Science.gov

Sample records for radiation induces p53-independent

  1. Genome-Wide Expression Analysis Identifies a Modulator of Ionizing Radiation-Induced p53-Independent Apoptosis in Drosophila melanogaster

    PubMed Central

    van Bergeijk, Petra; Heimiller, Joseph; Uyetake, Lyle; Su, Tin Tin

    2012-01-01

    Tumor suppressor p53 plays a key role in DNA damage responses in metazoa, yet more than half of human tumors show p53 deficiencies. Therefore, understanding how therapeutic genotoxins such as ionizing radiation (IR) can elicit DNA damage responses in a p53-independent manner is of clinical importance. Drosophila has been a good model to study the effects of IR because DNA damage responses as well as underlying genes are conserved in this model, and because streamlined gene families make loss-of-function analyses feasible. Indeed, Drosophila is the only genetically tractable model for IR-induced, p53-independent apoptosis and for tissue regeneration and homeostasis after radiation damage. While these phenomenon occur only in the larvae, all genome-wide gene expression analyses after irradiation to date have been in embryos. We report here the first analysis of IR-induced, genome-wide gene expression changes in wild type and p53 mutant Drosophila larvae. Key data from microarrays were confirmed by quantitative RT-PCR. The results solidify the central role of p53 in IR-induced transcriptome changes, but also show that nearly all changes are made of both p53-dependent and p53-independent components. p53 is found to be necessary not just for the induction of but also for the repression of transcript levels for many genes in response to IR. Furthermore, Functional analysis of one of the top-changing genes, EF1a-100E, implicates it in repression of IR-induced p53-independent apoptosis. These and other results support the emerging notion that there is not a single dominant mechanism but that both positive and negative inputs collaborate to induce p53-independent apoptosis in response to IR in Drosophila larvae. PMID:22666323

  2. Neem oil limonoids induces p53-independent apoptosis and autophagy

    PubMed Central

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  3. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    PubMed

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  4. Curcumin induces p53-independent necrosis in H1299 cells via a mitochondria-associated pathway.

    PubMed

    Li, Feie; Chen, Xi; Xu, Bing; Zhou, Hua

    2015-11-01

    Curcumin has been shown to have various therapeutic and/or adjuvant therapeutic effects on human cancers, as it inhibits cancer cell proliferation and induces apoptosis through p53-dependent molecular pathways. However, numerous cancer cell types bear a mutant p53 gene, and whether curcumin has any therapeutic effects on p53-deficient/mutant cancer cells has remained elusive. The present study sought to determine whether curcumin exerts any anti-proliferative and cytotoxic effects on the p53-deficient H1299 human lung cancer cell line via a p53-independent mechanism. An MTT assay and flow cytometric analysis indicated that curcumin significantly decreased cell proliferation and induced necrotic cell death. Western blot analysis of the cytosolic and mitochondrial fractions of H1299 cells as well as a fluorometric caspase assay indicated that curcumin-induced necrosis was mitochondria- and caspase-dependent, and resulted in cytochrome c release. Of note, this necrotic cell death was reduced following inhibition of B-cell lymphoma‑2 (Bcl-2)‑associated X protein (Bax) or Bcl‑2 homologous antagonist killer (Bak) as well as overexpression of Bcl-2. In conclusion, the present study suggested that curcumin-induced necrotic cell death was mediated via a p53-independent molecular pathway, which was associated with Bax and Bak translocation, caspase activation and cytochrome c release.

  5. Quercetin induces gadd45 expression through a p53-independent pathway.

    PubMed

    Yoshida, Tatsushi; Maeda, Ayaka; Horinaka, Mano; Shiraishi, Takumi; Nakata, Susumu; Wakada, Miki; Yogosawa, Shingo; Sakai, Toshiyuki

    2005-11-01

    Quercetin, a kind of flavonoid, is found in edible fruits and vegetables and has anti-tumorigenic activity. However, the mechanism of activity has not been elucidated. We show for the first time that gadd45 is a molecular target of quercetin, which inhibits growth of human cervical cancer HeLa cells. Apoptosis was detected in HeLa cells treated with quercetin. At the concentration inducing apoptosis, quercetin also increased gadd45 expression at the mRNA and protein level, however, the 5'-promoter region of the gadd45 gene was not activated by quercetin. Since gadd45 is known to be a downstream gene of the tumor suppressor p53, we examined whether or not quercetin regulates gadd45 induction via a p53 pathway. Quercetin did not activate transcription through p53-binding sites in HeLa cells, although it up-regulated gadd45 in p53-inactivated tumor cells. These results indicate that quercetin induces gadd45 expression in a p53-independent manner.

  6. ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence

    PubMed Central

    Ha, Linan; Ichikawa, Takeshi; Anver, Miriam; Dickins, Ross; Lowe, Scott; Sharpless, Norman E.; Krimpenfort, Paul; DePinho, Ronald A.; Bennett, Dorothy C.; Sviderskaya, Elena V.; Merlino, Glenn

    2007-01-01

    Inactivation of the p53 pathway represents the most common molecular defect of human cancer. But in the setting of melanoma, a highly aggressive and invariably fatal malignancy in its advanced disseminated form, mutation/deletion of p53 is relatively rare, whereas its positive regulator ARF is often lost. Here, we show that genetic deficiency in Arf but not p53 facilitates rapid development of melanoma in a genetically engineered mouse model. This difference is accounted for, at least in part, by the unanticipated observation that, unlike fibroblasts, senescence control in melanocytes is strongly regulated by Arf and not p53. Moreover, oncogenic NRAS collaborates with deficiency in Arf, but not p53, to fully transform melanocytes. Our data demonstrate that ARF and p53, although linked in a common pathway, suppress tumorigenesis through distinct, lineage-dependent mechanisms and suggest that ARF helps restrict melanoma progression by executing the oncogene-induced senescence program in benign nevi. Thus, therapeutics designed to restore wild-type p53 function may be insufficient to counter melanoma and other malignancies in which ARF holds p53-independent tumor suppressor activity. PMID:17576930

  7. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  8. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  9. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent

    PubMed Central

    Geng, Ying; Kohli, Latika; Klocke, Barbara J.; Roth, Kevin A.

    2010-01-01

    Glioblastoma (GBM) is a high-grade central nervous system malignancy and despite aggressive treatment strategies, GBM patients have a median survival time of just 1 year. Chloroquine (CQ), an antimalarial lysosomotropic agent, has been identified as a potential adjuvant in the treatment regimen of GBMs. However, the mechanism of CQ-induced tumor cell death is poorly defined. We and others have shown that CQ-mediated cell death may be p53-dependent and at least in part due to the intrinsic apoptotic death pathway. Here, we investigated the effects of CQ on 5 established human GBM lines, differing in their p53 gene status. CQ was found to induce a concentration-dependent death in each of these cell lines. Although CQ treatment increased caspase-3–like enzymatic activity in all 5 cell lines, a broad-spectrum caspase inhibitor did not significantly attenuate death. Moreover, CQ caused an accumulation of autophagic vacuoles in all cell lines and was found to affect the levels and subcellular distribution of cathepsin D, suggesting that altered lysosomal function may also play a role in CQ-induced cell death. Thus, CQ can induce p53-independent death in gliomas that do not require caspase-mediated apoptosis. To potentially identify more potent chemotherapeutics, various CQ derivatives and lysosomotropic compounds were tested on the GBM cells. Quinacrine and mefloquine were found to be more potent than CQ in killing GBM cells in vitro and given their superior blood–brain barrier penetration compared with CQ may prove more efficacious as chemotherapeutic agents for GBM patients. PMID:20406898

  10. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells

    PubMed Central

    Huayin, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-01-01

    Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms. PMID:28002389

  11. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells.

    PubMed

    Huaying, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-12-21

    BACKGROUND The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. MATERIAL AND METHODS A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. RESULTS Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. CONCLUSIONS KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.

  12. Methylsulfonylmethane Induces p53 Independent Apoptosis in HCT-116 Colon Cancer Cells

    PubMed Central

    Karabay, Arzu Zeynep; Koc, Asli; Ozkan, Tulin; Hekmatshoar, Yalda; Sunguroglu, Asuman; Aktan, Fugen; Buyukbingol, Zeliha

    2016-01-01

    Methylsulfonylmethane (MSM) is an organic sulfur-containing compound which has been used as a dietary supplement for osteoarthritis. MSM has been shown to reduce oxidative stress and inflammation, as well as exhibit apoptotic or anti-apoptotic effects depending on the cell type or activating stimuli. However, there are still a lot of unknowns about the mechanisms of actions of MSM. In this study, MSM was tested on colon cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis revealed that MSM inhibited cell viability and increased apoptotic markers in both HCT-116 p53 +/+ and HCT-116 p53 −/− colon cancer cells. Increased poly (ADP-ribose) polymerase (PARP) fragmentation and caspase-3 activity by MSM also supported these findings. MSM also modulated the expression of various apoptosis-related genes and proteins. Moreover, MSM was found to increase c-Jun N-terminal kinases (JNK) phosphorylation in both cell lines, dose-dependently. In conclusion, our results show for the first time that MSM induces apoptosis in HCT-116 colon cancer cells regardless of their p53 status. Since p53 is defective in >50% of tumors, the ability of MSM to induce apoptosis independently of p53 may offer an advantage in anti-tumor therapy. Moreover, the remarkable effect of MSM on Bim, an apoptotic protein, also suggests its potential use as a novel chemotherapeutic agent for Bim-targeted anti-cancer therapies. PMID:27428957

  13. Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation

    PubMed Central

    Cheng, Shu-Yuan; Seo, Jiwon; Huang, Bik Tzu; Napolitano, Tanya; Champeil, Elise

    2016-01-01

    Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation. PMID:27666201

  14. DRAM Is Involved in Regulating Nucleoside Analog-Induced Neuronal Autophagy in a p53-Independent Manner.

    PubMed

    Gao, Ziyun; Shan, Junqi; Wang, Bishi; Qiao, Luxin; Chen, Dexi; Zhang, Yulin

    2017-03-06

    The widespread use of combined anti-retroviral therapy (cART) has not decreased the prevalence of HIV-1-associated neurocognitive disorder (HAND), a type of neurodegenerative disease, even though cART effectively inhibits virus colonization in the central nervous system. Therefore, anti-retroviral agents cannot be fully excluded from the pathogenesis of HAND. Our previous study reported that long-term nucleoside analogue (NA) exposure induced mitochondrial toxicity in the cortical neurons of HAND patients and mice, but the exact mechanism of NA-associated neurotoxicity has remained unclear. Alteration of autophagy can result in protein aggregation and the accumulation of dysfunctional organelles, which are hallmarks of some neurodegenerative diseases. In this study, we first found increased autophagy in cortical autopsy specimens of AIDS patients. We then found that a low dose of NAs could stimulate autophagy in primary cultured neurons, while a high dose of NAs could induce only neuronal apoptosis. The level of NA-induced Bcl-2 and Bax expressions determined whether neuronal autophagy or apoptosis occurred. Furthermore, the level of NA-induced neuronal apoptosis correlated with the dysfunction of cellular DNA polymerase gamma. Damage-regulated autophagy modulator (DRAM) overexpression was also involved in NA-induced neuronal autophagy. p53 played a role in the regulation of NA-induced neuronal apoptosis, but its role in NA-associated neuronal autophagy was uncertain. Our results suggest that DRAM is involved in the regulation of NA-induced neuronal autophagy in a p53-independent manner. Further research is needed to investigate the underlying mechanism.

  15. Benzo(a)pyrene-7,8-diol-9,10-epoxide induced p53-independent necrosis via the mitochondria-associated pathway involving Bax and Bak activation.

    PubMed

    Zhang, W; Liu, N; Wang, X; Jin, X; Du, H; Peng, G; Xue, J

    2015-02-01

    Benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) is a highly reactive DNA damage agent and can induce cell death through both p53-independent and -dependent pathways. However, little is known about the molecular mechanisms of p53-independent pathways in BPDE-induced cell death. To understand the p53-independent mechanisms, we have now examined BPDE-induced cytotoxicity in p53-deficient baby mouse kidney (BMK) cells. The results showed that BPDE could induce Bax and Bak activation, cytochrome c release, caspases activation, and necrotic cell death in the BMK cells. Bax and Bak, two key molecules of mitochondrial permeability transition pore, were interdependently activated by BPDE, with Bax and Bak translocation to and Bax/Bak homo-oligomerization in mitochondria, release of cytochrome c was induced. Importantly, cytochrome c release and necrotic cell death were diminished in BMK cells (Bax(-/-)), BMK cells (Bak(-/-)), and BMK cells (Bax(-/-)/Bak(-/-)). Furthermore, overexpression of Bcl-2 could ameliorate BPDE-induced cytochrome c release and necrosis. Together the findings suggested that BPDE-induced necrosis was modulated by the p53-independent pathway, which was related to the translocation of Bax and Bak to mitochondria, release of cytochrome c, and activation of caspases. © The Author(s) 2015.

  16. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    SciTech Connect

    Nakagawa, Yosuke; Takahashi, Akihisa; Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro; Ota, Ichiro; Okamoto, Noritomo; Mori, Eiichiro; Noda, Taichi; Furusawa, Yoshiya; Kirita, Tadaaki; Ohnishi, Takeo

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  17. Inhibition of AKT/FoxO3a signaling induced PUMA expression in response to p53-independent cytotoxic effects of H1: A derivative of tetrandrine.

    PubMed

    Zhang, Yin-Xu; Liu, Xiao-Mei; Wang, Jing; Li, Jun; Liu, Ying; Zhang, Hua; Yu, Xue-Wen; Wei, Ning

    2015-01-01

    PUMA (p53 unregulated modulator of apoptosis), a BH3-only Bcl-2 family member, can be induced by p53-dependent and p53-independent manners. It plays an important role as regulator of cellular apoptosis. Herein, we evaluate the effects of H1 (a derivative of tetrandrine) on induction of PUMA and underlie its potential mechanism in p53-independent cytotoxic response. Anti-proliferative activity and evidently cytotoxic activity of H1 were observed in wild-type and p53 null cells. Further studies demonstrated that H1 resulted in an increase of cleaved PARP, decease of survivin and elevation of p-H2AX. What is more, H1 significantly induced PUMA expression in a concentration- and time-dependent manner and caused an increase of Bax/Bcl-2 ratio in p53 null cells. Of note, knockdown of PUMA attenuated cytotoxic activity of H1. Further studies demonstrated that inhibition of AKT/FoxO3a signaling contributed to H1-mediated PUMA induction. Targeted suppression of AKT/FoxO3a signaling by siRNA could overcome H1-mediated PUMA induction. In addition, H1 significantly suppressed NF-κB activity and caused an increase of early apoptotic and late apoptotic cells, and elevated caspase-3 activity. Taken together, we found that inhibition of AKT/FoxO3a signaling may contribute to H1-mediated PUMA induction, suggesting that inhibition of AKT/FoxO3a signaling result in PUMA expression in response to p53-independent cytotoxic effects of H1.

  18. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α

    PubMed Central

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-01-01

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence. PMID:23764844

  19. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α.

    PubMed

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-06-13

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.

  20. Lipoic acid induces p53-independent cell death in colorectal cancer cells and potentiates the cytotoxicity of 5-fluorouracil.

    PubMed

    Dörsam, Bastian; Göder, Anja; Seiwert, Nina; Kaina, Bernd; Fahrer, Jörg

    2015-10-01

    Alpha-lipoic acid (LA), which plays a pivotal role in mitochondrial energy metabolism, is an endogenous dithiol compound with an array of antioxidative functions. It has been shown that LA triggers cell death in tumor cell lines, whereas non-transformed cells are hardly affected. In the present study, we analyzed the cytotoxicity of LA on colorectal cancer (CRC) cells differing in their p53 status and investigated a putative synergistic effect with the anticancer drug 5-fluorouracil (5-FU). We show that LA induces a dose-dependent decrease in cell viability, which was independent of the p53 status as attested in isogenic p53-proficient and p53-deficient cell lines. This effect was largely attributable to cell death induction as revealed by Annexin-V/PI staining. LA-treated HCT116 cells underwent caspase-dependent and caspase-independent cell death, which was blocked by the pan-caspase inhibitor zVAD and the RIP-kinase inhibitor Necrostatin-1, respectively. In CaCO-2 and HT29 cells, LA induced caspase-dependent cell demise via activation of caspase-9, caspase-3 and caspase-7 with subsequent PARP-1 cleavage as demonstrated by immunoblot analysis, activity assays and pan-caspase inhibition. Interestingly, LA treatment did neither activate p53 nor induced genotoxic effects as shown by lack of DNA strand breaks and phosphorylation of histone 2AX. Finally, we provide evidence that LA increases the cytotoxic effect induced by the anticancer drug 5-FU as revealed by significantly enhanced cell death rates in HCT116 and CaCO-2 cells. Collectively, these findings demonstrate that LA induces CRC cell death independent of their p53 status and potentiates the cytotoxicity of 5-FU without causing DNA damage on its own, which makes it a candidate for tumor therapy.

  1. Green Tea Polyphenols Induce p53-Dependent and p53-Independent Apoptosis in Prostate Cancer Cells through Two Distinct Mechanisms

    PubMed Central

    Gupta, Karishma; Thakur, Vijay S.; Bhaskaran, Natarajan; Nawab, Akbar; Babcook, Melissa A.; Jackson, Mark W.; Gupta, Sanjay

    2012-01-01

    Inactivation of the tumor suppressor gene p53 is commonly observed in human prostate cancer and is associated with therapeutic resistance. We have previously demonstrated that green tea polyphenols (GTP) induce apoptosis in prostate cancer cells irrespective of p53 status. However, the molecular mechanisms underlying these observations remain elusive. Here we investigated the mechanisms of GTP-induced apoptosis in human prostate cancer LNCaP cells stably-transfected with short hairpin-RNA against p53 (LNCaPshp53) and control vector (LNCaPshV). GTP treatment induced p53 stabilization and activation of downstream targets p21/waf1 and Bax in a dose-dependent manner specifically in LNCaPshV cells. However, GTP-induced FAS upregulation through activation of c-jun-N-terminal kinase resulted in FADD phosphorylation, caspase-8 activation and truncation of BID, leading to apoptosis in both LNCaPshV and LNCaPshp53 cells. In parallel, treatment of cells with GTP resulted in inhibition of survival pathway, mediated by Akt deactivation and loss of BAD phosphorylation more prominently in LNCaPshp53 cells. These distinct routes of cell death converged to a common pathway, leading to loss of mitochondrial transmembrane potential, cytochrome c release and activation of terminal caspases, resulting in PARP-cleavage. GTP-induced apoptosis was attenuated with JNK inhibitor, SP600125 in both cell lines; whereas PI3K-Akt inhibitor, LY294002 resulted in increased cell death prominently in LNCaPshp53 cells, establishing the role of two distinct pathways of GTP-mediated apoptosis. Furthermore, GTP exposure resulted in inhibition of class I HDAC protein, accumulation of acetylated histone-H3 in total cellular chromatin, resulting in increased accessibility of transcription factors to bind with the promoter sequences of p21/waf1 and Bax, regardless of the p53 status of cells, consistent with effects elicited by an HDAC inhibitor, trichostatin A. These results demonstrate that GTP induces

  2. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner.

    PubMed

    Guo, W; Zhang, Y; Ling, Z; Liu, X; Zhao, X; Yuan, Z; Nie, C; Wei, Y

    2015-10-15

    Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53.

  3. Indole-3-carbinol and 3,3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner.

    PubMed

    Lee, Seong-Ho; Kim, Jong-Sik; Yamaguchi, Kiyoshi; Eling, Thomas E; Baek, Seung Joon

    2005-03-04

    Indole-3-carbinol (I3C), present in cruciferous vegetables, and its major in vivo product 3,3'-diindolylmethane (DIM), have been reported to suppress cancer development. However, the responsible molecular mechanisms are not fully understood. Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a TGF-beta superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. The present study was performed to investigate whether I3C and DIM influence NAG-1 expression and to provide the potential molecular mechanism of their effects on anti-tumorigenesis. The I3C repressed cell proliferation and induced NAG-1 expression in a concentration-dependent manner. In addition, DIM increased the expression of NAG-1 as well as activating transcription factor 3 (ATF3), and the induction of ATF3 was earlier than that of NAG-1. The DIM treatment increased luciferase activity of NAG-1 in HCT-116 cells transfected with NAG-1 promoter construct. The results suggest that I3C represses cell proliferation through up-regulation of NAG-1 and that ATF3 may play a pivotal role in DIM-induced NAG-1 expression in human colorectal cancer cells. Furthermore, the mixture of I3C with resveratrol enhances NAG-1 expression, suggesting the synergistic effect of these two unrelated compounds on NAG-1 expression.

  4. A dual-targeting, p53-independent, apoptosis-inducing platinum(II) anticancer complex, [Pt(BDI(QQ))]Cl.

    PubMed

    Suntharalingam, Kogularamanan; Wilson, Justin J; Lin, Wei; Lippard, Stephen J

    2014-03-01

    The therapeutic index and cellular mechanism of action of [Pt(BDI(QQ))]Cl, a monocationic, square-planar platinum(II) complex, are reported. [Pt(BDI(QQ))]Cl was used to treat several cell lines, including wild type and cisplatin-resistant ovarian carcinoma cells (A2780 and A2780CP70) and non-proliferating lung carcinoma cells (A549). [Pt(BDI(QQ))]Cl selectively kills cancer cells over healthy cells and exhibits no cross-resistance with cisplatin. The mechanism of cell killing was established through detailed cell-based assays. [Pt(BDI(QQ))]Cl exhibits dual-threat capabilities, targeting nuclear DNA and mitochondria simultaneously. [Pt(BDI(QQ))]Cl induces DNA damage, leading to p53 enrichment, mitochondrial membrane potential depolarisation, and caspase-mediated apoptosis. [Pt(BDI(QQ))]Cl also accumulates in the mitochondria, resulting in direct mitochondrial damage. Flow cytometric studies demonstrated that [Pt(BDI(QQ))]Cl has no significant effect on cell cycle progression. Remarkably, p53-status is a not a determinant of [Pt(BDI(QQ))]Cl activity. In p53-null cells, [Pt(BDI(QQ))]Cl induces cell death through mitochondrial dysfunction. Cancers with p53-null status could therefore be targeted using [Pt(BDI(QQ))]Cl.

  5. M-ds-P21 induces cell apoptosis in bladder cancer T24 cells through P53 independent pathway.

    PubMed

    Wang, Haifeng; Liu, Wujiang; Jin, Jie; Zhou, Liqun; Liang, Lili; Guo, Yinglu

    2013-01-01

    To investigate the effect of M-ds-P21 on the apoptosis of bladder cancer T24 cells and its potential mechanism. Effect of M-ds-P21 on T24 cells were assessed by cell morphology and Western blot. Apoptosis was quantified by Annexin-V flow-cytometry analysis. To uncover the role of P53 in M-ds-P21-mediated apoptosis of T24 cells, we knocked down P53 before treating cells with M-ds-P21, and then assayed P21 and apoptosis-related protein by Western blot. To uncover the mechanism by which M-ds-P21 played stronger effect than ds-P21, we performed confocal microscope analyses. Both M-ds-P21 and ds-P21 treatment changed the cell morphology, leading to cell apoptosis after 3 days. Apoptosis induced by M-ds-P21 and ds-P21 treatment is not P53-dependent but caspase-dependent. Compared with ds-P21, M-ds-P21 significantly increased the bioavailability of ds-RNA in T24 cells. M-ds-P21 treatment induces more apoptotic population than ds-P21 does. The mechanism for stronger effect of M-ds-P21 is partly due to the enhanced bioavailability of ds-RNA in human bladder cancer T24 cells, and not P53-dependent but caspase-dependent.

  6. p53-independent death and p53-induced protection against apoptosis in fibroblasts treated with chemotherapeutic drugs.

    PubMed Central

    Malcomson, R. D.; Oren, M.; Wyllie, A. H.; Harrison, D. J.

    1995-01-01

    Many recent studies have implicated p53 in the cellular response to injury and induction of cell death by apoptosis. In a rat embryonal fibroblast cell line transformed with c-Ha-ras and a mutant temperature-sensitive p53 (val135), cells were G1 arrested at the permissive temperature of 32 degrees C when overexpressed p53 was in wild-type conformation. In this state cells were resistant to apoptosis induced by etoposide (at up to 50 microM) or bleomycin (15 microU ml-1). Cells at 37 degrees C with overexpressed p53 in mutant conformation were freed from this growth arrest, continued proliferating and showed dose-dependent increases in apoptosis. This death is independent of wild-type p53 function. Control cells containing a non-temperature-sensitive mutant p53 (phe132) were sensitive to both etoposide and bleomycin after 24 h at 32 degrees C and 37 degrees C, indicating that the results are not simply due to temperature effects on pharmacokinetics or DNA damage. Our data show that induction of a stable p53-mediated growth arrest renders these cells much less likely to undergo apoptosis in response to certain anti-cancer drugs, and we conclude that the regulatory role of p53 in apoptosis is influenced by the particular cellular context in which this gene is expressed. PMID:7547247

  7. Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3.

    PubMed

    Vijayababu, Marati R; Kanagaraj, P; Arunkumar, A; Ilangovan, R; Dharmarajan, A; Arunakaran, J

    2006-01-01

    Quercetin, a flavonoid found in onion, grapes, green vegetables, etc., has been shown to possess potent antiproliferative effects against various malignant cells. We report insulin-like growth factor-binding protein-3 (IGFBP-3) as an effector of quercetin-induced apoptosis in human prostate cancer cell lines in a p53-independent manner. We evaluated the production of IGFBP-3 in quercetin-treated cells. Apoptosis was studied in quercetin-treated cells to study the IGFBP-3-mediated role with flow cytometry and DNA fragmentation. Protein expressions of Bcl-2, Bcl-x(L), and Bax were studied by Western blot. Increased production of IGFBP-3 was associated with the increased ratio of proapoptotic to antiapoptotic members of the Bcl-2 family. In quercetin-treated PC-3 cells, an increase in Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein were observed. As PC-3 is a p53-negative cell line, these modulations of proapoptotic proteins and induction of apoptosis were independent of p53. The level of IGFBP-3 on the response of PC-3 cells to quercetin was examined. There was a twofold increase in IGFBP-3 level in conditioned media of 100 microM quercetin-treated cells. Quercetin also brought a peak at sub-G1 in PC-3 cells. Thus, increased level of IGFBP-3 was associated with increased proapoptotic proteins and apoptosis in response to quercetin, suggesting it may be a p53-independent effector of apoptosis in prostate cancer cells via its modulation of the Bax/Bcl-2 protein ratio.

  8. Pb2+-induced toxicity is associated with p53-independent apoptosis and enhanced by glutamate in GT1-7 neurons.

    PubMed

    Loikkanen, Jarkko; Chvalova, Katerina; Naarala, Jonne; Vähäkangas, Kirsi H; Savolainen, Kai M

    2003-09-30

    Recent studies indicate that the glutamatergic neurotransmitter system is involved in neurotoxicity caused by inorganic lead (Pb2+). We studied the role of apoptosis in the effects induced by Pb2+ (0.01-100 microM) and glutamate (0.1 and 1 mM) in mouse hypothalamic GT1-7 neurons. Although glutamate alone had no effect on cell viability, it enhanced neuronal cell death induced by Pb2+ (1-100 microM) within 72 h. Glutamate alone neither induced caspase-3-like protease activity nor promoted internucleosomal DNA fragmentation, both biochemical hallmarks of apoptosis. However, concurrent exposure to Pb2+ (10 or 100 microM) and glutamate (1 mM) resulted in more prominent cleavage of the fluorogenic caspase-3 substrate (Ac-DEVD-AMC) than caused by the same Pb2+ concentrations alone at 24-72 h. The highest caspase-3-like protease activities were measured at 48 h. Internucleosomal DNA fragmentation caused by Pb2+ (10 or 100 microM) alone or together with glutamate (1 mM) was evident at 96 h, less clear at 72 h and absent at 48 h. Immunoblotting did not reveal any changes in p53 protein levels in cells exposed to Pb2+, glutamate or their combination at any studied time point (3-72 h). Our results suggest that Pb2+-induced neurotoxicity may partially be mediated through p53-independent apoptosis and enhanced by glutamate.

  9. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway.

    PubMed

    Pavlou, Demetria; Kirmizis, Antonis

    2016-03-01

    Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.

  10. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner.

    PubMed

    Kim, Guen Tae; Lee, Se Hee; Kim, Jong Il; Kim, Young Min

    2014-04-01

    The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5' AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.

  11. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner

    PubMed Central

    KIM, GUEN TAE; LEE, SE HEE; KIM, JONG IL; KIM, YOUNG MIN

    2014-01-01

    The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2. PMID:24535669

  12. Dehydroepiandrosterone inhibits the progression phase of mammary carcinogenesis by inducing cellular senescence via a p16-dependent but p53-independent mechanism

    PubMed Central

    Shilkaitis, Anne; Green, Albert; Punj, Vasu; Steele, Vernon; Lubet, Ronald; Christov, Konstantin

    2005-01-01

    Introduction Dehydroepiandrosterone (DHEA), an adrenal 17-ketosteroid, is a precursor of testosterone and 17β-estradiol. Studies have shown that DHEA inhibits carcinogenesis in mammary gland and prostate as well as other organs, a process that is not hormone dependent. Little is known about the molecular mechanisms of DHEA-mediated inhibition of the neoplastic process. Here we examine whether DHEA and its analog DHEA 8354 can suppress the progression of hyperplastic and premalignant (carcinoma in situ) lesions in mammary gland toward malignant tumors and the cellular mechanisms involved. Methods Rats were treated with N-nitroso-N-methylurea and allowed to develop mammary hyperplastic and premalignant lesions with a maximum frequency 6 weeks after carcinogen administration. The animals were then given DHEA or DHEA 8354 in the diet at 125 or 1,000 mg/kg diet for 6 weeks. The effect of these agents on induction of apoptosis, senescence, cell proliferation, tumor burden and various effectors of cellular signaling were determined. Results Both agents induced a dose-dependent decrease in tumor multiplicity and in tumor burden. In addition they induced a senescent phenotype in tumor cells, inhibited cell proliferation and increased the number of apoptotic cells. The DHEA-induced cellular effects were associated with increased expression of p16 and p21, but not p53 expression, implicating a p53-independent mechanism in their action. Conclusion We provide evidence that DHEA and DHEA 8354 can suppress mammary carcinogenesis by altering various cellular functions, inducing cellular senescence, in tumor cells with the potential involvement of p16 and p21 in mediating these effects. PMID:16457693

  13. The DR6 protein from human herpesvirus-6B induces p53-independent cell cycle arrest in G{sub 2}/M

    SciTech Connect

    Schleimann, Mariane H.; Hoberg, Søren; Solhøj Hansen, Aida; Bundgaard, Bettina; Witt, Christoffer T.; Kofod-Olsen, Emil; Höllsberg, Per

    2014-03-15

    HHV-6B infection inhibits cell proliferation in G{sub 2}/M, but no protein has so far been recognized to exert this function. Here we identify the protein product of direct repeat 6, DR6, as an inhibitor of G{sub 2}/M cell-cycle progression. Transfection of DR6 reduced the total number of cells compared with mock-transfected cells. Lentiviral transduction of DR6 inhibited host cell DNA synthesis in a p53-independent manner, and this inhibition was DR6 dose-dependent. A deletion of 66 amino acids from the N-terminal part of DR6 prevented efficient nuclear translocation and the ability to inhibit DNA synthesis. DR6-induced accumulation of cells in G{sub 2}/M was accompanied by an enhanced expression of cyclin B1 that accumulated predominantly in the cytoplasm. Pull-down of cyclin B1 brought down pCdk1 with the inactivating phosphorylation at Tyr15. Together, DR6 delays cell cycle with an accumulation of cells in G{sub 2}/M and thus might be involved in HHV-6B-induced cell-cycle arrest. - Highlights: • HHV-6B-encoded DR6 protein inhibits cell proliferation. • DR6 inhibits host cell DNA synthesis independent of p53. • DR6 delays the cell cycle in G{sub 2}/M. • An N-terminal sequence is necessary for DR6 function. • DR6 induces cytoplasmic accumulation of cyclin B1.

  14. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells.

    PubMed

    Zuo, Shuguang; Liu, Chang; Wang, Jianguo; Wang, Fuqing; Xu, Wanling; Cui, Shao; Yuan, Lei; Chen, Xudong; Fan, Wenjuan; Cui, Mingchen; Song, Guohua

    2012-06-01

    were partially reversed by p21 knockdown in MCF-7 cells. Knockdown of p53 in MCF-7 cells did not influence the growth inhibition, cellular senescence, and p21 expression of the cells in response to IGFBP-rP1 transfection. Results from this study suggest that cellular senescence induced by IGFBP-rP1 is mediated at least in part by p21 enhanced expression, which regulated through the p53-independent pathway. IGFBP-rP1 might be one of the key molecules that trigger cellular senescence in breast cancer. Restoration of IGFBP-rP1 function might have therapeutic significance in breast cancer.

  15. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    SciTech Connect

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  16. Mitomycin C potentiates TRAIL-induced apoptosis through p53-independent upregulation of death receptors: evidence for the role of c-Jun N-terminal kinase activation.

    PubMed

    Cheng, Hairong; Hong, Bo; Zhou, Lanlan; Allen, Joshua E; Tai, Guihua; Humphreys, Robin; Dicker, David T; Liu, Yingqiu Y; El-Deiry, Wafik S

    2012-09-01

    The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53-/-) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.

  17. Enhancement of carboplatin- and quercetin-induced cell death by roscovitine is Akt dependent and p53 independent in hepatoma cells.

    PubMed

    Sharma, Aanchal; Bhat, Manoj Kumar

    2011-12-01

    Hepatocellular carcinoma (HCC) is a common malignancy worldwide and has an annual occurrence of one million new cases. Novel therapeutic strategies of increased efficacy in the treatment of HCC-bearing patients would certainly be helpful. Hence, the authors explored the effect of combination treatment of roscovitine with chemotherapeutic drugs or quercetin (Qctn) in hepatoma cells, HepG2 and Hep3B. Cell viability was assessed by MTT assay, cell growth assay, and nuclear morphological changes by DAPI staining. The altered expression of signaling proteins and apoptotic molecules was established by Western blotting. Roscovitine pretreatment considerably enhanced the drugs and Qctn-induced cell death in HepG2 and Hep3B cells. The exploratory studies revealed that augmented cell killing in HepG2 and Hep3B was mediated via Akt pathway and was independent of p53. pAkt was found to be significantly downregulated in combination treatment of roscovitine with carboplatin or Qctn. Corresponding to reduced expression of pAkt, the downstream molecules Bcl-2 and proactive forms of caspase 9 and caspase 3 were also downregulated indicating apoptosis. The present study reports for the first time, in hepatoma cells, the potentiation of carboplatin- and Qctn-induced cell death by the cell cycle inhibitor roscovitine. Roscovitine can thus be considered as a potential therapeutic target in combination with chemotherapeutic drugs or Qctn for treatment of HCC.

  18. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells

    PubMed Central

    Etti, Imaobong Christopher; Rasedee, Abdullah; Hashim, Najihah Mohd; Abdul, Ahmad Bustamam; Kadir, Arifah; Yeap, Swee Keong; Waziri, Peter; Malami, Ibrahim; Lim, Kian Lam; Etti, Christopher J

    2017-01-01

    Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski’s rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell’s viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species. Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer. PMID:28356713

  19. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells.

    PubMed

    Etti, Imaobong Christopher; Rasedee, Abdullah; Hashim, Najihah Mohd; Abdul, Ahmad Bustamam; Kadir, Arifah; Yeap, Swee Keong; Waziri, Peter; Malami, Ibrahim; Lim, Kian Lam; Etti, Christopher J

    2017-01-01

    Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski's rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell's viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species. Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer.

  20. Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/ signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells.

    PubMed

    Kim, Eun Ji; Kim, Guen Tae; Kim, Bo Min; Lim, Eun Gyeong; Kim, Sang-Yong; Kim, Young Min

    2017-04-28

    The extracts from Artemisia annua Linné (AAE) has been known to possess various functions including anti-bacterial, anti-virus and anti-oxidant effects. However, the mechanism of those effects of AAE is not well known. Pursuantly, we determined the apoptotic effects of extract of AAE in HCT116 cell. In this study, we suggested that AAE may exert cancer cell apoptosis through PTEN/PDK1/Akt/p53signal pathway and mitochondria-mediated apoptotic proteins. We measured 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) assay, Hoechst 33342 staining, Annexin V-PI staining, Mitopotential assay, immunofluorescence (IF) and Western blotting. Accordingly, our study showed that AAE treatment to HCT116 cells resulted in inhibition of PDK1, Akt, MDM2, Bcl-2, and pro-caspase 3 as well as activation of PTEN, p53-upregulated modulator of apoptosis (PUMA), Bax and Bak expression. Also we measured in vivo assay that xenograft model, H&E assay, TUNEL assay and IHC. AAE induced apoptosis via PTEN/p53/PDK1/Akt signal pathways through PTEN/p53-independent manner. AAE inhibit cell viability and increase LDH release in HCT116 colon cancer cell. Also, AAE increase apoptotic bodies, caspase -3,7 activation and reduces mitochondria membrane potential. AAE regulates cytochrome c translocation to the cytoplasm and Bax translocation to the mitochondrial membrane in an Immunofluorescence staining and increase PTEN and p53 expression in an in vivo tumor xenograft model. To elucidate the role of the PTEN/p53/PDK1/Akt signal pathways in cancer control, we conditionally inactivated PTEN/p53/PDK1/Akt signal pathways. We used inhibitors of PTEN, p53, PDK1, Akt. In consequence, these results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulation of proteins such as Bax, Bak and cytochrome c in PDK1/Akt signaling pathways via PTEM/p53-independent manner. We confirmed the apoptotic effect of extracts of AAE by

  1. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation.

    PubMed

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-07-11

    We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  2. The labdane diterpene sclareol (labd-14-ene-8, 13-diol) induces apoptosis in human tumor cell lines and suppression of tumor growth in vivo via a p53-independent mechanism of action.

    PubMed

    Mahaira, Louisa G; Tsimplouli, Chrisiida; Sakellaridis, Nikos; Alevizopoulos, Konstantinos; Demetzos, Costas; Han, Zhiyong; Pantazis, Panayotis; Dimas, Konstantinos

    2011-09-01

    The labdane diterpene sclareol has demonstrated significant cytotoxicity against human tumor cell lines and human colon cancer xenografts. Therefore, there is need to elucidate the mode of action of this compound as very little information is known for the anticancer activity of sclareol and other labdane diterpenes, in general. COMPARE analysis of GI(50) values for a number of human cancer cell lines was initially implicated in an effort to assign a putative mechanism of action to the compound. Sclareol-induced cell cycle arrest and apoptosis were assessed by flow cytometry and Western blot analyses. Finally, the anticancer ability of sclareol in vivo was assessed by using human colon cancer xenograft/mouse models. Sclareol arrested in vitro the growth of p53-deficient (HCT116(p53-/-)) human colon cancer cells and subsequently induced apoptosis by activating both caspases-8 and -9. Intraperitoneal administration of liposome-encapsulated sclareol at the maximum tolerated dose induced a marked growth suppression of HCT116(p53-/-) tumors established as xenografts in immunodeficient NOD/SCID mice. In conclusion, we demonstrate herein that sclareol kills human tumor cells by inducing arrest at the G(1)-phase of the cell cycle followed by apoptosis that involves activation of caspases-8, -9 and -3 via a p53-independent mechanism. These findings suggest that liposome-encapsulated sclareol possesses chemotherapeutic potential for the treatment of colorectal and other types of human cancer regardless of the p53-status. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  4. p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation

    PubMed Central

    2013-01-01

    Background To determine whether ceramide is responsible for the induction of p53-independent early or late apoptosis in response to high- and low-Linear-Energy-Transfer (LET) irradiation. Methods Four cell lines displaying different radiosensitivities and p53-protein status were irradiated with photons or 33.4 or 184 keV/μm carbon ions. The kinetics of ceramide production was quantified by fluorescent microscopy or High-Performance-Liquid-Chromatogaphy and the sequence of events leading to apoptosis by flow cytometry. Results Regardless of the p53-status, both low and high-LET irradiation induced an early ceramide production in radiosensitive cells and late in the radioresistant. This production strongly correlated with the level of early apoptosis in radiosensitive cells and delayed apoptosis in the radioresistant ones, regardless of radiation quality, tumor type, radiosensitivity, or p53-status. Inhibition of caspase activity or ceramide production showed that, for both types of radiation, ceramide is essential for the initiation of early apoptosis in radiosensitive cells and late apoptosis following mitotic catastrophe in radioresistant cells. Conclusions Ceramide is a determining factor in the onset of early and late apoptosis after low and high-LET irradiation and is the mediator of the p53-independent-apoptotic pathway. We propose that ceramide is the molecular bridge between mitotic catastrophe and the commitment phase of delayed apoptosis in response to irradiation. PMID:23530619

  5. Targeting of C-Terminal Binding Protein (CtBP) by ARF Results in p53-Independent Apoptosis

    PubMed Central

    Paliwal, Seema; Pande, Sandhya; Kovi, Ramesh C.; Sharpless, Norman E.; Bardeesy, Nabeel; Grossman, Steven R.

    2006-01-01

    ARF encodes a potent tumor suppressor that antagonizes MDM2, a negative regulator of p53. ARF also suppresses the proliferation of cells lacking p53, and loss of ARF in p53-null mice, compared with ARF or p53 singly null mice, results in a broadened tumor spectrum and decreased tumor latency. To investigate the mechanism of p53-independent tumor suppression by ARF, potential interacting proteins were identified by yeast two-hybrid screen. The antiapoptotic transcriptional corepressor C-terminal binding protein 2 (CtBP2) was identified, and ARF interactions with both CtBP1 and CtBP2 were confirmed in vitro and in vivo. Interaction with ARF resulted in proteasome-dependent CtBP degradation. Both ARF-induced CtBP degradation and CtBP small interfering RNA led to p53-independent apoptosis in colon cancer cells. ARF induction of apoptosis was dependent on its ability to interact with CtBP, and reversal of ARF-induced CtBP depletion by CtBP overexpression abrogated ARF-induced apoptosis. CtBP proteins represent putative targets for p53-independent tumor suppression by ARF. PMID:16508011

  6. p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia

    PubMed Central

    Ng, Kwok Peng; Ebrahem, Quteba; Negrotto, Soledad; Mahfouz, Reda Z.; Link, Kevin A.; Hu, Zhenbo; Gu, Xiaorong; Advani, Anjali; Kalaycio, Matt; Sobecks, Ronald; Sekeres, Mikkael; Copelan, Edward; Radivoyevitch, Tomas; Maciejewski, Jaroslaw; Mulloy, James C.; Saunthararajah, Yogen

    2013-01-01

    Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin modifying enzyme DNA methyl-transferase 1 (DNMT1) without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine up regulated the key late differentiation factors CEBPε and p27/CDKN1B, induced cellular differentiation, and terminated AML cell-cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xeno-transplanted AML cells was abrogated but normal hematopoietic stem cell (HSC) engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S-phase specific decitabine therapy. In xeno-transplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared to conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy. PMID:21701495

  7. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides

    PubMed Central

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-01-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  8. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O.; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E.; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C.; Orlowski, Robert; Sarbassov, Dos D.; Lorenzi, Philip L.; Huang, Xuelin; Neelapu, Sattva S.; McDonnell, Timothy; Miranda, Roberto N.; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R. Eric.; Andreeff, Michael

    2016-01-01

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. PMID:26884599

  9. The Wnt Target Protein Peter Pan Defines a Novel p53-independent Nucleolar Stress-Response Pathway.

    PubMed

    Pfister, Astrid S; Keil, Marina; Kühl, Michael

    2015-04-24

    Proper ribosome formation is a prerequisite for cell growth and proliferation. Failure of this process results in nucleolar stress and p53-mediated apoptosis. The Wnt target Peter Pan (PPAN) is required for 45 S rRNA maturation. So far, the role of PPAN in nucleolar stress response has remained elusive. We demonstrate that PPAN localizes to mitochondria in addition to its nucleolar localization and inhibits the mitochondrial apoptosis pathway in a p53-independent manner. Loss of PPAN induces BAX stabilization, depolarization of mitochondria, and release of cytochrome c, demonstrating its important role as an anti-apoptotic factor. Staurosporine-induced nucleolar stress and apoptosis disrupt nucleolar PPAN localization and induce its accumulation in the cytoplasm. This is accompanied by phosphorylation and subsequent cleavage of PPAN by caspases. Moreover, we show that PPAN is a novel interaction partner of the anti-apoptotic protein nucleophosmin (NPM). PPAN depletion induces NPM and upstream-binding factor (UBF) degradation, which is independent of caspases. In summary, we provide evidence for a novel nucleolar stress-response pathway involving PPAN, NPM, and BAX to guarantee cell survival in a p53-independent manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation

    PubMed Central

    2011-01-01

    Introduction Estrogen receptor positive breast cancers often have high levels of Mdm2. We investigated if estrogen signaling in such breast cancers occurred through an Mdm2 mediated pathway with subsequent inactivation of p53. Methods We examined the effect of long-term 17β-estradiol (E2) treatment (five days) on the p53-Mdm2 pathway in estrogen receptor alpha (ERα) positive breast cancer cell lines that contain wild-type p53 (MCF-7 and ZR75-1). We assessed the influence of estrogen by examining cell proliferation changes, activation of transcription of p53 target genes, p53-chromatin interactions and cell cycle profile changes. To determine the effects of Mdm2 and p53 knockdown on the estrogen-mediated proliferation signals we generated MCF-7 cell lines with inducible shRNA for mdm2 or p53 and monitored their influence on estrogen-mediated outcomes. To further address the p53-independent effect of Mdm2 in ERα positive breast cancer we generated cell lines with inducible shRNA to mdm2 using the mutant p53 expressing cell line T-47D. Results Estrogen increased the Mdm2 protein level in MCF-7 cells without decreasing the p53 protein level. After estrogen treatment of MCF-7 cells, down-regulation of basal transcription of p53 target genes puma and p21 was observed. Estrogen treatment also down-regulated etoposide activated transcription of puma, but not p21. Mdm2 knockdown in MCF-7 cells increased p21 mRNA and protein, decreased cell growth in 3D matrigel and also decreased estrogen-induced cell proliferation in 2D culture. In contrast, knockdown of p53 had no effect on estrogen-induced cell proliferation. In T-47D cells with mutant p53, the knockdown of Mdm2 decreased estrogen-mediated cell proliferation but did not increase p21 protein. Conclusions Estrogen-induced breast cancer cell proliferation required a p53-independent role of Mdm2. The combined influence of genetic and environmental factors on the tumor promoting effects of estrogen implicated Mdm2 as a

  11. p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies.

    PubMed

    Saunthararajah, Yogen; Triozzi, Pierre; Rini, Brian; Singh, Arun; Radivoyevitch, Tomas; Sekeres, Mikkael; Advani, Anjali; Tiu, Ramon; Reu, Frederic; Kalaycio, Matt; Copelan, Ed; Hsi, Eric; Lichtin, Alan; Bolwell, Brian

    2012-02-01

    Cytotoxic chemotherapy for acute myeloid leukemia (AML) usually produces only temporary remissions, at the cost of significant toxicity and risk for death. One fundamental reason for treatment failure is that it is designed to activate apoptosis genes (eg, TP53) that may be unavailable because of mutation or deletion. Unlike deletion of apoptosis genes, genes that mediate cell cycle exit by differentiation are present in myelodysplastic syndrome (MDS) and AML cells but are epigenetically repressed: MDS/AML cells express high levels of key lineage-specifying transcription factors. Mutations in these transcription factors (eg, CEBPA) or their cofactors (eg., RUNX1) affect transactivation function and produce epigenetic repression of late-differentiation genes that antagonize MYC. Importantly, this aberrant epigenetic repression can be redressed clinically by depleting DNA methyltransferase 1 (DNMT1, a central component of the epigenetic network that mediates transcription repression) using the deoxycytidine analogue decitabine at non-cytotoxic concentrations. The DNMT1 depletion is sufficient to trigger upregulation of late-differentiation genes and irreversible cell cycle exit by p53-independent differentiation mechanisms. Fortuitously, the same treatment maintains or increases self-renewal of normal hematopoietic stem cells, which do not express high levels of lineage-specifying transcription factors. The biological rationale for this approach to therapy appears to apply to cancers other than MDS/AML also. Decitabine or 5-azacytidine dose and schedule can be rationalized to emphasize this mechanism of action, as an alternative or complement to conventional apoptosis-based oncotherapy.

  12. Discovery and optimization of new benzofuran derivatives against p53-independent malignant cancer cells through inhibition of HIF-1 pathway.

    PubMed

    Yang, Ying-Rui; Wei, Jin-Lian; Mo, Xiao-Fei; Yuan, Zhen-Wei; Wang, Jia-Lin; Zhang, Chao; Xie, Yi-Yue; You, Qi-Dong; Sun, Hao-Peng

    2016-06-01

    p53-independent malignant cancer is still severe health problem of human beings. HIF-1 pathway is believed to play an important role in the survival and developing progress of such cancers. In the present study, with the aim to inhibit the proliferation of p53-independent malignant cells, we disclose the optimization of 6a, the starting compound which is discovered in the screening of in-house compound collection. The structure-activity relationship (SAR) is summarized. The most potent derivative 8d, inhibits the proliferation of both p53-null and p53-mutated cells through inhibition of HIF-1 pathway. Our findings here provide a new chemotype in designing potent anticancer agent especially against those p53-independent malignant tumors. Copyright © 2016. Published by Elsevier Ltd.

  13. p53-independent mechanisms regulate the P2-MDM2 promoter in adult astrocytic tumours.

    PubMed

    Dimitriadi, M; Poulogiannis, G; Liu, L; Bäcklund, L M; Pearson, D M; Ichimura, K; Collins, V P

    2008-10-07

    The MDM2 gene is amplified and/or overexpressed in about 10% of glioblastomas and constitutes one of a number of ways the p53 pathway is disrupted in these tumours. MDM2 encodes a nuclear phosphoprotein that regulates several cell proteins by binding and/or ubiquitinating them, with p53 being a well-established partner. MDM2 has two promoters, P1 and P2 that give rise to transcripts with distinct 5' untranslated regions. Transcription from P2 is believed to be controlled by p53 and a single-nucleotide polymorphism (SNP309, T>G) in P2 is reported to be associated with increased risk for, and early development of, malignancies. The use of P1 and P2 has not been investigated in gliomas. We used RT-PCR to study P1- and P2-MDM2 transcript expression in astrocytic tumours, xenografts and cell lines with known MDM2, TP53 and p14(ARF) gene status. Both promoters were used in all genetic backgrounds including the use of the P2 promoter in TP53 null cells, indicating a p53-independent induction of transcription. Transcripts from the P1 promoter formed a greater proportion of the total MDM2 transcripts in tumours with MDM2 amplification, despite these tumours having two wild-type TP53 alleles. Examination of SNP309 in glioblastoma patients showed a borderline association with survival but no apparent correlation with age at diagnosis nor with TP53 and p14(ARF) status of their tumours. Our findings also indicate that elevated MDM2 mRNA levels in tumours with MDM2 amplification are preferentially driven by the P1 promoter and that the P2 promoter is not only regulated by p53 but also by other transcription factor(s).

  14. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    SciTech Connect

    Cappadone, C.; Stefanelli, C.; Malucelli, E.; Zini, M.; Onofrillo, C.; Locatelli, A.; Rambaldi, M.; Sargenti, A.; Merolle, L.; Farruggia, G.; Graziadio, A.; Montanaro, L.; Iotti, S.

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  15. p53-independent endoplasmic reticulum stress-mediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines.

    PubMed

    Fábián, Zsolt; Csatary, Christine M; Szeberényi, József; Csatary, Laszlo K

    2007-03-01

    While Newcastle disease virus (NDV) causes serious infections in birds, it is apparently nonpathogenic in mammalian species, including humans. Previous observations and small-scale clinical trials indicated that NDV exerts oncolytic effects. Isolates of NDV were found to have selective affinity to transformed cells. We previously showed that the attenuated NDV strain MTH-68/H causes apoptotic cell death in cultures of PC12 rat pheochromocytoma cells. The aim of the present study was to extend MTH-68/H cytotoxicity testing with human tumor cell lines and to analyze certain biochemical aspects of its oncolytic effect. MTH-68/H was found to be able to kill a wide range of transformed cells by apoptosis. While caspase-8 and caspase-9 are not involved in MTH-68/H-induced apoptosis, activation of caspase-3 and caspase-12 was detected in virus-infected PC12 cells. A human glioblastoma cell line with repressible expression of the p53 protein did not show any difference in MTH-68/H sensitivity in its p53-expressing and p53-depleted states, indicating that the apoptotic process induced by MTH-68/H does not depend on p53. Apoptosis was accompanied by virus replication in two tumor cell lines tested (PC12 cells and HeLa human cervical cells), and signs of endoplasmic reticulum stress (phosphorylation of protein kinase R-like endoplasmic reticulum kinase and eIF2alpha) were also detected in transformed cells. In contrast, proliferation of nontransformed mouse and rat fibroblast cell lines and human primary fibroblasts was not affected by MTH-68/H treatment. MTH-68/H thus selectively kills tumor cell cultures by inducing endoplasmic reticulum stress leading to p53-independent apoptotic cell death.

  16. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    SciTech Connect

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.

    2009-04-15

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala{sup 14} and Thr{sup 31}) were found to destabilize the protein while two others (Val{sup 24} and Ala{sup 41}) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val{sup 24} was required for p53-independent growth suppression whereas multiple residues (Val{sup 24}, Thr{sup 31}, Ala{sup 41} and His{sup 60}) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  17. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression.

    PubMed

    Theerakitthanakul, Korkiat; Khrueathong, Jeerasak; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression.

  18. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression

    PubMed Central

    Theerakitthanakul, Korkiat; Saetang, Jirakrit; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Methods: Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression. PMID:27698927

  19. XI-006 induces potent p53-independent apoptosis in Ewing sarcoma.

    PubMed

    Pishas, Kathleen I; Adwal, Alaknanda; Neuhaus, Susan J; Clayer, Mark T; Farshid, Gelareh; Staudacher, Alexander H; Callen, David F

    2015-06-22

    There is an imperious need for the development of novel therapeutics for the treatment of Ewing sarcoma, the second most prevalent solid bone tumour observed in children and young adolescents. Recently, a 4-nitrobenzofuroxan derivative, XI-006 (NSC207895) was shown to diminish MDM4 promoter activity in breast cancer cell lines. As amplification of MDM4 is frequently observed in sarcomas, this study examined the therapeutic potential of XI-006 for the treatment of Ewing and osteosarcoma. XI-006 treatment of Ewing and osteosarcoma cell lines (n = 11) resulted in rapid and potent apoptosis at low micro-molar concentrations specifically in Ewing sarcoma cell lines (48 hr IC50 0.099-1.61 μM). Unexpectedly, apoptotic response was not dependent on MDM4 mRNA/protein levels or TP53 status. Alkaline/neutral comet and γH2AX immunofluorescence assays revealed that the cytotoxic effects of XI-006 could not be attributed to the induction of DNA damage. RNA expression analysis revealed that the mechanism of action of XI-006 could be accredited to the inhibition of cell division and cycle regulators such as KIF20A and GPSM2. Finally, potent synergy between XI-006 and olaparib (PARP inhibitor) were observed due to the down-regulation of Mre11. Our findings suggest that XI-006 represents a novel therapeutic intervention for the treatment of Ewing sarcoma.

  20. XI-006 induces potent p53-independent apoptosis in Ewing sarcoma

    PubMed Central

    Pishas, Kathleen I.; Adwal, Alaknanda; Neuhaus, Susan J.; Clayer, Mark T.; Farshid, Gelareh; Staudacher, Alexander H.; Callen, David F.

    2015-01-01

    There is an imperious need for the development of novel therapeutics for the treatment of Ewing sarcoma, the second most prevalent solid bone tumour observed in children and young adolescents. Recently, a 4-nitrobenzofuroxan derivative, XI-006 (NSC207895) was shown to diminish MDM4 promoter activity in breast cancer cell lines. As amplification of MDM4 is frequently observed in sarcomas, this study examined the therapeutic potential of XI-006 for the treatment of Ewing and osteosarcoma. XI-006 treatment of Ewing and osteosarcoma cell lines (n = 11) resulted in rapid and potent apoptosis at low micro-molar concentrations specifically in Ewing sarcoma cell lines (48 hr IC50 0.099–1.61 μM). Unexpectedly, apoptotic response was not dependent on MDM4 mRNA/protein levels or TP53 status. Alkaline/neutral comet and γH2AX immunofluorescence assays revealed that the cytotoxic effects of XI-006 could not be attributed to the induction of DNA damage. RNA expression analysis revealed that the mechanism of action of XI-006 could be accredited to the inhibition of cell division and cycle regulators such as KIF20A and GPSM2. Finally, potent synergy between XI-006 and olaparib (PARP inhibitor) were observed due to the down-regulation of Mre11. Our findings suggest that XI-006 represents a novel therapeutic intervention for the treatment of Ewing sarcoma. PMID:26095524

  1. Destabilization of CARP mRNAs by aloe-emodin contributes to caspase-8-mediated p53-independent apoptosis of human carcinoma cells.

    PubMed

    Lin, Meng-Liang; Lu, Yao-Cheng; Su, Hong-Lin; Lin, Hsin-Ting; Lee, Chuan-Chun; Kang, Shang-En; Lai, Tan-Chen; Chung, Jing-Gung; Chen, Shih-Shun

    2011-04-01

    Using short hairpin RNA against p53, transient ectopic expression of wild-type p53 or mutant p53 (R248W or R175H), and a p53- and p21-dependent luciferase reporter assay, we demonstrated that growth arrest and apoptosis of FaDu (human pharyngeal squamous cell carcinoma), Hep3B (hepatoma), and MG-63 (osteosarcoma) cells induced by aloe-emodin (AE) are p53-independent. Co-immunoprecipitation and small interfering RNA (siRNA) studies demonstrated that AE caused S-phase cell cycle arrest by inducing the formation of cyclin A-Cdk2-p21 complexes through extracellular signal-regulated kinase (ERK) activation. Ectopic expression of Bcl-X(L) and siRNA-mediated Bax attenuation significantly inhibited apoptosis induced by AE. Cyclosporin A or the caspase-8 inhibitor Z-IETD-FMK blocked AE-induced loss of mitochondrial membrane potential and prevented increases in reactive oxygen species and Ca(++). Z-IETD-FMK inhibited AE-induced apoptosis, Bax expression, Bid cleavage, translocation of tBid to mitochondria, ERK phosphorylation, caspase-9 activation, and the release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G from mitochondria. The stability of the mRNAs encoding caspase-8 and -10-associated RING proteins (CARPs) 1 and 2 was affected by AE, whereas CARP1 or 2 overexpression inhibited caspase-8 activation and apoptosis induced by AE. Collectively, our data indicate AE induces caspase-8-mediated activation of mitochondrial death pathways by decreasing the stability of CARP mRNAs in a p53-independent manner.

  2. CHK2 is involved in the p53-independent radiosensitizing effects of valproic acid

    PubMed Central

    Choo, Dong Wan; Goh, Sung Ho; Cho, Young Woo; Baek, Hye Jung; Park, Eun Jung; Motoyama, Noboru; Kim, Tae Hyun; Kim, Joo Young; Kim, Sang Soo

    2017-01-01

    Radiotherapy is an effective treatment for the majority of types of localized solid cancer. However, the risk of side effects to the surrounding normal tissues limits radiotherapeutic approaches. Whilst the mechanism of action of valproic acid, an inhibitor of histone deacetylase, remains unknown, the inhibitor is a potential antineoplastic radiosensitizer. The present study demonstrated the in vitro radiosensitizing effects of valproic acid on the human breast cancer MCF7 cell line, and revealed that valproic acid increased the level of DNA breakage, apoptosis and senescence. In addition, western blot analyses revealed that valproic acid induced tumor suppressor protein (p)53 and p21 expression, and activated checkpoint kinase 2 (CHK2) in MCF7 cells and primary mouse embryonic fibroblasts. Notably, treatment with valproic acid also induced increases in the level of p21 protein levels and CHK2 activity in p53-null colon cancer HCT116 cells. Furthermore, the present study demonstrated that valproic acid-induced radiosensitization was largely dependent on the activity of CHK2. The results of the present study reveal that valproic acid may exhibit clinical utility with respect to increasing the anticancer efficacy of radiotherapy by affecting the level of p53. PMID:28454438

  3. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    PubMed

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  4. 15-Lipoxygenase-1 Activates Tumor Suppressor p53 Independent of Enzymatic Activity

    PubMed Central

    Zhu, Hong; Glasgow, Wayne; George, Margaret D.; Chrysovergis, Kali; Olden, Kenneth; Roberts, John D.; Eling, Thomas

    2008-01-01

    15-LOX-1 and its metabolites are involved in colorectal cancer. Recently, we reported that 15-LOX-1 overexpression in HCT-116 human colorectal cancer cells inhibited cell growth by induction of p53 phosphorylation (4). To determine whether the 15-LOX-1 protein or its metabolites are responsible for phosphorylation of p53 in HCT-116 cells, we used HCT-116 cells that expressed a mutant 15-LOX-1. The mutant 15-LOX-1 enzyme, with a substitution of Leu at residue His361, was devoid of enzymatic activity. HCT-116 cells transiently transfected with either native or mutant 15-LOX-1 showed an increase in p53 phosphorylation and an increase in the expression of downstream genes. Thus 15-LOX-1 induces p53 phosphorylation independent of enzymatic activity. Treatment of A549 human lung carcinoma cells with IL-4 increased the expression of 15-LOX-1 and also increased the expression of downstream targets of p53. This confirmed that the activation of p53 was also observed in wild type cells expressing physiological 15-LOX-1. Immunoprecipitation experiments revealed that 15-LOX-1 interacts with, and binds to, DNA-dependent protein kinase (DNA-PK). The binding of 15-LOX-1 to DNA-PK caused an approximate 3.0 fold enhancement in kinase activity, resulting in increased p53 phosphorylation at Ser15. Knockdown of DNA-PK by small interfering RNA (siRNA) significantly reduced p53 phosphorylation. Furthermore, confocal microscopy demonstrated a co-localization of 15-LOX and DNA-PK in the cells. We propose that the 15-LOX-1 protein binds to DNA-PK, increasing its kinase activity, and results in downstream activation of the tumor suppressor p53, thus revealing a new mechanism by which lipoxygenases may influence the phenotype of tumor cells. PMID:18785202

  5. [Regulation of p14(ARF) expression and induction of cell apoptosis with c-myc in a p53-independent pathway].

    PubMed

    Liu, Xiang-juan; Li, Fu-nian; Jiang, Dan-dan; Wang, Xin-gang; Liu, Xiang-ping; Zhang, Dian-liang; Meng, Chun-hui

    2012-08-14

    To explore the regulation of p14(ARF) expression and induction of cell apoptosis with the mutant and wild-type c-myc genes in a p53-independent pathway of signal transduction. The mutant and wild-type c-myc genes were transfected by lentivirus into HCC1937 to form the stable over-expression cell lines. Uninfected cells and lentivirus-infected ones carrying no c-myc gene acted as blank and infection controls respectively. And c-myc and p14(ARF) mRNA and protein, proliferation and apoptosis in HCC1937 with mutant and wild-type c-myc were detected by reverse transcription (RT)-PCR, Western blotting, thiazolyl blue tetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase mediated X-dUTP nick end labeling (TUNEL) respectively. After the lentivirus-mediated gene transfer, c-myc mRNA and protein expression increased in the mutant and wild-type groups. p14(ARF) mRNA and protein increased in the wild-type group and the mutant group and there were significant difference between them with blank and infection controls (mutant groups: 0.560 ± 0.010, 0.154 ± 0.011, wild-type groups: 0.651 ± 0.010, 0.382 ± 0.013, both P < 0.05). The group of mutant and wild-type c-myc could promote the proliferation of cell growth. And c-myc was more effective to induce apoptosis in the wild-type group as compared with the mutant group (7.1% ± 0.7% vs 3.2% ± 0.4%, P < 0.05). In a p53-independent pathway, the over-expression of wild-type c-myc obviously up-regulates the expression of p14(ARF). And cell apoptosis may be induced through the regulation of p14(ARF)-related gene, keep balance of proliferative promotion and apoptosis induction. When there is a loss-of-function of mutant c-myc, tumorigenicity increases via a disturbed balance of proliferative promotion and apoptosis induction.

  6. RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis

    PubMed Central

    Saporita, Anthony J.; Chang, Hsiang-Chun; Winkeler, Crystal L.; Apicelli, Anthony J.; Kladney, Raleigh D.; Wang, Jianbo; Townsend, R. Reid; Michel, Loren S.; Weber, Jason D.

    2011-01-01

    The p19ARF tumor suppressor limits ribosome biogenesis and responds to hyperproliferative signals to activate the p53 checkpoint response. While its activation of p53 has been well characterized, ARF’s role in restraining nucleolar ribosome production is poorly understood. Here we report the use of a mass spectroscopic analysis to identify protein changes within the nucleoli of Arf-deficient mouse cells. Through this approach, we discovered that ARF limited the nucleolar localization of the RNA helicase DDX5 which promotes the synthesis and maturation of rRNA, ultimately increasing ribosome output and proliferation. ARF inhibited the interaction between DDX5 and nucleophosmin (NPM), preventing association of DDX5 with the rDNA promoter and nuclear pre-ribosomes. In addition, Arf-deficient cells transformed by oncogenic RasV12 were addicted to DDX5, since reduction of DDX5 was sufficient to impair RasV12-driven colony formation in soft agar and tumor growth in mice. Taken together, our findings indicate that DDX5 is a key p53-independent target of the ARF tumor suppressor and is a novel non-oncogene participant in ribosome biogenesis. PMID:21937682

  7. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway

    PubMed Central

    JEDINAK, ANDREJ; SLIVA, DANIEL

    2009-01-01

    In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765

  8. Cisplatin modulates B-cell translocation gene 2 to attenuate cell proliferation of prostate carcinoma cells in both p53-dependent and p53-independent pathways.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Feng, Tsui-Hsia; Chen, Wen-Tsung; Chang, Phei-Lang; Chiang, Hou-Yu; Juang, Horng-Heng

    2014-07-01

    Cisplatin is a widely used anti-cancer drug. The B-cell translocation gene 2 (BTG2) is involved in the cell cycle transition regulation. We evaluated the cisplatin effects on prostate cancer cell proliferation and the expressions of BTG2, p53, androgen receptor (AR) and prostate specific antigen (PSA) in prostate carcinoma, p53 wild-type LNCaP or p53-null PC-3, cells. Cisplatin treatments attenuated cell prostate cancer cell growth through inducing Go/G1 cell cycle arrest in lower concentration and apoptosis at higher dosage. Cisplatin treatments enhanced p53 and BTG2 expression, repressed AR and PSA expression, and blocked the activation of androgen on the PSA secretion in LNCaP cells. BTG2 knockdown in LNCaP cells attenuated cisplatin-mediated growth inhibition. Cisplatin enhanced BTG2 gene expression dependent on the DNA fragment located within -173 to -82 upstream of BTG2 translation initiation site in prostate cancer cells. Mutation of the p53 response element from GGGCAGAGCCC to GGGCACC or mutation of the NFκB response element from GGAAAGTCC to GGAAAGGAA by site-directed mutagenesis abolished the stimulation of cisplatin on the BTG2 promoter activity in LNCaP or PC-3 cells, respectively. Our results indicated that cisplatin attenuates prostate cancer cell proliferation partly mediated by upregulation of BTG2 through the p53-dependent pathway or p53-independent NFκB pathway.

  9. Mitochondrial STAT3 contributes to transformation of Barrett's epithelial cells that express oncogenic Ras in a p53-independent fashion.

    PubMed

    Yu, Chunhua; Huo, Xiaofang; Agoston, Agoston T; Zhang, Xi; Theiss, Arianne L; Cheng, Edaire; Zhang, Qiuyang; Zaika, Alexander; Pham, Thai H; Wang, David H; Lobie, Peter E; Odze, Robert D; Spechler, Stuart J; Souza, Rhonda F

    2015-08-01

    Metaplastic epithelial cells of Barrett's esophagus transformed by the combination of p53-knockdown and oncogenic Ras expression are known to activate signal transducer and activator of transcription 3 (STAT3). When phosphorylated at tyrosine 705 (Tyr705), STAT3 functions as a nuclear transcription factor that can contribute to oncogenesis. STAT3 phosphorylated at serine 727 (Ser727) localizes in mitochondria, but little is known about mitochondrial STAT3's contribution to carcinogenesis in Barrett's esophagus, which is the focus of this study. We introduced a constitutively active variant of human STAT3 (STAT3CA) into the following: 1) non-neoplastic Barrett's (BAR-T) cells; 2) BAR-T cells with p53 knockdown; and 3) BAR-T cells that express oncogenic H-Ras(G12V). STAT3CA transformed only the H-Ras(G12V)-expressing BAR-T cells (evidenced by loss of contact inhibition, formation of colonies in soft agar, and generation of tumors in immunodeficient mice), and did so in a p53-independent fashion. The transformed cells had elevated levels of both mitochondrial (Ser727) and nuclear (Tyr705) phospho-STAT3. Introduction of a STAT3CA construct with a mutated tyrosine phosphorylation site into H-Ras(G12V)-expressing Barrett's cells resulted in high levels of mitochondrial phospho-STAT3 (Ser727) with little or no nuclear phospho-STAT3 (Tyr705), and the cells still formed tumors in immunodeficient mice. Thus tyrosine phosphorylation of STAT3 is not required for tumor formation in Ras-expressing Barrett's cells. We conclude that mitochondrial STAT3 (Ser727) can contribute to oncogenesis in Barrett's cells that express oncogenic Ras. These findings suggest that agents targeting STAT3 might be useful for chemoprevention in patients with Barrett's esophagus.

  10. Nucleolar Targeting by Platinum: p53-Independent Apoptosis Follows rRNA Inhibition, Cell-Cycle Arrest, and DNA Compaction

    PubMed Central

    2015-01-01

    TriplatinNC is a highly positively charged, substitution-inert derivative of the phase II clinical anticancer drug, BBR3464. Such substitution-inert complexes form a distinct subset of polynuclear platinum complexes (PPCs) interacting with DNA and other biomolecules through noncovalent interactions. Rapid cellular entry is facilitated via interaction with cell surface glycosoaminoglycans and is a mechanism unique to PPCs. Nanoscale secondary ion mass spectrometry (nanoSIMS) showed rapid distribution within cytoplasmic and nucleolar compartments, but not the nucleus. In this article, the downstream effects of nucleolar localization are described. In human colon carcinoma cells, HCT116, the production rate of 47S rRNA precursor transcripts was dramatically reduced as an early event after drug treatment. Transcriptional inhibition of rRNA was followed by a robust G1 arrest, and activation of apoptotic proteins caspase-8, -9, and -3 and PARP-1 in a p53-independent manner. Using cell synchronization and flow cytometry, it was determined that cells treated while in G1 arrest immediately, but cells treated in S or G2 successfully complete mitosis. Twenty-four hours after treatment, the majority of cells finally arrest in G1, but nearly one-third contained highly compacted DNA; a distinct biological feature that cannot be associated with mitosis, senescence, or apoptosis. This unique effect mirrored the efficient condensation of tRNA and DNA in cell-free systems. The combination of DNA compaction and apoptosis by TriplatinNC treatment conferred striking activity in platinum-resistant and/or p53 mutant or null cell lines. Taken together, our results support that the biological activity of TriplatinNC reflects reduced metabolic deactivation (substitution-inert compound not reactive to sulfur nucleophiles), high cellular accumulation, and novel consequences of high-affinity noncovalent DNA binding, producing a new profile and a further shift in the structure

  11. Endogenous Human MDM2-C Is Highly Expressed in Human Cancers and Functions as a p53-Independent Growth Activator

    PubMed Central

    Okoro, Danielle R.; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival. PMID:24147044

  12. Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator.

    PubMed

    Okoro, Danielle R; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival.

  13. Induction of apoptosis in head-and-neck squamous carcinoma cells by gamma-irradiation and bleomycin is p53-independent.

    PubMed

    Patel, V; Ensley, J F; Gutkind, J S; Yeudall, W A

    2000-12-01

    We have examined the ability of gamma-irradiation and bleomycin to induce apoptosis in a model system consisting of cell lines derived from naturally occurring human head-and-neck squamous-cell carcinomas with contrasting p53 status and expression levels of pro- and anti-apoptotic molecules. Following exposure to gamma-irradiation (20 Gy) or bleomycin (3.5 microM) for 0 to 96 hr, cells expressing either transcriptionally inactive mutant p53 (HN6) or a truncated p53 molecule (HN19) underwent apoptosis, as assessed by fluorescence-activated cell sorting and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, in contrast to cells that express wild-type p53 (HN30), suggesting that apoptosis induced by these agents occurs by p53-independent mechanisms. Apoptosis in HN6 and HN19 cells was preceded by a G(2)/M cell-cycle block, as analyzed by DNA content and BrdU staining. In contrast, HN30 cells remained blocked in both G(1) and G(2)/M and failed to re-enter the cell cycle. Levels of Bcl-2 were elevated in 3 of 10 cell lines, and only marginal differences were observed for Bcl-x(L). Pro-apoptotic proteins bax and Bcl-x(S) were detectable in normal keratinocytes and 4 tumor cell lines. Bax-delta (16 kDa) was highly represented in normal keratinocytes, and levels of bak were variable between cell lines. Elevated expression of Bcl-2 failed to protect HN19 cells from either gamma-irradiation or bleomycin-induced apoptosis. Our data support the existence of p53- and Bcl-2-independent pathways regulating apoptosis in keratinocytes and suggest that efficacy of either radiotherapy or bleomycin treatment for oral squamous-cell neoplasms may not, therefore, be influenced solely by endogenous p53 status. Copyright 2000 Wiley-Liss, Inc.

  14. Emulsified isoflurane treatment inhibits the cell cycle and respiration of human bronchial epithelial 16HBE cells in a p53-independent manner.

    PubMed

    Yang, Hui; Deng, Jia; Jiang, Yingying; Chen, Jiao; Zeng, Xianzheng; He, Zhiyang; Jiang, Xiaojuan; Li, Zhuoning; Jiang, Chunling

    2016-07-01

    Emulsified isoflurane (EIso), as a result of its rapid anesthetic induction, recovery and convenience, is widely used as a novel intravenous general anesthetic. Treatment with EIso can reduce injuries caused by ischemia/reperfusion (I/R) to organs, including the heart, lung and liver, without knowing understanding the molecular mechanism. The present study hypothesized that treatment with EIso can affect the physiological processes of human lung bronchial epithelial cells (16HBE) prior to I/R. To test this hypothesis, the present study first constructed stable p53 knockdown and synthesis of cytochrome c oxidase (SCO)2 knockdown 16HBE cells. The above cells were subsequently treated with EIso at a concentration of 0.1 and 0.2% for 24 h. The relevant concentration of fat emulsion was used as a negative control. The expression levels of p53, p21, SCO1, SCO2 and Tp53‑induced glycolysis and apoptosis regulator (TIGAR) were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting. Subsequently, the cell proliferation, respiration and glycolysis were investigated. The results revealed that EIso treatment significantly decreased the transcription of TIGAR, SCO1 and SCO2, and increased the transcription of p21, which are all p53 target genes, in a p53-independent manner. The cell cycle was inhibited by arresting cells at the G0/G1 phase. Respiration was reduced, which caused a decrease in oxygen consumption and the accumulation of lactate and reactive oxygen species. Taken together, EIso treatment inhibited the proliferation and respiration, and promoted glycolysis in 16HBE cells. This regulatory pathway may represent a protective mechanism of EIso treatment by inhibiting cell growth and decreasing the oxygen consumption from I/R.

  15. ATM Expression Predicts Veliparib and Irinotecan Sensitivity in Gastric Cancer by Mediating P53-Independent Regulation of Cell Cycle and Apoptosis.

    PubMed

    Subhash, Vinod Vijay; Tan, Shi Hui; Yeo, Mei Shi; Yan, Fui Leng; Peethala, Praveen C; Liem, Natalia; Krishnan, Vaidehi; Yong, Wei Peng

    2016-12-01

    Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer.

    PubMed

    Yu, Sheng-Yung; Liao, Chiung-Ho; Chien, Ming-Hsien; Tsai, Tsung-Yu; Lin, Jen-Kun; Weng, Meng-Shih

    2014-03-05

    Garcinol, a polyisoprenylated benzophenone, from Garcinia indica fruit rind has possessed anti-inflammatory, antioxidant, antiproliferation, and anticancer activities. However, the anticancer mechanisms of garcinol in lung cancer were still unclear. Therefore, we examine the effects of garcinol on antiproliferation in human lung cancer cells. Treatments with garcinol for 24 h exhibited morphological changes and inhibited the proliferation of H460 (p53-wild type) and H1299 (p53-null) cells in dose- and time-dependent manners. Furthermore, a significant G1 cell cycle arrest was observed in a dose-dependent treatment after H1299 cells were exposed in garcinol, whereas garcinol induced apoptosis rather than cell cycle arrest in H460 cells. Moreover, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), cyclin D1, and cyclin D3 were decreased, although cyclin E and cyclin-dependent kinase 6 (CDK6) were increased in garcinol-treated H1299 cells. Meanwhile, the protein levels of CDK inhibitors p21(Waf1/Cip1) and p27(KIP1) also exhibited upregulation after garcinol treatments. The enhanced protein-associated level between p21(Waf1/Cip1) and CDK4/2 rather than p27(KIP1) and CDK4/2 was demonstrated in garcinol-treated cells. Additionally, knock-down p21(Waf1/Cip1) by specific siRNA competently prevented garcinol-induced G1 arrest. Besides, garcinol also inhibited ERK and p38-MAPK activations in time-dependent mode. The pretreatment with p38-MAPK inhibitor but not ERK inhibitor raised garcinol-induced G1 population cells. Co-treatment with p38-MAPK inhibitor and garcinol synergistically elevated cyclin E, p21(Waf1/Cip1), and p27(Kip1) expressions. Meanwhile, overexpression dominant negative p38-MAPK also enhanced garcinol-induced p21(Waf1/Cip1) expression in H1299 cells. Accordingly, our data suggested that garcinol induced G1 cell cycle arrest and apoptosis in lung cancer cells under different p53 statuses. The p53-independent G1 cell cycle arrest induced by

  17. Human papillomavirus 16 oncoprotein E7 stimulates UBF1-mediated rDNA gene transcription, inhibiting a p53-independent activity of p14ARF.

    PubMed

    Dichamp, Isabelle; Séité, Paule; Agius, Gérard; Barbarin, Alice; Beby-Defaux, Agnès

    2014-01-01

    High-risk human papillomavirus oncoproteins E6 and E7 play a major role in HPV-related cancers. One of the main functions of E7 is the degradation of pRb, while E6 promotes the degradation of p53, inactivating the p14ARF-p53 pathway. pRb and p14ARF can repress ribosomal DNA (rDNA) transcription in part by targeting the Upstream Binding Factor 1 (UBF1), a key factor in the activation of RNA polymerase I machinery. We showed, through ectopic expression and siRNA silencing of p14ARF and/or E7, that E7 stimulates UBF1-mediated rDNA gene transcription, partly because of increased levels of phosphorylated UBF1, preventing the inhibitory function of p14ARF. Unexpectedly, activation of rDNA gene transcription was higher in cells co-expressing p14ARF and E7, compared to cells expressing E7 alone. We did not find a difference in P-UBF1 levels that could explain this data. However, p14ARF expression induced E7 to accumulate into the nucleolus, where rDNA transcription takes place, providing an opportunity for E7 to interact with nucleolar proteins involved in this process. GST-pull down and co-immunoprecipitation assays showed interactions between p14ARF, UBF1 and E7, although p14ARF and E7 are not able to directly interact. Co-expression of a pRb-binding-deficient mutant (E7C24G) and p14ARF resulted in EC24G nucleolar accumulation, but not in a significant higher activation of rDNA transcription, suggesting that the inactivation of pRb is involved in this phenomenon. Thus, p14ARF fails to prevent E7-mediated UBF1 phosphorylation, but could facilitate nucleolar pRb inactivation by targeting E7 to the nucleolus. While others have reported that p19ARF, the mouse homologue of p14ARF, inhibits some functions of E7, we showed that E7 inhibits a p53-independent function of p14ARF. These results point to a mutually functional interaction between p14ARF and E7 that might partly explain why the sustained p14ARF expression observed in most cervical pre-malignant lesions and

  18. Potential therapeutic role of Tridham in human hepatocellular carcinoma cell line through induction of p53 independent apoptosis

    PubMed Central

    2013-01-01

    . Conclusion These results suggest that TD induces apoptosis of Huh7 cells through activation of Bax and triggered caspase cascade, independent of p53 function. This study throws light on the mechanistic action of TD in triggering apoptosis in Huh 7 cells. PMID:24256980

  19. p53-independent increase in p21WAF1 and reciprocal down-regulation of cyclin A and proliferating cell nuclear antigen in bromodeoxyuridine-mediated growth arrest of human melanoma cells.

    PubMed

    Strasberg Rieber, M; Welch, D R; Miele, M E; Rieber, M

    1996-02-01

    Differentially regulated expression of activators and inhibitors of cyclin-dependent kinases (cdks) modulate cell cycle progression. In normal fibroblasts, these complexes consist of the cdk inhibitor p21WAF1/PCNA/G1 cyclin/cdk. We now show that bromodeoxyuridine (BrdUrd), a thymidine analogue and radiation sensitizer, inhibits growth and activity of cyclin A-cdk2 kinase in metastatic C8161 and nonmetastatic neo 6.3/C8161 human melanoma cells. Inhibition is not due to altered levels of cyclin D or catalytic cdk2 but involves a decrease in cyclin A and proliferating cell nuclear antigen, paralleled by higher levels of p21WAF1 without increases in p53. In contrast to serum starvation, which prevents accumulation of cyclins A and D in normal fibroblasts, such treatment did not down-regulate either cyclin in these melanoma cells, implying an aberrant control for G1 cyclins in these tumor cells. However, cyclin A was decreased by BrdUrd, suggesting that this pyrimidine analogue arrests melanoma cells at a G1 transition point, unlike that of serum starvation. This is the first report indicating that the antitumor therapeutic action of BrdUrd may be mediated by a p53-independent reciprocal effect on activators and inhibitors of cdk kinases.

  20. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer

    PubMed Central

    Swetzig, Wendy M.; Wang, Jianmin; Das, Gokul M.

    2016-01-01

    MDM2 and MDM4 are heterodimeric, non-redundant oncoproteins that potently inhibit the p53 tumor suppressor protein. MDM2 and MDM4 also enhance the tumorigenicity of breast cancer cells in in vitro and in vivo models and are overexpressed in primary human breast cancers. Prior studies have characterized Estrogen Receptor Alpha (ERα/ESR1) as a regulator of MDM2 expression and an MDM2- and p53-interacting protein. However, similar crosstalk between ERα and MDM4 has not been investigated. Moreover, signaling pathways that mediate the overexpression of MDM4 in human breast cancer remain to be elucidated. Using the Cancer Genome Atlas (TCGA) breast invasive carcinoma patient cohort, we have analyzed correlations between ERα status and MDM4 and MDM2 expression in primary, treatment-naïve, invasive breast carcinoma samples. We report that the expression of MDM4 and MDM2 is elevated in primary human breast cancers of luminal A/B subtypes and associates with ERα-positive disease, independently of p53 mutation status. Furthermore, in cell culture models, ERα positively regulates MDM4 and MDM2 expression via p53-independent mechanisms, and these effects can be blocked by the clinically-relevant endocrine therapies fulvestrant and tamoxifen. Additionally, ERα also positively regulates p53 expression. Lastly, we report that endogenous MDM4 negatively regulates ERα expression and forms a protein complex with ERα in breast cancer cell lines and primary human breast tumor tissue. This suggests direct signaling crosstalk and negative feedback loops between ERα and MDM4 expression in breast cancer cells. Collectively, these novel findings implicate ERα as a central component of the p53-MDM2-MDM4 signaling axis in human breast cancer. PMID:26909605

  1. A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer

    PubMed Central

    Fang, Lin; Cheng, Qian; Zhao, Jingjing; Ge, Yan; Zhu, Qi; Zhao, Min; Zhang, Jie; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian

    2016-01-01

    The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection. PMID:27340782

  2. Epigallocatechin-3-Gallate Prevents Autoimmune-Associated Down-Regulation of p21 in Salivary Gland Cells Through a p53-Independent Pathway

    PubMed Central

    Dickinson, Douglas; Yu, Hongfang; Ohno, Seiji; Thomas, Cristina; DeRossi, Scott; Ma, Yat-Ho; Yates, Nicole; Hahn, Emily; Bisch, Frederick; Yamamoto, Tetsuya; Hsu, Stephen

    2015-01-01

    The submandibular salivary glands of non-obese diabetic (NOD) mice, a model for Sjogren’s syndrome and type-1 diabetes, show an elevated level of proliferating cell nuclear antigen (PCNA), a protein involved in cell proliferation and repair of DNA damage. We reported previously that epigallocatechin-3-gallate (EGCG), the most abundant green tea catechin, normalizes the PCNA level. PCNA’s activity can be regulated by the cyclin-dependent kinase inhibitor p21, which is also important for epithelial cell differentiation. In turn, expression of p21 and PCNA are partially regulated by Rb phosphorylation levels. EGCG was found to modulate p21 expression in epithelial cells, suggesting that EGCG-induced p21 could be associated with down-regulation of PCNA in vivo. The current study examined the protein levels of p21 and p53 (which can up-regulate p21) in NOD mice fed with either water or EGCG, and the effect of EGCG on p21 and p53 in cell line models with either normal or defective Rb. In NOD mice, the p21 level was low, and EGCG normalized it. In contrast to HSG cells with functional Rb, negligible expression of p21 in NS-SV-AC cells that lack Rb was not altered by EGCG treatment. Inhibition of p53 by siRNA demonstrated that p21 and p53 were induced independently in HSG cells by a physiological concentration range of EGCG, suggesting p53 could be an important but not conditional factor associated with p21 expression. In conclusion, PCNA and p21 levels are altered inversely in the NOD model for SS and in HSG cells, and warrant further study as candidate new markers for salivary dysfunction associated with xerostomia. Induction of p21 by EGCG could provide clinically useful normalization of salivary glands by promoting differentiation and reducing PCNA levels. PMID:24329914

  3. Identification and Characterization of a Potent Activator of p53-Independent Cellular Senescence via a Small-Molecule Screen for Modifiers of the Integrated Stress Response

    PubMed Central

    Sayers, Carly M.; Papandreou, Ioanna; Guttmann, David M.; Maas, Nancy L.; Diehl, J. Alan; Witze, Eric S.; Koong, Albert C.

    2013-01-01

    The Integrated Stress Response (ISR) is a signaling program that enables cellular adaptation to stressful conditions like hypoxia and nutrient deprivation in the tumor microenvironment. An important effector of the ISR is activating transcription factor 4 (ATF4), a transcription factor that regulates genes involved in redox homeostasis and amino acid metabolism and transport. Because both inhibition and overactivation of the ISR can induce tumor cell death, modulators of ATF4 expression could prove to be clinically useful. In this study, chemical libraries were screened for modulators of ATF4 expression. We identified one compound, E235 (N-(1-benzyl-piperidin-4-yl)-2-(4-fluoro-phenyl)-benzo[d]imidazo[2,1-b]thiazole-7-carboxamide), that activated the ISR and dose-dependently increased levels of ATF4 in transformed cells. A dose-dependent decrease in viability was observed in several mouse and human tumor cell lines, and knockdown of ATF4 significantly increased the antiproliferative effects of E235. Interestingly, low μM doses of E235 induced senescence in many cell types, including HT1080 human fibrosarcoma and B16F10 mouse melanoma cells. E235-mediated induction of senescence was not dependent on p21 or p53; however, p21 conferred protection against the growth inhibitory effects of E235. Treatment with E235 resulted in an increase in cells arrested at the G2/M phase with a concurrent decrease in S-phase cells. E235 also activated DNA damage response signaling, resulting in increased levels of Ser15-phosphorylated p53, γ-H2AX, and phosphorylated checkpoint kinase 2 (Chk2), although E235 does not appear to cause physical DNA damage. Induction of γ-H2AX was abrogated in ATF4 knockdown cells. Together, these results suggest that modulation of the ISR pathway with the small molecule E235 could be a promising antitumor strategy. PMID:23229510

  4. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  5. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  6. Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways

    PubMed Central

    Allison, S J; Knight, J R P; Granchi, C; Rani, R; Minutolo, F; Milner, J; Phillips, R M

    2014-01-01

    Most cancer cells use aerobic glycolysis to fuel their growth. The enzyme lactate dehydrogenase-A (LDH-A) is key to cancer's glycolytic phenotype, catalysing the regeneration of nicotinamide adenine dinucleotide (NAD+) from reduced nicotinamide adenine dinucleotide (NADH) necessary to sustain glycolysis. As such, LDH-A is a promising target for anticancer therapy. Here we ask if the tumour suppressor p53, a major regulator of cellular metabolism, influences the response of cancer cells to LDH-A suppression. LDH-A knockdown by RNA interference (RNAi) induced cancer cell death in p53 wild-type, mutant and p53-null human cancer cell lines, indicating that endogenous LDH-A promotes cancer cell survival irrespective of cancer cell p53 status. Unexpectedly, however, we uncovered a novel role for p53 in the regulation of cancer cell NAD+ and its reduced form NADH. Thus, LDH-A silencing by RNAi, or its inhibition using a small-molecule inhibitor, resulted in a p53-dependent increase in the cancer cell ratio of NADH:NAD+. This effect was specific for p53+/+ cancer cells and correlated with (i) reduced activity of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and (ii) an increase in acetylated p53, a known target of SIRT1 deacetylation activity. In addition, activation of the redox-sensitive anticancer drug EO9 was enhanced selectively in p53+/+ cancer cells, attributable to increased activity of NAD(P)H-dependent oxidoreductase NQO1 (NAD(P)H quinone oxidoreductase 1). Suppressing LDH-A increased EO9-induced DNA damage in p53+/+ cancer cells, but importantly had no additive effect in non-cancer cells. Our results identify a unique strategy by which the NADH/NAD+ cellular redox status can be modulated in a cancer-specific, p53-dependent manner and we show that this can impact upon the activity of important NAD(H)-dependent enzymes. To summarise, this work indicates two distinct mechanisms by which suppressing LDH-A could potentially be used to kill cancer cells selectively, (i

  7. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  8. p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function

    PubMed Central

    Manyam, Ganiraju C.; Wang, Xiao-xiao; Xia, Yi; Visco, Carlo; Tzankov, Alexandar; Zhang, Li; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Zhao, Xiaoying; Møller, Michael B.; Parsons, Ben M.; Winter, Jane N.; Piris, Miguel A.; Medeiros, L. Jeffrey; Young, Ken H.

    2016-01-01

    The role of p53 family member, p63 in oncogenesis is the subject of controversy. Limited research has been done on the clinical implications of p63 expression in diffuse large B-cell lymphoma (DLBCL). In this study, we assessed p63 expression in de novo DLBCL samples (n=795) by immunohistochemistry with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6 translocation. p63 was an independent favorable prognostic factor in DLBCL, which was most significant in patients with International Prognostic Index (IPI) >2, and in activated-B-cell–like DLBCL patients with wide-type TP53. The prognostic impact in germinal-center-B-cell–like DLBCL was not apparent, which was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize each other. In summary, p63 has p53-like and p53-independent functions and favorable prognostic impact, however this protective effect can be abolished by TP53 mutations. PMID:26878872

  9. Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway.

    PubMed

    Huang, Y Q; Li, J J; Karpatkin, S

    2000-03-03

    Thrombin, a multifunctional protein, has been found to be involved in cellular mitogenesis, tumor growth, and metastasis, in addition to its well known effects on the initiation of platelet aggregation and secretion and the conversion of fibrinogen to fibrin to form blood clots. These properties of thrombin rely on its action as a serine protease, which cleaves the N-terminal region of a 7-transmembrane G protein receptor (protease-activated receptor, PAR-1), thus exposing a tethered end hexapeptide sequence capable of activating its receptor. Little is known about its effect on genes that regulate the cell cycle. This study was undertaken to investigate the possible mechanisms by which thrombin regulates tumor cell growth in several tumor cell lines: human CHRF megakaryocyte, DU145 prostate, MDAMB231 and MCF7 breast, U3A fibrosarcoma, and 2 murine fibroblast cell lines, MEFp53(-/-) and CD STAT(-/-). We have found that thrombin under the conditions of culture employed inhibits cell growth by both up-regulation of p21(waf/cip1) and induction of caspases via its PAR-1 receptor. The increased expression of p21(waf/cip1) by thrombin was p53 independent, STAT1 dependent, and protein synthesis independent. This was associated with tyrosine phosphorylation of JAK2 and STAT1, and nuclear translocation of STAT1. Induction of apoptosis is also PAR-1-specific, STAT1-dependent, and associated with up-regulation of caspases 1, 2, and 3. Our study establishes, for the first time, a link between PAR-1 receptor activation with the STAT signal pathway, which leads to cell cycle control and apoptosis. This observation broadens our understanding of the mechanism of PAR-1 activation and its effect on cell growth, and could possibly lead to therapeutic approaches for the treatment of cancer.

  10. Radiation-induced pneumothorax

    SciTech Connect

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis.

  11. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Mondelaers, Win; Lahorte, Philippe

    This chapter is part one of a review in which the production and application of radiation-induced bioradicals is discussed. Bioradicals play a pivotal role in the complex chain of processes starting with the absorption of radiation in biological materials and ending with the radiation-induced biological after-effects. The general aspects of the four consecutive stages (physical, physicochemical, chemical and biological) are discussed from an interdisciplinary point of view. The close relationship between radiation dose and track structure, induced DNA damage and cell survival or killing is treated in detail. The repair mechanisms that cells employ, to insure DNA stability following irradiation, are described. Because of their great biomedical importance tumour suppressor genes involved in radiation-induced DNA repair and in checkpoint activation will be treated briefly, together with the molecular genetics of radiosensitivity. Part two of this review will deal with modern theoretical methods and experimental instrumentation for quantitative studies in this research field. Also an extensive overview of the applications of radiation-induced bioradicals will be given. A comprehensive list of references allows further exploration of this research field, characterised in the last decade by a substantial advance, both in fundamental knowledge and in range of applications.

  12. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  13. Radiation Induced Oral Mucositis

    PubMed Central

    PS, Satheesh Kumar; Balan, Anita; Sankar, Arun; Bose, Tinky

    2009-01-01

    Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i) With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii) who also received concomitant chemotherapy; (iii) who received a total dose over 5,000 cGy; and (iv) who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene PMID:20668585

  14. Radiation-induced schwannomas

    SciTech Connect

    Rubinstein, A.B.; Reichenthal, E.; Borohov, H.

    1989-06-01

    The histopathology and clinical course of three patients with schwannomas of the brain and high cervical cord after therapeutic irradiation for intracranial malignancy and for ringworm of the scalp are described. Earlier reports in the literature indicated that radiation of the scalp may induce tumors in the head and neck. It is therefore suggested that therapeutic irradiation in these instances was a causative factor in the genesis of these tumors.

  15. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  16. The influence of Trp53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells.

    PubMed

    Lemon, Jennifer A; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R

    2014-07-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.

  17. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    DOE PAGES

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; ...

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levelsmore » of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.« less

  18. Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: a frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial.

    PubMed

    Augenlicht, L H; Wadler, S; Corner, G; Richards, C; Ryan, L; Multani, A S; Pathak, S; Benson, A; Haller, D; Heerdt, B G

    1997-05-01

    Human colonic cancer is associated with multiple genetic deletions, mutations, and alterations in gene expression; in contrast, gene amplification has not been recognized as a prominent characteristic of human colonic tumors. Although the c-myc gene is overexpressed in approximately 70% of human colonic cancers, previous studies have not detected frequent gene amplification or rearrangement of c-myc in these tumors, although such amplification has been reported in chemically induced rodent colon cancer and quantitative analysis of gene copy number has shown the gene to be amplified at a low level in mucinous and poorly differentiated human colon carcinomas. Using rigorously controlled blot methodology, we have established that the c-myc gene, located at 8q21, exhibited amplification of 87% to 35-fold in 7 of 10 human colonic carcinoma cell lines. This was highly significant even at a low level of amplification in HT29 cells (P < 0.0001). Cytogenetic analysis by G-banding did not detect aneuploidy involving chromsome 8q, suggesting that the amplification for the c-myc gene on 8q was relatively specific, and this was consistent with a lack of amplification detected for the c-mos gene on 8q24, which was assayed similarly. The same methodology then revealed amplification of c-myc from 1.5-fold to 5-fold in 32% of tumors from 149 patients entered into a multi-institutional Phase III study of adjuvant therapy for colon cancer. c-myc status was not related to time to recurrence or death, but low levels of c-myc amplification identified a subset of patients who showed a statistically significant increase in disease-free survival, and a corresponding trend to longer overall survival, in response to adjuvant therapy with 5-fluorouracil plus levamisole. Presence of c-myc amplification was not related to incidence of p53 mutations.

  19. Radiation-induced disease.

    PubMed

    Bobrow, M

    1993-01-01

    The term radiation covers a wide spectrum of forms of energy, most of which have at one stage or another been suspected of causing human ill health. In general, study of the effects of radiation on health involves a mix of scientific disciplines, from population epidemiology to physics, which are seldom if ever found in a single scientist. As a result, interdisciplinary communication is of the utmost importance, and is a potent source of misunderstanding and misinformation. The forms of radiation which have been most specifically associated with health effects include ionizing and ultraviolet radiation. Claimed effects of electromagnetic and microwave radiation (excluding thermal effects) are too indefinite for detailed consideration. Ionizing radiation is a well-documented mutagen, which clearly causes cancers in humans, and human exposure has been increased by atomic weapons testing and medical and industrial uses of radioactivity. There is also a growing awareness of the possible role of some types of natural radiation, such as radon, in causing disease. Ultraviolet radiation is also associated with cancers, and is suspected of involvement in the increasing incidence of skin cancers in European populations. Factors thought to underlie recent changes in exposure to these mutagens are discussed.

  20. Epimorphic regeneration in mice is p53-independent.

    PubMed

    Arthur, L Matthew; Demarest, Renee M; Clark, Lise; Gourevitch, Dmitri; Bedelbaeva, Kamila; Anderson, Rhonda; Snyder, Andrew; Capobianco, Anthony J; Lieberman, Paul; Feigenbaum, Lionel; Heber-Katz, E

    2010-09-15

    The process of regeneration is most readily studied in species of sponge, hydra, planarian and salamander (i.e., newt and axolotl). The closure of MRL mouse ear pinna through-and-through holes provides a mammalian model of unusual wound healing/regeneration in which a blastema-like structure closes the ear hole and cartilage and hair follicles are replaced. Recent studies, based on a broad level of DNA damage and a cell cycle pattern of G₂/M "arrest," showed that p21(Cip1/Waf1) was missing from the MRL mouse ear and that a p21-null mouse could close its ear holes. Given the p53/p21 axis of control of DNA damage, cell cycle arrest, apoptosis and senescence, we tested the role of p53 in the ear hole regenerative response. Using backcross mice, we found that loss of p53 in MRL mice did not show reduced healing. Furthermore, cross sections of MRL. p53(-/-) mouse ears at 6 weeks post-injury showed an increased level of adipocytes and chondrocytes in the region of healing whereas MRL or p21(-/-) mice showed chondrogenesis alone in this same region, though at later time points. In addition, we also investigated other cell cycle-related mutant mice to determine how p21 was being regulated. We demonstrate that p16 and Gadd45 null mice show little healing capacity. Interestingly, a partial healing phenotype in mice with a dual Tgfβ/Rag2 knockout mutation was seen. These data demonstrate an independence of p53 signaling for mouse appendage regeneration and suggest that the role of p21 in this process is possibly through the abrogation of the Tgfβ/Smad pathway.

  1. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  2. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  3. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  4. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    SciTech Connect

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R.

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.

  5. Radiation-induced bladder carcinoma

    SciTech Connect

    Uyama, T.; Nakamura, S.; Moriwaki, S.

    1981-01-01

    Two cases are presented of radiation-induced bladder carcinoma which followed prior irradiation for cervical carcinoma of the uterus. One was a sixty-eight-year-old woman with bladder carcinoma fourteen years after irradiation (total dose of 4,500 rad) for cervical carcinoma of the uterus. The other was a sixty-four-year-old woman with bladder carcinoma twenty-five years after irradiation with 150-K volt apparatus for cervical carcinoma of the uterus. From the late radiation change of the skin, it was estimated that the total dose of prior radiation might be 4,000 rad or more. Both had high-grade, high-stage transitional cell bladder carcinoma, and the former was with marked mucus-forming adenomatous metaplasia.

  6. Radiation-Induced Oral Mucositis

    PubMed Central

    Maria, Osama Muhammad; Eliopoulos, Nicoletta; Muanza, Thierry

    2017-01-01

    Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment. PMID:28589080

  7. Radiation-Induced Oral Mucositis.

    PubMed

    Maria, Osama Muhammad; Eliopoulos, Nicoletta; Muanza, Thierry

    2017-01-01

    Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment.

  8. Entanglement-induced quantum radiation

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro

    2017-08-01

    Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.

  9. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation

    NASA Astrophysics Data System (ADS)

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K.; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66Shc activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  10. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation.

    PubMed

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66(Shc) activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  11. Treatment of Radiation-Induced Urethral Strictures.

    PubMed

    Hofer, Matthias D; Liu, Joceline S; Morey, Allen F

    2017-02-01

    Radiation therapy may result in urethral strictures from vascular damage. Most radiation-induced urethral strictures occur in the bulbomembranous junction, and urinary incontinence may result as a consequence of treatment. Radiation therapy may compromise reconstruction due to poor tissue healing and radionecrosis. Excision and primary anastomosis is the preferred urethroplasty technique for radiation-induced urethral stricture. Principles of posterior urethroplasty for trauma may be applied to the treatment of radiation-induced urethral strictures. Chronic management with suprapubic tube is an option based on patient comorbidities and preference.

  12. Radiation-induced moyamoya syndrome

    SciTech Connect

    Desai, Snehal S.; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%. Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.

  13. Hypopharyngeal carcinoma after radiation for tuberculosis: radiation-induced carcinoma.

    PubMed

    van der Putten, Lisa; de Bree, Remco; Kuik, Dirk J; Rietveld, Derek H F; Langendijk, Johannes A; Leemans, C René

    2010-09-01

    Radiation may cause radiation-induced cancers after a long latency period. In a group of 111 patients surgically treated for hypopharyngeal carcinoma, patients previously treated with radiotherapy for tuberculosis in the neck were compared to patients without previous radiotherapy. Seven patients (7.4%) underwent radiotherapy (median age 15 years) and developed a hypopharyngeal carcinoma (median age 70 years, median latency period 54.4 year). Considering this long latency period and the localisation in the previous radiation field these tumours can be classified as potentially radiation-induced carcinomas. Patients with potentially radiation-induced carcinomas were significantly older when the hypopharyngeal carcinoma was diagnosed (p=0.048), were more frequently females (p=0.05) and had a worse 5-year regional control rate (p=0.048). When radiotherapy is considered in young patients the risk of induction of tumours has to be kept in mind. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Factors that modify radiation-induced carcinogenesis.

    PubMed

    Kennedy, Ann R

    2009-11-01

    It is known that numerous factors can influence radiation carcinogenesis in animals; these factors include the specific characteristics of the radiation (radiation type and dose, dose-rate, dose-fractionation, dose distribution, etc.) as well as many other contributing elements that are not specific to the radiation exposure, such as animal genetic characteristics and age, the environment of the animal, dietary factors and whether specific modifying agents for radiation carcinogenesis have been utilized in the studies. This overview focuses on the modifying factors for radiation carcinogenesis, in both in vivo and in vitro systems, and includes a discussion of agents that enhance (e.g., promoting agents) or suppress (e.g., cancer preventive agents) radiation-induced carcinogenesis. The agents that enhance or suppress radiation carcinogenesis in experimental model systems have been shown to lead to effects equally as large as other known modifying factors for radiation-induced carcinogenesis (e.g., dose-rate, dose-fractionation, linear energy transfer). It is known that dietary factors play an important role in determining the yields of radiation-induced cancers in animal model systems, and it is likely that they also influence radiation-induced cancer risks in human populations.

  15. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  16. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  17. Radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  18. Radiation-induced thyroid disease

    SciTech Connect

    Maxon, H.R.

    1985-09-01

    Ionizing radiation has been demonstrated to result in a number of changes in the human thyroid gland. At lower radiation dose levels (between 10 and 1500 rads), benign and malignant neoplasms appear to be the dominant effect, whereas at higher dose levels functional changes and thyroiditis become more prevalent. In all instances, the likelihood of the effect is related to the amount and type of radiation exposure, time since exposure, and host factors such as age, sex, and heredity. The author's current approach to the evaluation of patients with past external radiation therapy to the thyroid is discussed. The use of prophylactic thyroxine (T4) therapy is controversial. While T4 therapy may not be useful in preventing carcinogenesis when instituted many years after radiation exposure, theoretically T4 may block TSH secretion and stimulation of damaged cells to undergo malignant transformation when instituted soon after radiation exposure.

  19. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  20. Radiation-induced accelerated coronary arteriosclerosis

    SciTech Connect

    Mittal, B.; Deutsch, M.; Thompson, M.; Dameshek, H.L.

    1986-07-01

    There is a paucity of information on radiation-induced coronary heart disease. A young patient with myocardial infarction following mediastinal irradiation is described. The role of radiotherapy and chemotherapy on the subsequent development of coronary heart disease is discussed.

  1. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  2. Molecular pathways: radiation-induced cognitive impairment.

    PubMed

    Greene-Schloesser, Dana; Moore, Elizabeth; Robbins, Mike E

    2013-05-01

    Each year, approximately 200,000 patients in the United States will receive partial- or whole-brain irradiation for the treatment of primary or metastatic brain cancer. Early and delayed radiation effects are transient and reversible with modern therapeutic standards; yet, late radiation effects (≥6 months postirradiation) remain a significant risk, resulting in progressive cognitive impairment. These risks include functional deficits in memory, attention, and executive function that severely affect the patient's quality of life. The mechanisms underlying radiation-induced cognitive impairment remain ill defined. Classically, radiation-induced alterations in vascular and neuroinflammatory glial cell clonogenic populations were hypothesized to be responsible for radiation-induced brain injury. Recently, preclinical studies have focused on the hippocampus, one of two sites of adult neurogenesis within the brain, which plays an important role in learning and memory. Radiation ablates hippocampal neurogenesis, alters neuronal function, and induces neuroinflammation. Neuronal stem cells implanted into the hippocampus prevent the decrease in neurogenesis and improve cognition after irradiation. Clinically prescribed drugs, including PPARα and PPARγ agonists, as well as RAS blockers, prevent radiation-induced neuroinflammation and cognitive impairment independent of improved neurogenesis. Translating these exciting findings to the clinic offers the promise of improving the quality of life of brain tumor patients who receive radiotherapy. ©2013 AACR.

  3. Radiation-induced sarcoma of the thyroid

    SciTech Connect

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.; Templeton, A.C. )

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  4. Radiation induced detwinning in nanotwinned Cu

    SciTech Connect

    Chen, Youxing; Wang, Haiyan; Kirk, Mark A.; Li, Meimei; Wang, Jian; Zhang, Xinghang

    2016-11-15

    Superior radiation tolerance has been experimentally examined in nanotwinned metals. The stability of nanotwinned structure under radiation is the key factor for advancing the application of nanotwinned metals for nuclear reactors. We thus performed in situ radiation tests for nanotwinned Cu with various twin thicknesses inside a transmission electron microscope. We found that there is a critical twin thickness (10 nm), below which, radiation induced detwinning is primarily accomplished through migration of incoherent twin boundaries. Lastly, detwinning is faster for thinner twins in this range, while thicker twins are more stable.

  5. Radiation-induced vaginal stenosis: current perspectives

    PubMed Central

    Morris, Lucinda; Do, Viet; Chard, Jennifer; Brand, Alison H

    2017-01-01

    Treatment of gynecological cancer commonly involves pelvic radiation therapy (RT) and/or brachytherapy. A commonly observed side effect of such treatment is radiation-induced vaginal stenosis (VS). This review analyzed the incidence, pathogenesis, clinical manifestation(s) and assessment and grading of radiation-induced VS. In addition, risk factors, prevention and treatment options and follow-up schedules are also discussed. The limited available literature on many of these aspects suggests that additional studies are required to more precisely determine the best management strategy of this prevalent group after RT. PMID:28496367

  6. Triptolide Mitigates Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Yang, Shanmin; Zhang, Mei; Chen, Chun; Cao, Yongbin; Tian, Yeping; Guo, Yangsong; Zhang, Bingrong; Wang, Xiaohui; Yin, Liangjie; Zhang, Zhenhuan; O'Dell, Walter; Okunieff, Paul; Zhang, Lurong

    2015-11-01

    Triptolide (TPL) may mitigate radiation-induced late pulmonary side effects through its inhibition of global pro-inflammatory cytokines. In this study, we evaluated the effect of TPL in C57BL/6 mice, the animals were exposed to radiation with vehicle (15 Gy), radiation with TPL (0.25 mg/kg i.v., twice weekly for 1, 2 and 3 months), radiation and celecoxib (CLX) (30 mg/kg) and sham irradiation. Cultured supernatant of irradiated RAW 264.7 and MLE-15 cells and lung lysate in different groups were enzyme-linked immunosorbent assays at 33 h. Respiratory rate, pulmonary compliance and pulmonary density were measured at 5 months in all groups. The groups exposed to radiation with vehicle and radiation with TPL exhibited significant differences in respiratory rate and pulmonary compliance (480 ± 75/min vs. 378 ± 76/min; 0.6 ± 0.1 ml/cm H2O/p kg vs. 0.9 ± 0.2 ml/cm H2O/p kg). Seventeen cytokines were significantly reduced in the lung lysate of the radiation exposure with TPL group at 5 months compared to that of the radiation with vehicle group, including profibrotic cytokines implicated in pulmonary fibrosis, such as IL-1β, TGF- β1 and IL-13. The radiation exposure with TPL mice exhibited a 41% reduction of pulmonary density and a 25% reduction of hydroxyproline in the lung, compared to that of radiation with vehicle mice. The trichrome-stained area of fibrotic foci and pathological scaling in sections of the mice treated with radiation and TPL mice were significantly less than those of the radiation with vehicle-treated group. In addition, the radiation with TPL-treated mice exhibited a trend of improved survival rate compared to that of the radiation with vehicle-treated mice at 5 months (83% vs. 53%). Three radiation-induced profibrotic cytokines in the radiation with vehicle-treated group were significantly reduced by TPL treatment, and this partly contributed to the trend of improved survival rate and pulmonary density and function and the decreased severity of

  7. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  8. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  9. [Quantification of radiation-induced genetic risk].

    PubMed

    Ehling, U H

    1987-05-01

    Associated with technical advances of our civilization is a radiation- and chemically-induced increase in the germ cell mutation rate in man. This would result in an increase in the frequency of genetic diseases and would be detrimental to future generations. It is the duty of our generation to keep this risk as low as possible. The estimation of the radiation-induced genetic risk of human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage does not. The different methods to estimate the radiation-induced genetic risk will be discussed. The accuracy of the predicted results will be evaluated by a comparison with the observed incidence of dominant mutations in offspring born to radiation exposed survivors of the Hiroshima and Nagasaki atomic bombings. These methods will be used to predict the genetic damage from the fallout of the reactor accident at Chernobyl. For the exposure dose we used the upper limits of the mean effective life time equivalent dose from the fallout values in the Munich region. According to the direct method for the risk estimation we will expect for each 100 to 500 spontaneous dominant mutations one radiation-induced mutation in the first generation. With the indirect method we estimate a ratio of 100 dominant spontaneous mutations to one radiation-induced dominant mutation. The possibilities and the limitations of the different methods to estimate the genetic risk will be discussed. The discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized.

  10. Radiation-induced Genomic Instability and Radiation Sensitivity

    SciTech Connect

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  11. Epigenetics in radiation-induced fibrosis.

    PubMed

    Weigel, C; Schmezer, P; Plass, C; Popanda, O

    2015-04-23

    Radiotherapy is a major cancer treatment option but dose-limiting side effects such as late-onset fibrosis in the irradiated tissue severely impair quality of life in cancer survivors. Efforts to explain radiation-induced fibrosis, for example, by genetic variation remained largely inconclusive. Recently published molecular analyses on radiation response and fibrogenesis showed a prominent role of epigenetic gene regulation. This review summarizes the current knowledge on epigenetic modifications in fibrotic disease and radiation response, and it points out the important role for epigenetic mechanisms such as DNA methylation, microRNAs and histone modifications in the development of this disease. The synopsis illustrates the complexity of radiation-induced fibrosis and reveals the need for investigations to further unravel its molecular mechanisms. Importantly, epigenetic changes are long-term determinants of gene expression and can therefore support those mechanisms that induce and perpetuate fibrogenesis even in the absence of the initial damaging stimulus. Future work must comprise the interconnection of acute radiation response and long-lasting epigenetic effects in order to assess their role in late-onset radiation fibrosis. An improved understanding of the underlying biology is fundamental to better comprehend the origin of this disease and to improve both preventive and therapeutic strategies.

  12. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  13. Imaging radiation-induced normal tissue injury.

    PubMed

    Robbins, Mike E; Brunso-Bechtold, Judy K; Peiffer, Ann M; Tsien, Christina I; Bailey, Janet E; Marks, Lawrence B

    2012-04-01

    Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them.

  14. Radiation induced conductivity in space dielectric materials

    NASA Astrophysics Data System (ADS)

    Hanna, R.; Paulmier, T.; Molinie, P.; Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-01-01

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon® FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon® FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  15. A report on radiation-induced gliomas

    SciTech Connect

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F. )

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  16. Radiation-induced intestinal pseudoobstruction

    SciTech Connect

    Perino, L.E.; Schuffler, M.D.; Mehta, S.J.; Everson, G.T.

    1986-10-01

    A case of intestinal pseudoobstruction occurring 30 yr after radiation therapy is described. Mechanical causes of obstruction were excluded by laparotomy. Histology of full-thickness sections of the small bowel revealed vascular ectasia and sclerosis, serosal fibrosis, neuronal proliferation within the submucosa, and degeneration of the muscle fibers of the circular layer of the muscularis propria. On the basis of the clinical and histologic findings we conclude that, in this patient, intestinal pseudoobstruction was due to muscular and neuronal injury from abdominal irradiation.

  17. Sparsely Ionizing Diagnostic and Natural Background Radiations are Likely Preventing Cancer and Other Genomic-Instability-Associated Diseases

    PubMed Central

    Scott, Bobby R.; Di Palma, Jennifer

    2007-01-01

    Routine diagnostic X-rays (e.g., chest X-rays, mammograms, computed tomography scans) and routine diagnostic nuclear medicine procedures using sparsely ionizing radiation forms (e.g., beta and gamma radiations) stimulate the removal of precancerous neo-plastically transformed and other genomically unstable cells from the body (medical radiation hormesis). The indicated radiation hormesis arises because radiation doses above an individual-specific stochastic threshold activate a system of cooperative protective processes that include high-fidelity DNA repair/apoptosis (presumed p53 related), an auxiliary apoptosis process (PAM process) that is presumed p53-independent, and stimulated immunity. These forms of induced protection are called adapted protection because they are associated with the radiation adaptive response. Diagnostic X-ray sources, other sources of sparsely ionizing radiation used in nuclear medicine diagnostic procedures, as well as radioisotope-labeled immunoglobulins could be used in conjunction with apopto-sis-sensitizing agents (e.g., the natural phenolic compound resveratrol) in curing existing cancer via low-dose fractionated or low-dose, low-dose-rate therapy (therapeutic radiation hormesis). Evidence is provided to support the existence of both therapeutic (curing existing cancer) and medical (cancer prevention) radiation hormesis. Evidence is also provided demonstrating that exposure to environmental sparsely ionizing radiations, such as gamma rays, protect from cancer occurrence and the occurrence of other diseases via inducing adapted protection (environmental radiation hormesis). PMID:18648608

  18. Radiation-induced amorphization of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Sabochick, M. J.; Okamoto, P. R.

    1994-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu4Ti3 are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed.

  19. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Quercetin inhibits radiation-induced skin fibrosis.

    PubMed

    Horton, Jason A; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-08-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis.

  1. Quercetin Inhibits Radiation-Induced Skin Fibrosis

    PubMed Central

    Horton, Jason A.; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-01-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis. PMID:23819596

  2. Radiation-induced meningiomas in pediatric patients

    SciTech Connect

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  3. Radiation-induced meningiomas in pediatric patients.

    PubMed

    Moss, S D; Rockswold, G L; Chou, S N; Yock, D; Berger, M S

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  4. Radiation-induced mutations and plant breeding

    SciTech Connect

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far.

  5. Cataracts induced by microwave and ionizing radiation

    SciTech Connect

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-11-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references.

  6. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  7. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  8. Ionizing Radiation-induced Diseases in Korea

    PubMed Central

    Jeong, Meeseon; Moon, Kieun; Jo, Min-Heui; Kang, Seong-Kyu

    2010-01-01

    Radiation risk has become well known through epidemiological studies of clinically or occupationally exposed populations, animal experiments, and in vitro studies; however, the study of radiation related or induced disease has been limited in Korea. This study is to find the level of occupational radiation exposure for various kinds of accidents, compensated occupational diseases, related studies, and estimations on future occupational disease risks. Research data of related institutions were additionally investigated. About 67% of 62,553 radiation workers had no exposure or less than 1.2 mSv per year. The 5 reported cases on radiation accident patients in Korea occurred during nondestructive testing. According to the recent rapid increase in the number of workers exposed to radiation, a higher social recognition of cancer, and an increasing cancer mortality rate, it is expected that occupational disease compensation will rapidly increase as well. Therefore, it is important to develop scientific and objective decision methods, such as probability of causation and screening dose in the establishment of an exposure and health surveillance system. PMID:21258594

  9. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    SciTech Connect

    Rauch, Philipp J.; Park, Henry S.; Knisely, Jonathan P.S.; Chiang, Veronica L.; Vortmeyer, Alexander O.

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  10. Radiation-induced mutation at minisatellite loci

    SciTech Connect

    Dubrova, Y.E. |; Nesterov, V.N.; Krouchinsky, N.G.

    1997-10-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of {gamma}-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure {sup 137}Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed.

  11. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  13. Radiation-induced heart disease in rats

    SciTech Connect

    Lauk, S.; Kiszel, Z.; Buschmann, J.; Trott, K.R.

    1985-04-01

    After local irradiation of the rat heart with X ray doses of over 10 Gy (single dose), animals developed symptoms of radiation-induced heart disease, which at higher doses would lead to fatal cardiac failure. The LD 50 at 1 year was between 15 Gy and 20 Gy. The pericardium and epicardium responded to irradiation with exudative pericarditis after 4 months. Focal myocardial damage was secondary to progressive capillary damage.

  14. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  15. Radiation induced fracture of the scapula

    SciTech Connect

    Riggs, J.H. III; Schultz, G.D.; Hanes, S.A. )

    1990-10-01

    A case of radiation induced osteonecrosis resulting in a fracture of the scapula in a 76-yr-old female patient with a history of breast carcinoma is presented. Diagnostic imaging, laboratory recommendations and clinical findings are discussed along with an algorithm for the safe management of patients with a history of cancer and musculoskeletal complaints. This case demonstrates the necessity of a thorough investigation of musculoskeletal complaints in patients with previous bone-seeking carcinomas.

  16. Role of neurotensin in radiation-induced hypothermia in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H. )

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  17. Radiation induced dynamic mutations and transgenerational effects.

    PubMed

    Niwa, Ohtsura

    2006-01-01

    Many studies have confirmed that radiation can induce genomic instability in whole body systems. Although the molecular mechanisms underlying induced genomic instability are not known at present, this interesting phenomenon could be the manifestation of a cellular fail-safe system in which fidelity of repair and replication is down-regulated to tolerate DNA damage. Two features of genomic instability namely, delayed mutation and untargeted mutation, require two mechanisms of ;damage memory' and ;damage sensing, signal transduction and execution' to induce mutations at a non damaged-site. In this report, the phenomenon of transgenerational genomic instability and possible mechanisms are discussed using mouse data collected in our laboratory as the main bases.

  18. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  19. Radiation induced carcinoma of the larynx

    SciTech Connect

    Amendola, B.E.; Amendola, M.A.; McClatchey, K.D.

    1985-07-01

    A squamous cell carcinoma presented in a 20 year old female nonsmoker three years after receiving a high dosage of radiation therapy to the base of the skull, face and entire neuroaxis and intense combination chemotherapy for a parameningeal rhabdomyosarcoma of the paranasal sinuses is reported. The larynx received a dose of about 3,500 rads over an eight week period. This dosage in conjunction with the associated intense chemotherapy regimen given to the patient may explain the appearance of a radiation induced tumor in an unusually short latent period. This certainly represents a risk in young patients in whom an aggressive combined approach is taken and the physician should be aware of.

  20. Management of radiation-induced rectal bleeding.

    PubMed

    Laterza, Liboria; Cecinato, Paolo; Guido, Alessandra; Mussetto, Alessandro; Fuccio, Lorenzo

    2013-11-01

    Pelvic radiation disease is one of the major complication after radiotherapy for pelvic cancers. The most commonly reported symptom is rectal bleeding which affects patients' quality of life. Therapeutic strategies for rectal bleeding are generally ignored and include medical, endoscopic, and hyperbaric oxygen treatments. Most cases of radiation-induced bleeding are mild and self-limiting, and treatment is normally not indicated. In cases of clinically significant bleeding (i.e. anaemia), medical therapies, including stool softeners, sucralfate enemas, and metronidazole, should be considered as first-line treatment options. In cases of failure, endoscopic therapy, mainly represented by argon plasma coagulation and hyperbaric oxygen treatments, are valid and complementary second-line treatment strategies. Although current treatment options are not always supported by high-quality studies, patients should be reassured that treatment options exist and success is achieved in most cases if the patient is referred to a dedicated centre.

  1. Radiation-induced osteosarcoma of the sphenoid bone

    SciTech Connect

    Tanaka, S.; Nishio, S.; Morioka, T.; Fukui, M.; Kitamura, K.; Hikita, K. )

    1989-10-01

    The case of a patient who developed osteosarcoma in the sphenoid bone 15 years after radiation therapy for a craniopharyngioma is reported. Radiation-induced osteosarcoma of the sphenoid bone has not been reported previously. Reported cases of radiation-induced osteosarcomas are reviewed.

  2. Radiation-induced injury of the esophagus

    SciTech Connect

    Lepke, R.A.; Libshitz, H.I.

    1983-08-01

    Forty patients with functional or morphologic esophageal abnormalities following radiotherapy were identified. Abnormalities included abnormal motility with and without mucosal edema, stricture, ulceration and pseudodiverticulum, and fistula. Abnormal motility occurred 4 to 12 weeks following radiotherapy alone and as early as 1 week after therapy when concomitant chemotherapy had been given. Strictures developed 4 to 8 months following completion of radiotherapy. Ulceration, pseudodiverticulum, and fistula formation did not develop in a uniform time frame. Radiation-induced esophageal injury is more frequent when radiotherapy and chemotherapy are combined than it is with radiotherapy alone.

  3. Radiation-induced esophagitis in lung cancer

    PubMed Central

    Baker, Sarah; Fairchild, Alysa

    2016-01-01

    Radiation-induced esophagitis is the most common local acute toxicity of radiotherapy (RT) delivered for the curative or palliative intent treatment of lung cancer. Although concurrent chemotherapy and higher RT dose are associated with increased esophagitis risk, advancements in RT techniques as well as adherence to esophageal dosimetric constraints may reduce the incidence and severity. Mild acute esophagitis symptoms are generally self-limited, and supportive management options include analgesics, acid suppression, diet modification, treatment for candidiasis, and maintenance of adequate nutrition. Esophageal stricture is the most common late sequela from esophageal irradiation and can be addressed with endoscopic dilatation. Approaches to prevent or mitigate these toxicities are also discussed. PMID:28210168

  4. Radiation-induced segregation, hardening, and IASCC

    SciTech Connect

    Eason, E.D.; Nelson, E.E.

    1995-12-31

    Intergranular cracking has been discovered after extended radiation exposure in several boiling water reactor (BWR) internal components made of austenitic stainless steel and nickel-based alloys. There are fewer field observations of intergranular cracking in pressurized water reactors (PWR), but failures have occurred in bolts, springs, and fuel cladding. There is concern for other PWR components, some of which will receive greater radiation doses than BWR components during the plant lifetime. This paper presents the results of an investigation on the connection between radiation induced segregation, hardening and irradiation-assisted stress corrosion cracking (IASCC). A data base was developed containing the available data on austenitic stainless steel where the grain boundary composition was measured by Field Emission Gun-Scanning Transmission Election Microscopy (FEG-STEM), the stress corrosion susceptibility was measured by constant extension rate tests (CERT) in light water reactor environments, some estimate of irradiated strength was available and the irradiation was conducted in a power reactor. The data base was analyzed using advanced data analysis techniques, including tree-structured pattern recognition and transformation analysis codes. The most sensitive variables and optimal modeling forms were identified using these techniques, then preliminary models were calibrated using nonlinear least squares. The results suggest that more than one mechanism causes IASCC.

  5. Radiation-induced uterine changes: MR imaging

    SciTech Connect

    Arrive, L.; Chang, Y.C.; Hricak, H.; Brescia, R.J.; Auffermann, W.; Quivey, J.M.

    1989-01-01

    To assess the capability of magnetic resonance (MR) imaging to demonstrate postirradiation changes in the uterus, MR studies of 23 patients who had undergone radiation therapy were retrospectively examined and compared with those of 30 patients who had not undergone radiation therapy. MR findings were correlated with posthysterectomy histologic findings. In premenopausal women, radiation therapy induced (a) a decrease in uterine size demonstrable as early as 3 months after therapy ended; (b) a decrease in signal intensity of the myometrium on T2-predominant MR images, reflecting a significant decrease in T2 relaxation time, demonstrable as early as 1 month after therapy; (c) a decrease in thickness and signal intensity of the endometrium demonstrable on T2-predominant images 6 months after therapy; and (d) loss of uterine zonal anatomy as early as 3 months after therapy. In postmenopausal women, irradiation did not significantly alter the MR imaging appearance of the uterus. These postirradiation MR changes in both the premenopausal and postmenopausal uteri appeared similar to the changes ordinarily seen on MR images of the nonirradiated postmenopausal uterus.

  6. Mouse models of radiation-induced cancers.

    PubMed

    Rivina, Leena; Schiestl, Robert

    2013-01-01

    Radiation-induced (RI) secondary cancers were not a major clinical concern even as little as 15 years ago. However, advances in cancer diagnostics, therapy, and supportive care have saved numerous lives and many former cancer patients are now living for 5, 10, 20, and more years beyond their initial diagnosis. The majority of these patients have received radiotherapy as a part of their treatment regimen and are now beginning to develop secondary cancers arising from normal tissue exposure to damaging effects of ionizing radiation. Because historically patients rarely survived past the extended latency periods inherent to these RI cancers, very little effort was channeled towards the research leading to the development of therapeutic agents intended to prevent or ameliorate oncogenic effects of normal tissue exposure to radiation. The number of RI cancers is expected to increase very rapidly in the near future, but the field of cancer biology might not be prepared to address important issues related to this phenomena. One such issue is the ability to accurately differentiate between primary tumors and de novo arising secondary tumors in the same patient. Another issue is the lack of therapeutic agents intended to reduce such cancers in the future. To address these issues, large-scale epidemiological studies must be supplemented with appropriate animal modeling studies. This work reviews relevant mouse (Mus musculus) models of inbred and F1 animals and methodologies of induction of most relevant radiation-associated cancers: leukemia, lymphoma, and lung and breast cancers. Where available, underlying molecular pathologies are included. © 2013 Elsevier Inc. All rights reserved.

  7. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  8. Radiation induced micrencephaly in guinea pigs

    SciTech Connect

    Wagner, L.K.; Johnston, D.A.; Felleman, D.J.

    1991-01-01

    A brain weight deficit of about 70 mg was induced at doses of approximately 75-mGy and a deficit of 60 mg was induced at 100 mGy. This confirms the effects projected and observed by Wanner and Edwards. Although the data do not demonstrate a clear dose-response relationship between the 75-mGy and 100-mGy groups, the data are statistically consistent with a dose-response effect because of the overlapping confidence intervals. The lack of a statistically significant observation is most likely related to the small difference in doses and the limited numbers of animals examined. There are several factors that can influence the brain weight of guinea pig pups, such as caging and housing conditions, the sex of the animal, and litter size. These should be taken into account for accurate analysis. Dam weight did not appear to have a significant effect. The confirmation of a micrencephalic effect induced x rays at doses of 75-mGy during this late embryonic stage of development is consistent with the findings of small head size induced in those exposed prior to the eight week of conception at Hiroshima. This implies a mechanism for micrencephaly different from those previously suggested and lends credence to a causal relation between radiation and small head size in humans at low doses as reported by Miller and Mulvihill. 16 refs., 13 tabs.

  9. Hedgehog controls neural stem cells through p53-independent regulation of Nanog

    PubMed Central

    Po, Agnese; Ferretti, Elisabetta; Miele, Evelina; De Smaele, Enrico; Paganelli, Arianna; Canettieri, Gianluca; Coni, Sonia; Di Marcotullio, Lucia; Biffoni, Mauro; Massimi, Luca; Di Rocco, Concezio; Screpanti, Isabella; Gulino, Alberto

    2010-01-01

    Hedgehog (Hh) pathway has a pivotal function in development and tumorigenesis, processes sustained by stem cells (SCs). The transcription factor Nanog controls stemness acting as a key determinant of both embryonic SC self-renewal and differentiated somatic cells reprogramming to pluripotency, in concert with the loss of the oncosuppressor p53. How Nanog is regulated by microenvironmental signals in postnatal SC niches has been poorly investigated. Here, we show that Nanog is highly expressed in SCs from postnatal cerebellum and medulloblastoma, and acts as a critical mediator of Hh-driven self-renewal. Indeed, the downstream effectors of Hh activity, Gli1 and Gli2, bind to Nanog-specific cis-regulatory sequences both in mouse and human SCs. Loss of p53, a key event promoting cell stemness, activates Hh signalling, thereby contributing to Nanog upregulation. Conversely, Hh downregulates p53 but does not require p53 to control Nanog. Our data reveal a mechanism for the function of Hh in the control of stemness that represents a crucial component of an integrated circuitry determining cell fate decision and involved in the maintenance of cancer SCs. PMID:20581804

  10. Mutant lamin A links prophase to a p53 independent senescence program

    PubMed Central

    Moiseeva, Olga; Lessard, Frédéric; Acevedo-Aquino, Mariana; Vernier, Mathieu; Tsantrizos, Youla S; Ferbeyre, Gerardo

    2015-01-01

    Expression of oncogenes or short telomeres can trigger an anticancer response known as cellular senescence activating the p53 and RB tumor suppressor pathways. This mechanism is switched off in most tumor cells by mutations in p53 and RB signaling pathways. Surprisingly, p53 disabled tumor cells could be forced into senescence by expression of a mutant allele of the nuclear envelope protein lamin A. The pro-senescence lamin A mutant contains a deletion in the sequence required for processing by the protease ZMPSTE24 leading to accumulation of farnesylated lamin A in the nuclear envelope. In addition, the serine at position 22, a target for CDK1-dependent phosphorylation, was mutated to alanine, preventing CDK1-catalyzed nuclear envelope disassembly. The accumulation of this mutant lamin A compromised prophase to prometaphase transition leading to invaginations of the nuclear lamina, nuclear fragmentation and impaired chromosome condensation. Cells exited this impaired mitosis without cytokinesis and re-replicated their DNA ultimately arresting in interphase as polyploid cells with features of cellular senescence including increased expression of inflammatory gene products and a significant reduction of tumorigenicity in vivo. PMID:26029982

  11. A STUDY ON MICROWAVE INSTABILITY INDUCED RADIATION.

    SciTech Connect

    MURPHY,J.B.; WANG,J.M.

    1999-03-29

    It has been shown in the context of a solvable model that the microwave instability can be described in terms of ''coherent states'' [1]. Building on this model, we first show that the simplicity of the model arises from the fact that the key integral-differential equation can be reduced to the Karhunen-Loeve equation of the theory of stochastic processes. We present results on the correlation functions of the electric field. In particular, for the second order correlation function, we show that a relation akin to the Hanbury Brown-Twiss correlation holds for the coherent states of the microwave-instability induced radiation. We define an entropy-like quantity and we introduce a Wigner distribution function representation.

  12. Transesophageal Echocardiography and Radiation-induced Damages

    PubMed Central

    Cottini, Marzia; Polizzi, Vincenzo; Pino, Paolo Giuseppe; Buffa, Vitaliano; Musumeci, Francesco

    2016-01-01

    The long-term sequelae of mantle therapy include, especially lung and cardiac disease but also involve the vessels and the organs in the neck and thorax (such as thyroid, aorta, and esophagus). We presented the case of 66-year-old female admitted for congestive heart failure in radiation-induced heart disease. The patient had undergone to massive radiotherapy 42 years ago for Hodgkin's disease (type 1A). Transesophageal echocardiography was performed unsuccessfully with difficulty because of the rigidity and impedance of esophageal walls. Our case is an extraordinary report of radiotherapy's latency effect as a result of dramatic changes in the structure of mediastinum, in particular in the esophagus, causing unavailability of a transesophageal echocardiogram. PMID:27867461

  13. [Medical prevention and treatment of radiation-induced pulmonary complications].

    PubMed

    Vallard, A; Rancoule, C; Le Floch, H; Guy, J-B; Espenel, S; Le Péchoux, C; Deutsch, É; Magné, N; Chargari, C

    2017-08-01

    Radiation-induced lung injuries mainly include the (acute or sub-acute) radiation pneumonitis, the lung fibrosis and the bronchiolitis obliterans organizing pneumonia (BOOP). The present review aims at describing the diagnostic process, the current physiopathological knowledge, and the available (non dosimetric) preventive and curative treatments. Radiation-induced lung injury is a diagnosis of exclusion, since clinical, radiological, or biological pathognomonic evidences do not exist. Investigations should necessarily include a thoracic high resolution CT-scan and lung function tests with a diffusing capacity of the lung for carbon monoxide. No treatment ever really showed efficacy to prevent acute radiation-induced lung injury, or to treat radiation-induced lung fibrosis. The most promising drugs in order to prevent radiation-induced lung injury are amifostine, angiotensin-converting-enzyme inhibitors and pentoxifylline. Inhibitors of collagen synthesis are currently tested at a pre-clinical stage to limit the radiation-induced lung fibrosis. Regarding available treatments of radiation-induced pneumonitis, corticoids can be considered the cornerstone. However, no standardized program or guidelines concerning the initial dose and the gradual tapering have been scientifically established. Alternative treatments can be prescribed, based on clinical cases reporting on the efficacy of immunosuppressive drugs. Such data highlight the major role of the lung dosimetric protection in order to efficiently prevent radiation-induced lung injury. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  14. Obstructive jaundice due to radiation-induced hepatic duct stricture

    SciTech Connect

    Chandrasekhara, K.L.; Iyer, S.K.

    1984-10-01

    A case of obstructive jaundice due to radiation-induced hepatic duct stricture is reported. The patient received postoperative radiation for left adrenal carcinoma, seven years prior to this admission. The sequelae of hepatobiliary radiation and their management are discussed briefly.

  15. Radiation health: mechanisms of radiation-induced cataracts in astronauts.

    PubMed

    Frey, Mary Anne

    2009-06-01

    Dr. Blakely and colleagues have conducted a series of experiments to explain the molecular basis by which space radiation causes cataracts, particularly with regard to elucidating how space radiation alters gene expression profiles in the process of lens cell differentiation. To do this, they "developed an in vitro model of differentiating human lens epithelial cells...that mimicked the normal growth environment in the tissue" (2). They have shown that radiation, especially high-LET (linear energy transfer) iron ion radiation, affects gene and protein expression of many cells involved in lens cell differentiation and cell cycle regulation. They have also developed a schematic model to explain the action of ionizing radiation on specific molecules leading to perturbations in cell cycle regulation and ultimately affecting lens cell differentiation. These results can provide a basis for developing countermeasures to protect astronauts in long-duration spaceflight and for improving risk assessments of space-radiation-caused cataracts. This research can also benefit individuals on Earth who are exposed to clinical and occupational radiation.

  16. Radiation-Induced Alopecia after Endovascular Embolization under Fluoroscopy

    PubMed Central

    Ounsakul, Vipawee; Iamsumang, Wimolsiri

    2016-01-01

    Radiation-induced alopecia after fluoroscopically guided procedures is becoming more common due to an increasing use of endovascular procedures. It is characterized by geometric shapes of nonscarring alopecia related to the area of radiation. We report a case of a 46-year-old man presenting with asymptomatic, sharply demarcated rectangular, nonscarring alopecic patch on the occipital scalp following cerebral angiography with fistula embolization under fluoroscopy. His presentations were compatible with radiation-induced alopecia. Herein, we also report a novel scalp dermoscopic finding of blue-grey dots in a target pattern around yellow dots and follicles, which we detected in the lesion of radiation-induced alopecia. PMID:28074164

  17. Thermodynamic models of radiation-induced processes in solids

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Eremin, E. N.; Kasymov, S. S.; Laurinas, V. CH; Chernyavskii, A. V.

    2017-01-01

    A thermodynamic model is proposed to qualitatively describe the radiation-induced processes in solids: temperature dependence of the X-ray radio luminescence output, dependence of these processes on the excitation density, energy accumulating in a solid under exposure to ionizing radiation and its temperature dependence. The proposed model and the formula derived can be used to develop radiation-resistant and radiation-sensitive materials.

  18. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  19. Analog of microwave-induced resistance oscillations induced in GaAs heterostructures by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Herrmann, T.; Dmitriev, I. A.; Kozlov, D. A.; Schneider, M.; Jentzsch, B.; Kvon, Z. D.; Olbrich, P.; Bel'kov, V. V.; Bayer, A.; Schuh, D.; Bougeard, D.; Kuczmik, T.; Oltscher, M.; Weiss, D.; Ganichev, S. D.

    2016-08-01

    We report on the study of terahertz radiation-induced MIRO-like oscillations of magnetoresistivity in GaAs heterostructures. Our experiments provide an answer on two most intriguing questions—effect of radiation helicity and the role of the edges—yielding crucial information for an understanding of the MIRO (microwave-induced resistance oscillations) origin. Moreover, we demonstrate that the range of materials exhibiting radiation-induced magneto-oscillations can be largely extended by using high-frequency radiation.

  20. [Spontaneous and radiation-induced chromosome breaks].

    PubMed

    Lebedeva, L I; Chubykin, V L

    1975-01-01

    It is shown by the study of the location of acentric fragments of chromosomes at metaphase and anaphase in the root cells of pea (cultivar "Capital"), in the cornea of rats (strain Wistar), in the bone marrow of mice (strain BALB), in the cultures of embryonic fibroblasts of mice (strain C57B1) and of embryonic human fibroblasts that some fragments are situated outside the equatorial plates, while others are situated within the plane of the equatorial plate. The fragments of the first type initiate mainly spontaneously, while the fragments of the second type are mainly induced by irradiation. These principles are observed in all the types of animal and plant cells studied. The location of the fragments observed in non-radiated cells could be explained if it be assumed, that all the chromosome breaks are realized before the prometaphase and by the beginning of the prometaphase the fragments are randomly distributed within the volume of the nucleus. At the prometaphase most fragments move from the equator to the pole of the cell and thus at the metaphase and anaphase are found to be located outside the equatorial plate. For the explanation of the observed ratio of the two types of fragments in an irradiated cell it is assumed that chromosome fragments resulting from breaks induced by irradiation are completely detached from chromosomes only after the beginning of the prometaphase. Possibly, the process of development of breaks is also not yet completed by this time, it continues and is completed at the metaphase, partially, at the anaphase of the mitosis.

  1. Radiation-induced degradation of DNA bases

    NASA Astrophysics Data System (ADS)

    Douki, T.; Delatour, T.; Martini, R.; Cadet, J.

    1999-01-01

    Radio-induced degradation of DNA involves radical processes. A series of lesions among the major bases degradation products has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. Quantification of the modified bases showed that guanine is the preferential target. This can be explained by its lower oxidation potential and charge transfer phenomena. La décomposition radio-induite de l'ADN fait intervenir des processus radicalaires. Une série de lésions choisies parmi les produits majeurs de dégradation des bases a été mesurée dans de l'ADN isolé exposé au rayonnement en solution aqueuse aérée. Les modifications sont alors dues aux radicaux hydroxyles produits par la radiolyse de l'eau (effet indirect) et les quatre bases sont efficacement dégradées. L'arrachement d'électrons aux bases par photosensibilisation pour produire leur radical cation, a été utilisé comme modèle de l'effet direct. La quantification des bases modifiées montre que la guanine est préférentiellement dégradée. Cette observation peut s'expliquer par le plus faible potentiel d'oxydation de cette base ainsi que par les phénomènes de transfert de charge vers les guanines.

  2. Radiation-induced degradation of aqueous fluoranthene

    NASA Astrophysics Data System (ADS)

    Popov, Petar; Getoff, Nikola

    2005-01-01

    The radiation-induced degradation of fluoranthene (FA) in slightly alkaline aqueous solution was investigated in the presence of air as well as of N 2O. Depending on the starting FA-concentration the determined Gi(-FA) was 0.34 for 1×10 -5 mol/l FA upto 0.67 for 4.6×10 -5 mol/l FA. As major radiolytic products found by HPLC-analysis were: 9-fluorene carboxylic acid ( Gi =0.006), 9-fluorenone ( Gi=0.004) and fluorene ( Gi=0.002) in addition to a mixture of carboxylic acids and aldehydes. In the presence of N 2O (90% OH, 10% H) practically the same products were observed, however in this case the yield of the carboxylic acids was about 2-times higher than in solutions saturated with air, but 4-times less aldehydes, resp. For illustration of the rather complicated degradation process a probable reaction mechanism is presented.

  3. Pathogenesis and Prevention of Radiation-induced Myocardial Fibrosis

    PubMed

    Liu, Li Kun; Ouyang, Weiwei; Zhao, Xing; Su, Sheng Fa; Yang, Yan; Ding, Wen Jin; Luo, Da Xian; He, Zhi Xu; Lu, Bing

    2017-03-01

    Radiation therapy is one of the most important methods for the treatment of malignant tumors. However, in radiotherapy for thoracic tumors such as breast cancer, lung cancer, esophageal cancer, and mediastinal lymphoma, the heart, located in the mediastinum, is inevitably affected by the irradiation, leading to pericardial disease, myocardial fibrosis, coronary artery disease, valvular lesions, and cardiac conduction system injury, which are considered radiation-induced heart diseases. Delayed cardiac injury especially myocardial fibrosis is more prominent, and its incidence is as high as 20–80%. Myocardial fibrosis is the final stage of radiation-induced heart diseases, and it increases the stiffness of the myocardium and decreases myocardial systolic and diastolic function, resulting in myocardial electrical physiological disorder, arrhythmia, incomplete heart function, or even sudden death. This article reviews the pathogenesis and prevention of radiation-induced myocardial fibrosis for providing references for the prevention and treatment of radiation-induced myocardial fibrosis. Creative Commons Attribution License

  4. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  5. Radiation induces senescence and a bystander effect through metabolic alterations.

    PubMed

    Liao, E-C; Hsu, Y-T; Chuah, Q-Y; Lee, Y-J; Hu, J-Y; Huang, T-C; Yang, P-M; Chiu, S-J

    2014-05-22

    Cellular senescence is a state of irreversible growth arrest; however, the metabolic processes of senescent cells remain active. Our previous studies have shown that radiation induces senescence of human breast cancer cells that display low expression of securin, a protein involved in control of the metaphase-anaphase transition and anaphase onset. In this study, the protein expression profile of senescent cells was resolved by two-dimensional gel electrophoresis to investigate associated metabolic alterations. We found that radiation induced the expression and activation of glyceraldehyde-3-phosphate dehydrogenase that has an important role in glycolysis. The activity of lactate dehydrogenase A, which is involved in the conversion of pyruvate to lactate, the release of lactate and the acidification of the extracellular environment, was also induced. Inhibition of glycolysis by dichloroacetate attenuated radiation-induced senescence. In addition, radiation also induced activation of the 5'-adenosine monophosphate-activated protein kinase (AMPK) and nuclear factor kappa B (NF-κB) pathways to promote senescence. We also found that radiation increased the expression of monocarboxylate transporter 1 (MCT1) that facilitates the export of lactate into the extracellular environment. Inhibition of glycolysis or the AMPK/NF-κB signalling pathways reduced MCT1 expression and rescued the acidification of the extracellular environment. Interestingly, these metabolic-altering signalling pathways were also involved in radiation-induced invasion of the surrounding, non-irradiated breast cancer and normal endothelial cells. Taken together, radiation can induce the senescence of human breast cancer cells through metabolic alterations.

  6. Dose-dependent radiation-induced hypotension in the canine

    SciTech Connect

    Cockerham, L.G.; Hampton, J.D.; Doyle, T.F.

    1986-01-01

    Radiation-induced early transient incapacitation (ETI) is often accompanied by severe systemic hypotension. However, postradiation hypotension does not occur with equal frequency in all species and is not reported with consistency in the canine. In an attempt to clarify the differences in reported canine post-radiation blood pressures, canine systemic blood pressures were determined both before and after exposure to gamma radiation of either 80 or 100 Gy. Data obtained from six sham-radiated beagles and 12 radiated beagles indicated that 100-Gy, whole-body, gamma radiation produced a decrease in systemic mean blood pressure while 80-Gy, whole-body, gamma radiation did not. Analysis of this data could be consistent with a quantal response to a gamma radiation dose between 80 Gy and 100 Gy.

  7. Selenomethionine protects against adverse biological effects induced by space radiation.

    PubMed

    Kennedy, Ann R; Ware, Jeffrey H; Guan, Jun; Donahue, Jeremiah J; Biaglow, John E; Zhou, Zhaozong; Stewart, Jelena; Vazquez, Marcelo; Wan, X Steven

    2004-01-15

    Ionizing radiation-induced adverse biological effects impose serious challenges to astronauts during extended space travel. Of particular concern is the radiation from highly energetic, heavy, charged particles known as HZE particles. The objective of the present study was to characterize HZE particle radiation-induced adverse biological effects and evaluate the effect of D-selenomethionine (SeM) on the HZE particle radiation-induced adverse biological effects. The results showed that HZE particle radiation can increase oxidative stress, cytotoxicity, and cell transformation in vitro, and decrease the total antioxidant status in irradiated Sprague-Dawley rats. These adverse biological effects were all preventable by treatment with SeM, suggesting that SeM is potentially useful as a countermeasure against space radiation-induced adverse effects. Treatment with SeM was shown to enhance ATR and CHK2 gene expression in cultured human thyroid epithelial cells. As ionizing radiation is known to result in DNA damage and both ATR and CHK2 gene products are involved in DNA damage, it is possible that SeM may prevent HZE particle radiation-induced adverse biological effects by enhancing the DNA repair machinery in irradiated cells.

  8. Lipotransfer for radiation-induced skin fibrosis.

    PubMed

    Kumar, R; Griffin, M; Adigbli, G; Kalavrezos, N; Butler, P E M

    2016-07-01

    Radiation-induced fibrosis (RIF) is a late complication of radiotherapy that results in progressive functional and cosmetic impairment. Autologous fat has emerged as an option for soft tissue reconstruction. There are also sporadic reports suggesting regression of fibrosis following regional lipotransfer. This systematic review aimed to identify cellular mechanisms driving RIF, and the potential role of lipotransfer in attenuating these processes. PubMed, OVID and Google Scholar databases were searched to identify all original articles regarding lipotransfer for RIF. All articles describing irradiated fibroblast or myofibroblast behaviour were included. Data elucidating the mechanisms of RIF, role of lipotransfer in RIF and methods to quantify fibrosis were extracted. Ninety-eight studies met the inclusion criteria. A single, definitive model of RIF is yet to be established, but four cellular mechanisms were identified through in vitro studies. Twenty-one studies identified connective tissue growth factor and transforming growth factor β1 cytokines as drivers of fibrotic cascades. Hypoxia was demonstrated to propagate fibrogenesis in three studies. Oxidative stress from the release of reactive oxygen species and free radicals was also linked to RIF in 11 studies. Purified autologous fat grafts contain cellular and non-cellular properties that potentially interact with these processes. Six methods for quantifying fibrotic changes were evaluated including durometry, ultrasound shear wave elastography, thermography, dark field imaging, and laser Doppler and laser speckle flowmetry. Understanding how lipotransfer causes regression of RIF remains unclear; there are a number of new hypotheses for future research. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  9. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  10. Radiation-Induced Impairment of Neuronal Excitability

    DTIC Science & Technology

    1988-01-01

    population spike. A dose rate of 20 Gy/min shifts to the left the dose response curve for radiation at 5 Gy/min. At 5 Gy/min, significant deficits...postsynaptic damage is likely to result from a different molecular mechanism. 100 , , t 50 0) 000 FIUR 2 6 5 200Radiation Dose (Gy) FIGURE 2 Dose response curve of

  11. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    PubMed

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  12. Clinical and dosimetric factors of radiation-induced esophageal injury: Radiation-induced esophageal toxicity

    PubMed Central

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-01-01

    AIM: To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). METHODS: We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. RESULTS: Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus ≥60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). CONCLUSION: Concurrent chemotherapy and the maximal esophageal point dose ≥60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT. PMID:15849822

  13. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  14. Radiation-induced charge trapping in bipolar base oxides

    SciTech Connect

    Fleetwood, D.M.; Riewe, L.C.; Witczak, Schrimpf, R.D.

    1996-03-01

    Capacitance-voltage and thermally stimulated current methods are used to investigate radiation induced charge trapping in bipolar base oxides. Results are compared with models of oxide and interface trap charge buildup at low electric fields.

  15. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  16. Radiation-induced myeloid leukemia in murine models.

    PubMed

    Rivina, Leena; Davoren, Michael; Schiestl, Robert H

    2014-07-25

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included.

  17. Genetic variation in radiation-induced cell death.

    PubMed

    Smirnov, Denis A; Brady, Lauren; Halasa, Krzysztof; Morley, Michael; Solomon, Sonia; Cheung, Vivian G

    2012-02-01

    Radiation exposure through environmental, medical, and occupational settings is increasingly common. While radiation has harmful effects, it has utility in many applications such as radiotherapy for cancer. To increase the efficacy of radiation treatment and minimize its risks, a better understanding of the individual differences in radiosensitivity and the molecular basis of radiation response is needed. Here, we integrated human genetic and functional genomic approaches to study the response of human cells to radiation. We measured radiation-induced changes in gene expression and cell death in B cells from normal individuals. We found extensive individual variation in gene expression and cellular responses. To understand the genetic basis of this variation, we mapped the DNA sequence variants that influence expression response to radiation. We also identified radiation-responsive genes that regulate cell death; silencing of these genes by small interfering RNA led to an increase in radiation-induced cell death in human B cells, colorectal and prostate cancer cells. Together these results uncovered DNA variants that contribute to radiosensitivity and identified genes that can be targeted to increase the sensitivity of tumors to radiation.

  18. Radiation-induced coronary artery disease

    SciTech Connect

    Dunsmore, L.D.; LoPonte, M.A.; Dunsmore, R.A.

    1986-07-01

    This report describes three patients who developed myocardial infarction at an untimely age, 4 to 12 years after radiation therapy for Hodgkin's disease. These cases lend credence to the cause and effect relation of such therapy to coronary artery disease.

  19. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  20. [Update in radiation-induced neoplasms: genetic studies].

    PubMed

    Chauveinc, Laurent; Lefevre, Sandrine; Malfoy, Bernard; Dutrillaux, Bernard

    2002-02-01

    Radiation induced tumors are a possible (very) late complications of radiotherapy. The evaluation of the risks of radiation-induced tumors has been presented in different epidemiological studies, with the evaluation of the relative risk for different tissues. But, the genetic studies are rare, and no global theory exists. Two cytogenetic profiles are described, one with translocations and one with genetic material losses, evoking two different genetic evolutions. Two questions are stated. What are the radiation-induced genetic mechanisms? Is it possible to differentiate the radiation-induced and spontaneous tumors with genetic approaches? With 37 cytogenetic cases, 12 analyzed in our laboratory, the radiation-induced tumors were characterized by genetic material losses. An anti-oncogenic evolution is probable. A new molecularly study confirm these results. Only thyroid tumors do not have this evolution. For tumors with simple karyotype, like meningioma, radiation-induced tumors seem to be more complex than spontaneous tumors. But for the others, the differentiation is impossible to be done with cytogenetic. The mechanism of the chromosomic material losses in unknown, but some hypothesis are discussed.

  1. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors.

  2. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  3. Pathology and biology of radiation-induced cardiac disease

    PubMed Central

    Tapio, Soile

    2016-01-01

    Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation. PMID:27422929

  4. Radiation Induced DNA Double-Strand Breaks in Radiology.

    PubMed

    Kuefner, M A; Brand, M; Engert, C; Schwab, S A; Uder, M

    2015-10-01

    Shortly after the discovery of X-rays, their damaging effect on biological tissues was observed. The determination of radiation exposure in diagnostic and interventional radiology is usually based on physical measurements or mathematical algorithms with standardized dose simulations. γ-H2AX immunofluorescence microscopy is a reliable and sensitive method for the quantification of radiation induced DNA double-strand breaks (DSB) in blood lymphocytes. The detectable amount of these DNA damages correlates well with the dose received. However, the biological radiation damage depends not only on dose but also on other individual factors like radiation sensitivity and DNA repair capacity. Iodinated contrast agents can enhance the x-ray induced DNA damage level. After their induction DSB are quickly repaired. A protective effect of antioxidants has been postulated in experimental studies. This review explains the prinicple of the γ-H2AX technique and provides an overview on studies evaluating DSB in radiologic examinations. Radiologic examinations including CT and angiography induce DNA double-strand breaks. Even after mammography a slight but significant increase is detectable in peripheral blood lymphocytes. The number of radiation induced double-strand breaks correlates well with the radiation dose. Individual factors including radiation sensitivity, DNA repair capacity and the application of iodinated contrast media has an influence on the DNA damage level. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Faecal microbiota transplantation protects against radiation-induced toxicity.

    PubMed

    Cui, Ming; Xiao, Huiwen; Li, Yuan; Zhou, Lixin; Zhao, Shuyi; Luo, Dan; Zheng, Qisheng; Dong, Jiali; Zhao, Yu; Zhang, Xin; Zhang, Junling; Lu, Lu; Wang, Haichao; Fan, Saijun

    2017-04-01

    Severe radiation exposure may cause acute radiation syndrome, a possibly fatal condition requiring effective therapy. Gut microbiota can be manipulated to fight against many diseases. We explored whether intestinal microbe transplantation could alleviate radiation-induced toxicity. High-throughput sequencing showed that gastrointestinal bacterial community composition differed between male and female mice and was associated with susceptibility to radiation toxicity. Faecal microbiota transplantation (FMT) increased the survival rate of irradiated animals, elevated peripheral white blood cell counts and improved gastrointestinal tract function and intestinal epithelial integrity in irradiated male and female mice. FMT preserved the intestinal bacterial composition and retained mRNA and long non-coding RNA expression profiles of host small intestines in a sex-specific fashion. Despite promoting angiogenesis, sex-matched FMT did not accelerate the proliferation of cancer cells in vivo FMT might serve as a therapeutic to mitigate radiation-induced toxicity and improve the prognosis of tumour patients after radiotherapy.

  6. Thermodynamic processes induced by coherent radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.

    1977-01-01

    It is shown by quantum statistics that under certain stated conditions the entropy of coherent radiation is zero and it is still negligible for multimode laser operation. This makes possible gas kinetic processes which, to a small extent, have already been observed or even utilized, but which can be greatly enhanced by an optimized choice of molecular structures and radiation conditions. Radiative cooling of gases is discussed in detail. The conditions for maximum heat withdrawal are derived, and it is proposed that the processes of cooling and relaxation heating can be sufficiently separated in time to achieve certain effects and thermodynamic cycles. One of these is the complete conversion, possible in principle, of coherent radiation into work. This concept is based on a heat pump process followed by heat-to-work conversion, the heat rejected being just equal to that withdrawn by radiation. The conditions for complete conversion turn out to be the same as for maximum heat withdrawal. The feasibility of these processes depends on the degree to which practical conditions can be met, and on the validity of certain assumptions which have to await experimental verification.

  7. Thermodynamic processes induced by coherent radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.

    1977-01-01

    It is shown by quantum statistics that under certain stated conditions the entropy of coherent radiation is zero and it is still negligible for multimode laser operation. This makes possible gas kinetic processes which, to a small extent, have already been observed or even utilized, but which can be greatly enhanced by an optimized choice of molecular structures and radiation conditions. Radiative cooling of gases is discussed in detail. The conditions for maximum heat withdrawal are derived, and it is proposed that the processes of cooling and relaxation heating can be sufficiently separated in time to achieve certain effects and thermodynamic cycles. One of these is the complete conversion, possible in principle, of coherent radiation into work. This concept is based on a heat pump process followed by heat-to-work conversion, the heat rejected being just equal to that withdrawn by radiation. The conditions for complete conversion turn out to be the same as for maximum heat withdrawal. The feasibility of these processes depends on the degree to which practical conditions can be met, and on the validity of certain assumptions which have to await experimental verification.

  8. Optical imaging of radiation-induced metabolic changes in radiation-sensitive and resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan

    2017-06-01

    Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.

  9. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury

    PubMed Central

    Cotrim, Ana P.; Hyodo, Fuminori; Baum, Bruce J.; Krishna, Murali C.; Mitchell, James B.

    2010-01-01

    Radiation is used in the treatment of a broad range of malignancies. Exposure of normal tissue to radiation may result in both acute and chronic toxicities that can result in an inability to deliver the intended therapy, a range of symptoms, and a decrease in quality of life. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. Herein, we review agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury. Few agents are approved for clinical use, but many new compounds show promising results in preclinical testing. PMID:20413641

  10. Hyperprolactinemia from radiation-induced hypothalamic hypopituitarism

    SciTech Connect

    Corkill, G.; Hanson, F.W.; Gold, E.M.; White, V.A.

    1980-01-01

    In 1975 Samaan et al., described the effects of radiation damage of the hypothalamus in 15 patients with head and neck cancer. Shalet et al., in 1977 described endocrine morbidity in adults who as children had been irradiated for brain tumors. This report describes instances of hyperprolactinemia and associated hypothalamic, pituitary, and thyroid dysfunction following irradiation of a young adult female for brain neoplasia.

  11. RADIATION INDUCED VULCANIZATION OF RUBBER LATEX

    DOEpatents

    Mesrobian, R.B.; Ballantine, D.S.; Metz, D.J.

    1964-04-28

    A method of vulcanizing rubber latex by exposing a mixture containing rubber latex and from about 15 to about 21.3 wt% of 2,5-dichlorostyrene to about 1.1 megarads of gamma radiation while maintaining the temperature of the mixture at a temperature ranging between from about 56 to about 59 deg C is described. (AEC)

  12. Neutron Radiation Induced Degradation of Diode Characteristics

    DTIC Science & Technology

    1992-12-01

    de fluance utilis6 dans ce travail (diode du type 3). La plupart des r~sultats anterieurs sur les, diodes A jonction p-n correspondent aux rdsultats...termes des thories pour une jonction p-n et pour les effects de radiations sur semiconducteurs. II est prddit qu’une diode du type 3 pourrait &tre

  13. Factors Associated with Occurrence of Radiation-induced Optic Neuropathy at "Safe" Radiation Dosage.

    PubMed

    Doroslovački, Pavle; Tamhankar, Madhura A; Liu, Grant T; Shindler, Kenneth S; Ying, Gui-Shuang; Alonso-Basanta, Michelle

    2017-07-13

    Radiation-induced optic neuropathy (RION) is a rare, and often visually devastating, complication of radiation therapy (RT) near the anterior visual pathways. A retrospective case series of patients who developed RION at a tertiary medical center, followed by a case-control study comparing RION cases with matched controls who received RT. Thirteen patients (18 eyes) with RION were identified. Radiation modalities included external beam photon radiation, whole brain radiation, stereotactic radiosurgery, proton beam, and unknown. Most patients received doses below published "safe" thresholds (<55 Gy; <8-10 Gy for stereotactic radiosurgery). There was no statistically significant difference in prevalence of vasculopathic factors between cases and controls; on subgroup analysis in three patients who received surprisingly low radiation doses, smoking (p=0.05) and hypertension (p=0.02) appeared more prevalent. RION can occur at doses below published "safe" thresholds and with different RT modalities. Smoking and hypertension might be risk factors for RION.

  14. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  15. Characterization of radiation-induced emesis in the ferret

    SciTech Connect

    King, G.L.

    1988-01-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral cobalt 60 gamma radiation at 100 cGy min at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED 50 was calculated as 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously or subcutaneously with 30 to 300 micrograms /kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n=4) or 401 (n=4) cGy radiation and their emetic responses were compared with NaCi-injected-irradiated controls (n=8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.

  16. Characterization of radiation-induced emesis in the ferret

    SciTech Connect

    King, G.L.

    1988-06-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral /sup 60/Co gamma radiation at 100 cGy min-1 at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED50 was calculated at 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously or subcutaneously with 30 to 300 micrograms/kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n = 4) or 401 (n = 4) cGy radiation and their emetic responses were compared with NaCl-injected-irradiated controls (n = 8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.

  17. Use of probiotics for prevention of radiation-induced diarrhea

    PubMed Central

    Delia, P; Sansotta, G; Donato, V; Frosina, P; Messina, G; De Renzis, C; Famularo, G

    2007-01-01

    AIM: To investigate the efficacy of a high-potency probiotic preparation on prevention of radiation-induced diarrhea in cancer patients. METHODS: This was a double-blind, placebo-controlled trial. Four hundred and ninety patients who underwent adjuvant postoperative radiation therapy after surgery for sigmoid, rectal, or cervical cancer were assigned to either the high-potency probiotic preparation VSL#3 (one sachet t.i.d.,) or placebo starting from the first day of radiation therapy. Efficacy endpoints were incidence and severity of radiation-induced diarrhea, daily number of bowel movements, and the time from the start of the study to the use of loperamide as rescue medication. RESULTS: More placebo patients had radiation-induced diarrhea than VSL#3 patients (124 of 239 patients, 51.8%, and 77 of 243 patients, 31.6%; P < 0.001) and more patients given placebo suffered grade 3 or 4 diarrhea compared with VSL#3 recipients (55.4% and 1.4%, P < 0.001). Daily bowel movements were 14.7 ± 6 and 5.1 ± 3 among placebo and VSL#3 recipients (P < 0.05), and the mean time to the use of loperamide was 86 ± 6 h for placebo patients and 122 ± 8 h for VSL#3 patients (P < 0.001). CONCLUSION: Probiotic lactic acid-producing bacteria are an easy, safe, and feasible approach to protect cancer patients against the risk of radiation-induced diarrhea. PMID:17352022

  18. Radiation-induced cognitive impairment-from bench to bedside

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.

    2012-01-01

    Approximately 100 000 patients per year in the United States with primary and metastatic brain tumor survive long enough (>6 months) to develop radiation-induced brain injury. Before 1970, the human brain was thought to be radioresistant; the acute central nervous system (CNS) syndrome occurs after single doses of ≥30 Gy, and white matter necrosis can occur at fractionated doses of ≥60 Gy. Although white matter necrosis is uncommon with modern radiation therapy techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become increasingly important, having profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenic mechanisms involved in radiation-induced cognitive impairment. Although reductions in hippocampal neurogenesis and hippocampal-dependent cognitive function have been observed in rodent models, it is important to recognize that other brain regions are affected; non–hippocampal-dependent reductions in cognitive function occur. Neuroinflammation is viewed as playing a major role in radiation-induced cognitive impairment. During the past 5 years, several preclinical studies have demonstrated that interventional therapies aimed at modulating neuroinflammation can prevent/ameliorate radiation-induced cognitive impairment independent of changes in neurogenesis. Translating these exciting preclinical findings to the clinic offers the promise of improving the quality of life in patients with brain tumors who receive radiation therapy. PMID:23095829

  19. Case 242: Radiation-induced Angiosarcoma.

    PubMed

    Disharoon, Meredith; Kozlowski, Kamilia F; Kaniowski, Jessica M

    2017-06-01

    History In 2004, this woman received a diagnosis of invasive mammillary carcinoma, tubular variant, strongly positive for estrogen and progesterone receptors. Her lesion was found at screening mammography performed at an outside institution when she was 59 years old. She underwent partial mastectomy, with partial axillary node dissection and sentinel node mapping. A 0.6 × 0.5 cm Nottingham grade 1 infiltrating ductal carcinoma was removed from the right upper outer quadrant, margins were free of tumor, and there was no angiolymphatic invasion. The six dissected lymph nodes were negative for malignancy. Her surgical history was otherwise unremarkable. Her medical history was positive for hypercholesterolemia and depression. Pertinent family history included breast cancer in both her mother and her sister. Given the patient's age, tumor size, lack of nodal involvement, and clear surgical margins, she met recommended MammoSite criteria, and she underwent accelerated partial breast radiation. She subsequently received 340 cGy of radiation twice a day for a total dose of 3400 cGy in 10 administrations in February 2005. Accelerated partial breast radiation treatment was completed in February 2005, and she received subsequent routine care. Prior to 2014, the only postoperative complication was a chronic radiation bed seroma, which required periodic percutaneous drainage. She did not develop postsurgical lymphedema. In December 2013, 9 years after accelerated partial breast radiation treatment, she experienced progressive painful pruritic breast fullness, skin dimpling, and skin discoloration of the mastectomy scar and radiation bed. She sought medical care in January 2014 after she noticed a periareolar ulcerating skin plaque, more noticeable nipple retraction, and new onset of retroareolar aching. At physical examination ( Fig 1 ), there was generalized periareolar erythema, dimpling, firmness, and fixation involving the central breast and right upper outer quadrant

  20. Radiation recall dermatitis induced by trastuzumab.

    PubMed

    Moon, Dochang; Koo, Ja Seung; Suh, Chang-Ok; Yoon, Chang Yun; Bae, Jaehyun; Lee, Soohyeon

    2016-01-01

    We report a case of radiation recall dermatitis caused by trastuzumab. A 55-year-old woman with metastatic breast cancer received palliative first-line trastuzumab/paclitaxel and a salvage partial mastectomy with lymph node dissection was subsequently performed. In spite of the palliative setting, the pathology report indicated that no residual carcinoma was present, and then she underwent locoregional radiotherapy to ensure a definitive response. After radiotherapy, she has maintained trastuzumab monotherapy. Nine days after the fifth cycle of trastuzumab monotherapy, dermatitis in previously irradiated skin developed, with fever. Radiation recall dermatitis triggered by trastuzumab is extremely rare. A high fever developed abruptly with a skin rash. This may be the first case of this sort to be reported.

  1. Mitigation of radiation induced surface contamination

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  2. DECOHERENCE EFFECTS OF MOTION-INDUCED RADIATION

    SciTech Connect

    P. NETO; D. DALVIT

    2000-12-01

    The radiation pressure coupling with vacuum fluctuations gives rise to energy damping and decoherence of an oscillating particle. Both effects result from the emission of pairs of photons, a quantum effect related to the fluctuations of the Casimir force. We discuss different alternative methods for the computation of the decoherence time scale. We take the example of a spherical perfectly-reflecting particle, and consider the zero and high temperature limits. We also present short general reviews on decoherence and dynamical Casimir effect.

  3. [Nonsurgical treatment of chronic radiation-induced hemorrhagic proctitis].

    PubMed

    de Parades, Vincent; Bauer, Pierre; Marteau, Philippe; Chauveinc, Laurent; Bouillet, Thierry; Atienza, Patrick

    2008-01-01

    The incidence of radiation-induced chronic hemorrhagic proctitis is less than 10 to 20%. The onset of this proctitis is delayed relative to the radiation therapy and generally develops from 6 to 24 months later. There are numerous predisposing factors, the most important of which is the radiation therapy dose: risk increases exponentially above 40-45 Gy. Its pathophysiology involves progressive obliterating endarteritis and transmural interstitial fibrosis, which induce chronic ischemia that is irreversible and progressive during the years after radiation therapy. Its diagnosis depends most often on the combination of clinical history and typical endoscopic appearance (congestive mucosa and/or telangiectases). Topical administrative of sucralfate or corticosteroids as well as argon plasma coagulation, with formalin treatment if necessary, provides relief for most patients.

  4. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  5. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  6. Radiation-induced cataract in astronauts and cosmonauts.

    PubMed

    Rastegar, Noushin; Eckart, Peter; Mertz, Manfred

    2002-07-01

    Opacification of the ocular lens is an important effect of exposure to ionizing radiation. Astronauts and cosmonauts are exposed to relatively high doses of all types of radiation in space, including high-energy particle radiation. A study was initiated to examine the lenses of the eyes of astronauts/cosmonauts to detect signs of radiation-induced cataracts. The aim of this study was to take a first step towards gaining improved, quantitative insight into the risk of radiation-induced cataract associated with long space missions. The lenses of 21 former astronauts and cosmonauts were examined, using an upgraded Topcon SL-45 B Scheimpflug camera system. The degrees of opacification in this group of astronauts and cosmonauts were compared with the measurements in a reference group. This reference group was established by examining a cohort of 395 persons using the same Scheimpflug system. Initial results indicated that opacity values in most of the astronauts and cosmonauts were slightly to strongly increased in regions IV (posterior cortex) and V (posterior capsule), compared with the average opacity values for the respective age-group of the reference cohort. The aim of this study - to conduct first examinations of astronauts' and cosmonauts' ocular lenses with regard to signs of radiation-induced cataract - was successfully achieved in a total of 21 astronauts and cosmonauts using a Scheimpflug camera system. It is planned to examine a larger group of astronauts and cosmonauts in the future.

  7. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    SciTech Connect

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  8. Exaggerated radiation-induced fibrosis in patients with systemic sclerosis

    SciTech Connect

    Varga, J.; Haustein, U.F.; Creech, R.H.; Dwyer, J.P.; Jimenez, S.A. )

    1991-06-26

    Four patients with stable systemic sclerosis and limited skin involvement received radiation for the treatment of solid malignant neoplasms. Following localized irradiation, each patient developed an exaggerated cutaneous and internal fibrotic reaction in the irradiated areas. The surface area of fibrosis extended beyond the radiation portals employed, and the fibrotic process was poorly responsive to antifibrotic therapy. Three of the patients died of complications caused by fibrous encasement of internal organs. The extent and severity of postradiation fibrosis in these patients was distinctly unusual. These observations suggest that patients with systemic sclerosis are particularly susceptible to developing excessive radiation-induced fibrosis.

  9. Peroxidase changes in barley induced by ionizing and thermal radiation.

    PubMed

    Sah, N K; Pramanik, S; Raychaudhuri, S S

    1996-01-01

    Thermal and ionizing (gamma-ray) radiations were used to induce damage to barley seeds (IB65). The activity and isozyme banding patterns of peroxidase were compared. It was found that both physical agents caused damage to barley seeds (as observed from seedling height), but their action on peroxidase activity is not similar. Gamma-Rays enhance peroxidase activity. Thermal radiation, on the other hand, tends to reduce it but fails to alter the number of peroxidase isozymes. It is conjectured that the pathways of damage by thermal and ionizing radiations are not the same.

  10. [Mechanism of cytogenetic adaptive response induced by low dose radiation].

    PubMed

    Cai, L; Liu, S

    1990-11-01

    Cytogenetic observation on human lymphocytes indicated that pre-exposure of 10, 50 and 75 mGy X-rays could induced the adaptive response. Experimental results with different temperature treatment showed that the adaptive response induced by low dose radiation could be enhanced by 41 degrees C and 43 degrees C, but inhibited by 4 degrees C in addition the treatment by 41 degrees C for one hour could also cause the adaptive response as did low dose radiation. Results showed that adaptive response induced by low dose radiation (10 or 50 mGy X-rays) could be eliminated by the protein synthesis inhibitor, implying that the adaptive response is related with the metabolism of cells, especially with the production of certain protective proteins.

  11. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  12. Low dose radiation-induced endothelial cell retraction.

    PubMed

    Kantak, S S; Diglio, C A; Onoda, J M

    1993-09-01

    We characterized in vitro the effects of gamma-radiation (12.5-100 cGy) on pulmonary microvascular endothelial cell (PMEC) morphology and F-actin organization. Cellular retraction was documented by phase-contrast microscopy and the organization of actin microfilaments was determined by immunofluorescence. Characterization included radiation dose effects, their temporal duration and reversibility of the effects. A dose-dependent relationship between the level of exposure (12.5-100 cGy) and the rate and extent of endothelial retraction was observed. Moreover, analysis of radiation-induced depolymerization of F-actin microfilament stress fibres correlated positively with the changes in PMEC morphology. The depolymerization of the stress fibre bundles was dependent on radiation dose and time. Cells recovered from exposure to reform contact inhibited monolayers > or = 24 h post-irradiation. Concomitantly, the depolymerized microfilaments reorganized to their preirradiated state as microfilament stress fibres arrayed parallel to the boundaries of adjacent contact-inhibited cells. The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Our data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema.

  13. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  14. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  15. Radiation Induced Vaccination to Breast Cancer

    DTIC Science & Technology

    2016-12-01

    PET / CT imaging...8 10 time [wk] surivin T cells N01 N01* N03 N05 N09 N10 N14 N02 N04 N15 U03 U07 1mg 10mg healthy controls su rv iv in -r ea ct iv e C D 8+ T c el...r ea ct iv e C D 8+ T c el ls [% o f C D 8+ ] A’ B’ C’ 19 FIGURE 4: Breast cancer patients responded to 10mg Fesolimumab and Radiation

  16. H- - H Collision Induced Radiative Transitions

    NASA Astrophysics Data System (ADS)

    Dadonova, A. V.; Devdariani, A. Z.

    2012-12-01

    Exchange interaction leads to the formation of gerade and ungerade states of temporary molecules (quasimolecules) formed during the H- +H slow collisions. The work deals with the radiation produced by optical transitions between those states. The main characteristics involved in the description of optical transitions in quasimolecules, i.e., energy terms, an optical dipole transition moments, have been calculated in the frame of zero-range potentials model. The main feature of calculations is that the results can be expressed analytically in closed forms via the Lambert W function.

  17. Radiation-induced nonlinear optical response of quartz fibers

    NASA Astrophysics Data System (ADS)

    Plaksin, O. A.

    2006-10-01

    The intensity of radiation-induced luminescence and transient optical losses in KU-1 (Russia) and K-3 (Japan) quartz glass optical tibers irradiated in a fast pulsed fission reactor (a pulse duration of 80 μs and a neutron flux up to 7 × 1016 cm 2 s 2) has been measured in the visible range. The intensity of the fast luminescence component nonlinearly depends on the neutron flux. The luminescence intensity and the transient optical losses depend on the probe light intensity. Suppression of radiation-induced luminescence is observed at wavelengths that are longer or shorter than the probe light wavelength. Light probing leads to an increase in transient optical losses and a more rapid recovery of transparency. A model of two photon fluxes is proposed to analyze the relationship of the effects of suppression of radiation-induced luminescence and the increase in optical losses upon light probing. The effect of suppression of radiation-induced luminescence can be used to control the optical properties of fibers in radiation fields.

  18. Radiation-induced endometriosis in Macaca mulatta

    SciTech Connect

    Fanton, J.W.; Golden, J.G. )

    1991-05-01

    Female rhesus monkeys received whole-body doses of ionizing radiation in the form of single-energy protons, mixed-energy protons, X rays, and electrons. Endometriosis developed in 53% of the monkeys during a 17-year period after exposure. Incidence rates for endometriosis related to radiation type were: single-energy protons, 54%; mixed-energy protons, 73%; X rays, 71%; and electrons, 57%. The incidence of endometriosis in nonirradiated control monkeys was 26%. Monkeys exposed to single-energy protons, mixed-energy protons, and X rays developed endometriosis at a significantly higher rate than control monkeys (chi 2, P less than 0.05). Severity of endometriosis was staged as massive, moderate, and minimal. The incidence of these stages were 65, 16, and 19%, respectively. Observations of clinical disease included weight loss in 43% of the monkeys, anorexia in 35%, space-occupying masses detected by abdominal palpation in 55%, abnormal ovarian/uterine anatomy on rectal examination in 89%, and radiographic evidence of abdominal masses in 38%. Pathological lesions were endometrial cyst formation in 69% of the monkeys, adhesions of the colon in 66%, urinary bladder in 50%, ovaries in 86%, and ureters in 44%, focal nodules of endometrial tissue throughout the omentum in 59%, and metastasis in 9%. Clinical management of endometriosis consisted of debulking surgery and bilateral salpingo-oophorectomy combined in some cases with total abdominal hysterectomy. Postoperative survival rates at 1 and 5 years for monkeys recovering from surgery were 48 and 36%, respectively.

  19. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    SciTech Connect

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-05-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene.

  20. Panretinal photocoagulation for radiation-induced ocular ischemia

    SciTech Connect

    Augsburger, J.J.; Roth, S.E.; Magargal, L.E.; Shields, J.A.

    1987-08-01

    We present preliminary findings on the effectiveness of panretinal photocoagulation in preventing neovascular glaucoma in eyes with radiation-induced ocular ischemia. Our study group consisted of 20 patients who developed radiation-induced ocular ischemia following cobalt-60 plaque radiotherapy for a choroidal or ciliary body melanoma. Eleven of the 20 patients were treated by panretinal photocoagulation shortly after the diagnosis of ocular ischemia, but nine patients were left untreated. In this non-randomized study, the rate of development of neovascular glaucoma was significantly lower (p = 0.024) for the 11 photocoagulated patients than for the nine who were left untreated.

  1. The Mechanisms of Radiation-Induced Bystander Effect

    PubMed Central

    Najafi, M; Fardid, R; Hadadi, Gh; Fardid, M

    2014-01-01

    The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo studies. Most well-known important factors affecting radiation-induced bystander effect include free radicals, immune system factors, expression changes of some genes involved in inflammation pathway and epigenetic factors. PMID:25599062

  2. Intraoperative radiation therapy-induced sarcomas in dogs

    SciTech Connect

    Hoekstra, H.J.; Sindelar, W.F.; Kinsella, T.J.; Mehta, D.M. )

    1989-12-01

    In a canine model the tolerance of normal and surgically manipulated tissue to intraoperative radiotherapy (IORT) was investigated to provide guidelines for the clinical use of IORT in human cancer patients. A dose of 20 Gy IORT, with or without external beam radiotherapy, was generally well tolerated without significant increased treatment morbidity. Higher doses of IORT (over 30 Gy) have produced radiation-induced sarcomas in some animals followed over a long period. Therefore IORT should be used only in human cancer patients in well controlled studies, in which complications are well documented, and the possibility of radiation-induced malignancies in long-term survival should be considered.

  3. [Symptoms, diagnosis and treatment of radiation-induced enteritis].

    PubMed

    Sinkó, Dániel; Baranyai, Zsolt; Nemeskéri, Csaba; Teknos, Dániel; Jósa, Valéria; Hegedus, László; Mayer, Arpád

    2010-09-05

    The number of radiotherapy in the treatment of malignant diseases is increasing worldwide. During the radiotherapy of tumors in the minor pelvis and abdomen intestinal inflammation of different degree may occur even if special attention is paid. Irradiation to the minor pelvis causes in half of the cases radiation induced acute enteritis, whereas in 25% chronic enteritis and colitis will develop. Chronic enteritis following radiotherapy raises a number of diagnostic and therapeutic problems that can be solved only with cooperation of different specialties. Authors present a short review regarding therapeutical options of radiation induced enteritis.

  4. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  5. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  6. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  7. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  8. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  9. Atorvastatin Ameliorates Radiation-Induced Cardiac Fibrosis in Rats.

    PubMed

    Zhang, KunYi; He, XuYu; Zhou, Yingling; Gao, Lijuan; Qi, Zhengyu; Chen, Jiyan; Gao, Xiuren

    2015-12-01

    Radiation-induced heart injury is one of the major side effects of radiotherapy for thoracic malignancies. Previous studies have shown that radiotherapy induced myocardial fibrosis and intensified myocardial remodeling. In this study, we investigated whether atorvastatin could inhibit radiation-induced heart fibrosis in Sprague-Dawley rats, which were randomly divided into six groups: control; radiation only; and four treatment groups receiving atorvastatin plus radiation (E1, E2, E3 and E4). All rats, except the control group, received local heart irradiation in 7 daily fractions of 3 Gy for a total of 21 Gy. Rats in groups E1 (10 mg/kg/day) and E2 (20 mg/kg/day) received atorvastatin and radiation treatment until week 12 after exposure. Rats in groups E3 (10 mg/kg/day) and E4 (20 mg/kg/day) received atorvastatin treatment from 3 months before irradiation to week 12 after irradiation. The expressions of TGF-β1, Smad2, Smad3, fibronectin, ROCK I and p-Akt in heart tissues were evaluated using real-time PCR or Western blot analyses. Atorvastatin significantly reduced the expression of TGF-β1, Smad3/P-Smad3, ROCK I and p-Akt in rats of the E1-E4 groups and in a dose-dependent manner. Fibronectin exhibited a similar pattern of expression changes. In addition, echocardiography showed that atorvastatin treatment can inhibit the increase of left ventricular end-diastolic dimension, left ventricular end-systolic diameter and left ventricular posterior wall thickness, and prevent the decrease of ejection fraction and fraction shortening in E1-E4 groups compared with the radiation only group. This study demonstrated that radiation exposure increased the expression of fibronectin in cardiac fibroblasts and induced cardiac fibrosis through activation of the TGF-β1/Smad3, RhoA/ROCK, and PI3K/AKT signaling pathways. Statins ameliorated radiation-induced cardiac fibrosis in Sprague-Dawley rats. Our results suggest that atorvastatin is effective for the treatment of radiation-induced

  10. The axiverse induced dark radiation problem

    NASA Astrophysics Data System (ADS)

    Acharya, Bobby; Pongkitivanichkul, Chakrit

    2016-04-01

    The string/ M theory Axiverse — a plethora of very light Axion Like Particles (ALPs) with a vast range of masses — is arguably a generic prediction of string/ M theory. String/ M theory also tends to predict that the early Universe is dominated by moduli fields. When the heavy moduli decay, before nucleosynthesis, they produce dark radiation in the form of relativistic ALPs. Generically one estimates that the number of relativistic species grows with the number of axions in the Axiverse, in contradiction to the observations that N eff ≤ 4. We explain this problem in detail and suggest some possible solutions to it. The simplest solution requires that the lightest modulus decays only into its own axion superpartner plus Standard Model particles and this severely constrains the moduli Kahler potential and mass matrix.

  11. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  12. Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury

    PubMed Central

    Chandrakesan, Parthasarathy; May, Randal; Weygant, Nathaniel; Qu, Dongfeng; Berry, William L.; Sureban, Sripathi M.; Ali, Naushad; Rao, Chinthalapally; Huycke, Mark; Bronze, Michael S.; Houchen, Courtney W.

    2016-01-01

    Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of VillinCre;Dclk1f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury. PMID:27876863

  13. Radiation-induced dural fibrosarcoma with unusually short latent period

    SciTech Connect

    Ghatak, N.R.; Aydin, F.; Leshner, R.T. Tulane Univ., New Orleans, LA )

    1993-05-01

    Although rare, the occurrence of radiation-induced intracranial neoplasms of various types is well known. Among these tumors, fibrosarcomas, especially in the region of seila turcica, seem to be the most common type. These tumors characteristically occur after a long latent period, usually several years, following radiation therapy. The authors now report a case of apparently radiation-induced fibrosarcoma with some unusual features in a 10-year-old boy who was treated with radiation for medulloblastoma. He received a total dose of 53.2 Gy radiation delivered at 1.8 per fraction with 6 MV acceleration using the standard craniospinal technique. An MRI at 15 months after the completion of radiotherapy showed a mass over the cerebral convexity, which increased two-fold in size within a period of 4 months. A well circumscribed tumor was removed from the fronto-parietal convexity. The tumor measured 5x4.5x1.5 cm and was attached to the dura with invasion of the overlying bone. Histologically, it displayed the characteristic features of a low-grade fibrosarcoma. The patient remains free of tumor 18 months after the surgery. This case emphasizes the potential risk for the development of a second neoplasm following therapeutic radiation and also documents, to the authors' knowledge, the shortest latent period reported so far between administration of radiotherapy and development of an intracranial tumor.

  14. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    PubMed Central

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  15. Radiation-induced conductivity control in polyaniline blends/composites

    NASA Astrophysics Data System (ADS)

    Güven, Olgun

    2007-08-01

    Polyaniline (PANI) blends with chlorine-containing polymers and copolymers and composites with HCl-releasing compounds were prepared to investigate their radiation response in terms of induced conductivities. Blends of non-conductive PANI with poly(vinyl chloride) (PVC), poly(vinylidene chloride- co-vinyl acetate), [P(VDC- co-VAc)], poly(vinylidene chloride- co-vinyl chloride), [P(VDC- co-VC)] were prepared in the form of as-cast films. A number of blends which are different in composition were exposed to gamma radiation and accelerated electrons to various doses, and the effects of irradiation type and composition of polymers on the conductivity of films were investigated by using conductivity measurements and UV-vis and FT-IR spectroscopy. The results clearly showed that ionizing radiation is an effective tool to induce and control conductivity in the blends of PANI-base with chlorine-carrying polymers as well as its composites prepared from HCl-releasing compounds such as chloral hydrate. The main mechanism behind this radiation-induced conductivity is in situ doping of PANI-base with HCl released from partner polymers and low molecular weight compounds by the effect of radiation.

  16. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice.

    PubMed

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis.

  17. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice

    PubMed Central

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  18. Stimulation of respiration in rat thymocytes induced by ionizing radiation.

    PubMed

    Gudz, T I; Pandelova, I G; Novgorodov, S A

    1994-04-01

    The effect of X irradiation on the respiration of rat thymocytes was studied. An increase in the rate of O2 uptake was observed 1 h after cells were irradiated with doses of 6-10 Gy. The radiation-induced increase in respiration could be blocked by oligomycin, an inhibitor of mitochondrial ATP synthase, suggesting control by increased cytoplasmic ATP turnover. The stimulation of respiration was not associated with changes in the activity of mitochondrial electron transfer enzymes or permeability of the inner membrane. Several inhibitors of processes which used ATP were screened for their effects on the basal respiration rate and on the radiation response. In irradiated thymocytes, an enhancement of inhibition of respiration by ouabain, La3+ and cycloheximide was observed. These results indicate that the radiation-induced stimulation of respiration is due to changes in ion homeostasis and protein synthesis. The effect of X irradiation was shown to be independent of the redox status of nonprotein thiols and was not associated with detectable changes in some products of lipid peroxidation. The radiation-induced decrease in activity of superoxide dismutase suggests free radical involvement in deleterious effects of radiation.

  19. Dynamics of radiation-induced amorphization in intermetallic compounds

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R. ); Devanathan, R. Northwestern Univ., Evanston, IL . Dept. of Materials Science and Engineering); Meshii, M. . Dept. of Materials Science and Engineering)

    1992-06-01

    Recent progress in molecular-dynamics simulations of radiation-induced crystalline-to-amorphous transition in intermetallic compounds and the relationship between amorphization and melting are discussed. By focusing on the mean-square static displacement, which provides a generic measure of energy stored in the lattice in the forms of chemical and topological disorder, a unified description of solid-state amorphization as a disorder-induced, isothermal melting process can be developed within the framework of a generalized Lindemann criterion.

  20. Interleukin-32 Positively Regulates Radiation-Induced Vascular Inflammation

    SciTech Connect

    Kobayashi, Hanako; Yazlovitskaya, Eugenia M.; Lin, P. Charles

    2009-08-01

    Purpose: To study the role of interleukin-32 (IL-32), a novel protein only detected in human tissues, in ionizing radiation (IR)-induced vascular inflammation. Methods and Materials: Irradiated (0-6 Gy) human umbilical vein endothelial cells treated with or without various agents-a cytosolic phospholipase A2 (cPLA2) inhibitor, a cyclooxygenase-2 (Cox-2) inhibitor, or lysophosphatidylcholines (LPCs)-were used to assess IL-32 expression by Northern blot analysis and quantitative reverse transcriptase-polymerase chain reaction. Expression of cell adhesion molecules and leukocyte adhesion to endothelial cells using human acute monocytic leukemia cell line (THP-1) cells was also analyzed. Results: Ionizing radiation dramatically increased IL-32 expression in vascular endothelial cells through multiple pathways. Ionizing radiation induced IL-32 expression through nuclear factor {kappa}B activation, through induction of cPLA2 and LPC, as well as induction of Cox-2 and subsequent conversion of arachidonic acid to prostacyclin. Conversely, blocking nuclear factor {kappa}B, cPLA2, and Cox-2 activity impaired IR-induced IL-32 expression. Importantly, IL-32 significantly enhanced IR-induced expression of vascular cell adhesion molecules and leukocyte adhesion on endothelial cells. Conclusion: This study identifies IL-32 as a positive regulator in IR-induced vascular inflammation, and neutralization of IL-32 may be beneficial in protecting from IR-induced inflammation.

  1. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  2. Factors that modify risks of radiation-induced cancer

    SciTech Connect

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  3. Radiation Induced Cystitis and Proctitis - Prediction, Assessment and Management.

    PubMed

    Mallick, Supriya; Madan, Renu; Julka, Pramod K; Rath, Goura K

    2015-01-01

    Cystitis and proctitis are defined as inflammation of bladder and rectum respectively. Haemorrhagic cystitis is the most severe clinical manifestation of radiation and chemical cystitis. Radiation proctitis and cystitis are major complications following radiotherapy. Prevention of radiation-induced haemorrhagic cystitis has been investigated using various oral agents with minimal benefit. Bladder irrigation remains the most frequently adopted modality followed by intra-vesical instillation of alum or formalin. In intractable cases, surgical intervention is required in the form of diversion ureterostomy or cystectomy. Proctitis is more common in even low dose ranges but is self-limiting and improves on treatment interruption. However, treatment of radiation proctitis is broadly non-invasive or invasive. Non-invasive treatment consists of non-steroid anti-inflammatory drugs (NSAIDs), anti-oxidants, sucralfate, short chain fatty acids and hyperbaric oxygen. Invasive treatment consists of ablative procedures like formalin application, endoscopic YAG laser coagulation or argon plasma coagulation and surgery as a last resort.

  4. The Dose Window for Radiation-Induced Protective Adaptive Responses

    PubMed Central

    Mitchel, Ronald E. J.

    2009-01-01

    Adaptive responses to low doses of low LET radiation occur in all organisms thus far examined, from single cell lower eukaryotes to mammals. These responses reduce the deleterious consequences of DNA damaging events, including radiation-induced or spontaneous cancer and non-cancer diseases in mice. The adaptive response in mammalian cells and mammals operates within a certain window that can be defined by upper and lower dose thresholds, typically between about 1 and 100 mGy for a single low dose rate exposure. However, these thresholds for protection are not a fixed function of total dose, but also vary with dose rate, additional radiation or non-radiation stressors, tissue type and p53 functional status. Exposures above the upper threshold are generally detrimental, while exposures below the lower threshold may or may not increase either cancer or non-cancer disease risk. PMID:20585438

  5. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  6. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  7. Radiation-induced mutagenicity and lethality in Salmonella typhimurium

    SciTech Connect

    Isildar, M.; Bakale, G.

    1983-01-01

    The mutagenic and lethal effects of ionizing radiation on histidine-deficient auxotrophs of Salmonella typhimurium were studied to improve the understanding of radiation damage to DNA. The auxotrophs were divided into two groups - one which is sensitive to base-pair substitutions and another sensitive to frameshifts. These groups were composed of parent-daughter pairs in which the chemical mutagenicity enhancing plasmid, pKM101, is absent in the parent strain and present in the daughter. Co-60 ..gamma..-radiation and 250 kV x-rays were used to irradiate the bacteria. Irradiation of the frameshift - sensitive strains which carry the pKm101 plasmid doubled the absolute number of induced revertants whereas irradiation of the base-pair substitution sensitive strain which also carries the pKm101 plasmid produced nearly no change in the number of induced revertants. A nearly negligible effect on the mutation rate was observed for all parent strains. (ACR)

  8. Radiation-induced decomposition of explosives under extreme conditions

    SciTech Connect

    Giefers, Hubertus; Pravica, Michael; Yang, Wenge; Liermann, Peter

    2008-11-03

    We present high-pressure and high temperature studies of the synchrotron radiation-induced decomposition of powder secondary high explosives pentaerythritol tetranitrate (PETN) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using white beam synchrotron radiation at the 16 BM-B and 16 BM-D sectors of the HP-CAT beamline at the Advanced Photon Source. The radiation-induced decomposition rate TATB showed dramatic slowing with pressure up to 26.6 GPa (the highest pressure studied), implying a positive activation volume of the activated complex. The decomposition rate of PETN varied little with pressure up to 15.7 GPa (the highest pressure studied). Diffraction line intensities were measured as a function of time using energy-dispersive methods. By measuring the decomposition rate as a function of pressure and temperature, kinetic and other constants associated with the decomposition reactions were extracted.

  9. Radioadaptive response for protection against radiation-induced teratogenesis.

    PubMed

    Okazaki, Ryuji; Ootsuyama, Akira; Norimura, Toshiyuki

    2005-03-01

    To clarify the characteristics of the radioadaptive response in mice, we compared the incidence of radiation-induced malformations in ICR mice. Pregnant ICR mice were exposed to a priming dose of 2 cGy (667 muGy/min) on day 9.5 of gestation and to a challenging dose of 2 Gy (1.04 Gy/min) 4 h later and were killed on day 18.5 of gestation. The incidence of malformations and prenatal death and fetal body weights were studied. The incidence of external malformations was significantly lower (by approximately 10%) in the primed (2 cGy + 2 Gy) mice compared to the unprimed (2 Gy alone) mice. However, there were no differences in the incidence of prenatal death or the skeletal malformations or the body weights between primed and unprimed mice. These results suggest that primary conditioning with low doses of radiation suppresses radiation-induced teratogenesis.

  10. Modulation of radiation-induced hemopoietic suppression by acute thrombocytopenia

    SciTech Connect

    Ebbe, S.; Phalen, E.; Threatte, G.; Londe, H.

    1985-01-01

    Modifications of radiation-induced hemopoietic suppression by acute thrombocytopenia were evaluated. Immediately before or after exposure to sublethal irradiation, mice were given a single injection of anti-mouse platelet serum (APS), normal heterologous serum, neuraminidase (N'ase), or saline, or no further treatment was provided. Hemopoiesis was evaluated by blood cell counts, hematocrits, and incorporation of (75Se)selenomethionine into platelets. APS and N'ase induced an acute thrombocytopenia from which there was partial recovery before the platelet count started to fall from the radiation. During the second post-treatment week, both thrombocytopoiesis and erythropoiesis were greater in mice that received APS or N'ase in addition to radiation than in control irradiated mice. Differences in leukopoiesis were not apparent. Therefore, both thrombocytopoiesis and erythropoiesis appeared to be responsive to a stimulus generated by acute thrombocytopenia in sublethally irradiated mice.

  11. Radiation-induced transient darkening of optically transparent polymers

    SciTech Connect

    Downey, S.W.; Builta, L.A.; Carlson, R.L.; Czuchlewski, S.J.; Moir, D.C.

    1986-11-15

    Results are presented for the radiation-induced transient darkening of thin organic polymer films normally used as Cerenkov light emissions sources. The radiation source is a 27-MeV, 10-..mu..C, 200-ns electron beam generated by the PHERMEX accelerator. The typical dose for a single pulse is 5 Mrad. At this dose, the broadband time-resolved percent transmission above 520 nm was measured for four common polymers: polyimide (Kapton-H), polyethylene terephthalate (Mylar), cellulose acetate, and high-density polyethylene. Kapton was found to darken the most and polyethylene darkened the least. The recovery time to normal transmission for Kapton was found to be greater than 10--20 ..mu..s. The radiation-induced attenuation coefficient is shown to depend on electronic band energy separation. The results show that Kapton is not the material of choice for a Cerenkov light source.

  12. Mechanisms of radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  13. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  14. [Update - health risks induced by ionizing radiation from diagnostic imaging].

    PubMed

    Knüsli, Claudio; Walter, Martin

    2013-12-01

    Ionizing radiation is the most thoroughly investigated exogenous noxa. Since the early 20th century it is well known that using ionizing radiation in diagnostic procedures causes cancer - physicians themselves frequently being struck by this disease in those early days of radiology. Radiation protection therefore plays an important role. Below doses of 100 Millisievert (mSv) however much research has to be accomplished yet because not only malignant tumors, but cardiovascular diseases, malformations and genetic sequelae attributable to low dose radiation have been described. Unborns, children and adolescents are highly vulnerable. Dose response correlations are subject to continuing discussions because data stem mostly from calculations studying Japanese atomic bomb survivors. Radiation exposure is not exactly known, and it is unknown, if observations of radiation induced diseases in this ethnicity can be generalized. Nowadays the main source of low dose ionizing radiation from medical diagnostics is due to computertomography (CT). Large recent clinical studies from the UK and Australia investigating cancer incidence after exposition to CT in childhood and adolescence confirm that low doses in the range of 5 mSv already significantly increase the risk of malignant diseases during follow up. Imaging techniques as ultrasound and magnetic resonance tomography therefore should be preferred whenever appropriate.

  15. Poor outcome in radiation-induced constrictive pericarditis

    SciTech Connect

    Karram, T.; Rinkevitch, D.; Markiewicz, W. )

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  16. Radiation-induced augmentation of the immune response

    SciTech Connect

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis.

  17. Radiation-induced xerostomia: pathophysiology, clinical course and supportive treatment.

    PubMed

    Guchelaar, H J; Vermes, A; Meerwaldt, J H

    1997-07-01

    Xerostomia, or oral dryness, is one of the most common complaints experienced by patients who have had radiotherapy of the oral cavity and neck region. The hallmarks of radiation-induced damage are acinar atrophy and chronic inflammation of the salivary glands. The early response, resulting in atrophy of the secretory cells without inflammation might be due to radiation-induced apoptosis. In contrast, the late response with inflammation could be a result of radiation-induced necrosis. The subjective complaint of a dry mouth appears to be poorly correlated with objective findings of salivary gland dysfunction. Xerostomia, with secondary symptoms of increased dental caries, difficulty in chewing, swallowing and speaking, and an increased incidence of oral candidiasis, can have a significant effect on the quality of life. At present there is no causal treatment for radiation-induced xerostomia. Temporary symptomatic relief can be offered by moistening agents and saliva substitutes, and is the only option for patients without residual salivary function. In patients with residual salivary function, oral administration of pilocarpine 5-10 mg three times a day is effective in increasing salivary flow and improving the symptoms of xerostomia, and this therapy should be considered as the treatment of choice. Effectiveness of sialogogue treatment requires residual salivary function, which emphasizes the potential benefit from sparing normal tissue during irradiation. The hypothesis concerning the existence of early apoptotic and late necrotic effects of irradiation on the salivary glands theoretically offers a way of achieving this goal.

  18. SPHINX Measurements of Radiation Induced Conductivity of Foam

    SciTech Connect

    Ballard, W.P.; Beutler, D.E.; Burt, M.; Dudley, K.J.; Stringer, T.A.

    1998-12-14

    Experiments on the SPHINX accelerator studying radiation-induced conductivity (RIC) in foam indicate that a field-exclusion boundary layer model better describes foam than a Maxwell-Garnett model that treats the conducting gas bubbles in the foam as modifying the dielectric constant. In both cases, wall attachment effects could be important but were neglected.

  19. Effect of sodium meclofenamate on ultraviolet radiation induced carcinogenesis

    SciTech Connect

    Ambrus, J.L.; Ambrus, C.M.; Pickren, J.W.; Klein, E.

    1984-01-01

    Sodium meclofenamate (Meclomen), an antiprostaglandin antileukotriene agent, was found in previous studies to protect primates against x-ray induced brain edema, esophagitis and cystitis. In the present study, it appeared to protect hairless mice against the carcinogenic effect of ultraviolet B-radiation.

  20. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    postulate that radiation-induced TNFR I probably acts as a “ brake ” on immunity. Because of the high risk of the proposed experiment and high...the rest of body shielded. Tumor diameters were measured in three mutually orthogonal dimensions at 2–3 day intervals with a vernier caliper and the

  1. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  2. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2006-06-01

    acetylcysteine and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal...similar to amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to

  3. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2009-01-01

    acetylcysteine and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal...similar to amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to

  4. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2007-12-01

    and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal dysplasia...amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to determine if

  5. Caffeine ameliorates radiation-induced skin reactions in mice but does not influence tumour radiation response.

    PubMed

    Hebbar, S A; Mitra, A K; George, K C; Verma, N C

    2002-03-01

    Intramuscular administration of caffeine at a dose of 80 mg kg(-1) body weight to the gastrocnemius muscles of Swiss mice 5 min prior to local irradiation (35 Gy) of the leg delayed the progression of radiation-induced skin reactions in such animals. While 90% epilation with reddening of the skin was noted in animals treated with radiation alone, animals pretreated with caffeine suffered only partial hair loss with slight reddening of the skin on the 16th and 20th days post-irradiation. Beyond the 28th day, damage scores in irradiated feet for both the groups were similar (score 3) and remained unchanged until the 32nd day and then decreased and disappeared completely in both treatment groups by the 40th day after irradiation. In addition, the effect of caffeine on the radiation response of a mouse fibrosarcoma was investigated. Results showed that intratumoral administration of caffeine at a dose of 80 mg kg(-1) body weight 5 min prior to local exposure of tumours to 10 Gy of 60Co gamma-rays did not influence the response of tumours to radiation. The present study thus showed that although caffeine ameliorated radiation-induced skin reactions in the mouse leg, it did not affect the tumour radiation response, indicating its potential application in cancer radiotherapy.

  6. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair.

    PubMed

    Udayakumar, Durga; Pandita, Raj K; Horikoshi, Nobuo; Liu, Yan; Liu, Qingsong; Wong, Kwok-Kin; Hunt, Clayton R; Gray, Nathanael S; Minna, John D; Pandita, Tej K; Westover, Kenneth D

    2016-05-01

    Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties.

  7. Radiation-Induced Attenuation of Perfluorinated Polymer Optical Fibers for Radiation Monitoring.

    PubMed

    Stajanca, Pavol; Krebber, Katerina

    2017-08-25

    Due to some of their unique properties, optical fiber dosimeters are attractive and extensively researched devices in several radiation-related areas. This work evaluates the performance and potential of commercial perfluorinated polymer optical fibers (PF-POFs) for radiation monitoring applications. Gamma radiation-induced attenuation (RIA) of two commercial PF-POFs is evaluated in the VIS spectral region. Influence of a dose rate and temperature on RIA measurement is investigated, along with defect stability and measurement repeatability. Co-extruded PF-POFs are identified as more suitable for radiation monitoring applications due to lower dose-rate dependence. With co-extruded PF-POF, RIA measurement holds potential for highly-sensitive radiation monitoring with good reproducibility. The results show that operation in the blue part of the spectrum provides most favorable performance in terms of the largest nominal radiation sensitivity, lower temperature, and dose-rate dependence as well as higher defect stability. We demonstrate for the first time to our knowledge, that PF-POFs can be used for distributed detection of radiation with doses down to tens of Grays. The off-the-shelf, user-friendly PF-POF could be of interest as a cheap, disposable sensor for various applications, especially of a more qualitative nature.

  8. The radiation-induced changes in rectal mucosa: Hyperfractionated vs. hypofractionated preoperative radiation for rectal cancer

    SciTech Connect

    Starzewski, Jacek J.; Pajak, Jacek T.; Pawelczyk, Iwona; Lange, Dariusz; Golka, Dariusz . E-mail: dargolka@wp.pl; Brzeziska, Monika; Lorenc, Zbigniew

    2006-03-01

    Purpose: The purpose of the study was the qualitative and quantitative evaluation of acute radiation-induced rectal changes in patients who underwent preoperative radiotherapy according to two different irradiation protocols. Patients and Methods: Sixty-eight patients with rectal adenocarcinoma underwent preoperative radiotherapy; 44 and 24 patients underwent hyperfractionated and hypofractionated protocol, respectively. Fifteen patients treated with surgery alone served as a control group. Five basic histopathologic features (meganucleosis, inflammatory infiltrations, eosinophils, mucus secretion, and erosions) and two additional features (mitotic figures and architectural glandular abnormalities) of radiation-induced changes were qualified and quantified. Results: Acute radiation-induced reactions were found in 66 patients. The most common were eosinophilic and plasma-cell inflammatory infiltrations (65 patients), erosions, and decreased mucus secretion (54 patients). Meganucleosis and mitotic figures were more common in patients who underwent hyperfractionated radiotherapy. The least common were the glandular architectural distortions, especially in patients treated with hypofractionated radiotherapy. Statistically significant differences in morphologic parameters studied between groups treated with different irradiation protocols were found. Conclusion: The system of assessment is a valuable tool in the evaluation of radiation-induced changes in the rectal mucosa. A greater intensity of regenerative changes was found in patients treated with hyperfractionated radiotherapy.

  9. Radiation induced viscous flow in amorphous thin films

    NASA Astrophysics Data System (ADS)

    Mayr, S. G.; Ashkenazy, Y.; Averback, R. S.

    2003-03-01

    We investigate surface roughness and stress relaxation in amorphous thin films during ion beam irradiation by a combination of experiments and molecular dynamics simulations. These experiments show, that smoothing occurs by a viscous mechanism. With computer simulations we investigate the model system CuTi, and find that radiation induced viscous flow is independent of the recoil energy between 100 and 15keV, when compared on the basis of defect production. Additionally we can identify a threshold recoil energy for flow of approximately 10eV. We show, that point defects can mediate the flow, by injection of interstitial and vacancy-like defects, which induce the same amount of flow as recoil events. The results are compared with the thermal spike model of radiation induced viscous flow.

  10. Nature of radiation-induced defects in quartz

    SciTech Connect

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu; Pignatelli, Isabella; Sant, Gaurav

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  11. Radiation-induced skin carcinomas of the head and neck

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.

  12. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    PubMed Central

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-01-01

    Purpose/Objectives(s) The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events (SPEs), as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials Ferrets were exposed to 0 – 2 Gray (Gy) of whole body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results The lethal dose of radiation to 50% of the population, known as the LD50, of ferrets was established at ~ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 post-irradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early times post-irradiation when coagulopathies were present and progressively becoming more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions The data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is solely due to the cell killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation induced death at relatively low doses in large mammals. PMID:24495588

  13. Evidence for radiation-induced disseminated intravascular coagulation as a major cause of radiation-induced death in ferrets.

    PubMed

    Krigsfeld, Gabriel S; Savage, Alexandria R; Billings, Paul C; Lin, Liyong; Kennedy, Ann R

    2014-03-15

    The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. The lethal dose of radiation to 50% of the population (LD50) of the ferrets was established at ∼ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    SciTech Connect

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  15. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  16. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  17. Radiation-induced fibrosis: mechanisms and implications for therapy.

    PubMed

    Straub, Jeffrey M; New, Jacob; Hamilton, Chase D; Lominska, Chris; Shnayder, Yelizaveta; Thomas, Sufi M

    2015-11-01

    Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords "Radiation-Induced Fibrosis," "Radiotherapy Complications," "Fibrosis Therapy," and other closely related terms. RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies.

  18. Modeling radiation induced segregation in Iron-Chromium alloys

    SciTech Connect

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; Nastar, Maylise; Fu, Chu-Chun; Brechet, Yves

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causes an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.

  19. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  20. Modeling radiation induced segregation in Iron-Chromium alloys

    DOE PAGES

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; ...

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causesmore » an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.« less

  1. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    SciTech Connect

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J. )

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.

  2. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  3. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  4. Chromosome aberrations induced by high-LET radiations.

    PubMed

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A

    2004-12-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  5. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  6. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  7. Radiation induced degradation of dyes--an overview.

    PubMed

    Rauf, M A; Ashraf, S Salman

    2009-07-15

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as H, OH and e(aq)(-) are taken into account as reported by various researchers. Literature citations in this area show that e(aq)(-) is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  8. Radiation-induced volatile hydrocarbon production in platelets

    SciTech Connect

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets.

  9. Skeletal Scintigraphy in Radiation-Induced Fibrosis With Lymphedema.

    PubMed

    Wang, Jieqi; Iranmanesh, Arya M; Oates, M Elizabeth

    2017-03-01

    Despite increasing reliance on CT, MRI, and FDG PET/CT for oncological imaging, whole-body skeletal scintigraphy remains a frontline modality for staging and surveillance of osseous metastatic disease. We present a 54-year-old woman with metastatic breast cancer who received palliative external-beam radiation to the left ilium. Serial follow-up Tc-MDP bone scans demonstrated progressive soft-tissue uptake in her left lower extremity, extending from thigh to leg, with associated enlargement and skin thickening, consistent with lymphedema related to radiation-induced fibrosis. Correlative abdominopelvic CT scans confirmed fibrotic changes in the left thigh.

  10. Challenges and Opportunities in Radiation-induced Hemorrhagic Cystitis

    PubMed Central

    Zwaans, Bernadette M.M.; Nicolai, Heinz G.; Chancellor, Michael B.; Lamb, Laura E.

    2016-01-01

    As diagnosis and treatment of cancer is improving, medical and social issues related to cancer survivorship are becoming more prevalent. Hemorrhagic cystitis (HC), a rare but serious disease that may affect patients after pelvic radiation or systemic chemotherapy, has significant unmet medical needs. Although no definitive treatment is currently available, various interventions are employed for HC. Effects of nonsurgical treatments for HC are of modest success and studies aiming to control radiation-induced bladder symptoms are lacking. In this review, we present current and advanced therapeutic strategies for HC to help cancer survivors deal with long-term urologic health issues. PMID:27601964

  11. Follistatin attenuates radiation-induced fibrosis in a murine model

    PubMed Central

    Forrester, Helen B.; de Kretser, David M.; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N.

    2017-01-01

    Purpose Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. Experimental design C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Results Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Conclusions Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer. PMID:28301516

  12. Follistatin attenuates radiation-induced fibrosis in a murine model.

    PubMed

    Forrester, Helen B; de Kretser, David M; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N

    2017-01-01

    Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer.

  13. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  14. Chronic radiation-induced dermatitis: challenges and solutions

    PubMed Central

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients’ quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  15. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  16. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  17. Opportunities for nutritional amelioration of radiation-induced cellular damage.

    PubMed

    Turner, Nancy D; Braby, Leslie A; Ford, John; Lupton, Joanne R

    2002-10-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  18. Chronic radiation-induced dermatitis: challenges and solutions.

    PubMed

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients' quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  19. Ability of radiation therapists to assess radiation-induced skin toxicity.

    PubMed

    Acharya, Urvi; Cox, Jennifer; Rinks, Marianne; Gaur, Pankaj; Back, Michael

    2013-06-01

    Radiation therapy has seen enhancement of the radiation therapist (RT) role, with RTs and nurses performing duties that were traditionally in the radiation oncologist's (RO) domain. This study aimed to assess whether RTs can consistently grade radiation-induced skin toxicity and their concordance with the gradings given by ROs. Digital photographs of skin reactions were taken at weeks 1, 3 and 6 of radiotherapy on nine patients with breast cancer. The randomly ordered photographs were reviewed once by eight ROs and four RO registrars and on two occasions separated by 6 weeks by 17 RTs. All graded the skin toxicities using the revised Radiation Therapy Oncology Group system. No significant difference was seen between the median scores of the RTs at the first scoring session and the RO/Registrar group. The RTs at both measurement times showed greater inter-rater reliability than the RO/Registrars (W = 0.6866, time 1 and 0.6981 time 2, vs. 0.6517), with the experienced RTs the most consistent (W = 0.7078). The RTs also showed high intra-rater reliability (rho = 0.8461, P < 0.0010). These results from RTs with no specific preparation indicate that experienced RTs could assess breast cancer skin toxicity as part of their role. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  20. Cosmic-ray induced radiation in low-orbit space objects

    SciTech Connect

    Sandmeier, H.A.

    1980-09-01

    The induced radiation whole body dose received by astronauts in earth orbit is calculated. The induced radiation results from the interaction of primary cosmic rays with the mass of the satellite or space station. (ACR)

  1. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  2. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  3. Barriers to Radiation-Induced In Situ Tumor Vaccination

    PubMed Central

    Wennerberg, Erik; Lhuillier, Claire; Vanpouille-Box, Claire; Pilones, Karsten A.; García-Martínez, Elena; Rudqvist, Nils-Petter; Formenti, Silvia C.; Demaria, Sandra

    2017-01-01

    The immunostimulatory properties of radiation therapy (RT) have recently generated widespread interest due to preclinical and clinical evidence that tumor-localized RT can sometimes induce antitumor immune responses mediating regression of non-irradiated metastases (abscopal effect). The ability of RT to activate antitumor T cells explains the synergy of RT with immune checkpoint inhibitors, which has been well documented in mouse tumor models and is supported by observations of more frequent abscopal responses in patients refractory to immunotherapy who receive RT during immunotherapy. However, abscopal responses following RT remain relatively rare in the clinic, and antitumor immune responses are not effectively induced by RT against poorly immunogenic mouse tumors. This suggests that in order to improve the pro-immunogenic effects of RT, it is necessary to identify and overcome the barriers that pre-exist and/or are induced by RT in the tumor microenvironment. On the one hand, RT induces an immunogenic death of cancer cells associated with release of powerful danger signals that are essential to recruit and activate dendritic cells (DCs) and initiate antitumor immune responses. On the other hand, RT can promote the generation of immunosuppressive mediators that hinder DCs activation and impair the function of effector T cells. In this review, we discuss current evidence that several inhibitory pathways are induced and modulated in irradiated tumors. In particular, we will focus on factors that regulate and limit radiation-induced immunogenicity and emphasize current research on actionable targets that could increase the effectiveness of radiation-induced in situ tumor vaccination. PMID:28348554

  4. Probabilistic methodology for estimating radiation-induced cancer risk

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario.

  5. UV laser radiation-induced modifications and microstructuring of glass

    NASA Astrophysics Data System (ADS)

    Talkenberg, Marc; Kreutz, Ernst-Wolfgang; Horn, Alexander; Jacquorie, Michael; Poprawe, Reinhart

    2002-06-01

    Modifications and microstructures are generated on the surface and in the volume of silicate glasses using pulsed UV laser radiation of small pulse length. During the interaction of pulsed excimer laser radiation and frequency-trippled Nd:YAG laser radiation with intensities below the removal-threshold of the cerium- and silver-doped multi-component silicate glass absorption centers in the UV are induced. Subsequent thermal treatment and wet chemical etching results in crystallization of the laser-illuminated absorbing region and in the fabrication of microstructures on the surface. Processing of sodalime- and boro-silicate glass with pulsed ArF excimer laser radiation and frequency-doubled Nd:YAG laser radiation with intensities above the removal-threshold leads to microstructures including the generation of microcracks on the surface and in the bulk. The dynamics and the transmission of the expanding plasma and changes in the refractive index of the glass are investigated with speckle photography using the pump and probe method. The determination of plasma emission and crack generation is carried out using high speed and Nomarski photography. Morphological and chemical properties of the debris generated under defined processing gas atmospheres are investigated with REM, white light interferometry, XPS and EPMA. Induced absorption and changes of the crystalline- phase are probed using optical-spectroscopy and XRD as well REM. On the basis of these investigations the processes of the generation of induced absorption centers and crystallization on the one hand and the generation of cracks and debris on the other hand as well as the quality of the produced microstructures is discussed.

  6. Capecitabine-induced radiation recall phenomenon: a case report

    PubMed Central

    Aguilar, José

    2013-01-01

    Radiation recall dermatitis is defined as an inflammatory reaction of the skin at the site of previous irradiation. Different drugs have been associated with triggering this phenomenon, and it can also affect other areas and organs where previous radiotherapy has been administered. The time gap between the inflammatory reaction and previous radiation can range from days to several years. We report a case of capecitabine-induced Radiation Therapy Oncology Group (RTOG) grade 4 (ulcerating dermatitis) recall skin toxicity of skin irradiated 3 years previously. To our knowledge, this is the first reported case of capecitabine-induced RTOG grade 4 (ulcerating dermatitis) recall skin toxicity of previously irradiated skin. Clinicians should be aware of this phenomenon, even when considering patients for whom it has been a long time since previous radiation therapy. This unusual and late drug side effect should be borne in mind in the differential diagnosis and management of advanced-disease patients as it may be confused with local relapse or infectious complication of previously operated areas. PMID:24555020

  7. Oligomer formation in the radiation-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Harayma, Hiroshi; Al-Sheikhly, Mohamad; Silverman, Joseph

    2003-12-01

    Analyses of the oligomers formed in radiation-induced polymerization of purified styrene were performed. The principal dimeric products were cis- and trans-diphenyl-cyclobutane with a relatively small amount of 1-phenyltetralin; the trimeric products were the optical isomers of 1-phenyl-4-[1'-phenylethyl-(1')]-tetralin in gamma-ray and 60 MeV proton irradiation. Oligomer formation increased with increasing dose, but more gradually than the linear formation of high polymer with dose. The yield was 0.25-3.1 μmol/J at low doses and decreased to an asymptotic value of 0.15 at higher doses. It appears that oligomers act as chain transfer agents during the polymerization reaction which would account for the observed decrease in molecular weight of the high polymer with increase in dose. Although the thermal and radiation-induced polymerization of styrene have different initiation steps, the oligomers produced by both reactions are similar in composition.

  8. Image reconstruction with acoustic radiation force induced shear waves

    NASA Astrophysics Data System (ADS)

    McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.

    2003-05-01

    Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.

  9. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Erkang; Wu, Lijun

    2009-04-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  10. [Radiation-induced and therapy-related AML/MDS].

    PubMed

    Inaba, Toshiya

    2009-10-01

    Radiation induced acute myeloid leukemia (AML) was recognized a century ago, soon after mankind found radiation. Atomic bomb survivors developed de novo AML with relatively short latency with very high frequency. By contrast, excess occurrence of myelodysplastic syndrome (MDS) as well as solid tumors was found decades late. This difference may be due to etiology that many de novo AML patients harbor chimeric leukemogenic genes caused by chromosomal translocations, while MDS patients rarely carry chimeras. In addition, epigenetic change would play important roles. Therapy related leukemia is mainly caused by topoisomerase II inhibitors that cause de novo AML with an 11q23 translocation or by alkyrating agents that induce MDS/AML with an AML1 point mutation and monosomy 7.

  11. Dose and volume impact on radiation-induced xerostomia.

    PubMed

    Marmiroli, Luca; Salvi, Giovanna; Caiazza, Adolfo; Di Rienzo, Luigi; Massaccesi, Mariangela; Murino, Paola; Macchia, Gabriella

    2005-01-01

    Radiation-induced xerostomia consists in the chronic dryness of the mouth caused by parotid gland irradiation. Parotid glands produce approximately 60% of saliva while the rest is secreted by submandibular and accessory salivary glands. Methods of measuring the salivary output are essentially represented by 99mTc-pertechnate scintigraphy or simpler albeit less accurate methods in stimulated or unstimulated saliva. There are subjective and objective criteria of classification and grading of the secretion of saliva. Radiation-induced xerostomia, namely the residual salivary gland function is evidently associated with the mean dose absorbed. The salivary output tends to decrease after the end of radiotherapy. The partial dose-volume is substantially correlated with the mean dose to the whole gland. As for ipsilateral irradiation for head and neck cancer, conformal RT or IMRT allow to spare the contralateral parotid gland without increasing the risk of contralateral nodal recurrences. The monitoring system of late toxicity used by the authors is presented.

  12. Perinatal radiation-induced renal damage in the beagle

    SciTech Connect

    Jaenke, R.S.; Angleton, G.M. )

    1990-04-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated.

  13. Ionizing Radiation-Induced Cataract in Interventional Cardiology Staff

    PubMed Central

    Bitarafan Rajabi, Ahmad; Noohi, Feridoun; Hashemi, Hassan; Haghjoo, Majid; Miraftab, Mohammad; Yaghoobi, Nahid; Rastgou, Fereydon; Malek, Hadi; Faghihi, Hoshang; Firouzabadi, Hassan; Asgari, Soheila; Rezvan, Farhad; Khosravi, Hamidreza; Soroush, Sara; Khabazkhoob, Mehdi

    2015-01-01

    Background: The use of ionizing radiation has led to advances in medical diagnosis and treatment. Objectives: The purpose of this study was to determine the risk of radiation cataractogenesis in the interventionists and staff performing various procedures in different interventional laboratories. Patients and Methods: This cohort study included 81 interventional cardiology staff. According to the working site, they were classified into 5 groups. The control group comprised 14 professional nurses who did not work in the interventional sites. Participants were assigned for lens assessment by two independent trained ophthalmologists blinded to the study. Results: The electrophysiology laboratory staff received higher doses of ionizing radiation (17.2 ± 11.9 mSv; P < 0.001). There was a significant positive correlation between the years of working experience and effective dose in the lens (P < 0.001). In general, our findings showed that the incidence of lens opacity was 79% (95% CI, 69.9-88.1) in participants with exposure (the case group) and our findings showed that the incidence of lenses opacity was 7.1% (95% CI:2.3-22.6) with the relative risk (RR) of 11.06 (P < 0.001). Conclusions: We believe that the risk of radiation-induced cataract in cardiology interventionists and staff depends on their work site. As the radiation dose increases, the prevalence of posterior eye changes increases. PMID:25789258

  14. Prosthodontic management of radiation induced xerostomic patient using flexible dentures

    PubMed Central

    Murthy, Varsha; V, Yuvraj; Nair, Preeti P; Thomas, Shaji

    2012-01-01

    Xerostomia causes discomfort for complete denture wearers as the tissues become dry and friable due to lack of lubricating properties of saliva. Common problems faced by such patients are glossitis, mucositis, angular chelitis, dysgeusia and difficulty in chewing and swallowing. This case report describes a new method in addressing such issues by using flexible complete denture construction in radiation induced xerostomic patient with minimal tissue damage during and after denture construction procedures. PMID:22605708

  15. Radiation-Induce Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    Riverside, CA Invited Seminar: "The Proteasome as a Senor of Stress " 3/17/04 UCLA Department of Dentistry Monthly Seminar, Los Angeles, CA Invited...affects protective antitutnor imnmunity induced by Chymotrypsin-like activity was measured using 100 pM SucLLVY-7- AdVMARTI/DC vaccination amido -4...adjuvant activity was heightened if the cells were first stressed by radiation, indicating that injury can modulate this effect. In situ induction of

  16. Radiation-induced decomposition of PETN and TATB under pressure

    SciTech Connect

    Giefers, Hubertus; Pravica, Michael; Liermann, Hanns-Peter; Yang, Wenge

    2008-10-02

    We have investigated decomposition of PETN and TATB induced by white synchrotron X-ray radiation in a diamond anvil cell at ambient temperature and two pressures, nearly ambient and about 6 GPa. The decomposition rate of TATB decreases significantly when it is pressurized to 5.9 GPa. The measurements were highly reproducible and allowed us to obtain decomposition rates and the order parameters of the reactions.

  17. Interlaboratory comparison of radiation-induced attenuation in optical fibers

    SciTech Connect

    Friebele, E.J.; Lyons, P.B.; Blackburn, J.C.; Henschel, H.; Johan, A.; Krinsky, J.A.; Robinson, A.; Schneider, W.; Smith, D.; Taylor, E.W.; Los Alamos National Lab., NM; Harry Diamond Labs., Adelphi, MD; Fraunhofer-Institut fuer Naturwissenschaftlich-Technische Trendanalysen , Euskirchen; Direction des Recherches, Etudes et Techni

    1989-08-01

    A comparison of the losses induced in step index multimode, graded index multimode and single mode fibers by pulsed radiation exposure has been made among 12 laboratories over a period of 5 years. The recoveries of the incremental attenuations from 10{sup -9} to 10{sup 1} s are reported. Although a standard set of measurement parameters was attempted, differences between the laboratories are evident; possible origins for these are discussed. 18 refs., 18 figs., 7 tabs.

  18. Perturbation-induced radiation by the Ablowitz-Ladik soliton.

    PubMed

    Doktorov, E V; Matsuka, N P; Rothos, V M

    2003-12-01

    An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic perturbations.

  19. Intravesical Liposomal Tacrolimus Protects Against Radiation Cystitis Induced by 3-Beam Targeted Bladder Radiation

    PubMed Central

    Raja, Rajaganapathy Bharathi; Janicki, Joseph J.; Levanovich, Peter; Tyagi, Pradeep; Hafron, Jason; Chancellor, Michael B.; Krueger, Sarah; Marples, Brian

    2015-01-01

    Purpose This study primarily sought to determine if the Small Animal Radiation Research Platform (SARRP) can create a rat radiation cystitis (RC) model via targeted bladder irradiation (phase I). The response to treatment of early phase RC in rats via transurethral catheter instillation of liposomal tacrolimus (lipo-tacrolimus) was examined in phase II. Materials and Methods In phase I, 16 adult female Sprague-Dawley rats were used and their metabolic urination patterns were analyzed before and after exposure to 20, 30, or 40 Gy radiation. In phase II, irradiated rats were randomly assigned to receive a single instillation of either saline or lipo-tacrolimus. Results The 40 Gy radiation dose induced statistically significant reductions in inter-micturition intervals (IMI) compared to the lower doses of radiation. 40 Gy radiation caused a significant reduction in mean IMI by approximately 20 minutes (p < 0.0001). Histological analysis indicated degenerative type epithelial changes and urothelial swelling, with evidence of pseudocarcinomatous epithelial hyperplasia. Therefore, 40 Gy was chosen for the phase II efficacy study. There was no measurable change in total voided urine volume after irradiation or after instillation of lipo-tacrolimus or saline. Lipo-tacrolimus treatment significantly increased post-irradiation IMI values by approximately 30 minutes (p < 0.001) back to baseline levels. Conclusions The RC rat model demonstrated a dose-dependent decrease in IMI without inducing short-term skin or gastrointestinal damage. This study demonstrated that lipo-tacrolimus may be a promising new intravesical therapy for the rare and serious condition of RC. PMID:25839382

  20. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5.

  1. Radiation-induced grain boundary segregation in austenitic stainless steels

    SciTech Connect

    Bruemmer, S.M.; Charlot, L.A.; Vetrano, J.S.; Simonen, E.P.

    1994-11-01

    Radiation-induced segregation (RIS) to grain boundaries in Fe-Ni-Cr-Si stainless alloys has been measured as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550{degrees}C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from G to 5 dpa) and temperature (from 175 to about 350{degrees}C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Although interfacial compositions were similar, the width of radiation-induced enrichment or depletion profiles increased consistently with increasing dose or temperature. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si peaked at levels approaching 10 at% after irradiation doses to 10 dpa at an intermediate temperature of 325{degrees}C. No evidence of grain boundary silicide precipitation was detected after irradiation at any temperature. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Comparisons to reported RIS in neutron-irradiated stainless steels revealed similar grain boundary compositional changes for both major alloying and impurity elements.

  2. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  3. induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis.

    PubMed

    Feng, Jie; Meng, Chengbo; Xing, Da

    2015-02-01

    p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression.

  4. Radiation-induced lichen sclerosus of the vulva : First report in the medical literature.

    PubMed

    Edwards, Lisa R; Privette, Emily D; Patterson, James W; Tchernev, Georgi; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Wilson, Barbara B

    2017-03-01

    A 67-year-old woman presented with a firm plaque in the perineal region, 16 months after diagnosis of a high-grade basaloid squamous cell carcinoma of the vagina and treatment by external beam radiation therapy and vaginal cuff brachytherapy. The differential diagnosis included radiation-induced morphea, radiation dermatitis, or, possibly, radiation-induced lichen sclerosus. Biopsy findings, including special staining, confirmed the diagnosis of radiation-induced lichen sclerosus. To our knowledge, this is the first report of radiation-induced lichen sclerosus of the vulvar region.

  5. Radiation-induced esophageal injury: A spectrum from esophagitis to cancer

    SciTech Connect

    Vanagunas, A.; Jacob, P.; Olinger, E. )

    1990-07-01

    Radiation esophagitis is a common but frequently unrecognized complication of therapeutic radiation to the neck, chest, or mediastinum. The spectrum of injury ranges from acute self-limited esophagitis to life-threatening esophageal perforation. Complications such as stricture or primary esophageal cancer may occur many years after irradiation, and their linkage to radiation may not be considered. Five cases of radiation-induced injury are described, and the spectrum of radiation-induced esophageal injury is reviewed.

  6. [Radiation-induced tumors of the nervous system in man].

    PubMed

    Hubert, D; Bertin, M

    1993-11-01

    The risk of developing a tumor of the nervous system in humans is analysed in several studies of populations, exposed to ionising radiation for medical reasons, or exposed to military or occupational radiation. The main data come from series of patients who underwent radiotherapy during childhood: a high incidence of tumors of the nervous system is found after irradiation of one to a few grays as treatment of a benign disease (especially tinea capitis), as well as after irradiation at higher doses of a few tens of grays for the treatment of cancer (in particular cerebral irradiation in acute lymphoblastic leukaemia). The type of radiation-induced tumors is variable, but meningioma is more frequent after low doses and glioma and sarcoma after higher doses used in the treatment of neoplastic diseases. A dose-effect relationship appeared between the risk of tumor of the nervous system and the radiation dose. The risk was higher when radiation was delivered at a younger age. Much less data are available after radiotherapy in the adulthood, but an increased risk of cerebral tumor appears in the series of ankylosing spondylitis patients. As for the exposures to radiodiagnosis exams, the main problem is the risk of cerebral tumor in children whose mother has undergone abdominal or pelvic X-rays during pregnancy. No risk of neurologic tumor was found in the A-bomb survivors irradiated at Hiroshima and Nagasaki. Occupational exposure to ionising radiation has been incriminated in the first radiologists exposed to high doses. In nuclear industry workers, the results of epidemiological studies are contradictory and at the present time it is not possible to link their radiologic exposure with a risk of tumor of the nervous system. In populations living near nuclear plants, mortality due to tumors of the nervous system was not increased.

  7. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  8. Hydrogen Protects Mice from Radiation Induced Thymic Lymphoma in BALB/c Mice

    PubMed Central

    Zhao, Luqian; Zhou, Chuanfeng; Zhang, Jian; Gao, Fu; Li, Bailong; Chuai, Yunhai; Liu, Cong; Cai, Jianming

    2011-01-01

    Ionizing radiation (IR) is a well-known carcinogen, however the mechanism of radiation induced thymic lymphoma is not well known. Moreover, an easy and effective method to protect mice from radiation induced thymic lymphoma is still unknown. Hydrogen, or H2, is seldom regarded as an important agent in medical usage, especially as a therapeutic gas. Here in this study, we found that H2 protects mice from radiation induced thymic lymphoma in BALB/c mice. PMID:21448340

  9. Heat induced damage detection in composite materials by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  10. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  11. G2-chromosome aberrations induced by high-LET radiations

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Ito, H.; Wu, H.; Cucinotta, F. A.

    We report measurements of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to γ-rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for γ-rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/μm silicon (2.7) or 80 keV/μm carbon (2.7) and then decreased with LET (1.5 at 440 keV/μm). RBE for chromatid-type break peaked at 55 keV/μm (2.4) then decreased rapidly with LET. The RBE of 440 keV/μm iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.

  12. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  13. Radiation-induced volatile hydrocarbon production in platelets. Scientific report

    SciTech Connect

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Thrombocytopenia plays an important role in the development of the post-irradiation hemorrhagic syndrome. Although destruction of platelet precursors in bone marrow is a major effect of high-dose radiation exposure, the effects of radiation on preformed platelets are unclear. The latter is also of concern with respect to blood-banking practices since platelets are often irradiated at doses in the range of 20-50 Gy before transfusions to prevent graft-versus-host disease. With increasing emphasis on allogenic and autologous bone-marrow transplantation, transfusions of irradiated platelets are likely to rise. Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets.

  14. Radiation-induced immune responses: mechanisms and therapeutic perspectives

    PubMed Central

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok

    2016-01-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field. PMID:27722125

  15. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-04-18

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  16. Radiation-induced recurrent intestinal pseudo-obstruction

    SciTech Connect

    Conklin, J.L.; Anuras, S.

    1981-06-01

    The syndrome of intestinal pseudo-obstruction is a complex of signs and symptoms of intestinal obstruction without evidence of mechanical obstruction of the intestinal lumen. A patient with radiation-induced intestinal pseudoobstruction is described. The patient is a 74-year old woman with a history of chronic diarrhea, recurrent episodes of crampy abdominal pain, nausea and vomiting since receiving a 13,000 rad radiation dose to the pelvis in 1954. She has been hospitalized on many occasions for symptoms and signs of bowel obstruction. Upper gastrointestinal contrast roentgenograms with small bowel follow-through done during these episodes revealed multiple dilated loops of small bowel with no obstructing lesion. Barium enemas revealed no obstructing lesion. Each episode resolved with conservative therapy. Other secondary causes for intestinal pseudo-obstruction were ruled out in our patient. She gave no history of familial gastrointestinal disorders. Although postirradiation motility abnormalities have been demonstrated experimentally this is the first report of radiation induced intestinal pseudo-obstruction.

  17. Radiation-induced thymine base damage in replicating chromatin

    SciTech Connect

    Warters, R.L.; Childers, T.J.

    1982-06-01

    The efficiency of radiation-induced production of 5',6'-dihydroxydihydrothymine (t/sup ..gamma../)-type damage was determined in nascent and mature chromatin DNA for the dose range of 50 to 150 krad. These large doses affected neither the total fraction of nuclear DNA in chromatin subunits nor the nucleosome subunit repeat length. The DNA in nascent chromatin, however, was found to be 3.3 times more sensitive than mature chromatin DNA to ..gamma..-ray (/sup 137/Cs)-induced t/sup ..gamma../-type damage, while thymine damage of this type was uniformly distributed in the nucleosomal DNA of mature chromatin (i.e., in the nucleosome core and spacer DNA). The half-time for the transition of nascent DNA sensitivity to mature chromatin DNA sensitivity levels was the same as the half-time at 37/sup 0/C for the maturation of nascent into mature chromatin structure. The rate at which nascent chromatin matured was unaffected by radiation doses as large as 150 krad. The most logical explanation for the greater sensitivity of nascent DNA to radiation is the decreased concentration of histone chromosomal proteins in nascent chromatin.

  18. Sensitivity to Radiation-Induced Cancer in Hemochromatosis

    SciTech Connect

    Bull. Richard J.; Anderson, Larry E.

    2000-06-01

    The objectives of this pilot project using HFE-knockout homozygotes and heterozygotes are to (1) determine whether the knock-out mice have greater sensitivity to radiation-induced cancer of the colon, liver and breast, (2) establish the dependence of this sensitivity on the accumulation of iron, (3) determine the extent to which cell replication and apoptosis occur in these target tissues with varying iron load, and (4) correlate the increases in sensitivity with changes in insulin-related signaling in tumors and normal tissue from each target organ. Three experimental designs will be used in the pilot project. The sequence of experiments is designed to first explore the influence of iron load on the response and demonstrate that HFE knockout mice are more sensitive than the wild type to radiation-induced cancer in one or more of three target tissues (liver, colon and breast). The dose response relationships with a broader set of radiation doses will be explored in the second experiment. The final experiment is designed to explore the extent to which heterozygotes display the increased susceptibility to cancer induction and to independently assess the importance of iron load to the initiation versus promotion of tumors.

  19. Epigenetic determinants of space radiation-induced cognitive dysfunction

    PubMed Central

    Acharya, Munjal M.; Baddour, Al Anoud D.; Kawashita, Takumi; Allen, Barrett D.; Syage, Amber R.; Nguyen, Thuan H.; Yoon, Nicole; Giedzinski, Erich; Yu, Liping; Parihar, Vipan K.; Baulch, Janet E.

    2017-01-01

    Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. PMID:28220892

  20. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    SciTech Connect

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-07-15

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  1. Pharmacological protection from radiation ± Cisplatin - induced oral mucositis

    PubMed Central

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng, Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2011-01-01

    Purpose To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice following exposure to ionizing radiation ± Cisplatin. Methods and Materials Female C3H mice, ~8 weeks old, were irradiated with five fractionated doses ± Cisplatin to induce oral mucositis (lingual ulcers). Just prior to irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal, ip, injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed, tongues harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results Significant lingual ulcers resulted from 5 × 8 Gy radiation fractions, which were enhanced with Cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head and neck cancer therapy. PMID:22197226

  2. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  3. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment.

  4. The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms.

    PubMed

    Kovacevic, Zaklina; Sivagurunathan, Sutharshani; Mangs, Helena; Chikhani, Sherin; Zhang, Daohai; Richardson, Des R

    2011-05-01

    The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), has been shown to markedly reduce metastasis of numerous tumors. The current study was focused on further elucidating the molecular mechanisms behind the antitumor function of NDRG1. We have identified for the first time that NDRG1 upregulates the potent cyclin-dependent kinase inhibitor, p21. This effect was observed in three different cancer cell types, including PC3MM and DU145 prostate cancer cells and H1299 lung carcinoma cells, and occurred independently of p53. In addition, reducing NDRG1 expression using short hairpin RNA in PC3MM and DU145 cells resulted in significantly reduced p21 protein levels. Hence, p21 is closely correlated with NDRG1 expression in these latter cell types. Examining the mechanisms behind the effect of NDRG1 on p21 expression, we found that NDRG1 upregulated p21 via transcriptional and posttranscriptional mechanisms in prostate cancer cells, although its effect on H1299 cells was posttranscriptional only. Further studies identified two additional NDRG1 protein targets. The dominant-negative p63 isoform, ΔNp63, which has been found to inhibit p21 transcription, was downregulated by NDRG1. On the other hand, a truncated 50 kDa MDM2 isoform (p50(MDM2)), which may protect p21 from proteasomal degradation, was upregulated by NDRG1. The downregulation of ΔNp63 and upregulation of p50(MDM2) are potential mechanisms by which NDRG1 increases p21 expression in these cells. Additional functional studies identified that NDRG1 inhibits cancer cell migration, suggesting that p21 is a molecular player in its antimetastatic activity.

  5. E2F1 plays a direct role in Rb stabilization and p53-independent tumor suppression

    PubMed Central

    Palacios, Gustavo; Talos, Flaminia; Nemajerova, Alice; Moll, Ute M.; Petrenko, Oleksi

    2013-01-01

    To better understand the role of E2F1 in tumor formation, we analyzed spontaneous tumorigenesis in p53−/−E2F1+/+ and p53−/−E2F1−/− mice. We show that the combined loss of p53 and E2F1 leads to an increased incidence of sarcomas and carcinomas compared to the loss of p53 alone. E2F1-deficient tumors show wide chromosomal variation, indicative of genomic instability. Consistent with this, p53−/−E2F1−/− primary fibroblasts have a reduced capacity to maintain genomic stability when exposed to S-phase inhibitors or genotoxic drugs. A major mechanism of E2F1’s contribution to genomic integrity lies in mediating stabilization and engagement of the Rb protein. PMID:18583939

  6. Connecting radiation-induced bystander effects and senescence to improve radiation response prediction.

    PubMed

    Poleszczuk, Jan; Krzywon, Aleksandra; Forys, Urszula; Widel, Maria

    2015-05-01

    For the last two decades radiation-induced bystander effects (RIBEs) have attracted significant attention due to their possible implications for radiotherapy. However, despite extensive research, the molecular pathways associated with RIBEs are still not completely known. In the current study we investigated the role of senescence in the bystander response. Irradiated (2, 4, 6 and 8 Gy) human colorectal carcinoma cells (HCT116) with p53(+/+) (wild-type) or p53(-/-) (knockout) gene were co-incubated with nonirradiated cells of the same type. Clonogenic and senescence assays were used for both irradiated and co-incubated bystander cell populations. We also performed additional measurements on the number of remaining cells after the whole co-incubation period. For radiation doses larger than 2 Gy we observed much larger fractions of senescent cells in p53-positive populations compared to their p53-negative counterparts (15.81% vs. 3.63% in the irradiated population; 2.89% vs. 1.05% in the bystander population; 8 Gy; P < 0.05). Statistically significant differences between cell lines in the clonogenic cell surviving fraction were observed for doses higher than 4 Gy (1.61% for p53(+/+) vs. 0.19% for p53(-/-) in irradiated population; 3.57% for +/+ vs. 50.39% for -/- in bystander population; 8 Gy; P < 0.05). Our main finding was that the number of senescent cells in the irradiated population correlated strongly with the clonogenic cell surviving fraction (R = -0.98, P < 0.001) and the number of senescent cells (R = 0.97, P < 0.001) in the bystander population. We also extended the standard linear-quadratic radiation response model by incorporating the influence of the signals released by the senescent cells, which accurately described the radiation response in the bystander population. Our findings suggest that radiation-induced senescence might be a key player in RIBE, i.e., the strength of RIBE depends on the amount of radiation-induced senescence.

  7. ER stress induced by ionising radiation in IEC-6 cells.

    PubMed

    Zhang, Bo; Wang, Yan; Pang, Xueli; Su, Yongping; Ai, Guoping; Wang, Tao

    2010-06-01

    Ionising radiation (IR) can evoke a series of biochemical events inside the cell. However, whether IR can directly induce endoplasmic reticulum (ER) stress is not clear. In our previous study, we found that there might be a causative link between IR and ER stress. In this study, we further characterised the type of ER stress induced by IR. Rat intestinal epithelial cells IEC-6 were irradiated at a dose of 10 Gy, and total RNA and proteins were harvested at indicated time points. The mRNA and protein expression of immunoglobulin heavy chain binding protein (BiP) and glucose regulated protein 94 (GRP94) was detected along with proteins associated with ER stress signal pathways. Our results indicated that IR induced up-regulation of ER stress marker including BiP and GRP94 at protein and mRNA levels in IEC-6 cells. Increased phosphorylation of eukaryotic translation initiation factor 2 (eIF2alpha) and induced mRNA splicing of X-box binding protein 1 (XBP1) suggested that PERK (interferon-induced double-stranded RNA-activated protein kinase (PRKR) -like endoplasmic reticulum kinase) and IRE1 (inositol requirement 1) signal transduction pathways were involved in this kind of ER stress. However, the active form of activating transcription factor 6 (ATF6) did not change significantly in irradiated cells, which suggested that the ATF6 pathway was not involved. Thus, we concluded that IR could induce moderate ER stress directly in IEC-6 cells.

  8. Changes induced by UV radiation during virgin olive oil storage.

    PubMed

    Luna, G; Morales, M T; Aparicio, R

    2006-06-28

    The effects of UV radiation on the chemical and sensory characteristics of virgin olive oils (cv. Arbequina and Picual) were assessed. Even small doses of UV radiation induced oxidation of the virgin olive oil samples. Total phenols and fatty acids contents decreased during the process as well as the intensity of the bitter and fruity sensory attributes, while the intensity of the rancid sensory attribute notably increased. Acetaldehyde, 2-butenal, 2-pentenal, octane, octanal, hexanal, nonanal, and 2-decenal were the volatile compounds most affected, showing an important increase during the irradiation process. Nonanal, hexanal, and pentanal showed high correlation with the rancid sensory attribute (90%, 86%, and 86%, respectively). 2-Decenal and nonanal concentrations allowed us to predict the alteration level of the samples by mean of multiple Ridge regression.

  9. Radiation-induced cerebral meningioma: a recognizable entity.

    PubMed

    Rubinstein, A B; Shalit, M N; Cohen, M L; Zandbank, U; Reichenthal, E

    1984-11-01

    The authors retrospectively analyzed the clinical and histopathological findings in 201 patients with intracranial meningiomas operated on in the period 1978 to 1982. Forty-three of the patients (21.4%) had at some previous time received radiation treatment to their scalp, the majority for tinea capitis. The findings in these 43 irradiated patients were compared with those in the 158 non-irradiated patients. Several distinctive clinical and histological features were identified in the irradiated group, which suggest that radiation-induced meningiomas can be defined as a separate nosological subgroup. The use of irradiation in large numbers of children with tinea capitis in the era prior to the availability of griseofulvin may be responsible for a significantly increased incidence of intracranial meningiomas.

  10. Tissue deformation induced by radiation force from Gaussian transducers.

    PubMed

    Myers, Matthew R

    2006-05-01

    Imaging techniques based upon the tissue mechanical response to an acoustic radiation force are being actively researched. In this paper a model for predicting steady-state tissue displacement induced by a radiation force arising from the absorption of Gaussian ultrasound beams is presented. A simple analytic expression is derived that agrees closely with the numerical quadrature of the displacement convolution integrals. The analytic result reveals the dependence of the steady-state axial displacement upon the operational parameters, e.g., an inverse proportional relationship to the tissue shear modulus. The derivation requires that the transducer radius be small compared to the focal length, but accurate results were obtained for transducer radii comparable to the focal length. Favorable comparisons with displacement predictions for non-Gaussian transducers indicate that the theory is also useful for a broader range of transducer intensity profiles.

  11. Modification of microcrystalline cellulose by gamma radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Abad, Lucille V.

    2015-10-01

    Modified microcrystalline cellulose (MCC) was prepared through gamma radiation-induced graft polymerization of glycidyl methacrylate (GMA). Simultaneous grafting was employed wherein MCC with GMA in methanol was irradiated with gamma radiation in nitrogen atmosphere. The effects of different experimental factors such as monomer concentration, type of solvent and absorbed dose on the degree of grafting, Dg, were studied. The amount of grafted GMA, expressed as Dg, was determined gravimetrically. Information from grafted samples subjected to Fourier transformed infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode showed peaks corresponding to GMA which indicates successful grafting. The X-ray diffraction (XRD) analysis revealed that the crystalline region of MCC was not adversely affected after grafting with GMA. The thermogravimetric analysis (TGA) data showed that the decomposition of grafted MCC occurred at higher temperature compared to the base MCC polymer.

  12. Treatment of radiation- and chemotherapy-induced stomatitis

    SciTech Connect

    Carnel, S.B.; Blakeslee, D.B.; Oswald, S.G.; Barnes, M. )

    1990-04-01

    Severe stomatitis is a common problem encountered during either radiation therapy or chemotherapy. Most therapeutic regimens are empirical, with no scientific basis. The purpose of this study is to determine the efficacy of various topical solutions in the treatment of radiation- or chemotherapy-induced stomatitis. Eighteen patients were entered into a prospective double-blinded study to test several topical solutions: (1) viscous lidocaine with 1% cocaine; (2) dyclonine hydrochloride 1.0% (Dyclone); (3) kaolin-pectin solution, diphenhydramine plus saline (KBS); and (4) a placebo solution. Degree of pain relief, duration of relief, side effects, and palatability were evaluated. The results showed that Dyclone provided the most pain relief. Dyclone and viscous lidocaine with 1% cocaine provided the longest pain relief, which averaged 50 minutes This study provides objective data and defines useful guidelines for treatment of stomatitis.

  13. Potential targets for intervention in radiation-induced heart disease.

    PubMed

    Boerma, M; Hauer-Jensen, M

    2010-11-01

    Radiotherapy of thoracic and chest wall tumors, if all or part of the heart was included in the radiation field, can lead to radiation-induced heart disease (RIHD), a late and potentially severe side effect. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves. The pathogenesis of RIHD is largely unknown, and a treatment is not available. Hence, ongoing pre-clinical studies aim to elucidate molecular and cellular mechanisms of RIHD. Here, an overview of recent pre-clinical studies is given, and based on the results of these studies, potential targets for intervention in RIHD are discussed.

  14. Genomic Instability Induced by High and Low Let Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.

    Genomic instability is the increased rate of acquisition of alterations in the mammalian genome, and includes such diverse biological endpoints as chromosomal destabilization, aneuploidy, micronucleus formation, sister chromatid exchange, gene mutation and amplification, variations in colony size, reduced plating efficiency, and cellular transformation. Because these multiple endpoints persist long after initial radiation exposure, genomic instability has been proposed to operate as a driving force contributing to genetic plasticity and carcinogenic potential. Many of these radiation-induced endpoints depend qualitatively and quantitatively on genetic background, dose and LET. Differences in the frequency and temporal expression of chromosomal instability depend on all three of the foregoing factors. On the other hand, many of these endpoints appear independent of dose and show bystander effects, implicating non-nuclear targets and epigenetic regulatory mechanisms. The present work will survey results concerning the LET dependence of genomic instability and the role of epigenetic mechanisms, with a particular emphasis on the endpoint of chromosomal in tability

  15. Radiation-Induced Lymphocyte Apoptosis to Predict Radiation Therapy Late Toxicity in Prostate Cancer Patients

    SciTech Connect

    Schnarr, Kara; Boreham, Douglas; Sathya, Jinka; Julian, Jim; Dayes, Ian S.

    2009-08-01

    Purpose: To examine a potential correlation between the in vitro apoptotic response of lymphocytes to radiation and the risk of developing late gastrointestinal (GI)/genitourinary (GU) toxicity from radiotherapy for prostate cancer. Methods and Materials: Prostate cancer patients formerly enrolled in a randomized study were tested for radiosensitivity by using a radiation-induced lymphocyte apoptosis assay. Apoptosis was measured using flow cytometry-based Annexin-FITC/7AAD and DiOC{sub 6}/7AAD assays in subpopulations of lymphocytes (total lymphocytes, CD4+, CD8+ and CD4-/CD8-) after exposure to an in vitro dose of 0, 2, 4, or 8 Gy. Results: Patients with late toxicity after radiotherapy showed lower lymphocyte apoptotic responses to 8 Gy than patients who had not developed late toxicity (p = 0.01). All patients with late toxicity had apoptosis levels that were at or below the group mean. The negative predictive value in both apoptosis assays ranged from 95% to 100%, with sensitivity values of 83% to 100%. Apoptosis at lower dose points and in lymphocyte subpopulations had a weaker correlation with the occurrence of late toxicity. Conclusions: Lymphocyte apoptosis after 8 Gy of radiation has the potential to predict which patients will be spared late toxicity after radiation therapy. Further research should be performed to identify the specific subset of lymphocytes that correlates with late toxicity, followed by a corresponding prospective study.

  16. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  17. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  18. Radiation-Induced Phase Transformations in Ilmenite-Group Minerals

    SciTech Connect

    Mitchell, J. N.

    1997-12-31

    Transmission electron microscopy (TEM) is a powerful tool for characterizing and understanding radiation-induced structural changes in materials. We have irradiated single crystals of ilmenite (FeTiO{sub 3}) and geikielite (MgTiO{sub 3}) using ions and electrons to better understand the response of complex oxides to radiation. Ion irradiation experiments of bulk single crystals at 100 K show that ilmenite amorphized at doses of less than 1x10(exp15) Ar(2+)/sq cm and at a damage level in the peak damage region of 1 displacement per atom (dpa). Transmission electron microscopy and electron diffraction of a cross-sectioned portion of this crystal confirmed the formation of a 150 am thick amorphous layer. Geikielite proved to be more radiation resistant, requiring a flux of 2x10(exp 15) Xe(2+)/sq cm to induce amorphization at 100 K. This material did not amorphize at 470 K, despite a dose of 2.5 x10(exp 16) Xe(2+)/sq cm and a damage level as high as 25 dpa. Low temperature irradiations of electron- transparent crystals with 1 MeV Kr(+) also show that ilmenite amorphized after a damage level of 2.25 dpa at 175 K.Similar experiments on geikielite show that the microstructure is partially amorphous and partially crystalline after 10 dpa at 150 K. Concurrent ion and electron irradiation of both materials with 1 MeV Kr(+) and 0.9 MeV electrons produced dislocation loops in both materials, but no amorphous regions were formed. Differences in the radiation response of these isostructural oxides suggests that in systems with Mg-Fe solid solution, the Mg-rich compositions may be more resistant to structural changes.

  19. [Radiation-induced cancers: state of the art in 1997].

    PubMed

    Cosset, J M

    1997-01-01

    Scientists now have available a large amount of data dealing with radiation-induced neoplasms. These data went back to anecdotal observations which were made in the very first years of utilization of X-rays and radioactive elements. In fact, it is essentially the strict follow-up of the Japanese populations irradiated by the Hiroshima and Nagasaki bombing which allowed a more precise evaluation of the carcinogenicity of ionizing radiations. Further refinements came from therapeutical irradiations: it is now possible to study large cohorts of patients given well-known doses in well-defined volumes and followed for more than 20 years. Last but not least, a significant increase in the incidence and mortality of thyroid cancer has been detected in children contaminated by iodine radioisotopes after the Tchernobyl accident. Recently, some data suggested the emergence of "clusters" of leukemias close to some nuclear facilities, but this question remains highly polemical, both in France and in the UK. Other questions are still waiting for a precise answer; of course, the extrapolation of our available data to very low doses delivered at very low dose rates, but also the carcinogenic risk at high doses. For these "high" doses (about 30 to 70 Gy), a competition between mutagenesis and cell killing was expected, so that these dose levels were expected to be less carcinogenic than lower (a few sieverts) doses. Actually, recent data suggest that the carcinogenic risk goes on increasing up to relatively important doses. In addition, carcinogenic factors, such as tabacco, anticancer chemotherapy and individual susceptibility, are found more and more to be closely intricated with ionizing radiation in the genesis of a given cancer. Even if a number of questions are still pending, the already available data allow specialists, both in medicine and radioprotection, to edict strict rules which can be reasonably expected to have significantly reduced the risk of radiation-induced

  20. Nocifensive Behaviors in Mice with Radiation-Induced Oral Mucositis.

    PubMed

    Nolan, Michael W; Long, C Tyler; Marcus, Karen L; Sarmadi, Shayan; Roback, Donald M; Fukuyama, Tomoki; Baeumer, Wolfgang; Lascelles, B Duncan X

    2017-02-10

    Oral mucositis can result in significant dysphagia, and is the most common dose-limiting acute toxicity in head and neck cancer patients receiving chemoradiotherapy. There is a critical need to determine the cellular and molecular mechanisms that underlie radiotherapy-associated discomfort in patients with mucositis. The objective was to induce oral mucositis in mice, using a clinical linear accelerator, and to quantify resultant discomfort, and characterize peripheral sensitization. A clinical linear accelerator was used to deliver ionizing radiation to the oral cavity of mice. Mucositis severity scoring, and various behavioral assays were performed to quantify bouts of orofacial wiping and scratching, bite force, gnawing behavior and burrowing activity. Calcium imaging was performed on neurons of the trigeminal ganglia. Glossitis was induced with a single fraction of at least 27 Gy. Body weight decreased and subsequently returned to baseline, in concert with development and resolution of mucositis, which was worst at day 10 and 11 postirradiation, however was resolved within another 10 days. Neither bite force, nor gnawing behavior were measurably affected. However, burrowing activity was decreased, and both facial wiping and scratching were increased while mice had visible mucositis lesions. Sensory nerves of irradiated mice were more responsive to histamine, tumor necrosis factor alpha and capsaicin. Radiation-induced glossitis is associated with hyper-reactivity of sensory neurons in the trigeminal ganglia of mice, and is accompanied by several behaviors indicative of both itch and pain. These data validate an appropriate model for cancer treatment related discomfort in humans.

  1. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  2. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  3. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    PubMed

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  4. [Radiation induced lung injuries secondary to radiotherapy for breast cancer].

    PubMed

    Toma, Claudia Lucia; Ciprut, Tudor; Bugarin, Svetlana; Roşca, Dorina; Bogdan, Miron Alexandru

    2011-01-01

    Modern radiotherapy decreased the number and severity of the effects of irradiation on the lung. Yet, the increased cancer incidence makes the related radiation injuries to remain actual, radiotherapy being frequently used in cancer treatment. Aim of the study consists in analysis of the radiological pattern of radiation induced lung disease due to radiotherapy for breast cancer. Sixty-eight female patients were evaluated for clinical and radiological suspicion of radiation pneumonitis after radiotherapy for breast cancer between 2001 and 2009 in "Marius Nasta" Institute of Pneumophtiziology, Bucharest. The following procedures were performed: medical history, physical examination, chest radiography and CT-scan (in a subgroup of 27 patients). Radiotherapy toxicity was evaluated based on the RTOG/EORTC (Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer) classification and radiological lesions based on Arriagada classification. Fifty patients (73.5%) were symptomatic (fever, dry cough, dyspnea, chest pain, fatigability), the other 18 were asymptomatic. Symptoms were mild to moderate corresponding to grade 1 (27 patients, 39.7%) or grade 2 (23 patients, 33.8%) according to RTOG/EORTC scale. All patients had radiological lesions: 25 patients (36.7%) had grade 2 lesions (linear opacities), 25 patients (36.7%) had grade 3 lesions (patchy opacities) and 18 patients (26.5%) had grade 4 lesions (dense opacities), according to Arriagada classification. Symptoms were more frequent in patients with extensive lesions on chest radiography. CT-scan, performed in 27 patients, showed more accurate images. Chest radiography remains the simplest method in screening for radiation pneumonitis and monitoring its outcome. Adverse effects secondary to radiotherapy are usually mild and self-limited, and the most difficult task remains the differential diagnosis with infections and cancer relapse.

  5. Inhibition of radiation-induced skin fibrosis with imatinib.

    PubMed

    Horton, Jason A; Chung, Eun Joo; Hudak, Kathryn E; Sowers, Anastasia; Thetford, Angela; White, Ayla O; Mitchell, James B; Citrin, Deborah E

    2013-03-01

    Dermal fibrosis is a disabling late toxicity of radiotherapy. Several lines of evidence suggest that overactive signaling via the Platelet-derived growth factor receptor-beta (PDGFR-β) and V-abl Abelson murine leukemia viral oncogene homolog 1 (cAbl) may be etiologic factors in the development of radiation-induced fibrosis. We tested the hypothesis that imatinib, a clinically available inhibitor of PDGFR-β, Mast/stem cell growth factor receptor (c-kit) and cAbl, would reduce the severity of dermal fibrosis in a murine model. The right hind legs of female C3H/HeN mice were exposed to 35 Gy of X-rays. Cohorts of mice were maintained on chow formulated with imatinib 0.5 mg/g or control chow for the duration of the experiment. Bilateral hind limb extension was measured serially to assess fibrotic contracture. Immunohistochemistry and biochemical assays were used to evaluate the levels of collagen and cytokines implicated in radiation-induced fibrosis. Imatinib treatment significantly reduced hind limb contracture and dermal thickness after irradiation. Immunohistochemical studies demonstrated a substantial reduction in PDGFR-β phosphorylation. We also observed reduced Transforming Growth factor-β (TGF-β) and collagen expression in irradiated skin of imatinib-treated mice, suggesting that imatinib may suppress the fibrotic process by interrupting cross-talk between these pathways. Taken together, these results support that imatinib may be a useful agent in the prevention and treatment of radiation-induced dermal fibrosis.

  6. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  7. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    SciTech Connect

    Black, G.; Matzinger, E.; Gange, R.W.

    1985-11-01

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areas were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.

  8. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  9. Radiation-Induced Premelting of Ice at Silica Interfaces

    SciTech Connect

    Schoeder, S.; Reichert, H.; Schroeder, H.; Mezger, M.; Okasinski, J. S.; Dosch, H.; Honkimaeki, V.; Bilgram, J.

    2009-08-28

    The existence of surface and interfacial melting of ice below 0 deg. C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25 g/cm{sup 3}) within the emerging quasiliquid layer.

  10. A model of radiatively induced quark and lepton mass model

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki

    2017-07-01

    We discuss a radiatively induced quark and lepton mass model in the rst and second generation introducing extra U(1) gauge symmetry, discrete Z 2 symmetry, vector-like fermions and exotic scalar elds. Then we analyze the allowed parameter regions which simultaneously satisfy the constraints of FCNCs for the quark sector and of LFVs including μ - e conversion, observed quark mass and mixing, and the lepton mass and mixing. In addition, the typical value for the (g - 2) μ in our model is presented. We also show extension of the model in which Majorana type neutrino masses are generated at the two loop level.

  11. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    DTIC Science & Technology

    2016-10-01

    kilogram ( C kg –1 ) rad [absorbed dose] 1 × 10 –2 joule per kilogram (J kg –1 ) [gray (Gy)] rem [equivalent and effective dose] 1 × 10–2 joule per...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-17-5 Mechanisms of Radiation-Induced...CLASSIFICATION OF: a. REPORT b. ABSTRACT c . THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 00-10-2016 Final Oct 5, 2010 - Dec 31, 2015 Mechanisms of

  12. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  13. Radiation-Induced Premelting of Ice at Silica Interfaces

    NASA Astrophysics Data System (ADS)

    Schöder, S.; Reichert, H.; Schröder, H.; Mezger, M.; Okasinski, J. S.; Honkimäki, V.; Bilgram, J.; Dosch, H.

    2009-08-01

    The existence of surface and interfacial melting of ice below 0°C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25g/cm3) within the emerging quasiliquid layer.

  14. Facial reconstruction for radiation-induced skin cancer

    SciTech Connect

    Panje, W.R.; Dobleman, T.J. )

    1990-04-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction.

  15. Radiation-Induced Intraspinal Chondrosarcoma: A Case Report

    PubMed Central

    Obid, Peter; Vierbuchen, Mathias; Wolf, Eduard; Reichl, Michael; Niemeyer, Thomas; Übeyli, Hüseyin; Richter, Alexander

    2015-01-01

    Study Design Case report and review of the literature. Objective To report a unique case of an intraspinal chondrosarcoma that was diagnosed 18 years after radiotherapy for a cervical carcinoma and its remarkably unusual clinical presentation. Methods A retrospective case description of an intraspinal mass lesion that occurred 6 weeks after previous spinal surgery. Results Within ∼9 weeks, the tumor had infiltrated the peritoneal cavity and reached the lumbar subcutaneous tissue. Conclusion Radiation-induced sarcomas are rare, are highly aggressive, and may be difficult to diagnose. Furthermore, the only means of achieving long-term survival is through early and extensive surgery. PMID:26430606

  16. Nonlinearly induced radiation from an overdense plasma region

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1983-09-01

    Consideration is given to a new mechanism for the nonlinear transparency of a bounded plasma. The expectation is that the incident electromagnetic wave will decay into quasistatic eigenmodes that can propagate around the overdense region. It is shown that most of the transformed energy can be reradiated in particular directions from the particular plasma surface regions where the plasma parameters have proper values. Attention is also given to the stationary state, which is established when the power of the induced radiation is equal to that of the incident.

  17. Investigation Into Radiation-Induced Compaction of Zerodur (trademark)

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Herren, K.; Hayden, M.; McDonald, K.; Sims, J. A.; Semmel, C. L.

    1996-01-01

    Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.

  18. Chaos of radiative heat-loss-induced flame front instability.

    PubMed

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.

  19. Radiation-induced breast angiosarcoma: a case report

    PubMed Central

    Tato-Varela, Sara; Albalat-Fernández, Rosa; Pabón-Fernández, Sara; Núñez-García, Diego; Calle-Marcos, Manolo La

    2016-01-01

    Radiation-induced breast angiosarcoma is a severe but rare late complication in the breast-preserving management of breast cancer through surgery and radiotherapy [1]. Often the initial diagnosis of this entity is complex given its relatively anodyne nature and usually being present in the form of typically multifocal reddish-purple papular skin lesions [2]. Because of the low incidence of this tumour, there is a limited number of studies regarding its optimal therapeutic management [3]. The preferred treatment is aggressive surgical removal and the prognosis is poor with an overall survival rate of 12–20% at five years [4]. PMID:28101140

  20. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects

    PubMed Central

    Friedl, Anna A.; Mazurek, Belinda; Seiler, Doris M.

    2012-01-01

    Detection and repair of radiation-induced DNA damage occur in the context of chromatin. An intricate network of mechanisms defines chromatin structure, including DNA methylation, incorporation of histone variants, histone modifications, and chromatin remodeling. In the last years it became clear that the cellular response to radiation-induced DNA damage involves all of these mechanisms. Here we focus on the current knowledge on radiation-induced alterations in post-translational histone modification patterns and their effect on the chromatin accessibility, transcriptional regulation and chromosomal stability. PMID:23050241

  1. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss.

    PubMed

    Park, Joohong; Halliday, Gary M; Surjana, Devita; Damian, Diona L

    2010-01-01

    UV radiation is carcinogenic by causing mutations in the skin and also by suppressing cutaneous antitumor immunity. We previously found nicotinamide (vitamin B3) to be highly effective at reducing UV-induced immunosuppression in human volunteers, with microarray studies on in vivo irradiated human skin suggesting that nicotinamide normalizes subsets of apoptosis, immune function and energy metabolism-related genes that are downregulated by UV exposure. Using human adult low calcium temperature keratinocytes, we further investigated nicotinamide's effects on cellular energy metabolism. We found that nicotinamide prevented UV-induced cellular ATP loss and protected against UV-induced glycolytic blockade. To determine whether nicotinamide alters the effects of UV-induced oxidative stress posttranslationally, we also measured UV-induced reactive oxygen species (ROS). Nicotinamide had no effect on ROS formation, and at the low UV doses used in these studies, equivalent to ambient daily sun exposure, there was no evidence of apoptosis. Hence, nicotinamide appears to exert its UV protective effects on the skin via its role in cellular energy pathways.

  2. The effect of tianeptine in the prevention of radiation-induced neurocognitive impairment.

    PubMed

    Akyurek, Serap; Senturk, Vesile; Oncu, Bedriye; Ozyigit, Gokhan; Yilmaz, Sercan; Gokce, Saban Cakir

    2008-12-01

    Radiation-induced neurocognitive impairment is an undesirable radiation-induced toxicity and a common health problem in patients with primary or metastatic brain tumor. It greatly impairs quality of life for long-term brain tumor survivors. Hippocampus is the most important brain structure for neurocognitive functions. It has been shown that radiation affects the hippocampal neurogenesis due to either induce the apoptosis or reduce the precursor cell proliferation in the hippocampus. Radiation-induced microglial inflammatory response is also negative regulator of neurogenesis. Tianeptine is a clinically effective antidepressant that induces neurogenesis. It has also been shown that tianeptine is able to reduce apoptosis and cytoprotective against the effects of proinflammatory cytokines in the hippocampus. Given the putative role of impaired hippocampal neurogenesis in radiation-induced neurocognitive impairment we think that tianeptine can be effective for preventing radiation-induced neurocognitive impairment by increasing hippocampal neurogenesis.

  3. Radiatively induced breaking of conformal symmetry in a superpotential

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  4. Heat Induced Damage Detection by Terahertz (THz) Radiation

    NASA Astrophysics Data System (ADS)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  5. X-radiation-induced differentiation of xenotransplanted human undifferentiated rhabdomyosarcoma

    SciTech Connect

    Takizawa, T.; Matsui, T.; Maeda, Y.; Okabe, S.; Mochizuki, M.; Tanaka, A.; Kawaguchi, K.; Fukayama, M.; Funata, N.; Koike, M.

    1989-01-01

    A serially xenotransplantable strain of undifferentiated embryonal rhabdomyosarcoma originating from the nasal cavity of a 42-year-old woman has been established in our laboratory. After radiotherapy for the tumor donor, distinct rhabdomyoblastic differentiation of the undifferentiated sarcoma cells appeared in the primary lesion, and it is a reasonable assumption that X-irradiation has a certain potentiality to induce morphologic differentiation of tumor cells. To study this possibility, tissue fragments of undifferentiated embryonal rhabdomyosarcoma that had grown to more than 10 mm after being transplanted to nude mice were selectively irradiated in situ. The degree of rhabdomyoblastic differentiation according to radiation dose was evaluated by light and electron microscopy and by immunostainability for myoglobin, creatine phosphokinase-MM, and desmin. Distinct morphologic differentiation of undifferentiated sarcoma cells could be induced by repeated X-irradiations at several-week intervals.

  6. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  7. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  8. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  9. [Radiation-induced bronchiolitis obliterans with organizing pneumonia].

    PubMed

    Ducray, J; Vignot, S; Lacout, A; Pougnet, I; Marcy, P-Y; Chapellier, C; Foray, N; Creisson, A; Thariat, J

    2017-04-01

    Bronchiolitis obliterans with organizing pneumonia is an inflammatory reaction that can occur as a consequence of various pulmonary affections. Radiotherapy is not the sole and systematic cause of bronchiolitis obliterans with organizing pneumonia. Radiation-induced should not be confused with post-radiation, dose-dependent, inflammatory pulmonary fibrosis, which is non-immunological and located within the irradiation field. The role of immunity, local inflammation and individual radiosensitivity in bronchiolitis obliterans with organizing pneumonia is not well defined. Bronchiolitis obliterans with organizing pneumonia represents 1% of irradiated patients with breast cancer. It results in fever (flu-like symptoms), a rather dry cough and dyspnea. In the post-radiation context, bronchiolitis obliterans with organizing pneumonia may be diagnosed several months and up to a year after breast irradiation. The treatment consists of prolonged steroids or immunosuppressants, which do not prevent chronicity in 15% of patients and death in up to 5% of cases, the remaining 80% of patients healing without sequelae. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Radioprotective effect of silymarin against radiation induced hepatotoxicity.

    PubMed

    Ramadan, Laila A; Roushdy, Hamed M; Abu Senna, Gamal M; Amin, Nour E; El-Deshw, Ola A

    2002-06-01

    The radioprotective effect of silymarin using different modes of treatment against radiation (3 or 6 Gy) induced hepatotoxicity 1, 3 and 7 days post-irradiation was studied. Whole-body gamma-irradiation revealed an increase in serum alkaline phosphatase (AP) activity as well as liver glutathione reductase (GR) and glutathione peroxidase (GSH-PX) activities on the first post-exposure day with respect to the control value. However, 3 days after radiation exposure, these parameters showed a significant decrease below the control level which persisted till the end of the experimental time except for serum AP activity that showed another increase on the seventh post-exposure day at 3 Gy dose of radiation. A gradual increase in serum alanine and aspartate aminotransferase (ALT&AST) as well as gamma glutamyl transpeptidase activities were observed due to irradiation throughout the experimental time. Administration of silymarin as single (70 mg kg (-1)), fractionated (490 mg kg (-1)) oral doses or as intravenous (i.v.) injection (50 mg kg (-1)), caused significant protection. Intravenous treatment showed the most pronounced protection. The protective effect of silymarin was attributed to its antioxidant and free radicals scavenging properties.

  11. A new view of radiation-induced cancer.

    PubMed

    Shuryak, I; Sachs, R K; Brenner, D J

    2011-02-01

    Biologically motivated mathematical models are important for understanding the mechanisms of radiation-induced carcinogenesis. Existing models fall into two categories: (1) short-term formalisms, which focus on the processes taking place during and shortly after irradiation (effects of dose, radiation quality, dose rate and fractionation), and (2) long-term formalisms, which track background cancer risks throughout the entire lifetime (effects of age at exposure and time since exposure) but make relatively simplistic assumptions about radiation effects. Grafting long-term mechanisms on to short-term models is badly needed for modelling radiogenic cancer. A combined formalism was developed and applied to cancer risk data in atomic bomb survivors and radiotherapy patients and to background cancer incidence. The data for nine cancer types were described adequately with a set of biologically meaningful parameters for each cancer. These results suggest that the combined short-long-term approach is a potentially promising method for predicting radiogenic cancer risks and interpreting the underlying biological mechanisms.

  12. Simulation of ion induced radiation damage in cells

    NASA Astrophysics Data System (ADS)

    Friedland, W.; Jacob, P.; Paretzke, H. G.; Ottolenghi, A.; Ballarini, F.; Dingfelder, M.

    The biophysical simulation code PARTRAC has been used in several studies of DNA damage induced by various radiation qualities including photons electrons protons alphas and ions heavier than alpha particles Ion-electron interaction cross sections are taken from isotachic protons scaled by Z eff 2 with the effective charge calculated according to the Barkas formula Recently ion type dependent angular distributions were introduced for intermediate secondary electron energies taking into account the different kinematic scaling of the constituents of the electron spectra Calculated stopping powers radial dose distributions and secondary electron spectra were found in good agreement with available experimental and theoretical results Radiation damage to DNA is determined in PARTRAC by superposition of the calculated track structures with a DNA target model taking into account direct effects from coincidences of ionisations and atoms within the DNA helix as well as indirect effects due to interactions of OH radicals produced in water surrounding the DNA For a simulation of radiation effects in human cells this target model comprises several genomic structure levels from the DNA double-helix up to chromosomes Calculated DNA damage due to irradiation of human fibroblast cells by ions of boron nitrogen and neon was compared to corresponding experimental data The calculated total yield of DSB per dose showed saturation behaviour with an RBE of about 2 whereas experimental data had a decreasing tendency with increasing LET to RBE values

  13. Proton-induced radiation damage in germanium detectors

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Koerfer, M.; Waenke, H.; Schroeder, A. N. F.; Filges, D.; Dragovitsch, P.; Englert, P. A. J.; Starr, R.; Trombka, J. I.

    1991-01-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process, several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10 to the 8th protons/sq cm (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific and engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation, all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage, the detectors were stepwise-annealed at temperatures below 110 C, while kept in their specially designed cryostats. This study shows that n-type HPGe detectors can be used in charged-particle environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  14. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  15. Radiation induced thyroid neoplasms 1920 to 1987: A vanishing problem

    SciTech Connect

    Mehta, M.P.; Goetowski, P.G.; Kinsella, T.J.

    1989-06-01

    Radiation for benign diseases has been implicated as an etiologic factor in thyroid cancer. From 1930-60, over 2 million children may have been exposed to therapeutic radiation and it is estimated that up to 7% may develop thyroid cancer after a 5-40 year latency. Thyroid stimulating hormone, secondary to radioinduced hypothyroidism, has been implicated as causative in animals. Such data has led to expensive screening programs in high risk patients. Because of a decline in irradiation for benign diseases in children over the last 2 decades, we questioned whether the incidence of radiation induced thyroid neoplasms (RITN) was also decreasing. Twenty-six of 227 patients (11%) with thyroid malignancies seen at our institution from 1974-87 had a history of previous head and neck irradiation. These included 13 papillary, 3 follicular, and 7 mixed carcinomas as well as 2 lymphomas and 1 synovial cell sarcoma. None of these 26 patients had abnormal thyroid function tests at presentation. Mean latency from irradiation to the diagnosis of thyroid cancer was 25.4 years (6-55 year range). Compared to the reported increasing incidence of RITN from 1940-70, there appears to be a significant decrease since 1970. Based on our analysis, the use of expensive screening programs in high risk populations may no longer be warranted. Additionally, the routine use of thyroid replacement in previously irradiated chemically hypothyroid patients is not recommended.30 references.

  16. Radiation-induced bystander effect: early process and rapid assessment.

    PubMed

    Wang, Hongzhi; Yu, K N; Hou, Jue; Liu, Qian; Han, Wei

    2015-01-01

    Radiation-induced bystander effect (RIBE) is a biological process that has received attention over the past two decades. RIBE refers to a plethora of biological effects in non-irradiated cells, including induction of genetic damages, gene expression, cell transformation, proliferation and cell death, which are initiated by receiving bystander signals released from irradiated cells. RIBE brings potential hazards to normal tissues in radiotherapy, and imparts a higher risk from low-dose radiation than we previously thought. Detection with proteins related to DNA damage and repair, cell cycle control, proliferation, etc. have enabled rapid assessment of RIBE in a number of research systems such as cultured cells, three-dimensional tissue models and animal models. Accumulated experimental data have suggested that RIBE may be initiated rapidly within a time frame as short as several minutes after radiation. These have led to the requirement of techniques capable of rapidly assessing RIBE itself as well as assessing the early processes involved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    PubMed Central

    Sokolov, Mykyta V.; Neumann, Ronald D.

    2010-01-01

    Background The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. Methodology/Principal Findings Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). Conclusions/Significance These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative

  18. Follistatin is induced by ionizing radiation and potentially predictive of radiosensitivity in radiation-induced fibrosis patient derived fibroblasts.

    PubMed

    Forrester, Helen B; Ivashkevich, Alesia; McKay, Michael J; Leong, Trevor; de Kretser, David M; Sprung, Carl N

    2013-01-01

    Follistatin is a potent regulator of the inflammatory response and binds to and inhibits activin A action. Activin A is a member of the TGFβ protein superfamily which has regulatory roles in the inflammatory response and in the fibrotic process. Fibrosis can occur following cell injury and cell death induced by agents such as ionizing radiation (IR). IR is used to treat cancer and marked fibrotic response is a normal tissue (non-tumour) consequence in a fraction of patients under the current dose regimes. The discovery and development of a therapeutic to abate fibrosis in these radiosensitive patients would be a major advance for cancer radiotherapy. Likewise, prediction of which patients are susceptible to fibrosis would enable individualization of treatment and provide an opportunity for pre-emptive fibrosis control and better tumour treatment outcomes. The levels of activin A and follistatin were measured in fibroblasts derived from patients who developed severe radiation-induced fibrosis following radiotherapy and compared to fibroblasts from patients who did not. Both follistatin and activin A gene expression levels were increased following IR and the follistatin gene expression level was lower in the fibroblasts from fibrosis patients compared to controls at both basal levels and after IR. The major follistatin transcript variants were found to have a similar response to IR and both were reduced in fibrosis patients. Levels of follistatin and activin A secreted in the fibroblast culture medium also increased in response to IR and the relative follistatin protein levels were significantly lower in the samples derived from fibrosis patients. The decrease in the follistatin levels can lead to an increased bioactivity of activin A and hence may provide a useful measurement to identify patients at risk of a severe fibrotic response to IR. Additionally, follistatin, by its ability to neutralise the actions of activin A may be of value as an anti-fibrotic for

  19. Follistatin Is Induced by Ionizing Radiation and Potentially Predictive of Radiosensitivity in Radiation-Induced Fibrosis Patient Derived Fibroblasts

    PubMed Central

    McKay, Michael J.; Leong, Trevor; de Kretser, David M.; Sprung, Carl N.

    2013-01-01

    Follistatin is a potent regulator of the inflammatory response and binds to and inhibits activin A action. Activin A is a member of the TGFβ protein superfamily which has regulatory roles in the inflammatory response and in the fibrotic process. Fibrosis can occur following cell injury and cell death induced by agents such as ionizing radiation (IR). IR is used to treat cancer and marked fibrotic response is a normal tissue (non-tumour) consequence in a fraction of patients under the current dose regimes. The discovery and development of a therapeutic to abate fibrosis in these radiosensitive patients would be a major advance for cancer radiotherapy. Likewise, prediction of which patients are susceptible to fibrosis would enable individualization of treatment and provide an opportunity for pre-emptive fibrosis control and better tumour treatment outcomes. The levels of activin A and follistatin were measured in fibroblasts derived from patients who developed severe radiation-induced fibrosis following radiotherapy and compared to fibroblasts from patients who did not. Both follistatin and activin A gene expression levels were increased following IR and the follistatin gene expression level was lower in the fibroblasts from fibrosis patients compared to controls at both basal levels and after IR. The major follistatin transcript variants were found to have a similar response to IR and both were reduced in fibrosis patients. Levels of follistatin and activin A secreted in the fibroblast culture medium also increased in response to IR and the relative follistatin protein levels were significantly lower in the samples derived from fibrosis patients. The decrease in the follistatin levels can lead to an increased bioactivity of activin A and hence may provide a useful measurement to identify patients at risk of a severe fibrotic response to IR. Additionally, follistatin, by its ability to neutralise the actions of activin A may be of value as an anti-fibrotic for

  20. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In

  1. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  2. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  3. Estimating radiation risk induced by CT screening for Korean population

    NASA Astrophysics Data System (ADS)

    Yang, Won Seok; Yang, Hye Jeong; Min, Byung In

    2017-02-01

    The purposes of this study are to estimate the radiation risks induced by chest/abdomen computed tomography (CT) screening for healthcare and to determine the cancer risk level of the Korean population compared to other populations. We used an ImPACT CT Patient Dosimetry Calculator to compute the organ effective dose induced by CT screening (chest, low-dose chest, abdomen/pelvis, and chest/abdomen/pelvis CT). A risk model was applied using principles based on the BEIR VII Report in order to estimate the lifetime attributable risk (LAR) using the Korean Life Table 2010. In addition, several countries including Hong Kong, the United States (U.S.), and the United Kingdom, were selected for comparison. Herein, each population exposed radiation dose of 100 mSv was classified according to country, gender and age. For each CT screening the total organ effective dose calculated by ImPACT was 6.2, 1.5, 5.2 and 11.4 mSv, respectively. In the case of Korean female LAR, it was similar to Hong Kong female but lower than those of U.S. and U.K. females, except for those in their twenties. The LAR of Korean males was the highest for all types of CT screening. However, the difference of the risk level was negligible because of the quite low value.

  4. Sestrin2 protects the myocardium against radiation-induced damage.

    PubMed

    Zeng, Yue-Can; Chi, Feng; Xing, Rui; Zeng, Jing; Gao, Song; Chen, Jia-Jia; Wang, Hong-Mei; Duan, Qiong-Yu; Sun, Yu-Nan; Niu, Nan; Tang, Mei-Yue; Wu, Rong

    2016-05-01

    The purpose of this study was to investigate the role of Sestrin2 in response to radiation-induced injury to the heart and on the cardiomyopathy development in the mouse. Mice with genetic deletion of the Sestrin2 (Sestrin2 knockout mice [Sestrin2 KO]) and treatment with irradiation (22 or 15 Gy) were used as independent approaches to determine the role of Sestrin2. Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis. Immunohistochemistry and Western blot were used to detect the capillary density. After 22 or 15 Gy irradiation, the LV ejection fraction (EF) was impaired in wt mice at 1 week and 4 months after irradiation when compared with sham irradiation. Compared to wt mice, Sestrin2 KO mice had significant reduction in reduced LVEF at 1 week and 4 months after irradiation. A significant increase in LV end-diastolic pressure and myocardial fibrosis and a significant decrease in capillary density were observed in irradiation-wt mice, as well as in irradiation-Sestrin2 KO mice. Sestrin2 involved in the regulation of cardiomyopathy (such as myocardial fibrosis) after irradiation. Overexpression of Sestrin2 might be useful in limiting radiation-induced myocardial injury.

  5. Radiation-induced genomic instability in Caenorhabditis elegans.

    PubMed

    Huumonen, Katriina; Immonen, Hanna-Kaisa; Baverstock, Keith; Hiltunen, Mikko; Korkalainen, Merja; Lahtinen, Tapani; Parviainen, Juha; Viluksela, Matti; Wong, Garry; Naarala, Jonne; Juutilainen, Jukka

    2012-10-09

    Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.

  6. The thermal stability of radiation-induced defects in illite

    NASA Astrophysics Data System (ADS)

    Riegler, T.; Allard, T.; Beaufort, D.; Cantin, J.-L.; von Bardeleben, H. J.

    2016-01-01

    High-purity illite specimens from the Mesoproterozoic unconformity-related uranium deposits of Kiggavik, Thelon basin, Nunavut (Canada), and Shea Creek (Athabasca basin, Saskatchewan, Canada) have been studied using electron paramagnetic resonance spectroscopy to determine the thermal stability of the main radiation-induced defects and question the potential of using illite as a natural dosimeter. The observed spectra are complex as they can show in the same region several contributions: (1) an unstable native defect, (2) the main stable defect named Ai by reference to a previous study (Morichon et al. in Phys Chem Minerals 35:339-346, 2008), (3) a signal at g = 2.063 assigned to a new defect, not yet fully characterized, named Ai2 center and (4) impurities such as vanadyl complex or divalent manganese. Isochronal heating shows that the new signal corresponds to a stable species. Isothermal heating experiments at 400 and 450 °C provide values of half-life extrapolated at room temperature and activation energy of 1.9-29,109 years and 1.3-1.4 eV, respectively, corresponding to the Ai center. These parameters allow the use of stable radiation-induced defects as a record of radioactivity down to the Paleoproterozoic period.

  7. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  8. Radiation-induced sarcomas of bone: factors that affect outcome.

    PubMed

    Kalra, S; Grimer, R J; Spooner, D; Carter, S R; Tillman, R M; Abudu, A

    2007-06-01

    We identified 42 patients who presented to our unit over a 27-year period with a secondary radiation-induced sarcoma of bone. We reviewed patient, tumour and treatment factors to identify those that affected outcome. The mean age of the patients at presentation was 45.6 years (10 to 84) and the mean latent interval between radiotherapy and diagnosis of the sarcoma was 17 years (4 to 50). The median dose of radiotherapy given was estimated at 50 Gy (mean 49; 20 to 66). There was no correlation between radiation dose and the time to development of a sarcoma. The pelvis was the most commonly affected site (14 patients (33%)). Breast cancer was the most common primary tumour (eight patients; 19%). Metastases were present at diagnosis of the sarcoma in nine patients (21.4%). Osteosarcoma was the most common diagnosis and occurred in 30 cases (71.4%). Treatment was by surgery and chemotherapy when indicated: 30 patients (71.4%) were treated with the intention to cure. The survival rate was 41% at five years for those treated with the intention to cure but in those treated palliatively the mean survival was only 8.8 months (2 to 22), and all had died by two years. The only factor found to be significant for survival was the ability to completely resect the tumour. Limb sarcomas had a better prognosis (66% survival at five years) than central ones (12% survival at five years) (p = 0.009). Radiation-induced sarcoma is a rare complication of radiotherapy. Both surgical and oncological treatment is likely to be compromised by the treatment received previously by the patient.

  9. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  10. Motion-induced radiation from electrons moving in Maxwell's fish-eye

    PubMed Central

    Liu, Yangjie; Ang, L. K.

    2013-01-01

    In Čerenkov radiation and transition radiation, evanescent wave from motion of charged particles transfers into radiation coherently. However, such dissipative motion-induced radiations require particles to move faster than light in medium or to encounter velocity transition to pump energy. Inspired by a method to detect cloak by observing radiation of a fast-moving electron bunch going through it by Zhang et al., we study the generation of electron-induced radiation from electrons' interaction with Maxwell's fish-eye sphere. Our calculation shows that the radiation is due to a combination of Čerenkov radiation and transition radiation, which may pave the way to investigate new schemes of transferring evanescent wave to radiation. PMID:24166002

  11. Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro

    PubMed Central

    Dyshlovoy, Sergey A.; Tabakmakher, Kseniya M.; Hauschild, Jessica; Shchekaleva, Regina K.; Otte, Katharina; Guzii, Alla G.; Makarieva, Tatyana N.; Kudryashova, Ekaterina K.; Fedorov, Sergey N.; Shubina, Larisa K.; Bokemeyer, Carsten; Honecker, Friedemann; Stonik, Valentin A.; von Amsberg, Gunhild

    2016-01-01

    Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1–6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1–4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P+ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading. PMID:27428983

  12. Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro.

    PubMed

    Dyshlovoy, Sergey A; Tabakmakher, Kseniya M; Hauschild, Jessica; Shchekaleva, Regina K; Otte, Katharina; Guzii, Alla G; Makarieva, Tatyana N; Kudryashova, Ekaterina K; Fedorov, Sergey N; Shubina, Larisa K; Bokemeyer, Carsten; Honecker, Friedemann; Stonik, Valentin A; von Amsberg, Gunhild

    2016-07-15

    Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1-6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1-4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P⁺ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading.

  13. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  14. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A. )

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine.

  15. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  16. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  17. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    DTIC Science & Technology

    2005-07-01

    repair of radiation-induced damage. Furthermore, cells possessing a mutated copy of this gene are more radiosensitive than cells from individuals with...AD Award Number: DAMD17-02-1-0503 TITLE: ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast...2005 Annual 1 Jul 2004 - 30 Jun 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER ATM Mutations and the Development of Severe Radiation-Induced Morbidity

  18. Radiation-induced Vulvar Angiokeratoma Along with Other Late Radiation Toxicities after Carcinoma Cervix: A Rare Case Report

    PubMed Central

    Bhandari, Virendra; Naik, Ayush; Gupta, K L; Kausar, Mehlam

    2016-01-01

    Angiokeratoma including vulvar angiokeratoma is a very rare complication of radiation. Exact incidence is still unknown, we report a case that developed radiation-induced angiokeratoma of skin in the vulvar region along with other late radiation sequelae in the form of bone fracture, new bone formation, bone marrow widening, muscle hypertrophy, and subcutaneous fibrosis, 18 years after radiotherapy to the pelvic region for the treatment of carcinoma cervix. All these late radiation sequel are rare to be seen in a single patient, and none of the case reports could be found in the world literature. PMID:27057045

  19. Ionizing radiation induces tumor cell lysyl oxidase secretion

    PubMed Central

    2014-01-01

    Background Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. Methods LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. Results LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. Conclusions These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in

  20. Radiation-induced caries as the late effect of radiation therapy in the head and neck region.

    PubMed

    Dobroś, Katarzyna; Hajto-Bryk, Justyna; Wróblewska, Małgorzata; Zarzecka, Joanna

    2016-01-01

    Overall improvement in the nationwide system of medical services has consequently boosted the number of successfully treated patients who suffer from head and neck cancer. It is essential to effectively prevent development of radiation-induced caries as the late effect of radiation therapy. Incidence and severity of radiationinduced changes within the teeth individually vary depending on the patient's age, actual radiation dose, size of radiation exposure field, patient's general condition and additional risk factors. Inadequately managed treatment of caries may lead to loss of teeth, as well as prove instrumental in tangibly diminishing individual quality of life in patients. Furthermore, the need to have the teeth deemed unyielding or unsuitable for the application of conservative methods of treatment duly extracted is fraught for a patient with an extra hazard of developing osteoradionecrosis (ORN), while also increasing all attendant therapeutic expenditures. The present paper aims to offer some practical insights into currently available methods of preventing likely development of radiation-induced caries.

  1. Effects of contrast medium on radiation-induced chromosome aberrations

    SciTech Connect

    Matsubara, S.; Suzuki, S.; Suzuki, H.; Kuwabara, Y.; Okano, T.

    1982-07-01

    The effects of contrast material (meglumine iothalamate) on radiation-induced chromosome aberrations were investigated in studies on the lymphocytes of patients who had undergone diagnostic radiography and in in vitro experiments with diagnostic x rays and /sup 60/Co gamma rays. Chromosome and chromatid aberrations were found to increase significantly with increasing concentrations of contrast material that were added at irradiation. However, the aberrations were not associated with elevation of the ratio of dicentric and ring chromosomes to the number of cells with unstable chromosome aberrations at the first mitosis. Lymphocytes irradiated in the absence of contrast material did not show an increase in chromosome-type aberrations when the agent was given in increasing concentrations during subsequent incubation, but there were greater numbers of chromatid gaps and breaks. When lymphocytes were exposed to 400 R (103.2 mC/kg) of /sup 60/Co gamma rays, the presence of contrast agent did not increase the yield of dicentric and ring chromosomes, but induced a marked delay in cell proliferation, especially in lymphocytes with more heavily damaged chromosomes. In additional examination, the contrast agent itself induced sister chromatid exchanges in lymphocytes.

  2. Chemoprevention of ultraviolet radiation-induced skin cancer.

    PubMed Central

    Ley, R D; Reeve, V E

    1997-01-01

    The use of chemical and physical sunscreening agents has increased dramatically during the last two to three decades as an effective means of preventing sunbum. The use of high sunprotection factor sunscreens has also been widely promoted for the prevention of skin cancer, including melanoma. Whereas sunscreens are undoubtedly effective in preventing sunbum, their efficacy in preventing skin cancer, especially melanoma, is currently under considerable debate. Sunscreens have been shown to prevent the induction of DNA damage that presumably results from the direct effects of ultraviolet radiation (UVR) on DNA. DNA damage has been identified as an initiator of skin cancer formation. However, both laboratory and epidemiological studies indicate that sunscreens may not block the initiation or promotion of melanoma formation. These studies suggest that the action spectrum for erythema induction is different than the action spectrum for the induction of melanoma. Indeed, recent reports on the wavelength dependency for the induction of melanoma in a fish model indicate that the efficacy of ultraviolet A wavelengths (320-400 nm) to induce melanoma is orders of magnitude higher than would be predicted from the induction of erythema in man or nonmelanoma skin tumors in mice. Other strategies for the chemoprevention of skin cancer have also been reported. Low levels and degree of unsaturation of dietary fats protect against UVR-induced skin cancer in mice humens. Compounds with antioxidant activity, including green tea extracts (polyphenols), have been reported to inhibit UVR-induced skin carcinogenesis. PMID:9255591

  3. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    PubMed Central

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  4. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  5. Novel concepts in radiation-induced cardiovascular disease

    PubMed Central

    Cuomo, Jason R; Sharma, Gyanendra K; Conger, Preston D; Weintraub, Neal L

    2016-01-01

    Radiation-induced cardiovascular disease (RICVD) is the most common nonmalignant cause of morbidity and mortality among cancer survivors who have undergone mediastinal radiation therapy (RT). Cardiovascular complications include effusive or constrictive pericarditis, cardiomyopathy, valvular heart disease, and coronary/vascular disease. These are pathophysiologically distinct disease entities whose prevalence varies depending on the timing and extent of radiation exposure to the heart and great vessels. Although refinements in RT dosimetry and shielding will inevitably limit future cases of RICVD, the increasing number of long-term cancer survivors, including those treated with older higher-dose RT regimens, will ensure a steady flow of afflicted patients for the foreseeable future. Thus, there is a pressing need for enhanced understanding of the disease mechanisms, and improved detection methods and treatment strategies. Newly characterized mechanisms responsible for the establishment of chronic fibrosis, such as oxidative stress, inflammation and epigenetic modifications, are discussed and linked to potential treatments currently under study. Novel imaging modalities may serve as powerful screening tools in RICVD, and recent research and expert opinion advocating their use is introduced. Data arguing for the aggressive use of percutaneous interventions, such as transcutaneous valve replacement and drug-eluting stents, are examined and considered in the context of prior therapeutic approaches. RICVD and its treatment options are the subject of a rich and dynamic body of research, and patients who are at risk or suffering from this disease will benefit from the care of physicians with specialty expertise in the emerging field of cardio-oncology. PMID:27721934

  6. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    SciTech Connect

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won; Oh, Sang Ho; Lee, Yun-Sil; Lee, Eun-Jung; Cho, Jaeho

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  7. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  8. Radiation-induced sarcomas of the chest wall

    SciTech Connect

    Souba, W.W.; McKenna, R.J. Jr.; Meis, J.; Benjamin, R.; Raymond, A.K.; Mountain, C.F.

    1986-02-01

    Sixteen patients are presented who had sarcomas of the chest wall at a site where a prior malignancy had been irradiated. The first malignancies included breast cancer (ten cases), Hodgkin's disease (four cases), and others (two cases). Radiation doses varied from 4200 to 5500 R (mean, 4900 R). The latency period ranged from 5 to 28 years (mean, 13 years). The histologic types of the radiation-induced sarcomas were as follows: malignant fibrous histiocytoma, nine cases; osteosarcoma, six cases; and malignant mesenchymoma, one case. The only long-term survivor is alive and well 12 years after resection of a clavicular chondroblastic osteosarcoma. Three cases were recently diagnosed. Despite aggressive multimodality treatment, the remaining 13 patients have all died from their sarcomas (mean survival, 13.5 months). All patients have apparently been cured of their first malignancies. Chemotherapy was ineffective. No treatment, including forequarter amputation, appeared to palliate the patients with supraclavicular soft tissue sarcomas. Major chest wall resection offered good palliation for seven of eight patients with sarcomas arising in the sternum or lateral chest wall. Close follow-up is needed to detect signs of these sarcomas in the ever-increasing number of patients receiving therapeutic irradiation.

  9. Antioxidant Responses Induced by UVB Radiation in Deschampsia antarctica Desv.

    PubMed

    Köhler, Hans; Contreras, Rodrigo A; Pizarro, Marisol; Cortés-Antíquera, Rodrigo; Zúñiga, Gustavo E

    2017-01-01

    Deschampsia antarctica Desv. is one of two vascular plants that live in the Maritime Antarctic Territory and is exposed to high levels of ultraviolet-B (UVB) radiation. In this work, antioxidant physiology of D. antarctica was studied in response to UVB induced oxidative changes. Samples were collected from Antarctica and maintained in vitro culture during 2 years. Plants were sub-cultured in a hydroponic system and exposed to 21.4 kJ m(-2) day(-1), emulating summer Antarctic conditions. Results showed rapid and significant increases in reactive oxygen species (ROS) at 3 h, which rapidly decreased. No dramatic changes were observed in photosynthetic efficiency, chlorophyll content, and level of thiobarbituric acid reactive species (MDA). The enzymatic (superoxide dismutase, SOD and total peroxidases, POD) and non-enzymatic antioxidant activity (total phenolic) increased significantly in response to UVB treatment. These findings suggest that tolerance of D. antarctica to UVB radiation could be attributed to its ability to activate both enzymatic and non-enzymatic antioxidant systems.

  10. Chromatin Structure and Radiation-Induced Intrachromosome Exchange

    NASA Technical Reports Server (NTRS)

    Mangala; Zhang, Ye; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    We have recently investigated the location of breaks involved in intrachromosomal type exchange events, using the multicolor banding in situ hybridization (mBAND) technique for human chromosome 3. In human epithelial cells exposed to both low- and high-LET radiations in vitro, intrachromosome exchanges were found to occur preferentially between a break in the 3p21 and one in the 3q11. Exchanges were also observed between a break in 3p21 and one in 3q26, but few exchanges were observed between breaks in 3q11 and 3q26, even though the two regions were on the same arm of the chromosome. To explore the relationships between intrachromosome exchanges and chromatin structure, we used probes that hybridize the three regions of 3p21, 3q11 and 3q26, and measured the distance between two of the three regions in interphase cells. We further analyzed fragile sites on the chromosome that have been identified in various types of cancers. Our results demonstrated that the distribution of breaks involved in radiation-induced intrachromosome aberrations depends upon both the location of fragile sites and the folding of chromatins

  11. Radiation induced effects on mechanical properties of nanoporous gold foams

    NASA Astrophysics Data System (ADS)

    Caro, M.; Mook, W. M.; Fu, E. G.; Wang, Y. Q.; Sheehan, C.; Martinez, E.; Baldwin, J. K.; Caro, A.

    2014-06-01

    It has recently been shown that due to a high surface-to-volume ratio, nanoporous materials display radiation tolerance. The abundance of surfaces, which are perfect sinks for defects, and the relation between ligament size, defect diffusion, and time combine to define a window of radiation resistance [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. Outside this window, the dominant defect created by irradiation in Au nanofoams are stacking fault tetrahedra (SFT). Molecular dynamics computer simulations of nanopillars, taken as the elemental constituent of foams, predict that SFTs act as dislocation sources inducing softening, in contrast to the usual behavior in bulk materials, where defects are obstacles to dislocation motion, producing hardening. In this work we test that prediction and answer the question whether irradiation actually hardens or softens a nanofam. Ne ion irradiations of gold nanofoams were performed at room temperature for a total dose up to 4 dpa, and their mechanical behavior was measured by nanoindentation. We find that hardness increases after irradiation, a result that we analyze in terms of the role of SFTs on the deformation mode of foams.

  12. Interference detection in implantable defibrillators induced by therapeutic radiation therapy

    PubMed Central

    Uiterwaal, G.J.; Springorum, B.G.F.; Scheepers, E.; de Ruiter, G.S.; Hurkmans, C.W.

    2006-01-01

    Background Electromagnetic fields and ionising radiation during radiotherapy can influence the functioning of ICDs. Guidelines for radiotherapy treatment were published in 1994, but only based on experience with pacemakers. Data on the influence of radiotherapy on ICDs is limited. Objectives We determined the risk to ICDs of interference detection induced by radiotherapy. Methods In our study we irradiated 11 ICDs. The irradiation was performed with a 6 megavolt photon beam. In each individual device test, a total of 20 Gray was delivered in a fractionated fashion. During each irradiation the output stimulation rate was monitored and electrogram storage was activated. In case of interference the test was repeated with the ICD outside and the lead(s) inside and outside the irradiation field. Results With the ICD inside the irradiation field, interference detection was observed in all ICDs. This caused pacing inhibition or rapid ventricular pacing. Ventricular tachycardia (VT) or ventricular fibrillation (VF) detection occurred, which would have caused tachycardia-terminating therapy. If the ICD was placed outside the irradiation field, no interference was observed. Conclusion Interference by ionising radiation on the ICDs is demonstrated both on bradycardia and tachycardia therapy. This can have consequences for patients. Recommendations for radiotherapy are presented in this article. ImagesFigure 1Figure 5 PMID:25696559

  13. Radiation-induced radioresistance of mammals and risk assessment

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Yonezawa, M.

    It is shown experimentally that a preliminary low dose exposure can induce radioresistance in mice in two (early and late) periods after preirradiation. The manifestation of such effects is reduced mortality of pre-exposed specimens after challenge acute irradiation, the reason of the animal death being the hematopoietic subsyndrome of the acute radiation syndrome. Therefore, proceeding from the radiobiological concept of the critical system, the theoretical investigation of the influence of preirradiation on mammalian radiosensitivity is conducted by making use of mathematical models of the vital body system, hematopoiesis. Modeling results make it possible to elucidate the mechanisms of the radioprotection effect of low level priming irradiation on mammals. Specifically, the state of acquired radioresistance in mice is caused by reduced radiosensitivity of lymphopoietic and thrombocytopoietic systems in the early period and by reduced radiosensitivity of granulocytopoietic system in the late period after preirradiation. It is important to emphasize that the evaluations of the duration of the early and late periods of postirradiation radioresistance in mice, carried out on the basis of the modeling and experimental investigations, practically coincide. All this demonstrates the effectiveness of joint modeling and experimental methods in studies and predictions of modification effects of preirradiation on mammalian radiosensitivity. The results obtained show the importance of accounting such effects in radiation risk assessments for cosmonauts and astronauts on long-term missions.

  14. Radiation-induced tumors in transplanted ovaries. [Mice

    SciTech Connect

    Covelli, V.; Di Majo, V.; Bassani, B.; Metalli, P.; Silini, G.

    1982-04-01

    A comparison was made of tumor induction in the ovaries of whole-body-irradiation mice (250-kV X rays, doses of 0.25-4.00 Gy) or in ovaries irradiated in vivo and then transplanted intramuscularly into castrated syngeneic hosts. The form of the dose-induction relationships was similar in the two cases, showing a steeply rising branch at doses up to 0.75 Gy followed by a maximum and an elevated plateau up to 4.00 Gy. A higher incidence of tumors in transplanted organs was apparent for doses up to the maximum, which was attributed to castration-induced hormonal imbalance. Specific death rate analysis of mice dying with ovarian tumors showed that in this system radiation acts essentially by decreasing tumor latency. Ovarian tumors were classified in various histological types and their development in time was followed by serial sacrifice. Separate analysis of death rate of animals carrying different tumor classes allowed further resolution of the various components of the tumor induction phenomenon. It was thus possible to show that the overall death rate analysis masks a true effect of induction of granulosa cell tumors in whole-body-irradiation animals. The transplantation technique offers little advantage for the study of radiation induction of ovarian tumor.

  15. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  16. Radiation-induced tumor neoantigens: imaging and therapeutic implications

    PubMed Central

    Corso, Christopher D; Ali, Arif N; Diaz, Roberto

    2011-01-01

    Exposure of tumor cells to ionizing radiation (IR) is widely known to induce a number of cellular changes. One way that IR can affect tumor cells is through the development of neoantigens which are new molecules that tumor cells express at the cell membrane following some insult or change to the cell. There have been numerous reports in the literature of changes in both tumor and tumor vasculature cell surface molecule expression following treatment with IR. The usefulness of neoantigens for imaging and therapeutic applications lies in the fact that they are differentially expressed on the surface of irradiated tumor cells to a greater extent than on normal tissues. This differential expression provides a mechanism by which tumor cells can be “marked” by radiation for further targeting. Drug delivery vehicles or imaging agents conjugated to ligands that recognize and interact with the neoantigens can help to improve tumor-specific targeting and reduce systemic toxicity with cancer drugs. This article provides a review of the molecules that have been reported to be expressed on the surface of tumor cells in response to IR either in vivo or in vitro. Additionally, we provide a discussion of some of the methods used in the identification of these antigens and applications for their use in drug delivery and imaging. PMID:21969260

  17. Antioxidant Responses Induced by UVB Radiation in Deschampsia antarctica Desv.

    PubMed Central

    Köhler, Hans; Contreras, Rodrigo A.; Pizarro, Marisol; Cortés-Antíquera, Rodrigo; Zúñiga, Gustavo E.

    2017-01-01

    Deschampsia antarctica Desv. is one of two vascular plants that live in the Maritime Antarctic Territory and is exposed to high levels of ultraviolet-B (UVB) radiation. In this work, antioxidant physiology of D. antarctica was studied in response to UVB induced oxidative changes. Samples were collected from Antarctica and maintained in vitro culture during 2 years. Plants were sub-cultured in a hydroponic system and exposed to 21.4 kJ m-2 day-1, emulating summer Antarctic conditions. Results showed rapid and significant increases in reactive oxygen species (ROS) at 3 h, which rapidly decreased. No dramatic changes were observed in photosynthetic efficiency, chlorophyll content, and level of thiobarbituric acid reactive species (MDA). The enzymatic (superoxide dismutase, SOD and total peroxidases, POD) and non-enzymatic antioxidant activity (total phenolic) increased significantly in response to UVB treatment. These findings suggest that tolerance of D. antarctica to UVB radiation could be attributed to its ability to activate both enzymatic and non-enzymatic antioxidant systems. PMID:28620407

  18. Radiation-induced sarcomas of the head and neck

    PubMed Central

    Thiagarajan, Anuradha; Iyer, N Gopalakrishna

    2014-01-01

    With improved outcomes associated with radiotherapy, radiation-induced sarcomas (RIS) are increasingly seen in long-term survivors of head and neck cancers, with an estimated risk of up to 0.3%. They exhibit no subsite predilection within the head and neck and can arise in any irradiated tissue of mesenchymal origin. Common histologic subtypes of RIS parallel their de novo counterparts and include osteosarcoma, chondrosarcoma, malignant fibrous histiocytoma/sarcoma nitricoxide synthase, and fibrosarcoma. While imaging features of RIS are not pathognomonic, large size, extensive local invasion with bony destruction, marked enhancement within a prior radiotherapy field, and an appropriate latency period are suggestive of a diagnosis of RIS. RIS development may be influenced by factors such as radiation dose, age at initial exposure, exposure to chemotherapeutic agents and genetic tendency. Precise pathogenetic mechanisms of RIS are poorly understood and both directly mutagenizing effects of radiotherapy as well as changes in microenvironments are thought to play a role. Management of RIS is challenging, entailing surgery in irradiated tissue and a limited scope for further radiotherapy and chemotherapy. RIS is associated with significantly poorer outcomes than stage-matched sarcomas that arise independent of irradiation and surgical resection with clear margins seems to offer the best chance for cure. PMID:25493233

  19. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  20. Temporal distributions of risk for radiation-induced cancers.

    PubMed

    Land, C E

    1987-01-01

    Observations of cancer risk in irradiated human populations over time after exposure suggest that there are at least two, and perhaps more, very different patterns of temporal distribution of risk for radiation-induced cancer. The first, exemplified by bone sarcoma following therapeutic injection of 224Ra and chronic granulocytic leukemia in Japanese A-bomb survivors, is an early, wave-like pulse consisting of an increase in risk followed by a gradual decline back to baseline levels. The second, exemplified by breast cancer following a brief exposure to external gamma ray or X ray, and by lung cancer and stomach cancer in A-bomb survivors, is an increase in relative risk over about 10 years to a value which appears to remain constant over time thereafter. The first pattern suggests that tumor growth kinetics may play a central role in the temporal distribution of risk following exposure, while the second seems more consistent with multi-event models for carcinogenesis, in which radiation or some other cause of early events must be followed by one or more later events whose frequencies depend mainly on attained age. There are, however, other data that appear to conform to neither of the two models just mentioned. Influences of other cancer causes, like tobacco smoking, are potentially serious confounding factors in studies of induction period.

  1. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  2. Measurements of prompt radiation induced conductivity of alumina and sapphire

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  3. Radiation pressure induced difference-sideband generation beyond linearized description

    SciTech Connect

    Xiong, Hao Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying

    2016-08-08

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  4. Radiation pressure induced difference-sideband generation beyond linearized description

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying

    2016-08-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  5. Study of radiation induced cancers in a breast screening programme.

    PubMed

    León, A; Verdú, G; Cuevas, M D; Salas, M D; Villaescusa, J I; Bueno, F

    2001-01-01

    It is demonstrated that screening mammography programmes reduce breast cancer mortality considerably. Nevertheless, radiology techniques have an intrinsic risk, the most important being the late somatic effect of the induction of cancer. This study was carried out in order to evaluate the risk to the population produced by the Comunidad Valenciana Breast Screening Programme. All the calculations are carried out for two risk models, UNSCEAR 94 and NRPB 93. On the one hand, screening series detriments are investigated as a function of doses delivered and other parameters related to population structure and X ray equipment. On the other hand the radiation induced cancer probability for a woman who starts at 45 years and remains in the programme until 65 years old is calculated as a function of mammography units' doses and average compression breast thickness. Finally, risk comparison between a screening programme starting at 45 years old and another one starting at 50 years old is made.

  6. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-06-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  7. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  8. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Wolfger, H.; Getoff, N.

    2002-12-01

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N 2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented.

  9. Radiation induces turbulence in particle-laden fluids

    SciTech Connect

    Zamansky, Rémi; Coletti, Filippo; Massot, Marc; Mani, Ali

    2014-07-15

    When a transparent fluid laden with solid particles is subject to radiative heating, non-uniformities in particle distribution result in local fluid temperature fluctuations. Under the influence of gravity, buoyancy induces vortical fluid motion which can lead to strong preferential concentration, enhancing the local heating and more non-uniformities in particle distribution. By employing direct numerical simulations this study shows that the described feedback loop can create and sustain turbulence. The velocity and length scale of the resulting turbulence is not known a priori, and is set by balance between viscous forces and buoyancy effects. When the particle response time is comparable to a viscous time scale, introduced in our analysis, the system exhibits intense fluctuations of turbulent kinetic energy and strong preferential concentration of particles.

  10. Radiation-induced cationic polymerization of. beta. -pinene

    SciTech Connect

    Adur, A.M.; Williams, F.

    1981-03-01

    The radiation-induced polymerization of ..beta..-pinene carried out in bulk at ca.25/sup 0/ has been studied for different methods of monomer drying. It has been confirmed that the polymerization is sensitive to adventitious moisture and that substantial polymer yields (ca. 10% conversion per Mrad) can only be obtained under extremely dry conditions. Complete inhibition of the reaction by added tripropylamine corroborates the view that the polymerization is cationic. About half of the polymer formed is insoluble in the monomer. The number-average molecular weights for the soluble poly(..beta..-pinene) fraction have been measured by vapor pressure osmometry and are in the narrow range from 1700 to 2400 with little or no dependence on the degree of monomer conversion to polymer, at least up to 80%. The results are compared with literature reports on the polymerization of ..beta..-pinene by catalytic initiators.

  11. Composite cutaneous atypical vascular lesion and Langerhans cell histiocytosis after radiation for breast carcinoma: can radiation induce Langerhans cell histiocytosis?

    PubMed

    Pan, Zenggang; Bland, Kirby I; Wei, Shi

    2011-12-15

    Atypical vascular lesions (AVLs) refer to small vascular proliferations in radiated skin that may progress to angiosarcoma and typically develop after breast-conserving therapy for breast carcinoma. We present a case of composite AVL and Langerhans cell histiocytosis (LCH) in a 57-year-old woman who received surgery and radiation therapy for ductal carcinoma of the breast. The patient developed AVLs 4 years after radiation. Biopsies of multiple erythematous nodules at the same site one year later revealed intermixed AVL and LCH, some of which coexisted within the same lesion. To our knowledge, LCH has not been recorded at the site of radiation in the English language literature. Our case not only highlights the importance of close cutaneous surveillance and a low threshold for biopsy in patients with breast-conserving surgery and radiation therapy, but also raises the possibility of radiation as the inducement of cutaneous LCH.

  12. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  13. Radiation-induced leukemia: Comparative studies in mouse and man

    SciTech Connect

    Haas, M.

    1991-01-01

    We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism of T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable Is it feasible to genetically suppress early and/or progressed A-TCL cells What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate During the first grant year we have worked on aspects of all three questions.

  14. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  15. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  16. Radiation-induced osteosarcomas in the pediatric population

    SciTech Connect

    Koshy, Matthew; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2005-11-15

    Purpose: Radiation-induced osteosarcomas (R-OS) have historically been high-grade, locally invasive tumors with a poor prognosis. The purpose of this study was to perform a comprehensive literature review and analysis of reported cases dealing with R-OS in the pediatric population to identify the characteristics, prognostic factors, optimal treatment modalities, and overall survival of these patients. Methods and Materials: A MEDLINE/PubMed search of articles written in the English language dealing with OSs occurring after radiotherapy (RT) in the pediatric population yielded 30 studies from 1981 to 2004. Eligibility criteria included patients <21 years of age at the diagnosis of the primary cancer, cases satisfying the modified Cahan criteria, and information on treatment outcome. Factors analyzed included the type of primary cancer treated with RT, the radiation dose and beam energy, the latency period between RT and the development of R-OS, and the treatment, follow-up, and final outcome of R-OS. Results: The series included 109 patients with a median age at the diagnosis of primary cancer of 6 years (range, 0.08-21 years). The most common tumors treated with RT were Ewing's sarcoma (23.9%), rhabdomyosarcoma (17.4%), retinoblastoma (12.8%), Hodgkin's disease (9.2%), brain tumor (8.3%), and Wilms' tumor (6.4%). The median radiation dose was 47 Gy (range, 15-145 Gy). The median latency period from RT to the development of R-OS was 100 months (range, 36-636 months). The median follow-up after diagnosis of R-OS was 18 months (1-172 months). The 3- and 5-year cause-specific survival rate was 43.6% and 42.2%, respectively, and the 3- and 5-year overall survival rate was 41.7% and 40.2%, respectively. Variables, including age at RT, primary site, type of tumor treated with RT, total radiation dose, and latency period did not have a significant effect on survival. The 5-year cause-specific and overall survival rate for patients who received treatment for R-OS involving

  17. Radiation-Induced Damage to Nucleic Acid Constituents

    NASA Astrophysics Data System (ADS)

    Kim, Heasook

    The objective of this research was to identify the primary free radical species produced by ionizing radiation in DNA. The ultimate goal would be to use these data obtained from model compounds to analyze radiation-induced damage in DNA itself. The different single crystals were studied in detail. The first was the sodium salt of guanosine-3 ^':5^' -cyclic monophosphate (cyclic GMP). The results of studies on crystals irradiated at 4.2^ circK distinguished two species. One of these species exhibited a non-exchangeable proton coupling that was characterized by ENDOR spectroscopy and shown to be sigma proton. The spin density on C8 was deduced from the ENDOR hyperfine coupling tensor and found to be 0.15. The second species also exhibited a non-exchangeable sigma proton coupling and a beta proton coupling. The spin densities on C8 and N9 were deduced from ENDOR measurements to be 0.09 and 0.36. The former is attributed to the oxidation product and the latter to the primary reduction product. These products are respectively the guanine cation and anion. The second single crystal studied was a sodium salt of 2^'-deoxyguanosine -5^'-monophosphate tetrahydrate. The ESR and ENDOR spectra obtained from this crystal after x-irradiation at 4.2^circK were complex and the paramagnetic species were tentatively identified as ionic species. The third DNA model compound studied was thymidine. Single crystal of thymidine were irradiated at 1.6^ circK and at 4.2^circ K. The lower temperature preserved a more primitive stage of the radiation damage process. ENDOR measurements distinguished three paramagnetic species. The most interesting component of the paramagnetic absorption in crystals irradiated at 1.6^circK is attributed to trapped electron. These electrons are stabilized by the electrostatic fields generated by hydroxy dipoles. The hyperfine couplings between the trapped electron and the proton of these polar groups were deduced from ENDOR measurements. The ESR and ENDOR

  18. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    SciTech Connect

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  19. A Novel Radiation-Induced p53 Mutation Is Not Implicated in Radiation Resistance via a Dominant-Negative Effect

    PubMed Central

    Sun, Yunguang; Myers, Carey Jeanne; Dicker, Adam Paul; Lu, Bo

    2014-01-01

    Understanding the mutations that confer radiation resistance is crucial to developing mechanisms to subvert this resistance. Here we describe the creation of a radiation resistant cell line and characterization of a novel p53 mutation. Treatment with 20 Gy radiation was used to induce mutations in the H460 lung cancer cell line; radiation resistance was confirmed by clonogenic assay. Limited sequencing was performed on the resistant cells created and compared to the parent cell line, leading to the identification of a novel mutation (del) at the end of the DNA binding domain of p53. Levels of p53, phospho-p53, p21, total caspase 3 and cleaved caspase 3 in radiation resistant cells and the radiation susceptible (parent) line were compared, all of which were found to be similar. These patterns held true after analysis of p53 overexpression in H460 cells; however, H1299 cells transfected with mutant p53 did not express p21, whereas those given WT p53 produced a significant amount, as expected. A luciferase assay demonstrated the inability of mutant p53 to bind its consensus elements. An MTS assay using H460 and H1299 cells transfected with WT or mutant p53 showed that the novel mutation did not improve cell survival. In summary, functional characterization of a radiation-induced p53 mutation in the H460 lung cancer cell line does not implicate it in the development of radiation resistance. PMID:24558369

  20. The effect of radiation dose on the onset and progression of radiation-induced brain necrosis in the rat model.

    PubMed

    Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura

    2017-07-01

    To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.

  1. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    NASA Astrophysics Data System (ADS)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  2. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  3. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...