Sample records for radiation induced cardiotoxicity

  1. Low dose radiation prevents doxorubicin-induced cardiotoxicity

    PubMed Central

    Jiang, Xin; Hong, Yaqiong; Zhao, Di; Meng, Xinxin; Zhao, Lijing; Du, Yanwei; Wang, Zan; Zheng, Yan; Cai, Lu; Jiang, Hongyu

    2018-01-01

    This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling. PMID:29416617

  2. Low dose radiation prevents doxorubicin-induced cardiotoxicity.

    PubMed

    Jiang, Xin; Hong, Yaqiong; Zhao, Di; Meng, Xinxin; Zhao, Lijing; Du, Yanwei; Wang, Zan; Zheng, Yan; Cai, Lu; Jiang, Hongyu

    2018-01-02

    This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.

  3. Pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity

    PubMed Central

    Chung, Woo-Baek; Youn, Ho-Joong

    2016-01-01

    Cardiotoxicity is a well-known complication following treatment with anthracyclines. However, they are still widely used in chemotherapy for breast cancer, lymphoma, leukemia, and sarcoma, among others. Patient clinical characteristics, such as age, sex, comorbidities, anthracycline dose and infusion schedule, and the combined anti-cancer agents used, are diverse among cancer types. It is difficult to recommend guidelines for the prevention or management of anthracycline-induced cardiotoxicity applicable to all cancer types. Therefore, anthracycline-induced cardiotoxicity remains a major limitation in the proper management of cancer patients treated with an anthracycline-combined regimen. Efforts have been extensive to determine the mechanism and treatment of anthracycline-induced cardiotoxicity. Because cardiotoxicity causes irreversible damage to the myocardium, prevention is a more effective approach than treatment of cardiotoxicity after symptomatic or asymptomatic cardiac dysfunction develops. This article will review the pathophysiological mechanisms of anthracycline-induced cardiotoxicity and strategies for protecting the myocardium from anthracycline. PMID:27378126

  4. Trastuzumab-induced cardiotoxicity.

    PubMed

    Moss, Lisa Stegall; Starbuck, Mandy Fields; Mayer, Deborah K; Harwood, Elaine Brooks; Glotzer, Jana

    2009-11-01

    To review trastuzumab-related cardiotoxic effects in the breast cancer adjuvant setting, present a system for pretreatment screening for cardiovascular risk factors, describe monitoring recommendations, provide a tool to facilitate adherence to monitoring guidelines, and discuss implications for patient education. Literature regarding cardiotoxicity and trastuzumab in breast cancer. Trastuzumab was approved in 2006 for use in the adjuvant setting. A small percentage of women (approximately 4%) developed heart failure during or after treatment. However, the trials excluded women with cardiac disease. Current screening for cardiotoxicity relies on sequential left ventricular function measurements with either echocardiography or multigated acquisition scanning at baseline and every three months. Treatment modifications are recommended if changes from baseline are detected. Long-term and late effects have yet to be determined. Although a small number of women experienced cardiotoxicity in the adjuvant setting, an increase may be seen because women with preexisting heart disease receive this treatment. Guidelines and tools will be helpful for appropriate and consistent screening of cardiac risk factors and disease prior to initiation of trastuzumab and for monitoring during and after administration. Nurses are instrumental in assessing, monitoring, and treating women receiving trastuzumab. Implementing guidelines to promote adherence to recommended monitoring is important in the early detection of cardiotoxicity in this population. Educating women about their treatment and side effects is an important aspect of care.

  5. High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Wu, Qi; Deichmann, Oberon D.; Fang, Ye

    2014-05-01

    We report a high-frequency resonant waveguide grating imager for assessing compound-induced cardiotoxicity. The imager sweeps the wavelength range from 823 nm to 838 nm every 3 s to identify and monitor compound-induced shifts in resonance wavelength and then switch to the intensity-imaging mode to detect the beating rhythm and proarrhythmic effects of compounds on induced pluripotent stem cell-derived cardiomyocytes. This opens possibility to study cardiovascular biology and compound-induced cardiotoxicity.

  6. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity.

    PubMed

    Abushouk, Abdelrahman Ibrahim; Ismail, Ammar; Salem, Amr Muhammad Abdo; Afifi, Ahmed M; Abdel-Daim, Mohamed M

    2017-06-01

    Doxorubicin (DOX) is an anthracycline antibiotic, which is effectively used in the treatment of different malignancies, such as leukemias and lymphomas. Its most serious side effect is dose-dependent cardiotoxicity, which occurs through inducing oxidative stress apoptosis. Due to the myelosuppressive effect of dexrazoxane, a commonly-used drug to alleviate DOX-induced cardiotoxicity, researchers investigated the potential of phytochemicals for prophylaxis and treatment of this condition. Phytochemicals are plant chemicals that have protective or disease preventive properties. Preclinical trials have shown antioxidant properties for several plant extracts, such as those of Aerva lanata, Aronia melanocarpa, Astragalus polysaccharide, and Bombyx mori plants. Other plant extracts showed an ability to inhibit apoptosis, such as those of Astragalus polysaccharide, Azadirachta indica, Bombyx mori, and Allium stavium plants. Unlike synthetic agents, phytochemicals do not impair the clinical activity of DOX and they are particularly safe for long-term use. In this review, we summarized the results of preclinical trials that investigated the cardioprotective effects of phytochemicals against DOX-induced cardiotoxicity. Future human trials are required to translate these cardioprotective mechanisms into practical clinical implications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. (-)-Epigallocatechin-3-gallate (EGCG) attenuates arsenic-induced cardiotoxicity in rats.

    PubMed

    Sun, Tao-Li; Liu, Zhi; Qi, Zheng-Jun; Huang, Yong-Pan; Gao, Xiao-Qin; Zhang, Yan-Yan

    2016-07-01

    Chronic arsenic exposure in drinking water is associated with the abnormalities of cardiac tissue. Excessive generation of ROS induced by arsenic has a central role in arsenic-induced cardiotoxicity. (-)-Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study was aim to evaluate the effect of EGCG on arsenic-induced cardiotoxicity in vivo and in vitro. Treatment with NaAsO2 seriously affected the morphology and ultrastructure of myocardium, and induced cardiac injuries, oxidative stress, intracellular calcium accumulation and apoptosis in rats. In consistent with in vivo study, the injuries, oxidative stress and apoptosis were also observed in NaAsO2-treated H9c2 cells. All of these effects induced by NaAsO2 were attenuated by EGCG. These results suggest EGCG could attenuate NaAsO2-induced cardiotoxicity, and the mechanism may involve its potent antioxidant capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Daniel J., E-mail: dj.conklin@louisville.edu; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292; Haberzettl, Petra

    2015-06-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null thanmore » WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized

  9. Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat.

    PubMed

    Yarmohmmadi, Fatemeh; Rahimi, Nastaran; Faghir-Ghanesefat, Hedyeh; Javadian, Nina; Abdollahi, Alireza; Pasalar, Parvin; Jazayeri, Farahnaz; Ejtemaeemehr, Shahram; Dehpour, Ahmad Reza

    2017-02-05

    The detrimental cardio-toxic effect of doxorubicin, an effective chemotherapeutic agent, limited its clinical use. It has been claimed that doxorubicin cardio-toxicity occurs through calcium ions (Ca 2+ ) overload and reactive oxygen species production. Agmatine, an endogenous imidazoline receptor agonist, induce uptake of cytosolic Ca 2+ and cause an increase in activity of calcium pumps, including Ca 2+ -ATPase. Also it shows self-scavenging effect against reactive oxygen species production. Therefore, present study was designed to investigate the effects of agmatine against chronic cardio-toxicity of doxorubicin in rats. Male wistar rats were intraperitoneally injected with doxorubicin and agmatine four times a week for a month. Agmatine significantly alleviate the adverse effect of doxorubicin on left ventricular papillary muscle stimulation threshold and contractibility. Chronic co-administration of agmatine with doxorubicin blocked electrocardiographic changes induced by doxorubicin. In addition, agmatine improved body weight and decreased the mortality rate of animals by doxorubicin. Moreover, reversing the doxorubicin induced myocardial lesions was observed in animals treated by agmatine. A significant rise in the total antioxidant capacity of rat plasma was achieved in agmatine-treated animals in comparison to doxorubicin. To conclude, agmatine may improve therapeutic outcomes of doxorubicin since it exerts protective effects against doxorubicin-induced chronic cardiotoxicity in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products.

    PubMed

    Yu, Jie; Wang, Changxi; Kong, Qi; Wu, Xiaxia; Lu, Jin-Jian; Chen, Xiuping

    2018-02-01

    As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Krishnamurthy, Bhaskar; Rani, Neha; Bharti, Saurabh; Golechha, Mahaveer; Bhatia, Jagriti; Nag, Tapas Chandra; Ray, Ruma; Arava, Sudheer; Arya, Dharamvir Singh

    2015-07-25

    The clinical use of doxorubicin is associated with dose limiting cardiotoxicity. This is a manifestation of free radical production triggered by doxorubicin. Therefore, we evaluated the efficacy of febuxostat, a xanthine oxidase inhibitor and antioxidant, in blocking cardiotoxicity associated with doxorubicin in rats. Male albino Wistar rats were divided into four groups: control (normal saline 2.5mL/kg/dayi.p. on alternate days, a total of 6 doses); Doxorubicin (2.5mg/kg/dayi.p. on alternate days, a total of 6 doses), Doxorubicin+Febuxostat (10mg/kg/day oral) and Doxorubicin+Carvedilol (30mg/kg/day oral) for 14days. Febuxostat significantly ameliorated the doxorubicin-induced deranged cardiac functions as there was significant improvement in arterial pressures, left ventricular end diastolic pressure and inotropic and lusitropic states of the myocardium. These changes were well substantiated with biochemical findings, wherein febuxostat prevented the depletion of non-protein sulfhydryls level, with increased manganese superoxide dismutase level and reduced cardiac injury markers (creatine kinase-MB and B-type natriuretic peptide levels) and thiobarbituric acid reactive substances level. Febuxostat also exhibited significant anti-inflammatory (decreased expression of NF-κBp65, IKK-β and TNF-α) and anti-apoptotic effect (increased Bcl-2 expression and decreased Bax and caspase-3 expression and TUNEL positivity). Hematoxylin and Eosin, Masson Trichome, Picro Sirius Red and ultrastructural studies further corroborated with hemodynamic and biochemical findings showing that febuxostat mitigated doxorubicin-induced increases in inflammatory cells, edema, collagen deposition, interstitial fibrosis, perivascular fibrosis and mitochondrial damage and better preservation of myocardial architecture. In addition, all these changes were comparable to those produced by carvedilol. Thus, our results suggest that the antioxidant and anti-apoptotic effect of febuxostat

  12. A novel pre-clinical strategy for identifying cardiotoxic kinase inhibitors and mechanisms of cardiotoxicity

    PubMed Central

    Cheng, Hui; Kari, Gabor; Dicker, Adam P; Rodeck, Ulrich; Koch, Walter J; Force, Thomas

    2011-01-01

    Rationale 1) Despite intense interest in strategies to predict which kinase inhibitor (KI) cancer therapeutics may be associated with cardiotoxicity, current approaches are inadequate. 2) Sorafenib is a KI of concern since it inhibits growth factor receptors and Raf-1/B-Raf, kinases that are upstream of ERKs and signal cardiomyocyte survival in the setting of stress. Objectives 1) Explore the potential use of zebrafish as a pre-clinical model to predict cardiotoxicity. 2) Determine whether sorafenib has associated cardiotoxicity and, if so, define the mechanisms. Methods and Results We find that the zebrafish model is readily able to discriminate a KI with little or no cardiotoxicity (gefitinib) from one with demonstrated cardiotoxicity (sunitinib). Sorafenib, like sunitinib, leads to cardiomyocyte apoptosis, a reduction in total myocyte number per heart, contractile dysfunction and ventricular dilatation in zebrafish. In cultured rat cardiomyocytes, sorafenib induces cell death. This can be rescued by adenovirus-mediated gene transfer of constitutively active MEK1 which restores ERK activity even in the presence of sorafenib. While growth factor-induced activation of ERKs requires Raf, α-adrenergic agonist-induced activation of ERKs does not. Consequently, activation of α-adrenergic signaling markedly decreases sorafenib-induced cell death. Consistent with these in vitro data, inhibition of α-adrenergic signaling with the receptor antagonist prazosin worsens sorafenib-induced cardiomyopathy in zebrafish. Conclusions 1) Zebrafish may be a valuable pre-clinical tool to predict cardiotoxicity. 2) The α-adrenergic signaling pathway is an important modulator of sorafenib cardiotoxicity in vitro and in vivo and appears to act via a here-to-fore unrecognized signaling pathway downstream of α-adrenergic activation that bypasses Raf to activate ERKs. PMID:21998323

  13. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Elberry, Ahmed A; Abdel-Naim, Ashraf B; Abdel-Sattar, Essam A; Nagy, Ayman A; Mosli, Hisham A; Mohamadin, Ahmed M; Ashour, Osama M

    2010-05-01

    Doxorubicin (DOX) is a widely used cancer chemotherapeutic agent. However, it generates free oxygen radicals that result in serious dose-limiting cardiotoxicity. Supplementations with berries were proven effective in reducing oxidative stress associated with several ailments. The aim of the current study was to investigate the potential protective effect of cranberry extract (CRAN) against DOX-induced cardiotoxicity in rats. CRAN was given orally to rats (100mg/kg/day for 10 consecutive days) and DOX (15mg/kg; i.p.) was administered on the seventh day. CRAN protected against DOX-induced increased mortality and ECG changes. It significantly inhibited DOX-provoked glutathione (GSH) depletion and accumulation of oxidized glutathione (GSSG), malondialdehyde (MDA), and protein carbonyls in cardiac tissues. The reductions of cardiac activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were significantly mitigated. Elevation of cardiac myeloperoxidase (MPO) activity in response to DOX treatment was significantly hampered. Pretreatment of CRAN significantly guarded against DOX-induced rise of serum lactate dehydrogenase (LDH), creatine phosphokinase (CK), creatine kinase-MB (CK-MB) as well as troponin I level. CRAN alleviated histopathological changes in rats' hearts treated with DOX. In conclusion, CRAN protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to CRAN's antioxidant activity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Zingiber officinale Roscoe ameliorates anticancer antibiotic doxorubicin-induced acute cardiotoxicity in rat.

    PubMed

    Ajith, Thekkuttuparambil Ananthanarayanan; Hema, Unnikrishnan; Aswathi, Sreedharan

    2016-07-01

    Oxidative stress (OS) has been suggested in the cardiotoxicity induced by anticancer antibiotic doxorubicin (DXN). The cardioprotective effects of aqueous ethanol extract of Zingiber officinale was evaluated against DXN-induced acute cardiac damage in rat. The results of the study demonstrated that Z. officinale significantly and dose dependently protected the cardiotoxicity induced by DXN. The activities of serum glutamate oxaloacetate transaminase and serum lactate dehydrogenase activity in the DXN alone treated group of animals were significantly (p<0.01) elevated when compared to normal animals. The activities were reduced in the Z. officinale (200 and 400 mg/kg, p.o) plus DXN treated groups. The cardiac malondialdehyde was elevated in the DXN alone treated group and declined significantly in the Z. officinale (400 mg/kg) plus DXN treated group. The results concluded that aqueous ethanol extract of Z. officinale ameliorated DXN-induced cardiotoxicity. The protection can be ascribed to the free radical scavenging activity of Z. officinale. This protective effect may suggest the adjuvant role of Z. officinale against OS induced by cancer chemotherapeutants, which warrant further research. © 2016 Old City Publishing, Inc.

  15. In Vivo Cardiotoxicity Induced by Sodium Aescinate in Zebrafish Larvae.

    PubMed

    Liang, Jinfeng; Jin, Wangdong; Li, Hongwen; Liu, Hongcui; Huang, Yanfeng; Shan, Xiaowen; Li, Chunqi; Shan, Letian; Efferth, Thomas

    2016-02-23

    Sodium aescinate (SA) is a widely-applied triterpene saponin product derived from horse chestnut seeds, possessing vasoactive and organ-protective activities with oral or injection administration in the clinic. To date, no toxicity or adverse events in SA have been reported, by using routine models (in vivo or in vitro), which are insufficient to predict all aspects of its pharmacological and toxicological actions. In this study, taking advantage of transparent zebrafish larvae (Danio rerio), we evaluated cardiovascular toxicity of SA at doses of 1/10 MNLC, 1/3 MNLC, MNLC and LC10 by yolk sac microinjection. The qualitative and quantitative cardiotoxicity in zebrafish was assessed at 48 h post-SA treatment, using specific phenotypic endpoints: heart rate, heart rhythm, heart malformation, pericardial edema, circulation abnormalities, thrombosis and hemorrhage. The results showed that SA at 1/10 MNLC and above doses could induce obvious cardiac and pericardial malformations, whilst 1/3 MNLC and above doses could induce significant cardiac malfunctions (heart rate and circulation decrease/absence), as compared to untreated or vehicle-treated control groups. Such cardiotoxic manifestations occurred in more than 50% to 100% of all zebrafish treated with SA at MNLC and LC10. Our findings have uncovered the potential cardiotoxicity of SA for the first time, suggesting more attention to the risk of its clinical application. Such a time- and cost-saving zebrafish cardiotoxicity assay is very valid and reliable for rapid prediction of compound toxicity during drug research and development.

  16. Evaluation of nefazodone-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sujeong, E-mail: crystalee@gmail.com; Lee, Hyang-Ae, E-mail: hyangaelee@gmail.com; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 110-799

    2016-04-01

    The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which express the major cardiac ion channels and recapitulate spontaneous mechanical and electrical activities, may provide a possible solution for the lack of in vitro human-based cardiotoxicity testing models. Cardiotoxicity induced by the antidepressant nefazodone was previously revealed to cause an acquired QT prolongation by hERG channel blockade. To elucidate the cellular mechanisms underlying the cardiotoxicity of nefazodone beyond hERG, its effects on cardiac action potentials (APs) and ion channels were investigated using hiPSC-CMs with whole-cell patch clamp techniques. In a proof of principle study, we examined the effectsmore » of cardioactive channel blockers on the electrophysiological profile of hiPSC-CMs in advance of the evaluation of nefazodone. Nefazodone dose-dependently prolonged the AP duration at 90% (APD{sub 90}) and 50% (APD{sub 50}) repolarization, reduced the maximum upstroke velocity (dV/dt{sub max}) and induced early after depolarizations. Voltage-clamp studies of hiPSC-CMs revealed that nefazodone inhibited various voltage-gated ion channel currents including I{sub Kr}, I{sub Ks}, I{sub Na}, and I{sub Ca}. Among them, I{sub Kr} and I{sub Na} showed relatively higher sensitivity to nefazodone, consistent with the changes in the AP parameters. In summary, hiPSC-CMs enabled an integrated approach to evaluate the complex interactions of nefazodone with cardiac ion channels. These results suggest that hiPSC-CMs can be an effective model for detecting drug-induced arrhythmogenicity beyond the current standard assay of heterologously expressed hERG K{sup +} channels. - Highlights: • Nefazodone prolonged APD and decreased upstroke velocity of APs in hiPSC-CMs. • Nefazodone inhibited cardiac ion channels, especially I{sub Kr} and I{sub Na}, in hiPSC-CMs. • Nefazodone-induced AP changes are mainly the result of I{sub Kr} and I{sub Na

  17. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen ledmore » to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and

  18. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD{sub 100} dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereasmore » all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-{alpha} and plasma adiponectin increased cardiac fatty acid oxidation (666.9 {+-}14.0 nmol/min/g heart in ad libitum versus 1035.6 {+-} 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMP{alpha}2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 {+-} 2.1 {mu}mol/g heart in ad libitum versus 26.7 {+-} 1.9 {mu}mol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway.« less

  19. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  20. [Dexrazoxane in anthracycline induced cardiotoxicity and extravasation].

    PubMed

    Goey, Andrew K L; Schellens, Jan H M; Beijnen, Jos H; Huitema, Alwin D R

    2010-01-01

    Cardiotoxicity and extravasation injuries are extremely serious complications of anthracycline use. Both complications are probably caused by oxidative stress. Dexrazoxane has been approved as a cardioprotective agent and as an antidote in extravasation of anthracyclines. Randomized clinical trials have shown that dexrazoxane is the only cardioprotective agent proven to be effective in the treatment of anthracycline-induced cardiotoxicity. In these clinical studies dexrazoxane decreased the incidence of cardiac events and heart failure. Possible adverse effects of dexrazoxane when administered as a cardioprotective agent are a decreased antitumor effect of anthracyclines and the onset of secondary malignancies in children. As an antidote in anthracycline extravasation, clinical studies showed dexrazoxane to be highly efficacious in preventing the need for surgical resection. Dexrazoxane can be considered as the treatment of first choice for this indication. Dexrazoxane is well tolerated in general. The most commonly reported side effects are leukopenia, thrombocytopenia and local reactions at the infusion site.

  1. Impact of Diclofenac Sodium on Tilmicosin-Induced Acute Cardiotoxicity in Rats (Tilmicosin and Diclofenac Cardiotoxicity).

    PubMed

    Oda, Samah S; Derbalah, Amira E

    2018-02-01

    To assess the influence of diclofenac sodium (DIC) treatment on tilmicosin (TIL) prompted cardiotoxicity, forty albino rats were randomly divided into four equal groups: control, TIL group (single subcutaneous injection of 75 mg/kg BW tilmicosin phosphate 30%), TIL + DIC group (single subcutaneous injection of tilmicosin phosphate 30% and then injection intramuscularly of 13.5 mg/kg BW/day for 6 days diclofenac sodium) and DIC group (intramuscular injection of 13.5 mg/kg BW/day diclofenac sodium for 6 days). Creatine kinase-MB, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, urea and creatinine significantly elevated in all treated groups, but markedly in TIL + DIC group serum. Lipid peroxidation significantly increased, and reduced glutathione significantly decreased in tissues of all groups. Several histopathological alterations were noticed in heart, liver, kidneys and lungs of all treated groups, particularly TIL + DIC group. Ultrastructurally, myocardium of TIL and TIL + DIC groups showed characteristic changes for myocardial apoptosis and degeneration. Significant differences were detected in area percentage of caspase-3 protein expression and bcl-2 immunoreactivity in cardiomyocytes, particularly in TIL + DIC group. This study is the first to indicate that one of the possible mechanisms of TIL cardiotoxicity is myocardial apoptosis. DIC amplifies TIL-induced cardiotoxicity besides its hepato-nephrotoxicity.

  2. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.

    PubMed

    Sharma, Arun; Burridge, Paul W; McKeithan, Wesley L; Serrano, Ricardo; Shukla, Praveen; Sayed, Nazish; Churko, Jared M; Kitani, Tomoya; Wu, Haodi; Holmström, Alexandra; Matsa, Elena; Zhang, Yuan; Kumar, Anusha; Fan, Alice C; Del Álamo, Juan C; Wu, Sean M; Moslehi, Javid J; Mercola, Mark; Wu, Joseph C

    2017-02-15

    Tyrosine kinase inhibitors (TKIs), despite their efficacy as anticancer therapeutics, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen U.S. Food and Drug Administration-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a "cardiac safety index" to reflect the cardiotoxicities of existing TKIs. TKIs with low cardiac safety indices exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that vascular endothelial growth factor receptor 2 (VEGFR2)/platelet-derived growth factor receptor (PDGFR)-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. With phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Up-regulating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during cotreatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anticancer TKIs, and the results correlate with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling. Copyright © 2017, American Association for the Advancement of Science.

  3. Electroacupuncture pretreatment induces rapid tolerance to bupivacaine cardiotoxicity in rats.

    PubMed

    Gao, Jun-Long; Li, Yu-Lan; Wang, Xiu-Mei; Zhao, Qian-Long; Zhang, Hai-Jun; Han, Fang-Fang; Li, Xia-Xia; Zhang, Dong-Hang

    2016-12-01

    Evidence suggests that electroacupuncture (EA) protects against arrhythmia and myocardial injury induced by myocardial ischaemia-reperfusion. However, to our knowledge, it remains unknown whether EA could alleviate bupivacaine-induced cardiotoxicity. Therefore, we aimed to explore the effect of EA pretreatment on bupivacaine-induced cardiac arrest and outcomes of cardiopulmonary resuscitation (CPR) in rats. 24 adult male Sprague-Dawley rats were randomly divided into two groups: EA (n=12), and minimal acupuncture (MA) (n=12). Rats in both groups were needled at bilateral PC6, ST36, and ST40. Needles in the EA group were electrically stimulated for 60 min. ECG and invasive arterial blood pressure measurements were recorded. Two hours after EA or MA, 10 mg/kg bupivacaine was infused intravenously at a rate of 5 mg/kg/min in all rats. Rats suffering cardiac arrest were immediately subjected to CPR. At the end of the experiment, arterial blood samples were taken from surviving rats for blood gas analysis. The time from bupivacaine infusion until 20% prolongation of the QRS and QT interval, and the time to cardiac arrest, were notably increased among the rats pretreated with EA. Moreover, EA pretreatment significantly improved mean arterial pressure and heart rate at all monitored points after bupivacaine infusion. The proportion of animals surviving was higher in the EA group (9/12) than the MA group (3/12) at the end of experiment (p=0.039). Tolerance to bupivacaine-induced cardiotoxicity appeared to be increased following EA pre-treatment. The mechanism of action underlying the effects of EA on bupivacaine-induced cardiotoxicity requires further investigation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Petroni, K; Trinei, M; Fornari, M; Calvenzani, V; Marinelli, A; Micheli, L A; Pilu, R; Matros, A; Mock, H-P; Tonelli, C; Giorgio, M

    2017-05-01

    Anthracyclines are effective anticancer drugs that have improved prognosis of hundred thousand cancer patients worldwide and are currently the most common chemotherapeutic agents used for the treatment of blood, breast, ovarian and lung cancers. However, their use is limited because of a cumulative dose-dependent and irreversible cardiotoxicity that can cause progressive cardiomyopathy and congestive heart failure. Aim of the present study was to determine the cardioprotective activity of a dietary source of cyanidin 3-glucoside (C3G), such as purple corn, against doxorubicin (DOX)-induced cardiotoxicity in mice. In vitro studies on murine HL-1 cardiomyocytes showed that pretreatment with both pure C3G and purple corn extract improved survival upon DOX treatment. However, C3G and purple corn extract did not affect the cytotoxic effect of DOX on human cancer cell lines. We then validated in vivo the protective role of a C3G-enriched diet against DOX-induced cardiotoxicity by comparing the effect of dietary consumption of corn isogenic lines with high levels of anthocyanins (purple corn - Red diet - RD) or without anthocyanins (yellow corn - Yellow diet - YD) incorporated in standard rodent diets. Results showed that mice fed RD survived longer than mice fed YD upon injection of a toxic amount of DOX. In addition, ultrastructural analysis of hearts from mice fed RD showed reduced histopathological alterations. Dietary intake of C3G from purple corn protects mice against DOX-induced cardiotoxicity. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  5. Antioxidant and antiapoptotic effects of sea cucumber and valsartan against doxorubicin-induced cardiotoxicity in rats: The role of low dose gamma irradiation.

    PubMed

    Ibrahim, Doaa M; Radwan, Rasha R; Abdel Fattah, Salma M

    2017-05-01

    Doxorubicin (DOX) is a highly effective antineoplastic drug; however, the clinical use of DOX is limited by its dose dependent cardiotoxicity. This study was conducted to evaluate the cardioprotective effect of sea cucumber and valsartan against DOX-induced cardiotoxicity in rats. Also, the role of exposure to low dose γ radiation (LDR) on each of them was investigated, since LDR could suppress various reactive oxygen species-related diseases. Rats received DOX (2.5mg/kg, ip) in six equal injections over a period of 2weeks, sea cucumber (14.4mg/kg, p.o) and valsartan (30mg/kg, p.o) for 8 successive weeks. Exposure to LDR (0.5Gy) was performed one day prior to DOX. Results revealed that DOX administration elevated serum levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK-MB) and troponin-I as well as increased cardiac lipid peroxide content and myeloperoxidase (MPO) activity. Additionally, it increased cardiac expressions of iNOS and caspase-3, accompanied by reduction in cardiac total protein and glutathione (GSH) contents. Treatment with sea cucumber or valsartan improved the cardiotoxicity of DOX. Their adjuvant therapy with LDR offers an additional benefit to the cardioprotection of the therapeutic drugs. These results confirmed by histopathological examination. In conclusion, sea cucumber and valsartan alone or combined with LDR attenuated DOX-induced cardiotoxicity via their antioxidant and anti-apoptotic activities and thus might be useful in the treatment of human patients under doxorubicin chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Protective effect of bilberry (Vaccinium myrtillus) against doxorubicin-induced oxidative cardiotoxicity in rats

    PubMed Central

    Ashour, Osama M.; Elberry, Ahmed A.; Alahdal, Abdulrahman M.; Al Mohamadi, Ameen M.; Nagy, Ayman A.; Abdel-Naim, Ashraf B.; Abdel-Sattar, Essam A.; Mohamadin, Ahmed M.

    2011-01-01

    Summary Background Doxorubicin (DOX) is a commonly used chemotherapeutic agent. It is associated with serious dose-limiting cardiotoxicity, which is at least partly caused by generation of reactive oxygen species (ROS). Supplementations with bilberries were effective in reducing oxidative stress in many tissue injuries due their high content of antioxidants. The present study investigated the potential protective effect of bilberry extract against DOX-induced cardiotoxicity in rats. Material/Methods Rats were treated orally with a methanolic extract of bilberry for 10 days. DOX was injected intraperitoneally on day 7. Twenty-four hours after the last bilberry administration, rats were subjected to ECG study. Blood was then withdrawn and cardiac tissues were dissected for assessment of oxidative stress and cardiac tissue injury. Cardiac tissues were also subjected to histopathological examination. Results Bilberry extract significantly inhibited DOX-provoked reduced glutathione depletion and accumulation of oxidized glutathione, malondialdehyde and protein carbonyls in cardiac tissues. This was accompanied by significant amelioration of reduced cardiac catalase, superoxide dismutase, and glutathione peroxidase activities; and increased cardiac myeloperoxidase activity in response to DOX challenge. Pretreatment with bilberry significantly guarded against DOX-induced increase in serum activities of lactate dehydrogenase, creatine phosphokinase and creatine kinase-MB, as well as the level of troponin I. Bilberry alleviated ECG changes in rats treated with DOX and attenuated its pathological changes. Conclusions Bilberry protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to its antioxidant activity. PMID:21455099

  7. Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity.

    PubMed

    Bhatt, Laxit; Sebastian, Binu; Joshi, Viraj

    Mangiferin is a highly potent antioxidant present in mango leaves which is utilized for therapeutic purposes. The present study was undertaken to evaluate the cardioprotective effect of mangiferin against cyclophosphamide induced cardiotoxicity. Rats were treated with 100 mg/kg of mangiferin in alone and interactive groups for 10 days. Apart from normal and mangiferin control groups, all the groups were subjected to cyclophosphamide (200 mg/kg, i.p.) toxicity on Day 1 and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile and histopathological evaluation. Mangiferin treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidant levels. Compared to cyclophosphamide control group, mangiferin treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score and mortality. The present findings clearly suggest the protective role of mangiferin as a powerful antioxidant preventing cardiotoxicity caused by cyclophosphamide. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  8. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com; Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Ourmore » results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.« less

  9. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats.

    PubMed

    Benzer, Fulya; Kandemir, Fatih Mehmet; Ozkaraca, Mustafa; Kucukler, Sefa; Caglayan, Cuneyt

    2018-02-01

    Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2018 Wiley Periodicals, Inc.

  10. 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation.

    PubMed

    El-Bakly, Wesam M; Louka, Manal L; El-Halawany, Ali M; Schaalan, Mona F

    2012-12-01

    Doxorubicin is a widely used antitumour drug. Cardiotoxicity is considered a major limitation for its clinical use. The present study was designed to assess the possible antioxidant and antiapoptotic effects of 6-gingerol in attenuating doxorubicin-induced cardiac damage. Male albino rats were treated with either intraperitoneal doxorubicin (18 mg/kg divided into six equal doses for 2 weeks) and/or oral 6-gingerol (10 mg/kg starting 5 days before and continued till the end of the experiment). 6-gingerol significantly ameliorated the doxorubicin-induced elevation in the cardiac enzymes. The stimulation of oxidative stress by doxorubicin was evidenced by the significant decrease in the serum soluble receptor for advanced glycation endproduct allowing unopposed serum advanced glycation endproduct availability. Moreover, doxorubicin activated nuclear factor kappa B (NF-κB) which was indicated by an increase in its immunohistochemical staining in the nucleus. In addition, doxorubicin-induced cardiotoxicity was accompanied by elevation of cardiac caspase-3. Notably, pretreatment with 6-gingerol significantly ameliorated the changes in sRAGE, NF-κB and cardiac caspase-3. Cardiac enzymes showed significant positive correlation with NF-κB and caspase-3 but negative with serum sRAGE, suggesting their role in doxorubicin-induced cardiac injury. These findings were confirmed by cardiac tissue histopathology. 6-gingerol, a known single compound from ginger with anticancer activity, was shown to have a promising role in cardioprotection against doxorubicin-induced cardiotoxicity. This study suggested a novel mechanism for 6-gingerol cardioprotection, which might be mediated through its antioxidative effect and modulation of NF-κB as well as apoptosis.

  11. Factors enhancing the migration and the homing of mesenchymal stem cells in experimentally induced cardiotoxicity in rats.

    PubMed

    A Soliman, Nabil; Abd-Allah, Somia H; Hussein, Samia; Alaa Eldeen, Muhammad

    2017-03-01

    Doxorubicin is an effective anti-neoplastic drug but its use is limited by its cardiotoxicity. Administration of mesenchymal stem cells (MSCs) for the management of cardiotoxicity was with poor myocardial homing capacity. With the aim of developing novel techniques to improve the migration of MSCs, we tested whether valproate and electric fields (EFs) direct the migration of MSCs towards the damaged myocardium. The study included five groups of female albino rats. The first group included 10 healthy rats as normal control group. The remaining 40 female rats received doxorubicin for induction of acute cardiotoxicity. Four rats were sacrificed for histopathological confirmation of cardiotoxicity. The remaining rats were equally divided into subsequent four groups. The second group included nine rats that did not receive further treatment (positive control group). The third group included nine rats which received intravenous bone marrow derived mesenchymal stem cells (BM-MSCs) after cardiotoxicity induction. The fourth group included nine rats which received BM-MSCs plus sodium valporate after cardiotoxicity induction. The fifth group included nine rats which received BM-MSCs plus sodium valporate after cardiotoxicity induction and were exposed to an electrical stimulation (ES). Blood samples were taken from all groups at the end of the study to estimate creatine kinase-MB (CK-MB), aspartate transaminase (AST) and lactate dehydrogenase (LDH). Heart tissues from all rats were used for RNA extraction for assessment of sry gene expression. Homing was tested by PKH26 fluorescence in myocardial tissue sections and by sry gene expression. The best biochemical and histopathological improvement in cardiotoxicity was demonstrated in group 5 (rats that received ES and valporate with MSCs). We concluded that EFs and sodium valproate enhance homing ability of MSCs towards the damaged myocardium in doxorubicin induced carditoxicity model. © 2017 IUBMB Life, 69(3):162-169, 2017.

  12. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if

  13. Protective Effects of ω-3 PUFA in Anthracycline-Induced Cardiotoxicity: A Critical Review.

    PubMed

    Serini, Simona; Ottes Vasconcelos, Renata; Nascimento Gomes, Renata; Calviello, Gabriella

    2017-12-12

    It has been demonstrated that ω-3 polyunsaturated fatty acids (ω-3 PUFA) may exert a beneficial role as adjuvants in the prevention and treatment of many disorders, including cardiovascular diseases and cancer. Particularly, several in vitro and in vivo preclinical studies have shown the antitumor activity of ω-3 PUFA in different kinds of cancers, and several human studies have shown that ω-3 PUFA are able to decrease the risk of a series of cardiovascular diseases. Several mechanisms have been proposed to explain their pleiotropic beneficial effects. ω-3 PUFA have also been shown to prevent harmful side-effects (including cardiotoxicity and heart failure) induced by conventional and innovative anti-cancer drugs in both animals and patients. The available literature regarding the possible protective effects of ω-3 PUFA against anthracycline-induced cardiotoxicity, as well as the mechanisms involved, will be critically discussed herein. The study will analyze the critical role of different levels of ω-3 PUFA intake in determining the results of the combinatory studies with anthracyclines. Suggestions for future research will also be considered.

  14. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity.

    PubMed

    Yang, Xi; Papoian, Thomas

    2018-02-27

    Drug-induced cardiotoxicity is a potentially severe side effect that can adversely affect myocardial contractility through structural or electrophysiological changes in cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising human cardiac in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new drug candidates. The scalable differentiation of hiPSCs into cardiomyocytes provides a renewable cell source that overcomes species differences present in current animal models of drug toxicity testing. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm shift for proarrhythmic risk assessment, and hiPSC-CMs are an integral component of that paradigm. The recent advancements in hiPSC-CMs will not only impact safety decisions for possible drug-induced proarrhythmia, but should also facilitate risk assessment for non-proarrhythmic cardiotoxicity, where current non-clinical approaches are limited in detecting this risk before initiation of clinical trials. Importantly, emerging evidence strongly suggests that the use of hiPSC-CMs with cardiac physiological relevant measurements in vitro improves the detection of structural cardiotoxicity. Here we review high-throughput drug screening using the hiPSC-CM model as an experimentally feasible approach to assess potential contractile and structural cardiotoxicity in early phase drug development. We also suggest that the assessment of structural cardiotoxicity can be added to electrophysiological tests in the same platform to complement the Comprehensive in vitro Proarrhythmia Assay for regulatory use. Ideally, application of these novel tools in early drug development will allow for more reliable risk assessment and lead to more informed regulatory decisions in making safe and effective drugs available to the public. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  15. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression

    PubMed Central

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-01-01

    Background and Purpose Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Experimental Approach Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. Key Results In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Conclusions and Implications Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. PMID:24902966

  16. Synergistic protective role of mirazid (Commiphora molmol) and ascorbic acid against tilmicosin-induced cardiotoxicity in mice.

    PubMed

    Abdel-Daim, Mohamed M; Ghazy, Emad W; Fayez, Mostafa

    2015-01-01

    Tilmicosin (TIL) is a long-acting macrolide antibiotic approved for the treatment of cattle with Bovine Respiratory Disease. However, overdose of TIL has been reported to induce cardiotoxicity. The purpose of our experiment was to evaluate the protective effects of Commiphora molmol (mirazid (MRZ); myrrh) and (or) ascorbic acid (AA) against TIL-induced cardiotoxicity in mice. MRZ and AA were orally administered using stomach gavage, either alone or in combination for 5 consecutive days, followed with a single TIL overdose. TIL overdose induced a significant increase in serum levels of cardiac damage biomarkers (AST, LDH, CK, CK-MB, and cTnT), as well as cardiac lipid peroxidation, but cardiac levels of antioxidant biomarkers (GSH, SOD, CAT, and TAC) were decreased. Both MRZ and AA tended to normalize the elevated serum levels of cardiac injury biomarkers. Furthermore, MRZ and AA reduced TIL-induced lipid peroxidation and oxidative stress parameters. MRZ and AA combined produced a synergistic cardioprotective effect. We conclude that myrrh and (or) vitamin C administration minimizes the toxic effects of TIL through their free-radical-scavenging and potent antioxidant activities.

  17. Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Chaudhari, Umesh; Nemade, Harshal; Sureshkumar, Poornima; Vinken, Mathieu; Ates, Gamze; Rogiers, Vera; Hescheler, Jürgen; Hengstler, Jan Georg; Sachinidis, Agapios

    2018-01-01

    There is a large demand of a human relevant in vitro test system suitable for assessing the cardiotoxic potential of cosmetic ingredients and other chemicals. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we have already established an in vitro cardiotoxicity assay and identified genomic biomarkers of anthracycline-induced cardiotoxicity in our previous work. Here, five cosmetic ingredients were studied by the new hiPSC-CMs test; kojic acid (KJA), triclosan (TS), triclocarban (TCC), 2,7-naphthalenediol (NPT), and basic red 51 (BR51) based on cytotoxicity as well as ATP assays, beating rate, and genomic biomarkers to determine the lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). The LOEC for beating rate were 400, 10, 3, >400, and 3 µM for KJA, TS, TCC, NPT, and BR51, respectively. The corresponding concentrations for cytotoxicity or ATP depletion were similar, with the exception of TS and TCC, where the cardiomyocyte-beating assay showed positive results at non-cytotoxic concentrations. Functional analysis also showed that the individual compounds caused different effects on hiPSC-CMs. While exposure to KJA, TS, TCC, and BR51 induced significant arrhythmic beating, NPT slightly decreased cell viability, but did not influence beating. Gene expression studies showed that TS and NPT caused down-regulation of cytoskeletal and cardiac ion homeostasis genes. Moreover, TS and NPT deregulated genomic biomarkers known to be affected also by anthracyclines. The present study demonstrates that hiPSC-CMs can be used to determine LOECs and NOECs in vitro, which can be compared to human blood concentrations to determine margins of exposure. Our in vitro assay, which so far has been tested with several anthracyclines and cosmetics, still requires validation by larger numbers of positive and negative controls, before it can be recommended for routine analysis.

  18. Cardioprotective Effect of Selenium Against Cyclophosphamide-Induced Cardiotoxicity in Rats.

    PubMed

    Gunes, Sibel; Sahinturk, Varol; Karasati, Pinar; Sahin, Ilknur Kulcanay; Ayhanci, Adnan

    2017-05-01

    The objective of this study is to evaluate the possible protective effects of selenium (Se) against cyclophosphamide (CP)-induced acute cardiotoxicity in rats. A total of 42 male Spraque-Dawley rats were divided into six groups (n = 7). Rats in the first group were served as control. Rats in the second group received CP (150 mg/kg) at the sixth day of experiment. Animals in the third and fourth groups were treated with only 0.5 and 1 mg/kg Se respectively for six consecutive days. Rats in the fifth and sixth groups received respective Se doses (0.5 or 1 mg/kg) for 6 days and then a single dose of CP administered on the sixth day. On day 7, the animals were sacrificed; blood samples were collected to measure malondialdehyde (MDA), glutathione (GSH), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and ischemia-modified albumin (IMA) levels. Heart tissues were processed routinely and tissue sections were stained with H + E for light microscopic examination. In the CP-treated rats MDA, LDH, CK-MB, and IMA serum levels increased, while GSH levels decreased. Microscopic evaluation showed that tissue damage was conspicuously lower in CP plus Se groups. Moreover, 1 mg/kg Se was more protective than 0.5 mg/kg Se as indicated by histopathological and biochemical values. In conclusion, Se is suggested to be a potential candidate to ameliorate CP-induced cardiotoxicity which may be related to its antioxidant activity.

  19. Se@SiO2 nanocomposites attenuate doxorubicin-induced cardiotoxicity through combatting oxidative damage.

    PubMed

    Deng, Guoying; Chen, Changzhe; Zhang, Junjie; Zhai, Yue; Zhao, Jingpeng; Ji, Anqi; Kang, Yingjie; Liu, Xijian; Dou, Kefei; Wang, Qiugen

    2018-03-23

    Doxorubicin (DOX) is an effective anticancer drug which is widely used in clinical treatment. However, the severe cardiotoxicity limits its use. Thus, it is an urgent need to attenuate the toxicity of DOX without impairing its efficacy. Many studies show that Se may protect normal tissues from damages of some anticancer drugs. Recently, Se@SiO 2 nanocomposites emerges as better substitutes for direct element Se in treatment of cancer cells for their ideal biocompatibility. In the present article, we synthesized Se@SiO 2 nanocomposites and confirmed their characterization according to previous studies. We accomplished a conjunctive use of Se@SiO 2 nanocomposites with DOX then explored the toxicity and efficacy of this combination. In the in vivo experiments, the survival rate of mice with DOX treatment was significantly increased by Se@SiO 2 . And Se@SiO 2 has few interference to the therapeutic effect of DOX. Particularly, Se@SiO 2 significantly attenuated DOX-induced myocardial tissue damage (serum index, apoptosis index, western-blot index) and protected mice from reduction in LVEF induced by DOX in mice model. In summary, we concluded that the protective effect of Se@SiO 2 in DOX-induced cardiotoxicity was possibly attributable to the inhibition of ROS production, showing great potential of Se@SiO 2 nanocomposite in the clinical use of DOX.

  20. Anti-inflammatory agents and monoHER protect against DOX-induced cardiotoxicity and accumulation of CML in mice

    PubMed Central

    Bruynzeel, A M E; Abou El Hassan, M A; Schalkwijk, C; Berkhof, J; Bast, A; Niessen, H W M; van der Vijgh, W J F

    2007-01-01

    Cardiac damage is the major limiting factor for the clinical use of doxorubicin (DOX). Preclinical studies indicate that inflammatory effects may be involved in DOX-induced cardiotoxicity. Nɛ-(carboxymethyl) lysine (CML) is suggested to be generated subsequent to oxidative stress, including inflammation. Therefore, the aim of this study was to investigate whether CML increased in the heart after DOX and whether anti-inflammatory agents reduced this effect in addition to their possible protection on DOX-induced cardiotoxicity. These effects were compared with those of the potential cardioprotector 7-monohydroxyethylrutoside (monoHER). BALB/c mice were treated with saline, DOX alone or DOX preceded by ketoprofen (KP), dexamethasone (DEX) or monoHER. Cardiac damage was evaluated according to Billingham. Nɛ-(carboxymethyl) lysine was quantified immunohistochemically. Compared to saline, a 21.6-fold increase of damaged cardiomyocytes was observed in mice treated with DOX (P<0.001). Addition of KP, DEX or monoHER before DOX significantly reduced the mean ratio of abnormal cardiomyocytes in comparison to mice treated with DOX alone (P⩽0.02). In addition, DOX induced a significant increase in the number of CML-stained intramyocardial vessels per mm2 (P=0.001) and also in the intensity of CML staining (P=0.001) compared with the saline-treated group. Nɛ-(carboxymethyl) lysine positivity was significantly reduced (P⩽0.01) by DOX-DEX, DOX-KP and DOX-monoHER. These results confirm that inflammation plays a role in DOX-induced cardiotoxicity, which is strengthened by the observed DOX-induced accumulation of CML, which can be reduced by anti-inflammatory agents and monoHER. PMID:17325706

  1. Drug Screening Using a Library of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Disease Specific Patterns of Cardiotoxicity

    PubMed Central

    Liang, Ping; Lan, Feng; Lee, Andrew S.; Gong, Tingyu; Sanchez-Freire, Veronica; Wang, Yongming; Diecke, Sebastian; Sallam, Karim; Knowles, Joshua W.; Wang, Paul J.; Nguyen, Patricia K.; Bers, Donald M.; Robbins, Robert C.; Wu, Joseph C.

    2013-01-01

    Background Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with pre-existing heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. Methods and Results Action potential duration (APD) and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome (LQT), familial hypertrophic cardiomyopathy (HCM), and familial dilated cardiomyopathy (DCM). Disease phenotypes were verified in LQT, HCM, and DCM iPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene (hERG) expressing human embryonic kidney (HEK293) cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in HEK293 cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by APD and quantification of drug-induced arrhythmias such as early after depolarizations (EADs) and delayed after depolarizations (DADs). Conclusions We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, LQT, HCM, and DCM patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than standard hERG test or healthy control hiPSC-CM/hESC-CM screening assays. PMID:23519760

  2. TXNIP/TRX/NF-κB and MAPK/NF-κB pathways involved in the cardiotoxicity induced by Venenum Bufonis in rats.

    PubMed

    Bi, Qi-Rui; Hou, Jin-Jun; Qi, Peng; Ma, Chun-Hua; Feng, Rui-Hong; Yan, Bing-Peng; Wang, Jian-Wei; Shi, Xiao-Jian; Zheng, Yuan-Yuan; Wu, Wan-Ying; Guo, De-An

    2016-03-10

    Venenum Bufonis (VB) is a widely used traditional medicine with serious cardiotoxic effects. The inflammatory response has been studied to clarify the mechanism of the cardiotoxicity induced by VB for the first time. In the present study, Sprague Dawley (SD) rats, were administered VB (100, 200, and 400 mg/kg) intragastrically, experienced disturbed ECGs (lowered heart rate and elevated ST-segment), increased levels of serum indicators (creatine kinase (CK), creatine kinase isoenzyme-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and serum interleukin (IL-6, IL-1β, TNF-α) at 2 h, 4 h, 6 h, 8 h, 24 h, and 48 h, which reflected that an inflammatory response, together with cardiotoxicity, were involved in VB-treated rats. In addition, the elevated serum level of MDA and the down-regulated SOD, CAT, GSH, and GPx levels indicated the appearance of oxidative stress in the VB-treated group. Furthermore, based on the enhanced expression levels of TXNIP, p-NF-κBp65, p-IκBα, p-IKKα, p-IKKβ, p-ERK, p-JNK, and p-P38 and the obvious myocardial degeneration, it is proposed that VB-induced cardiotoxicity may promote an inflammatory response through the TXNIP/TRX/NF-κB and MAPK/NF-κB pathways. The observed inflammatory mechanism induced by VB may provide a theoretical reference for the toxic effects and clinical application of VB.

  3. Attenuation of doxorubicin-induced cardiotoxicity by esculetin through modulation of Bmi-1 expression.

    PubMed

    Xu, Fan; Li, Xiao; Liu, Lanfang; Xiao, Xu; Zhang, Li; Zhang, Shenglin; Lin, Pingping; Wang, Xiaojie; Wang, Yongwei; Li, Qingshan

    2017-09-01

    The protective effects and mechanisms of esculetin on doxorubicin (DOX)-induced injury of H9c2 cells were investigated. H9c2 cells were cultured and the logarithmic growth phase of the cells was divided into a control group, a DOX group and an esculetin + DOX group. Cell viability was detected by MTT assay. Annexin V-PI (AV-PI) double staining flow cytometry was carried out to detect cell apoptosis. Intracellular reactive oxygen species (ROS) were detected by flow cytometry. Transmission electron microscope (TEM) was used to evaluate cell ultrastructure. Cleaved caspase-3, cleaved PARP, Bcl-2, Bid and Bmi-1 proteins levels were investigated by western blot analysis. Bmi-1 siRNA was used to detect the role of Bmi-1 in the protective effects of esculetin against DOX-induced toxicity in H9c2 cells. The MTT and AV-PI double staining results showed that esculetin significantly increased H9c2 cell viability. Compared with the control group, the levels of cleaved caspase-3, cleaved PARP, Bid and ROS levels were significantly decreased, but the expression of Bcl-2 and Bmi-1 were significantly increased in the esculetin + DOX group. TEM showed that the cell structure of the mitochondria was protected by esculetin. The results of Bmi-1 siRNA showed that esculetin could protect DOX-induced cardiotoxicity by modulating Bmi-1 expression. Esculetin can protect DOX-induced cardiotoxicity and the effects may be attributable to modulation of Bmi-1 expression, provoking intracellular ROS accumulation, protecting the structure of mitochondria and reducing cell apoptosis.

  4. Anthracycline-induced cardiotoxicity in patients with paediatric bone sarcoma and soft tissue sarcoma.

    PubMed

    Bini, Ilaria; Asaftei, Sebastian D; Riggi, Chiara; Tirtei, Elisa; Manicone, Rosaria; Biasin, Eleonora; Basso, Maria Eleonora; Agnoletti, Gabriella; Fagioli, Franca

    2017-11-01

    Anthracycline cardiotoxicity is an important side-effect in long-term childhood cancer survivors. We evaluated the incidence of and factors associated with anthracycline cardiotoxicity in a population of patients diagnosed with bone or soft tissue sarcoma. Materials and methods We retrospectively enrolled patients diagnosed with bone or soft tissue sarcoma, from 1995 to 2011, treated with anthracycline chemotherapy at our Centre and with a follow-up echocardiography carried out ⩾3 years from cardiotoxic therapy completion. Cardiac toxicity was graded using Common Terminology Criteria for Adverse Events version 4.0. A total of 82 patients were eligible. The median age at treatment was 11.9 years (1.44-18). We evaluated the median cumulative anthracycline dose, age at treatment, sex, thoracic radiotherapy, hematopoietic stem cell transplantation, and high-dose cyclophosphamide treatment as possible risk factors for cardiotoxicity. The median cumulative anthracycline dose was 390.75 mg/m2 (80-580). Of the 82 patients, 12 (14.6%) developed cardiotoxicity with grade ⩾2 ejection fraction decline: four patients were asymptomatic and did not receive any treatment; six patients were treated with pharmacological heart failure therapy; one patient with severe cardiomyopathy underwent heart transplantation and did not need any further treatment; and one patient died while waiting for heart transplantation. The median time at cardiac toxicity, from the end of anthracycline frontline chemotherapy, was 4.2 years (0.05-9.6). Cumulative anthracycline dose ⩾300 mg/m2 (p 0.04) was the only risk factor for cardiotoxicity on statistical analyses. In our population, the cumulative incidence of cardiotoxicity is comparable to rates in the literature. This underlines the need for primary prevention and lifelong cardiac toxicity surveillance programmes in long-term childhood cancer survivors.

  5. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    PubMed

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  6. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity.

    PubMed

    Jain, Aditi; Rani, Vibha

    2018-07-15

    Aim Doxorubicin (Dox) is one of the most cardiotoxic anti-cancerous drug that is widely used for broad-range of cancers. There is an urgent need for developing cardio-oncological therapeutic interventions. Natural products having both anti-cancerous potential as well as cardioprotective effects may hold a great potential in this regard. Curcuma longa (an Indian herb) polyphenols including curcumin, and well known for its anti-oxidative and anti-cancerous potential was used in the present study for its synergistic effect on cancer cells and cardiomyocytes. Preliminary dose dependent analysis for cell viability was conducted by MTT and trypan blue assays where the effects of curcumin and Dox on cancer cell progression and cardiotoxicity were studied. Microscopic studies were done to analyse the morphological alterations of cells followed by intracellular ROS production studies by NBT and DCFH-DA assays. Apoptotic cellular death was studied by caspase activity and Annexin/PI FACS analysis. TUNEL assay was done followed by expression analysis of different cellular death biomarkers by quantitative real-time PCR. We observed that dose dependent cardiotoxicity of Dox can be significantly minimized by supplementing it with curcumin. Curcumin supplementation exaggerates oxidative stress and apoptosis leading to cancer cell death by modulating pro- and anti-apoptotic biomarkers. The combination treatment with curcumin results in achieving the desired anti-cancerous effect of Dox without compromising its activity and hence, reduces the possibility of its dose mediated cardiotoxic effects. Hence, curcumin holds a great potential for cardio-oncological therapeutic interventions. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity.

    PubMed

    Zhang, Jing; Cui, Xiaohai; Yan, Yan; Li, Min; Yang, Ya; Wang, Jiansheng; Zhang, Jia

    2016-01-01

    Anthracyclines, including doxorubicin, epirubicin, daunorubicin and aclarubicin, are widely used as chemotherapeutic agents in the treatment of hematologic and solid tumor, including acute leukemia, lymphoma, breast cancer, gastric cancer, soft tissue sarcomas and ovarian cancer. In the cancer treatment, anthracyclines also can be combined with other chemotherapies and molecular-targeted drugs. The combination of anthracyclines with other therapies is usually the first-line treatment. Anthracyclines are effective and potent agents with a broad antitumor spectrum, but may cause adverse reactions, including hair loss, myelotoxicity, as well as cardiotoxicity. We used hematopoietic stimulating factors to control the myelotoxicity, such as G-CSF, EPO and TPO. However, the cardiotoxicity is the most serious side effect of anthracyclines. Clinical research and practical observations indicated that the cardiotoxicity of anthracyclines is commonly progressive and irreversible. Especially to those patients who have the first time use of anthracyclines, the damage is common. Therefore, early detection and prevention of anthracyclines induced cardiotoxicity are particularly important and has already aroused more attention in clinic. By literature review, we reviewed the research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity.

  8. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solutionmore » containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.« less

  9. L-carnitine reduces susceptibility to bupivacaine-induced cardiotoxicity: an experimental study in rats.

    PubMed

    Wong, Gail K; Pehora, Carolyne; Crawford, Mark W

    2017-03-01

    The primary aim of this study was to evaluate the effect of acute administration of L-carnitine 100 mg·kg -1 iv on susceptibility to bupivacaine-induced cardiotoxicity in rats. In the first of two experiments, L-carnitine 100 mg·kg -1 iv (n = 10) or saline iv (n = 10) was administered to anesthetized and mechanically ventilated Sprague-Dawley rats following which an infusion of bupivacaine 2.0 mg·kg -1 ·min -1 iv was given until asystole occurred. The primary outcome was the probability of survival. Secondary outcomes included times to asystole, first dysrhythmia, and to 50% reductions in heart rate (HR) and mean arterial pressure (MAP). To determine whether the same dose of L-carnitine is effective in treating established bupivacaine cardiotoxicity, we also conducted a second experiment in which bupivacaine 20 mg·kg -1 iv was infused over 20 sec. Animals (n = 10 per group) received one of four iv treatments: 30% lipid emulsion 4.0 mL·kg -1 , L-carnitine 100 mg·kg -1 , 30% lipid emulsion plus L-carnitine, or saline. The primary outcome was the return of spontaneous circulation (ROSC) during resuscitation. In the first study, L-carnitine 100 mg·kg -1 increased the probability of survival during bupivacaine infusion (hazard ratio, 12.0; 95% confidence interval, 3.5 to 41.5; P < 0.001). In L-carnitine-treated animals, the times to asystole, first dysrhythmia, and to 50% reductions in HR and MAP increased by 33% (P < 0.001), 65% (P < 0.001), 71% (P < 0.001), and 63% (P < 0.001), respectively. In the second study, no animal in the control or L-carnitine alone groups achieved ROSC when compared with the lipid emulsion groups (P < 0.01). These findings suggest that acute administration of L-carnitine 100 mg·kg -1 decreases susceptibility to bupivacaine cardiotoxicity, but is ineffective during resuscitation from bupivacaine-induced cardiac arrest.

  10. Protective effect of saponins from Panax notoginseng against doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Liu, Li; Shi, Run; Shi, Qiang; Cheng, Yiyu; Huo, Yang

    2008-02-01

    The dried rhizome of Panax notoginseng is a traditional Chinese herb extensively used for treatment of cardiovascular diseases and other ailments. Panax notoginseng saponins (PNS) are known as the major pharmacologically active constituents. The purpose of this study was to investigate the cardioprotective effects of PNS against doxorubicin-induced cardiotoxicity and its possible influence on the anti-tumor activity of doxorubicin. Five groups of ICR mice were treated with saline (control group), doxorubicin alone (20 mg/kg I. P.), PNS alone, doxorubicin pretreated with PNS (100 mg/kg I. G. for 5 consecutive days) or amifostine (single dose of 200 mg/kg I. V., used as positive control). After 72 h of doxorubicin treatment, cardiac function, serum levels of lactate dehydrogenase (LDH), creatine kinase (CK) and creatine kinase isoenzyme (CK-MB) and activities of antioxidant enzymes in heart tissue were measured. Pretreatment with PNS significantly protected the mice from DOX-induced cardiotoxicity as evidenced from improved ventricular contractile function, lower levels of serum LDH, CK and CK-MB, minimal morphological changes in hearts, and normalization of myocardial superoxide dismutase, glutathione peroxidase and catalase activities. Additionally, IN VITRO cytotoxic studies demonstrated that PNS did not compromise the inhibitory effect of doxorubicin on the proliferation of cancer cells. These results imply the potentially clinical application of PNS to overcome the negative side effects of doxorubicin.

  11. Liraglutide ameliorates cardiotoxicity induced by doxorubicin in rats through the Akt/GSK-3β signaling pathway.

    PubMed

    Abbas, Noha A T; Kabil, Soad L

    2017-11-01

    Doxorubicin (Dox)-induced cardiotoxicity constitutes the major adverse effect that limited its use. We investigated the possible protective effects of liraglutide on Dox-induced cardiotoxicity in rats. Rats were divided into the following groups: control group rats received normal saline [1 ml/kg, intraperitoneal (i.p.)]; doxorubicin group rats received doxorubicin (1.25 mg/kg, i.p.), four times per week for 4 weeks; and liraglutide group rats received doxorubicin (1.25 mg/kg, i.p.) four times per week for 4 weeks then received liraglutide (100 μg/kg, i.p) daily for 4 weeks. At the end of the study, animals were sacrificed and serum creatine kinase-MB (CK-MB) and troponin I levels were determined. Malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and caspase-3 levels of the heart were determined. Cardiac AMPK, phosphorylated-Akt, tissue growth factor-β1 (TGF-β1), and GSK3-β levels of the heart were determined. Hematoxylin and eosin (H&E) stained sections form the heart were examined as well as immunohistochemical sections for detection of Bcl-2 expression. Dox treatment increased serum level of troponin I and CK-MB while decreased SOD activity, decreased AMPK, and p-Akt cardiac levels with increased in MDA, IL-6, TNF-α,GSK-3b, TGFB1, and caspase-3 levels in the heart with inflammation and necrosis in cardiac histopathology with decreased Bcl-2. Treatment with liraglutide decreased troponin I and CK-MB while increased SOD activity, AMPK, p-Akt with decrements in MDA, IL-6, TNF-α, GSK-3β, TGF-β1, and caspase-3 levels with attenuation of inflammation and necrosis while increased Bcl-2 expression. Liraglutide may thus represent a new clinical tool for the treatment of Dox-induced cardiotoxicity.

  12. Comparative Investigation of Protective Effects of Metyrosine and Metoprolol Against Ketamine Cardiotoxicity in Rats.

    PubMed

    Ahiskalioglu, Ali; Ince, Ilker; Aksoy, Mehmet; Ahiskalioglu, Elif Oral; Comez, Mehmet; Dostbil, Aysenur; Celik, Mine; Alp, Hamit Hakan; Coskun, Resit; Taghizadehghalehjoughi, Ali; Suleyman, Bahadir

    2015-10-01

    This study investigated the effect of metyrosine against ketamine-induced cardiotoxicity in rats and compared the results with the effect of metoprolol. In this study, rats were divided into groups A, B and C. In group A, we investigated the effects of a single dose of metyrosine (150 mg/kg) and metoprolol (20 mg/kg) on single dose ketamine (60 mg/kg)-induced cardiotoxicity. In group B, we investigated the effect of metyrosine and metoprolol, which were given together with ketamine for 30 days. In group C, we investigated the effect of metyrosine and metoprolol given 15 days before ketamine and 30 days together with ketamine on ketamine cardiotoxicity. By the end of this process, we evaluated the effects of the levels of oxidant-antioxidant parameters such as MDA, MPO, 8-OHGua, tGSH, and SOD in addition to CK-MB and TP I on cardiotoxicity in rat heart tissue. The experimental results show that metyrosine prevented ketamine cardiotoxicity in groups A, B and C and metoprolol prevented it in only group C.

  13. PD-1 Modulates Radiation-Induced Cardiac Toxicity through Cytotoxic T Lymphocytes.

    PubMed

    Du, Shisuo; Zhou, Lin; Alexander, Gregory S; Park, Kyewon; Yang, Lifeng; Wang, Nadan; Zaorsky, Nicholas G; Ma, Xinliang; Wang, Yajing; Dicker, Adam P; Lu, Bo

    2018-04-01

    Combined immune checkpoint blockade has led to rare autoimmune complications, such as fatal myocarditis. Recent approvals of several anti-programmed death 1 (anti-PD-1) drugs for lung cancer treatment prompted ongoing clinical trials that directly combine PD-1 inhibitors with thoracic radiotherapy for locally advanced lung cancer. Overlapping toxicities from either modality have the potential to increase the risk for radiation-induced cardiotoxicity (RICT), which is well documented among patients with Hodgkin's disease and breast cancer. To investigate cardiotoxicity without the compounding pulmonary toxicity from thoracic radiotherapy, we developed a technique to deliver cardiac irradiation (CIR) in a mouse model concurrently with PD-1 blockade to determine the presence of cardiac toxicity by using physiological testing and mortality as end points along with histological analysis. We observed an acute mortality of 30% within 2 weeks after CIR plus anti-PD-1 antibody compared with 0% from CIR plus immunoglobulin G (p = 0.023). Physiological testing demonstrated a reduced left ventricular ejection fraction (p < 0.01) by echocardiogram. Tissue analyses revealed increased immune cell infiltrates within cardiac tissue. Depletion of CD8-positive lymphocytes with anti-CD8 antibody reversed the acute mortality, suggesting that the toxicity is CD8-positive cell-mediated. To validate these findings using a clinically relevant fractionated radiotherapy regimen, we repeated the study by delivering five daily fractions of 6 Gy. Similar mortality, cardiac dysfunction, and histological changes were observed in mice receiving fractionated radiotherapy with concurrent anti-PD-1 therapy. This study provides strong preclinical evidence that radiation-induced cardiotoxicity is modulated by the PD-1 axis and that PD-1 blockade should be administered with careful radiotherapy planning with an effort of reducing cardiac dose. Copyright © 2017 International Association for the Study of

  14. Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F{sub 1} mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Varsha G., E-mail: varsha.desai@fda.hhs.gov; Herman, Eugene H.; Moland, Carrie L.

    2013-01-01

    Serum levels of cardiac troponins serve as biomarkers of myocardial injury. However, troponins are released into the serum only after damage to cardiac tissue has occurred. Here, we report development of a mouse model of doxorubicin (DOX)-induced chronic cardiotoxicity to aid in the identification of predictive biomarkers of early events of cardiac tissue injury. Male B6C3F{sub 1} mice were administered intravenous DOX at 3 mg/kg body weight, or an equivalent volume of saline, once a week for 4, 6, 8, 10, 12, and 14 weeks, resulting in cumulative DOX doses of 12, 18, 24, 30, 36, and 42 mg/kg, respectively.more » Mice were sacrificed a week following the last dose. A significant reduction in body weight gain was observed in mice following exposure to a weekly DOX dose for 1 week and longer compared to saline-treated controls. DOX treatment also resulted in declines in red blood cell count, hemoglobin level, and hematocrit compared to saline-treated controls after the 2nd weekly dose until the 8th and 9th doses, followed by a modest recovery. All DOX-treated mice had significant elevations in cardiac troponin T concentrations in plasma compared to saline-treated controls, indicating cardiac tissue injury. Also, a dose-related increase in the severity of cardiac lesions was seen in mice exposed to 24 mg/kg DOX and higher cumulative doses. Mice treated with cumulative DOX doses of 30 mg/kg and higher showed a significant decline in heart rate, suggesting drug-induced cardiac dysfunction. Altogether, these findings demonstrate the development of DOX-induced chronic cardiotoxicity in B6C3F{sub 1} mice. -- Highlights: ► 24 mg/kg was a cumulative cardiotoxic dose of doxorubicin in male B6C3F{sub 1} mice. ► Doxorubicin-induced hematological toxicity was in association with splenomegaly. ► Doxorubicin induced severe testicular toxicity in B6C3F{sub 1} male mice.« less

  15. Protective Role of GPER Agonist G-1 on Cardiotoxicity Induced by Doxorubicin.

    PubMed

    De Francesco, Ernestina M; Rocca, Carmine; Scavello, Francesco; Amelio, Daniela; Pasqua, Teresa; Rigiracciolo, Damiano C; Scarpelli, Andrea; Avino, Silvia; Cirillo, Francesca; Amodio, Nicola; Cerra, Maria C; Maggiolini, Marcello; Angelone, Tommaso

    2017-07-01

    The use of Doxorubicin (Dox), a frontline drug for many cancers, is often complicated by dose-limiting cardiotoxicity in approximately 20% of patients. The G-protein estrogen receptor GPER/GPR30 mediates estrogen action as the cardioprotection under certain stressful conditions. For instance, GPER activation by the selective agonist G-1 reduced myocardial inflammation, improved immunosuppression, triggered pro-survival signaling cascades, improved myocardial mechanical performance, and reduced infarct size after ischemia/reperfusion (I/R) injury. Hence, we evaluated whether ligand-activated GPER may exert cardioprotection in male rats chronically treated with Dox. 1 week of G-1 (50 μg/kg/day) intraperitoneal administration mitigated Dox (3 mg/kg/day) adverse effects, as revealed by reduced TNF-α, IL-1β, LDH, and ROS levels. Western blotting analysis of cardiac homogenates indicated that G-1 prevents the increase in p-c-jun, BAX, CTGF, iNOS, and COX2 expression induced by Dox. Moreover, the activation of GPER rescued the inhibitory action elicited by Dox on the expression of BCL2, pERK, and pAKT. TUNEL assay indicated that GPER activation may also attenuate the cardiomyocyte apoptosis upon Dox exposure. Using ex vivo Langendorff perfused heart technique, we also found an increased systolic recovery and a reduction of both infarct size and LDH levels in rats treated with G-1 in combination with Dox respect to animals treated with Dox alone. Accordingly, the beneficial effects induced by G-1 were abrogated in the presence of the GPER selective antagonist G15. These data suggest that GPER activation mitigates Dox-induced cardiotoxicity, thus proposing GPER as a novel pharmacological target to limit the detrimental cardiac effects of Dox treatment. J. Cell. Physiol. 232: 1640-1649, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. [Carbamazepine cardiotoxicity in acute poisoning].

    PubMed

    Todorović, V; Randelović, S; Joksović, D; Jović-Stosić, J; Vucinić, S; Glisović, L

    1993-01-01

    Manifestations of cardiotoxicity in 9 patients with acute carabamazepine poisoning treated at the Clinic of Toxicology and Clinical Pharmacology of the M.M.A. in 1989 are reported. In all patients together with symptoms and signs characteristic for acute carbamezapine poisoning, there have been also present disorders of the cardiovascular system. The most common clinical signs of cardiotoxicity have been tachycardia and hypotension, and electrocardiographic, ventricular extrasystoles and repolarization disorders. Cardiotoxic manifestations in two cases have been the vital threat for the patients. After application of nonspecific and symptomatic therapy, clinical and electrocardiographic signs of cardiotoxicity were withdrawn, that is, heart sequeles were not recorded.

  17. Chemotherapy and Cardiotoxicity in Hematologic Malignancies.

    PubMed

    Stellitano, Antonio; Fedele, Roberta; Barilla, Santina; Iaria, Antonino; Rao, Carmelo Massimiliano; Martino, Massimo

    2017-01-01

    Antineoplastic agents affect the cardiovascular system, and the incidence of cardiotoxicity is continuously growing in patients with hematologic malignancies and treated with antineoplastic therapy. In this mini-review, we analyzed existing literature which evaluates the likelihood of cardiotoxicity related to the main agents employed in the treatment of hematologic malignancies. There is a significant need to optimize the early identification of patients who are at risk of cardiotoxicity. The conventional echocardiographic measurements used to detect cardiac alterations, such as LVEF, fractional shortening, diameters and volumes, allow only a late diagnosis of cardiac dysfunction, which might be already irreversible. The early identification of patients at risk for rapid progression towards irreversible cardiac failure has a primary purpose, the opportunity for them to benefit from early preventive and therapeutic measures. A useful imaging technique that points in this direction detecting subclinical LVD may be the speckle tracking echocardiography, that has demonstrated a previous detection of myocardial contractile dysfunction compared to the traditional left ventricular ejection fraction. In this view, the discovery of new biomarkers to identify patients at a high risk for the development of these complications is another priority. Cardiotoxicity induced by anticancer drugs is always the outcome of several concurrent factors. It is plausible that an asymptomatic dysfunction precedes clinical events. During this asymptomatic phase, an early treatment prepares the patient for cardiovascular "safety" conditions; on the other hand, a late or missing treatment paves the ground for the development of future cardiac events. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children.

    PubMed

    Visscher, Henk; Rassekh, S Rod; Sandor, George S; Caron, Huib N; van Dalen, Elvira C; Kremer, Leontien C; van der Pal, Helena J; Rogers, Paul C; Rieder, Michael J; Carleton, Bruce C; Hayden, Michael R; Ross, Colin J

    2015-01-01

    To identify novel variants associated with anthracycline-induced cardiotoxicity and to assess these in a genotype-guided risk prediction model. Two cohorts treated for childhood cancer (n = 344 and 218, respectively) were genotyped for 4578 SNPs in drug ADME and toxicity genes. Significant associations were identified in SLC22A17 (rs4982753; p = 0.0078) and SLC22A7 (rs4149178; p = 0.0034), with replication in the second cohort (p = 0.0071 and 0.047, respectively). Additional evidence was found for SULT2B1 and several genes related to oxidative stress. Adding the SLC22 variants to the prediction model improved its discriminative ability (AUC 0.78 vs 0.75 [p = 0.029]). Two novel variants in SLC22A17 and SLC22A7 were significantly associated with anthracycline-induced cardiotoxicity and improved a genotype-guided risk prediction model, which could improve patient risk stratification.

  19. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways.

    PubMed

    Tang, Fan; Zhou, Xinhua; Wang, Liang; Shan, Luchen; Li, Chuwen; Zhou, Hefeng; Lee, Simon Ming-Yuen; Hoi, Maggie Pui-Man

    2018-02-05

    Doxorubicin (Dox) is an effective anti-cancer agent but limited by its cardiotoxicity, thus the search for pharmacological agents for enhancing anti-cancer activities and protecting against cardiotoxicity has been a subject of great interest. We have previously reported the synergistic anti-cancer effects of a novel compound DT-010. In the present study, we further investigated the cardioprotective effects of DT-010 in zebrafish embryos in vivo and the molecular underlying mechanisms in H9c2 cardiomyocytes in vitro. We showed that DT-010 prevented the Dox-induced morphological distortions in the zebrafish heart and the associated cardiac impairments, and especially improved ventricular functions. By using H9c2 cells model, we showed that DT-010 directly inhibited the generation of reactive oxygen species by Dox and protected cell death and cellular damage. We further observed that DT-010 protected against Dox-induced myocardiopathy via inhibiting downstream molecular pathways in response to oxidative stress, including reactive oxygen species-mediated MAPK signaling pathways ERK and JNK, and apoptotic pathways involving the activation of caspase 3, caspase 7, and PARP signaling. Recent studies also suggest the importance of alterations in cardiac autophagy in Dox cardiotoxicity. We further showed that DT-010 could inhibit the induction of autophagosomes formation by Dox via regulating the upstream Akt/AMPK/mTOR signaling. Since Dox-induced cardiotoxicity is multifactorial, our results suggest that multi-functional agent such as DT-010 might be an effective therapeutic agent for combating cardiotoxicity associated with chemotherapeutic agents such as Dox. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats.

    PubMed

    Soliman, Ahmed F; Anees, Lobna M; Ibrahim, Doaa M

    2018-05-07

    Despite their clinical benefits in cancer treatment, the deleterious effects on heart following chemo/radiotherapy are of increasing importance. Zingerone, a natural polyphenol, possesses multiple biological activities, such as antioxidant and anti-inflammatory. Thus, the current study was designed to assess the potential cardioprotective effects of zingerone against cisplatin or γ-radiation. Zingerone was given by intragastric intubation (25 mg/kg) daily for three successive weeks prior to the induction of cardiotoxicity using a single dose of cisplatin (20 mg/kg, i.p.) or a whole body γ-irradiation at a single dose of 6 Gy. Zingerone pre-treatment significantly reduced the abnormalities in heart histology and the increase in the cardiotoxicity indices, serum lactate dehydrogenase, and creatine kinase-MB activities, as well as plasma cardiac troponin T and B-natriuretic peptide, induced by cisplatin or γ-radiation. Further, zingerone, except for superoxide dismutase, notably ameliorated the state of oxidative stress as evidenced by a significant decrease in malondialdehyde level accompanied with a significant increase in the reduced glutathione content and catalase activity. Additionally, zingerone mitigated the increase in the inflammatory markers including serum level of tumor necrosis factor-alpha, cardiac myeloperoxidase activity, and cyclooxygenase-2 protein expression. Moreover, zingerone alleviated the elevation of caspase-3 gene expression and the prominent nuclear DNA fragmentation and attenuated the decrease in mitochondrial complexes' activities. This study sheds the light on a probable protective role of zingerone as an antioxidant, anti-inflammatory, and antiapoptotic agent against cisplatin- or γ-radiation-induced cardiotoxicity and holds a potential in regard to therapeutic intervention for chemo/radiotherapy mediated cardiac damage.

  1. Ameliorative effect of parsley oil on cisplatin-induced hepato-cardiotoxicity: A biochemical, histopathological, and immunohistochemical study.

    PubMed

    Abdellatief, Suhair A; Galal, Azza A A; Farouk, Sameh M; Abdel-Daim, Mohamed M

    2017-02-01

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is an effective DNA alkylating agent used in the treatment of different types of tumors; however, its clinical use is associated with hepato-cardiotoxicity. The current study was designed to assess the potential protective effect of parsley oil (PO) against CDDP-induced hepato-cardiotoxicity. For this purpose, 25 adult male rats were assigned into five groups, each containing five animals. Group I (control) was administered saline solution. Group II was administered PO at a dosage of 0.42ml/kg BW. Group III were administered CDDP at a dosage of 5mg/kg BW. Group IV was administered PO in addition to CDDP. Group V was administered saline solution in addition to CDDP, after which they were administered PO for five days. Oral administration of either saline solution or PO was performed each day for 10days, while administration of CDDP was via a single intraperitoneal injection five days following the commencement of the experiment. The recorded results revealed that CDDP induced obvious hepatic and cardiac injuries that were indicated by biochemical, histopathological, and immunohistochemical alterations, including elevation of serum hepatic and cardiac injury markers as well as proinflammatory cytokines. Moreover, CDDP induced an increase in the level of hepatic and cardiac injury biomarkers, decreases in the activities of antioxidant enzymes, a decrease in GSH concentration, and an increase in MDA concentration. CDDP also induced histopathological hepatocellular and myocardial changes, and overexpression of p53 and COX-2 in hepatic and cardiac tissues. Administration of PO either as a preventative medicine or as treatment significantly improved all the observed deleterious effects induced by CDDP in rat liver and heart. Thus, it may be concluded that PO, with its antioxidant, anti-inflammatory, and antiapoptotic activities, can potentially be used in the treatment of CDDP-induced hepatic and cardiac injuries. Copyright

  2. Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice.

    PubMed

    Rocha, Viviane Costa Junqueira; França, Luciana Souza de Aragão; de Araújo, Cintia Figueiredo; Ng, Ayling Martins; de Andrade, Candace Machado; Andrade, André Cronemberger; Santos, Emanuelle de Souza; Borges-Silva, Mariana da Cruz; Macambira, Simone Garcia; Noronha-Dutra, Alberto Augusto; Pontes-de-Carvalho, Lain Carlos

    2016-03-01

    Doxorubicin (DOX) is a chemotherapeutic that is widely used for the treatment of many human tumors. However, the development of cardiotoxicity has limited its use. The aim of the present study was to evaluate the possible efficacy of mito-TEMPO (mito-T) as a protective agent against DOX-induced cardiotoxicity in mice. C57BL/6 mice were treated twice with mito-T at low (5 mg/kg body weight) or high (20 mg/kg body weight) dose and once with DOX (24 mg/kg body weight) or saline (0.1 mL/20 g body weight) by means of intraperitoneal injections. The levels of malondialdehyde (MLDA), a marker of lipid peroxidation, and serum levels of creatine kinase were evaluated 48 h after the injection of DOX. DOX induced lipid peroxidation in heart mitochondria (p < 0.001), and DOX-treated mice receiving mito-T at low dose had levels of MLDA significantly lower than the mice that received only DOX (p < 0.01). Furthermore, administration of mito-T alone did not cause any significant changes from control values. Additionally, DOX-treated mice treated with mito-T at high dose showed decrease in serum levels of total CK compared to mice treated with DOX alone (p < 0.05). Our results indicate that mito-T protects mice against DOX-induced cardiotoxicity.

  3. Lycopene Attenuates Tulathromycin and Diclofenac Sodium-Induced Cardiotoxicity in Mice.

    PubMed

    Abdel-Daim, Mohamed M; Eltaysh, Rasha; Hassan, Azza; Mousa, Shaker A

    2018-01-24

    Recent experiments showed a potential cardiotoxic effect of the macrolide antibiotic (tulathromycin). This study was performed to investigate whether diclofenac sodium (DFS) potentiates the cardiotoxicity of tulathromycin and increases the cardioprotective effects of lycopene against DFS and tulathromycin. Seven groups (eight per group) of adult Swiss albino mice received saline (control), tulathromycin (a single subcutaneous dose of 28 mg/kg/bw on day 14), DFS (a single oral dose of 100 mg/kg/bw on day 14), tulathromycin plus DFS, or lycopene (oral, 10 mg/kg/bw daily for 15 d) combined with tulathromycin, DFS, or both. Compared to the control group, the administration of tulathromycin or DFS (individually or in combination) caused significantly elevated ( p < 0.05) serum levels of Creatine kinase-myocardial B fraction (CK-MB), lactate dehydrogenase, and cardiac-specific troponin-T and tissue levels of nitric oxide and malondialdehyde that were accompanied by significantly decreased tissue reduced glutathione content and glutathione peroxidase, superoxide dismutase, and catalase antioxidant enzyme activity. Upon histopathological and immunohistochemical examination, the mean pathology scores and the percentages of caspase-3-, Bax-, and CK-positive regions were significantly higher in the tulathromycin- and/or DFS-treated groups than in control mice. For all these parameters, the pathological changes were more significant in the tulathromycin-DFS combination group than in mice treated with either drug individually. Interestingly, co-administration of lycopene with tulathromycin and/or DFS significantly ameliorated the changes described above. In conclusion, DFS could potentiate the cardiotoxic effects of tulathromycin, whereas lycopene can serve as a cardioprotective agent against DFS and tulathromycin.

  4. The iron chelator Dp44mT inhibits the proliferation of cancer cells but fails to protect from doxorubicin-induced cardiotoxicity in spontaneously hypertensive rats.

    PubMed

    Rao, V Ashutosh; Zhang, Jun; Klein, Sarah R; Espandiari, Parvaneh; Knapton, Alan; Dickey, Jennifer S; Herman, Eugene; Shacter, Emily B

    2011-11-01

    The iron chelator Dp44mT is a potent topoisomerase IIα inhibitor with novel anticancer activity. Doxorubicin (Dox), the current front-line therapy for breast cancer, induces a dose-limiting cardiotoxicity, in part through an iron-mediated pathway. We tested the hypothesis that Dp44mT can improve clinical outcomes of treatment with Dox by alleviating cardiotoxicity. The general cardiac and renal toxicities induced by Dox were investigated in the presence and absence of Dp44mT. The iron chelating cardioprotectant Dexrazoxane (Drz), which is approved for this indication, was used as a positive control. In vitro studies were carried out with H9c2 rat cardiomyocytes and in vivo studies were performed using spontaneously hypertensive rats. Testing of the GI(50) profile of Dp44mT in the NCI-60 panel confirmed activity against breast cancer cells. An acute, toxic dose of Dox caused the predicted cellular and cardiac toxicities, such as cell death and DNA damage in vitro and elevated cardiac troponin T levels, tissue damage, and apoptosis in vivo. Dp44mT alone caused insignificant changes in hematological and biochemical indices in rats, indicating that Dp44mT is not significantly cardiotoxic as a single agent. In contrast to Drz, Dp44mT failed to mitigate Dox-induced cardiotoxicity in vivo. We conclude that although Dp44mT is a potent iron chelator, it is unlikely to be an appropriate cardioprotectant against Dox-induced toxicity. However, it should continue to be evaluated as a potential anticancer agent as it has a novel mechanism for inhibiting the growth of a broad range of malignant cell types while exhibiting very low intrinsic toxicity to healthy tissues.

  5. The possible protective effect of L-carnitine on tilmicosin-induced cardiotoxicity in mice.

    PubMed

    Kart, A; Yapar, K; Karapehlivan, M; Citil, M

    2007-04-01

    The protective effect of L-carnitine was investigated against tilmicosin-induced cardiotoxic effects including blood creatine kinase (CK), CK-MB, total sialic acid as well as the alterations in glutathione and malondialdehyde concentrations in mice. Thirty-two Balb/C mice were divided into four groups including group 1 (control), group 2 (L-carnitine, s.c., 500 mg/kg for 5 days), group 3 (tilmicosin, s.c., single dose of 75 mg/kg) and group 4 (L-carnitine plus tilmicosin). Serum CK, CK-MB and malondialdehyde (MDA) levels were significantly (P < 0.05) higher in group 3 compared with those of other groups. Total sialic acid level in group 3 was found to be significantly (P < 0.05) higher than that in groups 1 and 2, as well. Contrary to these results, glutathione level in group 3 was found to be significantly (P < 0.05) lower than that in groups 1 and 2. In group 4, serum CK, CK-MB, MDA and total sialic acid levels were found to be significantly (P < 0.05) lower than those in group 3. These results suggest that tilmicosin is cardiotoxic in mice as evidenced by higher total sialic acid, CK and CK-MB. In addition, tilmicosin caused the decrease in glutathione and increase in MDA levels. However, administration of L-carnitine could ameliorate these adverse toxic effects of tilmicosin in mice.

  6. The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model.

    PubMed

    Ansari, Mushtaq A; Maayah, Zaid H; Bakheet, Saleh A; El-Kadi, Ayman O; Korashy, Hesham M

    2013-04-05

    Lead (Pb(2+)) is a naturally occurring systemic toxicant heavy metal that affects several organs in the body including the kidneys, liver, and central nervous system. However, Pb(2+)-induced cardiotoxicity has never been investigated yet and the exact mechanism of Pb(2+) associated cardiotoxicity has not been studied. The current study was designed to investigate the potential effect of Pb(2+) to induce cardiotoxicity in vivo and in vitro rat model and to explore the molecular mechanisms and the role of aryl hydrocarbon receptor (AhR) and regulated gene, cytochrome P4501A1 (CYP1A1), in Pb(2+)-mediated cardiotoxicity. For these purposes, Wistar albino rats were treated with Pb(2+) (25, 50 and 100mg/kg, i.p.) for three days and the effects on physiological and histopathological parameters of cardiotoxicity were determined. At the in vitro level, rat cardiomyocyte H9c2 cell lines were incubated with increasing concentration of Pb(2+) (25, 50, and 100 μM) and the expression of hypertrophic genes, α- and β-myosin heavy chain (α-MHC and β-MHC), brain Natriuretic Peptide (BNP), and CYP1A1 were determined at the mRNA and protein levels using real-time PCR and Western blot analysis, respectively. The results showed that Pb(2+) significantly induced cardiotoxicity and heart failure as evidenced by increase cardiac enzymes, lactate dehydrogenase and creatine kinase and changes in histopathology in vivo. In addition, Pb(2+) treatment induced β-MHC and BNP whereas inhibited α-MHC mRNA and protein levels in vivo in a dose-dependent manner. In contrast, at the in vitro level, Pb(2+) treatment induced both β-MHC and α-MHC mRNA levels in time- and dose-dependent manner. Importantly, these changes were accompanied with a proportional increase in the expression of CYP1A1 mRNA and protein expression levels, suggesting a role for the CYP1A1 in cardiotoxicity. The direct evidence for the involvement of CYP1A1 in the induction of cardiotoxicity by Pb(2+) was evidenced by the

  7. Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients.

    PubMed

    Moilanen, Tiina; Jokimäki, Anna; Tenhunen, Olli; Koivunen, Jussi P

    2018-06-05

    Cardiotoxicity is the most important side effect of trastuzumab treatment. Heart function monitoring is recommended during the treatment which has led to growing use of resources. The aim of this retrospective study was to determine the frequency and timing of trastuzumab cardiotoxicity and its risk factors in real-world setting. Single institute, retrospective collection of data on HER2+ breast cancer patients (n = 246) was carried out through a pharmacy search for patients who had received trastuzumab in 2006-2014. Clinical and pathological factors, treatment history, EF measurements, cardiac medications, cardiovascular disease history, cardiac symptoms, and survival data were collected from patient records. 32 patients (13%) had EF decline ≥ 10%, eleven (4.5%) had EF decline ≥ 20% within 1 year after trastuzumab initiation, and trastuzumab was discontinued due to suspected cardiotoxicity in six patients (2.4%). 49 patients (19.9%) experienced symptoms related to cardiotoxicity during therapy, which accumulated among those with EF drop. Underlying cardiovascular diseases and multiple (≥ 2) cardiac medications were related to EF drop (≥ 20%) and trastuzumab discontinuation. Majority of EF drops (≥ 10%) and trastuzumab discontinuations were seen within 6months of trastuzumab initiation and recovery of EF drop to < 10% of the baseline was seen in most cases (62.5%). There was no statistically significant difference in the survival of patients according to EF drop. Trastuzumab cardiotoxicity seems to accumulate among patients with underlying cardiac conditions. EF monitoring could be targeted to risk groups without compromising of the cardiac health or survival of HER2-positive breast cancer patients.

  8. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo.

    PubMed

    Gao, Junqing; Chen, Tao; Zhao, Deqiang; Zheng, Jianpu; Liu, Zongjun

    2016-01-01

    The aim of this study was to evaluate the effect of Ginkgolide B (GB) on doxorubicin (DOX) induced cardiotoxicity in vitro and in vivo. Rat cardiomyocyte cell line H9c2 was pretreated with GB and subsequently subjected to doxorubicin treatment. Cell viability and cell apoptosis were assessed by MTT assay and Hoechst staining, respectively. Reactive oxygen species (ROS), Akt phosphorylation and intracellular calcium were equally determined in order to explore the underlying molecular mechanism. To verify the in vivo therapeutic effect of GB, we established a mouse model of cardiotoxicity and determined left ventricle ejection fraction (LVEF) and left ventricular mass (LVM). The in vitro experimental results indicated that pretreatment with GB significantly decreases the viability and apoptosis of H9c2 cells by decreasing ROS and intracellular calcium levels and activating Akt phosphorylation. In the in vivo study, we recorded an improved LVEF and a decreased LVM in the group of cardiotoxic rats treated with GB. Altogether, our findings anticipate that GB exerts a cardioprotective effect through possible regulation of the ROS, Akt and calcium pathways. The findings suggest that combination of GB with DOX in chemotherapy could help avoid the cardiotoxic side effects of GB.

  9. Sex-related differential susceptibility to doxorubicin-induced cardiotoxicity in B6C3F{sub 1} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, G. Ronald

    Sex is a risk factor for development of cardiotoxicity, induced by the anti-cancer drug, doxorubicin (DOX), in humans. To explore potential mechanisms underlying differential susceptibility to DOX between sexes, 8-week old male and female B6C3F{sub 1} mice were dosed with 3 mg/kg body weight DOX or an equivalent volume of saline via tail vein once a week for 6, 7, 8, and 9 consecutive weeks, resulting in 18, 21, 24, and 27 mg/kg cumulative DOX doses, respectively. At necropsy, one week after each consecutive final dose, the extent of myocardial injury was greater in male mice compared to females asmore » indicated by higher plasma concentrations of cardiac troponin T at all cumulative DOX doses with statistically significant differences between sexes at the 21 and 24 mg/kg cumulative doses. A greater susceptibility to DOX in male mice was further confirmed by the presence of cytoplasmic vacuolization in cardiomyocytes, with left atrium being more vulnerable to DOX cardiotoxicity. The number of TUNEL-positive cardiomyocytes was mostly higher in DOX-treated male mice compared to female counterparts, showing a statistically significant sex-related difference only in left atrium at 21 mg/kg cumulative dose. DOX-treated male mice also had an increased number of γ-H2A.X-positive (measure of DNA double-strand breaks) cardiomyocytes compared to female counterparts with a significant sex effect in the ventricle at 27 mg/kg cumulative dose and right atrium at 21 and 27 mg/kg cumulative doses. This newly established mouse model provides a means to identify biomarkers and access potential mechanisms underlying sex-related differences in DOX-induced cardiotoxicity. - Highlights: • Doxorubicin caused greater heart injury in male mice than females. • Doxorubicin caused vacuolization in cardiomyocytes only in male mice. • TUNEL-positive cardiomyocytes was higher in DOX-treated male mice. • γ-H2A.X-positive cardiomyocytes was greater in DOX-treated male mice.« less

  10. Chloroquine cardiotoxicity mimicking connective tissue disease heart involvement.

    PubMed

    Vereckei, András; Fazakas, Adám; Baló, Timea; Fekete, Béla; Molnár, Mária Judit; Karádi, István

    2013-04-01

    The authors report a case of rare chloroquine cardiotoxicity mimicking connective tissue disease heart involvement in a 56-year-old woman with mixed connective tissue disease (MCTD) manifested suddenly as third degree A-V block with QT(c) interval prolongation and short torsade de pointes runs ultimately degenerating into ventricular fibrillation. Immunological tests suggested an MCTD flare, implying that cardiac arrest had resulted from myocardial involvement by MCTD. However, QT(c) prolongation is not a characteristic of cardiomyopathy caused by connective tissue disease, unless anti-Ro/SSA positivity is present, but that was not the case. Therefore, looking for another cause of QT(c) prolongation the possibility of chloroquine cardiotoxicity emerged, which the patient had been receiving for almost two years in supramaximal doses. Biopsy of the deltoid muscle was performed, because in chloroquine toxicity, specific lesions are present both in the skeletal muscle and in the myocardium, and electron microscopy revealed the accumulation of cytoplasmic curvilinear bodies, which are specific to antimalarial-induced myocyte damage and are absent in all other muscle diseases, except neuronal ceroid lipofuscinosis. Thus, the diagnosis of chloroquine cardiotoxicity was established. It might be advisable to supplement the periodic ophthalmological examination, which is currently the only recommendation for patients on long-term chloroquine therapy, with ECG screening.

  11. Clinical review: Aggressive management and extracorporeal support for drug-induced cardiotoxicity

    PubMed Central

    Baud, Frédéric J; Megarbane, Bruno; Deye, Nicolas; Leprince, Pascal

    2007-01-01

    Poisoning may induce failure in multiple organs, leading to death. Supportive treatments and supplementation of failing organs are usually efficient. In contrast, the usefulness of cardiopulmonary bypass in drug-induced shock remains a matter of debate. The majority of deaths results from poisoning with membrane stabilising agents and calcium channel blockers. There is a need for more aggressive treatment in patients not responding to conventional treatments. The development of new antidotes is limited. In contrast, experimental studies support the hypothesis that cardiopulmonary bypass is life-saving. A review of the literature shows that cardiopulmonary bypass of the poisoned heart is feasible. The largest experience has resulted from the use of peripheral cardiopulmonary bypass. However, a literature review does not allow any conclusions regarding the efficiency and indications for this invasive method. Indeed, the majority of reports are single cases, with only one series of seven patients. Appealing results suggest that further studies are needed. Determination of prognostic factors predictive of refractoriness to conventional treatment for cardiotoxic poisonings is mandatory. These prognostic factors are specific for a toxicant or a class of toxicants. Knowledge of them will result in clarification of the indications for cardiopulmonary bypass in poisonings. PMID:17367544

  12. Modulating Effects of Spirulina platensis against Tilmicosin-Induced Cardiotoxicity in Mice.

    PubMed

    Ibrahim, Abdelaziz E; Abdel-Daim, Mohamed Mohamed

    2015-01-01

    Tilmicosin (TIL) is a long-acting macrolide antibiotic used to treat cattle for pathogens that cause bovine respiratory disease. However, overdoses of this medication have been reported to induce cardiac damage. Our experimental objective was to evaluate the protective effects of Spirulina platensis (SP) administration against TIL-induced cardiotoxicity in mice. Our experimental in vivo animal study used 40 male albino mice that were divided into five groups of eight mice per group. The first group served as a control group and was injected with saline. The second group received SP at dose of 1000 mg/kg body weight for five days. The third group received a single dose of TIL (75 mg/kg, subcutaneously). Groups 4 and 5 were given SP at doses of 500 and 1000 mg/kg body weight for five consecutive days just before administration of TIL at the same dose and regimen used for group 3. TIL treated animals showed a significant increase in serum cardiac injury biomarkers as well as cardiac lipid peroxidation, however they had evidence of an inhibition in antioxidant biomarkers. SP normalized elevated serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), and CK-MB. Furthermore, SP reduced TIL-induced lipid peroxidation and oxidative stress in a dose-dependent manner. Administration of SP minimized the toxic effects of TIL by its free radicalscavenging and potent antioxidant activity.

  13. TVP1022 and propargylamine protect neonatal rat ventricular myocytes against doxorubicin-induced and serum starvation-induced cardiotoxicity.

    PubMed

    Kleiner, Yana; Bar-Am, Orit; Amit, Tamar; Berdichevski, Alexandra; Liani, Esti; Maor, Gila; Reiter, Irina; Youdim, Moussa B H; Binah, Ofer

    2008-09-01

    We recently reported that propargylamine derivatives such as rasagiline (Azilect) and its S-isomer TVP1022 are neuroprotective. The aim of this study was to test the hypothesis that the neuroprotective agents TVP1022 and propargylamine (the active moiety of propargylamine derivatives) are also cardioprotective. We specifically investigated the protective efficacy of TVP1022 and propargylamine in neonatal rat ventricular myocytes (NRVM) against apoptosis induced by the anthracycline chemotherapeutic agent doxorubicin and by serum starvation. We demonstrated that pretreatment of NRVM cultures with TVP1022 or propargylamine attenuated doxorubicin-induced and serum starvation-induced apoptosis, inhibited the increase in cleaved caspase 3 levels, and reversed the decline in Bcl-2/Bax ratio. These cytoprotective effects were shown to reside in the propargylamine moiety. Finally, we showed that TVP1022 neither caused proliferation of the human cancer cell lines HeLa and MDA-231 nor interfered with the anti-cancer efficacy of doxorubicin. These results suggest that TVP1022 should be considered as a novel cardioprotective agent against ischemic insults and against anthracycline cardiotoxicity and can be coadministered with doxorubicin in the treatment of human malignancies.

  14. Cardiotoxicity in targeted therapy for breast cancer: A study of the FDA adverse event reporting system (FAERS).

    PubMed

    Wittayanukorn, Saranrat; Qian, Jingjing; Johnson, Brandon S; Hansen, Richard A

    2017-03-01

    Purpose Cancer chemotherapy-induced cardiotoxicity is concerning. Certain anthracyclines and targeted therapies are known to have potential for cardiotoxicity, but existing trial evidence is inadequate to understand real-world patterns of cardiotoxicity with newer targeted therapies and their common combinations with older agents. This study evaluated chemotherapy-related cardiotoxicity reports for targeted therapies and their combinations in breast cancer patients. Methods The US Food and Drug Administration Adverse Event Reporting System (FAERS) database from January 2004 through September 2012 was used to summarize characteristics of reported cardiotoxicity events and their health outcomes. Disproportionality analyses with reporting odds ratios (ROR) and 95% confidence intervals (95% CI) were conducted to detect event signals using a case/non-case method for each targeted therapy and combination. Results A total of 59,739 cases of cardiotoxicity reports were identified; 937 cases identified targeted therapy as the suspect drug. Trastuzumab had the highest number of reports followed by bevacizumab and lapatinib. Proportions of reports of death and disability outcomes for each targeted therapy were approximately 20-25% of the total reports of serious events. Trastuzumab had the highest ROR as a single agent (ROR = 5.74; 95% CI = 5.29-6.23) or combination use of cyclophosphamide (ROR = 16.83; 95% CI = 13.32-21.26) or doxorubicin (ROR = 17.84; 95% CI = 13.77-23.11). Relatively low cardiotoxicity reporting rates were found with lapatinib, regardless of use with combination therapy. Conclusions Analysis of FAERS data identified signals for adverse cardiotoxicity events with targeted therapies and their combinations. Practitioners should consider factors that may increase the likelihood of cardiotoxicity when assessing treatment. Findings support continued surveillance, risk factor identification, and comparative studies.

  15. Modulating Effects of Spirulina platensis against Tilmicosin-Induced Cardiotoxicity in Mice

    PubMed Central

    Ibrahim, Abdelaziz E.; Abdel-Daim, Mohamed Mohamed

    2015-01-01

    Objective Tilmicosin (TIL) is a long-acting macrolide antibiotic used to treat cattle for pathogens that cause bovine respiratory disease. However, overdoses of this medication have been reported to induce cardiac damage. Our experimental objective was to evaluate the protective effects of Spirulina platensis (SP) administration against TIL-induced cardiotoxicity in mice. Materials and Methods Our experimental in vivo animal study used 40 male albino mice that were divided into five groups of eight mice per group. The first group served as a control group and was injected with saline. The second group received SP at dose of 1000 mg/kg body weight for five days. The third group received a single dose of TIL (75 mg/kg, subcutaneously). Groups 4 and 5 were given SP at doses of 500 and 1000 mg/kg body weight for five consecutive days just before administration of TIL at the same dose and regimen used for group 3. Results TIL treated animals showed a significant increase in serum cardiac injury biomarkers as well as cardiac lipid peroxidation, however they had evidence of an inhibition in antioxidant biomarkers. SP normalized elevated serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), and CK-MB. Furthermore, SP reduced TIL-induced lipid peroxidation and oxidative stress in a dose-dependent manner. Conclusion Administration of SP minimized the toxic effects of TIL by its free radicalscavenging and potent antioxidant activity. PMID:25870843

  16. Is it possible to cure childhood acute myeloid leukaemia without significant cardiotoxicity?

    PubMed

    Jarfelt, Marianne; Andersen, Niels H; Hasle, Henrik

    2016-11-01

    Since cardiotoxicity is a life threatening late effect, a reduction of cardiotoxicity in the treatment of acute myeloid leukaemia (AML) is essential. This review is a compilation of the current knowledge about cardiotoxicity after AML treatment and of how future directions in treatment may affect its incidence. A total of six studies concerning AML and cardiotoxicity were identified. The incidence of late subclinical cardiotoxicity varied between 1·3 and 15·3%, and late clinical cardiotoxicity varied between 1·3 and 9·3%. Cumulative dose of anthracyclines (ACs) and history of relapse were the most common risk factors identified. No conclusions could be drawn about new, potentially less toxic ACs. Differences in treatment data and variations in study populations made comparisons uncertain. The echocardiographic techniques used in the majority of the studies are inferior to more modern echocardiographic methods. This decreases reproducibility and may increase the risk of overestimation of cardiotoxicity. In summary, AML cannot be cured today without ACs. However, some ACs may cause less cardiotoxicity than others. Furthermore there is currently no consensus on equipotent doses of ACs and risk factors for cardiotoxicity. Further research including randomized trials is needed to evaluate whether or not the potentially less cardiotoxic agents fulfil their promise. © 2016 John Wiley & Sons Ltd.

  17. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, Kimberly R., E-mail: kimberly.doherty@quintiles.com; Talbert, Dominique R.; Trusk, Patricia B.

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks.more » Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  18. Fluoropyrimidine-associated cardiotoxicity: revisited.

    PubMed

    Saif, M Wasif; Shah, Manasi M; Shah, Anuj R

    2009-03-01

    The syndrome of 5-fluorouracil (5-FU)-associated cardiotoxicity remains poorly defined. We performed a literature review (1969 - 2007) and compiled data derived from 377 evaluable cases out of 448 reported cases. Patient age ranged from 14 to 86 years. Of the patients 65% were 55 years old and the male:female ratio was 1.5:1. The most commonly treated tumors were gastrointestinal (60%), head and neck (22%) and breast (4%). Of the patients 14% had a history of heart disease whereas cardiac risk factors were found in 37%. Mode of administration included: continuous infusion (72%); bolus (22.5%); intermediate infusion (3%); oral (2%); and intraperitoneal (1 patient). The dosages of 5-FU used were < 750 mg/m(2)/day (36%), 751 - 999 (16%), 1,000 (26%), 1,001 - 1,499 (4%) and 1,500 (16%). Of the patients 54% received 5-FU in combination with other chemotherapeutic agents (cisplatin 44%) whereas 51% received 5-FU alone or with leucovorin. Only 4% patients had undergone previous or concomitant radiation therapy to the mediastinum. Of cardiac incidents that happened 69% were seen during or within 72 h of the first cycle of 5-FU. Angina occurred in 45% of patients whereas myocardial infarction was seen in 22%, arrhythmias in 23, acute pulmonary edema in 5, cardiac arrest and pericarditis in 1.4 and heart failure in 2. Electro-cardiographic evidence of ischemia or ST-T changes were recorded in 69% of patients, but abnormal cardiac enzymes were found in only 12%. The cardiac symptoms were reproducible in 47%, including in one patient subsequently treated with 5-FU p.o. Symptoms were also elicited when the same patients were treated with lower doses or different schedules. Of the patients 68% responded to conservative anti-anginal therapy, although prophylactic coronary vasodilators had limited efficacy. Overall, 8% of patients showing cardiotoxicity on 5-FU administration died. Furthermore, 13% reexposed to 5-FU died. Our review suggests that 5-FU cardiotoxicity is an

  19. Evaluation of the pharmacokinetics and cardiotoxicity of doxorubicin in rat receiving nilotinib

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhi-yong; School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai; Wan, Li-li

    Doxorubicin (DOX) is a potent chemotherapy drug with a narrow therapeutic window. Nilotinib, a small-molecule Bcr-Abl tyrosine kinase inhibitor, was reported to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) transmembrane transporters. The present study aimed to investigate nilotinib's affection on the steady-state pharmacokinetics, disposition and cardiotoxicity of DOX. A total of 24 male Sprague–Dawley rats were randomized into four groups (6 in each) and received the following regimens: saline, intravenous DOX (5 mg/kg) alone, and DOX co-administrated with either 20 or 40 mg/kg nilotinib. Blood was withdrawn at 12 time points till 72 h after DOX injection and themore » concentrations of DOX and its metabolite doxorubicinol (DOXol) in serum and cardiac tissue were assayed by LC–MS–MS method. To determine the cardiotoxicity, the following parameters were investigated: creatine kinase, lactate dehydrogenase, malondialdehyde, and superoxide dismutase. Histopathological examination of heart section was carried out to evaluate the extent of cardiotoxicity after treatments. The results showed that pretreatment of 40 mg/kg nilotinib increased the AUC{sub 0–t} and C{sub max} of DOX and DOXol. However, their accumulation in cardiac tissue was significantly decreased when compared with the group that received DOX alone. In addition, biochemical and histopathological results showed that 40 mg/kg nilotinib reduced the cardiotoxicity induced by DOX administration. In conclusion, co-administration of nilotinib increased serum exposure, but significantly decreased the accumulation of DOX in cardiac tissue. Consistent with in vitro profile, oral dose of 40 mg/kg nilotinib significantly decreased the cardiotoxicity of DOX in rat by enhancing P-gp activity in the heart.« less

  20. Effect of valsartan on cardiac senescence and apoptosis in a rat model of cardiotoxicity.

    PubMed

    Sakr, Hussein F; Abbas, Amr M; Elsamanoudy, Ayman Z

    2016-06-01

    The clinical application of doxorubicin is limited by its cardiotoxicity. The present study investigated the effect of valsartan on doxorubicin-induced cardiotoxicity in rats. Rats were divided into 6 groups: control, control + valsartan (10 mg/kg, for 14 days, orally), doxorubicin-treated (2.5 mg/kg, 3 times/week for 2 weeks, intraperitoneally), valsartan then doxorubicin, valsartan + doxorubicin, and doxorubicin then valsartan. ECG, isolated heart, lipid peroxidation (thiobaribituric acid reactive substances (TBARS)), total antioxidant capacity (TAC), and Bax, Bcl-2, and senescence marker protein 30 (SMP30) gene expression were measured in cardiac tissue. Blood samples were collected to measure lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB). Doxorubicin significantly increased LDH, CK-MB, TBARS, heart rate (HR), Bax gene expression, and -dP/dtmax and decreased TAC, Bcl-2 and SMP30 gene expression, left ventricular developed pressure (LVDP), and +dP/dtmax. Also, doxorubicin lengthened ST, QT, and QTc intervals. Concurrent or post- but not pre-treatment of doxorubicin-treated rats with valsartan reduced LDH, CK-MB, TBARS, HR, Bax gene expression, -dP/dtmax, and ST, QT, and QTc intervals and increased TAC, Bcl-2 and SMP30 gene expression, LVDP, and +dP/dtmax. Therefore, we conclude that concurrent or post- but not pre-treatment of doxorubicin-induced rats with valsartan attenuated doxorubicin-induced cardiotoxicity through inhibiting oxidative stress, apoptosis, and senescence.

  1. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    NASA Astrophysics Data System (ADS)

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-10-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.

  2. Combinatorial resveratrol and quercetin polymeric micelles mitigate doxorubicin induced cardiotoxicity in vitro and in vivo.

    PubMed

    Cote, Brianna; Carlson, Lisa Janssen; Rao, Deepa A; Alani, Adam W G

    2015-09-10

    Doxorubicin hydrochloride (ADR) is an anthracycline antibiotic used to treat various cancers. However, due to its extensive cardiotoxic side effects a lifetime cumulative dose limit of 450-550 mg/m2 exists. The postulated mechanism of the cardiotoxicity is generation of reactive oxygen and nitrogen species. Natural products like resveratrol (RES), and quercetin (QUE) are known free radical scavengers and have shown cardioprotective effects. However, concurrent dosing of these natural products with ADR is limited due to their low solubility, and low oral bioavailability. We hypothesize that the combination of RES and QUE in Pluronic® F127 micelles (mRQ) when co-administered with ADR, will be cardioprotective in vitro and in vivo, while maintaining or increasing the efficacy of ADR against cancer cell lines in vitro. We prepared mRQ micelles capable of retaining 1.1mg/mL and 1.42 mg/mL of RES and QUE respectively. The in vitro release of RES and QUE from the micelles followed first order kinetics over 48h. In vitro cell viability and combination index analysis studies in human ovarian cancer cells (SKOV-3) and rat cardiomyocytes (H9C2) showed that RES:QUE: ADR at 10:10:1 ratio was synergistic in SKOV-3 cells and antagonistic in H9C2 cells. Caspase 3/7 activity studies indicated that mRQ did not interfere with ADR caspase activity in SKOV-3 cells but significantly decreased it in H9C2 cells. The generation of reactive oxygen species (ROS) in SKOV-3 and H9C2 cells in the presence of mRQ also indicated no changes in ROS activity in SKOV-3 cells but significant scavenging in H9C2 cells. Healthy mice were exposed to acute doses of ADR and ADR with mRQ. Based on biochemical estimations the presence of mRQ with ADR conferred full cardioprotection in these mice. Concurrent administration of mRQ with ADR at 10:10:1 ratio provides a viable strategy to mitigate acute ADR induced cardiotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cancer Treatment-Related Cardiotoxicity

    Cancer.gov

    Cancer Treatment-Related Cardiotoxicity includes efforts to identify individual toxicity risks and prevention strategies support the National Cancer Insitute's goal of reducing the burden of cancer diagnoses and treatment outcomes.

  4. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity.

    PubMed

    Zhu, Jie-Ning; Fu, Yong-Heng; Hu, Zhi-Qin; Li, Wen-Yu; Tang, Chun-Mei; Fei, Hong-Wen; Yang, Hui; Lin, Qiu-Xiong; Gou, De-Ming; Wu, Shu-Lin; Shan, Zhi-Xin

    2017-09-19

    The molecular mechanisms underlying anthracyclines-induced cardiotoxicity have not been well elucidated. MiRNAs were revealed dysregulated in the myocardium and plasma of rats received Dox treatment. MicroRNA-34a-5p (miR-34a-5p) was verified increased in the myocardium and plasma of Dox-treated rats, but was reversed in rats received Dox plus DEX treatments. Human miR-34a-5p was also observed increased in the plasma of patients with diffuse large B-cell lymphoma after 9- and 16-week epirubicin therapy. Up-regulation of miR-34a-5p was observed in Dox-induced rat cardiomyocyte H9c2 cells. MiR-34a-5p could augment Bax expression, but inhibited Bcl-2 expression, along with the increases of the activated caspase-3 and mitochondrial potentials in H9C2 cells. MiR-34a-5p was verified to modulate Sirt1 expression post-transcriptionally. In parallel to Sirt1 siRNA, miR-34a-5p could enhance p66shc expression, accompanied by increases of Bax and the activated caspase-3 and a decrease of Bcl-2 in H9c2 cells. Moreover, enforced expression of Sirt1 alleviated Dox-induced apoptosis of H9c2 cells, with suppressing levels of p66shc, Bax, the activated caspase-3 and miR-34a-5p, and enhancing Bcl-2 expression. Therefore, miR-34a-5p enhances cardiomyocyte apoptosis by targeting Sirt1, activation of miR-34a-5p/Sirt1/p66shc pathway contributes to Dox-induced cardiotoxicity, and blockage of this pathway represents a potential cardioprotective effect against anthracyclines.

  5. Oral administration of quercetin is unable to protect against isoproterenol cardiotoxicity.

    PubMed

    Ríha, Michal; Vopršalová, Marie; Pilařová, Veronika; Semecký, Vladimír; Holečková, Magdalena; Vávrová, Jaroslava; Palicka, Vladimir; Filipský, Tomáš; Hrdina, Radomír; Nováková, Lucie; Mladěnka, Přemysl

    2014-09-01

    Catecholamines are endogenous amines that participate in the maintenance of cardiovascular system homeostasis. However, excessive release or exogenous administration of catecholamines is cardiotoxic. The synthetic catecholamine, isoprenaline (isoproterenol, ISO), with non-selective β-agonistic activity has been used as a viable model of acute myocardial toxicity for many years. Since the pathophysiology of ISO-cardiotoxicity is complex, the aim of this study was to elucidate the effect of oral quercetin pretreatment on myocardial ISO toxicity. Wistar-Han rats were randomly divided into four groups: solvent or quercetin administered orally by gavage in a dose of 10 mg kg(-1) daily for 7 days were followed by s.c. water for injection or ISO in a dose of 100 mg kg(-1). Haemodynamic, ECG and biochemical parameters were measured; effects on blood vessels and myocardial histology were assessed, and accompanying pharmacokinetic analysis was performed. Quercetin was unable to protect the cardiovascular system against acute ISO cardiotoxicity (stroke volume decrease, cardiac troponin T release, QRS-T junction elevation and histological impairment). The sole positive effect of quercetin on catecholamine-induced cardiotoxicity was the normalization of increased left ventricular end-diastolic pressure caused by ISO. Quercetin did not reverse the increased responsiveness of rat aorta to vasoconstriction in ISO-treated animals, but it decreased the same parameter in the control animals. Accompanying pharmacokinetic analysis showed absorption of quercetin and its metabolite 3-hydroxyphenylacetic acid formed by bacterial microflora. In conclusion, a daily oral dose of 10 mg kg(-1) of quercetin for 7 days did not ameliorate acute ISO-cardiovascular toxicity in rats despite minor positive cardiovascular effects.

  6. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children.

    PubMed

    Visscher, Henk; Ross, Colin J D; Rassekh, S Rod; Barhdadi, Amina; Dubé, Marie-Pierre; Al-Saloos, Hesham; Sandor, George S; Caron, Huib N; van Dalen, Elvira C; Kremer, Leontien C; van der Pal, Helena J; Brown, Andrew M K; Rogers, Paul C; Phillips, Michael S; Rieder, Michael J; Carleton, Bruce C; Hayden, Michael R

    2012-05-01

    Anthracycline-induced cardiotoxicity (ACT) is a serious adverse drug reaction limiting anthracycline use and causing substantial morbidity and mortality. Our aim was to identify genetic variants associated with ACT in patients treated for childhood cancer. We carried out a study of 2,977 single-nucleotide polymorphisms (SNPs) in 220 key drug biotransformation genes in a discovery cohort of 156 anthracycline-treated children from British Columbia, with replication in a second cohort of 188 children from across Canada and further replication of the top SNP in a third cohort of 96 patients from Amsterdam, the Netherlands. We identified a highly significant association of a synonymous coding variant rs7853758 (L461L) within the SLC28A3 gene with ACT (odds ratio, 0.35; P = 1.8 × 10(-5) for all cohorts combined). Additional associations (P < .01) with risk and protective variants in other genes including SLC28A1 and several adenosine triphosphate-binding cassette transporters (ABCB1, ABCB4, and ABCC1) were present. We further explored combining multiple variants into a single-prediction model together with clinical risk factors and classification of patients into three risk groups. In the high-risk group, 75% of patients were accurately predicted to develop ACT, with 36% developing this within the first year alone, whereas in the low-risk group, 96% of patients were accurately predicted not to develop ACT. We have identified multiple genetic variants in SLC28A3 and other genes associated with ACT. Combined with clinical risk factors, genetic risk profiling might be used to identify high-risk patients who can then be provided with safer treatment options.

  7. Cardiotoxicity of novel HER2-targeted therapies.

    PubMed

    Sendur, Mehmet A N; Aksoy, Sercan; Altundag, Kadri

    2013-08-01

    Trastuzumab, an anti-HER2 humanized monoclonal antibody, is the standard treatment for both early and metastatic HER2-positive breast cancer. In addition to other chemotherapeutic agents, trastuzumab significantly improves response rate and survival in HER2-positive early and metastatic breast cancer. Although it is well known that trastuzumab therapy is closely associated with both symptomatic and asymptomatic cardiotoxicity, less is known about novel HER2-targeted therapies. The aim of this review is to discuss the cardiac safety data from recent studies of novel anti-HER2 drugs other than trastuzumab. Novel HER2-targeted therapies showed favorable results in HER2 positive metastatic breast cancer patients. Pubmed database, ASCO and San Antonio Breast Cancer Symposium Meeting abstracts were searched until January 2013 using the following search keywords; 'trastuzumab, trastuzumab cardiotoxicity, HER-2 targeted therapies, lapatinib, pertuzumab, trastuzumab emtansine, afatinib and neratinib'; papers which were considered relevant for the aim of this review were selected by the authors. Lapatinib, pertuzumab, T-DM1, neratinib and afatinib molecules are evaluated in the study. In a comprehensive analysis, 3689 lapatinib treated patients enrolled in 49 trials; asymptomatic cardiac events were reported in 53 patients (1.4%) and symptomatic grade III and IV systolic dysfunction was observed only in 7 patients (0.2%) treated with lapatinib. In phase I-III trials of pertuzumab, cardiac dysfunction was seen in 4.5-14.5% of patients with pertuzumab treatment and cardiac dysfunction was usually grade I and II. Cardiotoxicity of pertuzumab was usually reported with the trastuzumab combination and no additive cardiotoxicity was reported with addition of pertuzumab to trastuzumab. T-DM1 had a better safety profile compared to trastuzumab, no significant cardiotoxicity was observed with T-DM1 in heavily pre-treated patients. In the EMILIA study, only in 1.7% of patients in the T

  8. Assessment of Subclinical Doxorubicin-induced Cardiotoxicity in a Rat Model by Speckle-Tracking Imaging.

    PubMed

    Kang, Yu; Wang, Wei; Zhao, Hang; Qiao, Zhiqing; Shen, Xuedong; He, Ben

    2017-07-10

    Despite their clear therapeutic benefits, anthracycline-induced cardiotoxicity is a major concern limiting the ability to reduce morbidity and mortality associated with cancers. The early identification of anthracycline-induced cardiotoxicity is of vital importance to assess the cardiac risk against the potential cancer treatment. To investigate whether speckle-tracking analysis can provide a sensitive and accurate measurement when detecting doxorubicin-induced left ventricular injury. Wistar rats were divided into 4 groups with 8 rats each, given doxorubicin intraperitoneally at weekly intervals for up to 4 weeks. Group 1: 2.5 mg/kg/week; group 2: 3 mg/kg/week; group 3: 3.5mg/kg/week; group 4: 4mg/kg/week. An additional 5 rats were used as controls. Echocardiographic images were obtained at baseline and 1 week after the last dose of treatment. Radial (Srad) and circumferential (Scirc) strains, radial (SRrad) and circumferential (SRcirc) strain rates were analyzed. After the experiment, cardiac troponin I (cTnI) was analyzed and the heart samples were histologically evaluated. After doxorubicin exposure, LVEF was significantly reduced in group 4 (p = 0.006), but remained stable in the other groups. However, after treatment, Srads were reduced in groups 2, 3 and 4 (p all < 0.05). The decrease in Srads was correlated with cTnI (rho = -0.736, p = 0.000) and cardiomyopathy scores (rho = -0.797, p = 0.000). Radial strain could provide a sensitive and noninvasive index in early detection of doxorubicin-induced myocardial injury. The changes in radial strain had a significant correlation with myocardial lesions and serum cardiac troponin I levels, indicating that this parameter could accurately evaluate cardiotoxicity severity. Apesar dos seus claros benefícios terapêuticos, a cardiotoxicidade induzida pela antraciclina é uma grande preocupação que limita a capacidade de reduzir a morbidade e mortalidade associadas com cânceres. A identificação precoce da

  9. Sunitinib‐Induced Cardiotoxicity Is Mediated by Off‐Target Inhibition of AMP‐Activated Protein Kinase

    PubMed Central

    Kerkela, Risto; Woulfe, Kathleen C.; Durand, Jean‐Bernard; Vagnozzi, Ronald; Kramer, David; Chu, Tammy F.; Beahm, Cara; Chen, Ming Hui; Force, Thomas

    2009-01-01

    Abstract Tyrosine kinase inhibitors (TKIs) are transforming the treatment of patients with malignancies. One such agent, sunitinib (Sutent, Pfizer, New York, NY, USA), has demonstrated activity against a variety of solid tumors. Sunitinib is “multitargeted,” inhibiting growth factor receptors that regulate both tumor angiogenesis and tumor cell survival. However, cardiac dysfunction has been associated with its use. Identification of the target of sunitinib‐associated cardiac dysfunction could guide future drug design to reduce toxicity while preserving anticancer activity. Herein we identify severe mitochondrial structural abnormalities in the heart of a patient with sunitinib‐induced heart failure. In cultured cardiomyocytes, sunitinib induces loss of mitochondrial membrane potential and energy rundown. Despite the latter, 5′ adenosine monophosphate‐activated protein kinase (AMPK) activity, which should be increased in the setting of energy compromise, is reduced in hearts of sunitinib‐treated mice and cardiomyocytes in culture, and this is due to direct inhibition of AMPK by sunitinib. Critically, we find that adenovirus‐mediated gene transfer of an activated mutant of AMPK reduces sunitinib‐induced cell death. Our findings suggest AMPK inhibition plays a central role in sunitinib cardiomyocyte toxicity, highlighting the potential of off‐target effects of TKIs contributing to cardiotoxicity. While multitargeting can enhance tumor cell killing, this must be balanced against the potential increased risk of cardiac dysfunction. PMID:20376335

  10. Antihistamines modulate the integrin signaling pathway in h9c2 rat cardiomyocytes: Possible association with cardiotoxicity.

    PubMed

    Yun, J S; Kim, S Y

    2015-08-01

    The identification of biomarkers for toxicity prediction is crucial for drug development and safety evaluation. The selective and specific biomarkers for antihistamines-induced cardiotoxicity is not well identified yet. In order to evaluate the mechanism of the life-threatening effects caused by antihistamines, we used DNA microarrays to analyze genomic profiles in H9C2 rat cardiomyocytes that were treated with antihistamines. The gene expression profiles from drug-treated cells revealed changes in the integrin signaling pathway, suggesting that cardiac arrhythmias induced by antihistamine treatment may be mediated by changes in integrin-mediated signaling. It has been reported that integrin plays a role in QT prolongation that may induce cardiac arrhythmia. These results indicate that the integrin-mediated signaling pathway induced by antihistamines is involved in various biological mechanisms that lead to cardiac QT prolongation. Therefore, we suggest that genomic profiling of antihistamine-treated cardiomyocytes has the potential to reveal the mechanism of adverse drug reactions, and this signal pathway is applicable to prediction of in vitro cardiotoxicity induced by antihistamines as a biomarker candidate. © The Author(s) 2014.

  11. Assessment of late cardiotoxicity of pirarubicin (THP) in children with acute lymphoblastic leukemia.

    PubMed

    Shimomura, Yasuto; Baba, Reizo; Watanabe, Arata; Horikoshi, Yasuo; Asami, Keiko; Hyakuna, Nobuyuki; Iwai, Asayuki; Matsushita, Takeshi; Yamaji, Kazutaka; Hori, Toshinori; Tsurusawa, Masahito

    2011-09-01

    Pirarubicin (tetrahydropyranyl-adriamycin: THP) is a derivative of doxorubicin with reportedly less cardiotoxicity in adults. However no studies of cardiotoxicity in children treated with THP have been reported. This study was performed to assess the THP-induced cardiotoxicity for children with acute lymphoblastic leukemia (ALL). This study comprised 61 asymptomatic patients aged from 7.6 to 25.7 years old. Median follow-up time after completion of anthracycline treatment was 8.1 years (range: 1.7-12.5). The cumulative dose of THP ranged from 120 to 740 mg/m(2) with a median of 180 mg/m(2) . Patients underwent electrocardiogram (ECG), echocardiography, the 6-min walk test (6MWT), and measurements of serum brain natriuretic peptide (BNP) before and after exercise. All subjects showed normal left ventricular function assessed by echocardiography. Ventricular premature contraction in Holter ECG and reduced exercise tolerance in the 6MWT were detected in 2/46 (3.3%) and 5/41(12.2%), respectively. Abnormal BNP levels were detected in 6/60 (10%) both before and after exercise. The cumulative dose of THP was significantly correlated with BNP levels after exercise (r = 0.27, P = 0.03), but not with any other cardiac measurements. Further analysis revealed that subjects with a high cumulative dose ≧300 mg/m(2) had significantly higher BNP levels after exercise compared with subjects with a low cumulative dose <300 mg/m(2) (P = 0.04). No significant cardiac dysfunction was detected in long-term survivors who received THP treatment. The use of post-exercise BNP level to indicate high cardiotoxicity risk should be verified by further study. Copyright © 2011 Wiley-Liss, Inc.

  12. Usefulness of cardiotoxicity assessment using calcium transient in human induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Watanabe, Hitoshi; Honda, Yayoi; Deguchi, Jiro; Yamada, Toru; Bando, Kiyoko

    2017-01-01

    Monitoring dramatic changes in intracellular calcium ion levels during cardiac contraction and relaxation, known as calcium transient, in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be an attractive strategy for assessing compounds on cardiac contractility. In addition, as arrhythmogenic compounds are known to induce characteristic waveform changes in hiPSC-CMs, it is expected that calcium transient would allow evaluation of not only compound-induced effects on cardiac contractility, but also compound arrhythmogenic potential. Using a combination of calcium transient in hiPSC-CMs and a fast kinetic fluorescence imaging detection system, we examined in this study changes in calcium transient waveforms induced by a series of 17 compounds that include positive/negative inotropic agents as well as cardiac ion channel activators/inhibitors. We found that all positive inotropic compounds induced an increase in peak frequency and/or peak amplitude. The effects of a negative inotropic compound could clearly be detected in the presence of a β-adrenergic receptor agonist. Furthermore, most arrhythmogenic compounds raised the ratio of peak decay time to peak rise time (D/R ratio) in calcium transient waveforms. Compound concentrations at which these parameters exceeded cutoff values correlated well with systemic exposure levels at which arrhythmias were reported to be evoked. In conclusion, we believe that peak analysis of calcium transient and determination of D/R ratio are reliable methods for assessing compounds' cardiac contractility and arrhythmogenic potential, respectively. Using these approaches would allow selection of compounds with low cardiotoxic potential at the early stage of drug discovery.

  13. The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of Molecularly Targeted Cancer Therapeutics

    PubMed Central

    Lakoski, Susan; Mackey, John R.; Douglas, Pamela S.; Haykowsky, Mark J.; Jones, Lee W.

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. PMID:23335619

  14. Protective effects of dietary selenium and vitamin C in barium-induced cardiotoxicity.

    PubMed

    Elwej, Awatef; Ghorbel, Imen; Chaabane, Mariem; Soudani, Nejla; Marrekchi, Rim; Jamoussi, Kamel; Mnif, Hela; Boudawara, Tahia; Zeghal, Najiba; Sefi, Mediha

    2017-11-01

    Several metals including barium (Ba) known as environmental pollutants provoke deleterious effects on human health. The present work pertains to the potential ability of selenium (Se) and/or vitamin C, used as nutritional supplements, to alleviate the toxic effects induced by barium chloride (BaCl 2 ) in the heart of adult rats. Animals were randomly divided into seven groups of six each: group 1, serving as negative controls, received distilled water; group 2 received in their drinking water BaCl 2 (67 ppm); group 3 received both Ba and Se (sodium selenite 0.5 mg kg -1 of diet); group 4 received both Ba and vitamin C (200 mg kg -1 bodyweight) via force feeding; group 5 received Ba, Se, and vitamin C; and groups 6 and 7, serving as positive controls, received either Se or vitamin C for 21 days. The exposure of rats to BaCl 2 caused cardiotoxicity as monitored by an increase in malondialdehyde, hydrogen peroxide, and advanced oxidation protein product levels, a decrease in Na + -K + adenosine triphosphatase (ATPase), Mg 2+ ATPase, and acetylcholinesterase activities and in antioxidant defense system (catalase, glutathione peroxidase, superoxide dismutase, glutathione, and nonprotein thiols). Plasma lactate dehydrogenase and creatine kinase activities, total cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels increased, while high-density lipoprotein-cholesterol level decreased. Coadministration of Se and/or vitamin C restored the parameters indicated above to near control values. The histopathological findings confirmed the biochemical results. Se and vitamin C may be a promising therapeutic strategy for Ba-induced heart injury.

  15. Severe Cardiotoxicity in a Patient with Colorectal Cancer Treated with Bevacizumab.

    PubMed

    Chen, Jian; Du, Fengcai; Hu, Baohong; Chi, Cheng; Chu, Hongjin; Jiang, Lixin; Li, Peng; Gong, Zhaohua

    2017-08-01

    Bevacizumab combined with standard chemotherapeutics has become a choice of treatment for several kinds of cancers. Hypertension, third-degree albuminuria, thrombosis and cardiotoxicity are the reported side-effects of bevacizumab. Among them, cardiotoxicity is a most severe, but rare outcome. We report a case of a 62-year-old female with colorectal carcinoma who was given bevacizumab-containing chemotherapy for more than 20 months and achieved a stable disease during the entire course of treatment. Thereafter, she developed cardiotoxicity including grade 3 hypertension, tricuspid regurgitation, pulmonary hypertension, left ventricular diastolic dysfunction and pericardial effusion, and was discontinued from the regimen with bevacizumab. Although clinically-effective, the severe cardiotoxicity of bevacizumab developed after over 20 courses of treatment prompted us to look for optimal chemotherapy prescription in order to achieve a better clinical outcome. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer.

    PubMed

    Aminkeng, Folefac; Bhavsar, Amit P; Visscher, Henk; Rassekh, Shahrad R; Li, Yuling; Lee, Jong W; Brunham, Liam R; Caron, Huib N; van Dalen, Elvira C; Kremer, Leontien C; van der Pal, Helena J; Amstutz, Ursula; Rieder, Michael J; Bernstein, Daniel; Carleton, Bruce C; Hayden, Michael R; Ross, Colin J D

    2015-09-01

    Anthracyclines are used in over 50% of childhood cancer treatment protocols, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively. Candidate gene studies have reported genetic associations with ACT, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10(-8), odds ratio (95% confidence interval) = 4.7 (2.7-8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction.

  17. Protective effect of taurine on cardiotoxicity of the bufadienolides derived from toad (Bufo bufo gargarizans Canto) venom in guinea-pigs in vivo and in vitro.

    PubMed

    Ma, Hongyue; Jiang, Jiejun; Zhang, Junfeng; Zhou, Jing; Ding, Anwei; Lv, Gaohong; Xu, Huiqin; You, Fenqiang; Zhan, Zhen; Duan, Jinao

    2012-01-01

    In China, toad venom is an anti-inflammatory agent used in small doses for the treatment of various types of inflammation. Bufadienolides are cardioactive steroids responsible for the anti-inflammatory actions of toad venom. We studied the protective effect of taurine on the cardiotoxicity of bufadienolides in guinea-pigs. Bufadienolides (8 mg/kg) caused arrhythmias, cardiac dysfunction and death in guinea-pigs. Pretreatment with taurine (150, 300 mg/kg) significantly prevented bufadienolide-induced cardiotoxicity and reduced the mortality in vivo. Taurine markedly increased the cumulative doses of bufadienolides and resibufogenin required for lethal arrhythmia in ex vivo isolated guinea-pig heart. Taurine did not compromise the anti-inflammatory activity of the bufadienolides on concanavalin-A-stimulated proliferation of guinea-pig splenocytes in vitro. These data indicate that taurine can prevent bufadienolide-induced cardiotoxicity and could be a novel antidote in combination with bufadienolide therapy.

  18. The Effects of Mangiferin (Mangifera indica L) in Doxorubicin-induced Cardiotoxicity in Rats.

    PubMed

    Arozal, W; Suyatna, F D; Juniantito, V; Rosdiana, D S; Amurugam, S; Aulia, R; Monayo, E R; Siswandi, R

    2015-11-01

    The cardiotoxicity effect of doxorubicin (DOX), a widely used antitumor agent has restricted its clinical application. The aim of the current study was to explore the potential protective effect of mangiferin, a naturally occurring glucosylxanthone, that have antioxidant activity by its iron-complexing ability in mitochondria, against DOX-induced cardiac toxicity in rats in comparison with other antioxidants namely Sylimarin (SYL) and Vitamin E (VitE). Mangiferin was given orally to rats at a dose of 50, and 100 mg/kg for 5 weeks, and DOX was injected at a total dose of 15 mg/kg. Cardiac toxicity was evaluated by lactate dehydrogenase and creatine kinase in the serum, malondialdehyde (MDA) level in plasma and cardiac tissue, and antioxidant enzyme superoxide dismutase (SOD) in cardiac tissue. Mangiferin protected against DOX-induced increased mortality and electrocardiogram abnormality and decreased biochemical markers of cardiac toxicity i. e., lactate dehydrogenase and creatine phosphokinase isoenzyme. In addition, elevation of plasma and cardiac tissue levels of MDA in response to DOX treatment were significantly attenuated. The reduction of cardiac activity of SOD was significantly reduced in contrast with the other antioxidant SYL and Vit E. Histopathologically, mangiferin treatment showed significant reduction in inflammatory cell number, fibrotic area, and necrotic foci as compared with DOX only-treated rats. These results suggested that mangiferin had better protective effect against DOX-induced cardiac toxicity in comparison with SYL and VitE, thus besides the antioxidant activity, different mechanism may be involved in the action of mangiferin and need to be clarified in the future studies. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment.

    PubMed

    Pecoraro, Michela; Rodríguez-Sinovas, Antonio; Marzocco, Stefania; Ciccarelli, Michele; Iaccarino, Guido; Pinto, Aldo; Popolo, Ada

    2017-10-11

    The use of Doxorubicin (DOXO), a potent antineoplastic agent, is limited by the development of cardiotoxicity. DOXO-induced cardiotoxicity is multifactorial, although alterations in calcium homeostasis, seem to be involved. Since even the Connexin43 (Cx43) plays a pivotal role in these two phenomena, in this study we have analyzed the effects of DOXO on Cx43 expression and localization. Damage caused by anthracyclines on cardiomyocytes is immediate after each injection, in the present study we used a short-term model of DOXO-induced cardiomyopathy. C57BL/6j female mice were randomly divided in groups and injected with DOXO (2 or 10 mg/kg i.p.) for 1-3 or 7 days once every other day. Cardiac function was assessed by Echocardiography. Sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCAII) and phospholamban (PLB) expression were assessed by Western blot analysis, intracellular [Ca 2+ ] were detected spectrofluorometrically by means of Fura-2 pentakis (acetoxymethyl) ester (FURA-2AM), and Cx43 and pCx43 expression and localization was analyzed by Western blot and confirmed by immunofluorescence analysis. DOXO induces impairment in Ca 2+ homeostasis, already evident after a single administration, and affects Cx43 expression and localization. Our data suggest that DOXO-induced alterations in Ca 2+ homeostasis causes in the cells the induction of compensatory mechanisms until a certain threshold, above which cardiac injury is triggered.

  20. Protective effect of quercetin and/or l-arginine against nano-zinc oxide-induced cardiotoxicity in rats

    NASA Astrophysics Data System (ADS)

    Faddah, L. M.; Baky, Nayira A. Abdel; Mohamed, Azza M.; Al-Rasheed, Nouf M.; Al-Rasheed, Nawal M.

    2013-04-01

    The aim of this study was to investigate the protective role of quercetin and/or l-arginine against the cardiotoxic potency of zinc oxide nanoparticle (ZnO-NP)-induced cardiac infarction. ZnO-NPs (50 nm) were administered orally at either 600 mg or 1 g/kg body weight for 5 consecutive days. The results revealed that co-administration of quercetin and/or l-arginine (each 200 mg/kg body weight) daily for 3 weeks to rats intoxicated by either of the two doses markedly ameliorated increases in serum markers of cardiac infarction, including troponin T, creatine kinase-MB, and myoglobin, as well as increases in proinflammatory biomarkers, including tumor necrosis factor-α, interleukin-6, and C-reactive protein, compared with intoxicated, untreated rats. Each agent alone or in combination also successfully modulated the alterations in serum vascular endothelial growth factor, cardiac calcium concentration, and oxidative DNA damage as well as the increase in the apoptosis marker caspase 3 of cardiac tissue in response to ZnO-NP toxicity. In conclusion, early treatment with quercetin and l-arginine may protect cardiac tissue from infarction induced by the toxic effects of ZnO-NPs.

  1. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research‐practice gaps, challenges, and insights

    PubMed Central

    Li, Jin; Kros, Johan M

    2017-01-01

    Abstract To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune‐based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T‐cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life‐threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer‐related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research‐practice gaps, addressing real‐world challenges and pinpointing real‐time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio‐oncology and crosses the interface between oncology and onco‐pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research‐practice gaps may advance research initiatives on the development of mechanism‐based diagnoses and treatments for the effective clinical management of cardiotoxicity. PMID:28862319

  2. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management.

    PubMed

    Curigliano, Giuseppe; Cardinale, Daniela; Dent, Susan; Criscitiello, Carmen; Aseyev, Olexiy; Lenihan, Daniel; Cipolla, Carlo Maria

    2016-07-01

    Answer questions and earn CME/CNE Cancer and heart disease are the leading causes of morbidity and mortality in the industrialized world. Modern treatment strategies have led to an improvement in the chances of surviving a diagnosis of cancer; however, these gains can come at a cost. Patients may experience adverse cardiovascular events related to their cancer treatment or as a result of an exacerbation of underlying cardiovascular disease. With longer periods of survival, late effects of cancer treatment may become clinically evident years or decades after completion of therapy. Current cancer therapy incorporates multiple agents whose deleterious cardiac effects may be additive or synergistic. Cardiac dysfunction may result from agents that can result in myocyte destruction, such as with anthracycline use, or from agents that appear to transiently affect left ventricular contractility. In addition, cancer treatment may be associated with other cardiac events, such as severe treatment-induced hypertension and vasospastic and thromboembolic ischemia, as well as rhythm disturbances, including QTc prolongation, that may be rarely life-threatening. Early and late effects of chest radiation can lead to radiation-induced heart disease, including pericardial disease, myocardial fibrosis, cardiomyopathy, coronary artery disease, valvular disease, and arrhythmias, in the setting of myocardial fibrosis. The discipline of cardio-oncology has developed in response to the combined decision making necessary to optimize the care of cancer patients, whether they are receiving active treatment or are long-term survivors. Strategies to prevent or mitigate cardiovascular damage from cancer treatment are needed to provide the best cancer care. This review will focus on the common cardiovascular issues that may arise during or after cancer therapy, the detection and monitoring of cardiovascular injury, and the best management principles to protect against or minimize cardiotoxicity

  3. Beneficial effects of carbon monoxide-releasing molecule-2 (CORM-2) on acute doxorubicin cardiotoxicity in mice: Role of oxidative stress and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, Hitesh; Department of Pharmacology, L.M. College of Pharmacy, Navarangpura, Ahmedabad-380009; Pandya, Gaurav

    2011-05-15

    Doxorubicin (DXR) has been used in variety of human malignancies for decades. Despite its efficacy in cancer, clinical usage is limited because of its cardiotoxicity, which has been associated with oxidative stress and apoptosis. Carbon monoxide-releasing molecules (CORMs) have been shown to reduce the oxidative damage and apoptosis. The present study investigated the effects of CORM-2, a fast CO-releaser, against DXR-induced cardiotoxicity in mice using biochemical, histopathological and gene expression approaches. CORM-2 (3, 10 and 30 mg/kg/day) was administered intraperitoneally (i.p.) for 10 days and terminated the study on day 11. DXR (20 mg/kg, i.p.) was injected before 72 hmore » of termination. Mice treated with DXR showed cardiotoxicity as evidenced by elevation of serum creatine kinase (CK) and lactate dehydrogenase (LDH), tissue malondialdehyde (MDA), caspase-3 and decrease the level of total antioxidant status (TAS) in heart tissues. Pre- and post-treatment with CORM-2 (30 mg/kg, i.p.) elicited significant improvement in CK, LDH, MDA, caspase-3 and TAS levels. Histopathological studies showed that cardiac damage with DXR has been reversed with CORM-2 + DXR treatment. There was dramatic decrease in hematological count in DXR-treated mice, which has been improved with CORM-2. Furthermore, there was also elevation of mRNA expression of heme oxygenase-1, hypoxia inducible factor-1 alpha, vascular endothelial growth factor and decrease in inducible-nitric oxide synthase expression upon treatment with CORM-2 that might be linked to cardioprotection. These data suggest that CORM-2 treatment provides cardioprotection against acute doxorubicin-induced cardiotoxicity in mice and this effect may be attributed to CORM-2-mediated antioxidant and anti-apoptotic properties.« less

  4. Cardiotoxicity | Division of Cancer Prevention

    Cancer.gov

    Damage to the heart (cardiotoxicity), or blood vessels (cardiovascular toxicity) can occur during or after cancer treatment. As treatments have improved, more patients are surviving longer after a diagnosis of cancer than at any time in the past. See the article, Treating Cancer without Harming the Heart. |

  5. Subclinical Cardiotoxicity Detected by Strain Rate Imaging up to 14 months After Breast Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erven, Katrien, E-mail: katrien.erven@uzleuven.be; Iridium Cancer Network, Antwerp; Florian, Anca

    Purpose: Strain rate imaging (SRI) is a new echocardiographic modality that enables accurate measurement of regional myocardial function. We investigated the role of SRI and troponin I (TnI) in the detection of subclinical radiation therapy (RT)-induced cardiotoxicity in breast cancer patients. Methods and Materials: This study prospectively included 75 women (51 left-sided and 24 right-sided) receiving adjuvant RT to the breast/chest wall and regional lymph nodes. Sequential echocardiographs with SRI were obtained before RT, immediately after RT, and 8 and 14 months after RT. TnI levels were measured on the first and last day of RT. Results: Mean heart andmore » left ventricle (LV) doses were both 9 ± 4 Gy for the left-sided patients and 4 ± 4 Gy and 1 ± 0.4 Gy, respectively, for the right-sided patients. A decrease in strain was observed at all post-RT time points for left-sided patients (−17.5% ± 1.9% immediately after RT, −16.6% ± 1.4% at 8 months, and −17.7% ± 1.9% at 14 months vs −19.4% ± 2.4% before RT, P<.01) but not for right-sided patients. When we considered left-sided patients only, the highest mean dose was given to the anterior left ventricular (LV) wall (25 ± 14 Gy) and the lowest to the inferior LV wall (3 ± 3 Gy). Strain of the anterior wall was reduced after RT (−16.6% ± 2.3% immediately after RT, −16% ± 2.6% at 8 months, and −16.8% ± 3% at 14 months vs −19% ± 3.5% before RT, P<.05), whereas strain of the inferior wall showed no significant change. No changes were observed with conventional echocardiography. Furthermore, mean TnI levels for the left-sided patients were significantly elevated after RT compared with before RT, whereas TnI levels of the right-sided patients remained unaffected. Conclusions: In contrast to conventional echocardiography, SRI detected a regional, subclinical decline in cardiac function up to 14 months after breast RT. It remains to be determined whether these changes are related to

  6. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice.

    PubMed

    Nasr, Magda; Nafee, Noha; Saad, Hoda; Kazem, Amani

    2014-09-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Epirubicin (EPI), an anthracycline derivative, is one of the main line treatments for HCC. However, serious side effects including cardiomyopathy and congestive heart failure limit its long term administration. Our main goal is to develop a delivery strategy that ensures improved efficacy of the chemotherapeutic agent together with reduced cardiotoxicity. In this context, EPI was loaded in chitosan-PLGA nanoparticles linked with asialofetuin (EPI-NPs) selectively targeting hepatocytes. In an attempt to reduce cardiotoxicity, targeted EPI-NPs were coadministered with tocotrienols. EPI-NPs significantly enhanced the antiproliferative effect compared to free EPI as studied on Hep G2 cell line. Nanoencapsulated EPI injected in HCC mouse model revealed higher p53-mediated apoptosis and reduced angiogenesis in the tumor. Combined therapy of EPI-NPs with tocotrienols further enhanced apoptosis and reduced VEGF level in a dose dependent manner. Assessment of cardiotoxicity indicated that EPI-NPs diminished the high level of proinflammatory cytokine tumor necrosis factor-α (TNF-α) as well as oxidative stress-induced cardiotoxicity as manifested by reduced level of lipid peroxidation products (TBARS) and nitric oxide (NO). EPI-NPs additionally restored the diminished level of superoxide dismutase (SOD) and reduced glutathione (GSH) in the heart. Interestingly, tocotrienols provided both antitumor activity and higher protection against oxidative stress and inflammation induced by EPI in the heart. This hepatocyte-targeted biodegradable nanoparticle/tocotrienol combined therapy represents intriguing therapeutic strategy for EPI providing not only superior efficacy but also higher safety levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Protective effects of magnesium supplementation on metabolic energy derangements in lipopolysaccharide-induced cardiotoxicity in mice.

    PubMed

    Ahmed, Lamiaa A

    2012-11-05

    Metabolic derangements and bioenergetic failure are major contributors to sepsis-induced multiple organ dysfunctions. Due to the well known role of magnesium (Mg) as a cofactor in many enzymatic reactions that involve energy creation and utilization, the present investigation was directed to estimate the cardioprotective effect of Mg supplementation in lipopolysaccharide (LPS)-induced metabolic energy changes in mice. Oral doses of Mg aspartate (20 or 40 mg/kg) were administered once daily for 7 day. Mice were then subjected to a single intraperitoneal injection of LPS (2 mg/kg). Plasma was separated 3 h after LPS injection for determination of creatine kinase-MB activity. Animals were then sacrificed and the hearts were separated for estimation of tissue thiobarbituric acid reactive substances, reduced glutathione, lactate, pyruvate, adenine nucleotides, creatine phosphate and cardiac Na(+),K(+)-ATPase activity. Finally, electron microscopic examination was performed to visualize the protective effects of Mg pretreatment on mitochondrial ultrastructure. In general, the higher dose of Mg was more effective than the lower dose in ameliorating creatine kinase-MB elevation and the state of oxidative stress, lactate accumulation, pyruvate reduction as well as preserving creatine phosphate, adenine nucleotides and Na(+),K(+)-ATPase activity. Moreover, the higher dose of Mg provided a significant cardioprotection against the mitochondrial ultrastructural changes. Mg therapy can afford a significant protection against metabolic energy derangements and mitochondrial ultrastructural changes induced by LPS cardiotoxicity in mice. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Clozapine Associated with Autoimmune Reaction, Fever and Low Level Cardiotoxicity - A Case Report.

    PubMed

    Gerasimou, Charilaos; Vitali, Georgia Phaedra; Vavougios, George D; Papageorgiou, Charalabos; Douzenis, Athanasios; Kokoris, Styliani I; Liappas, Ioannis; Rizos, Emmanouil

    2017-01-02

    Clozapine is a second-generation antipsychotic drug used in treatment-resistant schizophrenia. Fever induced by clozapine is a rather frequent side-effect which usually occurs in the first 4 weeks of treatment. Despite its effectiveness, there are potentially life-threatening adverse effects, such as cardiotoxicity. We present the case of a 31-year-old caucasian male with refractory schizophrenia who developed benign fever, increase of C-reactive protein and high troponin levels, without presenting any other signs to myocarditis, on the 13th day under clozapine treatment, which declined progressively upon discontinuation of the drug. This case hints at the presence of initially subclinical cardiotoxicity as an underlying factor in patients developing fever. Taking advantage of more sensitive methods for measuring troponin, clinicians would be promptly aware of this possible side-effect. This would allow for significant reduction of the risk of cardiac dysfunction, further attained by carefully monitoring the patient. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan

    2015-11-15

    . - Highlights: • Dissolution of taurine zinc complex can be increased by solid dispersions (SDs). • Taurine zinc SDs blocked doxorubicin-induced hepatotoxicity and cardiotoxicity. • Taurine zinc SDs can alleviate oxidative stress and dampen JNK phosphorylation. • Taurine zinc SDs increased the expression of UGT, HO-1 at mRNA and protein level. • Taurine zinc SDs revealed greater hepatoprotective effects than silymarin.« less

  10. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway.

    PubMed

    Lou, Yu; Wang, Zhen; Xu, Yi; Zhou, Ping; Cao, Junxian; Li, Yuanshi; Chen, Yeping; Sun, Junfeng; Fu, Lu

    2015-09-01

    Treatment with doxorubicin (DOX) is one of the major causes of chemotherapy-induced cardiotoxicity and is therefore, the principal limiting factor in the effectiveness of chemotherapy for cancer patients. DOX‑induced heart failure is thought to result from endoplasmic reticulum (ER) stress and cardiomyocyte apoptosis. Resveratrol (RV), a polyphenol antioxidant found in red wine, has been shown to play a cardioprotective role. The aim of the present study was to examine the effects of RV on DOX‑induced cardiotoxicity in H9c2 cells. We hypothesized that RV would protect H9c2 cells against DOX‑induced ER stress and subsequent cell death through the activation of the Sirt1 pathway. Our results demonstrated that the decrease observed in the viability of the H9c2 cells following exposure to DOX was accompanied by a significant increase in the expression of the ER stress‑related proteins, glucose‑regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). However, we found that RV downregulated the expression of ER stress marker protein in the presence of DOX and restored the viability of the H9c2 cells. Exposure to RV or DOX alone only slightly increased the protein expression of Sirt1, whereas a significant increase in Sirt1 protein levels was observed in the cells treated with both RV and DOX. The Sirt1 inhibitor, nicotinamide (NIC), partially neutralized the effects of RV on the expression of Sirt1 in the DOX‑treated cells and completely abolished the effects of RV on the expression of GRP78 and CHOP. The findings of our study suggest that RV protects H9c2 cells against DOX‑induced ER stress through ER stabilization, and more specifically through the activation of the Sirt1 pathway, thereby leading to cardiac cell survival.

  11. Trastuzumab-induced cardiomyopathy.

    PubMed

    Guglin, Maya; Cutro, Raymond; Mishkin, Joseph D

    2008-06-01

    Trastuzumab is a recombinant humanized monoclonal antibody used for the treatment of advanced breast cancer. It improves survival and increases response to chemotherapy. The major side effect of trastuzumab is cardiotoxicity manifesting as a reduction in left ventricular systolic function, either asymptomatic or with signs and symptoms of heart failure. Although reversible in most cases, cardiotoxicity frequently results in the discontinuation of trastuzumab. The objective of this review is to summarize facts about trastuzumab-induced cardiotoxicity and to highlight the areas of future investigations. We searched PubMed for trials involving trastuzumab used as an adjuvant therapy for breast cancer, including the metastatic breast cancer setting, and focused on cardiotoxicity.

  12. Detection and monitoring of cardiotoxicity-what does modern cardiology offer?

    PubMed

    Jurcut, Ruxandra; Wildiers, Hans; Ganame, Javier; D'hooge, Jan; Paridaens, Robert; Voigt, Jens-Uwe

    2008-05-01

    With new anticancer therapies, many patients can have a long life expectancy. Treatment-related comorbidities become an issue for cancer survivors. Cardiac toxicity remains an important side effect of anticancer therapies. Myocardial dysfunction can become apparent early or long after end of therapy and may be irreversible. Detection of cardiac injury is crucial since it may facilitate early therapeutic measures. Traditionally, chemotherapy-induced cardiotoxicity has been detected by measuring changes in left ventricular ejection fraction. This parameter is, however, insensitive to subtle changes in myocardial function as they occur in early cardiotoxicity. This review will discuss conventional and modern cardiologic approaches of assessing myocardial function. It will focus on Doppler myocardial imaging, a method which allows to sensitively measure myocardial function parameters like myocardial velocity, deformation (strain), or deformation rate (strain rate) and which has been shown to reliably detect early abnormalities in both regional and global myocardial function in an early stage. Other newer echocardiographic function estimators are based on automated border detection algorithms and ultrasonic integrated backscatter analysis. A further technique to be discussed is dobutamine stress echocardiography. The use of new biomarkers like B-type natriuretic peptide and troponin and less often used imaging techniques like magnetic resonance imaging and computed tomography will also be mentioned.

  13. Clozapine Associated with Autoimmune Reaction, Fever and Low Level Cardiotoxicity – A Case Report

    PubMed Central

    GERASIMOU, CHARILAOS; PHAEDRA VITALI, GEORGIA; D. VAVOUGIOS, GEORGE; PAPAGEORGIOU, CHARALABOS; DOUZENIS, ATHANASIOS; I. KOKORIS, STYLIANI; LIAPPAS, IOANNIS; RIZOS, EMMANOUIL

    2017-01-01

    Background: Clozapine is a second-generation antipsychotic drug used in treatment-resistant schizophrenia. Fever induced by clozapine is a rather frequent side-effect which usually occurs in the first 4 weeks of treatment. Despite its effectiveness, there are potentially life-threatening adverse effects, such as cardiotoxicity. Case Report: We present the case of a 31- year-old caucasian male with refractory schizophrenia who developed benign fever, increase of C-reactive protein and high troponin levels, without presenting any other signs to myocarditis, on the 13th day under clozapine treatment, which declined progressively upon discontinuation of the drug. Discussion: This case hints at the presence of initially subclinical cardiotoxicity as an underlying factor in patients developing fever. Conclusion: Taking advantage of more sensitive methods for measuring troponin, clinicians would be promptly aware of this possible side-effect. This would allow for significant reduction of the risk of cardiac dysfunction, further attained by carefully monitoring the patient. PMID:28064233

  14. Protective Effects of Carvedilol and Vitamin C against Azithromycin-Induced Cardiotoxicity in Rats via Decreasing ROS, IL1-β, and TNF-α Production and Inhibiting NF-κB and Caspase-3 Expression

    PubMed Central

    El-Shitany, Nagla A.; El-Desoky, Karema

    2016-01-01

    The Food and Drug Administration recently warned of the fatal cardiovascular risks of azithromycin in humans. In addition, a recently published study documented azithromycin-induced cardiotoxicity in rats. This study aimed to justify the exact cardiovascular events accompanying azithromycin administration in rats, focusing on electrocardiographic, biochemical, and histopathological changes. In addition, the underlying mechanisms were studied regarding reactive oxygen species production, cytokine release, and apoptotic cell-death. Finally, the supposed protective effects of both carvedilol and vitamin C were assessed. Four groups of rats were used: (1) control, (2) azithromycin, (3) azithromycin + carvedilol, and (4) azithromycin + vitamin C. Azithromycin resulted in marked atrophy of cardiac muscle fibers and electrocardiographic segment alteration. It increased the heart rate, lactate dehydrogenase, creatine phosphokinase, malondialdehyde, nitric oxide, interleukin-1 beta (IL1-β), tumor necrosis factor alpha (TNF-α), nuclear factor kappa beta (NF-κB), and caspase-3. It decreased reduced glutathione, glutathione peroxidase, and superoxide dismutase. Carvedilol and vitamin C prevented most of the azithromycin-induced electrocardiographic and histopathological changes. Carvedilol and vitamin C decreased lactate dehydrogenase, malondialdehyde, IL1-β, TNF-α, NF-κB, and caspase-3. Both agents increased glutathione peroxidase. This study shows that both carvedilol and vitamin C protect against azithromycin-induced cardiotoxicity through antioxidant, immunomodulatory, and antiapoptotic mechanisms. PMID:27274777

  15. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium.

    PubMed

    Natarajan, Mohan; Aravindan, Natarajan; Sprague, Eugene A; Mohan, Sumathy

    2016-08-01

    Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited.

  16. Effects of radiation on the epidermal growth factor receptor pathway in the heart

    PubMed Central

    Sridharan, Vijayalakshmi; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Tripathi, Preeti; Lieblong, Benjamin J.; Guha, Chandan; Hauer-Jensen, Martin; Boerma, Marjan

    2013-01-01

    Purpose Radiation-induced heart disease (RIHD) is a serious side effect of thoracic radiotherapy. The epidermal growth factor receptor (EGFR) pathway is essential for the function and survival of cardiomyocytes. Hence, agents that target the EGFR pathway are cardiotoxic. Tocotrienols protect from radiation injury, but may also enhance the therapeutic effects of EGFR pathway inhibitors in cancer treatment. This study investigates the effects of local irradiation on the EGFR pathway in the heart and tests whether tocotrienols may modify radiation-induced changes in this pathway. Methods Male Sprague-Dawley rats received image-guided localized heart irradiation with 21 Gy. Twenty four hours before irradiation, rats received a single dose of tocotrienol-enriched formulation or vehicle by oral gavage. At time points from 2 hours to 9 months after irradiation, left ventricular expression of EGFR pathway mediators was studied. Results Irradiation caused a decrease in the expression of epidermal growth factor (EGF) and neuregulin-1 (Nrg-1) mRNA from 6 hours up to 10 weeks, followed by an upregulation of these ligands and the receptor erythroblastic leukemia viral oncogene homolog (ErbB)4 at 6 months. In addition, the upregulation of Nrg-1 was statistically significant up to 9 months after irradiation. A long-term upregulation of ErbB2 protein did not coincide with changes in transcription or post-translational interaction with the chaperone heat shock protein 90 (HSP90). Pretreatment with tocotrienols prevented radiation-induced changes at 2 weeks. Conclusions Local heart irradiation causes long-term changes in the EGFR pathway. Studies have to address how radiation may interact with cardiotoxic effects of EGFR inhibitors. PMID:23488537

  17. Cardiotoxicity of the new cancer therapeutics- mechanisms of, and approaches to, the problem

    PubMed Central

    Force, Thomas; Kerkelä, Risto

    2009-01-01

    Cardiotoxicity of some targeted therapeutics, including monoclonal antibodies and small molecule inhibitors, is a reality. Herein we will examine why it occurs, focusing on molecular mechanisms to better understand the issue. We will also examine how big the problem is and, more importantly, how big it may become in the future. We will review models for detecting cardiotoxicity in the pre-clinical phase. We will also focus on two key areas that drive cardiotoxicity- multi-targeting and the inherent lack of selectivity of ATP-competitive antagonists. Finally, we will examine the issue of reversibility and discuss possible approaches to keeping patients on therapy. PMID:18617014

  18. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    PubMed

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  19. Fatty-acid oxidation and calcium homeostasis are involved in the rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats.

    PubMed

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-08-01

    Lipid emulsion has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty-acid oxidation is required for rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore opening in bupivacaine-induced cardiac arrest before and after resuscitation with lipid emulsion. Prospective, randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. Asystole was achieved with a single dose of bupivacaine (10 mg/kg over 20 secs, intravenously) and 20% lipid emulsion infusion (5 mL/kg bolus, and 0.5 mL/kg/min maintenance), and cardiac massage started immediately. The rats in CVT-4325 (CVT) group were pretreated with a single dose of fatty-acid oxidation inhibitor CVT (0.5, 0.25, 0.125, or 0.0625 mg/kg bolus intravenously) 5 mins prior to inducing asystole by bupivacaine overdose. Heart rate, ejection fraction, fractional shortening, the threshold for opening of mitochondrial permeability transition pore, oxygen consumption, and membrane potential were measured. The values are mean ± SEM. Administration of bupivacaine resulted in asystole. Lipid Emulsion infusion improved the cardiac function gradually as the ejection fraction was fully recovered within 5 mins (ejection fraction=64±4% and fractional shortening=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10 mins. Lipid emulsion was only able to rescue rats pretreated with low dose of CVT (0.0625 mg/kg; heart rate~181±11 beats/min at 10 mins, recovery of 56%; ejection fraction=50±1%; fractional shortening=26±0.6% at 5 mins, n=3), but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25, or 0.125 mg/kg). The calcium-retention capacity in response to Ca²⁺ overload was significantly higher in cardiac

  20. Fatty Acid Oxidation and Calcium Homeostasis are Involved in the Rescue of Bupivacaine Induced Cardiotoxicity by Lipid Emulsion in Rats

    PubMed Central

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-01-01

    OBJECTIVES Lipid Emulsion (LE) has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty acid oxidation is required for rescue of bupivacaine induced cardiotoxicity by LE in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore (mPTP) opening in bupivacaine-induced cardiac arrest before and after resuscitation with LE. DESIGN Prospective, randomized, animal study. SETTING University Research Laboratory. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTIONS Asystole was achieved with a single dose of bupivacaine (10mg/kg over 20seconds, i.v.) and 20% LE infusion (5ml/kg bolus, and 0.5ml/kg/min maintenance) with cardiac massage started immediately. The rats in CVT group were pretreated with a single dose of fatty acid oxidation inhibitor CVT (0.5, 0.25, 0.125 or 0.0625mg/kg bolus i.v.) 5min prior to inducing asystole by bupivacaine overdose. Heart rate (HR), ejection fraction (EF), fractional shortening (FS), the threshold for opening of mPTP, oxygen consumption and membrane potential were measured. The values are Mean±SEM. MEASUREMENTS AND MAIN RESULTS Administration of bupivacaine resulted in asystole. ILP infusion improved the cardiac function gradually as the EF was fully recovered within 5min (EF=64±4% and FS=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10min. LE was only able to rescue rats pretreated with low dose of CVT (0.0625mg/kg) (HR=~181±11 beats/min at 10 min, recovery of 56%; EF=50±1%; FS=26±0.6% at 5min, n=3) but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25 or 0.125mg/kg). The calcium retention capacity in response to Ca2+ overload was significantly higher in cardiac mitochondria isolated from rats resuscitated with 20% LE compared to the group that did not receive ILP after bupivacaine

  1. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com

    An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30 min or 24 h and effects on cardiomyocyte beating andmore » cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca{sup 2+} flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30 min of exposure. In contrast, after 24 h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes

  2. Hsp20 Interacting with Phosphorylated Akt Reduces Doxorubicin-Triggered Oxidative Stress and Cardiotoxicity

    PubMed Central

    Fan, Guo-Chang; Zhou, Xiaoyang; Wang, Xiaohong; Song, Guojie; Qian, Jiang; Nicolaou, Persoulla; Chen, Guoli; Ren, Xiaoping; Kranias, Evangelia G.

    2009-01-01

    Doxorubicin (DOX) is a widely used antitumor drug, but its application is limited due to its cardiotoxic side effects. Hsp20 has been recently shown to protect cardiomyocytes against apoptosis, induced by ischemia/reperfusion injury or by prolonged β-agonist stimulation. However, it is not clear whether Hsp20 would exert similar protective effects against DOX-induced cardiac injury. Actually, DOX-treatment was associated with down-regulation of Hsp20 in the heart. To elucidate the role of Hsp20 in DOX-triggered cardiac toxicity, Hsp20 was first overexpressed ex vivo by adenovirus-mediated gene delivery. Increased Hsp20 levels conferred higher resistance to DOX-induced cell death, compared to GFP-control. Furthermore, cardiac-specific overexpression of Hsp20 in vivo significantly ameliorated acute DOX-triggered cardiomyocyte apoptosis and animal mortality. Hsp20-transgenic mice also showed improved cardiac function and prolonged survival after chronic administration of DOX. The mechanisms underlying these beneficial effects were associated with preserved Akt phosphorylation/activity and attenuation of DOX-induced oxidative stress. Co-immunoprecipitation studies revealed an interaction between Hsp20 and phosphorylated Akt. Accordingly, BAD phosphorylation was preserved and cleaved caspase-3 was decreased in DOX-treated Hsp20-TG hearts, consistent with the Hsp20's anti-apoptotic effects. Parallel ex vivo experiments showed that either infection with a dominant-negative Akt adenovirus or pre-incubation of cardiomyocytes with the PI3-kinase inhibitors significantly attenuated the protective effects of Hsp20. Taken together, our findings indicate that overexpression of Hsp20 inhibits DOX-triggered cardiac injury, and these beneficial effects appear to be dependent on Akt activation. Thus, Hsp20 may constitute a new therapeutic target in ameliorating the cardiotoxic effects of DOX-treatment in cancer patients. PMID:18948619

  3. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Esquivel, Luz; Marin-Hernandez, Alvaro; Pavon, Natalia

    2006-04-01

    Isolated rat hearts were perfused with glucose, octanoate or glucose + octanoate and different concentrations of the copper-based antineoplastic drugs casiopeina II-gly (CSII) or casiopeina III-i-a (CSIII). In isolated perfused hearts with glucose + octanoate, both casiopeinas induced diminution in cardiac work and O{sub 2} consumption with half-maximal inhibitory concentrations (IC{sub 5}) of 4 (CSII) and 4.6 (CSIII) {mu}M, after 1 h of perfusion. Strong inhibition of the pyruvate and 2-oxoglutarate dehydrogenases as well as total creatine kinase by casiopeinas suggested that ATP generation by oxidative phosphorylation and its transfer towards myofibrils were targets for these drugs. In consequence, themore » cellular contents of ATP and phosphocreatine were also lowered by casiopeinas. Remarkably, casiopeinas were less toxic than adriamycin (IC{sub 5} = 2.6 {mu}M), a well-known potent cardiotoxic and antineoplastic drug, which has a wide clinical use. In an open-chest animal, which is a more physiological model than the isolated heart, femoral administration of 1 {mu}M drug revealed that CSII was innocuous very likely due to strong binding to serum albumin, whereas adriamycin induced again a potent cardiotoxic effect (diminution in heart rate and severe depression of systolic blood pressure). Thus, it seems that casiopeinas are a group of new antineoplastic drugs with milder secondary toxic effects than proven drugs such as adriamycin.« less

  4. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes

    PubMed Central

    Bernal-Ramírez, Judith; Lozano, Omar; Oropeza-Almazán, Yuriana; Castillo, Elena Cristina; Garza, Jesús Roberto; García, Noemí; Vela, Jorge; Ortega, Eduardo; Torre-Amione, Guillermo; Ornelas-Soto, Nancy

    2017-01-01

    Recent evidence has shown that nanoparticles that have been used to improve or create new functional properties for common products may pose potential risks to human health. Silicon dioxide (SiO2) has emerged as a promising therapy vector for the heart. However, its potential toxicity and mechanisms of damage remain poorly understood. This study provides the first exploration of SiO2-induced toxicity in cultured cardiomyocytes exposed to 7- or 670-nm SiO2 particles. We evaluated the mechanism of cell death in isolated adult cardiomyocytes exposed to 24-h incubation. The SiO2 cell membrane association and internalization were analyzed. SiO2 showed a dose-dependent cytotoxic effect with a half-maximal inhibitory concentration for the 7 nm (99.5 ± 12.4 µg/ml) and 670 nm (>1,500 µg/ml) particles, which indicates size-dependent toxicity. We evaluated cardiomyocyte shortening and intracellular Ca2+ handling, which showed impaired contractility and intracellular Ca2+ transient amplitude during β-adrenergic stimulation in SiO2 treatment. The time to 50% Ca2+ decay increased 39%, and the Ca2+ spark frequency and amplitude decreased by 35 and 21%, respectively, which suggest a reduction in sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Moreover, SiO2 treatment depolarized the mitochondrial membrane potential and decreased ATP production by 55%. Notable glutathione depletion and H2O2 generation were also observed. These data indicate that SiO2 increases oxidative stress, which leads to mitochondrial dysfunction and low energy status; these underlie reduced SERCA activity, shortened Ca2+ release, and reduced cell shortening. This mechanism of SiO2 cardiotoxicity potentially plays an important role in the pathophysiology mechanism of heart failure, arrhythmias, and sudden death. NEW & NOTEWORTHY Silica particles are used as novel nanotechnology-based vehicles for diagnostics and therapeutics for the heart. However, their potential hazardous effects remain unknown

  5. Cancer Treatment–Related Cardiotoxicity: Current State of Knowledge and Future Research Priorities

    PubMed Central

    Adhikari, Bishow; Brell, Joanna; Davis, Myrtle; Desvigne-Nickens, Patrice; Freedman, Andrew; Minasian, Lori; Force, Thomas; Remick, Scot C.

    2014-01-01

    Cardiotoxicity resulting from direct myocyte damage has been a known complication of cancer treatment for decades. More recently, the emergence of hypertension as a clinically significant side effect of several new agents has been recognized as adversely affecting cancer treatment outcomes. With cancer patients living longer, in part because of treatment advances, these adverse events have become increasingly important to address. However, little is known about the cardiovascular pathogenic mechanisms associated with cancer treatment and even less about how to optimally prevent and manage short- and long-term cardiovascular complications, leading to improved patient safety and clinical outcomes. To identify research priorities, allocate resources, and establish infrastructure required to address cardiotoxicity associated with cancer treatment, the National Cancer Institute (NCI) and National Heart, Lung and Blood Institute (NHLBI) sponsored a two-day workshop, “Cancer treatment–related cardiotoxicity: Understanding the current state of knowledge and future research priorities,” in March 2013 in Bethesda, MD. Participants included leading oncology and cardiology researchers and health professionals, patient advocates and industry representatives, with expertise ranging from basic to clinical science. Attendees were charged with identifying research opportunities to advance the understanding of cancer treatment–related cardiotoxicity across basic and clinical science. This commentary highlights the key discussion points and overarching recommendations from that workshop. PMID:25210198

  6. Protective effect of thymoquinone, the main component of Nigella Sativa, against diazinon cardio-toxicity in rats.

    PubMed

    Danaei, Gholam Hassan; Memar, Bahram; Ataee, Ramin; Karami, Mohammad

    2018-04-12

    Several studies have shown that oxidative stress and cell damage can occur at very early stages of diazinon (DZN) exposure. The present study was designed to determine the beneficial effect of thymoquinone (Thy), the main component of Nigella sativa (black seed or black cumin), against DZN cardio-toxicity in rats. In the present experimental study, 48 male Wistar rats were randomly divided into six groups: control (corn oil gavages), DZN gavages (20 mg/kg/day), Thy gavages (10 mg/kg/day) and Thy + DVN gavages (2.5, 5 and 10 mg/kg/day). Treatments were continued for 28 days, then the animals were anesthetized by ether and superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenize (LDH) and glutathione peroxide (GPX) activity was evaluated. In addition, glutathione (GSH) and malondialdehyde (MDA) the heart tissue and creatinephosphokinase-MB (CPK-MB) and troponin (TPI) levels and cholinesterase activity in the blood were evaluated. DZN-induced oxidative damage and elevated the levels of the cardiac markers CK-MB, TPI, MDA and LDH and decreased SOD, CAT and cholinesterase activity and GSH level compared with the control group. Treatment with Thy reduced DZN cardio-toxicity and cholinesterase activity. The success of Thy supplementation against DZN toxicity can be attributed to the antioxidant effects of its constituents. Administration of Thy as a natural antioxidant decreased DZN cardio-toxicity and improved cholinesterase activity in rats through the mechanism of free radical scavenging.

  7. Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment.

    PubMed

    Lenneman, Carrie G; Sawyer, Douglas B

    2016-03-18

    Through the success of basic and disease-specific research, cancer survivors are one of the largest growing subsets of individuals accessing the healthcare system. Interestingly, cardiovascular disease is the second leading cause of morbidity and mortality in cancer survivors after recurrent malignancy. This recognition has helped stimulate a collaboration between oncology and cardiology practitioners and researchers, and the portmanteau cardio-oncology (also known as onco-cardiology) can now be found in many medical centers. This collaboration promises new insights into how cancer therapies impact cardiovascular homeostasis and long-term effects on cancer survivors. In this review, we will discuss the most recent views on the cardiotoxicity related to various classes of chemotherapy agents and radiation. We will also discuss broadly the current strategies for treating and preventing cardiovascular effects of cancer therapy. © 2016 American Heart Association, Inc.

  8. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts.

    PubMed

    Jain, Aditi; Rani, Vibha

    2018-05-01

    Doxorubicin (Dox) is an effective anti-cancer drug with severe reported cardiotoxicity. Cardiovascular risks associated with present cancer therapeutics demand urgent attention. There has been a growing interest in naturally occurring compounds to improve the therapeutic index as well as prevent non-tumour tissues from sustaining chemotherapy-induced damages. In the present study, the effects of curcumin, a polyphenol isolated from Curcuma longa and well known for its anti-oxidative, anti-cancerous and anti-inflammatory properties, was studied in relation to the Dox-induced cardiotoxicity. As literature suggests conflicting role of curcumin in Dox-induced cardiotoxicity, concentration- and time-dependent studies were conducted to study the different curcumin effects. H9C2 cardiomyoblasts were used in the study and cell viability assays were done to study Dox-induced cellular death. Drug uptake assay for Dox was performed followed by cellular growth inhibition analysis by FACS Calibur. Morphological alterations, intracellular ROS levels and mitochondrial integrity were observed by fluorescent-based microscopic studies. Catalases and superoxide dismutase-inbuilt anti-oxidant enzyme activities were studied, and it was observed that Dox-dependent cardiotoxicity occurs through ROS overproduction by exaggerating the inbuilt anti-oxidant mechanism. Expression analysis for cell death and ROS markers-BCl 2 , Bax, SOD, catalase-was investigated by semi-quantitative RT-PCR, and the Dox-induced stress on cardiac cells was confirmed. Initiator and effector caspases activity analysis also confirmed these findings. Our study proposes that curcumin exerts time-dependent responses on Dox-induced cardiotoxicity, where parallel treatment potentiates and pre-treatment suppresses the Dox-induced toxicity in H9C2 cardiomyoblasts. In conclusion, pre-treatment of curcumin suppresses the Dox-induced cardiotoxicity and holds a great potential as future cardio-oncological therapeutics.

  9. [Radiation-related heart toxicity: Update in women].

    PubMed

    Marlière, S; Vautrin, E; Saunier, C; Chaikh, A; Gabelle-Flandin, I

    2016-12-01

    Breast cancer is a common diagnosis in women and thus women are at risk of radiation-induced heart disease, in particular during radiotherapy for left breast cancer and when the internal mammary chain is included. Rates of major cardiac events increase with younger age at the time of irradiation, diagnosis before 1990s, higher radiation doses, coexisting cardiovascular risk factors and adjuvant cardiotoxic chemotherapy. Radiation-induced heart disease comprises a spectrum of cardiac pathologies, including pericardial disease, cardiomyopathy, coronary artery disease and valvular disease. The cardiac injury can appear a long time after radiotherapy and can consist of complex lesions with poor prognosis. The disciplines of cardiology and oncology have increasingly recognized the benefits of collaborating in the care of cancer patients with cardiac disease, developing guidelines for the assessment and management of radiation-related cardiovascular disease. We could consider screening patients with previous chest radiation every 5 years with transthoracic echocardiography and functional imaging. However, prevention remains the primary goal, using cardiac sparing doses and avoidance techniques in radiotherapy to improve patient survival. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Cardioprotective effect of lemon grass as evidenced by biochemical and histopathological changes in experimentally induced cardiotoxicity.

    PubMed

    Gayathri, K; Jayachandran, K S; Vasanthi, Hannah R; Rajamanickam, G Victor

    2011-08-01

    Isoproterenol is a synthetic catecholamine found to cause toxicity leading to severe stress in the myocardium of experimental animals. The aim of the present study is to evaluate the cardioprotective effect of Cymbopogon citratus, which is used as a culinary item and commonly known as lemon grass (LG), in isoproterenol-induced cardiotoxicity. Male Wistar albino rats were segregated into five different groups as follows. Groups I and II rats were treated with vehicle. Groups III and IV rats were treated with 100 and 200 mg/kg b.wt. of LG. Group V with 100 mg/kg b.wt. of vitamin E. Myocardial necrosis was induced in Groups II, III, IV and V on 58(th) and 59(th) day using isoproterenol at a dose of 85 mg/kg twice at 24-hour interval. Animals were sacrificed on the 60( th) day. LG pretreatment exhibited cardioprotective activity as evidenced by decreased activity of cardiac markers in serum and increased the same in heart homogenate (p < 0.05). LG administration decreased the toxic events of lipid peroxidation (TBARS) in both serum and heart tissue, by increasing the level of enzymatic antioxidants and non-enzymatic antioxidants significantly in both heart homogenate and serum sample (p < 0.05). The histopathological observations also revealed that the cardioprotective effect of LG extract was observed at a dose of 200 mg/kg b.wt. The results of the present study reveal that LG is cardioprotective and antilipid peroxidative by increasing various antioxidants at a dose of 200 mg/kg b.wt., which is comparable with that of vitamin E.

  11. A Review of Human Pluripotent Stem Cell-Derived Cardiomyocytes for High-Throughput Drug Discovery, Cardiotoxicity Screening and Publication Standards

    PubMed Central

    Mordwinkin, Nicholas M.; Burridge, Paul W.; Wu, Joseph C.

    2013-01-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results, and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach. PMID:23229562

  12. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    PubMed

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

  13. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity.

    PubMed

    Aminkeng, Folefac; Ross, Colin J D; Rassekh, Shahrad R; Hwang, Soomi; Rieder, Michael J; Bhavsar, Amit P; Smith, Anne; Sanatani, Shubhayan; Gelmon, Karen A; Bernstein, Daniel; Hayden, Michael R; Amstutz, Ursula; Carleton, Bruce C

    2016-09-01

    Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B - moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options within the current standard of clinical practice. Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT. © 2016 The British Pharmacological Society.

  14. Recommendations for genetic testing to reduce the incidence of anthracycline‐induced cardiotoxicity

    PubMed Central

    Aminkeng, Folefac; Ross, Colin J. D.; Rassekh, Shahrad R.; Hwang, Soomi; Rieder, Michael J.; Bhavsar, Amit P.; Smith, Anne; Sanatani, Shubhayan; Gelmon, Karen A.; Bernstein, Daniel; Hayden, Michael R.; Amstutz, Ursula

    2016-01-01

    Aims Anthracycline‐induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline‐based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence‐based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. Methods We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. Results RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B – moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow‐up, as well as therapeutic options within the current standard of clinical practice. Conclusions Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT. PMID:27197003

  15. Effect of pretreatment with coenzyme Q10 on isoproterenol-induced cardiotoxicity and cardiac hypertrophy in rats.

    PubMed

    Ghule, Arvindkumar E; Kulkarni, Chetan P; Bodhankar, Subhash L; Pandit, Vijaya A

    2009-12-01

    Coenzyme Q10 (CoQ10) is a lipid-soluble, vitamin-like substance found in the hydrophobic interior of the phospholipid bilayer of most cellular membranes. It appears to be involved in the coordinated regulation between oxidative stress and antioxidant capacity of heart tissue when the heart is subjected to oxidative stress in various pathogenic conditions. The objective of the present study was to investigate the effect of pretreatment with CoQ10 (100 mg/kg) on isoproterenol (ISO)-induced cardiotoxicity and cardiac hypertrophy in rats. Albino male Wistar rats (250-300 g) were evenly divided by lottery method into 1 of the following 3 groups: the ISO group (olive oil 2 mL/kg orally for 18 days and ISO 1 mg/kg IP from days 9-18); the CoQ10 + ISO group (CoQ10 100 mg/kg orally for 18 days and ISO 1 mg/kg IP from days 9-18); and the control group (olive oil 2 mL/kg orally for 18 days and water IP from days 9-18). Twenty-four hours after the last dose of water or ISO, the rats were anesthetized and an ECG was recorded. Blood was withdrawn by retro-orbital puncture for estimation of serum creatine kinase-MB (CK-MB) isoenzyme levels, lactate dehydrogenase (LDH) levels, and aspartate aminotransferase activities. The animals were euthanized using an overdose of ether. The hearts of 6 animals from each group were used for estimation of superoxide dismutase (SOD) activity, reduced glutathione (GSH) concentration, lipid peroxidation (LPO), malondialdehyde (MDA), and total protein concentration. Histopathology of the 2 remaining hearts in each group was carried out by a blinded technician. A total of 24 rats (8 in each group) were used in this study; all rats survived to study end. Compared with the control group, the ISO-treated rats had a significant change in heart to body weight ratio (P < 0.001); significant changes in the endogenous antioxidants (ie, significantly higher myocardial MDA concentration [P < 0.001]; significantly lower myocardial GSH concentration [P < 0

  16. Early Diagnosis and Prediction of Anticancer Drug-induced Cardiotoxicity: From Cardiac Imaging to "Omics" Technologies.

    PubMed

    Madonna, Rosalinda

    2017-07-01

    Heart failure due to antineoplastic therapy remains a major cause of morbidity and mortality in oncological patients. These patients often have no prior manifestation of disease. There is therefore a need for accurate identification of individuals at risk of such events before the appearance of clinical manifestations. The present article aims to provide an overview of cardiac imaging as well as new "-omics" technologies, especially with regard to genomics and proteomics as promising tools for the early detection and prediction of cardiotoxicity and individual responses to antineoplastic drugs. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children.

    PubMed

    Visscher, H; Ross, C J D; Rassekh, S R; Sandor, G S S; Caron, H N; van Dalen, E C; Kremer, L C; van der Pal, H J; Rogers, P C; Rieder, M J; Carleton, B C; Hayden, M R

    2013-08-01

    The use of anthracyclines as effective antineoplastic drugs is limited by the occurrence of cardiotoxicity. Multiple genetic variants predictive of anthracycline-induced cardiotoxicity (ACT) in children were recently identified. The current study was aimed to assess replication of these findings in an independent cohort of children. . Twenty-three variants were tested for association with ACT in an independent cohort of 218 patients. Predictive models including genetic and clinical risk factors were constructed in the original cohort and assessed in the current replication cohort. . We confirmed the association of rs17863783 in UGT1A6 and ACT in the replication cohort (P = 0.0062, odds ratio (OR) 7.98). Additional evidence for association of rs7853758 (P = 0.058, OR 0.46) and rs885004 (P = 0.058, OR 0.42) in SLC28A3 was found (combined P = 1.6 × 10(-5) and P = 3.0 × 10(-5), respectively). A previously constructed prediction model did not significantly improve risk prediction in the replication cohort over clinical factors alone. However, an improved prediction model constructed using replicated genetic variants as well as clinical factors discriminated significantly better between cases and controls than clinical factors alone in both original (AUC 0.77 vs. 0.68, P = 0.0031) and replication cohort (AUC 0.77 vs. 0.69, P = 0.060). . We validated genetic variants in two genes predictive of ACT in an independent cohort. A prediction model combining replicated genetic variants as well as clinical risk factors might be able to identify high- and low-risk patients who could benefit from alternative treatment options. Copyright © 2013 Wiley Periodicals, Inc.

  18. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge.

    PubMed

    Devera, T Scott; Prusator, Dawn K; Joshi, Sunil K; Ballard, Jimmy D; Lang, Mark L

    2015-06-25

    Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC) to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI), and hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST), it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  19. Managing Chemotherapy-Related Cardiotoxicity in Survivors of Childhood Cancers

    PubMed Central

    Lipshultz, Steven E.; Diamond, Melissa B.; Franco, Vivian I.; Aggarwal, Sanjeev; Leger, Kasey; Santos, Maria Verônica; Sallan, Stephen E.; Chow, Eric J.

    2015-01-01

    In the US, children diagnosed with cancer are living longer, but not without consequences from the same drugs that cured their cancer. In these patients, cardiovascular disease is the leading cause of non-cancer-related morbidity and mortality. Although this review focuses on anthracycline-related cardiomyopathy in childhood cancer survivors, the global lifetime risk of other cardiovascular diseases such as atherosclerosis, arrhythmias and intracardiac conduction abnormalities, hypertension, and stroke also are increased. Besides anthracyclines, newer molecularly targeted agents, such as vascular endothelial growth factor receptor and tyrosine kinase inhibitors, also have been associated with acute hypertension, cardiomyopathy, increased risk of ischemic cardiac events and arrhythmias, and are summarized here. This review also covers other risk factors for chemotherapy-related cardiotoxicity (including both modifiable and non-modifiable factors), monitoring strategies (including both blood and imaging-based biomarkers) during and following cancer treatment, and discusses the management of cardiotoxicity (including prevention strategies such as cardioprotection by use of dexrazoxane). PMID:25134924

  20. A Review on the Effect of Traditional Chinese Medicine Against Anthracycline-Induced Cardiac Toxicity

    PubMed Central

    Yang, Xinyu; Liu, Nian; Li, Xinye; Yang, Yihan; Wang, Xiaofeng; Li, Linling; Jiang, Le; Gao, Yonghong; Tang, Hebin; Tang, Yong; Xing, Yanwei; Shang, Hongcai

    2018-01-01

    Anthracyclines are effective agents generally used to treat solid-tumor and hematologic malignancies. The use of anthracyclines for over 40 years has improved cancer survival statistics. Nevertheless, the clinical utility of anthracyclines is limited by its dose-dependent cardiotoxicity that adversely affects 10–30% of patients. Anthracycline-induced cardiotoxicity may be classified as acute/subacute or chronic/late toxicity and leads to devastating adverse effects resulting in poor quality of life, morbidity, and premature mortality. Traditional Chinese medicine has a history of over 2,000 years, involving both unique theories and substantial experience. Several studies have investigated the potential of natural products to decrease the cardiotoxic effects of chemotherapeutic agents on healthy cells, without negatively affecting their antineoplastic activity. This article discusses the mechanism of anthracycline-induced cardiotoxicity, and summarizes traditional Chinese medicine treatment for anthracycline-induced heart failure (HF), cardiac arrhythmia, cardiomyopathy, and myocardial ischemia in recent years, in order to provide a reference for the clinical prevention and treatment of cardiac toxicity. PMID:29867456

  1. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  2. The Potential Cardiotoxic Effects of Exercise.

    PubMed

    La Gerche, André

    2016-04-01

    The emerging controversy related to the potential cardiotoxic effects of high doses of intense exercise need to be considered among the much stronger evidence that supports the pleomorphic benefits of exercise as a whole. However, there is fairly compelling evidence to support the association between long-term sport practice and an increased prevalence of atrial fibrillation and the fact that this relates to a chronic altered atrial substrate. This article was designed to challenge the reader with speculative science that suggests that exercise might promote permanent structural changes in the myocardium which can, in some individuals, predispose to arrhythmias. In terms of long-term health outcomes, it would seem that these small risks are outweighed by the many other benefits of exercise, including a likely decrease in atherosclerotic vascular events, although some recent results have brought into question whether the protective benefits of exercise on vascular events also extends to high-intensity exercise training. Above all else, in this article we sought to highlight current controversies to stimulate research on the many unanswered questions. In particular, there is a lack of adequately powered prospective studies from which we can measure health outcomes and their relationship to exercise-induced cardiac remodelling. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  3. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure

    PubMed Central

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-01-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  4. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system.

    PubMed

    Babiker, Hani M; McBride, Ali; Newton, Michael; Boehmer, Leigh M; Drucker, Adrienne Goeller; Gowan, Mollie; Cassagnol, Manouchkathe; Camenisch, Todd D; Anwer, Faiz; Hollands, James M

    2018-06-01

    Cardiotoxic effects of chemotherapy and targeted drugs are ubiquitous and challenging in the field of oncology therapeutics. The broad spectrum of toxicities ranging from ischemic, hypertensive, cardiomyopathic, and arrhythmic complications can present as a significant challenge for clinicians treating cancer patients. If early diagnosis and intervention of cardiotoxic complications is missed, this can lead to delay or abrogation of planned treatment, which can potentially culminate to significant morbidity due to not only the cardiotoxic complications but also the progression of cancer. Hence, full knowledge of cardiovascular complications of chemotherapeutic agents, essential diagnostics tests to order, and appropriate management is paramount to oncologist, oncology pharmacists, and scientific clinical investigators. The aforementioned is particularly true in the current oncology era of plenteous early clinical trials studying several pathway/molecular-targeting agents with an increased cardiotoxic potential and the rapid expedited approval of those drugs by the FDA. Herein, we present a review discussing cardiotoxic effects of drugs and guidelines for management of the toxicities to assist the medical field in general managing patients with cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Doxorubicin-induced second degree and complete atrioventricular block.

    PubMed

    Kilickap, Saadettin; Akgul, Ebru; Aksoy, Sercan; Aytemir, Kudret; Barista, Ibrahim

    2005-05-01

    Doxorubicin is one of the most effective chemotherapeutic agents used in the treatment of malignancies. Cardiotoxicity is the most important dose-limiting toxicity of doxorubicin. Although cardiomyopathy is the most well known side effect of doxorubicin, it usually occurs many years after the treatment and relates to cumulative doxorubicin dosage. Another form of doxorubicin cardiotoxicity is arrhythmia which may occur at any time and after any dosage. However, doxorubicin-induced arrhythmia is rarely a life-threatening side effect. In this report, we present a case in which there were doxorubicin-induced life-threatening arrhythmias.

  6. [Early detection of the cardiotoxicity induced by chemotherapy drug through two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T].

    PubMed

    Wang, W; Kang, Y; Shu, X H; Shen, X D; He, B

    2017-11-23

    Objective: To investigate the clinical value of two-dimensional speckle tracking echocardiography(2D-STE) combined with high-sensitive cardiac troponin T (hs-cTnT) in early detection of the cardiotoxicity induced by chemotherapy drug. Methods: Seventy-five non-Hodgkin's lymphoma patients who received the CHOP regimen were recruited in this study. Conventional echocardiography and 2D-STE were performed on these patients before chemotherapy, the second day after the third course of chemotherapy (during chemotherapy) and the second day after the last course of chemotherapy (after chemotherapy). The parameters included left ventricular ejection fraction (LVEF), global longitudinal strain (LS), global circumferential strain (CS) and global radial strain (RS). The serum hs-cTNT levels were tested simultaneously. Results: Three cycles of CHOP were completed in 30 patients and 6-8 cycles of CHOP were completed in 45 patients. The LVEF of 75 patients before, during and after chemotherapy was (63.8±2.6)%, (63.8±2.8)% and (64.0±3.3)%, respectively, without significant difference ( P =0.91). However, the LS of 75 patients before, during and after chemotherapy was (-18.5±1.7)%, (-16.5±1.9)% and (-16.0±1.6)%, respectively. The CS was (-20.9±2.9)%, (-19.3±3.5)% and (-19.2±3.2)%, respectively. The RS was (39.2±6.4)%, (35.3±5.2)% and (35.0±6.2)%, respectively. The hs-cTnT was (0.001 0±0.002 0)ng/ml, (0.006 3±0.008 9)ng/ml and (0.007 3±0.003 8)ng/ml, respectively. The LS, CS and RS were significantly decreased while hs-cTnT was significantly increased during chemotherapy when compared to those before chemotherapy (all of P <0.01). Alternatively, the LS, CS, RS and hs-cTnT after chemotherapy were marginally different from those during chemotherapy (all of P >0.05). Moreover, T(LS-SD), T(CS-SD) and T(RS-SD) showed no significant difference before, during and after chemotherapy (all of P >0.05). The reduction of LS was positively associated with the enhancement of hs

  7. Evaluation of the Cardiotoxicity of Mitragynine and Its Analogues Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Wu, Jianjun; Jamil, Mohd Fadzly Amar; Tan, Mei Lan; Adenan, Mohd Ilham; Wong, Philip; Shim, Winston

    2014-01-01

    Introduction Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Methods and Results The rapid delayed rectifier potassium current (I Kr), L-type Ca2+ current (I Ca,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant I Kr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed I Kr in hiPSC-CMs by 67% ∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression,and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine. Conclusions Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of I Kr in human cardiomyocytes. PMID:25535742

  8. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  9. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids

    PubMed Central

    Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E.

    2015-01-01

    Background Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Methods Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Results Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Conclusions Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. PMID:25888676

  10. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids.

    PubMed

    Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E

    2016-01-01

    Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. © 2015 American Society for Parenteral and Enteral Nutrition.

  11. Body Surface Area and Baseline Blood Pressure Predict Subclinical Anthracycline Cardiotoxicity in Women Treated for Early Breast Cancer.

    PubMed

    Kotwinski, Paul; Smith, Gillian; Cooper, Jackie; Sanders, Julie; Ma, Louise; Teis, Albert; Kotwinski, David; Mythen, Michael; Pennell, Dudley J; Jones, Alison; Montgomery, Hugh

    2016-01-01

    Anthracyclines are highly effective chemotherapeutic agents which may cause long-term cardiac damage (chronic anthracycline cardiotoxicity) and heart failure. The pathogenesis of anthracycline cardiotoxicity remains incompletely understood and individual susceptibility difficult to predict. We sought clinical features which might contribute to improved risk assessment. Subjects were women with early breast cancer, free of pre-existing cardiac disease. Left ventricular ejection fraction was measured using cardiovascular magnetic resonance before and >12 months after anthracycline-based chemotherapy (>3 months post-Trastuzumab). Variables associated with subclinical cardiotoxicity (defined as a fall in left ventricular ejection fraction of ≥5%) were identified by logistic regression. One hundred and sixty-five women (mean age 48.3 years at enrollment) completed the study 21.7 months [IQR 18.0-26.8] after starting chemotherapy. All received anthracyclines (98.8% epirubicin, cumulative dose 400 [300-450] mg/m2); 18% Trastuzumab. Baseline blood pressure was elevated (≥140/90mmHg, mean 147.3/86.1mmHg) in 18 subjects. Thirty-four subjects (20.7%) were identified with subclinical cardiotoxicity, independent predictors of which were the number of anthracycline cycles (odds ratio, OR 1.64 [1.17-2.30] per cycle), blood pressure ≥140/90mmHg (OR 5.36 [1.73-17.61]), body surface area (OR 2.08 [1.36-3.20] per standard deviation (0.16m2) increase), and Trastuzumab therapy (OR 3.35 [1.18-9.51]). The resultant predictive-model had an area under the receiver operating characteristics curve of 0.78 [0.70-0.86]. We found subclinical cardiotoxicity to be common even within this low risk cohort. Risk of cardiotoxicity was associated with modestly elevated baseline blood pressure-indicating that close attention should be paid to blood pressure in patients considered for anthracycline based chemotherapy. The association with higher body surface area suggests that indexing of

  12. Radiation-induced leukemia: lessons from history.

    PubMed

    Finch, Stuart C

    2007-03-01

    Beginning in 1895, with the discovery of x-rays, alpha and beta radiation, uranium, radium, thorium, and polonium, the fascinating story of the beginning of knowledge concerning the existence of ionizing radiation unfolds. This brief history of radiation and leukemia is divided into two main parts: the first 50 years, which deals with the confusion regarding radiation effects and the failure to clearly recognize that exposure to ionizing radiation may induce leukemia. The second part focuses on the last 60 years, when the radiation induction of leukemia was accepted and some progress achieved in understanding the clinical and pathophysiological characteristics of radiation-induced leukemia. Particular attention in this is paid to the effects of radiation on the survivors of Hiroshima and Nagasaki. The discussion in this section also covers some concepts of radiation-induced cell damage and ruminations on unanswered questions.

  13. Myo- and cardiotoxic effects of the wild winter mushroom ( Flammulina velutipes) on mice.

    PubMed

    Mustonen, Anne-Mari; Määttänen, Maija; Kärjä, Vesa; Puukka, Katri; Aho, Jari; Saarela, Seppo; Nieminen, Petteri

    2018-04-01

    Rhabdomyolysis (destruction of striated muscle) is a novel form of mushroom poisoning in Europe and Asia indicated by increased circulating creatine kinase levels. Particular wild fungi have also been reported to induce elevated creatine kinase activities in mice. Flammulina velutipes (enokitake or winter mushroom) is one of the most actively cultivated mushroom species globally. As it is marketed as a medicinal mushroom and functional food, it is important to examine whether it could induce potentially harmful health effects similar to some previously studied edible fungi. The present study examined the effects of F. velutipes consumption on the plasma clinical chemistry, hematology, and organ histology of laboratory mice. Wild F. velutipes were dried, pulverized, mixed with a regular laboratory rodent diet, and fed to the animals at 0, 3, 6, or 9 g/kg body mass/day for five days ( n = 6/group). F. velutipes consumption caused increased activities of plasma creatine kinase and the MB-fraction of creatine kinase at 6-9 g/kg/d, indicating potentially deleterious effects on both skeletal and cardiac muscle. The plasma total and high-density lipoprotein cholesterol concentrations (at 9 g/kg/d) and white blood cell and lymphocyte counts (at 6-9 g/kg/d) decreased. Although the cholesterol-lowering properties of F. velutipes can be beneficial, the previously unexamined, potentially hazardous side effects of mushroom consumption (myo- and cardiotoxicity) should be thoroughly investigated before recommending this mushroom species as a health-promoting food item. Impact statement This work is important to the field of functional foods, as it provides novel information about the potential myo- and cardiotoxic properties of an edible mushroom, Flammulina velutipes. The results are useful and of importance because F. velutipes is an actively cultivated mushroom and marketed as a health-promoting food item. The findings contribute to the understanding of the complexity of

  14. Manipulation-free cultures of human iPSC-derived cardiomyocytes offer a novel screening method for cardiotoxicity.

    PubMed

    Rajasingh, Sheeja; Isai, Dona Greta; Samanta, Saheli; Zhou, Zhi-Gang; Dawn, Buddhadeb; Kinsey, William H; Czirok, Andras; Rajasingh, Johnson

    2018-04-05

    Induced pluripotent stem cell (iPSC)-based cardiac regenerative medicine requires the efficient generation, structural soundness and proper functioning of mature cardiomyocytes, derived from the patient's somatic cells. The most important functional property of cardiomyocytes is the ability to contract. Currently available methods routinely used to test and quantify cardiomyocyte function involve techniques that are labor-intensive, invasive, require sophisticated instruments or can adversely affect cell vitality. We recently developed optical flow imaging method analyses and quantified cardiomyocyte contractile kinetics from video microscopic recordings without compromising cell quality. Specifically, our automated particle image velocimetry (PIV) analysis of phase-contrast video images captured at a high frame rate yields statistical measures characterizing the beating frequency, amplitude, average waveform and beat-to-beat variations. Thus, it can be a powerful assessment tool to monitor cardiomyocyte quality and maturity. Here we demonstrate the ability of our analysis to characterize the chronotropic responses of human iPSC-derived cardiomyocytes to a panel of ion channel modulators and also to doxorubicin, a chemotherapy agent with known cardiotoxic side effects. We conclude that the PIV-derived beat patterns can identify the elongation or shortening of specific phases in the contractility cycle, and the obtained chronotropic responses are in accord with known clinical outcomes. Hence, this system can serve as a powerful tool to screen the new and currently available pharmacological compounds for cardiotoxic effects.

  15. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling.

    PubMed

    Reichardt, Peter; Tabone, Marie-Dominique; Mora, Jaume; Morland, Bruce; Jones, Robin L

    2018-05-11

    Dexrazoxane can prevent anthracycline-associated cardiotoxicity. However, in 2011, its use in children was contraindicated by the EMA over concerns of increased risk of infection, myelosuppression and second primary malignancies, and because its efficacy in children had not then been established. We review here the evidence published since 2011, which confirms that dexrazoxane is an effective cardioprotectant in children and adolescents, is not associated with an increased risk of second primary malignancies or excess early or late mortality and does not impair chemotherapy efficacy. Based on this evidence, the contraindication for children and adolescents requiring high doses of anthracyclines and at risk for cardiotoxicity was removed from the European labeling for dexrazoxane.

  16. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  17. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance.

    PubMed

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance.

  18. Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities

    Cancer.gov

    Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities, a 2013 workshop sponsored by the Epidemiology and Genomics Research Program.

  19. Cardioprotective activity of flax lignan concentrate extracted from seeds of Linum usitatissimum in isoprenalin induced myocardial necrosis in rats

    PubMed Central

    Zanwar, Anand A.; Hegde, Mahabaleshwar V.; Bodhankar, Subhash L.

    2011-01-01

    The objective of the study was to evaluate the cardioprotective activity of flax lignan concentrate (FLC) in isoprenalin (ISO) induced cardiotoxicity in rats. Male Wistar rats (200–230 g) were divided into three groups. Group I: control, Group II: isoprenalin, Group III: FLC (500 mg/kg, p.o.) orally for 8 days and in group II and III isoprenalin 5.25 mg/kg, s.c. on day 9 and 8.5 mg/kg on day 10. On day 10 estimation of marker enzymes in serum and haemodynamic parameters were recorded. Animals were sacrificed, histology of heart was performed. Isoprenalin showed cardiotoxicity, manifested by increased levels of marker enzymes and increased heart rate. FLC treatment reversed these biochemical changes significantly compared with ISO group. The cardiotoxic effect of isoprenalin was less in FLC pretreated animals, which was confirmed in histopathological alterations. Haemodynamic, biochemical alteration and histopathological results suggest a cardioprotective protective effect of FLC in isoprenalin induced cardiotoxicity. PMID:21753905

  20. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    PubMed

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  1. Addition of rituximab to chop does not increase the risk of cardiotoxicity in patients with non-Hodgkin's lymphoma.

    PubMed

    Kilickap, Saadettin; Yavuz, Bunyamin; Aksoy, Sercan; Sahiner, Levent; Dincer, Murat; Harputluoglu, Hakan; Erman, Mustafa; Aytemir, Kudret; Tokgozoglu, Lale; Barista, Ibrahim

    2008-01-01

    The addition of rituximab to doxorubicin-containing standard chemotherapy significantly improves response to therapy and reduces the risk of death in B-cell non-Hodgkin's lymphoma (NHL) patients. However, the impact of this approach on doxorubicin-induced cardiotoxicity has not been elucidated. Patients who had been planned to receive CHOP or rituximab plus CHOP (R-CHOP) combination chemotherapy with a diagnosis of NHL were included in the study. In all patients, systolic and diastolic parameters were measured by using conventional and pulsed-wave tissue Doppler echocardiography, which is more sensitive than conventional lead-dependent techniques, both before and in the sixth month of therapy. There were 28 (M/F; 14/14) patients on CHOP and 33 (M/F; 16/17) patients on R-CHOP. Median age in CHOP and R-CHOP was 49 and 50 years (P = 0.44), respectively. Cumulative doxorubicin doses were 280 and 286 mg/m(2) on CHOP and R-CHOP (P = 0.65), respectively. None of the patients developed clinically evident congestive heart failure. Parameters of systolic function such as LVEF and FS did not significantly change in any patients. In both arms, tissue Doppler parameters of diastolic function such as lateral E and septal E velocity of mitral annulus decreased significantly after therapy (P < 0.001). However, the decrease in diastolic function was similar in both arms (P > 0.05). Conventional Doppler echocardiography yielded consistent findings. Both CHOP and R-CHOP cause diastolic dysfunction in the early period following their administration. The addition of rituximab to CHOP chemotherapy does not significantly increase the risk of doxorubicin-induced cardiotoxicity during this period.

  2. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity.

    PubMed

    Passini, Elisa; Britton, Oliver J; Lu, Hua Rong; Rohrbacher, Jutta; Hermans, An N; Gallacher, David J; Greig, Robert J H; Bueno-Orovio, Alfonso; Rodriguez, Blanca

    2017-01-01

    Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC 50 /Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca 2+ -transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca 2+ /late Na + currents and Na + /Ca 2+ -exchanger, reduced Na + /K + -pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density

  3. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in ...

    EPA Pesticide Factsheets

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPAR_). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that d

  4. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  5. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Joseph G.; Geretti, Elena; Hendriks, Bart S.

    2012-07-01

    Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there hasmore » been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers. -- Highlights: ► Novel approach using stem cell-derived cardiomyocytes to assess preclinical safety. ► HER2-targeted liposomal doxorubicin has improved safety profile vs free

  6. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  7. Epidemiology of radiation-induced cancer.

    PubMed Central

    Radford, E P

    1983-01-01

    The epidemiology of radiation-induced cancer is important for theoretical and practical insights that these studies give to human cancer in general and because we have more evidence from radiation-exposed populations than for any other environmental carcinogen. On theoretical and experimental grounds, the linear no-threshold dose-response relationship is a reasonable basis for extrapolating effects to low doses. Leukemia is frequently the earliest observed radiogenic cancer but is now considered to be of minor importance, because the radiation effect dies out after 25 or 30 years, whereas solid tumors induced by radiation develop later and the increased cancer risk evidently persists for the remaining lifetime. Current estimates of the risk of particular cancers from radiation exposure cannot be fully evaluated until the population under study have been followed at least 40 or 50 years after exposure. Recent evidence indicates that for lung cancer induction, combination of cigarette smoking and radiation exposure leads to risks that are not multiplicative but rather nearly additive. PMID:6653538

  8. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  9. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model

    PubMed Central

    Sirenko, Oksana; Grimm, Fabian A.; Ryan, Kristen R.; Iwata, Yasuhiro; Chiu, Weihsueh A.; Parham, Frederick; Wignall, Jessica A.; Anson, Blake; Cromwell, Evan F.; Behl, Mamta; Rusyn, Ivan; Tice, Raymond R.

    2017-01-01

    An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30 min or 24 hrs and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of tested chemicals exhibited effects on cardiomyocyte rhythm after 30 min of exposure. After 24 hours, the effects on cell rhythm without cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes were visualized using Toxicological Prioritization Index (ToxPi) and showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential to alter cardiomyocyte function at high exposures, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes. PMID:28259702

  10. Predicting Cardiotoxic Effects of Carbon Monoxide Poisoning Using Speckle Tracking Echocardiography.

    PubMed

    Saraçoğlu, Erhan; Vuruşkan, Ertan; Kılıç, Salih; Çekici, Yusuf; Onur, Bahaeddin; Arslan, Yavuz; Kılıç, Ertuğrul; Aykut, Ömer

    2018-04-01

    Carbon monoxide (CO) poisoning could cause significant cardiac injury. This study aimed to evaluate patients with CO poisoning by using speckle tracking echocardiography (STE), a potentially more sensitive technique, to identify left systolic ventricular dysfunction for the first time in the literature. Seventy-two patients who were exposed to CO poisoning were studied. Blood collection and echocardiography were performed at admission and after patients' discharge on days 10-15 (mean 12 days). Global longitudinal strain (GLS) and global circumferential strain (GCS) were calculated using STE. In order to find the normal strain levels and to compare it to the patient with CO poisoning, 35 healthy subjects were included in the study. Left ventricular ejection fraction was analyzed according to Simpson's method. Patients were divided into two groups based on their LVEF values. LVEF < 55%, Group 1 (n = 24); LVEF ≥ 55%, Group 2 (n = 48). The reduction in Group 1 strain levels decreased in correlation with LVEF (p < 0.001) while in Group 2, there were no significant changes in LVEF but strain levels were significantly reduced (p = 0.091; p < 0.001). Compared with the control group patients, admission GLS and GLC values of CO-poisoned patients were significantly low both in Group 1 and 2. On the contrary, no significant difference was observed when compared with follow-up GLS value. For prediction of CO cardiotoxicity, the cutoff value of GLS was ≥ - 19.1 with a sensitivity of 70.3% and a specificity of 100% [(AUC) 0.840, 95% (CI) 0.735-0.916; p < 0.001] in the ROC curve analyses. GLS was found as independent predictors of cardiotoxicity. Our study demonstrates the potential of using systolic strain values obtained using 2D-STE in determining cardiotoxicity due to CO poisoning. Speckle tracking echocardiography has the potential of demonstrating subtle LV systolic dysfunction even in CO poisoning patients with preserved EF.

  11. [Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].

    PubMed

    Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M

    2017-10-01

    Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. Radiation-induced vaginal stenosis: current perspectives

    PubMed Central

    Morris, Lucinda; Do, Viet; Chard, Jennifer; Brand, Alison H

    2017-01-01

    Treatment of gynecological cancer commonly involves pelvic radiation therapy (RT) and/or brachytherapy. A commonly observed side effect of such treatment is radiation-induced vaginal stenosis (VS). This review analyzed the incidence, pathogenesis, clinical manifestation(s) and assessment and grading of radiation-induced VS. In addition, risk factors, prevention and treatment options and follow-up schedules are also discussed. The limited available literature on many of these aspects suggests that additional studies are required to more precisely determine the best management strategy of this prevalent group after RT. PMID:28496367

  13. Role of neurotensin in radiation-induced hypothermia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H.

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  14. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model.

    PubMed

    Sirenko, Oksana; Grimm, Fabian A; Ryan, Kristen R; Iwata, Yasuhiro; Chiu, Weihsueh A; Parham, Frederick; Wignall, Jessica A; Anson, Blake; Cromwell, Evan F; Behl, Mamta; Rusyn, Ivan; Tice, Raymond R

    2017-05-01

    An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30min or 24h and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca 2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30min of exposure. In contrast, after 24h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes. Copyright © 2017

  15. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  16. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  17. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a highmore » cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.« less

  18. Myostatin as a Marker for Doxorubicin Induced Cardiac Damage.

    PubMed

    Kesik, Vural; Honca, Tevfik; Gulgun, Mustafa; Uysal, Bulent; Kurt, Yasemin Gulcan; Cayci, Tuncer; Babacan, Oguzhan; Gocgeldi, Ercan; Korkmazer, Nadir

    2016-01-01

    Doxorubicin (DXR) is an effective chemotherapeutic agent but causes severe cardiac failure over known doses. Thus, early detection and prevention of cardiac damage is important. Various markers have been tested for early detection of cardiac damage. Myostatin is a protein produced in skeletal muscle cells inhibits muscle differentiation and growth during myogenesis. We evaluated the role of myostatin as a marker for showing DXR induced cardiac damage and compared with well known cardiac markers like NT-proBNP, hs-TnT and CK in a rat model of chronic DXR cardiotoxicity. Myostatin, NT-proBNP, and hs-TnT but not CK rose significantly during DXR treatment. Myostatin can be used as an early marker of DXR induced cardiotoxicity. © 2016 by the Association of Clinical Scientists, Inc.

  19. Assessing for Cardiotoxicity from Metal-on-Metal Hip Implants with Advanced Multimodality Imaging Techniques.

    PubMed

    Berber, Reshid; Abdel-Gadir, Amna; Rosmini, Stefania; Captur, Gabriella; Nordin, Sabrina; Culotta, Veronica; Palla, Luigi; Kellman, Peter; Lloyd, Guy W; Skinner, John A; Moon, James C; Manisty, Charlotte; Hart, Alister J

    2017-11-01

    High failure rates of metal-on-metal (MoM) hip implants prompted regulatory authorities to issue worldwide safety alerts. Circulating cobalt from these implants causes rare but fatal autopsy-diagnosed cardiotoxicity. There is concern that milder cardiotoxicity may be common and underrecognized. Although blood metal ion levels are easily measured and can be used to track local toxicity, there are no noninvasive tests for organ deposition. We sought to detect correlation between blood metal ions and a comprehensive panel of established markers of early cardiotoxicity. Ninety patients were recruited into this prospective single-center blinded study. Patients were divided into 3 age and sex-matched groups according to implant type and whole-blood metal ion levels. Group-A patients had a ceramic-on-ceramic [CoC] bearing; Group B, an MoM bearing and low blood metal ion levels; and Group C, an MoM bearing and high blood metal-ion levels. All patients underwent detailed cardiovascular phenotyping using cardiac magnetic resonance imaging (CMR) with T2*, T1, and extracellular volume mapping; echocardiography; and cardiac blood biomarker sampling. T2* is a novel CMR biomarker of tissue metal loading. Blood cobalt levels differed significantly among groups A, B, and C (mean and standard deviation [SD], 0.17 ± 0.08, 2.47 ± 1.81, and 30.0 ± 29.1 ppb, respectively) and between group A and groups B and C combined. No significant between-group differences were found in the left atrial or ventricle size, ejection fraction (on CMR or echocardiography), T1 or T2* values, extracellular volume, B-type natriuretic peptide level, or troponin level, and all values were within normal ranges. There was no relationship between cobalt levels and ejection fraction (R = 0.022, 95% confidence interval [CI] = -0.185 to 0.229) or T2* values (R = 0.108, 95% CI = -0.105 to 0.312). Using the best available technologies, we did not find that high (but not extreme) blood cobalt and chromium levels

  20. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  1. [Prevention of neuro- and cardiotoxic side effects of tuberculosis chemotherapy with noopept].

    PubMed

    Mordyk, A V; Lysov, A V; Kondria, A V; Gol'dzon, M A; Khlebova, N V

    2009-01-01

    The study evaluated clinical efficiency of noopept used to prevent adverse side effects of antituberculous agents. It included 60 patients with newly diagnosed respiratory tuberculosis. Those in group 1 (n = 30) received 10 mg of noopept twice daily during the first month. The treatment promoted functional normalization of vegetative nervous system and antioxidative systems, reduced manifestations of anxiety, decreased frequency of adverse neuro- and cardiotoxic responses to antituberculous drugs.

  2. Apatinib in refractory radiation-induced brain edema

    PubMed Central

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-01-01

    Abstract Rationale: Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Patient concerns: Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Diagnoses: Two patients were both diagnosed as refractory radiation-induced brain edema. Interventions: Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Outcomes: Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Lessons: Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study. PMID:29145238

  3. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism

    PubMed Central

    Sourdon, Joevin; Lager, Franck; Viel, Thomas; Balvay, Daniel; Moorhouse, Rebecca; Bennana, Evangeline; Renault, Gilles; Tharaux, Pierre-Louis; Dhaun, Neeraj; Tavitian, Bertrand

    2017-01-01

    The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach. PMID:28824714

  4. Radiation-induced sarcoma of the thyroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  5. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapalamadugu, Kalyan C.; Panguluri, Siva K.; Bennett, Eric S.

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia,more » arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD{sub 90}; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co

  6. No histologic evidence of foetal cardiotoxicity following exposure to maternal hydroxychloroquine.

    PubMed

    Friedman, Deborah; Lovig, Leif; Halushka, Marc; Clancy, Robert M; Izmirly, Peter M; Buyon, Jill P

    2017-01-01

    It is currently recommended that hydroxychloroquine (HCQ) be maintained during pregnancy in patients with systemic lupus erythematosus. Recent data suggest that this Toll-like receptor inhibitor may also reduce the recurrence rate of anti-SSA/Ro associated congenital heart block (CHB). This case report describes a unique situation in which a CHB-afflicted, HCQ-exposed pregnancy was electively terminated. The heart did not reveal any characteristic features of cardiotoxicity, providing further evidence supporting the safety of foetal exposure to HCQ.

  7. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  8. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles.

    PubMed

    Colon, Jimmie; Herrera, Luis; Smith, Joshua; Patil, Swanand; Komanski, Chris; Kupelian, Patrick; Seal, Sudipta; Jenkins, D Wayne; Baker, Cheryl H

    2009-06-01

    In an effort to combat the harmful effects of radiation exposure, we propose that rare-earth cerium oxide (CeO(2)) nanoparticles (free-radical scavengers) protect normal tissue from radiation-induced damage. Preliminary studies suggest that these nanoparticles may be a therapeutic regenerative nanomedicine that will scavenge reactive oxygen species, which are responsible for radiation-induced cell damage. The effectiveness of CeO(2) nanoparticles in radiation protection in murine models during high-dose radiation exposure is investigated, with the ultimate goal of offering a new approach to radiation protection, using nanotechnology. We show that CeO(2) nanoparticles are well tolerated by live animals, and they prevent the onset of radiation-induced pneumonitis when delivered to live animals exposed to high doses of radiation. In the end, these studies provide a tremendous potential for radioprotection and can lead to significant benefits for the preservation of human health and the quality of life for humans receiving radiation therapy.

  9. Nuclear magnetic resonance spectroscopy reveals metabolic changes in living cardiomyocytes after low doses of ionizing radiation.

    PubMed

    Gramatyka, Michalina; Skorupa, Agnieszka; Sokół, Maria

    2018-01-01

    Several lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system. Cardiotoxicity of ionizing radiation is associated with metabolic changes observed in cardiac cells injured by radiation. In this study, we used human cardiomyocytes as a model system, and studied their metabolic response to radiation using high-resolution magic angle spinning nuclear magnetic resonance techniques (HR-MAS NMR). Human cardiomyocytes cultured in vitro were exposed to ionizing radiation and their survival was assessed by clonogenic assay. Changes in apoptosis intensity and cell cycle distribution after the irradiation were measured as well. NMR spectra of cardiomyocytes were acquired using Bruker Avance 400 MHz spectrometer at a spinning rate of 3200 Hz. Survival of cardiomyocytes after NMR experiments was assessed by the Trypan blue exclusion assay. Exposure of cardiomyocytes to small doses of ionizing radiation had no effect on cell proliferation potential and intensity of cell death. However, analysis of metabolic profiles revealed changes in lipids, threonine, glycine, glycerophosphocholine, choline, valine, isoleucine, glutamate, reduced glutathione and taurine metabolism. The results of this study showed that ionizing radiation affects metabolic profiles of cardiomyocytes even at low doses, which potentially have no effect on cell viability.

  10. [The role of biochemical markers with special regard to troponin, CK-MB, NT-proBNP as early biomarkers of cardiotoxicity among women after chemotherapy due to breast cancer].

    PubMed

    Stachowiak, Paweł; Milchert-Leszczyńska, Marta; Falco, Michał; Polakowska, Małgorzata; Wojtarowicz, Andrzej; Kaliszczak, Robert; Safranow, Krzysztof; Kornacewicz-Jach, Zdzisława

    Cardiotoxicity of drugs in oncology is a growing problem which cardiologists and oncologists have to struggle with. So far, researchers have been looking for biochemical markers which could help to extract a group more prone to developing complications after chemotherapy. Authors’ reports are inconsistent in this topic. This study assesses the role of troponin I, CK-MB and NT-proBNP as early predictive markers for later cardiotoxicity among patients with breast cancer treated with chemotherapy. One hundred five patients with breast cancer, without either heart failure or more than moderate severity of valvular heart diseases were qualified to the study. NT-proBNP concentration significantly increased just after the first cycle of chemotherapy, either in a subgroup which developed cardiotoxicity or without this end point (p<0.001, p=0.004). CK-MB did not change significantly during observation. Troponin I did not change in any of the patients. During observation HDL-cholesterol concentration significantly decreased. A transient increase of the concentration of LDL-cholesterol had been noted, but later it decreased below baseline level. Troponin I has too low sensitivity to be used as a prognostic marker for further cardiotoxicity after chemotherapy. No prognostic values have been noted of NT-proBNP and CK-MB due to the lack of differences in both a subgroup with and without cardiotoxicity.

  11. cTnT can be a useful marker for early detection of anthracycline cardiotoxicity.

    PubMed

    Kilickap, S; Barista, I; Akgul, E; Aytemir, K; Aksoyek, S; Aksoy, S; Celik, I; Kes, S; Tekuzman, G

    2005-05-01

    The level of serum cardiac troponin-T (cTnT) increases with myocardial damage. We sought to assess whether cTnT level could be a useful marker for the early detection of anthracycline cardiotoxicity. Forty-one patients who had been scheduled to receive anthracycline-containing combination chemotherapy were included in the study. Serum cTnT levels were measured before (baseline) and after the first cycle of chemotherapy, and again, after the last cycle of chemotherapy. In all patients, the left ventricular ejection fraction (LVEF), fractional shortening (FS), early peak flow/atrial flow velocity (E/A) ratio, and the isovolemic relaxation time (IRT) were measured echocardiographically, both before and after the completion of chemotherapy. LVEF and FS did not change in any patients. In 21 patients (49%), the E/A ratio decreased after therapy as compared to the pre-treatment values. The decrease in E/A ratio was more prominent in patients who were older than the mean age of our study group, which was 44 years. The post-treatment IRT was prolonged compared with the pretreatment IRT (94.0 +/- 2.0 versus 85.6 +/- 10.5 ms, respectively). cTnT levels after completion of therapy were elevated in 14 (34%) patients, and exceeded the upper limit of the normal range (>0.1 ng/ml) in only one patient. cTnT levels measured after completion of therapy were significantly higher, compared with those measured at baseline and after the first cycle of therapy. In the younger age group (< or =44 years old), there was a two-fold decrease in the E/A ratio in those patients whose cTnT levels increased during the therapy, when compared with those whose cTnT levels did not change (21% versus 43%, respectively). Increased serum cTnT level can be detected in the early stages of anthracycline therapy and it is associated with diastolic dysfunction of the left ventricle. Therefore, serum cTnT level could be a useful measure for early detection of anthracycline-induced cardiotoxicity.

  12. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  13. Gemcitabine-induced rectus abdominus radiation recall.

    PubMed

    Fakih, Marwan G

    2006-05-09

    Radiation recall has been described in the context of gemcitabine chemotherapy. However, this phenomenon has been largely limited to skin. We hereby report a case of radiation recall dermatitis and myositis occurring on gemcitabine monotherapy, five months after completing chemoradiation for locally advanced pancreatic cancer. Radiation recall resolved spontaneously with withdrawal of gemcitabine. This is the second case report that describes gemcitabine-induced radiation recall in rectus abdominus muscles after gemcitabine-based radiation therapy. Given the wide use of gemcitabine following chemoradiation for pancreatic cancer, providers should be aware of this potential complication.

  14. Treatment of radiation-induced cystitis with hyperbaric oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, J.P.; Boland, F.P.; Mori, H.

    The effects of hyperbaric oxygen on radiation cystitis have been documented in 3 patients with radiation-induced hemorrhagic cystitis refractory to conventional therapy. Cessation of gross hematuria and reversal of cystoscopic bladder changes were seen in response to a series of hyperbaric oxygen treatments of 2 atmosphere absolute pressure for 2 hours. To our knowledge this is the first report of cystoscopically documented healing of radiation-induced bladder injury.

  15. A little "dab" will do ya' in: a case report of neuro-and cardiotoxicity following use of cannabis concentrates.

    PubMed

    Rickner, Shannon S; Cao, Dazhe; Kleinschmidt, Kurt; Fleming, Steven

    2017-11-01

    The use of marijuana and cannabis concentrates is increasing, especially following decriminalization in several states. Psychosis and cardiotoxicity have been reported following cannabis use; however, myocardial injury from "dabbing" has not yet been reported. We report a case of hyperthermia, tachycardia, hypertension, severe agitation, neuro-, and cardiotoxicity following the use of "dabs" where there is concomitant confirmatory biological and sample testing. A 17-year-old athletic man developed agitation requiring sedation and intubation for safety, with peak systolic blood pressures in the 190s and hyperthermia (to 102 °F). He developed elevated serum troponins with persistent tachycardia despite sedation and no clear non-intoxicant etiology. It was discovered that the patient had recently been "dabbing"; an exhaustive search of his home found a sample of the "dabs" which was analyzed along with a comprehensive urine drug screen by tandem liquid mass spectroscopy (t-LCMS) for confirmation. Tetrahydrocannabinol (THC) has been increasingly associated with agitation and cardiotoxicity, while cannabidiol (CBD) has been associated with neuroprotective, inhibitory states. We propose that increasing concentrations of THC as well as THC:CBD ratios seen in cannabis concentrates such as "dabs" may cause agitation and end-organ damage through sympathomimetic and serotonergic pathways.

  16. IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION

    EPA Science Inventory

    IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.

    T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.
    1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...

  17. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3more » inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.« less

  18. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate

  19. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  20. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis

    PubMed Central

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  1. Radiation-Induced Oral Mucositis

    PubMed Central

    Maria, Osama Muhammad; Eliopoulos, Nicoletta; Muanza, Thierry

    2017-01-01

    Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment. PMID:28589080

  2. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction.

    PubMed

    Cappetta, Donato; Esposito, Grazia; Coppini, Raffaele; Piegari, Elena; Russo, Rosa; Ciuffreda, Loreta Pia; Rivellino, Alessia; Santini, Lorenzo; Rafaniello, Concetta; Scavone, Cristina; Rossi, Francesco; Berrino, Liberato; Urbanek, Konrad; De Angelis, Antonella

    2017-11-01

    Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca 2+ and Na + overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na + current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline. Fischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg -1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg -1 , daily) for the following 4 weeks. While diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na + /Ca 2+ exchanger 1 and Na v 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca 2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis. Ranolazine, by the increased Na + influx, induced by doxorubicin, altered cardiac Ca 2+ and Na + handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy. This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents

  3. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Effectiveness of the herbal medicine daikenchuto for radiation-induced enteritis.

    PubMed

    Takeda, Takashi; Kamiura, Shouji; Kimura, Tadashi

    2008-07-01

    Radiation-induced enteritis is a serious clinical problem for which there is currently no recommended standard management. Daikenchuto (DKT) is a Japanese herbal medicine that has been used to treat adhesive bowel obstruction in Japan. This report describes a patient with radiation-induced enteritis whose clinical symptoms were much improved by treatment with DKT. The patient was administered DKT, a traditional Japanese herbal formula, orally (2.5 g 3 times daily). Abdominal distention was evaluated objectively with computed tomography. Gastrointestinal symptoms associated with radiation-induced enteritis were controlled successfully with DKT treatment. DKT treatment may be useful for the management of radiation-induced enteritis.

  5. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  6. Radiation induced detwinning in nanotwinned Cu

    DOE PAGES

    Chen, Youxing; Wang, Haiyan; Kirk, Mark A.; ...

    2016-11-15

    Superior radiation tolerance has been experimentally examined in nanotwinned metals. The stability of nanotwinned structure under radiation is the key factor for advancing the application of nanotwinned metals for nuclear reactors. We thus performed in situ radiation tests for nanotwinned Cu with various twin thicknesses inside a transmission electron microscope. We found that there is a critical twin thickness (10 nm), below which, radiation induced detwinning is primarily accomplished through migration of incoherent twin boundaries. Lastly, detwinning is faster for thinner twins in this range, while thicker twins are more stable.

  7. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  8. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    PubMed

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  9. Action potential-based MEA platform for in vitro screening of drug-induced cardiotoxicity using human iPSCs and rat neonatal myocytes.

    PubMed

    Jans, Danny; Callewaert, Geert; Krylychkina, Olga; Hoffman, Luis; Gullo, Francesco; Prodanov, Dimiter; Braeken, Dries

    2017-09-01

    Drug-induced cardiotoxicity poses a negative impact on public health and drug development. Cardiac safety pharmacology issues urged for the preclinical assessment of drug-induced ventricular arrhythmia leading to the design of several in vitro electrophysiological screening assays. In general, patch clamp systems allow for intracellular recordings, while multi-electrode array (MEA) technology detect extracellular activity. Here, we demonstrate a complementary metal oxide semiconductor (CMOS)-based MEA system as a reliable platform for non-invasive, long-term intracellular recording of cardiac action potentials at high resolution. Quinidine (8 concentrations from 10 -7 to 2.10 -5 M) and verapamil (7 concentrations from 10 -11 to 10 -5 M) were tested for dose-dependent responses in a network of cardiomyocytes. Electrophysiological parameters, such as the action potential duration (APD), rates of depolarization and repolarization and beating frequency were assessed. In hiPSC, quinidine prolonged APD with EC 50 of 2.2·10 -6 M. Further analysis indicated a multifactorial action potential prolongation by quinidine: (1) decreasing fast repolarization with IC 50 of 1.1·10 -6 M; (2) reducing maximum upstroke velocity with IC 50 of 2.6·10 -6 M; and (3) suppressing spontaneous activity with EC 50 of 3.8·10 -6 M. In rat neonatal cardiomyocytes, verapamil blocked spontaneous activity with EC 50 of 5.3·10 -8 M and prolonged the APD with EC 50 of 2.5·10 -8 M. Verapamil reduced rates of fast depolarization and repolarization with IC 50 s of 1.8 and 2.2·10 -7 M, respectively. In conclusion, the proposed action potential-based MEA platform offers high quality and stable long-term recordings with high information content allowing to characterize multi-ion channel blocking drugs. We anticipate application of the system as a screening platform to efficiently and cost-effectively test drugs for cardiac safety. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. RADIATION INDUCED AGING IN MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, H.J.; Gebhard, K.L.

    1958-10-31

    . Experiments were undertaken in an effort to determine the degree of similarity between natural and radiation induced aging, and to determine the causes for the latter. Several severe non-specific stresses were applied to mice either as single massive doses or as smaller doses administered over a large fraction of the life span of the animals. Stresses used included typhoid vaccine, tetanus toxin and tetanus toxoid and turpentine. None of these produced any premature aging comparable to that produced by radiation. The somatic mutation theory of aging and expecially radiationinduced aging has been tested by applying the chemical mutatgen, nitrogenmore » mustard, either as a massive single dose or as smaller single doses repeated over long periods of time. No shortening of the life span has been observed and it is concluded that the somatic mutation theory is untenable. Experiments designed to determine the organ system responsible for radiation induced aging have demonstrated that the hematopoietic system is not primarily involved in this phenomenon. (auth)« less

  11. Kv11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical Kv11.1 (hERG) inhibitors

    PubMed Central

    Yu, Z; IJzerman, A P; Heitman, L H

    2015-01-01

    Background and Purpose Drug-induced arrhythmia due to blockade of the Kv11.1 channel (also known as the hERG K+ channel) is a frequent side effect. Previous studies have primarily focused on equilibrium parameters, i.e. affinity or potency, of drug candidates at the channel. The aim of this study was to determine the kinetics of the interaction with the channel for a number of known Kv11.1 blockers and to explore a possible correlation with the affinity or physicochemical properties of these compounds. Experimental Approach The affinity and kinetic parameters of 15 prototypical Kv11.1 inhibitors were evaluated in a number of [3H]-dofetilide binding assays. The lipophilicity (logKW-C8) and membrane partitioning (logKW-IAM) of these compounds were determined by means of HPLC analysis. Key Results A novel [3H]-dofetilide competition association assay was set up and validated, which allowed us to determine the binding kinetics of the Kv11.1 blockers used in this study. Interestingly, the compounds' affinities (Ki values) were correlated to their association rates rather than dissociation rates. Overall lipophilicity or membrane partitioning of the compounds were not correlated to their affinity or rate constants for the channel. Conclusions and Implications A compound's affinity for the Kv11.1 channel is determined by its rate of association with the channel, while overall lipophilicity and membrane affinity are not. In more general terms, our findings provide novel insights into the mechanism of action for a compound's activity at the Kv11.1 channel. This may help to elucidate how Kv11.1-induced cardiotoxicity is governed and how it can be circumvented in the future. PMID:25296617

  12. Radiation-induced schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A.B.; Reichenthal, E.; Borohov, H.

    1989-06-01

    The histopathology and clinical course of three patients with schwannomas of the brain and high cervical cord after therapeutic irradiation for intracranial malignancy and for ringworm of the scalp are described. Earlier reports in the literature indicated that radiation of the scalp may induce tumors in the head and neck. It is therefore suggested that therapeutic irradiation in these instances was a causative factor in the genesis of these tumors.

  13. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    PubMed

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  14. Andrographis paniculata extract protect against isoproterenol-induced myocardial injury by mitigating cardiac dysfunction and oxidative injury in rats.

    PubMed

    Ojha, Shreesh; Bharti, Saurabh; Golechha, Mahaveer; Sharma, Ashok K; Rani, Neha; Kumari, Santosh; Arya, Dharamvir Singh

    2012-01-01

    Present study evaluated the cardioprotective effect of Andrographis paniculata (100, 200 or 400 mg/kg) against isoproterenol (85 mg/kg, b.w.)-induced cardiotoxicity referred as myocardial infarction in rats. Isoproterenol significantly (p < 0.05) decreased mean arterial pressure, heart rate, contractility and relaxation and increased left ventricular end diastolic pressure. Isoproterenol also significantly (p < 0.05) decreased antioxidants, superoxide dismutase, catalase, glutathione peroxidase, glutathione and increased leakage of cardiac injury markers; creatine phosphokinase-MB isoenzyme, lactate dehydrogenase concomitant to increased lipid peroxidation and histopathological perturbations. However, pretreatment with A. paniculata favorably restored hemodynamic parameters and left ventricular function and significantly (p < 0.05) prevented the depletion of endogenous antioxidants and myocyte marker enzymes as well as inhibited lipid peroxidation. Significant (p < 0.05) reversal of almost all the hemodynamic, biochemical and histopathological parameters by A. paniculata pretreatment in isoproterenol-induced cardiotoxicity depicted the cardioprotective effect of A. paniculata. Results showed that A. paniculata protected heart against cardiotoxic effects of isoproterenol by boosting endogenous antioxidant network, restoring ventricular function and maintaining structural integrity of heart.

  15. The Effects of Periostin in a Rat Model of Isoproterenol: Mediated Cardiotoxicity.

    PubMed

    Sözmen, Mahmut; Devrim, Alparslan K; Kabak, Yonca B; Devrim, Tuba; Sudagidan, Mert

    2018-04-01

    Periostin is an extracellular matrix protein from fasciclin family, and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The present study was designed to investigate cardioprotective effects of the recombinant murine periostin peptide administration in a rat model of isoproterenol (ISO)-induced myocardial injury. The experiment was performed on 84 adult male Sprague Dawley rats in 4 groups (n = 21): control group (1), periostin-treated group (2), ISO-treated group (3), and ISO + periostin-treated group (4). The groups were further divided into three subgroups based on the duration of the experiment in which rats were killed on days 1, 7, and 28 (n = 7). Growth factors (VEGF, ANGPT, FGF-2, TGFβ), mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, phospho-histone H3), cell cycle activators and inhibitors (cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) mRNA were detected using quantitative real-time polymerase chain reaction (PCR) and PCR array. Immunohistochemistry staining was used to directly detect protein level and distribution in the heart tissues. Administration of periostin following ISO-induced cardiotoxicity revealed that periostin alleviated deleterious effects of ISO through several pathways: (1) periostin induced mitotic activity of endothelial/fibroblastic cells, (2) periostin drives cardiomyocytes into S and M phases, thus promoting proliferation of cardiomyocytes, (3) periostin contributed to collagen degradation, tissue remodeling, and reduced cardiac fibrosis during the healing process following myocardial damage while preserving tissue matrix, (4) periostin stimulated angiogenesis by upregulating THBS1, TGFB2, and HGF genes, (5) periostin regulated cell growth and proliferation while maintaining cell shape and cellular muscle contractions (ACTB) and functioned as chemoattractant factor (CCL2) at the beginning of

  16. Mechanisms of Radiation-Induced Conditioned Taste Aversion Learning

    DTIC Science & Technology

    1986-01-01

    to Walter A. Hunt. 86 4 21 144 . J Jr -.W U *’ = 7 . 7 .: M: W. ,WLW;i , .-, -’ .’P. %k T .- - ’ .: ’W ; .a --,.-" -. t .:-. , 56 RABIN AND HUNT can...8217. 7m. U RADIATION-INDUCED TASTE AVERSIONS 57 induced CTA 11021. Alternatively, when the antihistamine is [ 21 . A radiation-induced CTA can be...in rats. Pharmmad psychioactive drugs. J (omp Phvsiod Pvchld .;’: 21 -26. 1972. Biochem Behav 17: 305-311. 1982. 4. Berger. B. D.. C. D. Wise and L

  17. A report on radiation-induced gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvati, M.; Artico, M.; Caruso, R.

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  18. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  19. Design and development of PEGylated liposomal formulation of HER2 blocker Lapatinib for enhanced anticancer activity and diminshed cardiotoxicity.

    PubMed

    Shrivastava, Richa; Trivedi, Shruti; Singh, Pankaj Kumar; Asif, Mohammad; Chourasia, Manish Kumar; Khanna, Amit; Bhadauria, Smrati

    2018-06-13

    Breast cancer is most frequently diagnosed cancer and fifth leading cause of death in women. About 20-30% of all breast cancers overexpress HER2/neu receptors. Lapatinib is a dual tyrosin kinase inhibitor of EGFR and HER2. It exhibits its anticancer effect via blocking intracellular domain of HER2 receptor in breast cancer. Lapatinib belongs to class II of BSC classification due to its poor solubility restricting its clinical application. Due to presence of HER2 receptor on cardiomyocytes, it is associated with generation of cardiotoxicity. The present study was aimed to design a PEGylated liposomal formulation of Lapatinib and evaluate its anticancer potential. Lapatinib liposomes were prepared using lipid layer hydration method and its characterization was done by determining its particle size, zeta potential, entrapment efficiency and in vitro release profiling. The anti-tumor activity of PEGylated liposomal formulation was evaluated in xenografted tumor induced by MDA-MB-453 breast cancer cells in chick embryos. The anti-tumor effect of lapatinib was enhanced by its PEGylated liposomal preparation as it led to the reduction in tumor size to a greater extent compared to the embryos treated with free lapatinib. Flowcytometric analysis and immunofluroscence study using cleaved PARP antibody demonstrated the enhaced apoptotic potential of PEGylated liposomes of lapatonib. SGOT levels, marker for cardiotoxicity and hepatotoxicity, significantly decreased in serum of embryos treated with PEGylated liposmes of lapatinib compared to free drug treated embryos. Hence, the PEGylated liposomal formulation of lapatininb can be used as a therapeutic strategy against HER2 positive breast cancer either alone or in combination with conventional anticancer agents and hormonal therapies. Copyright © 2018. Published by Elsevier Inc.

  20. Antioxidant Supplementation: A Linchpin in Radiation-Induced Enteritis

    PubMed Central

    Anwar, Mumtaz; Ahmad, Shabeer; Akhtar, Reyhan; Mahmood, Akhtar

    2017-01-01

    Radiation enteritis is one of the most feared complications of abdominal and pelvic regions. Thus, radiation to abdominal or pelvic malignancies unavoidably injures the intestine. Because of rapid cell turnover, the intestine is highly sensitive to radiation injury, which is the limiting factor in the permissible dosage of irradiation. Bowel injuries such as fistulas, strictures, and chronic malabsorption are potentially life-threatening complications and have an impact on patient quality of life. The incidence of radiation enteritis is increasing because of the current trend of combined chemotherapy and radiation. The consequences of radiation damage to the intestine may result in considerable morbidity and even mortality. The observed effects of ionizing radiation are mediated mainly by oxygen-free radicals that are generated by its action on water and are involved in several steps of signal transduction cascade, leading to apoptosis. The oxyradicals also induce DNA strand breaks and protein oxidation. An important line of defense against free radical damage is the presence of antioxidants. Therefore, administration of antioxidants may ameliorate the radiation-induced damage to the intestine. PMID:28532242

  1. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  2. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    PubMed

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  3. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100%more » mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.« less

  4. Evidence for radiation-induced disseminated intravascular coagulation as a major cause of radiation-induced death in ferrets.

    PubMed

    Krigsfeld, Gabriel S; Savage, Alexandria R; Billings, Paul C; Lin, Liyong; Kennedy, Ann R

    2014-03-15

    The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. The lethal dose of radiation to 50% of the population (LD50) of the ferrets was established at ∼ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. [The occupational radiation-induced cataract in five industrial radiographers].

    PubMed

    Benzarti Mezni, A; Loukil, I; Hriz, N; Kallel, K; Mlaiki, N; Ben Jemaâ, A

    2012-04-01

    The industrial uses of ionizing radiation in Tunisia are expanding, especially in industry and most particularly in the nondestructive testing of welds. Thus workers operating in the non-destructive testing of welds may develop a radiation-induced cataract varying in time to onset depending on the dose. To describe the characteristics of the radiation-induced cataract in patients exposed to ionizing radiation, determine the risk factors of radiation-induced cataracts. This was an anamnestic, clinical, and environmental study of five cases of radiation-induced cataract in workers employed in non-destructive testing of welds. This series of five cases had a mean age of 30.2 years and 5.53 years of work experience, ranging from 14 months to 15 years. All the patients were male and industrial radiographers specialized in nondestructive testing of welds. The average duration of exposure to ionizing radiation was 5.53 years. None of the patients had worn protective gear such as eye goggles. The ophthalmic check-up for the five special industrial radiographers showed punctuate opacities in three cases, punctiform opacities in one eye in one case, and phacosclerosis with bilateral lens multiple crystalline stromal opacities in a case of micro-lens opacities in both eyes with opalescence of both eyes in one case. These cataracts had been declared as occupational diseases. The value of a specialized ophthalmologic surveillance among these workers and the early diagnosis of lens opacities must be emphasized. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Radiation-induced lichen sclerosus of the vulva : First report in the medical literature.

    PubMed

    Edwards, Lisa R; Privette, Emily D; Patterson, James W; Tchernev, Georgi; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Wilson, Barbara B

    2017-03-01

    A 67-year-old woman presented with a firm plaque in the perineal region, 16 months after diagnosis of a high-grade basaloid squamous cell carcinoma of the vagina and treatment by external beam radiation therapy and vaginal cuff brachytherapy. The differential diagnosis included radiation-induced morphea, radiation dermatitis, or, possibly, radiation-induced lichen sclerosus. Biopsy findings, including special staining, confirmed the diagnosis of radiation-induced lichen sclerosus. To our knowledge, this is the first report of radiation-induced lichen sclerosus of the vulvar region.

  7. Real-space analysis of radiation-induced specific changes with independent component analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borek, Dominika; Bromberg, Raquel; Hattne, Johan

    A method of analysis is presented that allows for the separation of specific radiation-induced changes into distinct components in real space. The method relies on independent component analysis (ICA) and can be effectively applied to electron density maps and other types of maps, provided that they can be represented as sets of numbers on a grid. Here, for glucose isomerase crystals, ICA was used in a proof-of-concept analysis to separate temperature-dependent and temperature-independent components of specific radiation-induced changes for data sets acquired from multiple crystals across multiple temperatures. ICA identified two components, with the temperature-independent component being responsible for themore » majority of specific radiation-induced changes at temperatures below 130 K. The patterns of specific temperature-independent radiation-induced changes suggest a contribution from the tunnelling of electron holes as a possible explanation. In the second case, where a group of 22 data sets was collected on a single thaumatin crystal, ICA was used in another type of analysis to separate specific radiation-induced effects happening on different exposure-level scales. Here, ICA identified two components of specific radiation-induced changes that likely result from radiation-induced chemical reactions progressing with different rates at different locations in the structure. In addition, ICA unexpectedly identified the radiation-damage state corresponding to reduced disulfide bridges rather than the zero-dose extrapolated state as the highest contrast structure. The application of ICA to the analysis of specific radiation-induced changes in real space and the data pre-processing for ICA that relies on singular value decomposition, which was used previously in data space to validate a two-component physical model of X-ray radiation-induced changes, are discussed in detail. This work lays a foundation for a better understanding of protein-specific radiation

  8. Modeling radiation induced segregation in Iron-Chromium alloys

    DOE PAGES

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; ...

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causesmore » an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.« less

  9. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway.

    PubMed

    Yin, Jian; Guo, Jiabin; Zhang, Qiang; Cui, Lan; Zhang, Li; Zhang, Tingfen; Zhao, Jun; Li, Jin; Middleton, Alistair; Carmichael, Paul L; Peng, Shuangqing

    2018-09-01

    The usefulness of doxorubicin (DOX), a potent anticancer agent, is limited by its cardiotoxicity. Mitochondria play a central role in DOX-induced cardiotoxicity though the precise mechanisms are still obscure. Increasing evidence indicates that excessive activation of mitophagy and mitochondrial dysfunction are key causal events leading to DOX-induced cardiac injury. The PINK1/parkin pathway has emerged as a critical pathway in regulation of mitophagy as well as mitochondrial function. The present study was aimed to investigate the role of PINK1/parkin pathway in DOX-induced mitochondrial damage and cardiotoxicity. Our results showed that DOX concentration-dependently induced cytotoxicity and mitochondrial toxic effects including mitochondrial superoxide accumulation, decreased mitochondrial membrane potential and mitochondrial DNA copy number, as well as mitochondrial ultrastructural alterations. DOX induced mitophagy as evidenced by increases of the markers of autophagosomes, LC3, Beclin 1, reduction of p62, and co-localization of LC3 in mitochondria. DOX activated PINK1/parkin pathway and promoted translocation of PINK1/parkin to mitochondria. Meanwhile, DOX inhibited the expression of PGC-1α and its downstream targets nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), and reduced the expression of mitochondrial proteins. Inhibition of mitophagy by mdivi-1 was found to attenuate activation of the PINK1/parkin pathway by DOX and preserve mitochondrial biogenesis, consequently mitigating DOX-induced mitochondrial superoxide overproduction and mitochondrial dysfunction. Moreover, scavenging mitochondrial superoxide by Mito-tempo was also found to effectively attenuate activation of the PINK1/parkin pathway and rescue the cells from DOX-induced adverse effects. Taken together, these findings suggest that DOX-induced mitophagy and mitochondrial damage in cardiomyocytes are mediated, at least in part, by dysregulation of the PINK1

  10. Countermeasures for space radiation induced adverse biologic effects

    NASA Astrophysics Data System (ADS)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  11. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev

    2016-01-01

    Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered

  12. Radiation-induced cerebrovascular disease in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, T.L.; Bresnan, M.J.

    1976-06-01

    Radiation-induced internal carotid artery occlusion has not been well recognized previously as a cause of childhood cerebrovascular disease. A child who had received radiation as a neonate for a hemangioma involving the left orbit at the age of 6 years experienced a recurrent right-sided paresis, vascular headaches, and speech difficulties. Angiography showed a hypoplastic left carotid artery with occlusion of both the anterior and middle cerebral arteries. Collateral vessels bypassed the occluded-stenotic segments. Review of the literature showed two additional cases of large vessel occlusion in childhood associated with anastomatic telangiectatic vessel development following early radiation therapy of facial hemangioma.

  13. Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin

    PubMed Central

    Martins-Marques, Tania; Pinho, Maria Joao; Zuzarte, Monica; Oliveira, Carla; Pereira, Paulo; Sluijter, Joost P. G.; Gomes, Celia; Girao, Henrique

    2016-01-01

    Extracellular vesicles (EVs) are major conveyors of biological information, mediating local and systemic cell-to-cell communication under physiological and pathological conditions. These endogenous vesicles have been recognized as prominent drug delivery vehicles of several therapeutic cargoes, including doxorubicin (dox), presenting major advantages over the classical approaches. Although dox is one of the most effective anti-tumour agents in the clinical practice, its use is very often hindered by its consequent dramatic cardiotoxicity. Despite significant advances witnessed in the past few years, more comprehensive studies, supporting the therapeutic efficacy of EVs, with decreased side effects, are still scarce. The main objective of this study was to evaluate the role of the gap junction protein connexin43 (Cx43) in mediating the release of EV content into tumour cells. Moreover, we investigated whether Cx43 improves the efficiency of dox-based anti-tumour treatment, with a concomitant decrease of cardiotoxicity. In the present report, we demonstrate that the presence of Cx43 in EVs increases the release of luciferin from EVs into tumour cells in vitro and in vivo. In addition, using cell-based approaches and a subcutaneous mouse tumour model, we show that the anti-tumour effect of dox incorporated into EVs is similar to the administration of the free drug, regardless the presence of Cx43. Strikingly, we demonstrate that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug. Altogether, these results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects. PMID:27702427

  14. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer

    PubMed Central

    King, Suzanne N.; Dunlap, Neal E.; Tennant, Paul A.; Pitts, Teresa

    2017-01-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia is comprised of a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration. PMID:27098922

  15. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer.

    PubMed

    King, Suzanne N; Dunlap, Neal E; Tennant, Paul A; Pitts, Teresa

    2016-06-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration.

  16. Radiation-induced chondrosarcoma of the maxilla 7-year after combined chemoradiation for tonsillar lymphoma.

    PubMed

    Mohammadianpanah, M; Gramizadeh, B; Omidvari, Sh; Mosalaei, A

    2004-01-01

    Radiation-induced sarcoma is a rare complication of radiation therapy. We report a case of radiation-induced chondrosarcoma of the maxilla. An 80-year-old Persian woman developed radiation-induced chondrosarcoma of the left maxilla 7 years after combined chemotherapy and external beam radiation therapy for the Ann Arbor stage IE malignant lymphoma of the right tonsil. She underwent suboptimal tumour resection and died due to extensive locoregional disease 8 months later. An English language literature search of Medline using the terms chondrosarcoma, radiation-induced sarcoma and maxilla revealed only one earlier reported case. We describe the clinical and pathological features of this case and review the literature on radiation-induced sarcomas.

  17. The Role of Biomarkers in Detection of Cardio-toxicity.

    PubMed

    Shah, Kevin S; Yang, Eric H; Maisel, Alan S; Fonarow, Gregg C

    2017-06-01

    The goal of this paper is to review the current literature on the role of biomarkers in the detection and management of patients with cardio-oncologic disease. The role of biomarker surveillance in patients with known cardiac disease, as a result of chemotherapy or with the potential to develop cardio-toxicity, will be discussed. In addition, the studies surrounding sub-clinical cardiac toxicity monitoring during therapy, identification of high-risk patients prior to therapy, and tailoring oncologic therapies to potential biomarker risk profiles are reviewed. Based on evidence, to date, troponin and natriuretic peptides have the greatest potential to detect sub-clinical cardiac dysfunction and even tailor therapy to prevent progression based on biomarker profiles. Finally, future directions for potential utilization of novel biomarkers for the improvement of care of patients in the field of cardio-oncology are discussed.

  18. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  19. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  20. Incidence and identification of risk factors for trastuzumab-induced cardiotoxicity in breast cancer patients: an audit of a single "real-world" setting.

    PubMed

    Tang, Grace H; Acuna, Sergio A; Sevick, Laura; Yan, Andrew T; Brezden-Masley, Christine

    2017-09-01

    Management of human epidermal growth factor receptor-2-positive (HER2+) breast cancer patients includes the combination of adjuvant chemotherapy and trastuzumab. A meta-analysis reported that <5% of HER2+ breast cancer patients will develop trastuzumab-induced cardiotoxicity (TIC). Observational data suggest that incidence is much higher. We aimed to determine the incidence, time to development, and risk factors associated with TIC among less selected patients. A retrospective cohort study was carried out in 160 HER2+ breast cancer patients who received adjuvant chemotherapy with trastuzumab from January 2006 to June 2014 at St. Michael's Hospital, Toronto, Canada. Patient demographics, cardiovascular history, and TIC were recorded. TIC was defined as symptomatic (heart failure) or asymptomatic [decline in left ventricular ejection fraction (LVEF) by ≥10% or LVEF ≤ 50%]. Of the 160 patients [median age 52 (IQR 45-60), 48.1% on anthracycline-based chemotherapy], 34 patients (21.3%) experienced TIC (median follow-up 55.4 months). The median time to development of TIC was 28.5 weeks during trastuzumab therapy. Those with TIC were more likely to have undergone a mastectomy (52.9 vs. 33.3%, p = 0.04). However, after adjusting for anthracycline-based chemotherapy, and radiotherapy, mastectomy was not independently associated with TIC (HR 2.02; 95% CI 0.88-4.63). The incidence of TIC is higher in our "real-world" population compared to clinical trial data. The median time to development of TIC was 28 weeks after trastuzumab initiation, approximately the 10th treatment of trastuzumab. Timely identification and management of patients is important to avoid irreversible cardiac toxicity and improve breast cancer survival.

  1. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  2. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation.

    PubMed

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W; Mani, Ramesh G

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  3. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, G.; Matzinger, E.; Gange, R.W.

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areasmore » were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.« less

  4. Hyperbaric oxygen: Primary treatment of radiation-induced hemorrhagic cystitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, J.P.; Neville, E.C.

    Of 8 patients with symptoms of advanced cystitis due to pelvic radiation treated with hyperbaric oxygen 7 are persistently improved during followup. All 6 patients treated for gross hematuria requiring hospitalization have been free of symptoms for an average of 24 months (range 6 to 43 months). One patient treated for stress incontinence currently is dry despite little change in bladder capacity, implying salutary effect from hyperbaric oxygen on the sphincter mechanism. One patient with radiation-induced prostatitis failed to respond. This experience suggests that hyperbaric oxygen should be considered the primary treatment for patients with symptomatic radiation-induced hemorrhagic cystitis.

  5. Characterization of radiation-induced emesis in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.

    1988-06-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral /sup 60/Co gamma radiation at 100 cGy min-1 at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED50 was calculated at 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously ormore » subcutaneously with 30 to 300 micrograms/kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n = 4) or 401 (n = 4) cGy radiation and their emetic responses were compared with NaCl-injected-irradiated controls (n = 8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.« less

  6. Characterization of radiation-induced emesis in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.

    1988-01-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral cobalt 60 gamma radiation at 100 cGy min at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED 50 was calculated as 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenouslymore » or subcutaneously with 30 to 300 micrograms /kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n=4) or 401 (n=4) cGy radiation and their emetic responses were compared with NaCi-injected-irradiated controls (n=8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.« less

  7. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  8. Cardio-oncology: cardiovascular complications of cancer therapy.

    PubMed

    Henning, Robert J; Harbison, Raymond D

    2017-07-01

    This paper focuses on three classes of commonly used anticancer drugs, which can cause cardiotoxicity: anthracyclines, monoclonal antibodies exemplified by trastuzumab and tyrosine kinase inhibitors. Anthracyclines can induce cardiomyocyte necrosis and fibrosis. Trastuzumab can cause cardiac stunning. The tyrosine kinase inhibitors can increase systemic arterial pressure and impair myocyte contractility. In addition, radiation therapy to the mediastinum or left chest can exacerbate the cardiotoxicity of these anticancer drugs and can also cause accelerated atherosclerosis, myocardial infarction, heart failure and arrhythmias. Left ventricular ejection fraction measurements are most commonly used to assess cardiac function in patients who receive chemo- or radiation-therapy. However, echocardiographic determinations of global longitudinal strain are more sensitive for detection of early left ventricular systolic dysfunction. Information on patient-risk stratification and monitoring is presented and guidelines for the medical treatment of cardiac dysfunction due to cancer therapies are summarized.

  9. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    PubMed

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  10. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.

    PubMed

    Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo

    2017-08-15

    Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharanei, M.; Hussain, A.; Janneh, O.

    Chemotherapeutic agents such as doxorubicin are known to cause or exacerbate cardiovascular cell death when an underlying heart condition is present. However, the mechanism of doxorubicin-induced cardiotoxicity is unclear. Here we assess the cardiotoxic effects of doxorubicin in conditions of myocardial ischaemia reperfusion and the mechanistic basis of protection, in particular the role of the mitochondrial permeability transition pore (mPTP) in such protection. The effects of doxorubicin (1 μM) ± cyclosporine A (CsA, 0.2 μM; inhibits mPTP) were investigated in isolated male Sprague–Dawley rats using Langendorff heart and papillary muscle contraction models subjected to simulated ischaemia and reperfusion injury. Isolatedmore » rat cardiac myocytes were used in an oxidative stress model to study the effects of drug treatment on mPTP by confocal microscopy. Western blot analysis evaluated the effects of drug treatment on p-Akt and p-Erk 1/2 levels. Langendorff and the isometric contraction models showed a detrimental effect of doxorubicin throughout reperfusion/reoxygenation as well as increased p-Akt and p-Erk levels. Interestingly, CsA not only reversed the detrimental effects of doxorubicin, but also reduced p-Akt and p-Erk levels. In the sustained oxidative stress assay to study mPTP opening, doxorubicin decreased the time taken to depolarization and hypercontracture, but these effects were delayed in the presence of CsA. Collectively, our data suggest for the first that doxorubicin exacerbates myocardial injury in an ischaemia reperfusion model. If the inhibition of mPTP ameliorates the cardiotoxic effects of doxorubicin, then more selective inhibitors of mPTP should be further investigated for their utility in patients receiving doxorubicin. - Highlights: ► Doxorubicin exacerbates myocardial ischaemia reperfusion injury. ► Co-treatment with CsA protects against doxorubicin induced myocardial injury. ► CsA delays doxorubicin induced mPTP opening

  13. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  14. Apatinib in refractory radiation-induced brain edema: A case report.

    PubMed

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-11-01

    Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Two patients were both diagnosed as refractory radiation-induced brain edema. Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study.

  15. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  16. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGES

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; ...

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  17. A Novel Cardiotoxic Mechanism for a Pervasive Global Pollutant

    NASA Astrophysics Data System (ADS)

    Brette, Fabien; Shiels, Holly A.; Galli, Gina L. J.; Cros, Caroline; Incardona, John P.; Scholz, Nathaniel L.; Block, Barbara A.

    2017-01-01

    The Deepwater Horizon disaster drew global attention to the toxicity of crude oil and the potential for adverse health effects amongst marine life and spill responders in the northern Gulf of Mexico. The blowout released complex mixtures of polycyclic aromatic hydrocarbons (PAHs) into critical pelagic spawning habitats for tunas, billfishes, and other ecologically important top predators. Crude oil disrupts cardiac function and has been associated with heart malformations in developing fish. However, the precise identity of cardiotoxic PAHs, and the mechanisms underlying contractile dysfunction are not known. Here we show that phenanthrene, a PAH with a benzene 3-ring structure, is the key moiety disrupting the physiology of heart muscle cells. Phenanthrene is a ubiquitous pollutant in water and air, and the cellular targets for this compound are highly conserved across vertebrates. Our findings therefore suggest that phenanthrene may be a major worldwide cause of vertebrate cardiac dysfunction.

  18. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome

    PubMed Central

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-01-01

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 – dose that kills 100% of the mice at 30 days) from 137Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery. PMID:26019540

  19. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome.

    PubMed

    Kindekov, Ivan; Mileva, Milka; Krastev, Dimo; Vassilieva, Vladimira; Raynova, Yuliana; Doumanova, Lyuba; Aljakov, Mitko; Idakieva, Krassimira

    2014-05-04

    The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 - dose that kills 100% of the mice at 30 days) from 137 Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery.

  20. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  1. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats.

    PubMed

    Kale, Aydemir; Piskin, Özcan; Bas, Yilmaz; Aydin, Bengü Gülhan; Can, Murat; Elmas, Özlem; Büyükuysal, Çagatay

    2018-04-24

    Extensive research has been focused on radiation-induced brain injury. Animal and human studies have shown that flavonoids have remarkable toxicological profiles. This study aims to investigate the neuroprotective effects of quercetin in an experimental radiation-induced brain injury. A total of 32 adult male Wistar-Albino rats were randomly divided into four groups (control, quercetin, radiation, and radiation+quercetin groups, with eight rats in each group). Doses (50 mg/kg) of quercetin were administered to the animals in the quercetin and radiation+quercetin groups; radiation and radiation+quercetin groups were exposed to a dose of 20 Gy to the cranium region. Tissue samples, and biochemical levels of tissue injury markers in the four groups were compared. In all measured parameters of oxidative stress, administration of quercetin significantly demonstrated favorable effects. Both plasma and tissue levels of malondialdehyde and total antioxidant status significantly changed in favor of antioxidant activity. Histopathological evaluation of the tissues also demonstrated a significant decrease in cellular degeneration and infiltration parameters after quercetin administration. Quercetin demonstrated significant neuroprotection after radiation-induced brain injury. Further studies of neurological outcomes under different experimental settings are required in order to achieve conclusive results.

  2. Cardiotoxicity of Freon among refrigeration services workers: comparative cross-sectional study

    PubMed Central

    2009-01-01

    average heart rate during the monitoring period within subject or group. Most laboratory investigations revealed absence of significant statistical differences for lipid profile markers, serum electrolyte levels and glomerular lesion markers between the groups except for cholesterol and urinary β2-microglobulin (tubular lesion markers) levels which were significantly elevated in freon exposed workers. Conclusions Unprotected occupational exposure to chlorofluorocarbons can induce cardiotoxicity in the form of cardiac arrhythmias. The role of chlorofluorocarbons in inducing arterial hypertension and coronary artery diseases is unclear, although significantly elevated serum cholesterol and urinary β2-microglobulin levels raise a concern. PMID:19594908

  3. Modulating factors in the expression of radiation-induced oncogenic transformation.

    PubMed Central

    Hall, E J; Hei, T K

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitative are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing alpha-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene. Images FIGURE 4. PMID:2272310

  4. Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation.

    PubMed

    Moison, R M; Beijersbergen Van Henegouwen, G M

    2001-07-01

    Moison, R. M. W. and Beijersbergen van Henegouwen, G. M. J. Dietary Eicosapentaenoic Acid Prevents Systemic Immunosuppression in Mice Induced by UVB Radiation. Radiat. Res. 156, 36-44 (2001). Reactive oxygen species (ROS) contribute to the immunosuppression induced by UVB radiation. Omega-3 fatty acids in fish oil, e.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can modulate immunoresponsiveness, but because of their susceptibility to ROS-induced damage, they can also challenge the epidermal antioxidant defense system. The influence of dietary supplementation with different omega-3 fatty acids on systemic immunosuppression induced in mice by UVB radiation was studied using the contact hypersensitivity response to trinitrochlorobenzene. In an attempt to study the mechanisms involved, UVB-radiation-induced changes in epidermal antioxidant status were also studied. Mice received high-fat (25% w/w) diets enriched with either oleic acid (control diet), EPA, DHA, or EPA + DHA (MaxEPA). Immunosuppression induced by UVB radiation was 53% in mice fed the oleic acid diet and 69% in mice fed the DHA diet. In contrast, immunosuppression was only 4% and 24% in mice fed the EPA and MaxEPA diets, respectively. Increased lipid peroxidation and decreased vitamin E levels (P < 0.05) were found in unirradiated mice fed the MaxEPA and DHA diets. For all diets, exposure to UVB radiation increased lipid peroxidation (P < 0.05), but levels of glutathione (P < 0.05) and vitamin C (P > 0.05) decreased only in the mice given fish oil. UVB irradiation did not influence vitamin E levels. In conclusion, dietary EPA, but not DHA, protects against UVB-radiation-induced immunosuppression in mice. The degree of protection appears to be related to the amount of EPA incorporated and the ability of the epidermis to maintain an adequate antioxidant level after irradiation.

  5. Entanglement-induced quantum radiation

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro

    2017-08-01

    Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.

  6. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.

    PubMed

    Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J

    2016-06-01

    Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.

  7. Cardiotoxicity of acetogenins from Persea americana occurs through the mitochondrial permeability transition pore and caspase-dependent apoptosis pathways.

    PubMed

    Silva-Platas, Christian; García, Noemí; Fernández-Sada, Evaristo; Dávila, Daniel; Hernández-Brenes, Carmen; Rodríguez, Dariana; García-Rivas, Gerardo

    2012-08-01

    Acetogenins are cell-membrane permeable, naturally occurring secondary metabolites of plants such as Annonaceae, Lauraceae and other related phylogenic families. They belong to the chemical derivatives of polyketides, which are synthesized from fatty acid precursors. Although acetogenins have displayed diverse biological activities, the anti-proliferative effect on human cancer cells has been widely reported. Acetogenins are inhibitors of complex I in the electron transport chain therefore they interrupt ATP synthesis in mitochondria. We tested a new acetogenins-enriched extract from the seed of Persea americana in order to investigate if any toxicity was induced on cardiac tissue and determine the involved mechanism. In isolated perfused heart we found that contractility was completely inhibited at an accumulative dose of 77 μg/ml. In isolated cardiomyocytes, the acetogenins-enriched extract induced apoptosis through the activation of the intrinsic pathway at 43 μg/ml. In isolated mitochondria, it inhibited complex I activity on NADH-linked respiration, as would be expected, but also induced permeability transition on succinate-linked respiration. Cyclosporine A, a known blocker of permeability transition, significantly prevented the permeability transition triggered by the acetogenins-enriched extract. In addition, our acetogenins-enriched extract inhibited ADP/ATP exchange, suggesting that an important element in phosphate or adenylate transport was affected. In this manner we suggest that acetogenins-enriched extract from Persea americana could directly modulate permeability transition, an entity not yet associated with the acetogenins' direct effects, resulting in cardiotoxicity.

  8. 5-Fluorouracil cardiotoxicity: reversible left ventricular systolic dysfunction with early detection

    PubMed Central

    Iskandar, Muhammad Zaid; Quasem, Wahid; El-Omar, Magdi

    2015-01-01

    A 33-year-old man presented to hospital with acute shortness of breath and evolving ST segment changes on ECG 3 days following a cycle of 5-fluorouracil (5-FU) for colon cancer. Despite no cardiac history, subsequent echocardiogram showed severe left ventricular systolic dysfunction. The patient was initially treated with heart failure medications and his coronary angiogram was normal. Chemotherapy was stopped and he was started on nitrates and calcium channel blockers. A repeat echocardiogram and cardiac MRI a week later showed complete resolution of his left ventricular dysfunction and he was discharged home. This case report summarises 5-FU cardiotoxicity, and emphasises the importance of early recognition and correct treatment, as left ventricular systolic dysfunction in this context is potentially reversible. PMID:25935919

  9. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  10. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    PubMed

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  11. Clinical and dosimetric factors of radiation-induced esophageal injury: radiation-induced esophageal toxicity.

    PubMed

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-05-07

    To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus > or =60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). Concurrent chemotherapy and the maximal esophageal point dose > or =60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT.

  12. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study

    PubMed Central

    Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.

    2016-01-01

    Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose

  13. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis.

    PubMed

    Silva-Platas, Christian; Villegas, César A; Oropeza-Almazán, Yuriana; Carrancá, Mariana; Torres-Quintanilla, Alejandro; Lozano, Omar; Valero-Elizondo, Javier; Castillo, Elena C; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F; Treviño-Saldaña, Niria; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Elizondo-Montemayor, Leticia; Guerrero-Beltrán, Carlos E; Carvajal, Karla; Bravo-Gómez, María E; García-Rivas, Gerardo

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC 50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7  μ M, correspondingly. Myocardial oxygen consumption was not modified at their respective IC 50 , although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca 2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca 2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability.

  15. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis

    PubMed Central

    Silva-Platas, Christian; Villegas, César A.; Carrancá, Mariana; Lozano, Omar; Valero-Elizondo, Javier; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F.; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Guerrero-Beltrán, Carlos E.; Bravo-Gómez, María E.

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7 μM, correspondingly. Myocardial oxygen consumption was not modified at their respective IC50, although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability. PMID:29765507

  16. Non-radiation induced signals in TL dosimetry.

    PubMed

    German, U; Weinstein, M

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originates in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curves and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals.

  17. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells

    PubMed Central

    Nagarajan, Devipriya; Wang, Lei; Zhao, Weiling; Han, Xiaochen

    2017-01-01

    Radiation-induced pneumonitis and fibrosis are major complications following thoracic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis, including lung. Our previous studies have reported that radiation can induce EMT in the type II alveolar epithelial cells in both in vitro and in vivo. HDAC inhibitors are a new family of anti-cancer agents currently being used in several clinical trials. In addition to their intrinsic anti-tumor properties, HDAC inhibition is also important in other human diseases, including fibrosis and radiation-induced damage. In this study, we evaluated the effect of Trichostatin A (TSA), a HDAC inhibitor, on radiation-induced EMT in type II alveolar epithelial cells (RLE-6TN). Pre-treatment of RLE-6TN cells with TSA inhibited radiation-induced EMT-like morphological alterations including elevated protein level of α-SMA and Snail, reduction of E-cadherin expression, enhanced phosphorylation of GSK3β and ERK1/2, increased generation of ROS. Radiation enhanced the protein level of TGF-β1, which was blocked by N-acetylcysteine, an antioxidant. Treating cells with SB-431542, TGF-β1 type I receptor inhibitor, diminished radiation-induced alterations in the protein levels of p-GSK-3β, Snail-1 and α-SMA, suggesting a regulatory role of TGF-β1 in EMT. Pre-incubation of cells with TSA showed significant decrease in the level of TGF-β1 compared to radiation control. Collectively, these results demonstrate that i] radiation-induced EMT in RLE-6TN cells is mediated by ROS/MEK/ERK and ROS/TGF-β1 signaling pathways and ii] the inhibitory role of TSA in radiation-induced EMT appears to be due, at least in part, to its action of blocking ROS and TGF-β1 signaling. PMID:29254201

  18. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages

    PubMed Central

    Liu, Yan-gang; Chen, Ji-kuai; Zhang, Zi-teng; Ma, Xiu-juan; Chen, Yong-chun; Du, Xiu-ming; Liu, Hong; Zong, Ying; Lu, Guo-cai

    2017-01-01

    A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1β as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation. PMID:28151471

  20. Adverse event detection using the FDA post-marketing drug safety surveillance system: Cardiotoxicity associated with loperamide abuse and misuse.

    PubMed

    Swank, Kimberley A; Wu, Eileen; Kortepeter, Cindy; McAninch, Jana; Levin, Robert L

    The purpose of this investigation was to identify and characterize post-marketing reports of cardiotoxicity, including torsades de pointes (TdP), associated with loperamide use. We searched the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database for post-marketing reports of serious cardiac adverse events associated with loperamide use from December 28, 1976 (U.S. drug approval date), through December 14, 2015. We also conducted a Pubmed and Google Scholar search to identify additional published reports of cardiotoxicity associated with loperamide in the medical literature through February 11, 2016. Forty-eight cases of serious cardiac adverse events associated with loperamide use composed the case series. The most frequently reported cardiac adverse events were syncope (n = 24), cardiac arrest (n = 13), QT-interval prolongation (n = 13), ventricular tachycardia (n = 10), and TdP (n = 7). There were 10 cases that resulted in death. Of the 48 cases, the most commonly reported reasons for use can be characterized as drug abuse (n = 22) and diarrhea treatment (n = 17). More than one-half of the 48 cases were reported after 2010. Of the 22 drug abuse cases, the median daily dose was 250 mg (range 70 mg to 1600 mg) and events occurred as early as 6 hours after a dose and as long as 18 months after initiation of loperamide. Thirteen of the 22 cases reported using loperamide for euphoric or analgesic effects, and 9 reported use to prevent opioid withdrawal symptoms. The FAERS case reports provide evidence to suggest that high doses of loperamide are associated with TdP and other serious cardiac adverse events. The majority of cases in this series occurred in the setting of drug abuse for the purpose of preventing opioid withdrawal or to produce euphoric effects. It is important for both clinicians and patients to be aware of this potential risk, because prompt therapy and discontinuation of the offending agent are often essential to

  1. Subcellular localization of anthracyclines in cultured rat cardiomyoblasts as possible predictors of cardiotoxicity.

    PubMed

    Studzian, Kazimierz; Kik, Krzysztof; Lukawska, Malgorzata; Oszczapowicz, Irena; Strek, Malgorzata; Szmigiero, Leszek

    2015-10-01

    In this study, we compared the cellular uptake, intracellular localization and cytotoxicity of two groups of anthracycline derivatives in cultured H9c2(2-1) rat cardiomyoblasts. The first group consisted of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N = CH-N<) at the C-3' position with a morpholine (DOXM) or a hexamethyleneimine (DOXH) ring. The second group consisted of daunorubicin (DRB) and its derivatives containing a morpholine (DRBM) or a hexamethyleneimine (DRBH) ring. DOXH and DRBH were taken up by cardiomyoblasts more efficiently than estimated for other tested anthracyclines. The cellular uptakes of DOXM and DRBM were reduced compared to those of the parent compounds. Applied structural modifications of DOX and DRB influenced the subcellular localization of the tested derivatives. DOX and DOXH were localized primarily in nuclei, whereas the other anthracyclines were found in the nuclei and cytoplasm. The percentages of the compounds that accumulated in the nuclei were 80.2 and 54.2 % for DOX and DOXH, respectively. The lowest nuclear accumulation values were observed for DRBM (19.9 %), DRBH (21.9 %) and DOXM (23.7 %). The ability of anthracyclines to accumulate in the nuclei correlated with their DNA binding constants (r = 0.858, P = 0.029). A correlation was found between the accumulation of the tested anthracyclines in the nuclei of cardiomyoblasts and their cardiotoxicity in vivo, which was observed in our previous study. We suggest that cytotoxicity and the anthracycline accumulation level in the nuclei of cultured cardiomyoblasts could be used for early prediction of their cardiotoxicity.

  2. Cardiotoxicity of Anticancer Drugs: The Need for Cardio-Oncology and Cardio-Oncological Prevention

    PubMed Central

    Pennesi, Giuseppina; Donatelli, Francesco; Cammarota, Rosaria; De Flora, Silvio; Noonan, Douglas M.

    2010-01-01

    Due to the aging of the populations of developed countries and a common occurrence of risk factors, it is increasingly probable that a patient may have both cancer and cardiovascular disease. In addition, cytotoxic agents and targeted therapies used to treat cancer, including classic chemotherapeutic agents, monoclonal antibodies that target tyrosine kinase receptors, small molecule tyrosine kinase inhibitors, and even antiangiogenic drugs and chemoprevention agents such as cyclooxygenase-2 inhibitors, all affect the cardiovascular system. One of the reasons is that many agents reach targets in the microenvironment and do not affect only the tumor. Combination therapy often amplifies cardiotoxicity, and radiotherapy can also cause heart problems, particularly when combined with chemotherapy. In the past, cardiotoxic risk was less evident, but it is increasingly an issue, particularly with combination therapy and adjuvant therapy. Today's oncologists must be fully aware of cardiovascular risks to avoid or prevent adverse cardiovascular effects, and cardiologists must now be ready to assist oncologists by performing evaluations relevant to the choice of therapy. There is a need for cooperation between these two areas and for the development of a novel discipline, which could be termed cardio-oncology or onco-cardiology. Here, we summarize the potential cardiovascular toxicities for a range of cancer chemotherapeutic and chemopreventive agents and emphasize the importance of evaluating cardiovascular risk when patients enter into trials and the need to develop guidelines that include collateral effects on the cardiovascular system. We also discuss mechanistic pathways and describe several potential protective agents that could be administered to patients with occult or overt risk for cardiovascular complications. PMID:20007921

  3. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.

    PubMed

    Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam

    2018-04-21

    Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Substance P Receptor Signaling Mediates Doxorubicin-Induced Cardiomyocyte Apoptosis and Triple-Negative Breast Cancer Chemoresistance

    PubMed Central

    Robinson, Prema; Kasembeli, Moses; Bharadwaj, Uddalak; Engineer, Nikita; Eckols, Kris T.; Tweardy, David J.

    2016-01-01

    Doxorubicin (DOX), an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC), DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP), a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS). Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2) and a TNBC cell line (MDA-MB 231) with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance. PMID:26981525

  5. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  6. The effect of radiation dose on the onset and progression of radiation-induced brain necrosis in the rat model.

    PubMed

    Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura

    2017-07-01

    To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.

  7. Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blue, Rebecca; Chancellor, Jeffery; Suresh, Rahul; Carnell, Lisa; Reyes, David; Nowadly, Craig; Antonsen, Erik

    2018-01-01

    Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight.

  8. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    PubMed

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  9. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice.

    PubMed

    Jang, Hyosun; Park, Sunhoo; Lee, Janet; Myung, Jae Kyung; Jang, Won-Suk; Lee, Sun-Joo; Myung, Hyunwook; Lee, Changsun; Kim, Hyewon; Lee, Seung-Sook; Jin, Young-Woo; Shim, Sehwan

    2018-04-01

    Radiation-induced colitis is a common clinical problem associated with radiotherapy and accidental exposure to ionizing radiation. Goblet cells play a pivotal role in the intestinal barrier against pathogenic bacteria. Rebamipide, an anti-gastric ulcer drug, has the effects to promote goblet cell proliferation. The aim of this study was to investigate whether radiation-induced colonic injury could be alleviated by rebamipide. This study orally administered rebamipide for 6 days to mice, which were subjected to 13 Gy abdominal irradiation, to evaluate the therapeutic effects of rebamipide against radiation-induced colitis. To confirm the effects of rebamipide on irradiated colonic epithelial cells, this study used the HT29 cell line. Rebamipide clearly alleviated the acute radiation-induced colitis, as reflected by the histopathological data, and significantly increased the number of goblet cells. The drug also inhibited intestinal inflammation and protected from bacterial translocation during acute radiation-induced colitis. Furthermore, rebamipide significantly increased mucin 2 expression in both the irradiated mouse colon and human colonic epithelial cells. Additionally, rebamipide accelerated not only the recovery of defective tight junctions but also the differentiation of impaired goblet cells in an irradiated colonic epithelium, which indicates that rebamipide has beneficial effects on the colon. Rebamipide is a therapeutic candidate for radiation-induced colitis, owing to its ability to inhibit inflammation and protect the colonic epithelial barrier. © 2017 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  10. 5-Fluorouracil cardiotoxicity: reversible left ventricular systolic dysfunction with early detection.

    PubMed

    Iskandar, Muhammad Zaid; Quasem, Wahid; El-Omar, Magdi

    2015-05-02

    A 33-year-old man presented to hospital with acute shortness of breath and evolving ST segment changes on ECG 3 days following a cycle of 5-fluorouracil (5-FU) for colon cancer. Despite no cardiac history, subsequent echocardiogram showed severe left ventricular systolic dysfunction. The patient was initially treated with heart failure medications and his coronary angiogram was normal. Chemotherapy was stopped and he was started on nitrates and calcium channel blockers. A repeat echocardiogram and cardiac MRI a week later showed complete resolution of his left ventricular dysfunction and he was discharged home. This case report summarises 5-FU cardiotoxicity, and emphasises the importance of early recognition and correct treatment, as left ventricular systolic dysfunction in this context is potentially reversible. 2015 BMJ Publishing Group Ltd.

  11. Photo- and radiation chemical induced degradation of lignin model compounds.

    PubMed

    Lanzalunga; Bietti, M

    2000-07-01

    The basic mechanistic aspects of the photo- and radiation chemistry of lignin model compounds (LMCs) are discussed with respect to important processes related to lignin degradation. Several reactions occur after direct irradiation, photosensitized or radiation chemically induced oxidation of LMCs. Direct irradiation studies on LMCs have provided supportive evidence for the involvement of hydrogen abstraction reactions from phenols, beta-cleavage of substituted alpha-aryloxyacetophenones and cleavage of ketyl radicals (formed by photoreduction of aromatic ketones or hydrogen abstraction from arylglycerol beta-aryl ethers) in the photoyellowing of lignin rich pulps. Photosensitized and radiation chemically induced generation of reactive oxygen species and their reaction with LMCs are reviewed. The side-chain reactivity of LMC radical cations, generated by radiation chemical means, is also discussed in relation with the enzymatic degradation of lignin.

  12. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hengwen; Yang, Shana; Li, Jianhua

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less

  13. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  14. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  15. Visual sensations induced by Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1975-08-01

    Pulses of relativistic singly charged particles entering the eyeball induce a variety of visual phenomena by means of Cerenkov radiation generated during their passage through the vitreous. These phenomena are similar in appearance to many of the visual sensations experienced by Apollo astronauts exposed to the cosmic rays in deep space. (auth)

  16. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  17. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  18. A case of chemotherapy-induced congestive heart failure successfully treated with Chinese herbal medicine.

    PubMed

    Wu, Bei-Yu; Liu, Chun-Ting; Chen, Shih-Yu; Tsai, Ming-Yen

    2015-04-01

    A case is presented to illustrate a potential effect of Chinese herbal medicine (CHM) formulas in treating chemotherapy-induced cardiotoxicity. An 18-year-old adolescent male with refractory acute lymphoblastic leukemia (ALL) had experienced anthracycline-induced congestive heart failure (CHF) for 3 weeks. Under intensive care with conventional therapy, the patient still had exercise intolerance and depended on supplemental oxygen all day. Therefore, he consented to treatment with traditional Chinese medicine (TCM) for alternative therapy. This patient was treated with modified Zhi Gan Cao Tang (ZGCT), three times a day for 2 months. After 6 days of CHM treatment, the patient could tolerate daily activity without supplemental oxygen. After 2 months of CHM treatment, the follow-up chest X-ray showed great improvements in pulmonary edema and cardiomegaly. In this case, anthracycline-induced cardiotoxicity resolved slowly following the administration of modified ZGCT. It is suggested that the CHM formula has a protective effect on the progression of CHF secondary to the use of anthracyclines in pediatric cancer. Further studies to determine the mechanism and clinical trials are warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  20. Are there mechanistic differences between ultraviolet and visible radiation induced skin pigmentation?

    PubMed

    Ramasubramaniam, Rajagopal; Roy, Arindam; Sharma, Bharati; Nagalakshmi, Surendra

    2011-12-01

    Most of the studies on sunlight-induced pigmentation of skin are mainly focused on ultraviolet (UV) radiation-induced pigmentation and ways to prevent it. Recent studies have shown that the visible component of sunlight can also cause significant skin pigmentation. In the current study, the extent of pigmentation induced by UV and visible regions of sunlight in subjects with Fitzpatrick skin type IV-V was measured and compared with pigmentation induced by total sunlight. The immediate pigment darkening (IPD) induced by the visible fraction of sunlight is not significantly different from that induced by the UV fraction. However, the persistent pigment darkening (PPD) induced by visible fraction of sunlight in significantly lower than that induced by the UV fraction. The dose responses of IPD induced by UV, visible light and total sunlight suggest that both UV and visible light interact with the same precursor although UV is 25 times more efficient in inducing pigmentation per J cm(-2) of irradiation compared to visible radiation. The measured diffused reflection spectra and decay kinetics of UV and visible radiation-induced pigmentation are very similar, indicating that the nature of the transient and persistent species involved in both the processes are also likely to be same.

  1. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  2. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  3. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.

    PubMed

    Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R

    2018-04-27

    Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.

  4. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, J.; Mancuso, A.; Beck, R.

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence ofmore » both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.« less

  5. Atrazine-xenobiotic nuclear receptor interactions induce cardiac inflammation and endoplasmic reticulum stress in quail (Coturnix coturnix coturnix).

    PubMed

    Li, Xue-Nan; Zuo, Yu-Zhu; Qin, Lei; Liu, Wei; Li, Yan-Hua; Li, Jin-Long

    2018-05-09

    Atrazine (ATR) is one of the most extensively used herbicide that eventually leaches into groundwater and surface water from agricultural areas. Exposure to ATR does harm to the health of human and animals, especially the heart. However, ATR exposure caused cardiotoxicity in bird remains unclear. To evaluate ATR-exerted potential cardiotoxicity in heart, quail were exposed with 0, 50, 250, and 500 mg/kg BW/day ATR by gavage treatment for 45 days. Cardiac histopathological alternation was observed in ATR-induced quail. ATR exposure increased the Cytochrome P450s and Cytochrome b5 contents, Cytochrome P450 (CYP) enzyme system (APND, ERND, AH, and NCR) activities and the expression of CYP isoforms (CYP1B1, CYP2C18, CYP2D6, CYP3A4, CYP3A7, and CYP4B1) in quail heart. The expression of nuclear xenobiotic receptors (NXRs) was also influenced in the heart by ATR exposure. ATR exposure significantly caused the up-regulation of pro-inflammatory cytokines (TNF-α, IL-6, NF-κB, and IL-8), down-regulation of anti-inflammatory cytokines (IL-10) expression levels and increased NO content and iNOS activity. The present research provides new insights into the mechanism that ATR-induced cardiotoxicity through up-regulating the expression levels of GRP78 and XBP-1s, triggering ER stress, activating the expression of IRE1α/TRAF2/NF-κB signaling pathway related factors (IRE1α, TRAF2, IKK, and NF-κB) and inducing an inflammatory response in quail hearts. In conclusion, ATR exposure could induce cardiac inflammatory injury via activating NXRs responses, disrupting CYP homeostasis and CYP isoforms transcription, altering NO metabolism and triggering ER stress and inflammatory response by activating IRE1α/TRAF2/NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  7. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The Development of Countermeasures for Space Radiation Induced Adverse Health Effects Ann R. Kennedy Department of Radiation Oncology, University of Pennsylvania School of Medicine, 195 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, United States 19104-6072 The development of countermeasures for radiation induced adverse health effects is a lengthy process, particularly when the countermeasure/drug has not yet been evaluated in human trials. One example of a drug developed from the bench to the clinic is the soybean-derived Bowman-Birk inhibitor (BBI), which has been developed as a countermeasure for radiation induced cancer. It was originally identified as a compound/drug that could prevent the radiation induced carcinogenic process in an in vitro assay system in 1975. The first observation that BBI could inhibit carcinogenesis in animals was in 1985. BBI received Investigational New Drug (IND) Status with the U.S. Food and Drug Administration (FDA) in 1992 (after several years of negotiation with the FDA about the potential IND status of the drug), and human trials began at that time. Phase I, II and III human trials utilizing BBI have been performed under several INDs with the FDA, and an ongoing Phase III trial will be ending in the very near future. Thus, the drug has been in development for 35 years at this point, and it is still not a prescription drug on the market which is available for human use. A somewhat less time-consuming process is to evaluate compounds that are on the GRAS (Generally Recognized as Safe) list. These compounds would include some over-the-counter medications, such as antioxidant vitamins utilized in human trials at the levels for which Recommended Dietary Allowances (RDAs) have been established. To determine whether GRAS substances are able to have beneficial effects on radiation induced adverse health effects, it is still likely to be a lengthy process involving many years to potentially decades of human trial work. The

  8. Cinnamon extract ameliorates ionizing radiation-induced cellular injury in rats.

    PubMed

    Azab, Khaled Sh; Mostafa, Abdel-Halem A; Ali, Ehab M M; Abdel-Aziz, Mohamed A S

    2011-11-01

    The present study aimed to investigate the protective role of cinnamon extract against inflammatory and oxidative injuries in gamma irradiated rats. Rats were subjected to fractionated doses of gamma radiation. Cinnamon extract were daily administrated before starting irradiation and continued after radiation exposure. The results obtained revealed that the administration of cinnamon extract to irradiated rats significantly ameliorated the changes induced in liver antioxidant system; catalase, superoxide dismutase and glutathione peroxidase activities as well as reduced glutathione concentration. The liver's lipid peroxidation and protein oxidation indices were significantly decreased when compared with their equivalent values in irradiated rats. Furthermore, the changes induces in xanthine oxidoreductase system were significantly diminished. In addition, the changes in liver nitric oxide contents, serum tumor necrosis factor alpha and C-reactive protein levels were markedly improved. In conclusion, the administration of cinnamon extract might provide substantial protection against radiation-induced oxidative and inflammatory damages. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction.

    PubMed

    Fu, Hai Ying; Sanada, Shoji; Matsuzaki, Takashi; Liao, Yulin; Okuda, Keiji; Yamato, Masaki; Tsuchida, Shota; Araki, Ryo; Asano, Yoshihiro; Asanuma, Hiroshi; Asakura, Masanori; French, Brent A; Sakata, Yasushi; Kitakaze, Masafumi; Minamino, Tetsuo

    2016-03-04

    Doxorubicin is an effective chemotherapeutic agent for cancer, but its use is often limited by cardiotoxicity. Doxorubicin causes endoplasmic reticulum (ER) dilation in cardiomyocytes, and we have demonstrated that ER stress plays important roles in the pathophysiology of heart failure. We evaluated the role of ER stress in doxorubicin-induced cardiotoxicity and examined whether the chemical ER chaperone could prevent doxorubicin-induced cardiac dysfunction. We confirmed that doxorubicin caused ER dilation in mouse hearts, indicating that doxorubicin may affect ER function. Doxorubicin activated an ER transmembrane stress sensor, activating transcription factor 6, in cultured cardiomyocytes and mouse hearts. However, doxorubicin suppressed the expression of genes downstream of activating transcription factor 6, including X-box binding protein 1. The decreased levels of X-box binding protein 1 resulted in a failure to induce the expression of the ER chaperone glucose-regulated protein 78 which plays a major role in adaptive responses to ER stress. In addition, doxorubicin activated caspase-12, an ER membrane-resident apoptotic molecule, which can lead to cardiomyocyte apoptosis and cardiac dysfunction. Cardiac-specific overexpression of glucose-regulated protein 78 by adeno-associated virus 9 or the administration of the chemical ER chaperone 4-phenylbutyrate attenuated caspase-12 cleavage, and alleviated cardiac apoptosis and dysfunction induced by doxorubicin. Doxorubicin activated the ER stress-initiated apoptotic response without inducing the ER chaperone glucose-regulated protein 78, further augmenting ER stress in mouse hearts. Cardiac-specific overexpression of glucose-regulated protein 78 or the administration of the chemical ER chaperone alleviated the cardiac dysfunction induced by doxorubicin and may facilitate the safe use of doxorubicin for cancer treatment. © 2016 American Heart Association, Inc.

  10. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    PubMed Central

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  11. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de; Burak, Miroslaw; Kalinski, Thomas

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluablemore » liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.« less

  12. Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2012-01-01

    Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336

  13. Optical imaging of radiation-induced metabolic changes in radiation-sensitive and resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan

    2017-06-01

    Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.

  14. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi

    2013-03-01

    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  15. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Assessment of in vitro cardiotoxicity of extract fractions and diterpene alkaloids from Aconitum leucostomum Worosch: A short communication.

    PubMed

    Nie, Jihong; Wang, Fang; Ji, Tengfei; Zhao, Jun; Zhao, Feicui

    2017-04-15

    Aconitum leucostomum Worosch is a traditional Chinese medicine (TCM) and has a broad spectrum of health effects, but with a narrow therapeutic window. It is important to identify both the therapeutic ingredients and the toxic components to better utilize this TCM. The present study investigated the cardiotoxicity of the selected compounds in Aconitum leucostomum Worosch. The effects of extract of A. leucostomum Worosch and the isolated compounds on cardiocardiomyocytes were evaluated in vitro. Five known compounds in this TCM, including three C 18 -diterpene alkaloids, lappaconitine (2), N-deacetyllappaconitine (3), and ranaconitine (5), and two C 19 -diterpene alkaloids, delvestidine (1) and anthranoyllycoctonine (4), were isolated from A. leucostomum Worosch. The cardiotoxicity of these components and extract fractions, as measured by lactate dehydrogenase release and apoptosis, was ranked as follows, in descending order: delvestidine>anthranoyllycoctonine>pH 4 fraction>pH 8 fraction>aconitine>N-deacetyllappaconitine>ranaconitine>lappaconitine. The cytotoxicity of these compounds was shown to be dose-dependent, with delvestidine (1) and anthranoyllycoctonine (4) being the two most toxic compounds to cardiomyocytes in our assays. These results provide a basis for future rational use of this TCM, reducing side effects while retaining therapeutic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reducing radiation-induced gastrointestinal toxicity — the role of the PHD/HIF axis

    PubMed Central

    Olcina, Monica M.; Giaccia, Amato J.

    2016-01-01

    Radiotherapy is an effective treatment strategy for cancer, but a significant proportion of patients experience radiation-induced toxicity due to damage to normal tissue in the irradiation field. The use of chemical or biological approaches aimed at reducing or preventing normal tissue toxicity induced by radiotherapy is a long-held goal. Hypoxia-inducible factors (HIFs) regulate the production of factors that may protect several cellular compartments affected by radiation-induced toxicity. Pharmacological inhibitors of prolyl hydroxylase domain–containing enzymes (PHDs), which result in stabilization of HIFs, have recently been proposed as a new class of radioprotectors. In this review, radiation-induced toxicity in the gastrointestinal (GI) tract and the main cellular compartments studied in this context will be discussed. The effects of PHD inhibition on GI radioprotection will be described in detail. PMID:27548524

  18. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  19. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  20. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  1. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  2. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  3. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy.

    PubMed

    Niu, Yunyun; Wang, Hong; Wiktor-Brown, Dominika; Rugo, Rebecca; Shen, Hongmei; Huq, M Saiful; Engelward, Bevin; Epperly, Michael; Greenberger, Joel S

    2010-04-01

    Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo.

  4. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

    PubMed Central

    Ghosh, Sanchita P.; Kulkarni, Shilpa; Perkins, Michael W.; Hieber, Kevin; Pessu, Roli L.; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M.; Kumar, K. Sree

    2012-01-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD®, also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury. PMID:22843617

  5. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    PubMed Central

    Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981

  6. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  7. A prospective cohort study on radiation-induced hypothyroidism: development of an NTCP model.

    PubMed

    Boomsma, Marjolein J; Bijl, Hendrik P; Christianen, Miranda E M C; Beetz, Ivo; Chouvalova, Olga; Steenbakkers, Roel J H M; van der Laan, Bernard F A M; Wolffenbuttel, Bruce H R; Oosting, Sjoukje F; Schilstra, Cornelis; Langendijk, Johannes A

    2012-11-01

    To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroid gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm(3)). Model performance was good with an area under the curve (AUC) of 0.85. This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  9. A Prospective Cohort Study on Radiation-induced Hypothyroidism: Development of an NTCP Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boomsma, Marjolein J.; Bijl, Hendrik P.; Christianen, Miranda E.M.C.

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. Methods and Materials: The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Results: Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroidmore » gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm{sup 3}). Model performance was good with an area under the curve (AUC) of 0.85. Conclusions: This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume.« less

  10. Cerenkov radiation-induced phototherapy for depth-independent cancer treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Achilefu, Samuel; Kotagiri, Nalinikanth

    2017-02-01

    Light emitted as the result of high-energy particle transport through biological tissues (Cerenkov radiation) can be exploited for noninvasive diagnostic imaging using high sensitivity scientific cameras. We have investigated the energy transfer potential of Cerenkov radiation, discovering a new phototherapeutic technique for treatment of localized and disseminated cancers. This technique, Cerenkov radiation-induced phototherapy (CRIT), like photodynamic therapy, requires the presence of both light and photosensitive agent together to induce cytotoxicity and effective cancer treatment. But unlike conventional phototherapy strategies in which tissue ablation or activation of photoactive molecules is limited to superficial structures, radiation-induced phototherapy enables phototherapy delivery to the tumor sites throughout the body. Titanium oxide nanoparticles, which produce cytotoxic reactive oxygen species upon irradiation with UV light, were targeted to tumor tissue by surface decoration with transferrin. Subsequent administration of tumor-avid radiotracer, 18-fluorodeoxyglucose (18FDG) provided localized UV light source via Cerenkov radiation. Treatment of tumor-bearing mice with the combination of Titanium nanoparticles and 18FDG resulted in effective reduction in tumor growth, while individual agents were not therapeutic. This new strategy in cancer therapy extends the reach of phototherapy beyond what was previously possible, with potential for treatment of cancer metastases and rescue from treatment resistance.

  11. Complete prevention of radiation-induced dermatitis using topical adrenergic vasoconstrictors.

    PubMed

    Fahl, William E

    2016-12-01

    Radiation dermatitis is a commonly occurring, painful, side effect of cancer radiotherapy that causes some patients to withdraw from the radiotherapy course. Our goal was to test and optimize topical application of an adrenergic vasoconstrictor to rat skin in a preclinical test to prevent radiation-induced dermatitis. A radiation dermatitis assay was developed in which 17.2 Gy to a 1.5 × 3.0 cm rectangle on the clipped dorsal back of rats yielded Grade 3 radiation dermatitis over the irradiated area 13 days later. Single, topical applications of each of three adrenergic vasoconstrictors, epinephrine, norepinephrine, or phenylephrine, in various vehicle formulations, doses, and application schedules, were tested to determine their efficacy in preventing radiation dermatitis. Each of the three adrenergic agonists conferred 100 % prevention of radiation dermatitis in linear, dose-dependent manners and their EC 50 potencies in preventing radiation dermatitis correlated well with their individual K d association constants for binding to mammalian α-adrenergic receptors. Topical vasoconstrictor application as little as 3-12 min before irradiation gave 80-100 % prevention, respectively, of radiation dermatitis. There was a strong correlation between the extent (0-100 %) of skin blanch present in skin immediately before irradiation and prevention of radiation dermatitis scored 13 days after irradiation. The data presented here demonstrate that topical application of adrenergic vasoconstrictors to rat skin before a large, 17.2 Gy, radiation insult confers 100 % protection against radiation dermatitis and support ongoing clinical trials and commercial development of a vasoconstrictor-based product to prevent radiotherapy-induced dermatitis.

  12. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice

    PubMed Central

    Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo

    2014-01-01

    Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162

  13. Strain Analysis in the Assessment of a Mouse Model of Cardiotoxicity due to Chemotherapy: Sample for Preclinical Research.

    PubMed

    Rea, Domenica; Coppola, Carmela; Barbieri, Antonio; Monti, Maria Gaia; Misso, Gabriella; Palma, Giuseppe; Bimonte, Sabrina; Zarone, Mayra Rachele; Luciano, Antonio; Liccardo, Davide; Maiolino, Piera; Cittadini, Antonio; Ciliberto, Gennaro; Arra, Claudio; Maurea, Nicola

    2016-01-01

    In recent years, the development of more effective anticancer drugs has provided great benefits in patients' quality of life by improving both prognosis and disease-free survival. Nevertheless, the frequency and severity of side-effects, with particular reference to cardiac toxicity, have gained particular attention. The purpose of this study was to create a precise and sensitive preclinical model, able to identify early contractile dysfunction in mice treated with chemotherapy, through use of speckle-tracking echocardiography. We generated a mouse model of cardiotoxicity induced by doxorubicin. C57BL 6 mice were divided into two groups, treated for 7 days by intraperitoneal injections of placebo (vehicle) or doxorubicin (2.17 mg/kg), in order to characterize the cardiac phenotype in vivo. We demonstrated that doxorubicin caused ealy remodeling of the left ventricle: after two days of therapy, the radial, circumferential and strain rates were reduced respectively by 35%, 34%, and 39% (p-value ≤0.001). Moreover, histological analysis revealed that doxorubicin treatment increased fibrosis, cardiomyocyte diameter and apoptosis. In a murine model of doxorubicin-induced cardiac injury, we detected left ventricular dysfunction followed by alterations in conventional echocardiographic indices. Our study suggests that a change in strain could be an effective early marker of myocardial dysfunction for new anticancer treatments and, in preclinical studies, it might also be a valuable indicator for the assessment of activity of cardioprotective agents. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes

    PubMed Central

    Chang, Jae Won; Park, Keun Hyung; HWANG, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways. PMID:24078877

  15. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes.

    PubMed

    Chang, Jae Won; Park, Keun Hyung; Hwang, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-03-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways.

  16. A non-human primate model of radiation-induced cachexia.

    PubMed

    Cui, Wanchang; Bennett, Alexander W; Zhang, Pei; Barrow, Kory R; Kearney, Sean R; Hankey, Kim G; Taylor-Howell, Cheryl; Gibbs, Allison M; Smith, Cassandra P; MacVittie, Thomas J

    2016-03-31

    Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20-25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.

  17. Proteomic overview and perspectives of the radiation-induced bystander effects.

    PubMed

    Chevalier, François; Hamdi, Dounia Houria; Saintigny, Yannick; Lefaix, Jean-Louis

    2015-01-01

    Radiation proteomics is a recent, promising and powerful tool to identify protein markers of direct and indirect consequences of ionizing radiation. The main challenges of modern radiobiology is to predict radio-sensitivity of patients and radio-resistance of tumor to be treated, but considerable evidences are now available regarding the significance of a bystander effect at low and high doses. This "radiation-induced bystander effect" (RIBE) is defined as the biological responses of non-irradiated cells that received signals from neighboring irradiated cells. Such intercellular signal is no more considered as a minor side-effect of radiotherapy in surrounding healthy tissue and its occurrence should be considered in adapting radiotherapy protocols, to limit the risk for radiation-induced secondary cancer. There is no consensus on a precise designation of RIBE, which involves a number of distinct signal-mediated effects within or outside the irradiated volume. Indeed, several cellular mechanisms were proposed, including the secretion of soluble factors by irradiated cells in the extracellular matrix, or the direct communication between irradiated and neighboring non-irradiated cells via gap junctions. This phenomenon is observed in a context of major local inflammation, linked with a global imbalance of oxidative metabolism which makes its analysis challenging using in vitro model systems. In this review article, the authors first define the radiation-induced bystander effect as a function of radiation type, in vitro analysis protocols, and cell type. In a second time, the authors present the current status of protein biomarkers and proteomic-based findings and discuss the capacities, limits and perspectives of such global approaches to explore these complex intercellular mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    DTIC Science & Technology

    2005-07-01

    repair of radiation-induced damage. Furthermore, cells possessing a mutated copy of this gene are more radiosensitive than cells from individuals with...AD Award Number: DAMD17-02-1-0503 TITLE: ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast...2005 Annual 1 Jul 2004 - 30 Jun 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER ATM Mutations and the Development of Severe Radiation-Induced Morbidity

  19. Promotion of initiated cells by radiation-induced cell inactivation.

    PubMed

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  20. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  1. Creatine phosphate disodium salt protects against Dox-induced cardiotoxicity by increasing calumenin.

    PubMed

    Wang, Yu; Sun, Ying; Guo, Xin; Fu, Yao; Long, Jie; Wei, Cheng-Xi; Zhao, Ming

    2018-06-01

    Inhibiting endoplasmic reticulum stress (ERS)-induced apoptosis may be a new therapeutic target in cardiovascular diseases. Creatine phosphate disodium salt (CP) has been reported to have cardiovascular protective effect, but its effects on ERS are unknown. The aim of this study was to identify the mechanism by which CP exerts its cardioprotection in doxorubicin (Dox)-induced cardiomyocytes injury. In our study, neonatal rats cardiomyocytes (NRC) was randomly divided into control group, model group, and treatment group. The cell viability and apoptosis were detected. grp78, grp94, and calumenin of the each group were monitored. To investigate the role of calumenin, Dox-induced ERS was compared in control and down-regulated calumenin cardiomyocytes. Our results showed that CP decreased Dox-induced apoptosis and relieved ERS. We found calumenin increased in Dox-induced apoptosis with CP. ERS effector C/EBP homologous protein was down-regulated by CP and it was influenced by calumenin. CP could protect NRC by inhibiting ERS, this mechanisms may be associated with its increasing of calumenin.

  2. C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury.

    PubMed

    Pawar, Snehalata A; Shao, Lijian; Chang, Jianhui; Wang, Wenze; Pathak, Rupak; Zhu, Xiaoyan; Wang, Junru; Hendrickson, Howard; Boerma, Marjan; Sterneck, Esta; Zhou, Daohong; Hauer-Jensen, Martin

    2014-01-01

    Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd-/- mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd-/- mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd-/- mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd-/- intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd-/- compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.

  3. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied

  4. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less

  5. Radiation-induced skin carcinomas of the head and neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron, E.; Modan, B.; Preston, D.

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenicmore » skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.« less

  6. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudinsmore » were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.« less

  7. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (p<0.01). These phenomena showed that cell biological changes may be the reasons of the stimulation and inhibition effects with the boundary of 2Gy. Since mitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along

  8. Three case reports of radiation-induced glioblastoma after complete remission of acute lymphoblastic leukemia.

    PubMed

    Kajitani, Takumi; Kanamori, Masayuki; Saito, Ryuta; Watanabe, Yuko; Suzuki, Hiroyoshi; Watanabe, Mika; Kure, Shigeo; Tominaga, Teiji

    2018-04-01

    Radiation therapy is sometimes performed to control intracranial acute lymphoblastic leukemia (ALL), but may lead to radiation-induced malignant glioma. The clinical, radiological, histological, and molecular findings are described of three cases of radiation-induced glioblastoma after the treatment for ALL. They received radiation therapy at age 6-8 years. The latency from radiation therapy to the onset of radiation-induced glioblastoma was 5-10 years. Magnetic resonance imaging demonstrated diffuse lesions with multiple small enhanced lesions in all cases. Histological examination showed that the tumors consisted of mainly small round astrocytic atypical cells in one case, and astrocytic atypical cells with elongated cytoplasm and nuclear pleomorphism with small cell component in two cases. Microvascular proliferation was present in all cases. Immunohistochemical analysis for B-Raf V600E, and mutational analysis for the isocitrate dehydrogenase (IDH) 1, IDH2, and H3F3A gene revealed the wild-type alleles in all three cases. The integrated diagnoses were IDH wild-type glioblastoma, and local irradiation and concomitant temozolomide were performed. After the initial treatment, significant shrinkage of the diffuse lesion and enhanced lesion was found in all cases. Radiation-induced glioblastoma occurring after the treatment for ALL had unique clinical, radiological, histological, and molecular characteristics in our three cases.

  9. B-DIM impairs radiation-induced survival pathways independently of androgen receptor expression and augments radiation efficacy in prostate cancer.

    PubMed

    Singh-Gupta, Vinita; Banerjee, Sanjeev; Yunker, Christopher K; Rakowski, Joseph T; Joiner, Michael C; Konski, Andre A; Sarkar, Fazlul H; Hillman, Gilda G

    2012-05-01

    Increased consumption of cruciferous vegetables is associated with decreased risk in prostate cancer (PCa). The active compound in cruciferous vegetables appears to be the self dimerized product [3,3'-diindolylmethane (DIM)] of indole-3-carbinol (I3C). Nutritional grade B-DIM (absorption-enhanced) has proven safe in a Phase I trial in PCa. We investigated the anti-cancer activity of B-DIM as a new biological approach to improve the effects of radiotherapy for hormone refractory prostate cancer cells, which were either positive or negative for androgen receptor (AR) expression. B-DIM inhibited cell growth in a dose-dependent manner in both PC-3 (AR-) and C4-2B (AR+) cell lines. B-DIM was effective at increasing radiation-induced cell killing in both cell lines, independently of AR expression. B-DIM inhibited NF-κB and HIF-1α DNA activities and blocked radiation-induced activation of these transcription factors in both PC-3 and C4-2B cells. In C4-2B (AR+) cells, AR expression and nuclear localization were significantly increased by radiation. However, B-DIM abrogated the radiation-induced AR increased expression and trafficking to the nucleus, which was consistent with decreased PSA secretion. In vivo, treatment of PC-3 prostate tumors in nude mice with B-DIM and radiation resulted in significant primary tumor growth inhibition and control of metastasis to para-aortic lymph nodes. These studies demonstrate that B-DIM augments radiation-induced cell killing and tumor growth inhibition. B-DIM impairs critical survival signaling pathways activated by radiation, leading to enhanced cell killing. These novel observations suggest that B-DIM could be used as a safe compound to enhance the efficacy of radiotherapy for castrate-resistant PCa. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less

  11. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  12. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Tran, Katherine K; Chmielewski, Nicole N; Craver, Brianna M; Martirosian, Vahan; Morganti, Josh M; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M; Nelson, Gregory A; Allen, Antiño R; Limoli, Charles L

    2015-01-01

    Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.

  13. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy.

    PubMed

    Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu

    2014-03-01

    The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.

  14. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  15. [Biomarkers of radiation-induced DNA repair processes].

    PubMed

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  16. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  17. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  18. Kinome and Transcriptome Profiling Reveal Broad and Distinct Activities of Erlotinib, Sunitinib, and Sorafenib in the Mouse Heart and Suggest Cardiotoxicity From Combined Signal Transducer and Activator of Transcription and Epidermal Growth Factor Receptor Inhibition.

    PubMed

    Stuhlmiller, Timothy J; Zawistowski, Jon S; Chen, Xin; Sciaky, Noah; Angus, Steven P; Hicks, Sean T; Parry, Traci L; Huang, Wei; Beak, Ju Youn; Willis, Monte S; Johnson, Gary L; Jensen, Brian C

    2017-10-19

    Most novel cancer therapeutics target kinases that are essential to tumor survival. Some of these kinase inhibitors are associated with cardiotoxicity, whereas others appear to be cardiosafe. The basis for this distinction is unclear, as are the molecular effects of kinase inhibitors in the heart. We administered clinically relevant doses of sorafenib, sunitinib (cardiotoxic multitargeted kinase inhibitors), or erlotinib (a cardiosafe epidermal growth factor receptor inhibitor) to mice daily for 2 weeks. We then compared the effects of these 3 kinase inhibitors on the cardiac transcriptome using RNAseq and the cardiac kinome using multiplexed inhibitor beads coupled with mass spectrometry. We found unexpectedly broad molecular effects of all 3 kinase inhibitors, suggesting that target kinase selectivity does not define either the molecular response or the potential for cardiotoxicity. Using in vivo drug administration and primary cardiomyocyte culture, we also show that the cardiosafety of erlotinib treatment may result from upregulation of the cardioprotective signal transducer and activator of transcription 3 pathway, as co-treatment with erlotinib and a signal transducer and activator of transcription inhibitor decreases cardiac contractile function and cardiomyocyte fatty acid oxidation. Collectively our findings indicate that preclinical kinome and transcriptome profiling may predict the cardiotoxicity of novel kinase inhibitors, and suggest caution for the proposed therapeutic strategy of combined signal transducer and activator of transcription/epidermal growth factor receptor inhibition for cancer treatment. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Hyperbaric oxygen therapy for the treatment of radiation-induced xerostomia: a systematic review.

    PubMed

    Fox, Nyssa F; Xiao, Christopher; Sood, Amit J; Lovelace, Tiffany L; Nguyen, Shaun A; Sharma, Anand; Day, Terry A

    2015-07-01

    Radiation-induced xerostomia is one of the most common morbidities of radiation therapy in patients with head and neck cancer. However, in spite of its high rate of occurrence, there are few effective therapies available for its management. The aim of this study was to assess the efficacy of hyperbaric oxygen on the treatment of radiation-induced xerostomia and xerostomia-related quality of life. PubMed, Google Scholar, and the Cochrane Library were searched for retrospective or prospective trials assessing subjective xerostomia, objective xerostomia, or xerostomia-related quality of life. To be included, patients had to have received radiation therapy for head and neck cancer, but not hyperbaric oxygen therapy (HBOT). The systematic review initially identified 293 potential articles. Seven studies, comprising 246 patients, qualified for inclusion. Of the included studies, 6 of 7 were prospective in nature, and 1 was a retrospective study; and 2 of the 7 were controlled studies. HBOT may have utility for treating radiation-induced xerostomia refractory to other therapies. Additionally, HBOT may induce long-term improvement in subjective assessments of xerostomia, whereas other therapies currently available only provide short-term relief. The strength of these conclusions is limited by the lack of randomized controlled clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation.

    PubMed

    Denisova, N A; Shukitt-Hale, B; Rabin, B M; Joseph, J A

    2002-12-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  1. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  2. Examining the protective role of ErbB2 modulation in human-induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Eldridge, Sandy; Guo, Liang; Mussio, Jodie; Furniss, Mike; Hamre, John; Davis, Myrtle

    2014-10-01

    Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are being used as an in vitro model system in cardiac biology and in drug discovery (e.g., cardiotoxicity testing). Qualification of these cells for use in mechanistic investigations will require detailed evaluations of cardiomyocyte signaling pathways and cellular responses. ErbB signaling and the ligand neuregulin play critical roles in survival and functional integrity of cardiac myocytes. As such, we sought to characterize the expression and activity of the ErbB family of receptors. Antibody microarray analysis performed on cell lysates derived from maturing hiPSC-CMs detected expression of ∼570 signaling proteins. EGFR/ErbB1, HER2/ErbB2, and ErbB4, but not ErbB3 receptors, of the epidermal growth factor receptor family were confirmed by Western blot. Activation of ErbB signaling by neuregulin-1β (NRG, a natural ligand for ErbB4) and its modulation by trastuzumab (a monoclonal anti-ErbB2 antibody) and lapatinib (a small molecule ErbB2 tyrosine kinase inhibitor) were evaluated through assessing phosphorylation of AKT and Erk1/2, two major downstream kinases of ErbB signaling, using nanofluidic proteomic immunoassay. Downregulation of ErbB2 expression by siRNA silencing attenuated NRG-induced AKT and Erk1/2 phosphorylation. Activation of ErbB signaling with NRG, or inhibition with trastuzumab, alleviated or aggravated doxorubicin-induced cardiomyocyte damage, respectively, as assessed by a real-time cellular impedance analysis and ATP measurement. Collectively, these results support the expanded use of hiPSC-CMs to examine mechanisms of cardiotoxicity and support the value of using these cells in early assessments of cardiotoxicity or efficacy. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Radiation induced fracture of the scapula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggs, J.H. III; Schultz, G.D.; Hanes, S.A.

    A case of radiation induced osteonecrosis resulting in a fracture of the scapula in a 76-yr-old female patient with a history of breast carcinoma is presented. Diagnostic imaging, laboratory recommendations and clinical findings are discussed along with an algorithm for the safe management of patients with a history of cancer and musculoskeletal complaints. This case demonstrates the necessity of a thorough investigation of musculoskeletal complaints in patients with previous bone-seeking carcinomas.

  4. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the

  5. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  6. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  7. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  8. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis.

    PubMed

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-08-21

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis.

  9. Sensitive Detection of Radiation-Induced Medulloblastomas after Acute or Protracted Gamma-Ray Exposures in Ptch1 Heterozygous Mice Using a Radiation-Specific Molecular Signature.

    PubMed

    Tsuruoka, Chizuru; Blyth, Benjamin J; Morioka, Takamitsu; Kaminishi, Mutsumi; Shinagawa, Mayumi; Shimada, Yoshiya; Kakinuma, Shizuko

    2016-10-01

    Recently reported studies have led to a heightened awareness of the risks of cancer induced by diagnostic radiological imaging, and in particular, the risk of brain cancer after childhood CT scans. One feature of Ptch1 +/- mice is their sensitivity to radiation-induced medulloblastomas (an embryonic cerebellar tumor) during a narrow window of time centered on the days around birth. Little is known about the dynamics of how dose protraction interacts with such narrow windows of sensitivity in individual tissues. Using medulloblastomas from irradiated Ptch1 +/- mice with a hybrid C3H × C57BL/6 F1 genetic background, we previously showed that the alleles retained on chromosome 13 (which harbors the Ptch1 gene) reveal two major mechanisms of loss of the wild-type allele. The loss of parental alleles from the telomere extending up to or past the Ptch1 locus by recombination (spontaneous type) accounts for almost all medulloblastomas in nonirradiated mice, while tumors in irradiated mice often exhibited interstitial deletions, which start downstream of the wild-type Ptch1 and extend up varying lengths towards the centromere (radiation type). In this study, Ptch1 +/- mice were exposed to an acute dose of either 100 or 500 mGy gamma rays in utero or postnatally, or the same radiation doses protracted over a four-day period, and were monitored for medulloblastoma development. The results showed dose- and age-dependent radiation-induced type tumors. Furthermore, the size of the radiation-induced deletion differed with the dose rate. The results of this work suggest that tumor latency may be related to the size of the deletion. In this study, 500 mGy exposure produced radiation-induced type tumors at all ages and dose rates, while 100 mGy exposure did not significantly produce radiation-induced type tumors. The radiation signature allows for unique mechanistic insight into the action of radiation to induce DNA lesions with known causal relationship to a specific tumor type

  10. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing

    PubMed Central

    Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin

    2013-01-01

    Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355

  11. Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu

    2013-01-01

    We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.

  12. Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Tran, Katherine K.; Chmielewski, Nicole N.; Craver, Brianna M.; Martirosian, Vahan; Morganti, Josh M.; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M.; Nelson, Gregory A.; Allen, Antiño R.

    2015-01-01

    Abstract Aims: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Results: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Innovation: Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Conclusion: Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain. Antioxid. Redox Signal. 22, 78–91. PMID:24949841

  13. Mechanism of As2O3-Induced Action Potential Prolongation and Using hiPS-CMs to Evaluate the Rescue Efficacy of Drugs With Different Rescue Mechanism.

    PubMed

    Yan, Meng; Feng, Lifang; Shi, Yanhui; Wang, Junnan; Liu, Yan; Li, Fengmei; Li, Baoxin

    2017-08-01

    Arsenic trioxide (As2O3) has been verified as a breakthrough in the management of acute promyelocytic leukemia in recent decades. However, cardiotoxicity, especially long QT syndrome (LQTS) has become the most important issue during As2O3 treatment. The characterized mechanisms behind this adverse effect are inhibition of cardiac hERG channel trafficking and increase of cardiac calcium currents. In our study, we found a new pathway underlying As2O3-induced cardiotoxicity that As2O3 accelerates lysosomal degradation of hERG on plasma membrane after using brefeldin A (BFA) to block protein trafficking. Then we explored pharmacological rescue strategies on As2O3-induced LQTS, and found that 4 therapeutic agents exert rescue efficacy via 3 different pathways: fexofenadine and astemizole facilitate hERG trafficking via promotion of channel-chaperone formation after As2O3 incubation; ranolazine slows hERG degradation in the presence of As2O3; and resveratrol shows significant attenuation on calcium current increase triggered by As2O3. Moreover, we used human-induced pluripotent stem cell derived cardiomyocytes (hiPS-CMs) to evaluate the rescue effects of the above agents on As2O3-induced prolongation of action potential duration (APD) and demonstrated that fexofenadine and resveratrol significantly ameliorate the prolonged APD. These observations suggested that pharmacological chaperone like fexofenadine and resveratrol might have the potential to protect against the cardiotoxicity of As2O3. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Epigenetic determinants of space radiation-induced cognitive dysfunction

    PubMed Central

    Acharya, Munjal M.; Baddour, Al Anoud D.; Kawashita, Takumi; Allen, Barrett D.; Syage, Amber R.; Nguyen, Thuan H.; Yoon, Nicole; Giedzinski, Erich; Yu, Liping; Parihar, Vipan K.; Baulch, Janet E.

    2017-01-01

    Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. PMID:28220892

  15. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong

    2006-04-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treatingmore » the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.« less

  16. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examplesmore » to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.« less

  17. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    PubMed Central

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage. PMID:23969972

  18. [Chlorophyll mutations induced by gamma radiation in Phaseolus vulgaris L].

    PubMed

    Meoño, M E

    1975-07-01

    In a study of chlorophyll mutants of Phaseolus vulgaris L. through Co60 gamma radiation, five types of mutants, classified as albino, cream, yellow, yellow-green and light green were obtained; all were lethal; their segregation was always proportionally lower than the Mendelian. Gamma radiation-induced mutations in black beans do not depart significantly from those obtained elsewhere in barley and wheat.

  19. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria.

    PubMed

    Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I

    2011-06-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.

  20. Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis.

    PubMed

    Shen, Zongshan; Wang, Jiancheng; Huang, Qiting; Shi, Yue; Wei, Zhewei; Zhang, Xiaoran; Qiu, Yuan; Zhang, Min; Wang, Yi; Qin, Wei; Huang, Shuheng; Huang, Yinong; Liu, Xin; Xia, Kai; Zhang, Xinchun; Lin, Zhengmei

    2018-02-14

    Radiation-induced oral mucositis affects patient quality of life and reduces tolerance to cancer therapy. Unfortunately, traditional treatments are insufficient for the treatment of mucositis and might elicit severe side effects. Due to their immunomodulatory and anti-inflammatory properties, the transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for mucositis. However, systemically infused MSCs rarely reach inflamed sites, impacting their clinical efficacy. Previous studies have demonstrated that chemokine axes play an important role in MSC targeting. By systematically evaluating the expression patterns of chemokines in radiation/chemical-induced oral mucositis, we found that CXCL2 was highly expressed, whereas cultured MSCs negligibly express the CXCL2 receptor CXCR2. Thus, we explored the potential therapeutic benefits of the transplantation of CXCR 2 -overexpressing MSCs (MSCs CXCR2 ) for mucositis treatment. Indeed, MSCs CXCR2 exhibited enhanced targeting ability to the inflamed mucosa in radiation/chemical-induced oral mucositis mouse models. Furthermore, we found that MSC CXCR2 transplantation accelerated ulcer healing by suppressing the production of pro-inflammatory chemokines and radiogenic reactive oxygen species (ROS). Altogether, these findings indicate that CXCR2 overexpression in MSCs accelerates ulcer healing, providing new insights into cell-based therapy for radiation/chemical-induced oral mucositis.

  1. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    PubMed

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  2. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis.

    PubMed

    Nawroth, Isabel; Alsner, Jan; Behlke, Mark A; Besenbacher, Flemming; Overgaard, Jens; Howard, Kenneth A; Kjems, Jørgen

    2010-10-01

    One of the most common and dose-limiting long-term adverse effects of radiation therapy is radiation-induced fibrosis (RIF), which is characterized by restricted tissue flexibility, reduced compliance or strictures, pain and in severe cases, ulceration and necrosis. Several strategies have been proposed to ameliorate RIF but presently no effective one is available. Recent studies have reported that tumor necrosis factor-α (TNFα) plays a role in fibrogenesis. Male CDF1 mice were radiated with a single dose of 45 Gy. Chitosan/DsiRNA nanoparticles targeting TNFα were intraperitoneal injected and late radiation-induced fibrosis (RIF) was assessed using a modification of the leg contracture model. Additionally, the effect of these nanoparticles on tumor growth and tumor control probability in the absence of radiation was examined in a C3H mammary carcinoma model. We show in this work, that targeting TNFα in macrophages by intraperitoneal administration of chitosan/DsiRNA nanoparticles completely prevented radiation-induced fibrosis in CDF1 mice without revealing any cytotoxic side-effects after a long-term administration. Furthermore, such TNFα targeting was selective without any significant influence on tumor growth or irradiation-related tumor control probability. This nanoparticle-based RNAi approach represents a novel approach to prevent RIF with potential application to improve clinical radiation therapeutic strategies. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy.

    PubMed

    Eftekhari, Mohammad; Anbiaei, Robabeh; Zamani, Hanie; Fallahi, Babak; Beiki, Davood; Ameri, Ahmad; Emami-Ardekani, Alireza; Fard-Esfahani, Armaghan; Gholamrezanezhad, Ali; Seid Ratki, Kazem Razavi; Roknabadi, Alireza Momen

    2015-01-01

    Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right-sided cancer. To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring) were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT) to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions) over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol) was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed) and 36 patients with right-sided cancer (controls)] were enrolled. Dose-volume histogram (DVH) [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46). In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03) and anterolateral (17.1% versus 2.8%, P=0.049) walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS) of>3 was observed in twelve cases (34.3%), while in five of the controls (13.9%),(Odds ratio=1.3). There was no significant difference between the groups regarding left ventricular ejection fraction. The risk of radiation induced myocardial perfusion abnormality in patients treated with CRT on the

  4. Extracorporeal shock wave markedly alleviates radiation-induced chronic cystitis in rat

    PubMed Central

    Chen, Yen-Ta; Chen, Kuan-Hung; Sung, Pei-Hsun; Yang, Chih-Chao; Cheng, Ben-Chung; Chen, Chih-Hung; Chang, Chia-Lo; Sheu, Jiunn-Jye; Lee, Fan-Yen; Shao, Pei-Lin; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2018-01-01

    This study tested the hypothesis that extracorporeal shock wave (ECSW) treatment can effectively inhibit radiation-induced chronic cystitis (CC). Adult male Sprague-Dawley (SD) rats (n = 24) were randomly divided into group 1 (normal control), group 2 (CC induced by radiation with 300 cGy twice with a four-hour interval to the urinary bladder), group 3 [CC with ECSW treatment (0.2 mJ/mm2/120 impulses/at days 1, 7, and 14 after radiation)]. Bladder specimens were harvested by day 28 after radiation. By day 28 after radiation, the degree of detrusor contraction impairment was significantly higher in group 2 than that in groups 1 and 3, and significantly higher in group 3 than that in group 1 (P<0.0001). The urine albumin concentration expressed an opposite pattern compared to that of detrusor function among the three groups (P<0.0001). The bladder protein expressions of inflammatory (TLR-2/TLR-4/IL-6/IL-12/MMP-9/TNF-α/NF-κB/RANTES/iNOS) and oxidative-stress (NOX-1/NOX-2/oxidized protein) biomarkers exhibited a pattern identical to that of urine albumin in all groups (all P<0.0001). The cellular expressions of inflammatory (CD14+/CD68+/CD74+/COX-2/MIF+/substance P+) and cytokeratin (CK13+/HMW CK+/CK+17/CK+18/CK+19) biomarkers, and collagen-deposition/fibrotic areas as well as epithelial-damaged score displayed an identical pattern compared to that of urine albumin among the three groups (all P<0.0001). In conclusion, ECSW treatment effectively protected urinary bladder from radiation-induced CC. PMID:29636892

  5. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  6. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    PubMed

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  8. Medium-induced gluon radiation and colour decoherence beyond the soft approximation

    NASA Astrophysics Data System (ADS)

    Apolinário, Liliana; Armesto, Néstor; Milhano, José Guilherme; Salgado, Carlos A.

    2015-02-01

    We derive the in-medium gluon radiation spectrum off a quark within the path integral formalism at finite energies, including all next-to-eikonal corrections in the propagators of quarks and gluons. Results are computed for finite formation times, including interference with vacuum amplitudes. By rewriting the medium averages in a convenient manner we present the spectrum in terms of dipole cross sections and a colour decoherence parameter with the same physical origin as that found in previous studies of the antenna radiation. This factorisation allows us to present a simple physical picture of the medium-induced radiation for any value of the formation time, that is of interest for a probabilistic implementation of the modified parton shower. Known results are recovered for the particular cases of soft radiation and eikonal quark and for the case of a very long medium, with length much larger than the average formation times for medium-induced radiation. Technical details of the computation of the relevant n-point functions in colour space and of the required path integrals in transverse space are provided. The final result completes the calculation of all finite energy corrections for the radiation off a quark in a QCD medium that exist in the small angle approximation and for a recoilless medium.

  9. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  10. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  11. Radiation-induced defect centers in glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, T.E.; Friebele, E.J.; Griscom, D.L.

    1989-01-15

    Electron spin resonance (ESR) was used to characterize the radiation-induced defect centers in low-thermal-expansion glass ceramics, including two types of Zerodur and Astrositall. The observed ESR spectra can be associated with different types of defect centers: a Zn/sup +/ center, several types of oxygen hole centers (OHCs), an aluminum-oxygen hole center (Al-OHC), an Fe/sup 3 +/ center, Ti/sup 3 +/ and Zr/sup 3 +/ centers, and three types of As centers. An Sb/sup 4 +/ center, which is not observed in Zerodur, is tentatively identified in Astrositall. From the effect of crystallization on the observed defect concentrations in Zerodur andmore » computer simulation of the spectral lines of some of the centers, we infer that among the nine defect centers observed in the Zerodurs, the As-associated centers are located in the glassy phase and/or at the interface between the glassy and crystalline phases, Zn/sup +/ and Al-OHC are in the crystalline phase, and the rest (including most of the OHCs) are in the glassy phase. Radiation-induced compaction in these materials appears to be related to the generation of OHCs in the glass phase.« less

  12. GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.

    PubMed

    Li, Peng; Wuthrick, Evan; Rappaport, Jeff A; Kraft, Crystal; Lin, Jieru E; Marszalowicz, Glen; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Waldman, Scott A

    2017-09-15

    High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Protective effect of α-lipoic acid against radiation-induced fibrosis in mice

    PubMed Central

    Ryu, Seung-Hee; Park, Eun-Young; Kwak, Sungmin; Heo, Seung-Ho; Ryu, Je-Won; Park, Jin-hong

    2016-01-01

    Radiation-induced fibrosis (RIF) is one of the most common late complications of radiation therapy. We found that α-lipoic acid (α-LA) effectively prevents RIF. In RIF a mouse model, leg contracture assay was used to test the in vivo efficacy of α-LA. α-LA suppressed the expression of pro-fibrotic genes after irradiation, both in vivo and in vitro, and inhibited the up-regulation of TGF-β1-mediated p300/CBP activity. Thus, α-LA prevents radiation-induced fibrosis (RIF) by inhibiting the transcriptional activity of NF-κB through inhibition of histone acetyltransferase activity. α-LA is a new therapeutic methods that can be used in the prevention-treatment of RIF. PMID:26799284

  14. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    PubMed

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  15. Radiation-induced transmethylation and transsulfuration in the system DNA-methionine

    NASA Astrophysics Data System (ADS)

    Köhnlein, W.; Merwitz, O.; Ohneseit, P.

    Evidence is presented for the radiation-induced transmethylation and transsulfuration in a DNA-methionine model system. The extent of such alkylation of DNA is found to be comparable with that of alkylating agents. Therefore, both processes could be initial steps in radiation carcinogenesis. The protective effect of methionine on DNA strand breaks, due to scavenging of OH radicals, causes the formation of methyl and thiyl radicals.

  16. Inhibiting the phosphatidylinositide 3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and Hypoxia-inducible factor-1 activity.

    PubMed

    Burrows, Natalie; Telfer, Brian; Brabant, Georg; Williams, Kaye J

    2013-09-01

    Undifferentiated follicular and anaplastic thyroid tumours often respond poorly to radiotherapy and show increased metastatic potential. We evaluated radiation-induced effects on metastasis in thyroid carcinoma cells and tumours, mechanistically focusing on phosphatidylinositide 3-kinase (PI3K) and associated pathways. Migration was analysed in follicular (FTC133) and anaplastic (8505c) cells following radiotherapy (0-6 Gray) with concomitant pharmacological (GDC-0941) or genetic inhibition of PI3K. Hypoxia-inducible factor-1 (HIF-1)-activity was measured using luciferase reporter assays and was inhibited using a dominant-negative variant. Activation and subcellular localisation of target proteins were assessed via Western blot and immunofluorescence. In vivo studies used FTC133 xenografts with metastatic lung dissemination assessed ex vivo. Radiation induced migration in a HIF-dependent manner in FTC133 cells but decreased migration in 8505c's. Post-radiation HIF-activity correlated with migratory phenotype. PI3K-targeting inhibited migration under basal and irradiated conditions through inhibition of HIF-1α, Rho-GTPase expression/activity and localisation whilst having little effect on src/FAK. In vivo, radiation induced PI3K, HIF, Rho-GTPases and src but only PI3K, HIF and Rho-GTPases were inhibited by GDC-0941. Co-treatment with GDC-0941 and radiation significantly reduced metastatic dissemination versus radiotherapy alone. Radiation modifies metastatic characteristics of thyroid carcinoma cells, which can be successfully inhibited by targeting PI3K using GDC-0941 in vitro and in vivo. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. [The distribution of radiation-induced breaks in the chromosomes of irradiated subjects].

    PubMed

    Shemetun, O V; Pidlins'ka, M A; Shemetun, H M

    2000-01-01

    Distribution of radiation-induced breakpoints in chromosomes and its bands in persons recovered from acute radiation sickness and personnel from Chernobyl NPP were investigated using G-banding staining. The frequency of damaged bands and breakpoints in groups exposed to radiation was significantly higher as compared with the control group. It was shown that in exposed to radiation persons damage depends on its length. Most frequently damaged bands in the observed groups were determined. The G-negative bands and telomeres of chromosomes were more sensitive to radiation.

  18. Monte Carlo Simulation of Nonlinear Radiation Induced Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, B. S.

    1972-01-01

    A Monte Carlo simulation model for radiation induced plasmas with nonlinear properties due to recombination was, employing a piecewise linearized predict-correct iterative technique. Several important variance reduction techniques were developed and incorporated into the model, including an antithetic variates technique. This approach is especially efficient for plasma systems with inhomogeneous media, multidimensions, and irregular boundaries. The Monte Carlo code developed has been applied to the determination of the electron energy distribution function and related parameters for a noble gas plasma created by alpha-particle irradiation. The characteristics of the radiation induced plasma involved are given.

  19. The Role of DNA Methylation Changes in Radiation-Induced Bystander Effects in cranial irradiated Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Xue, Bei; Wang, Xinwen; Wang, Jiawen

    2016-07-01

    Heavy-ion radiation could lead to bystander effect in neighboring non-hit cells by signals released from directly-irradiated cells. The exact mechanisms of radiation-induced bystander effect in distant organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in bystander effect. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were cranial exposed to 40, 200, 2000mGy dose of carbon heavy-ion radiation, while the rest of the animal body was shielded. The γH2AX foci as the DNA damage biomarker in directly irradiation organ ear and the distant organ liver were detected on 0, 1, 2, 6, 12 and 24h after radiation, respectively. Methylation-sensitive amplifcation polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that cranial irradiated mice could induce the γH2AX foci and genomic DNA methylation changes significantly in both the directly irradiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate were highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation in ear. The global DNA methylation changes tended to occur in the CG sites. We also found that the numbers of γH2AX foci and the genomic methylation changes of heavy-ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo. Keywords: Heavy-ion radiation; Bystander effect; DNA methylation; γH2

  20. Chronic radiation-induced dermatitis: challenges and solutions.

    PubMed

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients' quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  1. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  2. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  3. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  4. Radiation-Induced Changes in Serum Lipidome of Head and Neck Cancer Patients

    PubMed Central

    Jelonek, Karol; Pietrowska, Monika; Ros, Malgorzata; Zagdanski, Adam; Suchwalko, Agnieszka; Polanska, Joanna; Marczyk, Michal; Rutkowski, Tomasz; Skladowski, Krzysztof; Clench, Malcolm R.; Widlak, Piotr

    2014-01-01

    Cancer radiotherapy (RT) induces response of the whole patient’s body that could be detected at the blood level. We aimed to identify changes induced in serum lipidome during RT and characterize their association with doses and volumes of irradiated tissue. Sixty-six patients treated with conformal RT because of head and neck cancer were enrolled in the study. Blood samples were collected before, during and about one month after the end of RT. Lipid extracts were analyzed using MALDI-oa-ToF mass spectrometry in positive ionization mode. The major changes were observed when pre-treatment and within-treatment samples were compared. Levels of several identified phosphatidylcholines, including (PC34), (PC36) and (PC38) variants, and lysophosphatidylcholines, including (LPC16) and (LPC18) variants, were first significantly decreased and then increased in post-treatment samples. Intensities of changes were correlated with doses of radiation received by patients. Of note, such correlations were more frequent when low-to-medium doses of radiation delivered during conformal RT to large volumes of normal tissues were analyzed. Additionally, some radiation-induced changes in serum lipidome were associated with toxicity of the treatment. Obtained results indicated the involvement of choline-related signaling and potential biological importance of exposure to clinically low/medium doses of radiation in patient’s body response to radiation. PMID:24747595

  5. Radiation-induced cerebral meningioma: a recognizable entity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A.B.; Shalit, M.N.; Cohen, M.L.

    1984-11-01

    The authors retrospectively analyzed the clinical and histopathological findings in 201 patients with intracranial meningiomas operated on in the period 1978 to 1982. Forty-three of the patients (21.4%) had at some previous time received radiation treatment to their scalp, the majority for tinea capitis. The findings in these 43 irradiated patients were compared with those in the 158 non-irradiated patients. Several distinctive clinical and histological features were identified in the irradiated group, which suggest that radiation-induced meningiomas can be defined as a separate nosological subgroup. The use of irradiation in large numbers of children with tinea capitis in the eramore » prior to the availability of griseofulvin may be responsible for a significantly increased incidence of intracranial meningiomas.« less

  6. Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.

    PubMed

    Gonzalez-Vasconcellos, Iria; Anastasov, Natasa; Sanli-Bonazzi, Bahar; Klymenko, Olena; Atkinson, Michael J; Rosemann, Michael

    2013-07-15

    Germline mutations of the retinoblastoma gene (RB1) predispose to both sporadic and radiation-induced osteosarcoma, tumors characterized by high levels of genomic instability, and activation of alternative lengthening of telomeres. Mice with haploinsufficiency of the Rb1 gene in the osteoblastic lineage reiterate the radiation susceptibility to osteosarcoma seen in patients with germline RB1 mutations. We show that the susceptibility is accompanied by an increase in genomic instability, resulting from Rb1-dependent telomere erosion. Radiation exposure did not accelerate the rate of telomere loss but amplified the genomic instability resulting from the dysfunctional telomeres. These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may potentiate DNA damage-induced carcinogenesis by promoting formation of chromosomal aberrations, rather than simply by affecting cell-cycle control. ©2013 AACR.

  7. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotrim, Ana P.; Yoshikawa, Masanobu; Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size andmore » tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.« less

  8. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    PubMed

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  9. The novel iron chelator, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone, reduces catecholamine-mediated myocardial toxicity.

    PubMed

    Mladĕnka, Premysl; Kalinowski, Danuta S; Haskova, Pavlína; Bobrovová, Zuzana; Hrdina, Radomír; Simůnek, Tomás; Nachtigal, Petr; Semecký, Vladimĺr; Vávrová, Jaroslava; Holeckova, Magdaléna; Palicka, Vladimir; Mazurová, Yvona; Jansson, Patric J; Richardson, Des R

    2009-01-01

    Iron (Fe) chelators are used clinically for the treatment of Fe overload disease. Iron also plays a role in the pathology of many other conditions, and these potentially include the cardiotoxicity induced by catecholamines such as isoprenaline (ISO). The current study examined the potential of Fe chelators to prevent ISO cardiotoxicity. This was done as like other catecholamines, ISO contains the classical catechol moiety that binds Fe and may form redox-active and cytotoxic Fe complexes. Studies in vitro used the cardiomyocyte cell line, H9c2, which was treated with ISO in the presence or absence of the chelator, desferrioxamine (DFO), or the lipophilic ligand, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH). Both of these chelators were not cardiotoxic and significantly reduced ISO cardiotoxicity in vitro. However, PCTH was far more effective than DFO, with the latter showing activity only at a high, clinically unachievable concentration. Further studies in vitro showed that interaction of ISO with Fe(II)/(III) did not increase cytotoxic radical generation, suggesting that this mechanism was not involved. Studies in vivo were initiated using rats pretreated intravenously with DFO or PCTH before subcutaneous administration of ISO (100 mg/kg). DFO at a clinically used dose (50 mg/kg) failed to reduce catecholamine cardiotoxicity, while PCTH at an equimolar dose totally prevented catecholamine-induced mortality and reduced cardiotoxicity. This study demonstrates that PCTH reduced ISO-induced cardiotoxicity in vitro and in vivo, demonstrating that Fe plays a role, in part, in the pathology observed.

  10. Radiation-induced moyamoya syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Snehal S.; Paulino, Arnold C.; Mai, Wei Y.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%.more » Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.« less

  11. Ionizing radiation-induced bystander mutagenesis and adaptation: Quantitative and temporal aspects

    PubMed Central

    Zhang, Ying; Zhou, Junqing; Baldwin, Joseph; Held, Kathryn D; Prise, Kevin M; Redmond, Robert W.; Liber, Howard L.

    2009-01-01

    This work explores several quantitative aspects of radiation-induced bystander mutagenesis in WTK1 human lymphoblast cells. Gamma-irradiation of cells was used to generate conditioned medium containing bystander signals, and that medium was transferred onto naïve recipient cells. Kinetic studies revealed that it required up to one hour to generate sufficient signal to induce the maximal level of mutations at the thymidine kinase locus in the bystander cells receiving the conditioned medium. Furthermore, it required at least one hour of exposure to the signal in the bystander cells to induce mutations. Bystander signal was fairly stable in the medium, requiring 12–24 hours to diminish. Medium that contained bystander signal was rendered ineffective by a 4-fold dilution; in contrast a greater than 20-fold decrease in the cell number irradiated to generate a bystander signal was needed to eliminate bystander-induced mutagenesis. This suggested some sort of feedback inhibition by bystander signal that prevented the signaling cells from releasing more signal. Finally, an ionizing radiation-induced adaptive response was shown to be effective in reducing bystander mutagenesis; in addition, low levels of exposure to bystander signal in the transferred medium induced adaptation that was effective in reducing mutations induced by subsequent γ-ray exposures. PMID:19695271

  12. Surgical techniques in radiation induced temporal lobe necrosis in nasopharyngeal carcinoma patients.

    PubMed

    Alfotih, Gobran Taha Ahmed; Zheng, Mei Guang; Cai, Wang Qing; Xu, Xin Ke; Hu, Zhen; Li, Fang Cheng

    2016-01-01

    Radiation induced brain injury ranges from acute reversible edema to late, irreversible radiation necrosis. Radiation induced temporal lobe necrosis is associated with permanent neurological deficits and occasionally progresses to death. We present our experience with surgery on radiation induced temporal lobe necrosis (RTLN) in nasopharyngeal carcinoma (NPC) patients with special consideration of clinical presentation, surgical technique, and outcomes. This retrospective study includes 12 patients with RTLN treated by the senior author between January 2010 and December 2014. Patients initially sought medical treatment due to headache; other symptoms were hearing loss, visual deterioration, seizure, hemiparesis, vertigo, memory loss and agnosia. A temporal approach through a linear incision was performed for all cases. RTLN was found in one side in 7 patients, and bilaterally in 5. 4 patients underwent resection of necrotic tissue bilaterally and 8 patients on one side. No death occurred in this series of cases. There were no post-operative complications, except 1 patient who developed aseptic meningitis. All 12 patients were free from headache. No seizure occurred in patients with preoperative epilepsy. Other symptoms such as hemiparesis and vertigo improved in all patients. Memory loss, agnosia and hearing loss did not change post-operatively in all cases. The follow-up MR images demonstrated no recurrence of necrotic lesions in all 12 patients. Neurosurgical intervention through a temporal approach with linear incision is warranted in patients with radiation induced temporal lobe necrosis with significant symptoms and signs of increased intracranial pressure, minimum space occupying effect on imaging, or neurological deterioration despite conservative management. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  14. Simulated microgravity increases heavy ion radiation-induced apoptosis in human B lymphoblasts.

    PubMed

    Dang, Bingrong; Yang, Yuping; Zhang, Erdong; Li, Wenjian; Mi, Xiangquan; Meng, Yue; Yan, Siqi; Wang, Zhuanzi; Wei, Wei; Shao, Chunlin; Xing, Rui; Lin, Changjun

    2014-03-03

    Microgravity and radiation, common in space, are the main factors influencing astronauts' health in space flight, but their combined effects on immune cells are extremely limited. Therefore, the effect of simulated microgravity on heavy ion radiation-induced apoptosis, and reactive oxygen species (ROS)-sensitive apoptosis signaling were investigated in human B lymphoblast HMy2.CIR cells. Simulated microgravity was achieved using a Rotating Wall Vessel Bioreactor at 37°C for 30 min. Heavy carbon-ion irradiation was carried out at 300 MeV/u, with a linear energy transfer (LET) value of 30 keV/μm and a dose rate of 1Gy/min. Cell survival was evaluated using the Trypan blue exclusion assay. Apoptosis was indicated by Annexin V/propidium iodide staining. ROS production was assessed by cytometry with a fluorescent probe dichlorofluorescein. Malondialdehyde was detected using a kit. Extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase phosphatase-1 (MKP-1) and caspase-3 activation were measured by immunoblotting. Simulated microgravity decreased heavy ion radiation-induced cell survival and increased apoptosis in HMy2.CIR cells. It also amplified heavy ion radiation-elicited intracellular ROS generation, which induced ROS-sensitive ERK/MKP-1/caspase-3 activation in HMy2.CIR cells. The above phenomena could be reversed by the antioxidants N-acetyl cysteine (NAC) and quercetin. These results illustrated that simulated microgravity increased heavy ion radiation-induced cell apoptosis, mediated by a ROS-sensitive signal pathway in human B lymphoblasts. Further, the antioxidants NAC and quercetin, especially NAC, might be good candidate drugs for protecting astronauts' and space travelers' health and safety. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The CAROLE (CArdiac Related Oncologic Late Effects) Study

    ClinicalTrials.gov

    2018-03-29

    Coronary Artery Disease; Cardiac Disease; Cardiac Toxicity; Radiation; Radiation Therapy; Atherosclerotic Heart Disease; Cardiotoxicity; Breast Cancer; Lung Cancer; Lymphoma; Cancer; Carcinoma, Intraductal, Noninfiltrating

  16. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    PubMed

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy.

  17. Vitamin D Deficiency Is Associated With the Severity of Radiation-Induced Proctitis in Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbanzadeh-Moghaddam, Amir; Gholamrezaei, Ali, E-mail: Gholamrezaei@med.mui.ac.ir; Poursina Hakim Research Institution, Isfahan

    Purpose: Radiation-induced injury to normal tissues is a common complication of radiation therapy in cancer patients. Considering the role of vitamin D in mucosal barrier hemostasis and inflammatory responses, we investigated whether vitamin D deficiency is associated with the severity of radiation-induced acute proctitis in cancer patients. Methods and Materials: This prospective observational study was conducted in cancer patients referred for pelvic radiation therapy. Serum concentration of 25-hydroxyvitamin D was measured before radiation therapy. Vitamin D deficiency was defined as 25-hydroxyvitamin D concentrations of <35 nmol/L and <40 nmol/L in male and female patients, respectively, based on available normative data.more » Acute proctitis was assessed after 5 weeks of radiation therapy (total received radiation dose of 50 Gy) and graded from 0 to 4 using Radiation Therapy Oncology Group (RTOG) criteria. Results: Ninety-eight patients (57.1% male) with a mean age of 62.8 ± 9.1 years were studied. Vitamin D deficiency was found in 57 patients (58.1%). Symptoms of acute proctitis occurred in 72 patients (73.4%) after radiation therapy. RTOG grade was significantly higher in patients with vitamin D deficiency than in normal cases (median [interquartile range] of 2 [0.5-3] vs 1 [0-2], P=.037). Vitamin D deficiency was associated with RTOG grade of ≥2, independent of possible confounding factors; odds ratio (95% confidence interval) = 3.07 (1.27-7.50), P=.013. Conclusions: Vitamin D deficiency is associated with increased severity of radiation-induced acute proctitis. Investigating the underlying mechanisms of this association and evaluating the effectiveness of vitamin D therapy in preventing radiation-induced acute proctitis is warranted.« less

  18. The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al2O3:C

    NASA Astrophysics Data System (ADS)

    Nyirenda, A. N.; Chithambo, M. L.

    2017-04-01

    It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450-650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.

  19. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury

    PubMed Central

    Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan

    2015-01-01

    Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001

  20. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  1. Calreticulin attenuated microwave radiation-induced human microvascular endothelial cell injury through promoting actin acetylation and polymerization.

    PubMed

    Xu, Feifei; Wang, You; Tao, Tianqi; Song, Dandan; Liu, Xiuhua

    2017-01-01

    Recent work reveals that actin acetylation modification has been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight the effects of calreticulin on actin acetylation and cell injury induced by microwave radiation in human microvascular endothelial cell (HMEC). HMEC injury was induced by high-power microwave of different power density (10, 30, 60, 100 mW/cm 2 , for 6 min) with or without exogenous recombinant calreticulin. The cell injury was assessed by lactate dehydrogenase (LDH) activity and Cell Counting Kit-8 in culture medium, migration ability, intercellular junction, and cytoskeleton staining in HMEC. Western blotting analysis was used to detected calreticulin expression in cytosol and nucleus and acetylation of globular actin (G-actin). We found that HMEC injury was induced by microwave radiation in a dose-dependent manner. Pretreatment HMEC with calreticulin suppressed microwave radiation-induced LDH leakage and increased cell viability and improved microwave radiation-induced decrease in migration, intercellular junction, and cytoskeleton. Meanwhile, pretreatment HMEC with exogenous calreticulin upregulated the histone acetyltransferase activity and the acetylation level of G-actin and increased the fibrous actin (F-actin)/G-actin ratio. We conclude that exogenous calreticulin protects HMEC against microwave radiation-induced injury through promoting actin acetylation and polymerization.

  2. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In

  3. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  4. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  5. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells.

    PubMed

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan; Ahn, Kyu Joong

    2016-08-01

    We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.

  6. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  7. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated onmore » days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.« less

  8. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited themore » radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.« less

  9. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  10. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  11. Role of the area postrema in radiation-induced taste aversion learning and emesis in cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Chedester, A.L.

    1986-01-01

    The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved inmore » the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.« less

  12. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  13. Effects of antiemetics on the acquisition and recall of radiation- and lithium chloride-induced conditioned taste aversions.

    PubMed

    Rabin, B M; Hunt, W A

    1983-04-01

    A series of experiments were run to evaluate the effect of antiemetics on the acquisition and recall of a conditioned taste aversion induced by exposure to ionizing radiation or by injection of lithium chloride. Groups of male rats were exposed to 100 rad gamma radiation or 3 mEq/kg lithium chloride following consumption of a 10% sucrose solution. They were then injected with saline or with one of three antiemetics (prochlorperazine, trimethobenzamide, or cyclizine) at dose levels that have been reported to be effective in attenuating a previously acquired lithium chloride-induced taste aversion. The pretreatments with antiemetics had no effect on the acquisition or recall of either the lithium chloride- or radiation-induced taste aversion. The data suggest that antiemetics do not disrupt lithium chloride-induced taste aversions as previously reported, nor do they effect radiation-induced taste aversion learning.

  14. Arginine glutamate improves healing of radiation-induced skin ulcers in guinea pigs.

    PubMed

    Khalin, Igor; Kocherga, Ganna

    2013-12-01

    The increase in the incidence of the radiation-induced skin injury cases and the absence of standard treatments escalate the interest in finding new and effective drugs for these lesions. We studied the effect of a 40% solution of arginine glutamate on the healing of radiation-induced skin ulcers in guinea pigs. Radiation skin injury was produced on the thigh of guinea pigs by 60 Gy local X-ray irradiation. Treatment was started 6 weeks after the irradiation when ulcers had been formed. Arginine glutamate was administered by subcutaneous injections around the wound edge. Methyluracil was chosen as the comparison drug. The animals were sacrificed on day 21 after the start of treatment and the irradiated skin tissues were subjected to histological evaluation, cytokines analysis, lipid peroxidation and antioxidant enzymes analysis. We have shown that arginine glutamate significantly (p < 0.05) decreased levels of pro-inflammatory cytokines in the wound, restored the balance between lipid peroxidation formation and antioxidant enzymes activity and promoted cell proliferation as well as collagen synthesis. These results demonstrate that arginine glutamate successfully improves the healing of radiation-induced skin ulcers. In all probability, the curative effect is associated with the interaction of arginine with nitric oxide synthase II and arginase I, but further investigations are needed to validate this.

  15. Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats.

    PubMed

    Malekinejad, Hassan; Ahsan, Sima; Delkhosh-Kasmaie, Fatemeh; Cheraghi, Hadi; Rezaei-Golmisheh, Ali; Janbaz-Acyabar, Hamed

    2016-02-01

    Paclitaxel is a potent chemotherapy agent with severe side effects, including allergic reactions, cardiovascular problems, complete hair loss, joint and muscle pain, which may limit its use and lower its efficiency. The cardioprotective effect of royal jelly was investigated on paclitaxel-induced damages. Adult male Wistar rats were divided into control and test groups (n=8). The test group was assigned into five subgroups; 4 groups, along with paclitaxel administration (7.5 mg/kg BW, weekly), received various doses of royal jelly (50, 100, and 150 mg/kg BW) for 28 consecutive days. The last group received only royal jelly at 100 mg/kg. In addition to oxidative and nitrosative stress biomarkers, the creatine kinase (CK-BM) level was also determined. To show the cardioprotective effect of royal jelly on paclitaxel-induced damages, histopathological examinations were conducted. Royal jelly lowered the paclitaxel-elevated malondialdehyde and nitric oxide levels in the heart. Royal jelly could also remarkably reduce the paclitaxel-induced cardiac biomarker of creatine kinase (CK-BM) level and pathological injuries such as diffused edema, hemorrhage, congestion, hyaline exudates, and necrosis. Moreover, royal jelly administration in a dose-dependent manner resulted in a significant (P<0.05) increase in the paclitaxel-reduced total antioxidant capacity. Our data suggest that the paclitaxel-induced histopathological and biochemical alterations could be protected by the royal jelly administration. The cardioprotective effect of royal jelly may be related to the suppression of oxidative and nitrosative stress.

  16. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, A.A.; Serago, C.F.; Schwade, J.G.

    1984-10-01

    New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmiasmore » which may result from such damage.« less

  17. WE-D-210-04: Radiation-Induced Polymerization of Ultrasound Contrast Agents in View of Non-Invasive Dosimetry in External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callens, M; Verboven, E; Van Den Abeele, K

    2015-06-15

    Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles

  18. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  19. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal doses of radiation can elicit cell death while inducing some antitumor immunity, described as immunogenic cell death (ICD). However, in a clinical setting, immune responses elicited by radiation alone rarely result in protective immunity, as tumor relapse often occurs.

  20. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  1. [Study of rat blood serum biochemical indicators of cardiotoxic action of novel antitumor 4-thiazolidinone derivatives and doxorubicin in complexes with polyethylene glycol-containing polymeric carrier in the rat blood serum].

    PubMed

    Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S

    2014-01-01

    The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.

  2. A case of radiation-induced generalized morphea with prominent mucin deposition and tenderness.

    PubMed

    Yanaba, Koichi; Umezawa, Yoshinori; Nakagawa, Hidemi

    2015-05-10

    Radiation-induced morphea is a rare complication of radiation therapy. The affected areas are generally restricted to the radiation field or to the nearby surrounding area. A 67-year-old Japanese woman with a history of right breast cancer followed by adjuvant radiotherapy was referred our hospital because of 7-year history of symmetrical indurated erythematous plaques on her trunk. Three months after completion of irradiation, erythematous plaques developed on her right chest and gradually spread accompanied tenderness. She did not have a history of trauma to her right chest. Laboratory testing was positive for antinuclear antibody test at 1: 640 but negative for anti-SS-A/B, anti-U1-RNP, anti-DNA, anti-Sm, anticentromere, anti-topoisomerase I antibodies, and Borrelia and cytomegalovirus infection. She had no Raynaud's phenomenon, sclerodactyly, or nail-fold bleeding. She did not have interstitial lung disease or other internal organ involvement. A biopsy specimen revealed reticular dermal fibrosis with thickened collagen bundles with superficial and deep perivascular infiltration of mononuclear cells. These findings were consistent with morphea. Furthermore, mucin deposition was present in the papillary dermis upon Alcian blue staining, which has been reported to be observed in generalized morphea. Consequently, a diagnosis of generalized morphea induced by radiotherapy was made. She had been treated with oral hydroxychloroquine sulfate, resulting in the resolution of tenderness but the erythematous plaques remained. To the best of our knowledge, this is the first report of radiation-induced generalized morphea with prominent mucin deposition. Hydroxychloroquine sulfate may be efficacious for radiation-induced morphea-associated tenderness.

  3. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells

    PubMed Central

    LI, BO; KIM, DO SUNG; YADAV, RAJ KUMAR; KIM, HYUNG RYONG; CHAE, HAN JUNG

    2015-01-01

    Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression. PMID:25936432

  4. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells.

    PubMed

    Li, Bo; Kim, Do Sung; Yadav, Raj Kumar; Kim, Hyung Ryong; Chae, Han Jung

    2015-07-01

    Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression.

  5. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  6. Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect

    NASA Technical Reports Server (NTRS)

    Nagar, Shruti; Smith, Leslie E.; Morgan, William F.

    2003-01-01

    The detrimental effects associated with exposure to ionizing radiation have long been thought to result from the direct targeting of the nucleus leading to DNA damage; however, the emergence of concepts such as radiation-induced genomic instability and bystander effects have challenged this dogma. After cellular exposure to ionizing radiation, we have isolated a number of clones of Chinese hamster-human hybrid GM10115 cells that demonstrate genomic instability as measured by chromosomal destabilization. These clones show dynamic and persistent generation of chromosomal rearrangements multiple generations after the original insult. We hypothesize that these unstable clones maintain this delayed instability phenotype by secreting factors into the culture medium. To test this hypothesis we transferred filtered medium from unstable cells to unirradiated GM10115 cells. No GM10115 cells were able to survive this medium. This phenomenon by which GM10115 cells die when cultured in medium from chromosomally unstable GM10115 clones is the death-inducing effect. Medium transfer experiments indicate that a factor or factors is/are secreted by unstable cells within 8 h of growth in fresh medium and result in cell killing within 24 h. These factors are stable at ambient temperature but do not survive heating or freezing, and are biologically active when diluted with fresh medium. We present the initial description and characterization of the death-inducing effect. This novel epigenetic effect of radiation has implications for radiation risk assessment and for health risks associated with radiation exposure.

  7. DNA damage induced by the direct effect of radiation

    NASA Astrophysics Data System (ADS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.

    2008-10-01

    We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.

  8. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis.

    PubMed

    Kalam, Kashif; Marwick, Thomas H

    2013-09-01

    Cardiotoxicity is a well-recognised complication of chemotherapy with anthracycline and/or trastuzumab, and its prevention remains an important challenge in cancer survivorship. Several successful preventative strategies have been identified in animal trials. We sought to assemble the clinical evidence that prophylactic pharmacological interventions could prevent left ventricular (LV) dysfunction and heart failure in patients undergoing chemotherapy. We undertook a systemic review of the evidence from randomised trials and observational studies where a prophylactic intervention was compared with a control arm in patients with a normal ejection fraction and no past history of heart failure. The primary outcome was development of heart failure (HF), a drop in ejection fraction (EF) or both. A random-effects model was used to combine relative risks (RR) and 95% confidence intervals (CIs), and a meta-regression was undertaken to assess the impact of potential covariates. Data were collated from 14 published articles (n=2015 paediatric and adult patients) comprising 12 randomised controlled trials and two observational studies. The most studied chemotherapeutic agents were anthracyclines, and prophylactic agents included dexrazoxane, statins, beta-blocker and angiotensin antagonists. There were 304 cardiac events in the control arm compared to 83 in the prophylaxis arm (RR=0.31 [95% CI: 0.25-0.39], p<0.00001). Cardiac events were reduced with dexrazoxane (RR=0.35 [95% CI 0.27-0.45], p<0.00001), beta-blockade (RR=0.31 [95% CI 0.16-0.63], p=0.001), statin (RR=0.31 [95% CI 0.13-0.77], p=0.01) and angiotensin antagonists (RR=0.11 [95% CI 0.04-0.29], p<0.0001). Prophylactic treatment with dexrazoxane, beta-blocker, statin or angiotensin antagonists appear to have similar efficacy for reducing cardiotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats

    PubMed Central

    Malekinejad, Hassan; Ahsan, Sima; Delkhosh-Kasmaie, Fatemeh; Cheraghi, Hadi; Rezaei-Golmisheh, Ali; Janbaz-Acyabar, Hamed

    2016-01-01

    Objective(s): Paclitaxel is a potent chemotherapy agent with severe side effects, including allergic reactions, cardiovascular problems, complete hair loss, joint and muscle pain, which may limit its use and lower its efficiency. The cardioprotective effect of royal jelly was investigated on paclitaxel-induced damages. Materials and Methods: Adult male Wistar rats were divided into control and test groups (n=8). The test group was assigned into five subgroups; 4 groups, along with paclitaxel administration (7.5 mg/kg BW, weekly), received various doses of royal jelly (50, 100, and 150 mg/kg BW) for 28 consecutive days. The last group received only royal jelly at 100 mg/kg. In addition to oxidative and nitrosative stress biomarkers, the creatine kinase (CK-BM) level was also determined. To show the cardioprotective effect of royal jelly on paclitaxel-induced damages, histopathological examinations were conducted. Results: Royal jelly lowered the paclitaxel-elevated malondialdehyde and nitric oxide levels in the heart. Royal jelly could also remarkably reduce the paclitaxel-induced cardiac biomarker of creatine kinase (CK-BM) level and pathological injuries such as diffused edema, hemorrhage, congestion, hyaline exudates, and necrosis. Moreover, royal jelly administration in a dose-dependent manner resulted in a significant (P<0.05) increase in the paclitaxel-reduced total antioxidant capacity. Conclusion: Our data suggest that the paclitaxel-induced histopathological and biochemical alterations could be protected by the royal jelly administration. The cardioprotective effect of royal jelly may be related to the suppression of oxidative and nitrosative stress. PMID:27081469

  10. Radiation-Induced Noncancer Risks in Interventional Cardiology: Optimisation of Procedures and Staff and Patient Dose Reduction

    PubMed Central

    Khairuddin Md Yusof, Ahmad

    2013-01-01

    Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted. PMID:24027768

  11. New era of radiotherapy: an update in radiation-induced lung disease

    PubMed Central

    Benveniste, M. F. K.; Welsh, J.; Godoy, M. C. B.; Betancourt, S. L.; Mawlawi, O. R; Munden, R. F.

    2014-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans. PMID:23473474

  12. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity.

    PubMed

    Cui, Lan; Guo, Jiabin; Zhang, Qiang; Yin, Jian; Li, Jin; Zhou, Wei; Zhang, Tingfen; Yuan, Haitao; Zhao, Jun; Zhang, Li; Carmichael, Paul L; Peng, Shuangqing

    2017-06-05

    The hormone erythropoietin (EPO) has been demonstrated to protect against chemotherapy drug doxorubicin (DOX)-induced cardiotoxicity, but the underlying mechanism remains obscure. We hypothesized that silent mating type information regulation 2 homolog 1 (SIRT1), an NAD + -dependent protein deacetylase that activates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), plays a crucial role in regulating mitochondrial function and mediating the beneficial effect of EPO. Our study in human cardiomyocyte AC16 cells showed that DOX-induced cytotoxicity and mitochondrial dysfunction, as manifested by decreased mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential, and increased mitochondrial superoxide accumulation, can be mitigated by EPO pretreatment. EPO was found to upregulate SIRT1 activity and protein expression to reverse DOX-induced acetylation of PGC-1α and suppression of a suite of PGC-1α-activated genes involved in mitochondrial function and biogenesis, such as nuclear respiratory factor-1 (NRF1), mitochondrial transcription factor A (TFAM), citrate synthase (CS), superoxide dismutase 2 (SOD2), cytochrome c oxidase IV (COXIV), and voltage-dependent anion channel (VDAC). Silencing of SIRT1 via small RNA interference sensitized AC16 cells to DOX-induced cytotoxicity and reduction in mtDNA copy number. Although with SIRT1 silenced, EPO could reverse to some extent DOX-induced mitochondrial superoxide accumulation, loss of mitochondrial membrane potential and ATP depletion, it failed to normalize protein expression of PGC-1α and its downstream genes. Taken together, our results indicated that EPO may activate SIRT1 to enhance mitochondrial function and protect against DOX-induced cardiotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Salivary gland transfer to prevent radiation-induced xerostomia: a systematic review and meta-analysis.

    PubMed

    Sood, Amit J; Fox, Nyssa F; O'Connell, Brendan P; Lovelace, Tiffany L; Nguyen, Shaun A; Sharma, Anand K; Hornig, Joshua D; Day, Terry A

    2014-02-01

    Salivary gland transfer (SGT) has the potential to prevent radiation-induced xerostomia. We attempt to analyze the efficacy of SGT in prevention of xerostomia and maintenance of salivary flow rates after radiation treatment (XRT). Systematic review and meta-analysis. Primary endpoint was efficacy of SGT in prevention of radiation-induced xerostomia. Secondary endpoint was change from baseline of unstimulated and stimulated salivary flow rates after XRT. Seven articles, accruing data from 12 institutions, met inclusion criteria. In a total of 177 patients at mean follow-up of 22.7months, SGT prevented radiation-induced xerostomia in 82.7% (95% CI, 76.6-87.7%) of patients. Twelve months after XRT, unstimulated and stimulated salivary flow rates rose to 88% and 76% of baseline values, respectively. In comparison to control subjects twelve months after XRT, SGT subjects' unstimulated (75% vs. 11%) and stimulated (86% vs. 8%) salivary flow rates were drastically higher in SGT patients. Salivary gland transfer appears to be highly effective in preventing the incidence of xerostomia in patients receiving definitive head and neck radiation therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Molecular aspects of ultraviolet radiation-induced apoptosis in the skin.

    PubMed

    Chow, Jeffrey; Tron, Victor A

    2005-12-01

    Apoptosis, or programmed cell death, is an essential physiological process that controls cell numbers during physiological processes, and eliminates abnormal cells that can potentially harm an organism. This review summarizes our current state of knowledge of apoptosis induction in skin by UV radiation. A review of the literature was undertaken focusing on cell death in the skin secondary to UV radiation. It is evident that a number of apoptotic pathways, both intrinsic and extrinsic, are induced following exposure to damaging UV radiation. Although our understanding of the apoptotic processes is gradually increasing, many important aspects remain obscure. These include interconnections between pathways, wavelength-specific differences and cell type differences.

  15. Effect of blue light radiation on curcumin-induced cell death of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Zeng, X. B.; Leung, A. W. N.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; Xiang, J. Y.; Jiang, Y.; Xu, C. S.

    2010-06-01

    In the present study, we have successfully set up a novel blue light source with the power density of 9 mW/cm2 and the wavelength of 435.8 nm and then the novel light source was used to investigate the effect of light radiation on curcumin-induced cell death. The cytotoxicity was investigated 24 h after the treatment of curcumin and blue light radiation together using MTT reduction assay. Nuclear chromatin was observed using a fluorescent microscopy with Hoechst33258 staining. The results showed blue light radiation could significantly enhance the cytotoxicity of curcumin on the MCF-7 cells and apoptosis induction. These findings demonstrated that blue light radiation could enhance curcumin-induced cell death of breast cancer cells, suggesting light radiation may be an efficient enhancer of curcumin in the management of breast cancer.

  16. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    As a result of improvements in cancer therapy and health care, the population of long-term cancer survivors is growing. For these approximately 12 million long-term cancer survivors, brain metastases are a significant risk. Fractionated partial or whole-brain irradiation (fWBI) is often required to treat both primary and metastatic brain cancer. Radiation-induced normal tissue injury, including progressive cognitive impairment, however, can significantly affect the well-being of the approximately 200,000 patients who receive these treatments each year. Recent reports indicate that radiation-induced brain injury is associated with chronic inflammatory and oxidative stress responses, as well as increased microglial activation in the brain. Anti-inflammatory drugs may, therefore, be a beneficial therapy to mitigate radiation-induced brain injury. We hypothesized that activation of peroxisomal proliferator activated receptor delta (PPARō) would prevent or ameliorate radiation-induced brain injury, including cognitive impairment, in part, by alleviating inflammatory responses in microglia. For our in vitro studies, we hypothesized that PPARō activation would prevent the radiation-induced inflammatory response in microglia following irradiation. Incubating BV-2 murine microglial cells with the (PPAR)ō agonist, L-165041, prevented the radiation-induced increase in: i) intracellular ROS generation, ii) Cox-2 and MCP-1 expression, and iii) IL-1β and TNF-α message levels. This occured, in part, through PPARō-mediated modulation of stress activated kinases and proinflammatory transcription factors. PPARō inhibited NF-κB via transrepression by physically interacting with the p65 subunit, and prevented activation of the PKCα/MEK1/2/ERK1/2/AP-1 pathway by inhibiting the radiation-induced increase in intracellular ROS generation. These data support the hypothesis that PPARō activation can modulate the radiation-induced oxidative stress and inflammatory

  17. Hyberbaric oxygen as sole treatment for severe radiation - induced haemorrhagic cystitis

    PubMed Central

    Dellis, Athanasios; Papatsoris, Athanasios; Kalentzos, Vasileios; Deliveliotis, Charalambos; Skolarikos, Andreas

    2017-01-01

    ABSTRACT Purpose To examine the safety and efficacy of hyperbaric oxygen as the primary and sole treatment for severe radiation-induced haemorrhagic cystitis. Materials and methods Hyperbaric oxygen was prospectively applied as primary treatment in 38 patients with severe radiation cystitis. Our primary endpoint was the incidence of complete and partial response to treatment, while the secondary endpoints included the duration of response, the correlation of treatment success-rate to the interval between the onset of haematuria and initiation of therapy, blood transfusion need and total radiation dose, the number of sessions to success, the avoidance of surgery and the overall survival. Results All patients completed therapy without complications with a mean follow-up of 29.33 months. Median number of sessions needed was 33. Complete and partial response rate was 86.8% and 13.2%, respectively. All 33 patients with complete response received therapy within 6 months of the haematuria onset. One patient needed cystectomy, while 33 patients were alive at the end of follow-up. Conclusions Our study suggests the early primary use of hyperbaric oxygen for radiation-induced severe cystitis as an effective and safe treatment option. PMID:28338304

  18. Radiation-Induced Liver Injury in Three-Dimensional Conformal Radiation Therapy (3D-CRT) for Postoperative or Locoregional Recurrent Gastric Cancer: Risk Factors and Dose Limitations.

    PubMed

    Li, Guichao; Wang, Jiazhou; Hu, Weigang; Zhang, Zhen

    2015-01-01

    This study examined the status of radiation-induced liver injury in adjuvant or palliative gastric cancer radiation therapy (RT), identified risk factors of radiation-induced liver injury in gastric cancer RT, analysed the dose-volume effects of liver injury, and developed a liver dose limitation reference for gastric cancer RT. Data for 56 post-operative gastric cancer patients and 6 locoregional recurrent gastric cancer patients treated with three-dimensional conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) from Sep 2007 to Sep 2009 were analysed. Forty patients (65%) were administered concurrent chemotherapy. Pre- and post-radiation chemotherapy were given to 61 patients and 43 patients, respectively. The radiation dose was 45-50.4 Gy in 25-28 fractions. Clinical parameters, including gender, age, hepatic B virus status, concurrent chemotherapy, and the total number of chemotherapy cycles, were included in the analysis. Univariate analyses with a non-parametric rank test (Mann-Whitney test) and logistic regression test and a multivariate analysis using a logistic regression test were completed. We also analysed the correlation between RT and the changes in serum chemistry parameters [including total bilirubin, (TB), direct bilirubin (D-TB), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and serum albumin (ALB)] after RT. The Child-Pugh grade progressed from grade A to grade B after radiotherapy in 10 patients. A total of 16 cases of classic radiation-induced liver disease (RILD) were observed, and 2 patients had both Child-Pugh grade progression and classic RILD. No cases of non-classic radiation liver injury occurred in the study population. Among the tested clinical parameters, the total number of chemotherapy cycles correlated with liver function injury. V35 and ALP levels were significant predictive factors for radiation liver injury. In 3D-CRT for gastric cancer patients

  19. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  20. Solar radiation induced rotational bursting of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.

    1975-01-01

    It is suggested that the magnitudes of the two radiation-induced rotational bursting mechanisms (Radzieskii effect and windmill effect) have been overestimated and that they do not work significantly faster than the Poynting-Robertson effect in removing interplanetary particles. These two mechanisms are described, and serious doubts are raised regarding the derivation of their radiation pressure-torque proportionality constants, which are required for calculating their magnitudes. It is shown that both mechanisms will cause the alignment of elongated particles and, consequently, the polarization of zodiacal light. Since no positive polarization has been measured at the antisolar point, it is concluded that the magnitudes of the rotational bursting mechanisms are smaller than that of the Poynting-Robertson effect.

  1. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells.

    PubMed

    Chatterjee, Jit; Nairy, Rajesha K; Langhnoja, Jaldeep; Tripathi, Ashutosh; Patil, Rajashekhar K; Pillai, Prakash P; Mustak, Mohammed S

    2018-06-01

    Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.

  2. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  3. Proton radiation-induced miRNA signatures in mouse blood: Characterization and comparison with 56Fe-ion and gamma radiation

    PubMed Central

    Templin, Thomas; Young, Erik F.; Smilenov, Lubomir B.

    2013-01-01

    Purpose Previously, we showed that microRNA (miRNA) signatures derived from the peripheral blood of mice are highly specific for both radiation energy (γ-rays or high linear energy transfer [LET] 56Fe ions) and radiation dose. Here, we investigate to what extent miRNA expression signatures derived from mouse blood can be used as biomarkers for exposure to 600 MeV proton radiation. Materials and methods We exposed mice to 600 MeV protons, using doses of 0.5 or 1.0 Gy, isolated total RNA at 6 h or 24 h after irradiation, and used quantitative real-time polymerase chain reaction (PCR) to determine the changes in miRNA expression. Results A total of 26 miRNA were differentially expressed after proton irradiation, in either one (77%) or multiple conditions (23%). Statistical classifiers based on proton, γ, and 56Fe-ion miRNA expression signatures predicted radiation type and proton dose with accuracies of 81% and 88%, respectively. Importantly, gene ontology analysis for proton-irradiated cells shows that genes targeted by radiation-induced miRNA are involved in biological processes and molecular functions similar to those controlled by miRNA in γ ray- and 56Fe-irradiated cells. Conclusions Mouse blood miRNA signatures induced by proton, γ, or 56Fe irradiation are radiation type- and dose-specific. These findings underline the complexity of the miRNA-mediated radiation response. PMID:22551419

  4. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses

    PubMed Central

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Abstract Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549

  5. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays,more » were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.« less

  7. Role of Ferulic Acid in the Amelioration of Ionizing Radiation Induced Inflammation: A Murine Model

    PubMed Central

    Das, Ujjal; Manna, Krishnendu; Sinha, Mahuya; Datta, Sanjukta; Das, Dipesh Kr; Chakraborty, Anindita; Ghosh, Mahua; Saha, Krishna Das; Dey, Sanjit

    2014-01-01

    Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation. PMID:24854039

  8. Radiation induces premature chromatid separation via the miR-142-3p/Bod1 pathway in carcinoma cells.

    PubMed

    Pan, Dong; Du, Yarong; Ren, Zhenxin; Chen, Yaxiong; Li, Xiaoman; Wang, Jufang; Hu, Burong

    2016-09-13

    Radiation-induced genomic instability plays a vital role in carcinogenesis. Bod1 is required for proper chromosome biorientation, and Bod1 depletion increases premature chromatid separation. MiR-142-3p influences cell cycle progression and inhibits proliferation and invasion in cervical carcinoma cells. We found that radiation induced premature chromatid separation and altered miR-142-3p and Bod1 expression in 786-O and A549 cells. Overexpression of miR-142-3p increased premature chromatid separation and G2/M cell cycle arrest in 786-O cells by suppressing Bod1 expression. We also found that either overexpression of miR-142-3p or knockdown of Bod1 sensitized 786-O and A549 cells to X-ray radiation. Overexpression of Bod1 inhibited radiation- and miR-142-3p-induced premature chromatid separation and increased resistance to radiation in 786-O and A549 cells. Taken together, these results suggest that radiation alters miR-142-3p and Bod1 expression in carcinoma cells, and thus contributes to early stages of radiation-induced genomic instability. Combining ionizing radiation with epigenetic regulation may help improve cancer therapies.

  9. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    PubMed

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  10. Radiation induces an antitumour immune response to mouse melanoma.

    PubMed

    Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling

    2009-12-01

    Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.

  11. Radiation-induced meningiomas: Experience at the Mount Sinai Hospital and review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, M.J.; Wolfe, D.E.; Lau, T.S.

    1991-10-01

    From the records of The Mount Sinai Hospital, seven cases which met established criteria for radiation-induced meningiomas were identified. This represents the largest series of radiogenic meningiomas documented in North America and includes both intracranial and intraspinal tumors. The records and pathological specimens were reviewed and these data analyzed with other cases retrieved from the world literature. This study reveals that radiation-induced meningiomas can be categorized into three groups based on the amount of radiation administered: (1) low dose; (2) moderate dose and miscellaneous; and (3) high dose. The overwhelming majority of cases had received low-dose irradiation (800 rad) tomore » the scalp for tinea capitis and the second largest group resulted from high-dose irradiation for primary brain tumors (greater than 2000 rad). The unique features distinguishing radiation-induced meningiomas from other meningiomas are reviewed. Although histologically atypical tumors were common in this series, overt malignancy was not encountered. The preoperative management of these lesions should include angiography to evaluate for large-vessel occlusive vasculopathy, a known association of meningiomas induced by high-dose irradiation. Given the propensity these tumors possess for recurrence, a wide bony and dural margin is recommended at surgical resection. 102 references.« less

  12. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis.

    PubMed

    Du, Shi-Suo; Qiang, Min; Zeng, Zhao-Chong; Ke, Ai-Wu; Ji, Yuan; Zhang, Zheng-Yu; Zeng, Hai-Ying; Liu, Zhongshan

    2010-03-15

    To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Effect of radiation-induced amorphization on smectite dissolution.

    PubMed

    Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G

    2010-04-01

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.

  14. EPR spectral investigation of radiation-induced radicals of gallic acid.

    PubMed

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  15. Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid.

    PubMed

    Manda, Kailash; Ueno, Megumi; Anzai, Kazunori

    2008-03-05

    Exposure to high-energy particle radiation (HZE) may cause oxidative stress and cognitive impairment in the same manner that seen in aged mice. This phenomenon has raised the concerns about the safety of an extended manned mission into deep space where a significant portion of the radiation burden would come from HZE particle radiation. The present study aimed at investigating the role of alpha-lipoic acid against space radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body irradiation of mice with high-LET (56)Fe beams (500 MeV/nucleon, 1.5 Gy) substantially impaired the reference memory at 30 day post-irradiation; however, no significant effect was observed on motor activities of mice. Acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such memory dysfunction. Radiation-induced apoptotic damage in cerebellum was examined using a neuronal-specific terminal deoxynucleotidyl transferase-mediated nick end-labeling method (NeuroTACS). Radiation-induced apoptotic and necrotic cell death of granule cells and Purkinje cells were inhibited significantly by alpha-lipoic acid pretreatment. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of DNA damage (comet tail movement and serum 8-OHdG), lipid proxidation products (MDA+HAE) and protein carbonyls in mice cerebellum. Further, radiation-induced decline of non-protein sulfhydryl (NP-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Results clearly indicate that alpha-lipoic acid is a potent neuroprotective antioxidant. Moreover, present finding also support the idea suggesting the cerebellar

  16. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  17. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  18. Fluctuation of a Piston in Vacuum Induced by Thermal Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2017-10-01

    We consider the displacement of a piston dividing a vacuum cavity at a finite temperature T induced by fluctuations in the thermal radiation pressure. The correlation function of the thermal radiation pressure is calculated using the theoretical framework developed by Barton, which was first applied to the fluctuation of the Casimir force at absolute zero. We show that the variance of the radiation pressure at a fixed point is proportional to T8 and evaluate the mean square displacement for a piston with a small cross section in a characteristic correlation timescale ħ/(kBT). At room temperature, the contribution of the thermal radiation to the fluctuation is larger than that of the vacuum fluctuation.

  19. Sulforaphane mitigates genotoxicity induced by radiation and anticancer drugs in human lymphocytes.

    PubMed

    Katoch, Omika; Kumar, Arun; Adhikari, Jawahar S; Dwarakanath, Bilikere S; Agrawala, Paban K

    2013-12-12

    Sulforaphane, present in cruciferous vegetables such as broccoli, is a dietary anticancer agent. Sulforaphane, added 2 or 20 h following phytohemaglutinin stimulation to cultured peripheral blood lymphocytes of individuals accidentally exposed to mixed γ and β-radiation, reduced the micronucleus frequency by up to 70%. Studies with whole blood cultures obtained from healthy volunteers confirmed the ability of sulforaphane to ameliorate γ-radiation-induced genotoxicity and to reduce micronucleus induction by other DNA-damaging anticancer agents, such as bleomycin and doxorubicin. This reduction in genotoxicity in lymphocytes treated at the G(0) or G(1) stage suggests a role for sulforaphane in modulating DNA repair. Sulforaphane also countered the radiation-induced increase in lymphocyte HDAC activity, to control levels, when cells were treated 2 h after exposure, and enhanced histone H4 acetylation status. Sulforaphane post-irradiation treatment enhanced the CD 34(+)Lin(-) cell population in culture. Sulforaphane has therapeutic potential for management of the late effects of radiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling

    PubMed Central

    Louria-Hayon, Igal; Frelin, Catherine; Ruston, Julie; Gish, Gerald; Jin, Jing; Kofler, Michael M.; Lambert, Jean-Philippe; Adissu, Hibret A.; Milyavsky, Michael; Herrington, Robert; Minden, Mark D.; Dick, John E.; Gingras, Anne-Claude; Iscove, Norman N.; Pawson, Tony

    2013-01-01

    The Lnk (Sh2b3) adaptor protein dampens the response of hematopoietic stem cells and progenitors (HSPCs) to a variety of cytokines by inhibiting JAK2 signaling. As a consequence, Lnk−/− mice develop hematopoietic hyperplasia, which progresses to a phenotype resembling the nonacute phase of myeloproliferative neoplasm. In addition, Lnk mutations have been identified in human myeloproliferative neoplasms and acute leukemia. We find that Lnk suppresses the development of radiation-induced acute B-cell malignancies in mice. Lnk-deficient HSPCs recover more effectively from irradiation than their wild-type counterparts, and this resistance of Lnk−/− HSPCs to radiation underlies the subsequent emergence of leukemia. A search for the mechanism responsible for radiation resistance identified the cytokine IL-11 as being critical for the ability of Lnk−/− HSPCs to recover from irradiation and subsequently become leukemic. In IL-11 signaling, wild-type Lnk suppresses tyrosine phosphorylation of the Src homology region 2 domain-containing phosphatase-2/protein tyrosine phosphatase nonreceptor type 11 and its association with the growth factor receptor-bound protein 2, as well as activation of the Erk MAP kinase pathway. Indeed, Src homology region 2 domain-containing phosphatase-2 has a binding motif for the Lnk Src Homology 2 domain that is phosphorylated in response to IL-11 stimulation. IL-11 therefore drives a pathway that enhances HSPC radioresistance and radiation-induced B-cell malignancies, but is normally attenuated by the inhibitory adaptor Lnk. PMID:24297922

  1. Toxicoproteomics: serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection.

    PubMed

    Petricoin, Emanuel F; Rajapaske, Vinodh; Herman, Eugene H; Arekani, Ali M; Ross, Sally; Johann, Donald; Knapton, Alan; Zhang, J; Hitt, Ben A; Conrads, Thomas P; Veenstra, Timothy D; Liotta, Lance A; Sistare, Frank D

    2004-01-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry which communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity based processes as cascades of reinforcing information percolate through the system and become reflected in changing proteomic information content of the circulation. Serum Proteomic Pattern Diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. While this approach has shown tremendous promise in early detection of cancers, detection of drug-induced toxicity may also be possible with this same technology. Analysis of serum from rat models of anthracycline and anthracenedione induced cardiotoxicity indicate the potential clinical utility of diagnostic proteomic patterns where low molecular weight peptides and protein fragments may have higher accuracy than traditional biomarkers of cardiotoxicity such as troponins. These fragments may one day be harvested by circulating nanoparticles designed to absorb, enrich and amplify the diagnostic biomarker repertoire generated even at the critical initial stages of toxicity.

  2. Occupational therapy intervention with radiation-induced brachial plexopathy.

    PubMed

    Cooper, J

    1998-06-01

    Occupational therapy intervention minimizes disability and facilitates optimum functional independence. The range of dysfunction experienced by patients with radiation-induced brachial plexopathy includes physical, psychological, emotional and social difficulties. The occupational therapist works as part of the multiprofessional team to use a client-centred, problem-solving approach to address the problems and enable the patient to adapt to the altered body image and disabilities.

  3. Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa)

    NASA Astrophysics Data System (ADS)

    Shi, Jinming; Lu, Weihong; Sun, Yeqing

    2014-04-01

    Rice seeds, after space flight and low dose heavy ion radiation treatment were cultured on ground. Leaves of the mature plants were obtained for examination of genomic/epigenomic mutations by using amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) method, respectively. The mutation sites were identified by fragment recovery and sequencing. The heritability of the mutations was detected in the next generation. Results showed that both space flight and low dose heavy ion radiation can induce significant alterations on rice genome and epigenome (P < 0.05). For both genetic and epigenetic assays, while there was no significant difference in mutation rates and their ability to be inherited to the next generation, the site of mutations differed between the space flight and radiation treated groups. More than 50% of the mutation sites were shared by two radiation treated groups, radiated with different LET value and dose, while only about 20% of the mutation sites were shared by space flight group and radiation treated group. Moreover, in space flight group, we found that DNA methylation changes were more prone to occur on CNG sequence than CG sequence. Sequencing results proved that both space flight and heavy ion radiation induced mutations were widely spread on rice genome including coding region and repeated region. Our study described and compared the characters of space flight and low dose heavy ion radiation induced genomic/epigenomic mutations. Our data revealed the mechanisms of application of space environment for mutagenesis and crop breeding. Furthermore, this work implicated that the nature of mutations induced under space flight conditions may involve factors beyond ion radiation.

  4. Interaction of Local Anesthetics with Biomembranes Consisting of Phospholipids and Cholesterol: Mechanistic and Clinical Implications for Anesthetic and Cardiotoxic Effects

    PubMed Central

    2013-01-01

    Despite a long history in medical and dental application, the molecular mechanism and precise site of action are still arguable for local anesthetics. Their effects are considered to be induced by acting on functional proteins, on membrane lipids, or on both. Local anesthetics primarily interact with sodium channels embedded in cell membranes to reduce the excitability of nerve cells and cardiomyocytes or produce a malfunction of the cardiovascular system. However, the membrane protein-interacting theory cannot explain all of the pharmacological and toxicological features of local anesthetics. The administered drug molecules must diffuse through the lipid barriers of nerve sheaths and penetrate into or across the lipid bilayers of cell membranes to reach the acting site on transmembrane proteins. Amphiphilic local anesthetics interact hydrophobically and electrostatically with lipid bilayers and modify their physicochemical property, with the direct inhibition of membrane functions, and with the resultant alteration of the membrane lipid environments surrounding transmembrane proteins and the subsequent protein conformational change, leading to the inhibition of channel functions. We review recent studies on the interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol. Understanding the membrane interactivity of local anesthetics would provide novel insights into their anesthetic and cardiotoxic effects. PMID:24174934

  5. The standardization of acupuncture treatment for radiation-induced xerostomia: A literature review.

    PubMed

    Li, Ling-Xin; Tian, Guang; He, Jing

    2016-07-01

    To assess the relative standardization of acupuncture protocols for radiation-induced xerostomia. A literature search was carried out up to November 10, 2012 in the databases PubMed/MEDLINE, EMBASE and China National Knowledge Infrastruction with the terms: radiation-induced xerostomia, acupuncture, acupuncture treatment, and acupuncture therapy. Five ancient Chinese classic acupuncture works were also reviewed with the keywords "dry mouth, thirst, dry tongue, dry eyes and dry lips" to search the effective acupuncture points for dry mouth-associated symptoms in ancient China. Twenty-two full-text articles relevant to acupuncture treatment for radiation-induced xerostomia were included and a total of 48 acupuncture points were searched in the 5 ancient Chinese classic acupuncture works, in which the most commonly used points were Chengjiang (CV24), Shuigou (GV 26), Duiduan (GV 27), Jinjin (EX-HN 12), and Yuye (EX-HN 13) on head and neck, Sanjian (LI 3), Shangyang (LI 1), Shaoshang (LU 11), Shaoze (SI 1), Xialian (LI 8) on hand, Fuliu (KI 7), Dazhong (KI 4), Zuqiaoyin (GB 44), Taichong (LR 3), Zhaohai (KI 6) on foot, Burong (ST 19), Zhangmen (LR 13), Tiantu (CV 22), Qimen (LR 14) on abdomen, Feishu (BL 13), Danshu (BL 19), Xiaochaogshu (BL 27), Ganshu (BL 18) on back, Shenmen (TF 4), Shen (CO10, Kidney), Yidan (CO11, Pancreas) and Pi (CO13, Spleen) on ear. There were considerable heterogeneities in the current acupuncture treatment protocols for radiation-induced xerostomia. Based on the results of the review and the personal perspectives, the authors provide a recommendation for manual acupuncture protocols in treating radiationinduced xerostomia patients with head and neck cancer.

  6. Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer.

    PubMed

    Kennedy, E M; Powell, D R; Li, Z; Bell, J S K; Barwick, B G; Feng, H; McCrary, M R; Dwivedi, B; Kowalski, J; Dynan, W S; Conneely, K N; Vertino, P M

    2018-04-30

    Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56 Fe and 28 Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56 Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28 Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56 Fe ion sensitive sites, but not those affected by X ray or 28 Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.

  7. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  8. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis.

    PubMed

    Borab, Zachary; Mirmanesh, Michael D; Gantz, Madeleine; Cusano, Alessandro; Pu, Lee L Q

    2017-04-01

    Every year, 1.2 million cancer patients receive radiation therapy in the United States. Late radiation tissue injury occurs in an estimated 5-15% of these patients. Tissue injury can include skin necrosis, which can lead to chronic nonhealing wounds. Despite many treatments available to help heal skin necrosis such as hyperbaric oxygen therapy, no clinical guidelines exist and evidence is lacking. The purpose of this review is to identify and comprehensively summarize studies published to date to evaluate the effectiveness of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. Adhering to PRISMA guidelines, a systematic review of currently published articles was performed, evaluating the use of hyperbaric oxygen to treat skin necrosis. Eight articles were identified, including one observational cohort, five case series, and two case reports. The articles describe changes in symptoms and alteration in wound healing of radiation-induced skin necrosis after treatment with hyperbaric oxygen therapy. Hyperbaric oxygen therapy is a safe intervention with promising outcomes; however, additional evidence is needed to endorse its application as a relevant therapy in the treatment of radiation-induced skin necrosis. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M

    2015-03-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.

  10. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  11. Gutenberg-Richter-type relation for laboratory fracture-induced electromagnetic radiation.

    PubMed

    Rabinovitch, A; Frid, V; Bahat, D

    2002-01-01

    The fractal nature of electromagnetic radiation induced by uniaxial and triaxial rock fracture is considered. Both the well-known Gutenberg-Richter-type and the Benioff strain-release relationship, for earthquakes and starquakes, are shown to extend to the microscale (millimeters-centimeters). Results show that both the b value of the Gutenberg-Richter-type law and the slope of the Benioff strain-release relationship of the electromagnetic radiation signals are similar to values known for earthquakes. These results imply that a common mechanism is acting at all scales.

  12. Tangeretin enhances radiosensitivity and inhibits the radiation-induced epithelial-mesenchymal transition of gastric cancer cells.

    PubMed

    Zhang, Xukui; Zheng, Luming; Sun, Yinggang; Wang, Tianxiao; Wang, Baocheng

    2015-07-01

    Irradiation has been reported to increase radioresistance and epithelial-mesenchymal transition (EMT) in gastric cancer (GC) cells. The Notch pathway is critically implicated in cancer EMT and radioresistance. In the present study, we investigated the use of a Notch-1 inhibiting compound as a novel therapeutic candidate to regulate radiation-induced EMT in GC cells. According to previous screening, tangeretin, a polymethoxylated flavonoid from citrus fruits was selected as a Notch-1 inhibitor. Tangeretin enhanced the radiosensitivity of GC cells as demonstrated by MTT and colony formation assays. Tangeretin also attenuated radiation-induced EMT, invasion and migration in GC cells, accompanied by a decrease in Notch-1, Jagged1/2, Hey-1 and Hes-1 expressions. Tangeretin triggered the upregulation of miR-410, a tumor-suppressive microRNA. Furthermore, re-expression of miR-410 prevented radiation-induced EMT and cell invasion. An in vivo tumor xenograft model confirmed the antimetastasis effect of tangeretin as we observed in vitro. In nude mice, tumor size was considerably diminished by radiation plus tangeretin co-treatment. Tangeretin almost completely inhibited lung metastasis induced by irradiation. Tangeretin may be a novel antimetastatic agent for radiotherapy.

  13. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  14. Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling.

    PubMed

    Verheijen, Marcha; Schrooders, Yannick; Gmuender, Hans; Nudischer, Ramona; Clayton, Olivia; Hynes, James; Niederer, Steven; Cordes, Henrik; Kuepfer, Lars; Kleinjans, Jos; Caiment, Florian

    2018-05-24

    Doxorubicin (DOX) is a chemotherapeutic agent of which the medical use is limited due to cardiotoxicity. While acute cardiotoxicity is reversible, chronic cardiotoxicity is persistent or progressive, dose-dependent and irreversible. While DOX mechanisms of action are not fully understood yet, 3 toxicity processes are known to occur in vivo: cardiomyocyte dysfunction, mitochondrial dysfunction and cell death. We present an in vitro experimental design aimed at detecting DOX-induced cardiotoxicity by obtaining a global view of the induced molecular mechanisms through RNA-sequencing. To better reflect the in vivo situation, human 3D cardiac microtissues were exposed to physiologically-based pharmacokinetic (PBPK) relevant doses of DOX for 2 weeks. We analysed a therapeutic and a toxic dosing profile. Transcriptomics analysis revealed significant gene expression changes in pathways related to "striated muscle contraction" and "respiratory electron transport", thus suggesting mitochondrial dysfunction as an underlying mechanism for cardiotoxicity. Furthermore, expression changes in mitochondrial processes differed significantly between the doses. Therapeutic dose reflects processes resembling the phenotype of delayed chronic cardiotoxicity, while toxic doses resembled acute cardiotoxicity. Overall, these results demonstrate the capability of our innovative in vitro approach to detect the three known mechanisms of DOX leading to toxicity, thus suggesting its potential relevance for reflecting the patient situation. Our study also demonstrated the importance of applying physiologically relevant doses during toxicological research, since mechanisms of acute and chronic toxicity differ. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Role of oxidative stress in a rat model of radiation-induced erectile dysfunction.

    PubMed

    Kimura, Masaki; Rabbani, Zahid N; Zodda, Andrew R; Yan, Hui; Jackson, Isabel L; Polascik, Thomas J; Donatucci, Craig F; Moul, Judd W; Vujaskovic, Zeljko; Koontz, Bridget F

    2012-06-01

    Chronic oxidative stress is one of the major factors playing an important role in radiation-induced normal tissue injury. However, the role of oxidative stress in radiation-induced erectile dysfunction (ED) has not been fully investigated. Aims.  To investigate role of oxidative stress after prostate-confined irradiation in a rat model of radiation-induced ED. Fifty-four young adult male rats (10-12 weeks of age) were divided into age-matched sham radiotherapy (RT) and RT groups. Irradiated animals received prostate-confined radiation in a single 20 Gy fraction. Intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation were conducted at 2, 4, and 9 weeks following RT. The protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox4 and gp91(phox)), markers of oxidative DNA damage (8-hydroxy-2'-deoxyguanosine [8-OHdG]), lipid peroxidation (4-hydroxynonenal [4HNE]), and inflammatory response including inducible nitric oxide synthase, macrophage activation (ED-1), and nitrotyrosine, and endogenous antioxidant defense by nuclear factor erythroid 2-related factor (Nrf2) were evaluated in irradiated prostate tissue and corpora cavernosa (CC). In addition, we investigated the relationships between results of ICP/mean arterial pressure (MAP) ratios and expression level of oxidative stress markers. In the RT group, hemodynamic functional studies demonstrated a significant time-dependent decrease in ICP. Increased expression of Nox4, gp91(phox), 8-OHdG, and 4HNE were observed in the prostate and CC after RT. Similarly, expressions of inflammatory markers were significantly increased. There was a trend for increased Nrf2 after 4 weeks. ICP/MAP ratio negatively correlated with higher expression level of oxidative markers. NADPH oxidase activation and chronic oxidative stress were observed in irradiated prostate tissue and CC, which correlated with lower ICP/MAP ratio. Persistent inflammatory responses were also

  16. Epigenetic dysregulation of key developmental genes in radiation-induced rat mammary carcinomas.

    PubMed

    Daino, Kazuhiro; Nishimura, Mayumi; Imaoka, Tatsuhiko; Takabatake, Masaru; Morioka, Takamitsu; Nishimura, Yukiko; Shimada, Yoshiya; Kakinuma, Shizuko

    2018-02-13

    With the increase in the number of long-term cancer survivors worldwide, there is a growing concern about the risk of secondary cancers induced by radiotherapy. Epigenetic modifications of genes associated with carcinogenesis are attractive targets for the prevention of cancer owing to their reversible nature. To identify genes with possible changes in functionally relevant DNA methylation patterns in mammary carcinomas induced by radiation exposure, we performed microarray-based global DNA methylation and expression profiling in γ-ray-induced rat mammary carcinomas and normal mammary glands. The gene expression profiling identified dysregulation of developmentally related genes, including the downstream targets of polycomb repressive complex 2 (PRC2) and overexpression of enhancer of zeste homolog 2, a component of PRC2, in the carcinomas. By integrating expression and DNA methylation profiles, we identified ten hypermethylated and three hypomethylated genes that possibly act as tumor-suppressor genes and oncogenes dysregulated by aberrant DNA methylation; half of these genes encode developmental transcription factors. Bisulfite sequencing and quantitative PCR confirmed the dysregulation of the polycomb-regulated developmentally related transcription-factor genes Dmrt2, Hoxa7, Foxb1, Sox17, Lhx8, Gata3 and Runx1. Silencing of Hoxa7 was further verified by immunohistochemistry. These results suggest that, in radiation-induced mammary gland carcinomas, PRC2-mediated aberrant DNA methylation leads to dysregulation of developmentally related transcription-factor genes. Our findings provide clues to molecular mechanisms linking epigenetic regulation and radiation-induced breast carcinogenesis and underscore the potential of such epigenetic mechanisms as targets for cancer prevention. © 2018 UICC.

  17. Amelioration of Radiation-Induced Hematopoietic and Gastrointestinal Damage by Ex-RAD (trademark) in Mice

    DTIC Science & Technology

    2012-06-06

    recovery from radiation-induced neutropenia Figure 3 shows the protective effects of Ex-RAD prophy- laxis on acute radiation-induced cytopenia. We used a... neutropenia on Day 4 post-TBI. For platelets, the nadir was observed between Days 7 to 17 post-TBI in the vehicle-treated group (Fig. 3d). Peripheral blood cell...recovery from neutropenia and restored blood Fig. 7. TUNEL staining in the jejunum sections from Ex-RAD-treated and vehicle-treated groups 24 h post

  18. Soluble Dietary Fiber Ameliorates Radiation-Induced Intestinal Epithelial-to-Mesenchymal Transition and Fibrosis.

    PubMed

    Yang, Jianbo; Ding, Chao; Dai, Xujie; Lv, Tengfei; Xie, Tingbing; Zhang, Tenghui; Gao, Wen; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2017-11-01

    Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse model. Apple pectin (4% wt/wt in drinking water) was administered to wild-type and pVillin-Cre-EGFP transgenic mice with intestinal fibrosis induced by a single dose of abdominal irradiation of 10 Gy. The effects of pectin on intestinal EMT and fibrosis, gut microbiota, and short-chain fatty acid (SCFA) concentration were evaluated. Intestinal fibrosis in late radiation enteropathy showed increased submucosal thickness and subepithelial collagen deposition. Enhanced green fluorescent protein (EGFP) + /vimentin + and EGFP + /α-smooth muscle actin (SMA) + coexpressing cells were most clearly observed at 2 weeks after irradiation and gradually decreased at 4 and 12 weeks. Pectin significantly attenuated the thickness of submucosa and collagen deposition at 12 weeks (24.3 vs 27.6 µm in the pectin + radiation-treated group compared with radiation-alone group, respectively, P < .05; 69.0% vs 57.1%, P < .001) and ameliorated EMT at 2 and 4 weeks. Pectin also modulated the intestinal microbiota composition and increased the luminal SCFA concentration. The soluble dietary fiber pectin protected the terminal ileum against radiation-induced fibrosis. This effect might be mediated by altered SCFA concentration in the intestinal lumen and reduced EMT in the ileal epithelium.

  19. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice

    PubMed Central

    Venkateswaran, Kavya; Shrivastava, Anju; Agrawala, Paban K.; Prasad, Ashok; Kalra, Namita; Pandey, Parvat R.; Manda, Kailash; Raj, Hanumantharao G.; Parmar, Virinder S.; Dwarakanath, Bilikere S.

    2016-01-01

    Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages. PMID:27849061

  20. Bilirubin attenuates bufadienolide-induced ventricular arrhythmias and cardiac dysfunction in guinea-pigs by reducing elevated intracellular Na(+) levels.

    PubMed

    Ma, Hongyue; Zhang, Junfeng; Jiang, Jiejun; Zhou, Jing; Xu, Huiqin; Zhan, Zhen; Wu, Qinan; Duan, Jinao

    2012-03-01

    Bufadienolides, known ligands of the sodium pump, have been shown to inhibit the proliferation of several cancer cell types. However, their development to date as anticancer agents has been impaired by a narrow therapeutic margin resulting from their potential to induce cardiotoxicity. In the present study, we examined the effects of bilirubin, an endogenous antioxidant, on the cardiotoxicity of bufadienolides (derived from toad venom) in guinea-pigs. The results showed that bufadienolides (8 mg/kg) caused ventricular arrhythmias, conduction block, cardiac dysfunction and death in guinea-pigs. Pretreatment with bilirubin (75 and 150 mg/kg) significantly prevented bufadienolide-induced premature ventricular complexes, ventricular tachycardia, ventricular fibrillation and death. Bilirubin also markedly improved the inhibition of cardiac contraction in bufadienolide-treated guinea-pigs as evidenced by increases in left ventricular systolic pressure and decreases in left ventricular diastolic pressure in vivo. Furthermore, bilirubin significantly reduced the intracellular sodium content ([Na(+)]( i )) in ex vivo bufadienolide-stimulated guinea-pig ventricular myocytes loaded with the sodium indicator Sodium Green. An antitumor study showed that bilirubin did not compromise the ability of bufadienolides to inhibit gastric cancer cell MGC-803 proliferation. These results suggested that bilirubin can attenuate bufadienolide-induced arrhythmias and cardiac dysfunction in guinea-pigs by reducing elevated [Na(+)]( i ) and may improve bufadienolide therapeutic index in cancer treatment.