation with vehicle-treated mice at 5 months (83% vs. 53%). Three radiation-induced profibrotic cytokines in the radiation with vehicle-treated group were significantly reduced by TPL treatment, and this partly contributed to the trend of improved survival rate and pulmonary density and function and the decreased severity of

  20. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  1. Effects of fullerenol C60(OH)24 nanoparticles on a single-dose doxorubicin-induced cardiotoxicity in pigs: an ultrastructural study.

    PubMed

    Borović, Milica Labudović; Ičević, Ivana; Kanački, Zdenko; Žikić, Dragan; Seke, Mariana; Injac, Rade; Djordjević, Aleksandar

    2014-04-01

    Cardioprotective effects of fullerenol C60(OH)24 nanoparticles (FNP) were investigated in pigs after a single treatment with doxorubicin (DOX). Semithin and ultrathin sections of myocardial tissue routinely prepared for transmission electron microscopy were analyzed. Extensive intracellular damage was confirmed in cardiomyocytes of DOX-treated animals. By means of ultrastructural analysis, a certain degree of parenchymal degeneration was confirmed even in animals treated with FNP alone, including both the oral and the intraperitoneal application of the substance. The cardioprotective effects of FNP in animals previously treated with DOX were recognized to a certain extent, but were not fully confirmed at the ultrastructural level. Nevertheless, the myocardial morphology of DOX-treated animals improved after the admission of FNP. Irregular orientation of myofibrils, myofibrillar disruption, intracellular edema, and vacuolization were reduced, but not completely eliminated. Reduction of these cellular alterations was achieved if FNP was applied orally 6 h prior to DOX treatment in a dose of 18 mg/kg. However, numerous defects, including the inner mitochondrial membrane and the plasma membrane disruption of certain cells persisted. In FNP/DOX-treated animals, the presence of multinuclear cells with mitosis-like figures resembling metaphase or anaphase were observed, indicating that DOX and FNP could have a complex influence on the cell cycle of cardiomyocytes. Based on this experiment, further careful increase in dosage may be advised to enhance FNP-induced cardioprotection. These investigations should, however, always be combined with ultrastructural analysis. The FNP/DOX interaction is an excellent model for the investigation of cardiomyocyte cell death and cell cycle mechanisms.

  2. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity

    SciTech Connect

    Hasinoff, Brian B.

    2010-04-15

    The use of the new anticancer tyrosine kinase inhibitors (TKI) has revolutionized the treatment of certain cancers. However, the use of some of these results in cardiotoxicity. Large-scale profiling data recently made available for the binding of 7 of the 9 FDA-approved tyrosine kinase inhibitors to a panel of 317 kinases has allowed us to correlate kinase inhibitor binding selectivity scores with TKI-induced damage to neonatal rat cardiac myocytes. The tyrosine kinase selectivity scores, but not the serine-threonine kinase scores, were highly correlated with the myocyte damaging effects of the TKIs. Additionally, we showed that damage to myocytes gave a good rank order correlation with clinical cardiotoxicity. Finally, strength of TKI binding to colony-stimulating factor 1 receptor (CSF1R) was highly correlated with myocyte damage, thus possibly implicating this kinase in contributing to TKI-induced cardiotoxicity.

  3. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  4. Management of radiation-induced urethral strictures

    PubMed Central

    Hofer, Matthias D.

    2015-01-01

    Radiation as a treatment option for prostate cancer has been chosen by many patients. One of the side effects encountered are radiation-induced urethral strictures which occur in up to 11% of patients. Radiation damage has often left the irradiated field fibrotic and with poor vascularization which make these strictures a challenging entity to treat. The mainstay of urologic management remains an urethroplasty procedure for which several approaches exist with variable optimal indication. Excision and primary anastomoses are ideal for shorter bulbar strictures that comprise the majority of radiation-induced urethral strictures. One advantage of this technique is that it does not require tissue transfers and success rates of 70-95% have consistently been reported. Substitution urethroplasty using remote graft tissue such as buccal mucosa are indicated if the length of the stricture precludes a tension-free primary anastomosis. Despite the challenge of graft survival in radiation-damaged and poorly vascularized recipient tissue, up to 83% of patients have been treated successfully although the numbers described in the literature are small. The most extensive repairs involve the use of tissue flaps, for example gracilis muscle, which may be required if the involved periurethral tissue is unable to provide sufficient vascular support for a post-operative urethral healing process. In summary, radiation-induced urethral strictures are a challenging entity. Most strictures are amenable to excision and primary anastomosis (EPA) with encouraging success rates but substitution urethroplasty may be indicated when extensive repair is needed. PMID:26816812

  5. Mechanisms of Cardiotoxicity and the Development of Heart Failure.

    PubMed

    Lee, Christopher S

    2015-12-01

    Cardiotoxicity is a broad term that refers to the negative effects of toxic substances on the heart. Cancer drugs can cause cardiotoxicity by effects on heart cells, thromboembolic events, and/or hypertension that can lead to heart failure. Rheumatoid arthritis biologics may interfere with ischemic preconditioning and cause/worsen heart failure. Long-term and heavy alcohol use can result in oxidative stress, apoptosis, and decreased contractile protein function. Cocaine use results in sympathetic nervous system stimulation of heart and smooth muscle cells and leads to cardiotoxicity and evolution of heart failure. The definition of cardiotoxicity is likely to evolve along with knowledge about detecting subclinical myocardial injury. PMID:26567492

  6. Radiation-induced Genomic Instability and Radiation Sensitivity

    SciTech Connect

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  7. Evaluation of the pharmacokinetics and cardiotoxicity of doxorubicin in rat receiving nilotinib

    SciTech Connect

    Zhou, Zhi-yong; Wan, Li-li; Yang, Quan-jun; Han, Yong-long; Li, Yan; Yu, Qi; Guo, Cheng; Li, Xiao

    2013-10-01

    Doxorubicin (DOX) is a potent chemotherapy drug with a narrow therapeutic window. Nilotinib, a small-molecule Bcr-Abl tyrosine kinase inhibitor, was reported to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) transmembrane transporters. The present study aimed to investigate nilotinib's affection on the steady-state pharmacokinetics, disposition and cardiotoxicity of DOX. A total of 24 male Sprague–Dawley rats were randomized into four groups (6 in each) and received the following regimens: saline, intravenous DOX (5 mg/kg) alone, and DOX co-administrated with either 20 or 40 mg/kg nilotinib. Blood was withdrawn at 12 time points till 72 h after DOX injection and the concentrations of DOX and its metabolite doxorubicinol (DOXol) in serum and cardiac tissue were assayed by LC–MS–MS method. To determine the cardiotoxicity, the following parameters were investigated: creatine kinase, lactate dehydrogenase, malondialdehyde, and superoxide dismutase. Histopathological examination of heart section was carried out to evaluate the extent of cardiotoxicity after treatments. The results showed that pretreatment of 40 mg/kg nilotinib increased the AUC{sub 0–t} and C{sub max} of DOX and DOXol. However, their accumulation in cardiac tissue was significantly decreased when compared with the group that received DOX alone. In addition, biochemical and histopathological results showed that 40 mg/kg nilotinib reduced the cardiotoxicity induced by DOX administration. In conclusion, co-administration of nilotinib increased serum exposure, but significantly decreased the accumulation of DOX in cardiac tissue. Consistent with in vitro profile, oral dose of 40 mg/kg nilotinib significantly decreased the cardiotoxicity of DOX in rat by enhancing P-gp activity in the heart.

  8. Evaluation of the pharmacokinetics and cardiotoxicity of doxorubicin in rat receiving nilotinib.

    PubMed

    Zhou, Zhi-Yong; Wan, Li-Li; Yang, Quan-Jun; Han, Yong-Long; Li, Yan; Yu, Qi; Guo, Cheng; Li, Xiao

    2013-10-01

    Doxorubicin (DOX) is a potent chemotherapy drug with a narrow therapeutic window. Nilotinib, a small-molecule Bcr-Abl tyrosine kinase inhibitor, was reported to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) transmembrane transporters. The present study aimed to investigate nilotinib's affection on the steady-state pharmacokinetics, disposition and cardiotoxicity of DOX. A total of 24 male Sprague-Dawley rats were randomized into four groups (6 in each) and received the following regimens: saline, intravenous DOX (5mg/kg) alone, and DOX co-administrated with either 20 or 40mg/kg nilotinib. Blood was withdrawn at 12 time points till 72h after DOX injection and the concentrations of DOX and its metabolite doxorubicinol (DOXol) in serum and cardiac tissue were assayed by LC-MS-MS method. To determine the cardiotoxicity, the following parameters were investigated: creatine kinase, lactate dehydrogenase, malondialdehyde, and superoxide dismutase. Histopathological examination of heart section was carried out to evaluate the extent of cardiotoxicity after treatments. The results showed that pretreatment of 40mg/kg nilotinib increased the AUC0-t and Cmax of DOX and DOXol. However, their accumulation in cardiac tissue was significantly decreased when compared with the group that received DOX alone. In addition, biochemical and histopathological results showed that 40mg/kg nilotinib reduced the cardiotoxicity induced by DOX administration. In conclusion, co-administration of nilotinib increased serum exposure, but significantly decreased the accumulation of DOX in cardiac tissue. Consistent with in vitro profile, oral dose of 40mg/kg nilotinib significantly decreased the cardiotoxicity of DOX in rat by enhancing P-gp activity in the heart.

  9. Quercetin inhibits radiation-induced skin fibrosis.

    PubMed

    Horton, Jason A; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-08-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis.

  10. Quercetin Inhibits Radiation-Induced Skin Fibrosis

    PubMed Central

    Horton, Jason A.; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-01-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis. PMID:23819596

  11. Radiation-induced meningiomas in pediatric patients

    SciTech Connect

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  12. Radiation-induced mutations and plant breeding

    SciTech Connect

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far.

  13. A recommended practical approach to the management of target therapy and angiogenesis inhibitors cardiotoxicity: an opinion paper of the working group on drug cardiotoxicity and cardioprotection, Italian Society of Cardiology

    PubMed Central

    Maurea, Nicola; Spallarossa, Paolo; Cadeddu, Christian; Madonna, Rosalinda; Mele, Donato; Monte, Ines; Novo, Giuseppina; Pagliaro, Pasquale; Pepe, Alessia; Tocchetti, Carlo G.; Zito, Concetta; Mercuro, Giuseppe

    2016-01-01

    The US National Cancer Institute estimates that cardiotoxicity (CTX) from target therapy refers mostly to four groups of drugs: epidermal growth factor receptor 2 inhibitors, angiogenic inhibitors, directed Abelson murine leukemia viral oncogene homolog inhibitors, and proteasome inhibitors. The main cardiotoxic side-effects related to antiepidermal growth factor receptor 2 therapy are left ventricular systolic dysfunction and heart failure. Angiogenesis inhibitors are associated with hypertension, left ventricular dysfunction/heart failure, myocardial ischemia, QT prolongation, and thrombosis. Moreover, other agents may be related to CTX induced by treatment. In this study, we review the guidelines for a practical approach for the management of CTX in patients under anticancer target therapy. PMID:27183530

  14. Cataracts induced by microwave and ionizing radiation

    SciTech Connect

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-11-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references.

  15. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  16. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    SciTech Connect

    Rauch, Philipp J.; Park, Henry S.; Knisely, Jonathan P.S.; Chiang, Veronica L.; Vortmeyer, Alexander O.

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  17. Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity

    PubMed Central

    Ojha, Shreesh; Al Taee, Hasan; Goyal, Sameer; Mahajan, Umesh B.; Patil, Chandrgouda R.; Arya, D. S.; Rajesh, Mohanraj

    2016-01-01

    Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity. PMID:27313831

  18. Radiation-induced mutation at minisatellite loci

    SciTech Connect

    Dubrova, Y.E. |; Nesterov, V.N.; Krouchinsky, N.G.

    1997-10-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of {gamma}-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure {sup 137}Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed.

  19. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. PMID:27209205

  20. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  1. Radiatively induced quark and lepton mass model

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2016-10-01

    We propose a radiatively induced quark and lepton mass model in the first and second generation with extra U (1) gauge symmetry and vector-like fermions. Then we analyze the allowed regions which simultaneously satisfy the FCNCs for the quark sector, LFVs including μ- e conversion, the quark mass and mixing, and the lepton mass and mixing. Also we estimate the typical value for the (g - 2) μ in our model.

  2. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  3. Embryonic cardiotoxicity of weak aryl hydrocarbon receptor agonists and CYP1A inhibitor fluoranthene in the Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Brown, D R; Clark, B W; Garner, L V T; Di Giulio, R T

    2016-10-01

    High affinity aryl hydrocarbon receptor (AHR) ligands, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, for example benzo[a]pyrene and β-naphthoflavone, are capable of causing similar cardiotoxic effects, particularly when coupled with cytochrome P450 1A (CYP1A) inhibitors (e.g., fluoranthene (FL). Additionally, some weaker AHR agonists (carbaryl, 2-methylindole, 3-methylindole, and phenanthrene) are known to also cause cardiotoxicity in zebrafish (Danio rerio) embryos when coupled with FL; however, the cardiotoxic effects were not mediated specifically by AHR stimulation. This study was performed to determine if binary exposure to weak AHR agonists and FL were also capable of causing cardiotoxicity in Atlantic killifish Fundulus heteroclitus embryos. Binary exposures were performed in both naïve and PAH-adapted killifish embryos to examine resistance to weak agonists and FL binary exposures. Weak agonists used in this study included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. Carbaryl, indigo, and indirubin induced the highest CYP1 activity levels in naïve killifish embryos, but no significant CYP1 induction was observed in the PAH-adapted killifish. Embryos were coexposed to subteratogenic levels of each agonist and 500μg/L FL to assess if binary administration could cause cardiotoxicity. Indigo and indirubin coupled with FL caused cardiac teratogenesis in naïve killifish, but coexposures did not produce cardiac chamber abnormalities in the PAH-adapted population. Knockdown of AHR2 in naïve killifish embryos did not prevent cardiac teratogenesis. The data suggest a unique mechanism of cardiotoxicity that is not driven by AHR2 activation. PMID:27211013

  4. Progress on the cardiotoxicity of sunitinib: Prognostic significance, mechanism and protective therapies.

    PubMed

    Yang, Yi; Bu, Peili

    2016-09-25

    Tyrosine kinase inhibitors (TKIs) are multi-targeted anti-cancer agents effective in the treatment of renal cell carcinoma (RCC), imatinib-resistant gastrointestinal stromal tumor (GIST) and pancreatic cancer (PC). Targeting and inhibiting a wide range of oncogenically relevant receptor tyrosine kinases (RTKs), TKIs have been the golden standard treatment of several types of cancer. The cardiotoxicity of TKIs, however, has also emerged alongside their anti-cancer potencies and has attracted research attention. Over the past few years significant progress has been made in developing a deeper understanding of aspects such as extent of cardiotoxicity, prognostic implications and survival predictions, toxicological mechanisms, and potential cardioprotective therapies. In this review we focus on a typical TKI sunitinib and summarize the up-to-date knowledge of sunitinib-induced cardiac abnormalities reported in clinical studies, weighing their implications of prognostic values. We also examine recent findings in underlying mechanisms, and development of potential cardioprotective agents. PMID:27531228

  5. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    PubMed Central

    Wilkinson, Emma L.; Sidaway, James E.

    2016-01-01

    ABSTRACT Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes. PMID:27543060

  6. Role of neurotensin in radiation-induced hypothermia in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H. )

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  7. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology.

    PubMed

    Pepe, Alessia; Pizzino, Fausto; Gargiulo, Paola; Perrone-Filardi, Pasquale; Cadeddu, Christian; Mele, Donato; Monte, Ines; Novo, Giuseppina; Zito, Concetta; Di Bella, Gianluca

    2016-05-01

    Chemotherapy-induced cardiotoxicity (CTX) is a determining factor for the quality of life and mortality of patients administered potentially cardiotoxic drugs and in long-term cancer survivors. Therefore, prevention and early detection of CTX are highly desirable, as is the exploration of alternative therapeutic strategies and/or the proposal of potentially cardioprotective treatments. In recent years, cardiovascular imaging has acquired a pivotal role in this setting. Although echocardiography remains the diagnostic method most used to monitor cancer patients, the need for more reliable, reproducible and accurate detection of early chemotherapy-induced CTX has encouraged the introduction of second-line advanced imaging modalities, such as cardiac magnetic resonance (CMR) and nuclear techniques, into the clinical setting. This review of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to afford an overview of the most important findings from the literature about the role of CMR and nuclear techniques in the management of chemotherapy-treated patients, describe conventional and new parameters for detecting CTX from both diagnostic and prognostic perspectives and provide integrated insight into the role of CMR and nuclear techniques compared with other imaging tools and versus the positions of the most important international societies.

  8. Radiation abolishes inducer binding to lactose repressor.

    PubMed

    Gillard, Nathalie; Spotheim-Maurizot, Mélanie; Charlier, Michel

    2005-04-01

    The lactose operon functions under the control of the repressor-operator system. Binding of the repressor to the operator prevents the expression of the structural genes. This interaction can be destroyed by the binding of an inducer to the repressor. If ionizing radiations damage the partners, a dramatic dysfunction of the regulation system may be expected. We showed previously that gamma irradiation hinders repressor-operator binding through protein damage. Here we show that irradiation of the repressor abolishes the binding of the gratuitous inducer isopropyl-1-beta-D-thiogalactoside (IPTG) to the repressor. The observed lack of release of the repressor from the complex results from the loss of the ability of the inducer to bind to the repressor due to the destruction of the IPTG binding site. Fluorescence measurements show that both tryptophan residues located in or near the IPTG binding site are damaged. Since tryptophan damage is strongly correlated with the loss of IPTG binding ability, we conclude that it plays a critical role in the effect. A model was built that takes into account the kinetic analysis of damage production and the observed protection of its binding site by IPTG. This model satisfactorily accounts for the experimental results and allows us to understand the radiation-induced effects. PMID:15799700

  9. Cathodoluminescence of radiation-induced zircon

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Y.; Nishido, H.; Kayama, M.; Noumi, Y.

    2013-12-01

    Zircon occurs as a common accessory mineral in igneous, metamorphic and sedimentary rocks, and maintains much information on thermal history, metamorphic process and natural radiation dose accumulated in the mineral. U-Pb zircon dating (e.g., SHRIMP) is an important tool to interpret a history of the minerals at a micrometer-scale, where cathodoluminescence (CL) image has been used for identification of internal zones and domains having different chemical compositions and/or structures with a high spatial resolution. The CL of zircon is derived from various types of emission centers, which are derived from impurities such as rare earth elements (REE) and structural defects. In fact, the CL features of zircon are closely related to metamorphic process and radiation from contained radionuclides as well as geochemical condition of its formation. Most zircon has yellow emission, which seems to be assigned to UO2 centers or radiation-induced defect during metamictization of the lattice by alpha particles from the decay of U and Th. In this study, the radiation effects on zircon CL have been studied for He+ ion-implanted samples annealed at various temperatures to clarify radiation-induced defect centers involved with the yellow CL emission in zircon. Single crystals of zircon from Malawi (MZ), Takidani granodiorite (TZ) and Kurobegawa granite (KZ) were selected for He+ ion implantation experiments. The polished plates of the samples were implanted by He+ ion 4.0 MeV corresponding to energy of alpha particle from 238 U and 232Th. CL spectra in the range from 300 to 800 nm with 1 nm step were measured by a scanning electron microscopy-cathodoluminescence (SEM-CL). CL spectra of untreated and annealed zircon show emission bands at ~370 nm assigned to intrinsic defect centers and at ~480, ~580 and ~760 nm to trivalent Dy impurity centers (Cesbron et al., 1995; Gaft et al, 2005). CL emissions in the yellow-region were observed in untreated zircon. The TZ and KZ indicate

  10. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  11. S100A1 as a Potential Diagnostic Biomarker for Assessing Cardiotoxicity and Implications for the Chemotherapy of Certain Cancers

    PubMed Central

    Eryilmaz, Ufuk; Demirci, Buket; Aksun, Saliha; Boyacioglu, Murat; Akgullu, Cagdas; Ilgenli, Tevfik Fikret; Yalinkilinc, Hande Sultan; Bilgen, Mehmet

    2015-01-01

    This study examined the value of blood marker S100A1 in detecting cardiotoxicity induced by chemotherapy agents; trastuzumab and lapatinib, in normal rat heart. The rats were divided into three groups: control (n = 8, no treatment), T (n = 8, one time ip treatment with 10 mg/kg trastuzumab) and L (n = 8, oral treatment with 100 mg/kg/day lapatinib for 7 days). The activities of oxidative stress parameters Malondialdehyde (MDA), Superoxide dismutase (SOD), Catalase (CAT) and Glutathione (GSH) were measured from the extracted cardiac tissues. The levels of troponinI and S100A1 expressions were measured from blood samples. All biomarkers responded to the treatments as they exhibited alterations from their normative values, validating the chemically induced cardiotoxicity. S100A1 expression attenuated significantly (75%), which made the sensitive detection of cardiotoxicity feasible. Assessment of cardiotoxicity with S100A1 may be a valuable alternative in clinical oncology of cancers in some organs such as breast and prostate, as they do not overexpress it to compete against. PMID:26682543

  12. Radiation induced carcinoma of the larynx

    SciTech Connect

    Amendola, B.E.; Amendola, M.A.; McClatchey, K.D.

    1985-07-01

    A squamous cell carcinoma presented in a 20 year old female nonsmoker three years after receiving a high dosage of radiation therapy to the base of the skull, face and entire neuroaxis and intense combination chemotherapy for a parameningeal rhabdomyosarcoma of the paranasal sinuses is reported. The larynx received a dose of about 3,500 rads over an eight week period. This dosage in conjunction with the associated intense chemotherapy regimen given to the patient may explain the appearance of a radiation induced tumor in an unusually short latent period. This certainly represents a risk in young patients in whom an aggressive combined approach is taken and the physician should be aware of.

  13. Radiation-induced osteosarcoma of the sphenoid bone

    SciTech Connect

    Tanaka, S.; Nishio, S.; Morioka, T.; Fukui, M.; Kitamura, K.; Hikita, K. )

    1989-10-01

    The case of a patient who developed osteosarcoma in the sphenoid bone 15 years after radiation therapy for a craniopharyngioma is reported. Radiation-induced osteosarcoma of the sphenoid bone has not been reported previously. Reported cases of radiation-induced osteosarcomas are reviewed.

  14. Radiation-induced uterine changes: MR imaging

    SciTech Connect

    Arrive, L.; Chang, Y.C.; Hricak, H.; Brescia, R.J.; Auffermann, W.; Quivey, J.M.

    1989-01-01

    To assess the capability of magnetic resonance (MR) imaging to demonstrate postirradiation changes in the uterus, MR studies of 23 patients who had undergone radiation therapy were retrospectively examined and compared with those of 30 patients who had not undergone radiation therapy. MR findings were correlated with posthysterectomy histologic findings. In premenopausal women, radiation therapy induced (a) a decrease in uterine size demonstrable as early as 3 months after therapy ended; (b) a decrease in signal intensity of the myometrium on T2-predominant MR images, reflecting a significant decrease in T2 relaxation time, demonstrable as early as 1 month after therapy; (c) a decrease in thickness and signal intensity of the endometrium demonstrable on T2-predominant images 6 months after therapy; and (d) loss of uterine zonal anatomy as early as 3 months after therapy. In postmenopausal women, irradiation did not significantly alter the MR imaging appearance of the uterus. These postirradiation MR changes in both the premenopausal and postmenopausal uteri appeared similar to the changes ordinarily seen on MR images of the nonirradiated postmenopausal uterus.

  15. Radiation induced micrencephaly in guinea pigs

    SciTech Connect

    Wagner, L.K.; Johnston, D.A.; Felleman, D.J.

    1991-01-01

    A brain weight deficit of about 70 mg was induced at doses of approximately 75-mGy and a deficit of 60 mg was induced at 100 mGy. This confirms the effects projected and observed by Wanner and Edwards. Although the data do not demonstrate a clear dose-response relationship between the 75-mGy and 100-mGy groups, the data are statistically consistent with a dose-response effect because of the overlapping confidence intervals. The lack of a statistically significant observation is most likely related to the small difference in doses and the limited numbers of animals examined. There are several factors that can influence the brain weight of guinea pig pups, such as caging and housing conditions, the sex of the animal, and litter size. These should be taken into account for accurate analysis. Dam weight did not appear to have a significant effect. The confirmation of a micrencephalic effect induced x rays at doses of 75-mGy during this late embryonic stage of development is consistent with the findings of small head size induced in those exposed prior to the eight week of conception at Hiroshima. This implies a mechanism for micrencephaly different from those previously suggested and lends credence to a causal relation between radiation and small head size in humans at low doses as reported by Miller and Mulvihill. 16 refs., 13 tabs.

  16. Theory Of Radiation-Induced Attenuation In Optical Fibers

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Johnston, Alan R.

    1996-01-01

    Improved theory of radiation-induced attenuation of light in optical fibers accounts for effects of dose rates. Based on kinetic aspects of fundamental physics of color centers induced in optical fibers by radiation. Induced attenuation is proportional to density of color centers, and part of this density decays by thermal-annealing/recombination process after irradiation.

  17. Biochemical effects of Solidago virgaurea extract on experimental cardiotoxicity.

    PubMed

    El-Tantawy, Walid Hamdy

    2014-03-01

    Cardiovascular diseases (CVDs) are the major health problem of advanced as well as developing countries of the world. The aim of the present study was to investigate the protective effect of the Solidago virgaurea extract on isoproterenol-induced cardiotoxicity in rats. The subcutaneous injection of isoproterenol (30 mg/kg) into rats twice at an interval of 24 h, for two consecutive days, led to a significant increase in serum lactate dehydrogenase, creatine phosphokinase, alanine transaminase, aspartate transaminase, and angiotensin-converting enzyme activities, total cholesterol, triglycerides, free serum fatty acid, cardiac tissue malondialdehyde (MDA), and nitric oxide levels and a significant decrease in levels of glutathione and superoxide dismutase in cardiac tissue as compared to the normal control group (P < 0.05). Pretreatment with S. virgaurea extract for 5 weeks at a dose of 250 mg/kg followed by isoproterenol injection significantly prevented the observed alterations. Captopril (50 mg/kg/day, given orally), an inhibitor of angiotensin-converting enzyme used as a standard cardioprotective drug, was used as a positive control in this study. The data of the present study suggest that S. virgaurea extract exerts its protective effect by decreasing MDA level and increasing the antioxidant status in isoproterenol-treated rats. The study emphasizes the beneficial action of S. virgaurea extract as a cardioprotective agent. PMID:23872883

  18. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  19. Supersymmetry breaking induced by radiative corrections

    NASA Astrophysics Data System (ADS)

    Bajc, Borut; Lavignac, Stéphane; Mede, Timon

    2012-07-01

    We show that simultaneous gauge and supersymmetry breaking can be induced by radiative corrections, à la Coleman-Weinberg. When a certain correlation among the superpotential parameters is present, a local supersymmetry-breaking minimum is induced in the effective potential of a gauge non-singlet field, in a region where the tree-level potential is almost flat. Supersymmetry breaking is then transmitted to the MSSM through gauge and chiral messenger loops, thus avoiding the suppression of gaugino masses characteristic of direct gauge mediation models. The use of a single field ensures that no dangerous tachyonic scalar masses are generated at the one-loop level. We illustrate this mechanism with an explicit example based on an SU(5) model with a single adjoint. An interesting feature of the scenario is that the GUT scale is increased with respect to standard unification, thus allowing for a larger colour Higgs triplet mass, as preferred by the experimental lower bound on the proton lifetime.

  20. Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats: Abrogating action of thymol.

    PubMed

    Meeran, M F Nagoor; Jagadeesh, G S; Selvaraj, P

    2016-05-01

    Nowadays, there are considerable interests in the studies which are more connected with the impact of natural antioxidants against the free radical mediated damage in biological systems. Cardiotoxicity is one of the lethal manifestations of cardiovascular diseases (CVDs) which have been associated with the incidence of apoptotic cell death due to oxidative stress. We evaluated the impact of thymol, a dietary monoterpene phenol on isoproterenol (ISO), a synthetic catecholamine and a β1-adrenergic receptor agonist in rats. Thymol (7.5 mg/kg body weight) was pre and co-treated into male albino Wistar rats daily for a period of 7 days. Induction of cardiotoxicity was done by the subcutaneous administration of ISO (100 mg/kg body weight) into rats on 6th and 7th day. Cardiotoxicity in rats was confirmed by the increased levels/activity of serum troponin-T and creatine kinase in the serum alongwith decreased activity of creatine kinase in the heart. ISO induced cardiotoxic rats also showed a significant increase in the concentrations of lipid peroxidation products and a significant decrease in the activities/levels of antioxidants in the myocardium whereas Reverse Transcription Polymerase Chain Reaction study revealed an increased expression of caspase-8, caspase-9 and Fas genes along with a decreased expression of Bcl-xL gene in the myocardium. Thymol pre and co-treated ISO induced cardiotoxic rats showed considerable protective effects on all the biochemical parameters studied. Histopathological and in vitro findings are found in line with our biochemical findings. Thus, the present study revealed that thymol counters ISO induced cardiotoxicity by inhibiting oxidative stress and apoptotic cell death in rats by virtue of its potent antioxidant property. PMID:26996544

  1. Obstructive jaundice due to radiation-induced hepatic duct stricture

    SciTech Connect

    Chandrasekhara, K.L.; Iyer, S.K.

    1984-10-01

    A case of obstructive jaundice due to radiation-induced hepatic duct stricture is reported. The patient received postoperative radiation for left adrenal carcinoma, seven years prior to this admission. The sequelae of hepatobiliary radiation and their management are discussed briefly.

  2. Analog of microwave-induced resistance oscillations induced in GaAs heterostructures by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Herrmann, T.; Dmitriev, I. A.; Kozlov, D. A.; Schneider, M.; Jentzsch, B.; Kvon, Z. D.; Olbrich, P.; Bel'kov, V. V.; Bayer, A.; Schuh, D.; Bougeard, D.; Kuczmik, T.; Oltscher, M.; Weiss, D.; Ganichev, S. D.

    2016-08-01

    We report on the study of terahertz radiation-induced MIRO-like oscillations of magnetoresistivity in GaAs heterostructures. Our experiments provide an answer on two most intriguing questions—effect of radiation helicity and the role of the edges—yielding crucial information for an understanding of the MIRO (microwave-induced resistance oscillations) origin. Moreover, we demonstrate that the range of materials exhibiting radiation-induced magneto-oscillations can be largely extended by using high-frequency radiation.

  3. [Adriamycin, cardiotoxicity--a case report].

    PubMed

    Okuma, K; Ota, K

    1982-05-01

    In 1976, a 61-year-old female was diagnosed as malignant cystosarcoma phyllodes, and she was admitted to the hospital for chemotherapy. She was started receiving the combination chemotherapy consisting of adriamycin. 60 mg/3-week, mitomycin C, 1 mg/week, 5-Fluorouracil, 175 mg/week, and citosine arabinoside, 10 mg/week. The initial ECG revealed incomplete right bundle branch block pattern. After the first 60 mg administration of adriamycin, the ECG showed non-specific ST-T changes in addition to I.R.B.B.B. pattern. At the second 60 mg administration of adriamycin, the ECG returned to normal. After the administration of adriamycin, the ECG showed the same ST-T changes again which were seen at the first adriamycin treatment. The same phenomenon was observed at the third adriamycin treatment. In this case, there was a reproducible coincidence between the administration of adriamycin and the occurrence of non-specific changes on ECG; the fore a possibility of adriamycin cardiotoxicity was strongly suggested. PMID:6307186

  4. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    NASA Astrophysics Data System (ADS)

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-10-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.

  5. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    PubMed Central

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-01-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR. PMID:27698376

  6. Treatment of radiation-induced cystitis with hyperbaric oxygen

    SciTech Connect

    Weiss, J.P.; Boland, F.P.; Mori, H.; Gallagher, M.; Brereton, H.; Preate, D.L.; Neville, E.C.

    1985-08-01

    The effects of hyperbaric oxygen on radiation cystitis have been documented in 3 patients with radiation-induced hemorrhagic cystitis refractory to conventional therapy. Cessation of gross hematuria and reversal of cystoscopic bladder changes were seen in response to a series of hyperbaric oxygen treatments of 2 atmosphere absolute pressure for 2 hours. To our knowledge this is the first report of cystoscopically documented healing of radiation-induced bladder injury.

  7. Radiation-induced nausea and vomiting

    PubMed Central

    Habibi, Mohsen; Namimoghadam, Amir; Korouni, Roghaye; Fashiri, Paria; Borzoueisileh, Sajad; Elahimanesh, Farideh; Amiri, Fatemeh; Moradi, Ghobad

    2016-01-01

    Abstract Despite the improvements in cancer screening and treatment, it still remains as one of the leading causes of mortality worldwide. Nausea and vomiting as the side effects of different cancer treatment modalities, such as radiotherapy, are multifactorial and could affect the treatment continuation and patient quality of life. Therefore, the aim of this study was to assess the possible linkage between ABO blood groups and radiation-induced nausea and vomiting (RINV), also its incidence and affecting factors. One hundred twenty-eight patients referring to Tohid hospital of Sanandaj, Iran, were selected and the patients and treatment-related factors were determined in a cross-sectional study. Patients’ nausea and vomiting were recorded from the onset of treatment until 1 week after treatment accomplishment. Also, previous possible nausea and vomiting were recorded. The frequencies of nausea and vomiting and their peak time were examined during the treatment period. The association between ABO blood group and the incidence of radiotherapy-induced nausea and vomiting (RINV) were significant and it seems that A blood group patients are the most vulnerable individuals to these symptoms. The association between Rhesus antigen and the time of maximum severity of RINV may indicate that Rhesus antigen affects the time of maximum severity of RINV. The incidence of RINV was not affected by karnofsky performance status, but it was related to the severity of RINV. Furthermore, among the factors affecting the incidence of nausea and vomiting, nausea and vomiting during patient's previous chemotherapy, radiotherapy region, and background gastrointestinal disease were shown to be three important factors. In addition to familiar RINV-affecting factors, ABO blood group may play an important role and these results address the needs for further studies with larger sample size. PMID:27495037

  8. Radiation-induced degradation of DNA bases

    NASA Astrophysics Data System (ADS)

    Douki, T.; Delatour, T.; Martini, R.; Cadet, J.

    1999-01-01

    Radio-induced degradation of DNA involves radical processes. A series of lesions among the major bases degradation products has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. Quantification of the modified bases showed that guanine is the preferential target. This can be explained by its lower oxidation potential and charge transfer phenomena. La décomposition radio-induite de l'ADN fait intervenir des processus radicalaires. Une série de lésions choisies parmi les produits majeurs de dégradation des bases a été mesurée dans de l'ADN isolé exposé au rayonnement en solution aqueuse aérée. Les modifications sont alors dues aux radicaux hydroxyles produits par la radiolyse de l'eau (effet indirect) et les quatre bases sont efficacement dégradées. L'arrachement d'électrons aux bases par photosensibilisation pour produire leur radical cation, a été utilisé comme modèle de l'effet direct. La quantification des bases modifiées montre que la guanine est préférentiellement dégradée. Cette observation peut s'expliquer par le plus faible potentiel d'oxydation de cette base ainsi que par les phénomènes de transfert de charge vers les guanines.

  9. Radiation-induced undifferentiated pleomorphic sarcoma after radiation therapy for a desmoid tumour.

    PubMed

    Di Marco, J; Kaci, R; Orcel, P; Nizard, R; Laredo, J-D

    2016-02-01

    Radiation-induced sarcoma is a long-term complication of radiation therapy. The most common secondary neoplasia is the undifferentiated pleomorphic sarcoma, which is usually described in the deep soft tissue of the trunk or extremities. Radiation-induced sarcomas have a poor prognosis. An early diagnosis and management are needed to improve the survival rate of such patients. We presently report a case of a radiation-induced undifferentiated pleomorphic sarcoma of the left gluteus maximus muscle, which developed 25 years after an initial diagnosis of aggressive fibromatosis and 21 years after a tumour recurrence. This case study illustrates the risk of developing a sarcoma in a radiation field and the need for long-term follow-up after radiation therapy. Unnecessary radiation therapy, in particular in the case of benign conditions in young patients, should be avoided.

  10. Identification of a Mitochondrial DNA Polymerase Affecting Cardiotoxicity of Sunitinib Using a Genome-Wide Screening on S. pombe Deletion Library.

    PubMed

    Kim, Dong-Myung; Kim, Hanna; Yeon, Ji-Hyun; Lee, Ju-Hee; Park, Han-Oh

    2016-01-01

    Drug toxicity is a key issue for drug R&D, a fundamental challenge of which is to screen for the targets genome-wide. The anticancer tyrosine kinase inhibitor sunitinib is known to induce cardiotoxicity. Here, to understand the molecular insights of cardiotoxicity by sunitinib at the genome level, we used a genome-wide drug target screening technology (GPScreen) that measures drug-induced haploinsufficiency (DIH) in the fission yeast Schizosaccharomyces pombe genome-wide deletion library and found a mitochondrial DNA polymerase (POG1). In the results, sunitinib induced more severe cytotoxicity and mitochondrial damage in POG1-deleted heterozygous mutants compared to wild type (WT) of S. pombe. Furthermore, knockdown of the human ortholog POLG of S. pombe POG1 in human cells significantly increased the cytotoxicity of sunitinib. Notably, sunitinib dramatically decreased the levels of POLG mRNAs and proteins, of which downregulation was already known to induce mitochondrial damage of cardiomyocytes, causing cardiotoxicity. These results indicate that POLG might play a crucial role in mitochondrial damage as a gene of which expressional pathway is targeted by sunitinib for cardiotoxicity, and that genome-wide drug target screening with GPScreen can be applied to drug toxicity target discovery to understand the molecular insights regarding drug toxicity.

  11. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity.

    PubMed

    Liaudet, Lucas; Calderari, Belinda; Pacher, Pal

    2014-11-01

    Overactivation of the sympatho-adrenergic system is an essential mechanism providing short-term adaptation to the stressful conditions of critical illnesses. In the same way, the administration of exogenous catecholamines is mandatory to support the failing circulation in acutely ill patients. In contrast to these short-term benefits, prolonged adrenergic stress is detrimental to the cardiovascular system by initiating a series of adverse effects triggering significant cardiotoxicity, whose pathophysiological mechanisms are complex and only partially elucidated. In addition to the development of myocardial oxygen supply/demand imbalance induced by the sustained activation of adrenergic receptors, catecholamines can damage cardiomyocytes by fostering mitochondrial dysfunction, via two main mechanisms. The first one is calcium overload, consecutive to β-adrenergic receptor-mediated activation of protein kinase A and subsequent phosphorylation of multiple Ca(2+)-cycling proteins. The second one is oxidative stress, primarily related to the transformation of catecholamines into "aminochromes," which undergo redox cycling in mitochondria to generate copious amounts of oxygen-derived free radicals. In turn, calcium overload and oxidative stress promote mitochondrial permeability transition and cardiomyocyte cell death, both via the apoptotic and necrotic pathways. Comparable mechanisms of myocardial toxicity, including marked oxidative stress and mitochondrial dysfunction, have been reported with the use of cocaine, a common recreational drug with potent sympathomimetic activity. The aim of the current review is to present in detail the pathophysiological processes underlying the development of catecholamine and cocaine-induced cardiomyopathy, as such conditions may be frequently encountered in the clinical practice of cardiologists and ICU specialists. PMID:24398587

  12. DNA fragmentation induced by ionizing radiation - Atomic Force Microscopy study .

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, E.; Psonka, K.; Elsaesser, Th.; Brons, S.; Taucher-Scholz, G.

    DNA as a carrier of genetic information is considered to be the critical target for radiation induced damage Especially severe are DNA double-strand breaks DSBs formed when breaks occur in both strands of the molecule The DSBs production is determined by the spatial distribution of ionization events dependent on the physical properties of the energy deposition and the chemical environment of the DNA According to theoretical predictions high LET charged particle radiation induces lesions in close proximity forming so called clustered damage in the DNA Atomic Force Microscopy AFM was newly established as a technique allowing the direct visualization of DNA fragments resulting from DSBs induced in small DNA molecules plasmids by ionizing radiation We have used AFM to visualize the DNA fragmentation induced by heavy ions high LET radiation and to compare it to the fragmentation pattern obtained after X-rays low LET radiation Plasmid supercoiled DNA was irradiated in vitro with X-rays and 3 9 MeV u Ni ions within a dose range 0 -- 3000 Gy Afterwards the samples were analyzed using AFM which allowed the detection and length measurement of individual fragments with a nanometer resolution Recording of the length of the induced fragments allowed to distinguish between molecules broken by a single DSB or by multiple DSBs The fragment length distributions were derived for different doses and different radiation qualities The first results of the measurement of radiation-induced DNA fragmentation show an influence of radiation quality on

  13. Radiation induced cancer: risk assessment and prevention

    SciTech Connect

    Shore, R.E.

    1984-01-01

    A number of factors have to be considered in defining the cancer risk from ionizing radiation. These include the radiation sensitivity of the target tissue(s), the temporal pattern of risk, the shape of the dose-incidence curve, the effects of low dose rates, host susceptibility factors, and synergism with other environmental exposures. For the population as a whole the largest sources of radiation exposure are natural background radiation and medical/dental radiation. Radiation exposures in the medical field make up the largest volume of occupational exposures as well. Although new technologies offer opportunities to lower exposures, worker training, careful exposure monitoring with remedial feedback, and monitoring to prevent unnecessary radiodiagnostic procedures may be even more important means of reducing radiation exposure. Screening of irradiated populations can serve a useful preventive function, but only for those who have received very high doses.

  14. Nilotinib reverses ABCB1/P-glycoprotein-mediated multidrug resistance but increases cardiotoxicity of doxorubicin in a MDR xenograft model.

    PubMed

    Zhou, Zhi-Yong; Wan, Li-Li; Yang, Quan-Jun; Han, Yong-Long; Li, Dan; Lu, Jin; Guo, Cheng

    2016-09-30

    The BCR-Abl tyrosine kinase inhibitor (TKI), nilotinib, was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia-positive chronic myelogenous leukemia. Recent studies have shown that nilotinib induces potent sensitization to anticancer agents by blocking the functions of ABCB1/P-glycoprotein (P-gp) in multidrug resistance (MDR). However, changes in P-gp expression or function affect the cardiac disposition and prolong the presence of both doxorubicin (DOX) and doxorubicinol (DOXol) in cardiac tissue, thus, enhancing the risk of cardiotoxicity. In this study, we used a MDR xenograft model to evaluate the antitumor activity, tissue distribution and cardiotoxicity of DOX when co-administered with nilotinib. This information will provide more insight into the pharmacological role of nilotinib in MDR reversal and the risk of DOX cardiotoxicity. Our results showed that nilotinib significantly enhanced DOX cytotoxicity and increased intracellular rhodamine 123 accumulation in MG63/DOX cells in vitro and strongly enhanced DOX inhibition of growth of P-gp-overexpressing MG63/DOX cell xenografts in nude mice. Additionally, nilotinib significantly increased DOX and DOXol accumulation in serum, heart, liver and tumor tissues. Importantly, nilotinib induced a disproportionate increase in DOXol in cardiac tissue. In the co-administration group, CBR1 and AKR1A1 protein levels were significantly increased in cardiac tissue, with more severe necrosis and vacuole formation. These results indicate that nilotinib reverses P-gp- mediated MDR by blocking the efflux function and potentiates DOX-induced cardiotoxicity. These findings represent a guide for the design of future clinical trials and studies of pharmacokinetic interactions and may be useful in guiding the use of nilotinib in combination therapy of cancer in clinical practice.

  15. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  16. Radiation-induced reactions in polymer films

    NASA Astrophysics Data System (ADS)

    Biscoglio, Michael Benedict

    Since the 1950's, there has been a considerable interest in the effects of ionizing radiation on the physical properties of polymer systems. Radiation induced chemical changes that were found to be helpful in producing specialty polymers, but also potentially harmful by degrading the physical performance of the material. Therefore, solute molecules, which act as excited state quenchers, and free radical scavengers, have been incorporated into the polymers in order to regulate the crosslinking, scission and desaturation reactions. This work is focused on using spectroscopic techniques to characterize the physical properties of polymeric media and the reactions occurring within them following pulsed radiolysis. This is done primarily by using arene doped polymer films which have highly absorbing excited states and radical ions that are easily monitored by transient studies. The probes are used to characterize the polymeric microenvironment, to monitor reaction rates, and to interfere in the radical reactions. Photophysical and photochemical characterization of partially crystalline polyethylene complements data previously obtained by conventional physical techniques for polymer characterization. Probe molecules are excluded from crystalline zones and distributed in a networked structure of amorphous zones. Upon high energy radiolysis, it is found that polyolefin systems efficiently donate all radical ions and excited states to the solute molecules, even when the energy is absorbed within the polymer crystalline zones. Studies of the subsequent reactions of the solute excited states and radical ions reveal information about their long term effectiveness as protectants. It is found that highly excited states formed by the recombination of solute radical ions are energetic enough to cause dissociation of halo-arenes. Also, arenes are found to become attached to the polymer chain through a polymer-aryl radical intermediate. These intermediates have been isolated and

  17. Coherent Cherenkov radiation from cosmic-ray-induced air showers.

    PubMed

    de Vries, K D; van den Berg, A M; Scholten, O; Werner, K

    2011-08-01

    Very energetic cosmic rays entering the atmosphere of Earth will create a plasma cloud moving with almost the speed of light. The magnetic field of Earth induces an electric current in this cloud which is responsible for the emission of coherent electromagnetic radiation. We propose to search for a new effect: Because of the index of refraction of air, this radiation is collimated in a Cherenkov cone. To express the difference from usual Cherenkov radiation, i.e., the emission from a fast-moving electric charge, we call this magnetically induced Cherenkov radiation. We indicate its signature and possible experimental verification.

  18. Radiation-induced segregation in candidate fusion-reactor alloys

    SciTech Connect

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1981-07-01

    The effect of radiation on surface segregation of minor and impurity elements has been studied in four candidate fusion reactor alloys. Radiation induced surface segregation of phosphorus was found in both 316 type stainless steel and in Nimonic PE-16. Segregation and depletion of the other alloying elements in 316 stainless steel agreed with that reported by other investigators. Segregation of nitrogen in ferritic HT-9 was enhanced by radiation but no phosphorus segregation was detected. No significant radiation enhanced or induced segregation was observed in a Ti-6Al-4V alloy. The results indicate that radiaton enhanced grain boundary segregation could contribute to the embrittlement of 316 SS and PE-16.

  19. Evaluation of bupropion hydrochloride developmental cardiotoxic effects in chick cardiomyocyte micromass culture and stem cell derived cardiomyocyte systems.

    PubMed

    Shaikh Qureshi, W M; Latif, Muhammad Liaque; Parker, Terry L; Pratten, Margaret K

    2014-10-01

    The use of antidepressant drug bupropion hydrochloride (BPN) during pregnancy results in increased cardiovascular anomalies. In this study, BPN developmental cardiotoxic effects in in vitro system were evaluated using chick cardiomyocyte micromass (MM) culture system and mouse embryonic stem cell derived cardiomyocyte (ESDC) system. In MM system, the cardiomyocyte contractile activity significantly decreased only at BPN 200 μM, while in ESDC system BPN concentration above 75 μM resulted in decreased contractile activity. The increase in drug concentration also affected the cardiomyocyte viability and total cellular protein content in both systems, but in ESDC system the cell viability failed to attain significant difference. The drug failed to induce reactive oxygen species production in both systems, but has affected the cardiac connexin43 expression especially in MM system. We observed that BPN showed developmental cardiotoxic effects irrespective of the stage of cardiac development in both in vitro systems.

  20. Study of the Cardiotoxicity of Venenum Bufonis in Rats using an 1H NMR-Based Metabolomics Approach

    PubMed Central

    Wang, Junsong; Guo, Pingping; Li, Minghui; Yang, Minghua; Kong, Lingyi

    2015-01-01

    Venenum Bufonis, a well-known traditional Chinese medicine, has been widely used in Asia and has gained popularity in Western countries over the last decade. Venenum Bufonis has obvious side effects that have been observed in clinical settings, but few studies have reported on its cardiotoxicity. In this work, the cardiotoxicity of Venenum Bufonis was investigated using a 11H NMR-based metabolomics approach. The 1H NMR profiles of the serum, myocardial extracts and liver extracts of specific-pathogen-free rats showed that Venenum Bufonis produced significant metabolic perturbations dose-dependently with a distinct time effect, peaking at 2 hr after dosing and attenuating gradually. Clinical chemistry, electrocardiographic recordings, and histopathological evaluation provided additional evidence of Venenum Bufonis-induced cardiac damage that complemented and supported the metabolomics findings. The combined results demonstrated that oxidative stress, mitochondrial dysfunction, and energy metabolism perturbations were associated with the cardiac damage that results from Venenum Bufonis. PMID:25781638

  1. Selenomethionine protects against adverse biological effects induced by space radiation.

    PubMed

    Kennedy, Ann R; Ware, Jeffrey H; Guan, Jun; Donahue, Jeremiah J; Biaglow, John E; Zhou, Zhaozong; Stewart, Jelena; Vazquez, Marcelo; Wan, X Steven

    2004-01-15

    Ionizing radiation-induced adverse biological effects impose serious challenges to astronauts during extended space travel. Of particular concern is the radiation from highly energetic, heavy, charged particles known as HZE particles. The objective of the present study was to characterize HZE particle radiation-induced adverse biological effects and evaluate the effect of D-selenomethionine (SeM) on the HZE particle radiation-induced adverse biological effects. The results showed that HZE particle radiation can increase oxidative stress, cytotoxicity, and cell transformation in vitro, and decrease the total antioxidant status in irradiated Sprague-Dawley rats. These adverse biological effects were all preventable by treatment with SeM, suggesting that SeM is potentially useful as a countermeasure against space radiation-induced adverse effects. Treatment with SeM was shown to enhance ATR and CHK2 gene expression in cultured human thyroid epithelial cells. As ionizing radiation is known to result in DNA damage and both ATR and CHK2 gene products are involved in DNA damage, it is possible that SeM may prevent HZE particle radiation-induced adverse biological effects by enhancing the DNA repair machinery in irradiated cells.

  2. Selenomethionine protects against adverse biological effects induced by space radiation.

    PubMed

    Kennedy, Ann R; Ware, Jeffrey H; Guan, Jun; Donahue, Jeremiah J; Biaglow, John E; Zhou, Zhaozong; Stewart, Jelena; Vazquez, Marcelo; Wan, X Steven

    2004-01-15

    Ionizing radiation-induced adverse biological effects impose serious challenges to astronauts during extended space travel. Of particular concern is the radiation from highly energetic, heavy, charged particles known as HZE particles. The objective of the present study was to characterize HZE particle radiation-induced adverse biological effects and evaluate the effect of D-selenomethionine (SeM) on the HZE particle radiation-induced adverse biological effects. The results showed that HZE particle radiation can increase oxidative stress, cytotoxicity, and cell transformation in vitro, and decrease the total antioxidant status in irradiated Sprague-Dawley rats. These adverse biological effects were all preventable by treatment with SeM, suggesting that SeM is potentially useful as a countermeasure against space radiation-induced adverse effects. Treatment with SeM was shown to enhance ATR and CHK2 gene expression in cultured human thyroid epithelial cells. As ionizing radiation is known to result in DNA damage and both ATR and CHK2 gene products are involved in DNA damage, it is possible that SeM may prevent HZE particle radiation-induced adverse biological effects by enhancing the DNA repair machinery in irradiated cells. PMID:14744637

  3. Mono-Substituted Isopropylated Triaryl Phosphate, a Major Component of Firemaster 550, is an AHR Agonist that Exhibits AHR-Independent Cardiotoxicity in Zebrafish

    PubMed Central

    Gerlach, Cory V.; Das, Siba R.; Volz, David C.; Bisson, William H.; Kolluri, Siva K.; Tanguay, Robert L.

    2014-01-01

    Firemaster 550 (FM550) is an additive flame retardant mixture used within polyurethane foam and is increasingly found in house dust and the environment due to leaching. Despite the widespread use of FM550, very few studies have investigated the potential toxicity of its ingredients during early vertebrate development. In the current study, we sought to specifically investigate mono-substituted isopropylated triaryl phosphate (mITP), a component comprising approximately 32% of FM550, which has been shown to cause cardiotoxicity during zebrafish embryogenesis. Previous research showed that developmental defects are rescued using an aryl hydrocarbon receptor (AHR) antagonist (CH223191), suggesting that mITP-induced toxicity was AHR-dependent. As zebrafish have three known AHR isoforms, we used a functional AHR2 knockout line along with AHR1A-and AHR1B-specific morpholinos to determine which AHR isoform, if any, mediates mITP-induced cardiotoxicity. As in silico structural homology modeling predicted that mITP may bind favorably to both AHR2 and AHR1B isoforms, we evaluated AHR involvement in vivo by measuring CYP1A mRNA and protein expression following exposure to mITP in the presence or absence of CH223191 or AHR-specific morpholinos. Based on these studies, we found that mITP interacts with both AHR2 and AHR1B isoforms to induce CYP1A expression. However, while CH223191 blocked mITP-induced CYP1A induction and cardiotoxicity, knockdown of all three AHR isoforms failed to block mITP-induced cardiotoxicity in the absence of detectable CYP1A induction. Overall, these results suggest that, while mITP is an AHR agonist, mITP causes AHR-independent cardiotoxicity through a pathway that is also antagonized by CH223191. PMID:24865613

  4. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism

    SciTech Connect

    Hernandez-Esquivel, Luz; Marin-Hernandez, Alvaro; Pavon, Natalia; Carvajal, Karla; Moreno-Sanchez, Rafael . E-mail: rafael.moreno@cardiologia.org.mx

    2006-04-01

    Isolated rat hearts were perfused with glucose, octanoate or glucose + octanoate and different concentrations of the copper-based antineoplastic drugs casiopeina II-gly (CSII) or casiopeina III-i-a (CSIII). In isolated perfused hearts with glucose + octanoate, both casiopeinas induced diminution in cardiac work and O{sub 2} consumption with half-maximal inhibitory concentrations (IC{sub 5}) of 4 (CSII) and 4.6 (CSIII) {mu}M, after 1 h of perfusion. Strong inhibition of the pyruvate and 2-oxoglutarate dehydrogenases as well as total creatine kinase by casiopeinas suggested that ATP generation by oxidative phosphorylation and its transfer towards myofibrils were targets for these drugs. In consequence, the cellular contents of ATP and phosphocreatine were also lowered by casiopeinas. Remarkably, casiopeinas were less toxic than adriamycin (IC{sub 5} = 2.6 {mu}M), a well-known potent cardiotoxic and antineoplastic drug, which has a wide clinical use. In an open-chest animal, which is a more physiological model than the isolated heart, femoral administration of 1 {mu}M drug revealed that CSII was innocuous very likely due to strong binding to serum albumin, whereas adriamycin induced again a potent cardiotoxic effect (diminution in heart rate and severe depression of systolic blood pressure). Thus, it seems that casiopeinas are a group of new antineoplastic drugs with milder secondary toxic effects than proven drugs such as adriamycin.

  5. The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics.

    PubMed

    Scott, Jessica M; Lakoski, Susan; Mackey, John R; Douglas, Pamela S; Haykowsky, Mark J; Jones, Lee W

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies.

  6. Ionizing Radiation Induces HMGB1 Cytoplasmic Translocation and Extracellular Release

    PubMed Central

    Wang, Lili; He, Li; Bao, Guoqiang; He, Xin; Fan, Saijun; Wang, Haichao

    2016-01-01

    Objective A nucleosomal protein, HMGB1, can be secreted by activated immune cells or passively released by dying cells, thereby amplifying rigorous inflammatory responses. In this study we aimed to test the possibility that ionizing radiation similarly induces cytoplasmic HMGB1 translocation and extracellular release. Method Human skin fibroblast (GM0639) and bronchial epithelial (16HBE) cells and animals (rats) were exposed to X-ray radiation, and HMGB1 translocation and release were assessed by immunocytochemistry and immunoassay, respectively. Results At a wide dose range (4.0 – 12.0 Gy), X-ray radiation induced a dramatic cytoplasmic HMGB1 translocation, and triggered a time- and dose-dependent HMGB1 release both in vitro and in vivo. The radiation-mediated HMGB1 release was associated with noticeable chromosomal DNA damage and loss of cell viability. Conclusion radiation induces HMGB1 cytoplasmic translocation and extracellular release through active secretion and passive leakage processes. PMID:27331198

  7. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  8. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  9. Investigation of the interaction of cardiotoxic anticancer agents using the fetal mouse heart organ culture system

    SciTech Connect

    Kimler, B.F.; Rethorst, R.D.; Cox, G.G.

    1986-01-01

    The fetal mouse heart organ culture system was utilized in an effort to document and predict the potential cardiotoxic effects of ionizing radiation, Adriamycin (ADR), and Dihydroxyanthraquinone (DHAQ); alone and in combination. These antineoplastic agents have been shown to produce clinical cardiomyopathy which is often dose-limiting. Fetal mouse hearts (gestational day 17) were removed and placed in a culture system of 6-well microtiter plates. A single heart was placed in each well on a piece of aluminium mesh, above the culture medium but bathed by capillary action. The plates were then placed in a 100% oxygen environment and incubated at 37/sup 0/C. Treatments performed on day 1 after culture were Cs-137 irradiation (10, 20, or 40 Gy); ADR (10, 30, or 100 micrograms/ml); DHAQ (5, 20, or 50 micrograms/ml); or various combinations of drugs and radiation. Hearts were checked every day for functional activity as evidenced by continuous heart best. Untreated hearts beat rhythmically for up to 9 days (average = 6.8 days); treated hearts stopped beating between 2 and 7 days after treatment. Using this endpoint of functional retention time (FRT), dose response curves were obtained for all individual agents. Combinations of ADR and DHAQ (at concentrations that resulted in FRTs of 3.5 days) produced no greater effect than either agent alone. However, the combination of radiation (FRT = 5.3 days) with ADR, DHAQ or both drugs was more effective than was drug alone. This system may help to predict the cardiotoxic effects that result from the use of these drugs and radiation.

  10. Induced Compton-scattering effects in radiation-transport approximations

    SciTech Connect

    Gibson, D.R. Jr.

    1982-02-01

    The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions.

  11. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors. PMID:27209188

  12. Radiation-induced apoptosis in the eye structures: a review

    NASA Astrophysics Data System (ADS)

    Belkacémi, Yazid; Huchet, Aymeri; Baudouin, Christophe; Lartigau, Éric

    2005-02-01

    Apoptosis plays a crucial role in tissue homeostasis and in the removal of damaged cells from tissues. Both increased and insufficient cell death can lead to human diseases. Apoptotic process is under the control of physiological metabolism as well as a panel of genes. After exposure to radiation, membrane damages induce the membrane pathway signal transduction for cell apoptosis. The importance of the radiation-induced apoptosis in the different ocular tissues and its relationship to the radiation parameters are reviewed in this article. This topic of ocular research has not been addressed in detail in the literature.

  13. Hyperbaric oxygen: Primary treatment of radiation-induced hemorrhagic cystitis

    SciTech Connect

    Weiss, J.P.; Neville, E.C.

    1989-07-01

    Of 8 patients with symptoms of advanced cystitis due to pelvic radiation treated with hyperbaric oxygen 7 are persistently improved during followup. All 6 patients treated for gross hematuria requiring hospitalization have been free of symptoms for an average of 24 months (range 6 to 43 months). One patient treated for stress incontinence currently is dry despite little change in bladder capacity, implying salutary effect from hyperbaric oxygen on the sphincter mechanism. One patient with radiation-induced prostatitis failed to respond. This experience suggests that hyperbaric oxygen should be considered the primary treatment for patients with symptomatic radiation-induced hemorrhagic cystitis.

  14. QT dispersion and prognostication of the outcome in acute cardiotoxicities: A comparison with SAPS II and APACHE II scoring systems.

    PubMed

    Hassanian-Moghaddam, Hossein; Amiri, Hassan; Zamani, Nasim; Rahimi, Mitra; Shadnia, Shahin; Taherkhani, Maryam

    2014-06-01

    We aimed to evaluate the efficacy of QT dispersion (QTD) in determining the outcome of the patients poisoned by cardiotoxic medications and toxins. Patients who referred to our emergency department (ED) due to acute toxicity with any cardiotoxic medication or toxin and were admitted to medical toxicology intensive care unit (MTICU) were enrolled into the study. A questionnaire containing the demographic characteristics, vital signs, laboratory tests, electrocardiographic (ECG) parameters of the first ECG taken on MTICU or ED admission, simplified acute physiology score (SAPS), and acute physiology and chronic health evaluation (APACHE) score was filled for every single patient. QTD was manually calculated. The patients were divided into two groups of survivors and non-survivors and compared. Although QTD was not significantly different between the survivors and non-survivors (P = 0.8), SAPS II and APACHE II score were so. SAPS and APACHE had the highest sensitivity and specificity in determining the patients' mortality, respectively. SAPS had the highest sensitivity, and QTD had the highest specificity in predicting the later development of the complications. SAPS II and APACHE II scoring systems are the best systems for prognostication of death in patients with acute cardiotoxic medication-induced poisonings. QTD can be successfully used for the prediction of complications.

  15. Bridging Functional and Structural Cardiotoxicity Assays Using Human Embryonic Stem Cell-Derived Cardiomyocytes for a More Comprehensive Risk Assessment.

    PubMed

    Clements, Mike; Millar, Val; Williams, Angela S; Kalinka, Sian

    2015-11-01

    More relevant and reliable preclinical cardiotoxicity tests are required to improve drug safety and reduce the cost of drug development. Current in vitro testing strategies predominantly take the form of functional assays to predict the potential for drug-induced ECG abnormalities in vivo. Cardiotoxicity can also be structural in nature, so a full and efficient assessment of cardiac liabilities for new chemical entities should account for both these phenomena. As well as providing a more appropriate nonclinical model for in vitro cardiotoxicity testing, human stem cell-derived cardiomyocytes offer an integrated system to study drug impact on cardiomyocyte structure as well as function. Employing human embryonic stem cell-derived cardiacmyocytes (hESC-CMs) on 3 assay platforms with complementary insights into cardiac biology (multielectrode array assay, electrophysiology; impedance assay, cell movement/beating; and high content analysis assay, subcellular structure) we profiled a panel of 13 drugs with well characterized cardiac liabilities (Amiodarone, Aspirin, Astemizole, Axitinib, AZT, Bepridil, Doxorubicin, E-4031, Mexiletine, Rosiglitazone, Sunitinib, Sibutramine, and Verapamil). Our data show good correlations with previous studies and reported clinical observations. Using multiparameter phenotypic profiling techniques we demonstrate the dynamic relationship that exists between functional and structural toxicity, and the benefits of this more holistic approach to risk assessment. We conclude by showing for the first time how the advent of transparent MEA plate technology enables functional and structural cardiotoxic responses to be recorded from the same cell population. This approach more directly links changes in morphology of the hESC-CMs with recorded electrophysiology signatures, offering even greater insight into the wide range of potential drug impacts on cardiac physiology, with a throughput that is more amenable to early drug discovery. PMID:26259608

  16. Pathology and biology of radiation-induced cardiac disease

    PubMed Central

    Tapio, Soile

    2016-01-01

    Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation. PMID:27422929

  17. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  18. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance.

    PubMed

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  19. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    PubMed

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  20. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  1. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge.

    PubMed

    Devera, T Scott; Prusator, Dawn K; Joshi, Sunil K; Ballard, Jimmy D; Lang, Mark L

    2015-06-25

    Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC) to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI), and hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST), it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  2. Chrysin attenuates cardiomyocyte apoptosis and loss of intermediate filaments in a mouse model of mitoxantrone cardiotoxicity.

    PubMed

    Anghel, N; Cotoraci, C; Ivan, A; Suciu, M; Herman, H; Balta, C; Nicolescu, L; Olariu, T; Galajda, Z; Ardelean, A; Hermenean, A

    2015-12-01

    Chrysin (CHR) is a natural flavonoid and is present in high concentration in honey, propolis and many plant extracts. The aim of the present study was to evaluate the effects of CHR to reduce cardiomyocyte apoptosis and loss of intermediate filaments in a mouse model of mitoxantrone cardiotoxicity. Morphology of the cardiomyocytes was determined by optic and transmission electron microscopy and biochemistry methods. The expression of Bcl-2, Bax and Caspase-3 were assessed by immunofluorecence. Tunel assay was used to assess apoptosis in cardiomyocytes. In addition, the distribution of desmin protein was evaluated using immunohistochemistry. Our results show that MTX treatment significantly increased serum levels of creatine kinase isoenzyme (CK-MB), indicator of cardiac injury and withdrawn under CHR protection. Expression levels of Bcl-2 decreased, while those of Bax and caspase-3 increased following MTX treatment. 50 mg/kg of daily CHR intake reduced Bax and caspase-3 immunopositivity and restored Bcl-2 levels to a value comparable to the control. TUNEL (+) cardiomyocyte nuclei of MTX group showed typical signs of apoptosis which almost completely disappeared in response to 50 mg/kg CHR treatment. In parallel, an irregular distribution and a weak expression of desmin is associated with MTX induced cardiotoxic effects which was also restored by CHR treatment. In conclusion chrysin inhibits MTX-triggered cardiomyocyte apoptosis via multiple pathways, including decrease of the Bax/Bcl-2 ratio and caspase-3 expression along with preservation of the desmin disarray.

  3. [Symptoms and treatment of radiation-induced reactions].

    PubMed

    Brzozowska, Anna; Idziak, Magdalena; Burdan, Franciszek; Mazurkiewicz, Maria

    2015-05-01

    Radiotherapy is one of the main methods of cancer treatment alone or in combination with chemotherapy. It is applied in about 60% of oncological patients. However, in spite of its clinical usefulness, radiotherapy is associated with a high risk of radiation-induced side effects, including dermatitis, enteritis, cystitis, pericarditis, pneumonia or depression, sexual function disorders, cardiomiopathy, coronary heart disease, anomalies of heart valves and development of second malignant tumor. The early diagnosis and proper treatment of radiation-induced side effects have a major impact on patients` quality of life and future prognosis. Radiation reactions can be categorized as acute or late, occurring before and after six months after radiotherapy. Among the most common acute reactions there were observed: skin rash, mucositis, nausea, vomiting, fever and radiation pneumonitis. Within reference to the late complications, we distinguish for instance fibrosis of organs, a radiation necrosis of bone, ulcers, fistulas, sexual dysfunction and the development of second malignant carcinomas. PMID:26039025

  4. Thermodynamic processes induced by coherent radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.

    1977-01-01

    It is shown by quantum statistics that under certain stated conditions the entropy of coherent radiation is zero and it is still negligible for multimode laser operation. This makes possible gas kinetic processes which, to a small extent, have already been observed or even utilized, but which can be greatly enhanced by an optimized choice of molecular structures and radiation conditions. Radiative cooling of gases is discussed in detail. The conditions for maximum heat withdrawal are derived, and it is proposed that the processes of cooling and relaxation heating can be sufficiently separated in time to achieve certain effects and thermodynamic cycles. One of these is the complete conversion, possible in principle, of coherent radiation into work. This concept is based on a heat pump process followed by heat-to-work conversion, the heat rejected being just equal to that withdrawn by radiation. The conditions for complete conversion turn out to be the same as for maximum heat withdrawal. The feasibility of these processes depends on the degree to which practical conditions can be met, and on the validity of certain assumptions which have to await experimental verification.

  5. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  6. Radiation-induced salivary gland tumors: report of a case.

    PubMed

    Smith, S A

    1976-09-01

    I discuss radiation-induced salivary gland tumors, with special emphasis on those tumors thought to be secondary to childhood head and neck irradiation for benign diseases. I report such a case and review the literature. Statistically, 77.6% of irradiation-induced tumors occur in the parotid gland and 22.4% in the submaxillary and minor salivary glands. A greater proportion of malignant tumors are noted in the submaxillary and minor salivary glands. At present, there is no demonstrable relationship between tumor occurrence and the amount of radiation recieved. Young children are more susceptible to irradiation-induced salivary tumors than older individuals.

  7. A model of radiation-induced myelopoiesis in space.

    PubMed

    Esposito, R D; Durante, M; Gialanella, G; Grossi, G; Pugliese, M; Scampoli, P; Jones, T D

    2001-01-01

    Astronauts' radiation exposure limits are based on experimental and epidemiological data obtained on Earth. It is assumed that radiation sensitivity remains the same in the extraterrestrial space. However, human radiosensitivity is dependent upon the response of the hematopoietic tissue to the radiation insult. It is well known that the immune system is affected by microgravity. We have developed a mathematical model of radiation-induced myelopoiesis which includes the effect of microgravity on bone marrow kinetics. It is assumed that cellular radiosensitivity is not modified by the space environment, but repopulation rates of stem and stromal cells are reduced as a function of time in weightlessness. A realistic model of the space radiation environment, including the HZE component, is used to simulate the radiation damage. A dedicated computer code was written and applied to solar particle events and to the mission to Mars. The results suggest that altered myelopoiesis and lymphopoiesis in microgravity might increase human radiosensitivity in space. PMID:11771552

  8. Hyperprolactinemia from radiation-induced hypothalamic hypopituitarism

    SciTech Connect

    Corkill, G.; Hanson, F.W.; Gold, E.M.; White, V.A.

    1980-01-01

    In 1975 Samaan et al., described the effects of radiation damage of the hypothalamus in 15 patients with head and neck cancer. Shalet et al., in 1977 described endocrine morbidity in adults who as children had been irradiated for brain tumors. This report describes instances of hyperprolactinemia and associated hypothalamic, pituitary, and thyroid dysfunction following irradiation of a young adult female for brain neoplasia.

  9. RADIATION INDUCED VULCANIZATION OF RUBBER LATEX

    DOEpatents

    Mesrobian, R.B.; Ballantine, D.S.; Metz, D.J.

    1964-04-28

    A method of vulcanizing rubber latex by exposing a mixture containing rubber latex and from about 15 to about 21.3 wt% of 2,5-dichlorostyrene to about 1.1 megarads of gamma radiation while maintaining the temperature of the mixture at a temperature ranging between from about 56 to about 59 deg C is described. (AEC)

  10. ["Stress proteins" as a cellular endpoint to detect cardiotoxicity in vitro

    PubMed

    Löw-Friedrich, Iris; Schoeppe, Wilhelm

    1991-01-01

    Toxic chemical or physical influences induce the de novo formation of protective "stress proteins" in cells. The detection of de novo synthetized "stress proteins" in cultured cardiac myocytes is used as an in vitro assay for the toxicity of pharmaceutics and chemical compounds. First, typical agents inducing "stress protein" formation ("heat shock", H2O2, CdCl2) were examined producing the expected responses in cultured heart cells. Allylamine, a toxin causing myocardial fibrosis in vivo, induces the synthesis of the same "stress protein". We tested pharmaceutics relevant in transplant medicine: Methyl-prednisolone, azathioprine, and cyclosporine A evoke the de novo synthesis of a 30 kDa "stress protein" in a concentration dependent manner. Cardiotoxicity is the main obstacle for the therapeutic use of high dosage anthracycline chemotherapeutics. Doxorubicin and daunomycin inhibit protein synthesis almost completely. The reduction of global protein formation induced by the anthracyclines also inhibits "stress protein" synthesis. Exposition of the cultured cardiac myocytes first to the anthracyclines and afterwards to another toxin (CdCl2) causes a significant inhibition of "stress" protein formation indicating that the cells are less resistant to the second damaging influence. Cardioprotective effects can also be documented by measurement of "stress protein" synthesis. The calcium channel blocking drugs diltiazem, verapemil and nifedipine stimulate the de novo formation of the 30 kDa "stress protein". After a pre-incubation of the cardiac myocytes with the calcium antagonists, the synthesis of "stress proteins" evoked by a toxin (CdCl2) is significantly reduced while total protein synthesis remains unaffected. In conclusion: 1. cardiac myocytes respond to typical inductors of "stress protein" formation and to toxin exposition with the de novo synthesis of these proteins. 2. The "stress protein" formation is concentration dependent. 3. The anthracycline

  11. Characterization of radiation-induced emesis in the ferret

    SciTech Connect

    King, G.L.

    1988-01-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral cobalt 60 gamma radiation at 100 cGy min at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED 50 was calculated as 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously or subcutaneously with 30 to 300 micrograms /kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n=4) or 401 (n=4) cGy radiation and their emetic responses were compared with NaCi-injected-irradiated controls (n=8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.

  12. Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment.

    PubMed

    Lenneman, Carrie G; Sawyer, Douglas B

    2016-03-18

    Through the success of basic and disease-specific research, cancer survivors are one of the largest growing subsets of individuals accessing the healthcare system. Interestingly, cardiovascular disease is the second leading cause of morbidity and mortality in cancer survivors after recurrent malignancy. This recognition has helped stimulate a collaboration between oncology and cardiology practitioners and researchers, and the portmanteau cardio-oncology (also known as onco-cardiology) can now be found in many medical centers. This collaboration promises new insights into how cancer therapies impact cardiovascular homeostasis and long-term effects on cancer survivors. In this review, we will discuss the most recent views on the cardiotoxicity related to various classes of chemotherapy agents and radiation. We will also discuss broadly the current strategies for treating and preventing cardiovascular effects of cancer therapy.

  13. Radiation recall dermatitis induced by trastuzumab.

    PubMed

    Moon, Dochang; Koo, Ja Seung; Suh, Chang-Ok; Yoon, Chang Yun; Bae, Jaehyun; Lee, Soohyeon

    2016-01-01

    We report a case of radiation recall dermatitis caused by trastuzumab. A 55-year-old woman with metastatic breast cancer received palliative first-line trastuzumab/paclitaxel and a salvage partial mastectomy with lymph node dissection was subsequently performed. In spite of the palliative setting, the pathology report indicated that no residual carcinoma was present, and then she underwent locoregional radiotherapy to ensure a definitive response. After radiotherapy, she has maintained trastuzumab monotherapy. Nine days after the fifth cycle of trastuzumab monotherapy, dermatitis in previously irradiated skin developed, with fever. Radiation recall dermatitis triggered by trastuzumab is extremely rare. A high fever developed abruptly with a skin rash. This may be the first case of this sort to be reported.

  14. Mitigation of radiation induced surface contamination

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  15. DECOHERENCE EFFECTS OF MOTION-INDUCED RADIATION

    SciTech Connect

    P. NETO; D. DALVIT

    2000-12-01

    The radiation pressure coupling with vacuum fluctuations gives rise to energy damping and decoherence of an oscillating particle. Both effects result from the emission of pairs of photons, a quantum effect related to the fluctuations of the Casimir force. We discuss different alternative methods for the computation of the decoherence time scale. We take the example of a spherical perfectly-reflecting particle, and consider the zero and high temperature limits. We also present short general reviews on decoherence and dynamical Casimir effect.

  16. Chemotherapy or radiation-induced oral mucositis.

    PubMed

    Lalla, Rajesh V; Saunders, Deborah P; Peterson, Douglas E

    2014-04-01

    Oral mucositis is a significant toxicity of systemic chemotherapy and of radiation therapy to the head and neck region. The morbidity of oral mucositis can include pain, nutritional compromise, impact on quality of life, alteration in cancer therapy, risk for infection, and economic costs. Management includes general symptomatic support and targeted therapeutic interventions for the prevention or treatment of oral mucositis. Evidence-based clinical practice guidelines are available to guide clinicians in the selection of effective management strategies.

  17. Radiation induced heart disease in hypertensive rats

    SciTech Connect

    Lauk, S.; Trott, K.R.

    1988-01-01

    Spontaneously hypertensive Wistar rats were given single doses of X rays to their heart. Irradiation decreased the blood pressure before any myocardial radiation damage was apparent. Male rats, which were more hypertensive than female rats, had a shorter survival time after local heart irradiation than female rats. Antihypertensive treatment with hydralazine did not increase the survival time. It is considered that myocardial hypertrophy is the cause of the increased susceptibility of spontaneously hypertensive rats to local heart irradiation.

  18. Radiation-induced Cochlea hair cell death: mechanisms and protection.

    PubMed

    Tan, Pei-Xin; Du, Sha-Sha; Ren, Chen; Yao, Qi-Wei; Yuan, Ya-Wei

    2013-01-01

    Cochlea hair cell death is regarded to be responsible for the radiation-induced sensorineural hearing loss (SNHL), which is one of the principal complications of radiotherapy (RT) for head and neck cancers. In this mini- review, we focus on the current progresses trying to unravel mechanisms of radiation-induced hair cell death and find out possible protection. P53, reactive oxygen species (ROS) and c-Jun N-terminal kinase (JNK) pathways have been proposed as pivotal in the processes leading to radiation hair cell death. Potential protectants, such as amifostine, N-acetylcysteine (NAC) and epicatechin (EC) , are claimed to be effective at reducing radiation- inducedhair cell death. The RT dosage, selection and application of concurrent chemotherapy should be pre- examined in order to minimize the damage to cochlea hair cells.

  19. Biological determinants of radiation-induced human breast cancer

    SciTech Connect

    Feig, S.A.

    1980-01-01

    This is the second in a three part series on the hypothetical risk from x-ray mammography. It will review those aspects of breast anatomy, histology, physiology, and pathology which are pertinent to radiation carcinogenesis. Radiation-induced breast cancers are histologically identical to the naturally occurring type in that they arise from the ductal epithelium and consist of a similar proportion of infiltrating and intraductal lesions. Possible explanations for the increased resistance to radiation effect in women over 30 years of age at time of exposure include regression of the glandular target tissue, hormonal changes, and parity. Examples of age-related sensitivity and hormonal dependence in other radiation-induced human and animal tumors will be discussed.

  20. Organotypic tissue culture investigation of homocysteine thiolactone cardiotoxic effect.

    PubMed

    Lopatina, Ekaterina V; Kipenko, A V; Penniyaynen, V A; Pasatetskaya, N A; Djuric, D; Krylov, B V

    2015-06-01

    Homocysteine thiolactone was demonstrated to inhibit the growth of 10-12-day-old chicken embryo cardiac tissue explants at 7 × 10⁻⁹ -1 × 10⁻³ M concentrations in a dose-dependent manner. The maximal cardiotoxic effect of homocysteine thiolactone was detected at 1 × 10⁻³ M, which corresponds to severe hyperhomocysteinemia. The results of experiments on culturing of cardiac tissue explants in the medium containing homocysteine thiolactone (1 × 10⁻³ M) and ouabain at concentrations regulating the signal-transducing (1 × 10⁻¹⁰ M) and pumping (1 × 10⁻⁸ M) functions of Na⁺,K⁺ -ATPase indicate that the cardiotoxic effect of homocysteine thiolactone is supposed to result from inhibition of the Na⁺,K⁺ -ATPase pumping function.

  1. Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities

    Cancer.gov

    Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities, a 2013 workshop sponsored by the Epidemiology and Genomics Research Program.

  2. Radiation-induced products of peptides and their enzymatic digestibility

    SciTech Connect

    Gajewski, E.

    1983-01-01

    Chemical characterization of radiation-induced products of peptides and proteins is essential for understanding the effect of ionizing radiation on peptides and proteins. Furthermore, peptides containing radiation-altered amino acid residues might not be completely digestible by proteolytic enzymes. In this work, small homopeptides of Ala, Phe and Met were chosen as model peptides. Lysozyme was used to investigate the effect of ionizing radiation on a small protein. All peptides and lysozyme were irradiated in diluted, oxygen free, N/sub 2/O-saturated aqueous solutions, using a /sup 60/Co-..gamma..-source. HPLC, capillary GC and GC-MS were applied to isolate and characterize the radiation-induced products. The enzymatic digestibility of the products was investigated using aminopeptidase M, leucine aminopeptidase, carboxypeptidase A and carboxypeptidase Y. It was found that irradiation of peptides examined in this work leads to racemization and alteration of amino acid residues and crosslinks between the peptide chains. In addition, it was established that exopeptidases act differently on radiation-induced dimers of peptides composed of aliphatic, aromatic and sulfur-containing amino acids.

  3. Neutron radiation induced degradation of diode characteristics

    NASA Astrophysics Data System (ADS)

    Khanna, S. M.; Pepper, G. T.; Stone, R. E.

    1992-12-01

    Neutron radiation effects on diode current-voltage characteristics have been studied for a variety of diode over 1(10)(exp 13) - 3(10)(exp 15) n/sq cm 1 MeV equivalent neutron fluence range. A classification scheme consisting of three types of neutron effects on diode forward characteristics is proposed here for the first time. For constant forward current I(sub F) higher than that in the generation-recombination regime, the diode voltage V(sub F) either increases with fluence phi (Type 1 diode), on V(sub F) first decreases with phi at lower fluence levels and then increases with phi at higher fluence levels (Type 2 diode), or V(sub F) decreases with phi at all fluence levels used in this work (Type 3 diode). Most of the previous results on p-n junction diodes correspond to Type 1 diode results. Type 2 diode results are rather rare in the literature. Several examples of Type 2 diode results are presented here. Type 3 diode results are reported here for other types of diodes not reported earlier. These results are explained qualitatively in terms of the theories for a p-n junction and for radiation effects on semiconductors. It is shown here that a type 3 diode could be developed as a high neutron fluence monitor with three orders of magnitude higher upper limit than the Harshaw p-i-n diode neutron fluence monitor under evaluation at the US Army Aberdeen Proving Grounds, Aberdeen, Md. The results also suggest a methodology for radiation hard diode development.

  4. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  5. Serial exercise gated radionuclide ventriculograms (RVG) in monitoring doxorubicin cardiotoxicity

    SciTech Connect

    Goldstein, H.A.; Lahoda, J.; Fox, L.

    1985-05-01

    The resting RVG (Radionuclide Ventriculograms) are demonstrated to be an effective monitor of the cardiotoxicity of doxorubicin. The exercise RVG has not been as well studied to see if it yields additional information or detects toxicity effects earlier. Sixteen patients receiving doxorubicin for chemotherapy had 2-6 serial exercise studies with intervals between studies of 1 month to 15 months. The patients exercised varying amounts with cardiac work indicated by their double products (HR x Sys. BP). Although all patients started with a normal resting LVEF (>50%), 5 of the 16 did not have a normal response (greater than or equal to5% increase in LVEF) with initial exercise study. Of the 11 patients with an initially normal response to exercise, on at least one subsequent study, 3 had an abnormal response to exercise. On a later follow up study 1 of these 3 patients again had a normal response to exercise. Six of these 11 patients had had RVG evidence of cardiotoxicity. Four of these 6 patients had continually normal exercise responses, while 2 of these 5 patients had had an abnormal exercise response. An initial exercise RVG may be reasonable to detect unsuspected CAD in cancer victims. These patients are reported to be more sensitive to the toxic effects of doxorubicin. Follow up exercise RVGs do not contribute useful information, do not predict cardiotoxicity, and may be misleading.

  6. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  7. Panretinal photocoagulation for radiation-induced ocular ischemia

    SciTech Connect

    Augsburger, J.J.; Roth, S.E.; Magargal, L.E.; Shields, J.A.

    1987-08-01

    We present preliminary findings on the effectiveness of panretinal photocoagulation in preventing neovascular glaucoma in eyes with radiation-induced ocular ischemia. Our study group consisted of 20 patients who developed radiation-induced ocular ischemia following cobalt-60 plaque radiotherapy for a choroidal or ciliary body melanoma. Eleven of the 20 patients were treated by panretinal photocoagulation shortly after the diagnosis of ocular ischemia, but nine patients were left untreated. In this non-randomized study, the rate of development of neovascular glaucoma was significantly lower (p = 0.024) for the 11 photocoagulated patients than for the nine who were left untreated.

  8. [Symptoms, diagnosis and treatment of radiation-induced enteritis].

    PubMed

    Sinkó, Dániel; Baranyai, Zsolt; Nemeskéri, Csaba; Teknos, Dániel; Jósa, Valéria; Hegedus, László; Mayer, Arpád

    2010-09-01

    The number of radiotherapy in the treatment of malignant diseases is increasing worldwide. During the radiotherapy of tumors in the minor pelvis and abdomen intestinal inflammation of different degree may occur even if special attention is paid. Irradiation to the minor pelvis causes in half of the cases radiation induced acute enteritis, whereas in 25% chronic enteritis and colitis will develop. Chronic enteritis following radiotherapy raises a number of diagnostic and therapeutic problems that can be solved only with cooperation of different specialties. Authors present a short review regarding therapeutical options of radiation induced enteritis.

  9. Paclitaxel-carboplatin induced radiation recall colitis.

    PubMed

    Kundak, Isil; Oztop, Ilhan; Soyturk, Mujde; Ozcan, Mehmet Ali; Yilmaz, Ugur; Meydan, Nezih; Gorken, Ilknur Bilkay; Kupelioglu, Ali; Alakavuklar, Mehmet

    2004-01-01

    Some chemotherapeutic agents can "recall" the irradiated volumes by skin or pulmonary reactions in cancer patients who previously received radiation therapy. We report a recall colitis following the administration of paclitaxel-containing regimen in a patient who had been irradiated for a carcinoma of the uterine cervix. A 63-year-old woman underwent a Wertheim operation because of uterine cervix carcinoma. After 8 years of follow-up, a local recurrence was observed and she received curative external radiotherapy (45 Gy) to the pelvis. No significant adverse events were observed during the radiotherapy. Approximately one year later, she was hospitalized because of metastatic disease with multiple pulmonary nodules, and a chemotherapy regimen consisting of paclitaxel and carboplatin was administered. The day after the administration of chemotherapy the patient had diarrhea and rectal bleeding. Histological examination of the biopsy taken from rectal hyperemic lesions showed a radiation colitis. The symptoms reappeared after the administration of each course of chemotherapy and continued until the death of the patient despite the interruption of the chemotherapy. In conclusion, the probability of recall phenomena should be kept in mind in patients who received previously with pelvic radiotherapy and treated later with cytotoxic chemotherapy.

  10. Radiation-induced endometriosis in Macaca mulatta

    SciTech Connect

    Fanton, J.W.; Golden, J.G. )

    1991-05-01

    Female rhesus monkeys received whole-body doses of ionizing radiation in the form of single-energy protons, mixed-energy protons, X rays, and electrons. Endometriosis developed in 53% of the monkeys during a 17-year period after exposure. Incidence rates for endometriosis related to radiation type were: single-energy protons, 54%; mixed-energy protons, 73%; X rays, 71%; and electrons, 57%. The incidence of endometriosis in nonirradiated control monkeys was 26%. Monkeys exposed to single-energy protons, mixed-energy protons, and X rays developed endometriosis at a significantly higher rate than control monkeys (chi 2, P less than 0.05). Severity of endometriosis was staged as massive, moderate, and minimal. The incidence of these stages were 65, 16, and 19%, respectively. Observations of clinical disease included weight loss in 43% of the monkeys, anorexia in 35%, space-occupying masses detected by abdominal palpation in 55%, abnormal ovarian/uterine anatomy on rectal examination in 89%, and radiographic evidence of abdominal masses in 38%. Pathological lesions were endometrial cyst formation in 69% of the monkeys, adhesions of the colon in 66%, urinary bladder in 50%, ovaries in 86%, and ureters in 44%, focal nodules of endometrial tissue throughout the omentum in 59%, and metastasis in 9%. Clinical management of endometriosis consisted of debulking surgery and bilateral salpingo-oophorectomy combined in some cases with total abdominal hysterectomy. Postoperative survival rates at 1 and 5 years for monkeys recovering from surgery were 48 and 36%, respectively.

  11. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  12. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  13. Gamma Radiation Induced Calibration Shift for Four Cryogenic Thermometer Types

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Yeager, C. J.

    2004-06-01

    Cryogenic temperature sensors utilized in space environments are exposed to ionizing radiation with the total dose dependent upon the length of the mission. Based upon their minimal size and robust packaging, four models of cryogenic Resistance Thermometer Devices (RTDs) manufactured by Lake Shore Cryotronics, Inc. were tested to determine their reliability for space applications with regard to radiation. Samples of Cernox™ RTDs (CX-1050-SD), ruthenium oxide RTDs (models RX-102A-AA and RX-103A-AA), and silicon diode thermometers (model DT-670-SD) were irradiated at room temperature by a cesium-137 gamma source to total doses ranging from 5 Gy to 10 kGy. This paper presents the resulting temperature shifts induced by the gamma radiation as a function of total dose over the 1.4 K to 325 K temperature range. These data show that 1) Cernox™ RTDs exhibit high radiation hardness to 10 kGy from 1.4 K to 325 K, 2) ruthenium oxide RTDs show moderate radiation hardness to 10 kGy below 10 K, and 3) silicon diodes temperature sensors exhibit some radiation tolerance to low levels of radiation (especially below 70 K), but quickly shift calibration at radiation levels above 300 Gy, especially above 100 K.

  14. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  15. Cardioprotective potential of N,α-L-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: in vivo and in vitro studies.

    PubMed

    Panda, Sunanda; Kar, Anand; Sharma, Pratibha; Sharma, Ashok

    2013-02-15

    Hitherto unknown protective effect of N,α-L-rhamnopyranosyl vincosamide (VR), isolated from Moringa oleifera leaves in isoproterenol (ISO)-induced cardiac toxicity was evaluated in rats. Oral administration of VR at 40 mg/kg for 7 days markedly reduced the ISO-induced increase in the levels of serum cardiac markers such as troponin-T, creatine kinase-MB, lactate dehydrogenase and glutamate pyruvate transaminase as well as cardiac lipid peroxidation with a parallel increase in the cellular antioxidants suggesting its cardio-protective and free radical scavenging potential, which was latter confirmed by in vitro study. Rats treated with test compound also improved the ISO-induced abnormal changes in ECG as well as in cardiac histology. A reduction in myocardial necrosis was further evidenced by the tri-phenyl tetrazolium chloride (TTC) stain in isolated test drug pretreated rats. These findings suggest the cardio-protective potential of the isolated alkaloid and possibly the beneficial action is mediated through its free radical scavenging property.

  16. Interleukin-32 Positively Regulates Radiation-Induced Vascular Inflammation

    SciTech Connect

    Kobayashi, Hanako; Yazlovitskaya, Eugenia M.; Lin, P. Charles

    2009-08-01

    Purpose: To study the role of interleukin-32 (IL-32), a novel protein only detected in human tissues, in ionizing radiation (IR)-induced vascular inflammation. Methods and Materials: Irradiated (0-6 Gy) human umbilical vein endothelial cells treated with or without various agents-a cytosolic phospholipase A2 (cPLA2) inhibitor, a cyclooxygenase-2 (Cox-2) inhibitor, or lysophosphatidylcholines (LPCs)-were used to assess IL-32 expression by Northern blot analysis and quantitative reverse transcriptase-polymerase chain reaction. Expression of cell adhesion molecules and leukocyte adhesion to endothelial cells using human acute monocytic leukemia cell line (THP-1) cells was also analyzed. Results: Ionizing radiation dramatically increased IL-32 expression in vascular endothelial cells through multiple pathways. Ionizing radiation induced IL-32 expression through nuclear factor {kappa}B activation, through induction of cPLA2 and LPC, as well as induction of Cox-2 and subsequent conversion of arachidonic acid to prostacyclin. Conversely, blocking nuclear factor {kappa}B, cPLA2, and Cox-2 activity impaired IR-induced IL-32 expression. Importantly, IL-32 significantly enhanced IR-induced expression of vascular cell adhesion molecules and leukocyte adhesion on endothelial cells. Conclusion: This study identifies IL-32 as a positive regulator in IR-induced vascular inflammation, and neutralization of IL-32 may be beneficial in protecting from IR-induced inflammation.

  17. Enhancement of radiation-induced apoptosis by Podophyllum hexandrum.

    PubMed

    Prem Kumar, I; Rana, S V S; Samanta, N; Goel, H C

    2003-09-01

    The aqueous extract of Podophyllum hexandrum (RP-1), which has been recently reported to manifest radioprotective and anti-tumour properties, has been investigated for its mode of action. RP-1, under in-vitro conditions dose-dependently chelated metal ions, inhibited radiation or metal ion-induced hydroxyl radicals and lipid peroxidation and scavenged superoxide anions. Intraperitoneal administration of RP-1 to mice pre-irradiation (10 Gy) induced more DNA fragmentation and lipid peroxidation in thymocytes maximally at 4 and 8 h, respectively, in comparison with RP-1 treatment or irradiation. Flow-cytometric quantification of sub-diploid peak, oligonucleosomal cleavage assay (ladder) and depletion of total thiols also corroborated the ability of RP-1 to enhance radiation-induced apoptosis. RP-1 in presence of 100 microM CuSO(4) induced strand breaks in plasmid DNA and addition of metal chelators (EDTA and deferoxamine) inhibited the strand scission. Treatment with a major constituent of RP-1, podophyllin, did not cause strand breaks, but isolated constituents of RP-1, quercetin or podophyllotoxin, induced strand breaks. Depending on its concentration in the milieu, RP-1 acted as a pro- or antioxidant modifying the radiation-induced apoptosis and therefore could be exploited for cancer management.

  18. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    SciTech Connect

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-05-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene.

  19. Countermeasures for space radiation induced adverse biologic effects

    NASA Astrophysics Data System (ADS)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  20. Countermeasures against space radiation induced oxidative stress in mice.

    PubMed

    Kennedy, A R; Guan, J; Ware, J H

    2007-06-01

    Of particular concern for the health of astronauts during space travel is radiation from protons and high atomic number (Z), high energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by proton and HZE particle radiation in the plasma of CBA mice and the protective effect of dietary supplement agents. The results indicate that exposure to proton and HZE particle radiation significantly decreased the plasma level of total antioxidants in the irradiated CBA mice. Dietary supplementation with L: -selenomethionine (SeM) or a combination of selected antioxidant agents (which included SeM) could partially or completely prevent the decrease in the total antioxidant status in the plasma of animals exposed to proton or HZE particle radiation. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense system; this adverse biological effect can be prevented at least partially by dietary supplementation with agents expected to have effects on antioxidant activities.

  1. Countermeasures against space radiation induced oxidative stress in mice.

    PubMed

    Kennedy, A R; Guan, J; Ware, J H

    2007-06-01

    Of particular concern for the health of astronauts during space travel is radiation from protons and high atomic number (Z), high energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by proton and HZE particle radiation in the plasma of CBA mice and the protective effect of dietary supplement agents. The results indicate that exposure to proton and HZE particle radiation significantly decreased the plasma level of total antioxidants in the irradiated CBA mice. Dietary supplementation with L: -selenomethionine (SeM) or a combination of selected antioxidant agents (which included SeM) could partially or completely prevent the decrease in the total antioxidant status in the plasma of animals exposed to proton or HZE particle radiation. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense system; this adverse biological effect can be prevented at least partially by dietary supplementation with agents expected to have effects on antioxidant activities. PMID:17387501

  2. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  3. SPHINX Measurements of Radiation Induced Conductivity of Foam

    SciTech Connect

    Ballard, W.P.; Beutler, D.E.; Burt, M.; Dudley, K.J.; Stringer, T.A.

    1998-12-14

    Experiments on the SPHINX accelerator studying radiation-induced conductivity (RIC) in foam indicate that a field-exclusion boundary layer model better describes foam than a Maxwell-Garnett model that treats the conducting gas bubbles in the foam as modifying the dielectric constant. In both cases, wall attachment effects could be important but were neglected.

  4. Radiation-induced xerostomia: pathophysiology, clinical course and supportive treatment.

    PubMed

    Guchelaar, H J; Vermes, A; Meerwaldt, J H

    1997-07-01

    Xerostomia, or oral dryness, is one of the most common complaints experienced by patients who have had radiotherapy of the oral cavity and neck region. The hallmarks of radiation-induced damage are acinar atrophy and chronic inflammation of the salivary glands. The early response, resulting in atrophy of the secretory cells without inflammation might be due to radiation-induced apoptosis. In contrast, the late response with inflammation could be a result of radiation-induced necrosis. The subjective complaint of a dry mouth appears to be poorly correlated with objective findings of salivary gland dysfunction. Xerostomia, with secondary symptoms of increased dental caries, difficulty in chewing, swallowing and speaking, and an increased incidence of oral candidiasis, can have a significant effect on the quality of life. At present there is no causal treatment for radiation-induced xerostomia. Temporary symptomatic relief can be offered by moistening agents and saliva substitutes, and is the only option for patients without residual salivary function. In patients with residual salivary function, oral administration of pilocarpine 5-10 mg three times a day is effective in increasing salivary flow and improving the symptoms of xerostomia, and this therapy should be considered as the treatment of choice. Effectiveness of sialogogue treatment requires residual salivary function, which emphasizes the potential benefit from sparing normal tissue during irradiation. The hypothesis concerning the existence of early apoptotic and late necrotic effects of irradiation on the salivary glands theoretically offers a way of achieving this goal. PMID:9257424

  5. Radiation-induced segregation in alloy X-750

    SciTech Connect

    Kenik, E.A.

    1996-12-31

    Microstructural and microchemical evolution of an Alloy X-750 heat under neutron irradiation was studied in order to understand the origin of irradiation-assisted stress corrosion cracking. Both clustering of point defects and radiation-induced segregation at interfaces were observed. Although no significant changes in the precipitate structure were observed, boundaries exhibited additional depletion of Cr and Fe and enrichment of Ni.

  6. Radiation-induced xerostomia: pathophysiology, clinical course and supportive treatment.

    PubMed

    Guchelaar, H J; Vermes, A; Meerwaldt, J H

    1997-07-01

    Xerostomia, or oral dryness, is one of the most common complaints experienced by patients who have had radiotherapy of the oral cavity and neck region. The hallmarks of radiation-induced damage are acinar atrophy and chronic inflammation of the salivary glands. The early response, resulting in atrophy of the secretory cells without inflammation might be due to radiation-induced apoptosis. In contrast, the late response with inflammation could be a result of radiation-induced necrosis. The subjective complaint of a dry mouth appears to be poorly correlated with objective findings of salivary gland dysfunction. Xerostomia, with secondary symptoms of increased dental caries, difficulty in chewing, swallowing and speaking, and an increased incidence of oral candidiasis, can have a significant effect on the quality of life. At present there is no causal treatment for radiation-induced xerostomia. Temporary symptomatic relief can be offered by moistening agents and saliva substitutes, and is the only option for patients without residual salivary function. In patients with residual salivary function, oral administration of pilocarpine 5-10 mg three times a day is effective in increasing salivary flow and improving the symptoms of xerostomia, and this therapy should be considered as the treatment of choice. Effectiveness of sialogogue treatment requires residual salivary function, which emphasizes the potential benefit from sparing normal tissue during irradiation. The hypothesis concerning the existence of early apoptotic and late necrotic effects of irradiation on the salivary glands theoretically offers a way of achieving this goal.

  7. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  8. Radiation-induced lung injury: a hypersensitivity pneumonitis

    SciTech Connect

    Gibson, P.G.; Bryant, D.H.; Morgan, G.W.; Yeates, M.; Fernandez, V.; Penny, R.; Breit, S.N.

    1988-08-15

    Radiation pneumonitis occurs 6 to 12 weeks after thoracic irradiation, and is thought to be due to direct radiation-induced lung injury. Four patients who developed pneumonitis after unilateral thoracic irradiation for carcinoma of the breast were studied with bronchoalveolar lavage, gallium scan of the lung, and respiratory function tests. On the irradiated side of the chest, all four patients showed an increase in total cells recovered from the lavage fluid and a marked increase in the percentage of lymphocytes. When results for the unirradiated lung were compared with results for the irradiated lung, there was a comparable increase in total cells and percentage of lymphocytes. Gallium scans showed increases for both irradiated and unirradiated lungs. Prompt improvement was seen after corticosteroid therapy in all patients. The fact that abnormal findings occur equally in irradiated and unirradiated lung is inconsistent with simple direct radiation-induced injury and suggests an immunologically mediated mechanism such as a hypersensitivity pneumonitis.

  9. Radiation-induced decomposition of explosives under extreme conditions

    SciTech Connect

    Giefers, Hubertus; Pravica, Michael; Yang, Wenge; Liermann, Peter

    2008-11-03

    We present high-pressure and high temperature studies of the synchrotron radiation-induced decomposition of powder secondary high explosives pentaerythritol tetranitrate (PETN) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using white beam synchrotron radiation at the 16 BM-B and 16 BM-D sectors of the HP-CAT beamline at the Advanced Photon Source. The radiation-induced decomposition rate TATB showed dramatic slowing with pressure up to 26.6 GPa (the highest pressure studied), implying a positive activation volume of the activated complex. The decomposition rate of PETN varied little with pressure up to 15.7 GPa (the highest pressure studied). Diffraction line intensities were measured as a function of time using energy-dispersive methods. By measuring the decomposition rate as a function of pressure and temperature, kinetic and other constants associated with the decomposition reactions were extracted.

  10. Mechanisms of radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  11. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  12. Factors that modify risks of radiation-induced cancer

    SciTech Connect

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  13. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  14. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  15. Radiation induced oxidative damage modification by cholesterol in liposomal membrane

    NASA Astrophysics Data System (ADS)

    Pandey, B. N.; Mishra, K. P.

    1999-05-01

    Ionizing radiation induced structural and chemical alterations in egg lecithin liposomal membrane have been studied by measurements of lipid peroxides, conjugated diene and fluorescence polarization. Predominantly unilamellar phospholipid vesicles prepared by sonication procedure were subjected to radiation doses of γ-rays from Co-60 in aerated, buffered aqueous suspensions. The oxidative damage in irradiated lipid molecules of liposomes has been determined spectrophotometrically by diene conjugate formation and thiobarbituric acid reactive (TBAR) method as a function of radiation dose. A correlation was found between the radiation dose applied (0.1-1 kGy) and the consequent lipid oxidation. The damage produced in irradiated liposomal membrane was measured by 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence decay and polarization. The observed decrease in DPH fluorescence and increase in polarization was found dependent on the radiation dose suggesting alterations in rigidity or organizational order in phospholipid bilayer after irradiation. Furthermore, irradiated liposome vesicles composed of cholesterol showed marked reduction in observed radiation mediated peroxide formation and significantly affected the DPH fluorescence parameters. The magnitude of these modifying effects were found dependent on the mole fraction of cholesterol. It is concluded that modulation of structural order in unilamellar vesicle membrane by variations in basic molecular components controlled the magnitude of lipid peroxidation and diene conjugate formation. These observations contribute to our understanding of mechanism of radical reaction mediated damage caused by ionizing radiation in phospholipid membrane.

  16. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  17. Beneficial effects of carbon monoxide-releasing molecule-2 (CORM-2) on acute doxorubicin cardiotoxicity in mice: Role of oxidative stress and apoptosis

    SciTech Connect

    Soni, Hitesh; Pandya, Gaurav; Patel, Praful; Acharya, Aviseka; Jain, Mukul; Mehta, Anita A.

    2011-05-15

    Doxorubicin (DXR) has been used in variety of human malignancies for decades. Despite its efficacy in cancer, clinical usage is limited because of its cardiotoxicity, which has been associated with oxidative stress and apoptosis. Carbon monoxide-releasing molecules (CORMs) have been shown to reduce the oxidative damage and apoptosis. The present study investigated the effects of CORM-2, a fast CO-releaser, against DXR-induced cardiotoxicity in mice using biochemical, histopathological and gene expression approaches. CORM-2 (3, 10 and 30 mg/kg/day) was administered intraperitoneally (i.p.) for 10 days and terminated the study on day 11. DXR (20 mg/kg, i.p.) was injected before 72 h of termination. Mice treated with DXR showed cardiotoxicity as evidenced by elevation of serum creatine kinase (CK) and lactate dehydrogenase (LDH), tissue malondialdehyde (MDA), caspase-3 and decrease the level of total antioxidant status (TAS) in heart tissues. Pre- and post-treatment with CORM-2 (30 mg/kg, i.p.) elicited significant improvement in CK, LDH, MDA, caspase-3 and TAS levels. Histopathological studies showed that cardiac damage with DXR has been reversed with CORM-2 + DXR treatment. There was dramatic decrease in hematological count in DXR-treated mice, which has been improved with CORM-2. Furthermore, there was also elevation of mRNA expression of heme oxygenase-1, hypoxia inducible factor-1 alpha, vascular endothelial growth factor and decrease in inducible-nitric oxide synthase expression upon treatment with CORM-2 that might be linked to cardioprotection. These data suggest that CORM-2 treatment provides cardioprotection against acute doxorubicin-induced cardiotoxicity in mice and this effect may be attributed to CORM-2-mediated antioxidant and anti-apoptotic properties.

  18. Radiation-induced skin carcinomas of the head and neck

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.

  19. Nature of radiation-induced defects in quartz.

    PubMed

    Wang, Bu; Yu, Yingtian; Pignatelli, Isabella; Sant, Gaurav; Bauchy, Mathieu

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si-O connectivity defects, e.g., small Si-O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E' centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz. PMID:26178116

  20. Nature of radiation-induced defects in quartz

    SciTech Connect

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu; Pignatelli, Isabella; Sant, Gaurav

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  1. UV-radiation-induced degradation of fluorinated polyimide films

    NASA Astrophysics Data System (ADS)

    Chang, Li-Hsin; Saha, Naresh C.

    1994-12-01

    Fully cured fluorinated polyimide (FPI) films with low dielectric constants ( less than or equal to 3.0) have been found to be chemically altered when exposed to UV radiation during a process integration study. This chemical modification is manifested in the loss of film thickness after it is subjected to UV radiation followed by photoresist stripping. The UV-radiation-induced surface modifications of the FPI film have been characterized by X-ray photoelectron spectroscopy (XPS). The XPS data show the presence of C=O and COO(-) sites in the FPI molecule following UV exposure. Under prolonged UV exposure in a stepper, the FPI film acts as a positive working photoresist. However, a 2 kA plasma enhanced chemically vapor-deposited oxide mask and/or a typical 12 kA photoresist mask effectively shields the FPI from UV-radiation-induced degradation. The effects of FPI on UV radiation present during other normal wafer processing steps such as plasma deposition and reactive ion-etching were also studied and found to be negligible.

  2. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  3. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  4. Chromosome aberrations induced by high-LET radiations.

    PubMed

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A

    2004-12-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions. PMID:15858388

  5. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    SciTech Connect

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J. )

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.

  6. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  7. The radiation-induced changes in rectal mucosa: Hyperfractionated vs. hypofractionated preoperative radiation for rectal cancer

    SciTech Connect

    Starzewski, Jacek J.; Pajak, Jacek T.; Pawelczyk, Iwona; Lange, Dariusz; Golka, Dariusz . E-mail: dargolka@wp.pl; Brzeziska, Monika; Lorenc, Zbigniew

    2006-03-01

    Purpose: The purpose of the study was the qualitative and quantitative evaluation of acute radiation-induced rectal changes in patients who underwent preoperative radiotherapy according to two different irradiation protocols. Patients and Methods: Sixty-eight patients with rectal adenocarcinoma underwent preoperative radiotherapy; 44 and 24 patients underwent hyperfractionated and hypofractionated protocol, respectively. Fifteen patients treated with surgery alone served as a control group. Five basic histopathologic features (meganucleosis, inflammatory infiltrations, eosinophils, mucus secretion, and erosions) and two additional features (mitotic figures and architectural glandular abnormalities) of radiation-induced changes were qualified and quantified. Results: Acute radiation-induced reactions were found in 66 patients. The most common were eosinophilic and plasma-cell inflammatory infiltrations (65 patients), erosions, and decreased mucus secretion (54 patients). Meganucleosis and mitotic figures were more common in patients who underwent hyperfractionated radiotherapy. The least common were the glandular architectural distortions, especially in patients treated with hypofractionated radiotherapy. Statistically significant differences in morphologic parameters studied between groups treated with different irradiation protocols were found. Conclusion: The system of assessment is a valuable tool in the evaluation of radiation-induced changes in the rectal mucosa. A greater intensity of regenerative changes was found in patients treated with hyperfractionated radiotherapy.

  8. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  9. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    SciTech Connect

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  10. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    PubMed Central

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-01-01

    Purpose/Objectives(s) The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events (SPEs), as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials Ferrets were exposed to 0 – 2 Gray (Gy) of whole body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results The lethal dose of radiation to 50% of the population, known as the LD50, of ferrets was established at ~ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 post-irradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early times post-irradiation when coagulopathies were present and progressively becoming more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions The data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is solely due to the cell killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation induced death at relatively low doses in large mammals. PMID:24495588

  11. Proton induced radiation damage in fast crystal scintillators

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan; Kapustinsky, Jon; Nelson, Ron; Wang, Zhehui

    2016-07-01

    This paper reports proton induced radiation damage in fast crystal scintillators. A 20 cm long LYSO crystal, a 15 cm long CeF3 crystal and four liquid scintillator based sealed quartz capillaries were irradiated by 800 MeV protons at Los Alamos up to 3.3 ×1014 p /cm2. Four 1.5 mm thick LYSO plates were irradiated by 24 GeV protons at CERN up to 6.9 ×1015 p /cm2. The results show an excellent radiation hardness of LYSO crystals against charged hadrons.

  12. Challenges and Opportunities in Radiation-induced Hemorrhagic Cystitis

    PubMed Central

    Zwaans, Bernadette M.M.; Nicolai, Heinz G.; Chancellor, Michael B.; Lamb, Laura E.

    2016-01-01

    As diagnosis and treatment of cancer is improving, medical and social issues related to cancer survivorship are becoming more prevalent. Hemorrhagic cystitis (HC), a rare but serious disease that may affect patients after pelvic radiation or systemic chemotherapy, has significant unmet medical needs. Although no definitive treatment is currently available, various interventions are employed for HC. Effects of nonsurgical treatments for HC are of modest success and studies aiming to control radiation-induced bladder symptoms are lacking. In this review, we present current and advanced therapeutic strategies for HC to help cancer survivors deal with long-term urologic health issues.

  13. Challenges and Opportunities in Radiation-induced Hemorrhagic Cystitis.

    PubMed

    Zwaans, Bernadette M M; Nicolai, Heinz G; Chancellor, Michael B; Lamb, Laura E

    2016-01-01

    As diagnosis and treatment of cancer is improving, medical and social issues related to cancer survivorship are becoming more prevalent. Hemorrhagic cystitis (HC), a rare but serious disease that may affect patients after pelvic radiation or systemic chemotherapy, has significant unmet medical needs. Although no definitive treatment is currently available, various interventions are employed for HC. Effects of nonsurgical treatments for HC are of modest success and studies aiming to control radiation-induced bladder symptoms are lacking. In this review, we present current and advanced therapeutic strategies for HC to help cancer survivors deal with long-term urologic health issues. PMID:27601964

  14. Challenges and Opportunities in Radiation-induced Hemorrhagic Cystitis

    PubMed Central

    Zwaans, Bernadette M.M.; Nicolai, Heinz G.; Chancellor, Michael B.; Lamb, Laura E.

    2016-01-01

    As diagnosis and treatment of cancer is improving, medical and social issues related to cancer survivorship are becoming more prevalent. Hemorrhagic cystitis (HC), a rare but serious disease that may affect patients after pelvic radiation or systemic chemotherapy, has significant unmet medical needs. Although no definitive treatment is currently available, various interventions are employed for HC. Effects of nonsurgical treatments for HC are of modest success and studies aiming to control radiation-induced bladder symptoms are lacking. In this review, we present current and advanced therapeutic strategies for HC to help cancer survivors deal with long-term urologic health issues. PMID:27601964

  15. Induced movements of giant vesicles by millimeter wave radiation.

    PubMed

    Albini, Martina; Dinarelli, Simone; Pennella, Francesco; Romeo, Stefania; Zampetti, Emiliano; Girasole, Marco; Morbiducci, Umberto; Massa, Rita; Ramundo-Orlando, Alfonsina

    2014-07-01

    Our previous study of interaction between low intensity radiation at 53.37GHz and cell-size system - such as giant vesicles - indicated that a vectorial movement of vesicles was induced. This effect among others, i.e. elongation, induced diffusion of fluorescent dye di-8-ANEPPS, and increased attractions between vesicles was attributed to the action of the field on charged and dipolar residues located at the membrane-water interface. In an attempt to improve the understanding on how millimeter wave radiation (MMW) can induce this movement we report here a real time evaluation of changes induced on the movement of giant vesicles. Direct optical observations of vesicles subjected to irradiation enabled the monitoring in real time of the response of vesicles. Changes of the direction of vesicle movement are demonstrated, which occur only during irradiation with a "switch on" of the effect. This MMW-induced effect was observed at a larger extent on giant vesicles prepared with negatively charged phospholipids. The monitoring of induced-by-irradiation temperature variation and numerical dosimetry indicate that the observed effects in vesicle movement cannot be attributed to local heating. PMID:24704354

  16. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  17. Radiation induced decomposition of a refractory cefathiamidine intermediate.

    PubMed

    Bao, Qiburi; Chen, Lujun; Wang, Jianlong

    2014-12-01

    Diisopropylthiourea (DPT), an intermediate of a widely used cephalosporin, has been found to be one of the most refractory components in cephalosporin synthesis wastewater. This compound cannot be completely removed by conventional biological processes due to its antimicrobial property. Ionizing radiation has been applied in the decomposition of refractory pollutants in recent years and has proved effective. Therefore, the decomposition of DPT by γ-irradiation was studied. The compound was irradiated at the dose of 150-2000 Gy before a change of concentration and UV absorption of the solutions was detected. Furthermore, the decomposition kinetics and radiation yield (G-value) of DPT was investigated. The results of radiation experiments on DPT-containing aqueous showed that the DPT can be effectively degraded by γ-radiation. DPT concentration decreased with increasing absorbed doses. G-values of radiolytic decomposition for DPT (20 mg/L) were 1.04 and 0.47 for absorbed doses of 150 and 2000 Gy, respectively. The initial concentration and pH of the solutions affected the degradation. As the concentration of substrate increased, the decomposition was reduced. The decrease of removal rate and radiation efficacy under alkaline condition suggested that lower pH values benefit the γ-induced degradation. UV absorption from 190 to 250 nm decreased after radiation while that from 250 to 300 nm increased, indicating the formation of by-products.

  18. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity.

    PubMed

    Hašková, Pavlína; Kovaříková, Petra; Koubková, Lucie; Vávrová, Anna; Macková, Eliška; Simůnek, Tomáš

    2011-02-15

    Elevated catecholamine levels are known to induce damage of the cardiac tissue. This catecholamine cardiotoxicity may stem from their ability to undergo oxidative conversion to aminochromes and concomitant production of reactive oxygen species (ROS), which damage cardiomyocytes via the iron-catalyzed Fenton-type reaction. This suggests the possibility of cardioprotection by iron chelation. Our in vitro experiments have demonstrated a spontaneous decrease in the concentration of the catecholamines epinephrine and isoprenaline during their 24-h preincubation in buffered solution as well as their gradual conversion to oxidation products. These changes were significantly augmented by addition of iron ions and reduced by the iron-chelating agent salicylaldehyde isonicotinoyl hydrazone (SIH). Oxidized catecholamines were shown to form complexes with iron that had significant redox activity, which could be suppressed by SIH. Experiments using the H9c2 cardiomyoblast cell line revealed higher cytotoxicity of oxidized catecholamines than of the parent compounds, apparently through the induction of caspase-independent cell death, whereas co-incubation of cells with SIH was able to significantly preserve cell viability. A significant increase in intracellular ROS formation was observed after the incubation of cells with catecholamine oxidation products; this could be significantly reduced by SIH. In contrast, parent catecholamines did not increase, but rather decreased, cellular ROS production. Hence, our results demonstrate an important role for redox-active iron in catecholamine autoxidation and subsequent toxicity. The iron chelator SIH has shown considerable potential to protect cardiac cells by both inhibition of deleterious catecholamine oxidation to reactive intermediates and prevention of ROS-mediated cardiotoxicity.

  19. Short-term and long-term in vivo exposure to an ephedra- and caffeine-containing metabolic nutrition system does not induce cardiotoxicity in B6C3F1 mice.

    PubMed

    Ray, Sidhartha; Phadke, Santosh; Patel, Chintan; Hackman, Robert M; Stohs, Sidney

    2005-06-01

    year in the doses used as part of a comprehensive metabolic nutrition system does not significantly alter normal serum chemistry or induce any irreversible histological changes in the mouse heart, since this study employed up to ten times the normal human consumption dose of ephedra and the metabolic nutrition system.

  20. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  1. Cosmic-ray induced radiation in low-orbit space objects

    SciTech Connect

    Sandmeier, H.A.

    1980-09-01

    The induced radiation whole body dose received by astronauts in earth orbit is calculated. The induced radiation results from the interaction of primary cosmic rays with the mass of the satellite or space station. (ACR)

  2. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  3. Opportunities for nutritional amelioration of radiation-induced cellular damage.

    PubMed

    Turner, Nancy D; Braby, Leslie A; Ford, John; Lupton, Joanne R

    2002-10-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations. PMID:12361786

  4. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  5. Probabilistic methodology for estimating radiation-induced cancer risk

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario.

  6. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    SciTech Connect

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.; Sowa, Marianne B.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examples to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.

  7. Frequency and characteristics of docetaxel-induced radiation recall phenomenon

    SciTech Connect

    Mizumoto, Masashi . E-mail: mizumoto1717@hotmail.com; Harada, Hideyuki; Asakura, Hirofumi; Zenda, Sadamoto; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo

    2006-11-15

    Purpose: The aim of this study was to investigate the frequency and characteristics of a docetaxel-induced radiation recall phenomenon. Methods and Materials: Past histories of radiotherapy and radiation recall phenomenon (RRP) were analyzed in 461 patients who were administered docetaxel at our hospital between September 2002 and November 2005. Results: Of the 461 patients, 171 underwent radiotherapy before starting docetaxel. RRP was noted in 3 patients (1.8%). The 3 cases show that RRP tends to develop in patients treated with lower-energy photon beams of {<=}6 MV and in patients with marked acute phase reactions during radiotherapy. Conclusions: The incidence of RRP induced by docetaxel was 1.8%, making it a comparatively rare condition. However, docetaxel is increasingly being used for patients with head and neck tumors, and caution regarding development of RRP is warranted after use of docetaxel after high-dose radiotherapy with photon beams of {<=}6 MV.

  8. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Erkang; Wu, Lijun

    2009-04-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  9. [Radiation-induced and therapy-related AML/MDS].

    PubMed

    Inaba, Toshiya

    2009-10-01

    Radiation induced acute myeloid leukemia (AML) was recognized a century ago, soon after mankind found radiation. Atomic bomb survivors developed de novo AML with relatively short latency with very high frequency. By contrast, excess occurrence of myelodysplastic syndrome (MDS) as well as solid tumors was found decades late. This difference may be due to etiology that many de novo AML patients harbor chimeric leukemogenic genes caused by chromosomal translocations, while MDS patients rarely carry chimeras. In addition, epigenetic change would play important roles. Therapy related leukemia is mainly caused by topoisomerase II inhibitors that cause de novo AML with an 11q23 translocation or by alkyrating agents that induce MDS/AML with an AML1 point mutation and monosomy 7. PMID:19860183

  10. Radiation-induced decomposition of PETN and TATB under pressure

    SciTech Connect

    Giefers, Hubertus; Pravica, Michael; Liermann, Hanns-Peter; Yang, Wenge

    2008-10-02

    We have investigated decomposition of PETN and TATB induced by white synchrotron X-ray radiation in a diamond anvil cell at ambient temperature and two pressures, nearly ambient and about 6 GPa. The decomposition rate of TATB decreases significantly when it is pressurized to 5.9 GPa. The measurements were highly reproducible and allowed us to obtain decomposition rates and the order parameters of the reactions.

  11. Techniques for measuring radiation induced effects of acousto optic devices

    SciTech Connect

    Taylor, E.W.

    1995-08-01

    Innovative measurement techniques for determining radiation induced changes in acousto optic devices are briefly discussed. Measurements of acousto optic operational parameters such as signal transmission efficiency, diffraction efficiency, spatial intensity and bandwidth responses during electron irradiations are described. During exposure to pulsed electrons, only transient perturbations to the acousto optic operational parameters were experienced. Examples of new measurement procedures and typical data resulting from the measurements are presented.

  12. Repair of radiation induced genetic damage under microgravity.

    PubMed

    Pross, H D; Kost, M; Kiefer, J

    1994-10-01

    The influence of microgravity on the repair of radiation induced genetic damage in a temperature-conditional repair mutant of the yeast Saccharomyces cerevisiae (rad 54-3) was investigated onboard the IML-1 mission (January 22nd-30th 1992, STS-42). Cells were irradiated before the flight, incubated under microgravity at the permissive (22 degrees C) and restrictive (36 degrees C) temperature and afterwards tested for survival. The results suggest that repair may be reduced under microgravity.

  13. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  14. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. PMID:25690483

  15. Ionizing Radiation-Induced Cataract in Interventional Cardiology Staff

    PubMed Central

    Bitarafan Rajabi, Ahmad; Noohi, Feridoun; Hashemi, Hassan; Haghjoo, Majid; Miraftab, Mohammad; Yaghoobi, Nahid; Rastgou, Fereydon; Malek, Hadi; Faghihi, Hoshang; Firouzabadi, Hassan; Asgari, Soheila; Rezvan, Farhad; Khosravi, Hamidreza; Soroush, Sara; Khabazkhoob, Mehdi

    2015-01-01

    Background: The use of ionizing radiation has led to advances in medical diagnosis and treatment. Objectives: The purpose of this study was to determine the risk of radiation cataractogenesis in the interventionists and staff performing various procedures in different interventional laboratories. Patients and Methods: This cohort study included 81 interventional cardiology staff. According to the working site, they were classified into 5 groups. The control group comprised 14 professional nurses who did not work in the interventional sites. Participants were assigned for lens assessment by two independent trained ophthalmologists blinded to the study. Results: The electrophysiology laboratory staff received higher doses of ionizing radiation (17.2 ± 11.9 mSv; P < 0.001). There was a significant positive correlation between the years of working experience and effective dose in the lens (P < 0.001). In general, our findings showed that the incidence of lens opacity was 79% (95% CI, 69.9-88.1) in participants with exposure (the case group) and our findings showed that the incidence of lenses opacity was 7.1% (95% CI:2.3-22.6) with the relative risk (RR) of 11.06 (P < 0.001). Conclusions: We believe that the risk of radiation-induced cataract in cardiology interventionists and staff depends on their work site. As the radiation dose increases, the prevalence of posterior eye changes increases. PMID:25789258

  16. Perinatal radiation-induced renal damage in the beagle

    SciTech Connect

    Jaenke, R.S.; Angleton, G.M. )

    1990-04-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated.

  17. A systematic review of the cardiotoxicity of methadone

    PubMed Central

    Alinejad, Samira; Kazemi, Toba; Zamani, Nasim; Hoffman, Robert S.; Mehrpour, Omid

    2015-01-01

    Methadone is one of the most popular synthetic opioids in the world with some favorable properties making it useful both in the treatment of moderate to severe pain and for opioid addiction. Increased use of methadone has resulted in an increased prevalence of its toxicity, one aspect of which is cardiotoxicity. In this paper, we review the effects of methadone on the heart as well as cardiac concerns in some special situations such as pregnancy and childhood. Methods: We searched for the terms methadone, toxicity, poisoning, cardiotoxicity, heart, dysrhythmia, arrhythmia, QT interval prolongation, torsade de pointes, and Electrocardiogram (ECG) in bibliographical databases including TUMS digital library, PubMed, Scopus, and Google Scholar. This review includes relevant articles published between 2000 and 2013. The main cardiac effects of methadone include prolongation of QT interval and torsade de pointes. Other effects include changes in QT dispersion, pathological U waves, Taku-Tsubo syndrome (stress cardiomyopathy), Brugada-like syndrome, and coronary artery diseases. The aim of this paper is to inform physicians and health care staff about these adverse effects. Effectiveness of methadone in the treatment of pain and addiction should be weighed against these adverse effects and physicians should consider the ways to lessen such undesirable effects. This article presents some recommendations to prevent heart toxicity in methadone users. PMID:26869865

  18. The virtual heart as a platform for screening drug cardiotoxicity.

    PubMed

    Yuan, Yongfeng; Bai, Xiangyun; Luo, Cunjin; Wang, Kuanquan; Zhang, Henggui

    2015-12-01

    To predict the safety of a drug at an early stage in its development is a major challenge as there is a lack of in vitro heart models that correlate data from preclinical toxicity screening assays with clinical results. A biophysically detailed computer model of the heart, the virtual heart, provides a powerful tool for simulating drug-ion channel interactions and cardiac functions during normal and disease conditions and, therefore, provides a powerful platform for drug cardiotoxicity screening. In this article, we first review recent progress in the development of theory on drug-ion channel interactions and mathematical modelling. Then we propose a family of biomarkers that can quantitatively characterize the actions of a drug on the electrical activity of the heart at multi-physical scales including cellular and tissue levels. We also conducted some simulations to demonstrate the application of the virtual heart to assess the pro-arrhythmic effects of cisapride and amiodarone. Using the model we investigated the mechanisms responsible for the differences between the two drugs on pro-arrhythmogenesis, even though both prolong the QT interval of ECGs. Several challenges for further development of a virtual heart as a platform for screening drug cardiotoxicity are discussed.

  19. Targets for, and consequences of, radiation-induced chromosomal instability

    NASA Astrophysics Data System (ADS)

    Kaplan, Mark Isaac

    Chromosomal instability has been demonstrated in a human- hamster hybrid cell line, GM10115, after exposure to x- rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds. Labeling cells with 125I-iododeoxyuridine, which caused radiation damage to the DNA and associated nuclear structures, did induce chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Incorporation of an 125I-labeled protein, 125I-succinyl- concanavalin A, into either the plasma membrane or the cytoplasm, failed to elicit chromosomal instability. These results show that radiation damage to the nucleus, and not to extranuclear regions, contributes to the induction of chromosomal instability. To determine the role of DNA strand breaks as a molecular lesion responsible for initiating chromosomal instability, cells were treated with a variety of DNA strand breaking agents. Agents capable of producing complex DNA double strand breaks, including X-rays, Neocarzinostatin and bleomycin, were able to induce chromosomal instability. In contrast, double strand breaks produced by restriction endonucleases as well as DNA strand breaks produced by hydrogen peroxide failed to induce chromosomal instability. This demonstrates that the type of DNA breakage is important in the eventual manifestation of chromosomal instability. In order to understand the relationship between chromosomal instability and other end points of genomic instability, chromosomally stable and unstable clones were analyzed for sister chromatid exchange, delayed reproductive cell death, delayed mutation, mismatch repair and delayed gene amplification

  20. [Anthracycline-induced cardiotoxicity: report of fatal cases].

    PubMed

    Vargas-Neri, Jessica Liliana; Castelán-Martínez, Osvaldo Daniel; de Jesús Estrada-Loza, María; Betanzos-Cabrera, Yadira; Rivas-Ruiz, Rodolfo

    2016-01-01

    Introducción: las antraciclinas son fármacos eficaces en el tratamiento de pacientes pediátricos con cáncer. Sin embargo, la cardiotoxicidad inducida por antraciclinas (CIA) es una reacción adversa grave que afecta la sobrevida de niños y jóvenes. Casos clínicos: el caso 1 estuvo constituido por una paciente de nueve años con linfoma de Hodgkin estadio IV con 12 ciclos de quimioterapia con epirrubicina y una dosis acumulada de 576 mg/m2. Después del último ciclo de quimioterapia, la paciente ingresó con respuesta inflamatoria sistémica, astenia y adinamia. El ecocardiograma reportó una FEVI de 22 %, FA de 11 % e insuficiencia mitral moderada. La paciente falleció dos días después con diagnóstico de cardiomiopatía dilatada secundaria a antraciclinas. El caso 2 fue el de una paciente de 15 años con linfoma no Hodgkin tipo Burkitt estadio IV, con dos ciclos de quimioterapia con epirrubicina y una dosis acumulada de 90 mg/m2. Después del último ciclo, la paciente presentó diversos focos infecciosos. El ecocardiograma reportó una FEVI de 49 %, una FA de 20 % y dilatación del ventrículo izquierdo con aplanamiento septal. La paciente falleció 13 días después del diagnóstico de cardiomiopatía dilatada por antraciclinas. Conclusión: la CIA es un problema en los pacientes pediátricos que reciben antraciclinas. El monitoreo durante y después de la quimioterapia es indispensable para detectar el inicio del daño cardiaco a fin de brindar una intervención oportuna que evite la evolución a una insuficiencia cardiaca.

  1. Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: Role of apoptosis and oxidative stress.

    PubMed

    Korashy, Hesham M; Attafi, Ibraheem M; Ansari, Mushtaq A; Assiri, Mohammed A; Belali, Osamah M; Ahmad, Sheik F; Al-Alallah, Ibrahim A; Anazi, Fawaz E Al; Alhaider, Abdulqader A

    2016-06-11

    Gefitinib (GEF) is a multi-targeted tyrosine kinase inhibitor with anti-cancer properties, yet few cases of cardiotoxicity has been reported as a significant side effect associated with GEF treatment. The main purpose of this study was to investigate the potential cardiotoxic effect of GEF and the possible mechanisms involved using in vivo and in vitro rat cardiomyocyte model. Treatment of rat cardiomyocyte H9c2 cell line with GEF (0, 1, 5, and 10μM) caused cardiomyocyte death and upregulation of hypertrophic gene markers, such as brain natriuretic peptides (BNP) and Beta-myosin heavy chain (β-MHC) in a concentration-dependent manner at the mRNA and protein levels associated with an increase in the percentage of hypertrophied cardiac cells. Mechanistically, GEF treatment caused proportional and concentration-dependent increases in the mRNA and protein expression levels of apoptotic markers caspase-3 and p53 which was accompanied with marked increases in the percentage of H9c2 cells underwent apoptosis/necrosis as compared to control. In addition, oxidative stress marker (heme oxygenase-1, HO-1) and the formation of reactive oxygen species were increased in response to GEF treatment. At the in vivo level, treatment of Wistar albino rats for 21days with GEF (20 and 30mg/kg) significantly increased the cardiac enzymes (CK, CKmb, and LDH) levels associated with histopathological changes indicative of cardiotoxicity. Similarly, in vivo GEF treatment increased the mRNA and protein levels of BNP and β-MHC whereas inhibited the antihypertrophoic gene (α-MHC) associated with increased the percentage of hypertrophied cells. Furthermore, the mRNA and protein expression levels of caspase-3, p53, and HO-1 genes and the percentage of apoptotic cells were significantly increased by GEF treatment, which was more pronounced at the 30mg/kg dose. In conclusion, GEF induces cardiotoxicity and cardiac hypertrophy in vivo and in vitro rat model through cardiac apoptotic cell death

  2. UVA and UVB radiation-induced oxidation products of quercetin.

    PubMed

    Fahlman, Brian M; Krol, Ed S

    2009-12-01

    The flavonol quercetin is believed to provide protection against ultraviolet (UV) radiation-induced damage in plants. As part of our investigations into the potential for quercetin to protect skin against UV radiation-induced damage we have investigated the products of quercetin exposed to UV radiation in vitro. UVA (740 microW cm(-2) at 365 nm) or UVB (1300 microW cm(-2) at 310 nm) irradiation of quercetin in methanol results in a small conversion (less than 20%) to C-ring breakdown products over 11 h. When the triplet sensitizer benzophenone is added, greater than 90% conversion by UVA or UVB occurs within 1h. The major photoproducts from either UVA or UVB radiation are 2,4,6-trihydroxybenzaldehyde (1), 2-(3',4'-dihydroxybenzoyloxy)-4,6-dihydroxybenzoic acid (2) and 3,4-dihydroxyphenylethanol (3). Product 2 has previously been observed as a product of oxidative metabolism of quercetin, however products 1 and 3 appear to be the result of a unique UV-dependent pathway. In conclusion we have determined that quercetin undergoes slow decomposition to a mixture of C-ring-opened products, two of which to our knowledge have not been previously observed for quercetin decomposition, and that the presence of a triplet sensitizer greatly increases UV radiation-mediated quercetin decomposition. The presence of endogenous photosensitizers in the skin could potentially affect the UV stability of quercetin, suggesting that further study of quercetin for both its photoprotective properties and photostabilty in skin are warranted.

  3. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  4. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    SciTech Connect

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-07-15

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  5. Dequalinium blocks macrophage-induced metastasis following local radiation.

    PubMed

    Timaner, Michael; Bril, Rotem; Kaidar-Person, Orit; Rachman-Tzemah, Chen; Alishekevitz, Dror; Kotsofruk, Ruslana; Miller, Valeria; Nevelsky, Alexander; Daniel, Shahar; Raviv, Ziv; Rotenberg, Susan A; Shaked, Yuval

    2015-09-29

    A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis. PMID:26348470

  6. Dequalinium blocks macrophage-induced metastasis following local radiation

    PubMed Central

    Kaidar-Person, Orit; Rachman-Tzemah, Chen; Alishekevitz, Dror; Kotsofruk, Ruslana; Miller, Valeria; Nevelsky, Alexander; Daniel, Shahar; Raviv, Ziv; Rotenberg, Susan A.; Shaked, Yuval

    2015-01-01

    A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis. PMID:26348470

  7. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  8. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  9. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  10. G2-chromosome aberrations induced by high-LET radiations

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Ito, H.; Wu, H.; Cucinotta, F. A.

    We report measurements of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to γ-rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for γ-rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/μm silicon (2.7) or 80 keV/μm carbon (2.7) and then decreased with LET (1.5 at 440 keV/μm). RBE for chromatid-type break peaked at 55 keV/μm (2.4) then decreased rapidly with LET. The RBE of 440 keV/μm iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.

  11. Radiation-induced immune responses: mechanisms and therapeutic perspectives

    PubMed Central

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok

    2016-01-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field. PMID:27722125

  12. Solar radiation induced rotational bursting of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.

    1975-01-01

    It is suggested that the magnitudes of the two radiation-induced rotational bursting mechanisms (Radzieskii effect and windmill effect) have been overestimated and that they do not work significantly faster than the Poynting-Robertson effect in removing interplanetary particles. These two mechanisms are described, and serious doubts are raised regarding the derivation of their radiation pressure-torque proportionality constants, which are required for calculating their magnitudes. It is shown that both mechanisms will cause the alignment of elongated particles and, consequently, the polarization of zodiacal light. Since no positive polarization has been measured at the antisolar point, it is concluded that the magnitudes of the rotational bursting mechanisms are smaller than that of the Poynting-Robertson effect.

  13. Treatment of radiation- and chemotherapy-induced stomatitis

    SciTech Connect

    Carnel, S.B.; Blakeslee, D.B.; Oswald, S.G.; Barnes, M. )

    1990-04-01

    Severe stomatitis is a common problem encountered during either radiation therapy or chemotherapy. Most therapeutic regimens are empirical, with no scientific basis. The purpose of this study is to determine the efficacy of various topical solutions in the treatment of radiation- or chemotherapy-induced stomatitis. Eighteen patients were entered into a prospective double-blinded study to test several topical solutions: (1) viscous lidocaine with 1% cocaine; (2) dyclonine hydrochloride 1.0% (Dyclone); (3) kaolin-pectin solution, diphenhydramine plus saline (KBS); and (4) a placebo solution. Degree of pain relief, duration of relief, side effects, and palatability were evaluated. The results showed that Dyclone provided the most pain relief. Dyclone and viscous lidocaine with 1% cocaine provided the longest pain relief, which averaged 50 minutes This study provides objective data and defines useful guidelines for treatment of stomatitis.

  14. Radiation induced crystallinity damage in poly( L-lactic acid)

    NASA Astrophysics Data System (ADS)

    Kantoǧlu, Ömer; Güven, Olgun

    2002-12-01

    The radiation-induced crystallinity damage in poly( L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature ( Tg) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units ( G(- u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  15. Magnon emission and radiation induced by spin-polarized current

    NASA Astrophysics Data System (ADS)

    Zholud, Andrei; Freeman, Ryan; Cao, Rongxing; Urazhdin, Sergei

    The spin-torque effect due to spin injection into ferromagnets can affect their effective dynamical damping, and modify the magnon populations. The latter leads to the onset of nonlinear damping that can prevent spontaneous current-induced magnetization oscillations. It has been argued that these nonlinear processes can be eliminate by the radiation of magnons excited by local spin injection in extended magnetic films. To test these effects, studied of the effects of spin injection on the magnon populations in nanoscale spin valves and magnetic point contacts. Measurements of the giant magnetoresistance show a significant resistance component that is antisymmetric in current, and linearly dependent on temperature T. This component is significantly larger for the nanopatterned ferromagnets than for point contacts. We interpret our observations in terms of stimulated generation of magnons by the spin current, and their radiation in point contacts. Supported by NSF ECCS-1305586, ECCS-1509794.

  16. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  17. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  18. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  19. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    PubMed

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis.

  20. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  1. Radiation-Induced Phase Transformations in Ilmenite-Group Minerals

    SciTech Connect

    Mitchell, J. N.

    1997-12-31

    Transmission electron microscopy (TEM) is a powerful tool for characterizing and understanding radiation-induced structural changes in materials. We have irradiated single crystals of ilmenite (FeTiO{sub 3}) and geikielite (MgTiO{sub 3}) using ions and electrons to better understand the response of complex oxides to radiation. Ion irradiation experiments of bulk single crystals at 100 K show that ilmenite amorphized at doses of less than 1x10(exp15) Ar(2+)/sq cm and at a damage level in the peak damage region of 1 displacement per atom (dpa). Transmission electron microscopy and electron diffraction of a cross-sectioned portion of this crystal confirmed the formation of a 150 am thick amorphous layer. Geikielite proved to be more radiation resistant, requiring a flux of 2x10(exp 15) Xe(2+)/sq cm to induce amorphization at 100 K. This material did not amorphize at 470 K, despite a dose of 2.5 x10(exp 16) Xe(2+)/sq cm and a damage level as high as 25 dpa. Low temperature irradiations of electron- transparent crystals with 1 MeV Kr(+) also show that ilmenite amorphized after a damage level of 2.25 dpa at 175 K.Similar experiments on geikielite show that the microstructure is partially amorphous and partially crystalline after 10 dpa at 150 K. Concurrent ion and electron irradiation of both materials with 1 MeV Kr(+) and 0.9 MeV electrons produced dislocation loops in both materials, but no amorphous regions were formed. Differences in the radiation response of these isostructural oxides suggests that in systems with Mg-Fe solid solution, the Mg-rich compositions may be more resistant to structural changes.

  2. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss.

    PubMed

    Park, Joohong; Halliday, Gary M; Surjana, Devita; Damian, Diona L

    2010-01-01

    UV radiation is carcinogenic by causing mutations in the skin and also by suppressing cutaneous antitumor immunity. We previously found nicotinamide (vitamin B3) to be highly effective at reducing UV-induced immunosuppression in human volunteers, with microarray studies on in vivo irradiated human skin suggesting that nicotinamide normalizes subsets of apoptosis, immune function and energy metabolism-related genes that are downregulated by UV exposure. Using human adult low calcium temperature keratinocytes, we further investigated nicotinamide's effects on cellular energy metabolism. We found that nicotinamide prevented UV-induced cellular ATP loss and protected against UV-induced glycolytic blockade. To determine whether nicotinamide alters the effects of UV-induced oxidative stress posttranslationally, we also measured UV-induced reactive oxygen species (ROS). Nicotinamide had no effect on ROS formation, and at the low UV doses used in these studies, equivalent to ambient daily sun exposure, there was no evidence of apoptosis. Hence, nicotinamide appears to exert its UV protective effects on the skin via its role in cellular energy pathways.

  3. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    PubMed

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  4. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  5. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere. PMID:24143867

  6. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  7. Chaos of radiative heat-loss-induced flame front instability.

    PubMed

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph. PMID:27036182

  8. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  9. Facial reconstruction for radiation-induced skin cancer

    SciTech Connect

    Panje, W.R.; Dobleman, T.J. )

    1990-04-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction.

  10. Radiation-induced physical changes in UHMWPE implant components.

    PubMed

    Naidu, S H; Bixler, B L; Moulton, M J

    1997-02-01

    Post-irradiation aging of ultra-high molecular weight polyethylene (UHMWPE) is not well understood. Retrieval studies and in vitro aged specimens have shown oxidative changes along with increases in crystallinity. Critical analysis and review of the polymer science and polymer physics literature shows that while oxidation may be important during the first year post-irradiation, subsequent aging occurs because of initial gamma radiation-induced chain scission leading to eventual isothermal crystallization of polymer chains in the amorphous regions of the UHMWPE bulk. Mechanical properties of aged UHMWPE are not as yet clear and, until such data become available, gamma irradiation sterilization must be used with caution.

  11. Radiation-Induced Premelting of Ice at Silica Interfaces

    SciTech Connect

    Schoeder, S.; Reichert, H.; Schroeder, H.; Mezger, M.; Okasinski, J. S.; Dosch, H.; Honkimaeki, V.; Bilgram, J.

    2009-08-28

    The existence of surface and interfacial melting of ice below 0 deg. C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25 g/cm{sup 3}) within the emerging quasiliquid layer.

  12. Blackbody-induced radiative dissociation of cationic SF6 clusters

    NASA Astrophysics Data System (ADS)

    Toker, Y.; Rahinov, I.; Schwalm, D.; Even, U.; Heber, O.; Rappaport, M. L.; Strasser, D.; Zajfman, D.

    2012-08-01

    The stability of cationic SF5+(SF6)n-1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure and stability of SF6-based clusters.

  13. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  14. Investigation Into Radiation-Induced Compaction of Zerodur (trademark)

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Herren, K.; Hayden, M.; McDonald, K.; Sims, J. A.; Semmel, C. L.

    1996-01-01

    Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.

  15. Radiation-induced collisional pumping of molecules containing few atoms

    SciTech Connect

    Vasil'ev, G.K.; Chernyshev, Y.A.; Makarov, E.F.; Yakushev, V.G.

    1986-01-01

    The authors analyze the radiation-induced collisional pumping of few-atom molecules by laser emission taking into account both collisional and noncollisional processes of vibrational energy transfer in a molecule. For typical values of the parameters the vibrational energy of the molecules was found to depend on the laser emission intensity; regions of weak absorption, optimum absorption, and saturation appear as the pumping rate rises. Qualitative general conclusions are reached concerning the optimum conditions for the realization, in a medium absorbing laser emission, of either nonequilibrium dissociation or a chemical reaction involving vibrationally excited molecules.

  16. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality.

  17. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. PMID:27133743

  18. Spectroscopic characterization of radiation-induced defects in gallium nitride

    NASA Astrophysics Data System (ADS)

    Yang, Qing

    Radiation damage studies of GaN provide insights into the fundamental properties of the material as well as the basic knowledge needed to predict degradation of GaN-based devices in space-based applications or other radiation environments. The main interests are in investigating the properties of radiation-induced defects at the microscopic level and providing data to evaluate the radiation hardness of the material. Selective damage of the N-sublattice is achieved with 0.42 MeV electron irradiation. Two new luminescence lines at 3.4732 eV and 3.4545 eV are detected by time-resolved photoluminescence after irradiation. The two lines are associated with the ground state bound exciton of a new donor B1 and its two-electron transition. The donor binding energy of B1 is determined as 24.9 +/- 0.4 meV, shallower than the impurity donors ON and Si Ga. Among the possible defects, the nitrogen vacancy (VN) is the best candidate for the new donor B1. In addition, a change under focused 267 nm laser beam is observed at cryogenic temperatures in the excitonic luminescence of the irradiated sample. The donor bound exciton intensity of ON and SiGa, the total band edge luminescence intensity, and the luminescence decay lifetime of free and bound excitons all increase with laser exposure time. In contrast, the relative intensity of the B 1 bound exciton emission decreases. The change is not observed with below bandgap illumination. We propose that the light-induced change reflects the illumination-assisted dissociation of non-radiative defect complexes O N-Ni and SiGa-Ni, and subsequently the migration of Ni and at least partial annihilation of N i at VN. The new donor B1 bound exciton emission and the light-induced change starts to disappear at annealing temperature around 300°C, indicating the annihilation of the irradiation-induced vacancy and interstitial defects. An activation energy of 1.5 eV is obtained, which is proposed to be the sum of the dissociation energy of the ON

  19. X-radiation-induced differentiation of xenotransplanted human undifferentiated rhabdomyosarcoma

    SciTech Connect

    Takizawa, T.; Matsui, T.; Maeda, Y.; Okabe, S.; Mochizuki, M.; Tanaka, A.; Kawaguchi, K.; Fukayama, M.; Funata, N.; Koike, M.

    1989-01-01

    A serially xenotransplantable strain of undifferentiated embryonal rhabdomyosarcoma originating from the nasal cavity of a 42-year-old woman has been established in our laboratory. After radiotherapy for the tumor donor, distinct rhabdomyoblastic differentiation of the undifferentiated sarcoma cells appeared in the primary lesion, and it is a reasonable assumption that X-irradiation has a certain potentiality to induce morphologic differentiation of tumor cells. To study this possibility, tissue fragments of undifferentiated embryonal rhabdomyosarcoma that had grown to more than 10 mm after being transplanted to nude mice were selectively irradiated in situ. The degree of rhabdomyoblastic differentiation according to radiation dose was evaluated by light and electron microscopy and by immunostainability for myoglobin, creatine phosphokinase-MM, and desmin. Distinct morphologic differentiation of undifferentiated sarcoma cells could be induced by repeated X-irradiations at several-week intervals.

  20. Radiatively induced breaking of conformal symmetry in a superpotential

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  1. Heat Induced Damage Detection by Terahertz (THz) Radiation

    NASA Astrophysics Data System (ADS)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  2. Risk estimates for radiation-induced cancer and radiation protection standards

    SciTech Connect

    Sinclair, W.K. )

    1989-11-01

    At low doses, the primary biological effects of concern are stochastic in nature, i.e., they are more probable at higher doses, but their severity is independent of the dose. In the last decade, a new epidemiological information on radiation-induced cancer in humans has become available. In the Japanese survivors three new cycles of data (11 yr of experience) have accumulated, and a revised dosimetry system (DS86) has been introduced. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) reevaluated the risk of cancer from all human sources, which include other human populations such as those treated for ankylosing spondylitis and for cancer of the cervix. UNSCEAR has also evaluated the cancer risk for each of nine organs. For radiation protection purposes (low doses and dose rates, adult populations mainly), nominal values of risk since the 1977-80 period have been {approximately}1%/Sv. This value will need to be increased in the light of the new estimates. Also, risk estimates for various tissues must be reconsidered, and weighting factors used by International Commission on Radiological Protection need to be reexamined. Recommendations on occupational and public dose limits must also be reconsidered. The National Council on Radiation Protection and Measurements is in a comparatively good position with a recently produced set of recommendations that had higher cancer risk estimates in mind.

  3. Radiation-Induced Lymphocyte Apoptosis to Predict Radiation Therapy Late Toxicity in Prostate Cancer Patients

    SciTech Connect

    Schnarr, Kara; Boreham, Douglas; Sathya, Jinka; Julian, Jim; Dayes, Ian S.

    2009-08-01

    Purpose: To examine a potential correlation between the in vitro apoptotic response of lymphocytes to radiation and the risk of developing late gastrointestinal (GI)/genitourinary (GU) toxicity from radiotherapy for prostate cancer. Methods and Materials: Prostate cancer patients formerly enrolled in a randomized study were tested for radiosensitivity by using a radiation-induced lymphocyte apoptosis assay. Apoptosis was measured using flow cytometry-based Annexin-FITC/7AAD and DiOC{sub 6}/7AAD assays in subpopulations of lymphocytes (total lymphocytes, CD4+, CD8+ and CD4-/CD8-) after exposure to an in vitro dose of 0, 2, 4, or 8 Gy. Results: Patients with late toxicity after radiotherapy showed lower lymphocyte apoptotic responses to 8 Gy than patients who had not developed late toxicity (p = 0.01). All patients with late toxicity had apoptosis levels that were at or below the group mean. The negative predictive value in both apoptosis assays ranged from 95% to 100%, with sensitivity values of 83% to 100%. Apoptosis at lower dose points and in lymphocyte subpopulations had a weaker correlation with the occurrence of late toxicity. Conclusions: Lymphocyte apoptosis after 8 Gy of radiation has the potential to predict which patients will be spared late toxicity after radiation therapy. Further research should be performed to identify the specific subset of lymphocytes that correlates with late toxicity, followed by a corresponding prospective study.

  4. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    PubMed

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism.

  5. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure

    PubMed Central

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-01-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  6. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    PubMed

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  7. The effect of tianeptine in the prevention of radiation-induced neurocognitive impairment.

    PubMed

    Akyurek, Serap; Senturk, Vesile; Oncu, Bedriye; Ozyigit, Gokhan; Yilmaz, Sercan; Gokce, Saban Cakir

    2008-12-01

    Radiation-induced neurocognitive impairment is an undesirable radiation-induced toxicity and a common health problem in patients with primary or metastatic brain tumor. It greatly impairs quality of life for long-term brain tumor survivors. Hippocampus is the most important brain structure for neurocognitive functions. It has been shown that radiation affects the hippocampal neurogenesis due to either induce the apoptosis or reduce the precursor cell proliferation in the hippocampus. Radiation-induced microglial inflammatory response is also negative regulator of neurogenesis. Tianeptine is a clinically effective antidepressant that induces neurogenesis. It has also been shown that tianeptine is able to reduce apoptosis and cytoprotective against the effects of proinflammatory cytokines in the hippocampus. Given the putative role of impaired hippocampal neurogenesis in radiation-induced neurocognitive impairment we think that tianeptine can be effective for preventing radiation-induced neurocognitive impairment by increasing hippocampal neurogenesis.

  8. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  9. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  10. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  11. Radiation induced thyroid neoplasms 1920 to 1987: A vanishing problem

    SciTech Connect

    Mehta, M.P.; Goetowski, P.G.; Kinsella, T.J.

    1989-06-01

    Radiation for benign diseases has been implicated as an etiologic factor in thyroid cancer. From 1930-60, over 2 million children may have been exposed to therapeutic radiation and it is estimated that up to 7% may develop thyroid cancer after a 5-40 year latency. Thyroid stimulating hormone, secondary to radioinduced hypothyroidism, has been implicated as causative in animals. Such data has led to expensive screening programs in high risk patients. Because of a decline in irradiation for benign diseases in children over the last 2 decades, we questioned whether the incidence of radiation induced thyroid neoplasms (RITN) was also decreasing. Twenty-six of 227 patients (11%) with thyroid malignancies seen at our institution from 1974-87 had a history of previous head and neck irradiation. These included 13 papillary, 3 follicular, and 7 mixed carcinomas as well as 2 lymphomas and 1 synovial cell sarcoma. None of these 26 patients had abnormal thyroid function tests at presentation. Mean latency from irradiation to the diagnosis of thyroid cancer was 25.4 years (6-55 year range). Compared to the reported increasing incidence of RITN from 1940-70, there appears to be a significant decrease since 1970. Based on our analysis, the use of expensive screening programs in high risk populations may no longer be warranted. Additionally, the routine use of thyroid replacement in previously irradiated chemically hypothyroid patients is not recommended.30 references.

  12. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In

  13. Radiation-induced genomic instability in Caenorhabditis elegans.

    PubMed

    Huumonen, Katriina; Immonen, Hanna-Kaisa; Baverstock, Keith; Hiltunen, Mikko; Korkalainen, Merja; Lahtinen, Tapani; Parviainen, Juha; Viluksela, Matti; Wong, Garry; Naarala, Jonne; Juutilainen, Jukka

    2012-10-01

    Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.

  14. The thermal stability of radiation-induced defects in illite

    NASA Astrophysics Data System (ADS)

    Riegler, T.; Allard, T.; Beaufort, D.; Cantin, J.-L.; von Bardeleben, H. J.

    2016-01-01

    High-purity illite specimens from the Mesoproterozoic unconformity-related uranium deposits of Kiggavik, Thelon basin, Nunavut (Canada), and Shea Creek (Athabasca basin, Saskatchewan, Canada) have been studied using electron paramagnetic resonance spectroscopy to determine the thermal stability of the main radiation-induced defects and question the potential of using illite as a natural dosimeter. The observed spectra are complex as they can show in the same region several contributions: (1) an unstable native defect, (2) the main stable defect named Ai by reference to a previous study (Morichon et al. in Phys Chem Minerals 35:339-346, 2008), (3) a signal at g = 2.063 assigned to a new defect, not yet fully characterized, named Ai2 center and (4) impurities such as vanadyl complex or divalent manganese. Isochronal heating shows that the new signal corresponds to a stable species. Isothermal heating experiments at 400 and 450 °C provide values of half-life extrapolated at room temperature and activation energy of 1.9-29,109 years and 1.3-1.4 eV, respectively, corresponding to the Ai center. These parameters allow the use of stable radiation-induced defects as a record of radioactivity down to the Paleoproterozoic period.

  15. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice

    PubMed Central

    Xu, Liping; Yang, Xi; Chen, Jiayan; Ge, Xiaolin; Qin, Qin; Zhu, Hongcheng; Zhang, Chi; Sun, Xinchen

    2016-01-01

    Objective Statins are widely used lipid-lowering drugs, which have pleiotropic effects, such as anti-inflammation, and vascular protection. In our study, we investigated the radioprotective potential of simvastatin (SIM) in a murine model of radiation-induced salivary gland dysfunction. Design Ninety-six Institute of Cancer Research mice were randomly divided into four groups: solvent + sham irradiation (IR) (Group I), SIM + sham IR (Group II), IR + solvent (Group III), and IR + SIM (Group IV). SIM (10 mg/kg body weight, three times per week) was administered intraperitoneally 1 week prior to IR through to the end of the experiment. Saliva and submandibular gland tissues were obtained for biochemical, morphological (hematoxylin and eosin staining and Masson’s trichrome), and Western blot analysis at 8 hours, 24 hours, and 4 weeks after head and neck IR. Results IR caused a significant reduction of salivary secretion and amylase activity but elevation of malondialdehyde. SIM remitted the reduction of saliva secretion and restored salivary amylase activity. The protective benefits of SIM may be attributed to scavenging malondialdehyde, remitting collagen deposition, and reducing and delaying the elevation of transforming growth factor β1 expression induced by radiation. Conclusion SIM may be clinically useful to alleviate side effects of radiotherapy on salivary gland. PMID:27471375

  16. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  17. Radiation-Induced Autophagy Contributes to Cell Death and Induces Apoptosis Partly in Malignant Glioma Cells

    PubMed Central

    Jo, Guk Heui; Bögler, Oliver; Chwae, Yong-Joon; Yoo, Heon; Lee, Seung Hoon; Park, Jong Bae; Kim, Youn-Jae; Kim, Jong Heon; Gwak, Ho-Shin

    2015-01-01

    Purpose Radiation-induced autophagy has been shown to play two different roles, in malignant glioma (MG) cells, cytocidal or cytoprotective. However, neither the role of radiation-induced autophagy for cell death nor the existence of autophagy-induced apoptosis, a well-known cell-death pathway after irradiation, has been verified yet. Materials and Methods We observed both temporal and dose-dependent response patterns of autophagy and apoptosis to radiation in MG cell lines. Additionally, we investigated the role of autophagy in apoptosis through knockdown of autophagy-related proteins. Results Autophagic activity measured by staining of acidic vesicle organelles and Western blotting of LC-3 protein increased in proportion to radiation dose from day 1 to 5 after irradiation. Apoptosis measured by annexin-V staining and Western blotting of cleaved poly(ADP-ribose) polymerase demonstrated relatively late appearance 3 days after irradiation that increased for up to 7 days. Blocking of pan-caspase (Z-VAD-FMK) did not affect apoptosis after irradiation, but silencing of Atg5 effectively reduced radiation-induced autophagy, which decreased apoptosis significantly. Inhibition of autophagy in Atg5 knockdown cells was shown to be beneficial for cell survival. Stable transfection of GFP-LC3 cells was observed after irradiation. Annexin-V was localized in cells bearing GFP-LC3 punctuated spots, indicating autophagy in immunofluorescence. Some of these punctuated GFP-LC3 bearing cells formed conglomerated spots and died in final phase. Conclusion These findings suggest that autophagy appears earlier than apoptosis after irradiation and that a portion of the apoptotic population that appears later is autophagy-dependent. Thus, autophagy is a pathway to cell death after irradiation of MG cells. PMID:25410762

  18. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  19. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A. )

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine.

  20. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  1. Radiation-induced meningioma: a distinct molecular genetic pattern?

    PubMed

    Shoshan, Y; Chernova, O; Juen, S S; Somerville, R P; Israel, Z; Barnett, G H; Cowell, J K

    2000-07-01

    Radiation-induced meningiomas arise after low-dose irradiation treatment of certain medical conditions and are recognized as clinically separate from sporadic meningioma. These tumors are often aggressive or malignant, they are likely to be multiple, and they have a high recurrence rate following treatment compared with sporadic meningiomas. To understand the molecular mechanism by which radiation-induced meningioma (RIM) arise, we compared genetic changes in 7 RIM and 8 sporadic meningioma (SM) samples. The presence of mutations in the 17 exons of the neurofibromatosis type 2 (NF2) gene, which has been shown to be inactivated in sporadic meningiomas, was analyzed in RIM and SM using single-strand conformation polymorphism (SSCP) and DNA sequencing. In contrast to SM, which showed NF2 mutations in 50% of specimens, no mutations were found in RIM. In addition, Western blot analysis of schwannomin/merlin protein, the NF2 gene product, demonstrated protein levels comparable to normal brain in 4/4 RIM tumor samples analyzed. Loss of heterozygosity (LOH) of genomic regions, which were reported for SM, was also analyzed in all cases of RIM using 22 polymorphic DNA markers. Allele losses were found on chromosomes 1p (4/7), 9p (2/7), 19q (2/7), 22q (2/7), and 18q (1/7). From these observations we conclude that unlike sporadic meningiomas, NF2 gene inactivation and chromosome 22q deletions are far less frequent in RIM, and their role in meningioma development following low dose irradiation is less significant. Other chromosomal lesions, especially loss of 1p, possibly induced by irradiation, may be more important in the development of these tumors. PMID:10901233

  2. Motion-induced radiation from electrons moving in Maxwell's fish-eye

    PubMed Central

    Liu, Yangjie; Ang, L. K.

    2013-01-01

    In Čerenkov radiation and transition radiation, evanescent wave from motion of charged particles transfers into radiation coherently. However, such dissipative motion-induced radiations require particles to move faster than light in medium or to encounter velocity transition to pump energy. Inspired by a method to detect cloak by observing radiation of a fast-moving electron bunch going through it by Zhang et al., we study the generation of electron-induced radiation from electrons' interaction with Maxwell's fish-eye sphere. Our calculation shows that the radiation is due to a combination of Čerenkov radiation and transition radiation, which may pave the way to investigate new schemes of transferring evanescent wave to radiation. PMID:24166002

  3. Single-Dose Radiation-Induced Oral Mucositis Mouse Model

    PubMed Central

    Maria, Osama Muhammad; Syme, Alasdair; Eliopoulos, Nicoletta; Muanza, Thierry

    2016-01-01

    The generation of a self-resolved radiation-induced oral mucositis (RIOM) mouse model using the highest possibly tolerable single ionizing radiation (RT) dose was needed in order to study RIOM management solutions. We used 10-week-old male BALB/c mice with average weight of 23 g for model production. Mice were treated with an orthovoltage X-ray irradiator to induce the RIOM ulceration at the intermolar eminence of the animal tongue. General anesthesia was injected intraperitoneally for proper animal immobilization during the procedure. Ten days after irradiation, a single RT dose of 10, 15, 18, 20, and 25 Gy generated a RIOM ulcer at the intermolar eminence (posterior upper tongue surface) with mean ulcer floor (posterior epithelium) heights of 190, 150, 25, 10, and 10 μm, respectively, compared to 200 μm in non-irradiated animals. The mean RIOM ulcer size % of the total epithelialized upper surface of the animal tongue was RT dose dependent. At day 10, the ulcer size % was 2, 5, 27, and 31% for 15, 18, 20, and 25 Gy RT, respectively. The mean relative surface area of the total epithelialized upper surface of the tongue was RT dose dependent, since it was significantly decreased to 97, 95, 88, and 38% with 15, 18, 20, and 25 Gy doses, respectively, at day 10 after RT. Subcutaneous injection of 1 mL of 0.9% saline/6 h for 24 h yielded a 100% survival only with 18 Gy self-resolved RIOM, which had 5.6 ± 0.3 days ulcer duration. In conclusion, we have generated a 100% survival self-resolved single-dose RIOM male mouse model with long enough duration for application in RIOM management research. Oral mucositis ulceration was radiation dose dependent. Sufficient hydration of animals after radiation exposure significantly improved their survival. PMID:27446800

  4. [Selective toxicity of cytostatic agents: studies on the cardiotoxicity of doxorubicin, its pathogenesis and contraindications].

    PubMed

    Lenzhofer, R

    1983-01-01

    In the past few years the medical treatment of malignant diseases has steadily increased in scope and importance. However, the tumor regimens described in the textbooks still are rather schematic recommendations, which are inadequately tailored to the needs of the individual case. Current tumor therapy is based on the results of the statistical analysis using empirical data collected in randomized trials. While patients can today be given a statistical value which expresses their computed chance of a cure versus that of a defined population, there is still no generally valid method which could serve as a rational basis for individualized counselling. But cytostatic chemotherapy has yet another major shortcoming: the collective assessment of toxicity, which is related to one of the basic properties of cytostatic drugs, i.e. their extremely low therapeutic index. Many of the side effects of cytostatics may cause severe irreversible, at times even fatal, organ dysfunction. Consequently, the definition of the therapeutic risks involved on the basis of an objective identification of potential organ toxicity is a major challenge. "Surgery without a knife", as K.H. Spitzy has called chemotherapy, should be subjected to objective criteria for its indications and contraindications so that patients can truly benefit from what are become increasingly aggressive measures. The principle of weighing the benefits desired in the individual case against the potential risks involved in a specific treatment, which Paul Ehrlich postulated for antibacterial chemotherapy, should also be applied to cytostatic chemotherapy with a view to facilitating the decision for or against therapy in borderline cases. The present contribution which is designed to shed light on the cardiotoxicity of doxorubicin should be interpreted in light of this situation. Pathogenetic aspects and animal experiments on drug-induced lipid peroxidation will be discussed and clinical trials on both acute and chronic

  5. Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats

    SciTech Connect

    Zordoky, Beshay N.M.; Anwar-Mohamed, Anwar; Aboutabl, Mona E.

    2010-01-01

    Doxorubicin (DOX) is a potent anti-neoplastic antibiotic used to treat a variety of malignancies; however, its use is limited by dose-dependent cardiotoxicity. Moreover, there is a strong correlation between cytochrome P450 (CYP)-mediated arachidonic acid metabolites and the pathogenesis of many cardiovascular diseases. Therefore, in the current study, we have investigated the effect of acute DOX toxicity on the expression of several CYP enzymes and their associated arachidonic acid metabolites in the heart of male Sprague-Dawley rats. Acute DOX toxicity was induced by a single intraperitoneal injection of 15 mg/kg of the drug. Our results showed that DOX treatment for 24 h caused a significant induction of CYP1A1, CYP1B1, CYP2C11, CYP2J3, CYP4A1, CYP4A3, CYP4F1, CYP4F4, and EPHX2 gene expression in the heart of DOX-treated rats as compared to the control. Similarly, there was a significant induction of CYP1A1, CYP1B1, CYP2C11, CYP2J3, CYP4A, and sEH proteins after 24 h of DOX administration. In the heart microsomes, acute DOX toxicity significantly increased the formation of 20-HETE which is consistent with the induction of the major CYP omega-hydroxylases: CYP4A1, CYP4A3, CYP4F1, and CYP4F4. On the other hand, the formation of 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) was significantly reduced, whereas the formation of their corresponding dihydroxyeicosatrienoic acids was significantly increased. The decrease in the cardioprotective EETs can be attributed to the increase of sEH activity parallel to the induction of the EPHX2 gene expression in the heart of DOX-treated rats. In conclusion, acute DOX toxicity alters the expression of several CYP and sEH enzymes with a consequent alteration in arachidonic acid metabolism. These results may represent a novel mechanism by which this drug causes progressive cardiotoxicity.

  6. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    SciTech Connect

    Chapalamadugu, Kalyan C.; Panguluri, Siva K.; Bennett, Eric S.; Kolliputi, Narasaiah; Tipparaju, Srinivas M.

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD{sub 90}; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co

  7. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  8. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    PubMed Central

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  9. Radiation-induced amorphization of rare-earth titanate pyrochlores

    NASA Astrophysics Data System (ADS)

    Lian, Jie; Chen, Jian; Wang, L. M.; Ewing, Rodney C.; Farmer, J. Matt; Boatner, Lynn A.; Helean, K. B.

    2003-10-01

    Single crystals of the entire series of A2Ti2O7 (A=Sm to Lu, and Y) pyrochlore compounds were irradiated by 1-MeV Kr+ ions at temperatures from 293 to 1073 K, and the microstructure evolution, as a function of increasing radiation fluence, was characterized using in situ transmission electron microscopy (TEM). The critical amorphization temperature, Tc, generally increases from ˜480 to ˜1120 K with increasing A-site cation size (e.g., 0.977 Å for Lu3+ to 1.079 Å for Sm3+). An abnormally high susceptibility to ion beam damage was found for Gd2Ti2O7 (with the highest Tc of ˜1120 K). Factors influencing the response of titanate pyrochlores to ion irradiation-induced amorphization are discussed in terms of cation radius ratio, defect formation, and the tendency to undergo an order-disorder transition to the defect-fluorite structure. The resistance of the pyrochlore structure to ion beam-induced amorphization is not only affected by the relative sizes of the A- and B-site cations, but also the cation electronic configuration and the structural disorder. Pyrochlore compositions that have larger structural deviations from the ideal fluorite structure, as evidenced by the smaller 48f oxygen positional parameter, x, are more sensitive to ion beam-induced amorphization.

  10. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.

    PubMed

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H; Pitot, Henry C; Lambert, Paul F

    2016-05-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  11. Plasma concentrations and cardiotoxic effects of desipramine and protriptyline in the rat

    PubMed Central

    Bianchetti, G.; Bonaccorsi, Aurora; Chiodaroli, A.; Franco, R.; Garattini, S.; Gomeni, R.; Morselli, P.L.

    1977-01-01

    1 Desipramine and protriptyline were administered to anaesthetized rats by two consecutive intravenous infusions in order to obtain a peak level (first infusion) followed by lower steady state concentrations (second infusion) (Wagner, 1974). Theoretical plasma level time courses were confirmed experimentally. 2 Desipramine and protriptyline were measured in atria and ventricles. Increasing infusion rates led to proportional increases in plasma and atrial concentrations. The tissue/medium ratio ranged from 57 to 21 for desipramine and from 43 to 11 for protriptyline according to the time of determination during infusions. 3 Heart rate changes, deviation of the electrical axis of the heart and prolongation of atrioventricular conduction were recorded at fixed times during infusion. 4 Positive chronotropic effects were noted at plasma concentrations ranging from 0.035 to 0.1 μg/ml for desipramine and from 0.04 to 1.2 μg/ml for protriptyline. At higher plasma concentrations the positive chronotropic effect decreased and bradycardia developed. Both drugs induced right rotation of the electrical axis of the heart. Threshold plasma levels giving 40° rotation were 1.35 μg/ml (desipramine) and 1.75 μg/ml (protriptyline). Atrioventricular conduction was prolonged at threshold plasma concentrations of 2.2 μg/ml for desipramine and 3.6 μg/ml for protriptyline. 5 Desipramine is more cardiotoxic than protriptyline. This difference is discussed in relation to the plasma and heart concentration of the two drugs. PMID:884382

  12. Models of Heart Failure Based on the Cardiotoxicity of Anticancer Drugs.

    PubMed

    Mercurio, Valentina; Pirozzi, Flora; Lazzarini, Edoardo; Marone, Giancarlo; Rizzo, Paola; Agnetti, Giulio; Tocchetti, Carlo G; Ghigo, Alessandra; Ameri, Pietro

    2016-06-01

    Heart failure (HF) is a complication of oncological treatments that may have dramatic clinical impact. It may acutely worsen a patient's condition or it may present with delayed onset, even years after treatment, when cancer has been cured or is in stable remission. Several studies have addressed the mechanisms of cancer therapy-related HF and some have led to the definition of disease models that hold valid for other and more common types of HF. Here, we review these models of HF based on the cardiotoxicity of antineoplastic drugs and classify them in cardiomyocyte-intrinsic, paracrine, or potentially secondary to effects on cardiac progenitor cells. The first group includes HF resulting from the combination of oxidative stress, mitochondrial dysfunction, and activation of the DNA damage response, which is typically caused by anthracyclines, and HF resulting from deranged myocardial energetics, such as that triggered by anthracyclines and sunitinib. Blockade of the neuregulin-1/ErbB4/ErbB2, vascular endothelial growth factor/vascular endothelial growth factor receptor and platelet-derived growth factor /platelet-derived growth factor receptor pathways by trastuzumab, sorafenib and sunitinib is proposed as paradigm of cancer therapy-related HF associated with alterations of myocardial paracrine pathways. Finally, anthracyclines and trastuzumab are also presented as examples of antitumor agents that induce HF by affecting the cardiac progenitor cell population.

  13. Models of Heart Failure Based on the Cardiotoxicity of Anticancer Drugs.

    PubMed

    Mercurio, Valentina; Pirozzi, Flora; Lazzarini, Edoardo; Marone, Giancarlo; Rizzo, Paola; Agnetti, Giulio; Tocchetti, Carlo G; Ghigo, Alessandra; Ameri, Pietro

    2016-06-01

    Heart failure (HF) is a complication of oncological treatments that may have dramatic clinical impact. It may acutely worsen a patient's condition or it may present with delayed onset, even years after treatment, when cancer has been cured or is in stable remission. Several studies have addressed the mechanisms of cancer therapy-related HF and some have led to the definition of disease models that hold valid for other and more common types of HF. Here, we review these models of HF based on the cardiotoxicity of antineoplastic drugs and classify them in cardiomyocyte-intrinsic, paracrine, or potentially secondary to effects on cardiac progenitor cells. The first group includes HF resulting from the combination of oxidative stress, mitochondrial dysfunction, and activation of the DNA damage response, which is typically caused by anthracyclines, and HF resulting from deranged myocardial energetics, such as that triggered by anthracyclines and sunitinib. Blockade of the neuregulin-1/ErbB4/ErbB2, vascular endothelial growth factor/vascular endothelial growth factor receptor and platelet-derived growth factor /platelet-derived growth factor receptor pathways by trastuzumab, sorafenib and sunitinib is proposed as paradigm of cancer therapy-related HF associated with alterations of myocardial paracrine pathways. Finally, anthracyclines and trastuzumab are also presented as examples of antitumor agents that induce HF by affecting the cardiac progenitor cell population. PMID:27103426

  14. Toxicity of macrolide antibiotics on isolated heart mitochondria: a justification for their cardiotoxic adverse effect.

    PubMed

    Salimi, Ahmad; Eybagi, Sadaf; Seydi, Enayatollah; Naserzadeh, Parvaneh; Kazerouni, Negar Panahi; Pourahmad, Jalal

    2016-01-01

    1. Macrolides belong to the polyketide class of natural products. These products are a group of drugs (typically antibiotics) which their activity stems from the presence of a macrolide ring. Antibiotic macrolides are used to treat infections caused by Gram-positive bacteria and Haemophilus influenzae infections such as respiratory tract and soft-tissue infections. Macrolides, mainly erythromycin and clarithromycin, rarely show QT prolongation, as their infamous adverse reaction which can lead to torsades de pointes. Electrophysiological studies showed that macrolides prolonging the QT interval inhibit the rapid component of the delayed rectifier K(+) current (IKr) through the block of potassium channels encoded by the human ether-a-go-go-related gene (HERG). Other studies suggest that increased ROS generation alters the kinetics of hERG K(+) conductance. 2. In our study, rat cardiomyocytes were isolated with collagen perfusion technique. Finally, mitochondria isolated from cardiomyocytes were exposed to erythromycin, azithromycin and clarithromycin for their probable toxicity effects. 3. Our results demonstrated that macrolides induced reactive oxygen species formation, mitochondrial membrane permeabilization and mitochondrial swelling and finally cytochrome c release in cardiomyocyte mitochondria. 4. These findings suggested that the toxicity of heart mitochondria is a starting point for cardiotoxic effects of macrolides including QT prolongation, torsades de pointes and arrhythmia.

  15. Radiation induces turbulence in particle-laden fluids

    SciTech Connect

    Zamansky, Rémi; Coletti, Filippo; Massot, Marc; Mani, Ali

    2014-07-15

    When a transparent fluid laden with solid particles is subject to radiative heating, non-uniformities in particle distribution result in local fluid temperature fluctuations. Under the influence of gravity, buoyancy induces vortical fluid motion which can lead to strong preferential concentration, enhancing the local heating and more non-uniformities in particle distribution. By employing direct numerical simulations this study shows that the described feedback loop can create and sustain turbulence. The velocity and length scale of the resulting turbulence is not known a priori, and is set by balance between viscous forces and buoyancy effects. When the particle response time is comparable to a viscous time scale, introduced in our analysis, the system exhibits intense fluctuations of turbulent kinetic energy and strong preferential concentration of particles.

  16. Imaging for assessment of radiation-induced normal tissue effects

    PubMed Central

    Jeraj, Robert; Cao, Yue; Ten Haken, Randall K.; Hahn, Carol; Marks, Lawrence

    2010-01-01

    Imaging can provide quantitative assessment of radiation-induced normal tissue effects. Identifying an early sign of normal tissue damage with imaging would have the potential to predict organ dysfunction, thereby allowing re-optimization of treatment strategies based upon individual patients’ risks and benefits. Early detection with non-invasive imaging may enable interventions to mitigate therapy-associated injury prior to its clinical manifestation. Further, successive imaging may provide an objective assessment of the impact of such mitigation therapies. However, many problems make application of imaging to normal tissue assessment challenging, and further work is required to establish imaging biomarkers as surrogate endpoints of clinical outcome. The performance of clinical trials where normal tissue injury is a clearly defined endpoint would greatly aid in realization of these goals. PMID:20171509

  17. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-06-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  18. Characterization of gamma radiation inducible thioredoxin h from Spirogyra varians.

    PubMed

    Yoon, Minchul; Yang, Ho-Yeon; Lee, Seung-Sik; Kim, Dong-Ho; Kim, Gwang-Hoon; Choi, Jong-il

    2013-08-15

    In this study, thioredoxin h (Trxh) was isolated and characterized from the fresh water green alga Spirogyra varians, which was one amongst the pool of proteins induced upon gamma radiation treatment. cDNA clones encoding S. varians thioredoxin h were isolated from a pre-constructed S. varians cDNA library. Trxh had a molecular mass of 13.5kDa and contained the canonical WCGPC active site. Recombinant Trxh showed the disulfide reduction activity, and exhibited insulin reduction activity. Also, Trxh had higher 5,5'-dithiobis(2-nitrobenzoic acid) reduction activity with Arabidopsis thioredoxin reductase (TR) than with Escherichia coli TR. Specific expression of the Trxh gene was further analyzed at mRNA and protein levels and was found to increase by gamma irradiation upto the absorbed dose of 3kGy, suggesting that Trxh may have potential functions in protection of biomolecules from gamma irradiation. PMID:23830452

  19. Radiation pressure induced difference-sideband generation beyond linearized description

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying

    2016-08-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  20. Measurements of prompt radiation induced conductivity of alumina and sapphire.

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  1. Characterization of gamma radiation inducible thioredoxin h from Spirogyra varians.

    PubMed

    Yoon, Minchul; Yang, Ho-Yeon; Lee, Seung-Sik; Kim, Dong-Ho; Kim, Gwang-Hoon; Choi, Jong-il

    2013-08-15

    In this study, thioredoxin h (Trxh) was isolated and characterized from the fresh water green alga Spirogyra varians, which was one amongst the pool of proteins induced upon gamma radiation treatment. cDNA clones encoding S. varians thioredoxin h were isolated from a pre-constructed S. varians cDNA library. Trxh had a molecular mass of 13.5kDa and contained the canonical WCGPC active site. Recombinant Trxh showed the disulfide reduction activity, and exhibited insulin reduction activity. Also, Trxh had higher 5,5'-dithiobis(2-nitrobenzoic acid) reduction activity with Arabidopsis thioredoxin reductase (TR) than with Escherichia coli TR. Specific expression of the Trxh gene was further analyzed at mRNA and protein levels and was found to increase by gamma irradiation upto the absorbed dose of 3kGy, suggesting that Trxh may have potential functions in protection of biomolecules from gamma irradiation.

  2. Radiation-induced effects and the immune system in cancer

    PubMed Central

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT. PMID:23251903

  3. Novel concepts in radiation-induced cardiovascular disease

    PubMed Central

    Cuomo, Jason R; Sharma, Gyanendra K; Conger, Preston D; Weintraub, Neal L

    2016-01-01

    Radiation-induced cardiovascular disease (RICVD) is the most common nonmalignant cause of morbidity and mortality among cancer survivors who have undergone mediastinal radiation therapy (RT). Cardiovascular complications include effusive or constrictive pericarditis, cardiomyopathy, valvular heart disease, and coronary/vascular disease. These are pathophysiologically distinct disease entities whose prevalence varies depending on the timing and extent of radiation exposure to the heart and great vessels. Although refinements in RT dosimetry and shielding will inevitably limit future cases of RICVD, the increasing number of long-term cancer survivors, including those treated with older higher-dose RT regimens, will ensure a steady flow of afflicted patients for the foreseeable future. Thus, there is a pressing need for enhanced understanding of the disease mechanisms, and improved detection methods and treatment strategies. Newly characterized mechanisms responsible for the establishment of chronic fibrosis, such as oxidative stress, inflammation and epigenetic modifications, are discussed and linked to potential treatments currently under study. Novel imaging modalities may serve as powerful screening tools in RICVD, and recent research and expert opinion advocating their use is introduced. Data arguing for the aggressive use of percutaneous interventions, such as transcutaneous valve replacement and drug-eluting stents, are examined and considered in the context of prior therapeutic approaches. RICVD and its treatment options are the subject of a rich and dynamic body of research, and patients who are at risk or suffering from this disease will benefit from the care of physicians with specialty expertise in the emerging field of cardio-oncology. PMID:27721934

  4. Radiation induced effects on mechanical properties of nanoporous gold foams

    SciTech Connect

    Caro, M. E-mail: efu@pku.edu.cn; Fu, E. G. E-mail: efu@pku.edu.cn; Wang, Y. Q.; Martinez, E.; Caro, A.; Mook, W. M.; Sheehan, C.; Baldwin, J. K.

    2014-06-09

    It has recently been shown that due to a high surface-to-volume ratio, nanoporous materials display radiation tolerance. The abundance of surfaces, which are perfect sinks for defects, and the relation between ligament size, defect diffusion, and time combine to define a window of radiation resistance [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. Outside this window, the dominant defect created by irradiation in Au nanofoams are stacking fault tetrahedra (SFT). Molecular dynamics computer simulations of nanopillars, taken as the elemental constituent of foams, predict that SFTs act as dislocation sources inducing softening, in contrast to the usual behavior in bulk materials, where defects are obstacles to dislocation motion, producing hardening. In this work we test that prediction and answer the question whether irradiation actually hardens or softens a nanofam. Ne ion irradiations of gold nanofoams were performed at room temperature for a total dose up to 4 dpa, and their mechanical behavior was measured by nanoindentation. We find that hardness increases after irradiation, a result that we analyze in terms of the role of SFTs on the deformation mode of foams.

  5. Radiation induced effects on mechanical properties of nanoporous gold foams

    NASA Astrophysics Data System (ADS)

    Caro, M.; Mook, W. M.; Fu, E. G.; Wang, Y. Q.; Sheehan, C.; Martinez, E.; Baldwin, J. K.; Caro, A.

    2014-06-01

    It has recently been shown that due to a high surface-to-volume ratio, nanoporous materials display radiation tolerance. The abundance of surfaces, which are perfect sinks for defects, and the relation between ligament size, defect diffusion, and time combine to define a window of radiation resistance [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. Outside this window, the dominant defect created by irradiation in Au nanofoams are stacking fault tetrahedra (SFT). Molecular dynamics computer simulations of nanopillars, taken as the elemental constituent of foams, predict that SFTs act as dislocation sources inducing softening, in contrast to the usual behavior in bulk materials, where defects are obstacles to dislocation motion, producing hardening. In this work we test that prediction and answer the question whether irradiation actually hardens or softens a nanofam. Ne ion irradiations of gold nanofoams were performed at room temperature for a total dose up to 4 dpa, and their mechanical behavior was measured by nanoindentation. We find that hardness increases after irradiation, a result that we analyze in terms of the role of SFTs on the deformation mode of foams.

  6. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  7. Are Epigenetic Mechanisms Involved in Radiation-Induced Bystander Effects?

    PubMed Central

    Mothersill, Carmel; Seymour, Colin

    2012-01-01

    The “non-targeted effects” of ionizing radiation including bystander effects and genomic instability are unique in that no classic mutagenic event occurs in the cell showing the effect. In the case of bystander effects, cells which were not in the field affected by the radiation show high levels of mutations, chromosome aberrations, and membrane signaling changes leading to what is termed “horizontal transmission” of mutations and information which may be damaging while in the case of genomic instability, generations of cells derived from an irradiated progenitor appear normal but then lethal and non-lethal mutations appear in distant progeny. This is known as “vertical transmission.” In both situations high yields of non-clonal mutations leading to distant occurrence of mutation events both in space and time. This precludes a mutator phenotype or other conventional explanation and appears to indicate a generalized form of stress-induced mutagenesis which is well documented in bacteria. This review will discuss the phenomenology of what we term “non-targeted effects,” and will consider to what extent they challenge conventional ideas in genetics and epigenetics. PMID:22629281

  8. Radiation-induced sarcomas of the chest wall

    SciTech Connect

    Souba, W.W.; McKenna, R.J. Jr.; Meis, J.; Benjamin, R.; Raymond, A.K.; Mountain, C.F.

    1986-02-01

    Sixteen patients are presented who had sarcomas of the chest wall at a site where a prior malignancy had been irradiated. The first malignancies included breast cancer (ten cases), Hodgkin's disease (four cases), and others (two cases). Radiation doses varied from 4200 to 5500 R (mean, 4900 R). The latency period ranged from 5 to 28 years (mean, 13 years). The histologic types of the radiation-induced sarcomas were as follows: malignant fibrous histiocytoma, nine cases; osteosarcoma, six cases; and malignant mesenchymoma, one case. The only long-term survivor is alive and well 12 years after resection of a clavicular chondroblastic osteosarcoma. Three cases were recently diagnosed. Despite aggressive multimodality treatment, the remaining 13 patients have all died from their sarcomas (mean survival, 13.5 months). All patients have apparently been cured of their first malignancies. Chemotherapy was ineffective. No treatment, including forequarter amputation, appeared to palliate the patients with supraclavicular soft tissue sarcomas. Major chest wall resection offered good palliation for seven of eight patients with sarcomas arising in the sternum or lateral chest wall. Close follow-up is needed to detect signs of these sarcomas in the ever-increasing number of patients receiving therapeutic irradiation.

  9. Radiation-induced tumor neoantigens: imaging and therapeutic implications

    PubMed Central

    Corso, Christopher D; Ali, Arif N; Diaz, Roberto

    2011-01-01

    Exposure of tumor cells to ionizing radiation (IR) is widely known to induce a number of cellular changes. One way that IR can affect tumor cells is through the development of neoantigens which are new molecules that tumor cells express at the cell membrane following some insult or change to the cell. There have been numerous reports in the literature of changes in both tumor and tumor vasculature cell surface molecule expression following treatment with IR. The usefulness of neoantigens for imaging and therapeutic applications lies in the fact that they are differentially expressed on the surface of irradiated tumor cells to a greater extent than on normal tissues. This differential expression provides a mechanism by which tumor cells can be “marked” by radiation for further targeting. Drug delivery vehicles or imaging agents conjugated to ligands that recognize and interact with the neoantigens can help to improve tumor-specific targeting and reduce systemic toxicity with cancer drugs. This article provides a review of the molecules that have been reported to be expressed on the surface of tumor cells in response to IR either in vivo or in vitro. Additionally, we provide a discussion of some of the methods used in the identification of these antigens and applications for their use in drug delivery and imaging. PMID:21969260

  10. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  11. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    SciTech Connect

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won; Oh, Sang Ho; Lee, Yun-Sil; Lee, Eun-Jung; Cho, Jaeho

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  12. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  13. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  14. Radiation-induced leukemia: Comparative studies in mouse and man

    SciTech Connect

    Haas, M.

    1991-01-01

    We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism of T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable Is it feasible to genetically suppress early and/or progressed A-TCL cells What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate During the first grant year we have worked on aspects of all three questions.

  15. Characterization of a Novel Radiation-Induced Sarcoma Cell Line

    PubMed Central

    Lang, J.E.; Zhu, W.; Nokes, B.T.; Sheth, G.R.; Novak, P.; Fuchs, L.; Watts, G.S.; Futscher, B.W.; Mineyev, N.; Ring, A.; LeBeau, L.; Nagle, R.; Cranmer, L.D.

    2014-01-01

    Background Radiation-induced sarcoma (RIS) is a potential complication of cancer treatment. No widely available cell line models exist to facilitate studies of RIS. Methods We derived a spontaneously immortalized primary human cell line, UACC-SARC1, from a RIS. Results Short tandem repeat (STR) profiling of UACC-SARC1 was virtually identical to its parental tumor. Immunohistochemistry (IHC) analysis of the tumor and immunocytochemistry (ICC) analysis of UACC-SARC1 revealed shared expression of vimentin, osteonectin, CD68, Ki67 and PTEN but tumor-restricted expression of the histiocyte markers α1-antitrypsin and α1-antichymotrypsin. Karyotyping of the tumor demonstrated aneuploidy. Comparative genomic hybridization (CGH) provided direct genetic comparison between the tumor and UACC-SARC1. Sequencing of 740 mutation hotspots revealed no mutations in UACC-SARC1 nor in the tumor. NOD/SCID gamma mouse xenografts demonstrated tumor formation and metastasis. Clonogenicity assays demonstrated that 90% of single cells produced viable colonies. NOD/SCID gamma mice produced useful patient-derived xenografts for orthotopic or metastatic models. Conclusion Our novel RIS strain constitutes a useful tool for pre-clinical studies of this rare, aggressive disease. UACC-SARC1 is an aneuploid cell line with complex genomics lacking common oncogenes or tumor suppressor genes as drivers of its biology. The UACC-SARC1 cell line will enable further studies of the drivers of RIS. Synopsis We derived a spontaneously immortalized primary human cell line, UACC-SARC1, from a radiation-induced sarcoma (RIS). Our novel RIS cell line constitutes a useful tool for pre-clinical studies of this rare, aggressive disease. PMID:25644184

  16. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    SciTech Connect

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  17. Radiation-induced osteosarcomas in the pediatric population

    SciTech Connect

    Koshy, Matthew; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2005-11-15

    Purpose: Radiation-induced osteosarcomas (R-OS) have historically been high-grade, locally invasive tumors with a poor prognosis. The purpose of this study was to perform a comprehensive literature review and analysis of reported cases dealing with R-OS in the pediatric population to identify the characteristics, prognostic factors, optimal treatment modalities, and overall survival of these patients. Methods and Materials: A MEDLINE/PubMed search of articles written in the English language dealing with OSs occurring after radiotherapy (RT) in the pediatric population yielded 30 studies from 1981 to 2004. Eligibility criteria included patients <21 years of age at the diagnosis of the primary cancer, cases satisfying the modified Cahan criteria, and information on treatment outcome. Factors analyzed included the type of primary cancer treated with RT, the radiation dose and beam energy, the latency period between RT and the development of R-OS, and the treatment, follow-up, and final outcome of R-OS. Results: The series included 109 patients with a median age at the diagnosis of primary cancer of 6 years (range, 0.08-21 years). The most common tumors treated with RT were Ewing's sarcoma (23.9%), rhabdomyosarcoma (17.4%), retinoblastoma (12.8%), Hodgkin's disease (9.2%), brain tumor (8.3%), and Wilms' tumor (6.4%). The median radiation dose was 47 Gy (range, 15-145 Gy). The median latency period from RT to the development of R-OS was 100 months (range, 36-636 months). The median follow-up after diagnosis of R-OS was 18 months (1-172 months). The 3- and 5-year cause-specific survival rate was 43.6% and 42.2%, respectively, and the 3- and 5-year overall survival rate was 41.7% and 40.2%, respectively. Variables, including age at RT, primary site, type of tumor treated with RT, total radiation dose, and latency period did not have a significant effect on survival. The 5-year cause-specific and overall survival rate for patients who received treatment for R-OS involving

  18. Radiation induced recombination centers in organic solar cells

    NASA Astrophysics Data System (ADS)

    Street, R. A.; Northrup, J. E.; Krusor, B. S.

    2012-05-01

    Prolonged x-ray exposure of bulk heterojunction organic solar cells induces deep trap states that are observed in measurements of the photocurrent spectral response. The density of induced trap states is proportional to the density of recombination centers as measured by the voltage dependence of the photocurrent, therefore identifying the traps as primary recombination centers. The states are reversible by thermal annealing to about 100 °C, which implies a metastable structural change with binding energy 1-1.2 eV. However, the annealing kinetics reveal three different annealing processes, although for defect states with essentially the same electronic character. Analysis of the radiation damage indicates that defects are formed by hydrogen release from C-H bonds due to electronic excitation by the energetic secondary electrons created by the x rays. Theoretical structure calculations of possible hydrogen-related defects find specific defect states that match the experimental observations and provide values for hydrogen migration energies that are consistent with the annealing kinetics. The effects of prolonged white light exposure are very similar to x-ray exposure, although the annealing kinetics are significantly different. Measurements of the spectral response with bias illumination provide information about the energy level of the localized states.

  19. Cardiotoxicity of Senna occidentalis in sheep (Ovis aries)

    PubMed Central

    Lopes, D.I.S.; Sousa, M.G.; Ramos, A.T.; Maruo, V.M.

    2016-01-01

    The cardiotoxicity of Coffee senna (Senna occidentalis) was investigated in sheep that were fed diets containing its seeds, which are recognized as the most poisonous part of such weed. Dianthrone, the main toxic component of S. occidentalis, is known to impair mitochondrial oxidative phosphorylation, leading to myofiber degeneration. In this study, fifteen ewes were fed 0%, 2% or 4% of seeds of S. occidentalis for 63 days. Non-specific markers of myocyte injury and electrocardiograms were undertaken at baseline, and at 14, 35, and 63 days after the animals were first fed the diets, while histopathology of heart samples was performed at the very end of the study. Our results showed an increase in serum AST and LDH over time, while CK-MB did not change significantly. Changes that could be ascribed to myocardial damage were not documented in the electrocardiograms. Cardiac histopathology demonstrated only mild-to-moderate vacuolar degeneration, myofiber edema and disarray, structural disorganization, and cellular necrosis. In conclusion, S. occidentalis caused myocardial fiber degeneration in a dose-dependent fashion, but the electrocardiogram was not able to identify these lesions non-invasively. Because the markers of myofiber injury used in this study lack specificity, they may not be used to support cardiac impairment objectively, despite some of them did change over time. PMID:26894038

  20. Cardiotoxicity of Senna occidentalis in sheep (Ovis aries).

    PubMed

    Lopes, D I S; Sousa, M G; Ramos, A T; Maruo, V M

    2016-01-01

    The cardiotoxicity of Coffee senna (Senna occidentalis) was investigated in sheep that were fed diets containing its seeds, which are recognized as the most poisonous part of such weed. Dianthrone, the main toxic component of S. occidentalis, is known to impair mitochondrial oxidative phosphorylation, leading to myofiber degeneration. In this study, fifteen ewes were fed 0%, 2% or 4% of seeds of S. occidentalis for 63 days. Non-specific markers of myocyte injury and electrocardiograms were undertaken at baseline, and at 14, 35, and 63 days after the animals were first fed the diets, while histopathology of heart samples was performed at the very end of the study. Our results showed an increase in serum AST and LDH over time, while CK-MB did not change significantly. Changes that could be ascribed to myocardial damage were not documented in the electrocardiograms. Cardiac histopathology demonstrated only mild-to-moderate vacuolar degeneration, myofiber edema and disarray, structural disorganization, and cellular necrosis. In conclusion, S. occidentalis caused myocardial fiber degeneration in a dose-dependent fashion, but the electrocardiogram was not able to identify these lesions non-invasively. Because the markers of myofiber injury used in this study lack specificity, they may not be used to support cardiac impairment objectively, despite some of them did change over time. PMID:26894038

  1. The novel antidote Bezoar Bovis prevents the cardiotoxicity of Toad (Bufo bufo gargarizans Canto) Venom in mice.

    PubMed

    Ma, Hongyue; Zhou, Jing; Jiang, Jiejun; Duan, Jinao; Xu, Huiqin; Tang, Yuping; Lv, Gaohong; Zhang, Junfeng; Zhan, Zhen; Ding, Anwei

    2012-07-01

    Toad Venom, called chansu (CS) in China, is an anti-inflammatory drug used in small doses for the treatment of various types of inflammation in China. Its use is hampered by the cardiotoxicity of bufadienolides derived from Toad Venom. Bezoar Bovis is another frequently used drug in Toad Venom preparations for the treatment of inflammatory or cardiovascular diseases in Asia. We explored whether Bezoar Bovis could protect against CS-induced acute toxicity in mice. Toxicity was assessed by the general features of poisoning, electrocardiography (ECG), and levels of creatine kinase (CK), lactate dehydrogenase (LDH) and calcium ions (Ca(2+)) in cardiac tissues. Toad Venom (90 mg/kg) caused opisthotonus, ventricular arrhythmias, and increases in cardiac levels of Ca(2+), CK and LDH. Pretreatment with Bezoar Bovis (120, 240 and 480 mg/kg) significantly reduced the prevalence of opisthotonus and mortality, and prevented cardiotoxicity in CS-treated mice as evidenced by decreases in the scores of arrhythmias and cardiac levels of CK, LDH and Ca(2+). Furthermore, the bilirubin, and taurine derived from Bezoar Bovis offered marked protection against the arrhythmias induced by CS or bufalin in vivo and in vitro. An anti-inflammatory study showed that Bezoar Bovis did not compromise the anti-inflammatory activity of Toad Venom on concanavalin-A (ConA)-stimulated proliferation of human peripheral blood mononuclear cells. These results suggested that Bezoar Bovis elicited protective and anti-arrhythmic effects against Toad Venom intoxication in mice, and is a novel antidote in combination with Toad Venom therapy.

  2. Anthracycline-Related Cardiotoxicity in Patients with Acute Myeloid Leukemia and Down Syndrome: A Literature Review.

    PubMed

    Hefti, Erik; Blanco, Javier G

    2016-01-01

    Pediatric patients with Down syndrome (DS) are at an increased risk of developing certain cancers. Specifically, patients with DS have a reported 10-20-fold increased risk of developing acute myeloid leukemia (AML). Anthracycline-based treatment regimens achieve good results in patients with DS and AML. It has been proposed that DS status constitutes a risk factor for the cardiotoxicity associated with the use of anthracyclines in the pediatric setting. However, published evidence pointing toward an increased risk of cardiotoxicity in patients with DS is relatively scarce and conflictive. This concise review compiles literature relating to the incidence of anthracycline-related cardiotoxicity in pediatric patients with DS. In general, reports from trials using anthracyclines at the maximum recommended dose showed increases in the incidence of anthracycline-related cardiotoxicity in patients with DS in comparison with trials that used anthracyclines at reduced doses. Evidence from the literature suggests that patients with DS can achieve favorable therapeutic outcomes after receiving treatment with reduced doses of anthracyclines to minimize the potential for cardiotoxicity. Further prospective trials, along with the available evidence, would assist the design of treatment protocols for patients with pediatric leukemias and DS.

  3. Attenuation of a radiation-induced conditioned taste aversion after the development of ethanol tolerance

    SciTech Connect

    Hunt, W.A.; Rabin, B.M.

    1988-01-01

    An attempt to reduce a radiation-induced conditioned taste aversion (CTA) was undertaken by rendering animals tolerant to ethanol. Ethanol tolerance, developed over 5 days, was sufficient to block a radiation-induced taste aversion, as well as an ethanol-induced CTA. Several intermittent doses of ethanol, which did not induce tolerance but removed the novelty of the conditioning stimulus, blocked an ethanol-induced CTA but not the radiation-induced CTA. A CTA induced by doses of radiation up to 500 rads was attenuated. These data suggest that radioprotection developing in association with ethanol tolerance is a result of a physiological response to the chronic presence of ethanol not to the ethanol itself.

  4. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  5. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  6. Effects of subdiaphragmatic vagotomy on the acquisition of a radiation-induced conditioned taste aversion

    SciTech Connect

    Hunt, W.A.; Rabin, B.M.; Lee, J.

    1987-01-01

    The effect of subdiaphragmatic vagotomy on the acquisition of a radiation-induced taste aversion was examined to assess the importance of the vagus nerve in transmitting information on the peripheral toxicity of radiation to the brain. Vagotomy had no effect on taste aversion learning, consistent with reports using other toxins. The data support the involvement of a blood-borne factor in the acquisition of taste aversion induced by ionizing radiation.

  7. Argon plasma coagulation therapy for a hemorrhagic radiation-induced gastritis in patient with pancreatic cancer.

    PubMed

    Shukuwa, Kazutaka; Kume, Keiichiro; Yamasaki, Masahiro; Yoshikawa, Ichiro; Otsuki, Makoto

    2007-01-01

    Radiation-induced gastritis is a serious complication of radiation therapy for pancreatic cancer which is difficult to manage. A 79-year-old man had been diagnosed as having inoperable pancreatic cancer (stage IVa). We encountered this patient with hemorrhagic gastritis induced by external radiotherapy for pancreatic cancer that was well-treated using argon plasma coagulation (APC). After endoscopic treatment using APC, anemia associated with hemorrhagic radiation gastritis improved and required no further blood transfusion. PMID:17603236

  8. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ≥ grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  9. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides

    SciTech Connect

    Ceschia, M.; Paccagnella, A. |; Cester, A.; Scarpa, A.; Ghidini, G.

    1998-12-01

    Low-field leakage current has been measured in thin oxides after exposure to ionizing radiation. This Radiation Induced Leakage Current (RILC) can be described as an inelastic tunneling process mediated by neutral traps in the oxide, with an energy loss of about 1 eV. The neutral trap distribution is influenced by the oxide field applied during irradiation, thus indicating that the precursors of the neutral defects are charged, likely being defects associated to trapped holes. The maximum leakage current is found under zero-field condition during irradiation, and it rapidly decreases as the field is enhanced, due to a displacement of the defect distribution across the oxide towards the cathodic interface. The RILC kinetics are linear with the cumulative dose, in contrast with the power law found on electrically stressed devices.

  10. Radiation-Induced Topological Disorder in Irradiated Network Structures

    SciTech Connect

    Hobbs, Linn W.

    2002-12-21

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  11. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells.

    PubMed

    Markkanen, Ari; Penttinen, Piia; Naarala, Jonne; Pelkonen, Jukka; Sihvonen, Ari-Pekka; Juutilainen, Jukka

    2004-02-01

    The aim of this study was to investigate whether radiofrequency (RF) electromagnetic field (EMF) exposure affects cell death processes of yeast cells. Saccharomyces cerevisiae yeast cells of the strains KFy417 (wild-type) and KFy437 (cdc48-mutant) were exposed to 900 or 872 MHz RF fields, with or without exposure to ultraviolet (UV) radiation, and incubated simultaneously with elevated temperature (+37 degrees C) to induce apoptosis in the cdc48-mutated strain. The RF exposure was carried out in a special waveguide exposure chamber where the temperature of the cell cultures can be precisely controlled. Apoptosis was analyzed using the annexin V-FITC method utilizing flow cytometry. Amplitude modulated (217 pulses per second) RF exposure significantly enhanced UV induced apoptosis in cdc48-mutated cells, but no effect was observed in cells exposed to unmodulated fields at identical time-average specfic absorption rates (SAR, 0.4 or 3.0 W/kg). The findings suggest that amplitude modulated RF fields, together with known damaging agents, can affect the cell death process in mutated yeast cells. Bioelectromagnetics 25:127-133, 2004.

  12. Zebrafish Cardiotoxicity: The Effects of CYP1A Inhibition and AHR2 Knockdown Following Exposure to Weak Aryl Hydrocarbon Receptor Agonists

    PubMed Central

    Clark, Bryan William; Van Tiem Garner, Lindsey; Di Giulio, Richard Thomas

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and β-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio 2004; Wassenberg and Di Giulio 2004; Billiard, Timme-Laragy et al. 2006; Van Tiem and Di Giulio 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-o-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were co-exposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the

  13. Role of PECAM-1 in radiation-induced liver inflammation.

    PubMed

    Malik, Ihtzaz Ahmed; Stange, Ina; Martius, Gesa; Cameron, Silke; Rave-Fränk, Margret; Hess, Clemens Friedrich; Ellenrieder, Volker; Wolff, Hendrik Andreas

    2015-10-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is known to play an important role in hepatic inflammation. Therefore, we investigated the role of PECAM-1 in wild-type (WT) and knock-out (KO)-mice after single-dose liver irradiation (25 Gy). Both, at mRNA and protein level, a time-dependent decrease in hepatic PECAM-1, corresponding to an increase in intercellular cell adhesion molecule-1 (ICAM-1) (6 hrs) was detected in WT-mice after irradiation. Immunohistologically, an increased number of neutrophil granulocytes (NG) (but not of mononuclear phagocytes) was observed in the liver of WT and PECAM-1-KO mice at 6 hrs after irradiation. The number of recruited NG was higher and prolonged until 24 hrs in KO compared to WT-mice. Correspondingly, a significant induction of hepatic tumour necrosis factor (TNF)-α and CXC-chemokines (KC/CXCL1 interleukin-8/CXCL8) was detected together with an elevation of serum liver transaminases (6-24 hrs) in WT and KO-mice. Likewise, phosphorylation of signal transducer and activator of transcription-3 (STAT-3) was observed in both animal groups after irradiation. The level of all investigated proteins as well as of the liver transaminases was significantly higher in KO than WT-mice. In the cell-line U937, irradiation led to a reduction in PECAM-1 in parallel to an increased ICAM-1 expression. TNF-α-blockage by anti-TNF-α prevented this change in both proteins in cell culture. Radiation-induced stress conditions induce a transient accumulation of granulocytes within the liver by down-regulation/absence of PECAM-1. It suggests that reduction/lack in PECAM-1 may lead to greater and prolonged inflammation which can be prevented by anti-TNFα. PMID:26177067

  14. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells.

    PubMed

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-07-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects.

  15. Light-induced scattering in laser radiation nonlinear optical limiting based on fullerene-containing media

    NASA Astrophysics Data System (ADS)

    Belousova, Inna M.; Grigor'ev, Vladimir A.; Danilov, Oleg B.; Kalintsev, Alexander G.; Kris'ko, A. V.; Mironova, N. G.; Yur'ev, Michail S.

    2001-03-01

    The contribution of light induced scattering to nonlinear optical limiting is theoretically and experimentally investigated. It is shown that light induced scattering is caused by fine-scale (1 divided by 10 micrometer) inhomogeneities formation, very low (comparable to spontaneous noise) laser beam inhomogeneities can evolve into light induced scattering. The numerical modeling of scattered radiation angular distribution and laser radiation attenuation in optical limiters was performed. The modeling results were compared with the experimental ones.

  16. Outcome of Carotid Artery Stenting for Radiation-Induced Stenosis

    SciTech Connect

    Dorresteijn, Lucille; Vogels, Oscar; Leeuw, Frank-Erik de; Vos, Jan-Albert; Christiaans, Marleen H.; Ackerstaff, Rob; Kappelle, Arnoud C.

    2010-08-01

    Purpose: Patients who have been irradiated at the neck have an increased risk of symptomatic stenosis of the carotid artery during follow-up. Carotid angioplasty and stenting (CAS) can be a preferable alternative treatment to carotid endarterectomy, which is associated with increased operative risks in these patients. Methods and Materials: We performed a prospective cohort study of 24 previously irradiated patients who underwent CAS for symptomatic carotid stenosis. We assessed periprocedural and nonprocedural events including transient ischemic attack (TIA), nondisabling stroke, disabling stoke, and death. Patency rates were evaluated on duplex ultrasound scans. Restenosis was defined as a stenosis of >50% at the stent location. Results: Periprocedural TIA rate was 8%, and periprocedural stroke (nondisabling) occurred in 4% of patients. After a mean follow-up of 3.3 years (range, 0.3-11.0 years), only one ipsilateral incident event (TIA) had occurred (4%). In 12% of patients, a contralateral incident event was present: one TIA (4%) and two strokes (12%, two disabling strokes). Restenosis was apparent in 17%, 33%, and 42% at 3, 12, and 24 months, respectively, although none of the patients with restenosed vessels became symptomatic. The length of the irradiation to CAS interval proved the only significant risk factor for restenosis. Conclusions: The results of CAS for radiation-induced carotid stenosis are favorable in terms of recurrence of cerebrovascular events at the CAS site.

  17. Early corticosteroid administration in experimental radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Stryker, J.A.; Abt, A.A.; Chung, C.K.; Whitesell, L.; Zelis, R.

    1980-02-01

    The ability of dexamethasone (DEX) to reduce the severity of the late stage of radiation-induced heart disease (RIHD) was assessed in 25 New Zealand white rabbits. Ten rabbits served as unirradiated controls (CONT). In Group A, seven rabbits received intravenous DEX prior to irradiation and every 24 hours for three consecutive days. DEX was not administered to the eight rabbits in Group B. At 100 days postirradiation, the severity of the late state was determined by microscopic examination (MICRO) for myocardial fibrosis and determination of myocardial hydroxyproline content (MHP). Myocardial fibrosis was evident in groups A (40%) and B (80%) while none was present in CONT by MICRO. One rabbit in Group B with no fibrosis by MICRO had abnormally increased MHP. MHP was significantly increased in Groups A and B, as compared to CONT (p < 0.01). In addition to less fibrosis by MICRO, Group A demonstrated a significant reduction of MHP when compared to Group B (p < 0.05). Determination of MHP may be superior to MICRO in the detection of the late stage of RIHD. Also, early DEX administration appears to reduce myocardial collagen content (fibrosis) in this experimental model.

  18. Investigations of radiation-induced and carrier-enhanced conductivity

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.; Parker, L. W.; Yadlowski, E. J.; Hazelton, R. C.

    1985-01-01

    A steady-state carrier computer code, PECK (Parker Enhanced Carrier Kinetics), that predicts the radiation-induced conductivity (RIC) produced in a dielectric by an electron beam was developed. The model, which assumes instantly-trapped holes, was then applied to experimental measurements on thin Kapton samples penetrated by an electron beam. Measurements at high bias were matched in the model by an appropriate choice for the trap-modulated electron mobility. A fractional split between front and rear currents measured at zone bias is explained on the basis of beam-scattering. The effects of carrier-enhanced conductivity (CEC) on data obtained for thick, free-surface Kapton samples is described by using an analytical model that incorporates field injection of carriers from the RIC region. The computer code, LWPCHARGE, modified for carrier transport, is also used to predict partial penetration effects associated with CEC in the unirradiated region. Experimental currents and surface voltages, when incorporated in the appropriate models, provide a value for the trap modulated mobility that is in essential agreement with the RIC results.

  19. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  20. Radiation-induced chromosome damage in astronauts' lymphocytes.

    PubMed

    Testard, I; Ricoul, M; Hoffschir, F; Flury-Herard, A; Dutrillaux, B; Fedorenko, B; Gerasimenko, V; Sabatier, L

    1996-10-01

    The increased number of manned space missions has made it important to estimate the biological risks encountered by astronauts. As they are exposed to cosmic rays, especially ions with high linear energy transfer (LET), it is necessary to estimate the doses they receive. The most sensitive biological dosimetry used is based on the quantification of radiation-induced chromosome damage to human lymphocytes. After the space missions ANTARES (1992) and ALTAIR (1993), we performed cytogenetic analysis of blood samples from seven astronauts who had spent from 2 weeks to 6 months in space. After 2 or 3 weeks, the X-ray equivalent dose was found to be below the cytogenetic detection level of 20 mGy. After 6 months, the biological dose greatly varied among the astronauts, from 95 to 455 mGy equivalent dose. These doses are in the same range as those estimated by physical dosimetry (90 mGy absorbed dose and 180 mSv equivalent dose). Some blood cells exhibited the same cytogenetic pattern as the 'rogue cells' occasionally observed in controls, but with a higher frequency. We suggest that rogue cells might result from irradiation with high-LET particles of cosmic origin. However, the responsibility of such cells for the long-term effects of cosmic irradiation remains unknown and must be investigated. PMID:8862451

  1. Ionizing radiation induces heritable disruption of epithelial cell interactions

    PubMed Central

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell–cell communication, aberrant cell–extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization. PMID:12960393

  2. Radiation induced destruction of thebaine, papaverine and noscapine in methanol

    NASA Astrophysics Data System (ADS)

    Kantoğlu, Ömer; Ergun, Ece

    2016-07-01

    The presence of methanol decreases the efficiency of radiation-induced decomposition of alkaloids in wastewater. Intermediate products were observed before the complete degradation of irradiated alkaloids. In order to identify the structure of the by-products and the formation pathway, thebaine, papaverine and noscapine solutions were prepared in pure methanol and irradiated using a 60Co gamma cell at absorbed doses of 0, 1, 3, 5, 7, 10, 30, 50 and 80 kGy. The dose-dependent alkaloid degradation and by-product formation were monitored by ESI mass spectrometer. Molecular structures of the by-products and reaction pathways were proposed. Oxygenated and methoxy group containing organic compounds was observed in the mass spectra of irradiated alkaloids. At initial dose values oxygenated by-products were formed due to the presence of dissolved oxygen in solutions. After the consumption of dissolved oxygen with radicals, the main mechanism was addition of solvent radicals to alkaloid structure. However, it was determined that alkaloids and by-products were completely degraded at doses higher than 50 kGy. The G-value and degradation efficiency of alkaloids were also evaluated.

  3. Processability improvement of polyolefins through radiation-induced branching

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Phillips, Ed; Parks, Lewis

    2010-03-01

    Radiation-induced long-chain branching for the purpose of improving melt strength and hence the processability of polypropylene (PP) and polyethylene (PE) is reviewed. Long-chain branching without significant gel content can be created by low dose irradiation of PP or PE under different atmospheres, with or without multifunctional branching promoters. The creation of long-chain branching generally leads to improvement of melt strength, which in turn may be translated into processability improvement for specific applications in which melt strength plays an important role. In this paper, the changes of the melt flow rate and the melt strength of the irradiated polymer and the relationship between long-chain branching and melt strength are reviewed. The effects of the atmosphere and the branching promoter on long-chain branching vs. degradation are discussed. The benefits of improved melt strength on the processability, e.g., sag resistance and strain hardening, are illustrated. The implications on practical polymer processing applications such as foams and films are also discussed.

  4. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  5. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  6. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  7. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication

    SciTech Connect

    Lewin, A.A.; Serago, C.F.; Schwade, J.G.; Abitbol, A.A.; Margolis, S.C.

    1984-10-01

    New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmias which may result from such damage.

  8. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer.

    PubMed

    King, Suzanne N; Dunlap, Neal E; Tennant, Paul A; Pitts, Teresa

    2016-06-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration. PMID:27098922

  9. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  10. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGES

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  11. Relationship between the repair of radiation-induced DNA damage and recovery from potentially lethal damage in 9L rat brain tumor cells. [Gamma radiation

    SciTech Connect

    vanAnkeren, S.C.; Wheeler, K.T.

    1984-03-01

    The kinetics of repair of radiation-induced DNA damage and recovery from radiation-induced potentially lethal damage (PLD) for fed plateau-phase 9L/Ro rat brain tumor cells were compared after single doses of gamma-radiation and after combined treatment with 3 micrograms of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)/ml given 16 hr prior to irradiation. DNA damage and repair were assayed using alkaline filter elution, while cell survival was assayed by colony formation. Repair of radiation-induced DNA damage and recovery from radiation-induced PLD followed statistically identical biphasic kinetics; the fast-phase half-times were 4.1 +/- 0.3 (S.D.) min and 4.0 +/- 0.8 min, while the slow-phase half-times were 59.7 +/- 11.2 min and 78.7 +/- 34.1 min, respectively. Treatment with BCNU prior to irradiation resulted in both additional DNA damage and increased cell kill. When DNA damage and cell survival after the combined treatment were corrected for the contribution from BCNU given alone, no inhibition of either repair of radiation-induced DNA damage or of recovery from radiation-induced PLD was observed. However, postirradiation hypertonic treatment inhibited both DNA repair and recovery from radiation-induced PLD. These correlations between the kinetics of the molecular and cellular repair processes support a role for repair of radiation-induced DNA damage in recovery from radiation-induced PLD. The lack of inhibition by BCNU of both repair of radiation-induced DNA damage and of recovery from radiation-induced PLD also demonstrates that these are not the mechanisms by which BCNU enhances radiation-induced cytotoxicity in 9L cells.

  12. Deep Friction Massage in Treatment of Radiation-induced Fibrosis: Rehabilitative Care for Breast Cancer Survivors.

    PubMed

    Warpenburg, Mary J

    2014-10-01

    Treatment for invasive breast cancer usually involves some combination of surgery, radiation therapy, chemotherapy, hormone therapy, and/or targeted therapy. For approximately 50% of patients, radiation therapy is a component of the therapies used. As a result, radiation-induced fibrosis is becoming a common and crippling side effect, leading to muscle imbalance with a lessened range of motion as well as pain and dysfunction of the vascular and lymphatic systems. No good estimates are available for how many patients experience complications from radiation. Radiation-induced fibrosis can affect the underlying fascia, muscles, organs, and bones within the primary target field and the larger secondary field that is caused by the scatter effect of radioactive elements. For breast cancer patients, the total radiation field may include the neck, shoulder, axillary, and thoracic muscles and the ribs for both the ipsilateral (cancer-affected) and contralateral sides. This case study indicates that therapy using deep friction massage can affect radiation-induced fibrosis beneficially, particularly in the thoracic muscles and the intercostals (ie, the muscles between the ribs). When delivered in intensive sessions using deep friction techniques, massage has the potential to break down fibrotic tissues, releasing the inflammation and free radicals that are caused by radiation therapy. In the course of the massage, painful and debilitating spasms resulting from fibrosis can be relieved and the progressive nature of the radiation-induced fibrosis interrupted. PMID:26770116

  13. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    SciTech Connect

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  14. Ultraviolet radiation directly induces pigment production by cultured human melanocytes

    SciTech Connect

    Friedmann, P.S.; Gilchrest, B.A.

    1987-10-01

    In humans the major stimulus for cutaneous pigmentation is ultraviolet radiation (UVR). Little is known about the mechanism underlying this response, in part because of the complexity of interactions in whole epidermis. Using a recently developed culture system, human melanocytes were exposed daily to a physiologic range of UVR doses from a solar simulator. Responses were determined 24 hours after the last exposure. There was a dose-related increase in melanin content per cell and uptake of /sup 14/C-DOPA, accompanied by growth inhibition. Cells from donors of different racial origin gave proportionately similar increases in melanin, although there were approximately tenfold differences in basal values. Light and electron microscopy revealed UVR-stimulated increases in dendricity as well as melanosome number and degree of melanization, analogous to the well-recognized melanocyte changes following sun exposure of intact skin. Similar responses were seen with Cloudman S91 melanoma cells, although this murine cell line required lower UVR dosages and fewer exposures for maximal stimulation. These data establish that UVR is capable of directly stimulating melanogenesis. Because cyclic AMP elevation has been associated in some settings with increased pigment production by cultured melanocytes, preliminary experiments were conducted to see if the effects of UVR were mediated by cAMP. Both alpha-MSH and isobutylmethylxanthine (IBMX), as positive controls, caused a fourfold increase in cAMP level in human melanocytes and/or S91 cells, but following a dose of UVR sufficient to stimulate pigment production there was no change in cAMP level up to 4 hours after exposure. Thus, it appears that the UVR-induced melanogenesis is mediated by cAMP-independent mechanisms.

  15. Radiation-induced grafting of acrylic acid onto polyethylene filaments

    NASA Astrophysics Data System (ADS)

    Kaji, K.; Okada, T.; Sakurada, I.

    Radiation-induced grafting of acrylic acid onto high density polyethylene (PE) filaments was carried out in order to raise softening temperature and impart flame retardance and hydrophilic properties. Mutual γ-irradiation method was employed for the grafting in a mixture of acrylic acid (AA), ethylene dichloride and water containing a small amount of ferrous ammonium sulfate. The rate of grafting was very low at room temperature. On the other hand, large percent grafts were obtained when the grafting was performed at an elevated temperature. Activation energy for the initial rate of grafting was found to be 17 {kcal}/{mol} between 20 and 60°C and 10 {kcal}/{mol} between 60 and 80°C. Original PE filament begins to shrink at 70°C, show maximum shrinkage of 50% at 130°C and then breaks off at 136°C. When a 34% AA graft is converted to metallic salt such as sodium and calcium, the graft filament retains its filament form even above 300°C and gives maximum shrinkage of 15%. Burning tests by a wire-netting basket method indicate that graft filaments and its metallic salts do not form melting drops upon burning and are self-extinguishing. Original PE filament shows no moisture absorption, however, that of AA-grafted PE increases with increasing graft percent. The sodium salt of 15% graft shows the same level of moisture regain as cotton. The AA-grafted PE filament and its metallic salts can be dyed with cationic dyes even at 1% graft. Tensile properties of PE filament is impaired neither by grafting nor by conversion to metallic salts.

  16. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect

    Seidensticker, Max; Burak, Miroslaw; Kalinski, Thomas; Garlipp, Benjamin; Koelble, Konrad; Wust, Peter; Antweiler, Kai; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  17. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury

    PubMed Central

    Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan

    2015-01-01

    Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001

  18. The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles.

    PubMed

    Oun, Rabbab; Floriano, Rafael S; Isaacs, Lyle; Rowan, Edward G; Wheate, Nial J

    2014-11-01

    The cucurbituril family of drug delivery vehicles have been examined for their tissue specific toxicity using ex vivo models. Cucurbit[6]uril (CB[6]), cucurbit[7]uril (CB[7]) and the linear cucurbituril-derivative Motor2 were examined for their neuro-, myo- and cardiotoxic activity and compared with β-cyclodextrin. The protective effect of drug encapsulation by CB[7] was also examined on the platinum-based anticancer drug cisplatin. The results show that none of the cucurbiturils have statistically measurable neurotoxicity as measured using mouse sciatic nerve compound action potential. Cucurbituril myotoxicity was measured by nerve-muscle force of contraction through chemical and electrical stimulation. Motor2 was found to display no myotoxicity, whereas both CB[6] and CB[7] showed myotoxic activity via a presynaptic effect. Finally, cardiotoxicity, which was measured by changes in the rate and force of right and left atria contraction, was observed for all three cucurbiturils. Free cisplatin displays neuro-, myo- and cardiotoxic activity, consistent with the side-effects seen in the clinic. Whilst CB[7] had no effect on the level of cisplatin's neurotoxic activity, drug encapsulation within the macrocycle had a marked reduction in both the drug's myo- and cardiotoxic activity. Overall the results are consistent with the relative lack of toxicity displayed by these macrocycles in whole animal acute systemic toxicity studies and indicate continued potential of cucurbiturils as drug delivery vehicles for the reduction of the side effects associated with platinum-based chemotherapy.

  19. IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION

    EPA Science Inventory

    IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.

    T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.
    1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...

  20. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  1. Gamma radiation induced effects in floppy and rigid Ge-containing chalcogenide thin films

    SciTech Connect

    Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago; Barnaby, Hugh; Kozicki, Michael N.; Holbert, Keith; Poweleit, Christian; Butt, Darryl P.

    2014-01-28

    We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changes occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.

  2. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  3. Radiation-induced mechanical property changes in filled rubber

    SciTech Connect

    Maiti, A.; Weisgraber, T. H.; Gee, R. H.; Small, W.; Alviso, C. T.; Chinn, S. C.; Maxwell, R. S.

    2011-06-15

    In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its cross-link density and molecular weight distribution between network junctions [A. Maiti et al., Phys. Rev. E 83, 031802 (2011)]. Here we report mechanical response measurements when the material is exposed to radiation while being under finite nonzero strain. We observe interesting hysteretic behavior and material softening representative of the Mullins effect, and materials hardening due to radiation. The net magnitude of the elastic modulus depends upon the radiation dosage, strain level, and strain-cycling history of the material. Using the framework of Tobolsky's two-stage independent network theory we develop a model that can quantitatively interpret the observed elastic modulus and its radiation and strain dependence.

  4. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  5. [Malignant transformation of human fibroblasts by neutrons and by gamma radiation: Relationship to mutations induced

    SciTech Connect

    1993-12-31

    A brief overview if provided of selected reports presented at the International Symposium on Molecular Mechanisms of Radiation- and Chemical Carcinogen-Induced Cell Transformation held at Mackinac Island, Michigan on September 19-23, 1993.

  6. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET