Mississippi CaP HBCU Undergraduate Research Training Program
2016-09-01
activities. This activity, occurred once a week (between weeks 4-6) and included touring to Urology, Hematology- Oncology , and Radiation Oncology facilities...Director of UMMC-Cancer Institute, Professor and Chairman, Department of Radiation Oncology University of Mississippi Medical Center, "Precision...Jackson, MS,4Vanderbilt University, Nashville, TN, 5Department of Pathology and Radiation Oncology , Mississippi Medical Center, Jackson, MS Tumor hypoxia
Code of Federal Regulations, 2013 CFR
2013-10-01
... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...
Code of Federal Regulations, 2014 CFR
2014-10-01
... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...
Code of Federal Regulations, 2012 CFR
2012-10-01
... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...
Code of Federal Regulations, 2011 CFR
2011-10-01
... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...
A Personal Reflection on the History of Radiation Oncology at Memorial Sloan-Kettering Cancer Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Florence C.H., E-mail: hermanl@mskcc.org; Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY; Division of Radiation Therapy, New York Hospital-Cornell Medical Center, New York, NY
Purpose: To provide a historical and personal narrative of the development of radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC), from its founding more than 100 years ago to the present day. Methods and Materials: Historical sources include the Archives of MSKCC, publications by members of MSKCC, the author's personal records and recollections, and her communications with former colleagues, particularly Dr. Basil Hilaris, Dr. Zvi Fuks, and Dr. Beryl McCormick. Conclusions: The author, who spent 38 years at MSKCC, presents the challenges and triumphs of MSKCC's Radiation Oncology Department and details MSKCC's breakthroughs in radiation oncology. She also describes MSKCC'smore » involvement in the founding of the American Society for Therapeutic Radiology and Oncology.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-19
..., Independent Laboratory, Pathology, Radiation Oncology, and Radiation Therapy Centers are projected to have a... Mass immunization roster biller. 74 Radiation therapy centers. 87 All other suppliers (e.g., drug and...
Jairam, Vikram; Yu, James B
2016-01-01
To use the Centers for Medicare and Medicaid Services Open Payments database to characterize payments made to radiation oncologists and compare their payment profile with that of medical and surgical oncologists. The June 2015 release of the Open Payments database was accessed, containing all payments made to physicians in 2014. The general payments dataset was used for analysis. Data on payments made to medical, surgical, and radiation oncologists was obtained and compared. Within radiation oncology, data regarding payment category, sponsorship, and geographic distribution were identified. Basic statistics including mean, median, range, and sum were calculated by provider and by transaction. Among the 3 oncologic specialties, radiation oncology had the smallest proportion (58%) of compensated physicians and the lowest mean ($1620) and median ($112) payment per provider. Surgical oncology had the highest proportion (84%) of compensated physicians, whereas medical oncology had the highest mean ($6371) and median ($448) payment per physician. Within radiation oncology, nonconsulting services accounted for the most money to physicians ($1,042,556), whereas the majority of the sponsors were medical device companies (52%). Radiation oncologists in the West accepted the most money ($2,041,603) of any US Census region. Radiation oncologists in 2014 received a large number of payments from industry, although less than their medical or surgical counterparts. As the Open Payments database continues to be improved, it remains to be seen whether this information will be used by patients to inform choice of providers or by lawmakers to enact policy regulating physician-industry relationships. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golden, Daniel W., E-mail: dgolden@radonc.uchicago.edu; Spektor, Alexander; Rudra, Sonali
Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Studentsmore » completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency.« less
Prevention of Post-Radiotherapy Failure in Prostate Cancer by Vitamin D
2006-03-01
in the fall of 2003, Dr. Vijayakumar consulted extensively with the statistician for the UCD Cancer Center, Dr. Laurel Beckett , to confirm and...phone (Surgical Oncology, UIC), Dr. William Hall (Radiation Oncology), and Phil Boerner (Writer, Radiation Oncology). As a result of this meeting...RG, Mehta RR, Hall WH, Boerner PS, Beckett LA, Vijayakumar S. Designing a randomized phase I/II prostate cancer chemoprevention trial using 1alpha
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jairam, Vikram; Yu, James B., E-mail: james.b.yu@yale.edu
Purpose: To use the Centers for Medicare and Medicaid Services Open Payments database to characterize payments made to radiation oncologists and compare their payment profile with that of medical and surgical oncologists. Methods and Materials: The June 2015 release of the Open Payments database was accessed, containing all payments made to physicians in 2014. The general payments dataset was used for analysis. Data on payments made to medical, surgical, and radiation oncologists was obtained and compared. Within radiation oncology, data regarding payment category, sponsorship, and geographic distribution were identified. Basic statistics including mean, median, range, and sum were calculated by providermore » and by transaction. Results: Among the 3 oncologic specialties, radiation oncology had the smallest proportion (58%) of compensated physicians and the lowest mean ($1620) and median ($112) payment per provider. Surgical oncology had the highest proportion (84%) of compensated physicians, whereas medical oncology had the highest mean ($6371) and median ($448) payment per physician. Within radiation oncology, nonconsulting services accounted for the most money to physicians ($1,042,556), whereas the majority of the sponsors were medical device companies (52%). Radiation oncologists in the West accepted the most money ($2,041,603) of any US Census region. Conclusions: Radiation oncologists in 2014 received a large number of payments from industry, although less than their medical or surgical counterparts. As the Open Payments database continues to be improved, it remains to be seen whether this information will be used by patients to inform choice of providers or by lawmakers to enact policy regulating physician–industry relationships.« less
77 FR 54921 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... personal privacy. Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; Radiation... Committee: Oncology 2--Translational Clinical Integrated Review Group; Basic Mechanisms of Cancer...
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.
Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita
2018-01-01
Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology
Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita
2018-01-01
Purpose Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Methods Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Results Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our “record-and-verify” system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). Conclusion In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique—Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017). PMID:29351341
... usually painless. Treatment is done in a radiation oncology center that is usually connected to a hospital. ... Cancer Network website. NCCN clinical practice guidelines in oncology (NCCN guidelines): prostate cancer. Version 2.2017. www. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anscher, Mitchell S., E-mail: manscher@mcvh-vcu.ed; Anscher, Barbara M.; Bradley, Cathy J.
2010-04-15
Purpose: To survey radiation oncology training programs to determine the impact of ownership of radiation oncology facilities by non-radiation oncologists on these training programs and to place these findings in a health policy context based on data from the literature. Methods and Materials: A survey was designed and e-mailed to directors of all 81 U.S. radiation oncology training programs in this country. Also, the medical and health economic literature was reviewed to determine the impact that ownership of radiation oncology facilities by non-radiation oncologists may have on patient care and health care costs. Prostate cancer treatment is used to illustratemore » the primary findings. Results: Seventy-three percent of the surveyed programs responded. Ownership of radiation oncology facilities by non-radiation oncologists is a widespread phenomenon. More than 50% of survey respondents reported the existence of these arrangements in their communities, with a resultant reduction in patient volumes 87% of the time. Twenty-seven percent of programs in communities with these business arrangements reported a negative impact on residency training as a result of decreased referrals to their centers. Furthermore, the literature suggests that ownership of radiation oncology facilities by non-radiation oncologists is associated with both increased utilization and increased costs but is not associated with increased access to services in traditionally underserved areas. Conclusions: Ownership of radiation oncology facilities by non-radiation oncologists appears to have a negative impact on residency training by shifting patients away from training programs and into community practices. In addition, the literature supports the conclusion that self-referral results in overutilization of expensive services without benefit to patients. As a result of these findings, recommendations are made to study further how physician ownership of radiation oncology facilities influence graduate medical education, treatment patterns and utilization, and health care costs. Patients also need to be aware of financial arrangements that may influence their physician's treatment recommendations.« less
[Possibilities and perspectives of quality management in radiation oncology].
Seegenschmiedt, M H; Zehe, M; Fehlauer, F; Barzen, G
2012-11-01
The medical discipline radiation oncology and radiation therapy (treatment with ionizing radiation) has developed rapidly in the last decade due to new technologies (imaging, computer technology, software, organization) and is one of the most important pillars of tumor therapy. Structure and process quality play a decisive role in the quality of outcome results (therapy success, tumor response, avoidance of side effects) in this field. Since 2007 all institutions in the health and social system are committed to introduce and continuously develop a quality management (QM) system. The complex terms of reference, the complicated technical instruments, the highly specialized personnel and the time-consuming processes for planning, implementation and assessment of radiation therapy made it logical to introduce a QM system in radiation oncology, independent of the legal requirements. The Radiation Center Hamburg (SZHH) has functioned as a medical care center under medical leadership and management since 2009. The total QM and organization system implemented for the Radiation Center Hamburg was prepared in 2008 and 2009 and certified in June 2010 by the accreditation body (TÜV-Süd) for DIN EN ISO 9001:2008. The main function of the QM system of the SZHH is to make the basic principles understandable for insiders and outsiders, to have clear structures, to integrate management principles into the routine and therefore to organize the learning processes more effectively both for interior and exterior aspects.
76 FR 28237 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
..., Room 4118, MSC 7814, Bethesda, MD 20892, 301-435- 1777, [email protected] . Name of Committee: Oncology[email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Radiation...
Imaging and Data Acquisition in Clinical Trials for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu; Bishop-Jodoin, Maryann; Followill, David S.
2016-02-01
Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy qualitymore » assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.« less
Medical student knowledge of oncology and related disciplines: A targeted needs assessment
Oskvarek, Jonathan; Braunstein, Steve; Farnan, Jeanne; Ferguson, Mark K.; Hahn, Olwen; Henderson, Tara; Hong, Susan; Levine, Stacie; Rosenberg, Carol A.; Golden, Daniel W.
2015-01-01
Background/Purpose Despite increasing numbers of cancer survivors, non-oncology physicians report discomfort and little training regarding oncologic and survivorship care. This pilot study assesses medical student comfort with medical oncology, surgical oncology, radiation oncology, hospice/palliative medicine, and survivorship care. Methods A survey was developed with input from specialists in various fields of oncologic care at a National Cancer Institute-designated comprehensive cancer center. The survey included respondent demographics, reports of experience with oncology, comfort ratings with oncologic care, and five clinical vignettes. Responses were yes/no, multiple choice, Likert scale, or free response. The survey was distributed via email to medical students (MS1-4) at two United States medical schools. Results/Findings The 105 respondents were 34 MS1s (32%), 15 MS2s and MD/PhDs (14%), 26 MS3s (25%), and 30 MS4s (29%). Medical oncology, surgical oncology, and hospice/palliative medicine demonstrated a significant trend for increased comfort from MS1 to MS4, but radiation oncology and survivorship care did not. MS3s and MS4s reported the least experience with survivorship care and radiation oncology. In the clinical vignettes, students performed the worst on the long-term chemotherapy toxicity and hospice/palliative medicine questions. Discussion Medical students report learning about components of oncologic care, but lack overall comfort with oncologic care. Medical students also fail to develop an increased self-assessed level of comfort with radiation oncology and survivorship care. These pilot results support development of a formalized multi-disciplinary medical school oncology curriculum at these two institutions. An expanded national survey is being developed to confirm these preliminary findings. PMID:26153490
Medical Student Knowledge of Oncology and Related Disciplines: a Targeted Needs Assessment.
Oskvarek, Jonathan; Braunstein, Steve; Farnan, Jeanne; Ferguson, Mark K; Hahn, Olwen; Henderson, Tara; Hong, Susan; Levine, Stacie; Rosenberg, Carol A; Golden, Daniel W
2016-09-01
Despite increasing numbers of cancer survivors, non-oncology physicians report discomfort and little training regarding oncologic and survivorship care. This pilot study assesses medical student comfort with medical oncology, surgical oncology, radiation oncology, hospice/palliative medicine, and survivorship care. A survey was developed with input from specialists in various fields of oncologic care at a National Cancer Institute-designated comprehensive cancer center. The survey included respondent demographics, reports of experience with oncology, comfort ratings with oncologic care, and five clinical vignettes. Responses were yes/no, multiple choice, Likert scale, or free response. The survey was distributed via email to medical students (MS1-4) at two US medical schools. The 105 respondents were 34 MS1s (32 %), 15 MS2s and MD/PhDs (14 %), 26 MS3s (25 %), and 30 MS4s (29 %). Medical oncology, surgical oncology, and hospice/palliative medicine demonstrated a significant trend for increased comfort from MS1 to MS4, but radiation oncology and survivorship care did not. MS3s and MS4s reported the least experience with survivorship care and radiation oncology. In the clinical vignettes, students performed the worst on the long-term chemotherapy toxicity and hospice/palliative medicine questions. Medical students report learning about components of oncologic care, but lack overall comfort with oncologic care. Medical students also fail to develop an increased self-assessed level of comfort with radiation oncology and survivorship care. These pilot results support development of a formalized multidisciplinary medical school oncology curriculum at these two institutions. An expanded national survey is being developed to confirm these preliminary findings.
Fietkau, R; Budach, W; Zamboglou, N; Thiel, H-J; Sack, H; Popp, W
2012-01-01
The goal was to develop and evaluate a modular system for measurement of the work times required by the various professional groups involved in radiation oncology before, during, and after serial radiation treatment (long-term irradiation with 25-28 fractions of 1.8 Gy) based on the example of rectal cancer treatment. A panel of experts divided the work associated with providing radiation oncology treatment into modules (from the preparation of radiotherapy, RT planning and administration to the final examination and follow-up). The time required for completion of each module was measured by independent observers at four centers (Rostock, Bamberg, Düsseldorf, and Offenbach, Germany). A total of 1,769 data sets were collected from 63 patients with 10-489 data sets per module. Some modules (informed consent procedure, routine treatments, CT planning) exhibited little deviation between centers, whereas others (especially medical and physical irradiation planning) exhibited a wide range of variation (e.g., 1 h 49 min to 6 h 56 min for physical irradiation planning). The mean work time per patient was 12 h 11 min for technicians, 2 h 59 min for physicists, and 7 h 6 min for physicians. The modular system of time measurement proved to be reliable and produced comparable data at the different centers. Therefore, the German Society of Radiation Oncology (DEGRO) decided that it can be extended to other types of cancer (head and neck, prostate, and breast cancer) with appropriate modifications.
Prevention of Post-Radiotherapy Failure in Prostate Cancer by Vitamin D
2007-05-01
extensively with the statistician for the UCD Cancer Center, Dr. Laurel Beckett , to confirm and modify the study design. Dr. Vijayakumar also recruited...Radiation Oncology), and Phil Boerner (Writer, Radiation Oncology). As a result of this meeting, several important modifications were made to the...Packianathan S, Mehta RR, Mehta RG, Hall W, Boerner PS, Beckett L, Vijayakumar S. Cancer Journal, 10(6): 357-367. II. Scientific Abstracts: 2007
Mayo, Charles S; Moran, Jean M; Bosch, Walter; Xiao, Ying; McNutt, Todd; Popple, Richard; Michalski, Jeff; Feng, Mary; Marks, Lawrence B; Fuller, Clifton D; Yorke, Ellen; Palta, Jatinder; Gabriel, Peter E; Molineu, Andrea; Matuszak, Martha M; Covington, Elizabeth; Masi, Kathryn; Richardson, Susan L; Ritter, Timothy; Morgas, Tomasz; Flampouri, Stella; Santanam, Lakshmi; Moore, Joseph A; Purdie, Thomas G; Miller, Robert C; Hurkmans, Coen; Adams, Judy; Jackie Wu, Qing-Rong; Fox, Colleen J; Siochi, Ramon Alfredo; Brown, Norman L; Verbakel, Wilko; Archambault, Yves; Chmura, Steven J; Dekker, Andre L; Eagle, Don G; Fitzgerald, Thomas J; Hong, Theodore; Kapoor, Rishabh; Lansing, Beth; Jolly, Shruti; Napolitano, Mary E; Percy, James; Rose, Mark S; Siddiqui, Salim; Schadt, Christof; Simon, William E; Straube, William L; St James, Sara T; Ulin, Kenneth; Yom, Sue S; Yock, Torunn I
2018-03-15
A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO, European Society for Radiation Oncology (ESTRO), and American Association of Medical Dosimetrists (AAMD). This Executive Summary of the report highlights the key recommendations for clinical practice, research, and trials. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Olmi, P; Ausili-Cefaro, G
1997-01-01
60-70% of all cancers will develop in the year 2000 in persons aged 65 and over. Radiation therapy will play a major role in the treatment of cancer, especially in the elderly. The Italian "Geriatric Radiation Oncology Group" (GROG) performed in 1994 a prospective study, in order to assess the characteristics of any old cancer patient referred to radiation oncology centers (age, gender performance status, comorbidity, activities of daily living, family status) and the main features of the tumor in that patient. In about 6 months 2060 patients aged 70 and over entered the study, of whom 1809 were treated with radiotherapy alone, with curative intent in 563 patients, in combination with surgery and/or chemotherapy in 476 and with palliative intent in 769 patients. Most patients had grade 0-1 acute toxicity.
Dauer, Lawrence T; Kelvin, Joanne F; Horan, Christopher L; St Germain, Jean
2006-06-08
Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses.
Dauer, Lawrence T; Kelvin, Joanne F; Horan, Christopher L; St Germain, Jean
2006-01-01
Background Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. Methods A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. Results As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. Conclusion The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses. PMID:16762060
Guidelines for treatment naming in radiation oncology
Shields, Lisa B. E.; Hahl, Michael; Maudlin, Casey; Bassett, Mark; Spalding, Aaron C.
2015-01-01
Safety concerns may arise from a lack of standardization and ambiguity during the treatment planning and delivery process in radiation therapy. A standardized target and organ‐at‐risk naming convention in radiation therapy was developed by a task force comprised of several Radiation Oncology Societies. We present a nested‐survey approach in a community setting to determine the methodology for radiation oncology departments to standardize their practice. Our Institution's continuous quality improvement (CQI) committee recognized that, due to growth from one to three centers, significant variability existed within plan parameters specific to patients’ treatment. A multidiscipline, multiclinical site consortium was established to create a guideline for standard naming. Input was gathered using anonymous, electronic surveys from physicians, physicists, dosimetrists, chief therapists, and nurse managers. Surveys consisted of several primary areas of interest: anatomical sites, course naming, treatment plan naming, and treatment field naming. Additional concepts included capitalization, specification of laterality, course naming in the event of multiple sites being treated within the same course of treatment, primary versus boost planning, the use of bolus, revisions for plans, image‐guidance field naming, forbidden characters, and standard units for commonly used physical quantities in radiation oncology practice. Guidelines for standard treatment naming were developed that could be readily adopted. This multidisciplinary study provides a clear, straightforward, and easily implemented protocol for the radiotherapy treatment process. Standard nomenclature facilitates the safe means of communication between team members in radiation oncology. The guidelines presented in this work serve as a model for radiation oncology clinics to standardize their practices. PACS number(s): 87.56.bd, 87.56.Fc, 87.55.Qr, 87.55.‐x, 87.55.N‐, 87.55.T‐, 87.55.D‐ PMID:27074449
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... external defibrillator AFROC Association of Freestanding Radiation Oncology Centers AHA American Heart... Procedure Coding System HCRIS Healthcare Cost Report Information System HDRT High dose radiation therapy HH... rule with comment period IMRT Intensity-Modulated Radiation Therapy IPPE Initial preventive physical...
Famiglietti, Robin M; Norboge, Emily C; Boving, Valentine; Langabeer, James R; Buchholz, Thomas A; Mikhail, Osama
To meet demand for radiation oncology services and ensure patient-centered safe care, management in an academic radiation oncology department initiated quality improvement efforts using discrete-event simulation (DES). Although the long-term goal was testing and deploying solutions, the primary aim at the outset was characterizing and validating a computer simulation model of existing operations to identify targets for improvement. The adoption and validation of a DES model of processes and procedures affecting patient flow and satisfaction, employee experience, and efficiency were undertaken in 2012-2013. Multiple sources were tapped for data, including direct observation, equipment logs, timekeeping, and electronic health records. During their treatment visits, patients averaged 50.4 minutes in the treatment center, of which 38% was spent in the treatment room. Patients with appointments between 10 AM and 2 PM experienced the longest delays before entering the treatment room, and those in the clinic in the day's first and last hours, the shortest (<5 minutes). Despite staffed for 14.5 hours daily, the clinic registered only 20% of patients after 2:30 PM. Utilization of equipment averaged 58%, and utilization of staff, 56%. The DES modeling quantified operations, identifying evidence-based targets for next-phase remediation and providing data to justify initiatives.
Is current clinical practice modified about intraoperative breast irradiation?
Massa, Michela; Franchelli, Simonetta; Panizza, Renzo; Massa, Tiberio
2016-04-01
After the results obtained in the two randomized clinical trial, the ELIOT trial and the TARGIT-A trial, a heated debate is going on concerning the question of applying intraoperative radiotherapy (IORT) instead of postoperative whole breast irradiation (WBI) after breast conservative treatment. Currently, many centers are applying the IORT following the strict selection criteria dictated by the working groups American Society for Radiation Oncology (ASTRO) and Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) and monitoring the oncological outcome together with radiation toxicity on breast tissue. The clinical experience of the Geneva University Hospital regarding the use of the Intrabeam system is evaluated and compared with current evidences.
Standardizing Naming Conventions in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa
2012-07-15
Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creatingmore » this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this nomenclature. Conclusions: Use of standardized naming conventions is important to facilitate comparison of dosimetry across patient datasets. The guidelines presented here will facilitate international acceptance across a wide range of efforts, including groups organizing clinical trials, Radiation Oncology Institute, Dutch Radiation Oncology Society, Integrating the Healthcare Enterprise, Radiation Oncology domain (IHE-RO), and Digital Imaging and Communication in Medicine (DICOM).« less
In order to find the most compressed schedule of radiation that prostate cancer patients can tolerate without strong side effects, Deborah Citrin, M.D., of the Radiation Oncology Branch wants to see if giving higher doses of radiation over 2–4 weeks can be as effective at killing cancer cells. Read more…
Development, implementation, and compliance of treatment pathways in radiation medicine.
Potters, Louis; Raince, Jadeep; Chou, Henry; Kapur, Ajay; Bulanowski, Daniel; Stanzione, Regina; Lee, Lucille
2013-01-01
While much emphasis on safety in the radiation oncology clinic is placed on process, there remains considerable opportunity to increase safety, enhance outcomes, and avoid ad hoc care by instituting detailed treatment pathways. The purpose of this study was to review the process of developing evidence and consensus-based, outcomes-oriented treatment pathways that standardize treatment and patient management in a large multi-center radiation oncology practice. Further, we reviewed our compliance in incorporating these directives into our day-to-day clinical practice. Using the Institute of Medicine guideline for developing treatment pathways, 87 disease specific pathways were developed and incorporated into the electronic medical system in our multi-facility radiation oncology department. Compliance in incorporating treatment pathways was assessed by mining our electronic medical records (EMR) data from January 1, 2010 through February 2012 for patients with breast and prostate cancer. This retrospective analysis of data from EMR found overall compliance to breast and prostate cancer treatment pathways to be 97 and 99%, respectively. The reason for non-compliance proved to be either a failure to complete the prescribed care based on grade II or III toxicity (n = 1 breast, 3 prostate) or patient elected discontinuance of care (n = 1 prostate) or the physician chose a higher dose for positive/close margins (n = 3 breast). This study demonstrates that consensus and evidence-based treatment pathways can be developed and implemented in a multi-center department of radiation oncology. And that for prostate and breast cancer there was a high degree of compliance using these directives. The development and implementation of these pathways serve as a key component of our safety program, most notably in our effort to facilitate consistent decision-making and reducing variation between physicians.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
..., USA, Inc., Oncology Care Systems (Radiation Oncology), Including On-Site Leased Workers From Source... Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), including on- site leased... of February 2013, Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology...
Preparing a cost analysis for the section of medical physics-guidelines and methods.
Mills, M D; Spanos, W J; Jose, B O; Kelly, B A; Brill, J P
2000-01-01
Radiation oncology is a highly complex medical specialty, involving many varied routine and special procedures. To assure cost-effectiveness and maintain support for the medical physics program, managers are obligated to analyze and defend all aspects of an institutional billing and cost-reporting program. Present standards of practice require that each patient's radiation treatments be customized to fit his/her particular condition. Since the use of personnel time and other resources is highly variable among patients, graduated levels of charges have been established to allow for more precise billing. Some radiation oncology special procedures have no specific code descriptors; so existing codes are modified or additional information attached in order to avoid payment denial. Recent publications have explored the manpower needs, salaries, and other resources required to perform radiation oncology "physics" procedures. This information is used to construct a model cost-based resource use profile for a radiation oncology center. This profile can be used to help the financial officer prepare a cost report for the institution. Both civil and criminal penalties for Medicare fraud and abuse (intentional or unintentional) are included in the False Claims Act and other statutes. Compliance guidelines require managers to train all personnel in correct billing procedures and to review continually billing performance.
Moran, Jean M; Feng, Mary; Benedetti, Lisa A; Marsh, Robin; Griffith, Kent A; Matuszak, Martha M; Hess, Michael; McMullen, Matthew; Fisher, Jennifer H; Nurushev, Teamour; Grubb, Margaret; Gardner, Stephen; Nielsen, Daniel; Jagsi, Reshma; Hayman, James A; Pierce, Lori J
A database in which patient data are compiled allows analytic opportunities for continuous improvements in treatment quality and comparative effectiveness research. We describe the development of a novel, web-based system that supports the collection of complex radiation treatment planning information from centers that use diverse techniques, software, and hardware for radiation oncology care in a statewide quality collaborative, the Michigan Radiation Oncology Quality Consortium (MROQC). The MROQC database seeks to enable assessment of physician- and patient-reported outcomes and quality improvement as a function of treatment planning and delivery techniques for breast and lung cancer patients. We created tools to collect anonymized data based on all plans. The MROQC system representing 24 institutions has been successfully deployed in the state of Michigan. Since 2012, dose-volume histogram and Digital Imaging and Communications in Medicine-radiation therapy plan data and information on simulation, planning, and delivery techniques have been collected. Audits indicated >90% accurate data submission and spurred refinements to data collection methodology. This model web-based system captures detailed, high-quality radiation therapy dosimetry data along with patient- and physician-reported outcomes and clinical data for a radiation therapy collaborative quality initiative. The collaborative nature of the project has been integral to its success. Our methodology can be applied to setting up analogous consortiums and databases. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Prostate cancer patients who have failed standard radiation therapy have the options of surgery, radioactive seed implantation or cryoablation. Deborah Citrin, M.D., of the Radiation Oncology Branch is leading a study of stereotactic body radiation therapy (SBRT) to treat prostate cancer that has recurred locally after standard radiation therapy. The goal of this study is to
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
...--Association of Freestanding Radiation Oncology Centers AFS--Ambulance Fee Schedule AHA--American Heart...) Update Committee AMA-DE--American Medical Association Drug Evaluations AMI--Acute Myocardial Infarction.../Low-density lipoprotein HDRT--High dose radiation therapy HEMS--Helicopter Emergency Medical Services...
78 FR 2681 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
...-435-1212, [email protected] . Name of Committee: Immunology Integrated Review Group; Innate Immunity... Scientific Review Special Emphasis Panel; Member Conflicts: Pain and Hearing Date: February 12-13, 2013. Time... Committee: Center for Scientific Review Special Emphasis Panel; Member Conflict: Radiation Oncology. Date...
Agarwal, Ankit; DeNunzio, Nicholas J; Ahuja, Divya; Hirsch, Ariel E
2014-01-01
To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students. Copyright © 2014 Elsevier Inc. All rights reserved.
The role of tumor board conferences in neuro-oncology: a nationwide provider survey.
Snyder, James; Schultz, Lonni; Walbert, Tobias
2017-05-01
The tumor board or multidisciplinary cancer meeting (MCM) is the foundation of high value multidisciplinary oncology care, coordinating teams of specialists. Little is known on how these meetings are implemented in Neuro-oncology. Benefits of MCMs include coordination, direction for complicated cases, education, and a forum for communication, emerging technology, and clinical trials. This study identifies participation and utilization of neuro-oncology MCMs. A cross-sectional descriptive survey was dispersed through an internet questionnaire. The Society of Neuro-Oncology and the American Brain Tumor Association provided a list of dedicated neuro-oncology centers. All National Cancer Institute designated centers, and participants in the Adult Brain Tumor Consortium or the Brain Tumor Trials Collaborative were included, identifying 85 centers. Discussion included primary brain tumors (100%), challenging cases (98%), recurrent disease (96%), neoplastic spine disease (93%), metastatic brain lesions (89%), pre-surgical cases (82%), pathology (76%), and paraneoplastic disease (40%). MCMs were composed of neuro-oncologists, neurosurgeons, and radiation oncologists (100%), radiologists (98%), pathologists (96%), and clinical trial participants (64%). Individual preparation ranged from 15 to 300 min. MCMs were valued for clinical decision making (94%), education (89%), and access to clinical trials (69%). 13% documented MCMs in the medical record. 38% of centers used a molecular tumor board; however, many commented with uncertainty as to how this is defined. Neuro-oncology MCMs at leading U.S. institutions demonstrate congruity of core disciplines, cases discussed, and perceived value. We identified variability in preparation time and implementation of MCM recommendations. There is high uncertainty as to the definition and application of a molecular tumor board.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya
Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Societymore » for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students.« less
COP - Pet Owners - What is Comparative Oncology | Center for Cancer Research
What is Comparative Oncology? Cancer, in the pet population, is a spontaneous disease. Pet owners, motivated by the desire to prolong their animals' quality of life, frequently seek out the specialized care and treatment of veterinary oncologists at private referral veterinary hospitals and veterinary teaching hospitals across the country. Therapeutic modalities for veterinary cancer patients are similar to those for humans, including surgery, chemotherapy, radiation therapy, and biotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Awad A.; Hwang, Wei-Ting; Holliday, Emma B.
Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) inmore » 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.« less
Ahmed, Awad A; Hwang, Wei-Ting; Holliday, Emma B; Chapman, Christina H; Jagsi, Reshma; Thomas, Charles R; Deville, Curtiland
2017-05-01
Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves. Copyright © 2017 Elsevier Inc. All rights reserved.
Rengan, Ramesh; Ho, Alex; Owen, Jean B; Komaki, R; Khalid, Najma; Wilson, J Frank; Movsas, Benjamin
2014-01-01
The objective of this study is to describe the impact of sociodemographic (SOC) factors on the management of lung cancer patients treated at radiation therapy facilities participating in the Quality Research in Radiation Oncology survey. A 2-stage stratified random sample of lung cancer patients treated in 2006 to 2007 at 45 facilities yielded 340 stage I-III non-small cell lung cancer (NSCLC) and 144 limited-stage small cell lung cancer (LS-SCLC) cases. Five SOC variables based on data from the 2000 US Census were analyzed for association with the following clinical factors: patients living in urban versus rural settings (U/R); median household income (AHI); % below poverty level (PPV); % unemployed (PUE); and % with college education (PCE). The 340 NSCLC patients were stage I, 16%; stage II, 11%; stage III, 62%; stage unknown, 11%. Histologic subtypes were adenocarcinoma, 31.8%; squamous cell carcinoma, 35.3%; large cell carcinoma, 3.2%; and NSCLC NOS, 27.7%. The median age was 66 years. Median Karnofsky performance status (KPS) was 80. The 144 LS-SCLC had a median age of 63; 73 were male (50.7%). Median KPS was 80. Stereotactic body radiation therapy (SBRT) and modern imaging utilization was associated with treatment at facilities located in higher SOC regions. SBRT was employed in 46.8% stage I NSCLC patients treated in centers where %PUE was below median versus 14.8% in centers where %PUE was above median (P = .02). Four-dimensional computed tomography was utilized in 14.2% of patients treated in centers located in regions with %PPV below median versus 3.7% in centers located in regions with %PPV above median (P < .01). SCLC patients were more likely to receive all of their planned RT when treated at centers located in regions with lower PPV (95.0% vs 79.1%; P = .04). SOC factors may impact use of modern treatment planning and delivery and multidisciplinary management of NSCLC and SCLC. These results may suggest an impact of these SOC factors on access to health care. © 2014 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology.
Grade Inflation in Medical Student Radiation Oncology Clerkships: Missed Opportunities for Feedback?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grover, Surbhi, E-mail: surbhi.grover@uphs.upenn.edu; Swisher-McClure, Samuel; Sosnowicz, Stasha
Purpose: To test the hypothesis that medical student radiation oncology elective rotation grades are inflated and cannot be used to distinguish residency applicants. Methods and Materials: The records of 196 applicants to a single radiation oncology residency program in 2011 and 2012 were retrospectively reviewed. The grades for each rotation in radiation oncology were collected and converted to a standardized 4-point grading scale (honors, high pass, pass, fail). Pass/fail grades were scored as not applicable. The primary study endpoint was to compare the distribution of applicants' grades in radiation oncology with their grades in medicine, surgery, pediatrics, and obstetrics/gynecology core clerkships.more » Results: The mean United States Medical Licensing Examination Step 1 score of the applicants was 237 (range, 188-269), 43% had additional Masters or PhD degrees, and 74% had at least 1 publication. Twenty-nine applicants were graded for radiation oncology rotations on a pass/fail basis and were excluded from the final analysis. Of the remaining applicants (n=167), 80% received the highest possible grade for their radiation oncology rotations. Grades in radiation oncology were significantly higher than each of the other 4 clerkships studied (P<.001). Of all applicants, 195 of 196 matched into a radiation oncology residency. Higher grades in radiation oncology were associated with significantly higher grades in the pediatrics core clerkship (P=.002). However, other medical school performance metrics were not significantly associated with higher grades in radiation oncology. Conclusions: Although our study group consists of a selected group of radiation oncology applicants, their grades in radiation oncology clerkships were highly skewed toward the highest grades when compared with grades in other core clerkships. Student grading in radiation oncology clerkships should be re-evaluated to incorporate more objective and detailed performance metrics to allow for meaningful feedback to trainees and to better evaluate residency applicants to radiation oncology.« less
Belard, Arnaud; Dolney, Derek; Zelig, Tochner; McDonough, James; O'Connell, John
2011-06-01
Proton radiotherapy is a relatively scarce treatment modality in radiation oncology, with only nine centers currently operating in the United States. Funded by Public Law 107-248, the University of Pennsylvania and the Walter Reed Army Medical Center have developed a remote proton radiation therapy solution with the goals of improving access to proton radiation therapy for Department of Defense (DoD) beneficiaries while minimizing treatment delays and time spent away from home/work (time savings of up to 3 weeks per patient). To meet both Health Insurance Portability and Accountability Act guidelines and the more stringent security restrictions imposed by the DoD, our program developed a hybrid remote proton radiation therapy solution merging a CITRIX server with a JITIC-certified (Joint Interoperability Test Command) desktop videoconferencing unit. This conduit, thoroughly tested over a period of 6 months, integrates both institutions' radiation oncology treatment planning infrastructures into a single entity for DoD patients' treatment planning and delivery. This telemedicine solution enables DoD radiation oncologists and medical physicists the ability to (1) remotely access a proton therapy treatment planning platform, (2) transfer patient plans securely to the University of Pennsylvania patient database, and (3) initiate ad-hoc point-to-point and multipoint videoconferences to dynamically optimize and validate treatment plans. Our robust and secure remote treatment planning solution grants DoD patients not only access to a state-of-the-art treatment modality, but also participation in the treatment planning process by Walter Reed Army Medical Center radiation oncologists and medical physicists. This telemedicine system has the potential to lead to a greater integration of military treatment facilities and/or satellite clinics into regional proton therapy centers.
NASA Astrophysics Data System (ADS)
Smith, Charles L.; Chu, Wei-Kom; Wobig, Randy; Chao, Hong-Yang; Enke, Charles
1999-07-01
An ongoing PACS project at our facility has been expanded to include providing and managing images used for routine clinical operation of the department of radiation oncology. The intent of our investigation has been to enable out clinical radiotherapy service to enter the tele-medicine environment through the use of a PACS system initially implemented in the department of radiology. The backbone for the imaging network includes five CT and three MR scanners located across three imaging centers. A PC workstation in the department of radiation oncology was used to transmit CT imags to a satellite facility located approximately 60 miles from the primary center. Chest CT images were used to analyze network transmission performance. Connectivity established between the primary department and satellite has fulfilled all image criteria required by the oncologist. Establishing the link tot eh oncologist at the satellite diminished bottlenecking of imaging related tasks at the primary facility due to physician absence. A 30:1 compression ratio using a wavelet-based algorithm provided clinically acceptable images treatment planning. Clinical radiotherapy images can be effectively managed in a wide- area-network to link satellite facilities to larger clinical centers.
Brucker, Sara Y; Wallwiener, Markus; Kreienberg, Rolf; Jonat, Walter; Beckmann, Matthias W; Bamberg, Michael; Wallwiener, Diethelm; Souchon, Rainer
2011-02-01
A voluntary, external, science-based benchmarking program was established in Germany in 2003 to analyze and improve the quality of breast cancer (BC) care. Based on recent data from 2009, we aim to show that such analyses can also be performed for individual interdisciplinary specialties, such as radiation oncology (RO). Breast centers were invited to participate in the benchmarking program. Nine guideline-based quality indicators (QIs) were initially defined, reviewed annually, and modified, expanded, or abandoned accordingly. QI changes over time were analyzed descriptively, with particular emphasis on relevance to radiation oncology. During the 2003-2009 study period, there were marked increases in breast center participation and postoperatively confirmed primary BCs. Starting from 9 process QIs, 15 QIs were developed by 2009 as surrogate indicators of long-term outcome. During 2003-2009, 2/7 RO-relevant QIs (radiotherapy after breast-conserving surgery or after mastectomy) showed considerable increases (from 20 to 85% and 8 to 70%, respectively). Another three, initially high QIs practically reached the required levels. The current data confirm proof-of-concept for the established benchmarking program, which allows participating institutions to be compared and changes in quality of BC care to be tracked over time. Overall, marked QI increases suggest that BC care in Germany improved from 2003-2009. Moreover, it has become possible for the first time to demonstrate improvements in the quality of BC care longitudinally for individual breast centers. In addition, subgroups of relevant QIs can be used to demonstrate the progress achieved, but also the need for further improvement, in specific interdisciplinary specialties.
Jagadeesan, Vikrant S; Raleigh, David R; Koshy, Matthew; Howard, Andrew R; Chmura, Steven J; Golden, Daniel W
2014-01-01
Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank-sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These results support further development of structured didactic curricula for the radiation oncology clerkship. Copyright © 2014 Elsevier Inc. All rights reserved.
Evolution of radiation resistance in a complex microenvironment
NASA Astrophysics Data System (ADS)
Kim, So Hyun; Austin, Robert; Mehta, Monal; Kahn, Atif
2013-03-01
Radiation treatment responses in brain cancers are typically associated with short progression-free intervals in highly lethal malignancies such as glioblastomas. Even as patients routinely progress through second and third line salvage therapies, which are usually empirically selected, surprisingly little information exists on how cancer cells evolve resistance. We will present experimental results showing how in the presence of complex radiation gradients evolution of resistance to radiation occurs. Sponsored by the NCI/NIH Physical Sciences Oncology Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagsi, Reshma, E-mail: rjagsi@med.umich.edu; Bekelman, Justin E.; Brawley, Otis W.
Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patientsmore » and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.« less
Payment Reform: Unprecedented and Evolving Impact on Gynecologic Oncology
Apte, Sachin M.; Patel, Kavita
2016-01-01
With the signing of the Medicare Access and CHIP Reauthorization Act in April 2015, the Centers for Medicare and Medicaid Services (CMS) is now positioned to drive the development and implementation of sweeping changes to how physicians and hospitals are paid for the provision of oncology-related services. These changes will have a long-lasting impact on the sub-specialty of gynecologic oncology, regardless of practice structure, physician employment and compensation model, or local insurance market. Recently, commercial payers have piloted various models of payment reform via oncology-specific clinical pathways, oncology medical homes, episode payment arrangements, and accountable care organizations. Despite the positive results of some pilot programs, adoption remains limited. The goals are to eliminate unnecessary variation in cancer treatment, provide coordinated patient-centered care, while controlling costs. Yet, meaningful payment reform in oncology remains elusive. As the largest payer for oncology services in the United States, CMS has the leverage to make cancer services more value based. Thus far, the focus has been around pricing of physician-administered drugs with recent work in the area of the Oncology Medical Home. Gynecologic oncology is a unique sub-specialty that blends surgical and medical oncology, with treatment that often involves radiation therapy. This forward-thinking, multidisciplinary model works to keep the patient at the center of the care continuum and emphasizes care coordination. Because of the breadth and depth of gynecologic oncology, this sub-specialty has both the potential to be disrupted by payment reform as well as potentially benefit from the aspects of reform that can align incentives appropriately to improve coordination. Although the precise future payment models are unknown at this time, focused engagement of gynecologic oncologists and the full care team is imperative to assure that the practice remains patient centered, embodies the highest quality in research and education, yet transforms into a sustainable and agile sub-specialty to pro-actively and effectively manage the immense and relentless financial pressures and regulatory expectations that will be faced over the next decade. PMID:27148476
Payment Reform: Unprecedented and Evolving Impact on Gynecologic Oncology.
Apte, Sachin M; Patel, Kavita
2016-01-01
With the signing of the Medicare Access and CHIP Reauthorization Act in April 2015, the Centers for Medicare and Medicaid Services (CMS) is now positioned to drive the development and implementation of sweeping changes to how physicians and hospitals are paid for the provision of oncology-related services. These changes will have a long-lasting impact on the sub-specialty of gynecologic oncology, regardless of practice structure, physician employment and compensation model, or local insurance market. Recently, commercial payers have piloted various models of payment reform via oncology-specific clinical pathways, oncology medical homes, episode payment arrangements, and accountable care organizations. Despite the positive results of some pilot programs, adoption remains limited. The goals are to eliminate unnecessary variation in cancer treatment, provide coordinated patient-centered care, while controlling costs. Yet, meaningful payment reform in oncology remains elusive. As the largest payer for oncology services in the United States, CMS has the leverage to make cancer services more value based. Thus far, the focus has been around pricing of physician-administered drugs with recent work in the area of the Oncology Medical Home. Gynecologic oncology is a unique sub-specialty that blends surgical and medical oncology, with treatment that often involves radiation therapy. This forward-thinking, multidisciplinary model works to keep the patient at the center of the care continuum and emphasizes care coordination. Because of the breadth and depth of gynecologic oncology, this sub-specialty has both the potential to be disrupted by payment reform as well as potentially benefit from the aspects of reform that can align incentives appropriately to improve coordination. Although the precise future payment models are unknown at this time, focused engagement of gynecologic oncologists and the full care team is imperative to assure that the practice remains patient centered, embodies the highest quality in research and education, yet transforms into a sustainable and agile sub-specialty to pro-actively and effectively manage the immense and relentless financial pressures and regulatory expectations that will be faced over the next decade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagadeesan, Vikrant S.; Raleigh, David R.; Koshy, Matthew
Purpose: Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. Methods and Materials: An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncologymore » experience, rotation experiences, and ideal clerkship curriculum content. Results: The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank–sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Conclusions: Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These results support further development of structured didactic curricula for the radiation oncology clerkship.« less
Zaghloul, Mohamed S; El-Badawi, Samy A; Abd Elbaky, Hoda
2007-03-01
Our most respected professor Hassan K. Awwad passed away on January 5th, 2007, at the age of 81. He was considered as the father of radiotherapy in Egypt. He was always named "The Professor", as he was the founder of the radiotherapy departments at the National Cancer Institute, Cairo University&Faculty of Medicine, Alexandria University. He also shared in developing NEMROCK (Kasr El Aini Center of Radiation Oncology and Nuclear Medicine), the place where he graduated and worked during his early years of experience. He, together with professor Reda Hamza, dean of NCI, Cairo at that time, had initiated 7 oncology centers all over Egypt, from Aswan in the South to Dammietta and Damanhour in the North. These 7 centers were developed by the Ministry of Health. Prof. Awwad and Prof. Hamza were responsible for facility providing and plans. They chose all the necessary equipment, tools and personnel. These centers were in action since 1988 and are currently taking care of the oncology patients in a wide area of the country. Prof. Awwad graduated from the Faculty of medicine, Cairo University, in 1949. He had his Medical Doctorate (MD) in Radiotherapy from Alexandria University in 1956. The International Atomic Energy Agency (IAEA) awarded him fellowships in France (Institute Gustave Rossy) to gain experience in brachytherapy in 1956 and 1971, England 1956, 1959. Another fellowship was awarded to Prof Awwad in Harvard University (Peter Bent Brigham Hospital) in radiobiology and radiotherapy during the years 1964-1965. He personally and with other members of the National Cancer Institute gave much of their efforts and time to teach, train and guide young radiotherapists, biologists, physicists and radiation therapists through direct on-hand teaching and training as well as holding training courses for radiation oncologists, physicists and technologists. He insisted to ensure its regularity 4 times yearly. These courses trained a lot of personnel from all over Egypt, Sudan, Libya, Palastine, Iraq, Uganda, Nigeria and other countries. He himself had many teaching missions in different Arab countries (Saudi Arabia, Kuwait and others) for the sake of groups of his students that could not come to Egypt. He served as the head of the Department of Radiation Oncology for more than 15 years (1970-1985), full time Professor in Radiation Oncology and Radiobiology (1985-2007), Professor of Radiotherapy, Alexandria University (1954-1970), Chief of the Department of Nuclear Medicine, Medical Research Institute, University of Alexandria (1963-1964), Chief of the Radiotherapy Unit in the Heliopolis Hospital, Ministry of Public Health, 1985-2007. He was co-founder of the Egyptian Society of Cancer and acted as vice present and head of the scientific committee of the society. He shared the activities of many Egyptian, Arab and international scientific societies. His activities in these societies were great. Prof. Awwad had direct contact with his students that never ended, even after some of them left to work in other places in USA, Canada, Europe or Arab Countries. His students' specialty varied between radiobiology, pharmacology, biochemistry, tumor biology, radiation oncology, medical oncology and surgical oncology. Prof. Awwad had more than 100 published articles on hypoxia and hypoxic cell radiosensitizers, biology of growth of human tumors, biology and clinical models of the time factor in external beam radiotherapy, biology and mathematical models of time factor in brachytherapy, radioactive dynamic cancer studies of plasma protein metabolism, radioactive dynamic factor studies of blood disorders and lymphoma, radiation damage of DNA and normal tissues,head and neck cancer, bladder cancer, breast cancer, cervical cancer and development and optimization of clinical radiotherapy. He had continuous cooperation and collaboration with many of the great scientists and clinicians in Holland, France, United Kingdom, USA and Japan. He continued to exchange ideas with these great people all through his life and till the last moments of his extended fruitful life. Prof. Awwad wrote many books for a wide diversity of readers, for the lay people in Arabic, for radiographers, young oncologist, and the highly experienced radiation oncologists and radiobiologists. His book "Radiation Oncology: Radiobiological and Physiobiological Perspectives" was a real translation of radiobiology language to the oncologist and at the same time translation of the oncologist language to the biologist. This book ended with establishing a common language for both teams. In addition, it led other books in these specialties to communicate with the same language. The good news is that Prof. Awwad had completed the second edition of this book just before passing away. This second edition is really a totally new book coping with the advancement of knowledge reached till the end of 2006. We are sure that this book with all other good deeds performed by Prof. Awwad, will keep his memory in Egypt as well as elsewhere in the whole world.
NASA Astrophysics Data System (ADS)
Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.
2017-01-01
The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.
Radiation Oncology in Undergraduate Medical Education: A Literature Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Kristopher E.B., E-mail: kdennis@bccancer.bc.c; Duncan, Graeme
2010-03-01
Purpose: To review the published literature pertaining to radiation oncology in undergraduate medical education. Methods and Materials: Ovid MEDLINE, Ovid MEDLINE Daily Update and EMBASE databases were searched for the 11-year period of January 1, 1998, through the last week of March 2009. A medical librarian used an extensive list of indexed subject headings and text words. Results: The search returned 640 article references, but only seven contained significant information pertaining to teaching radiation oncology to medical undergraduates. One article described a comprehensive oncology curriculum including recommended radiation oncology teaching objectives and sample student evaluations, two described integrating radiation oncologymore » teaching into a radiology rotation, two described multidisciplinary anatomy-based courses intended to reinforce principles of tumor biology and radiotherapy planning, one described an exercise designed to test clinical reasoning skills within radiation oncology cases, and one described a Web-based curriculum involving oncologic physics. Conclusions: To the authors' knowledge, this is the first review of the literature pertaining to teaching radiation oncology to medical undergraduates, and it demonstrates the paucity of published work in this area of medical education. Teaching radiation oncology should begin early in the undergraduate process, should be mandatory for all students, and should impart knowledge relevant to future general practitioners rather than detailed information relevant only to oncologists. Educators should make use of available model curricula and should integrate radiation oncology teaching into existing curricula or construct stand-alone oncology rotations where the principles of radiation oncology can be conveyed. Assessments of student knowledge and curriculum effectiveness are critical.« less
Adleman, Jenna; Gillan, Caitlin; Caissie, Amanda; Davis, Carol-Anne; Liszewski, Brian; McNiven, Andrea; Giuliani, Meredith
2017-06-01
To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through web conference discussion and reranked in Round 2. An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adleman, Jenna; Gillan, Caitlin; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario
Purpose: To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. Methods and Materials: A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through webmore » conference discussion and reranked in Round 2. Results: An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. Conclusions: This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs.« less
Huh, S J; Shirato, H; Hashimoto, S; Shimizu, S; Kim, D Y; Ahn, Y C; Choi, D; Miyasaka, K; Mizuno, J
2000-07-01
This study introduces the integrated service digital network (ISDN)-based international teleradiotherapy system (THERAPIS) in radiation oncology between hospitals in Seoul, South Korea and in Sapporo, Japan. THERAPIS has the following functions: (1) exchange of patient's image data, (2) real-time teleconference, and (3) communication of the treatment planning, dose calculation and distribution, and of portal verification images between the remote hospitals. Our preliminary results of applications on eight patients demonstrated that the international telecommunication using THERAPIS was clinically useful and satisfactory with sufficient bandwidth for the transfer of patient data for clinical use in radiation oncology.
Nanotechnology in radiation oncology.
Wang, Andrew Z; Tepper, Joel E
2014-09-10
Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. © 2014 by American Society of Clinical Oncology.
Denny, Diane S; Allen, Debra K; Worthington, Nicole; Gupta, Digant
2014-01-01
Delivering radiation therapy in an oncology setting is a high-risk process where system failures are more likely to occur because of increasing utilization, complexity, and sophistication of the equipment and related processes. Healthcare failure mode and effect analysis (FMEA) is a method used to proactively detect risks to the patient in a particular healthcare process and correct potential errors before adverse events occur. FMEA is a systematic, multidisciplinary team-based approach to error prevention and enhancing patient safety. We describe our experience of using FMEA as a prospective risk-management technique in radiation oncology at a national network of oncology hospitals in the United States, capitalizing not only on the use of a team-based tool but also creating momentum across a network of collaborative facilities seeking to learn from and share best practices with each other. The major steps of our analysis across 4 sites and collectively were: choosing the process and subprocesses to be studied, assembling a multidisciplinary team at each site responsible for conducting the hazard analysis, and developing and implementing actions related to our findings. We identified 5 areas of performance improvement for which risk-reducing actions were successfully implemented across our enterprise. © 2012 National Association for Healthcare Quality.
The NCI Radiation Oncology Branch and the NHLBI Laboratory of Single Molecule Biophysics seek parties to co-develop fluorescent nanodiamonds for use as in vivo and in vitro optical tracking probes toward commercialization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Ariel E.; Department of Radiation Oncology, Boston University School of Medicine, Boston, MA; Department of Radiation Oncology, Harvard Medical School, Boston, MA
Purpose: The Oncology Education Initiative was created to advance oncology and radiation oncology education by integrating structured didactics into the existing core radiology clerkship. We set out to determine whether the addition of structured didactics could lead to a significant increase in overall medical student knowledge about radiation oncology. Methods and Materials: We conducted a pre- and posttest examining concepts in general radiation oncology, breast cancer, and prostate cancer. The 15-question, multiple-choice exam was administered before and after a 1.5-hour didactic lecture by an attending physician in radiation oncology. Individual question changes, overall student changes, and overall categorical changes weremore » analyzed. All hypothesis tests were two-tailed (significance level 0.05). Results: Of the 153 fourth-year students, 137 (90%) took the pre- and posttest and were present for the didactic lecture. The average test grade improved from 59% to 70% (p = 0.011). Improvement was seen in all questions except clinical vignettes involving correct identification of TNM staging. Statistically significant improvement (p {<=} 0.03) was seen in the questions regarding acute and late side effects of radiation, brachytherapy for prostate cancer, delivery of radiation treatment, and management of early-stage breast cancer. Conclusions: Addition of didactics in radiation oncology significantly improves medical students' knowledge of the topic. Despite perceived difficulty in teaching radiation oncology and the assumption that it is beyond the scope of reasonable knowledge for medical students, we have shown that even with one dedicated lecture, students can learn and absorb general principles regarding radiation oncology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manley, Stephen, E-mail: stephen.manley@ncahs.health.nsw.gov.au; Last, Andrew; Fu, Kenneth
Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of ourmore » conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.« less
Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P
2015-01-01
Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients. PMID:26229680
Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P
2015-06-01
Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.
Nanotechnology in Radiation Oncology
Wang, Andrew Z.; Tepper, Joel E.
2014-01-01
Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769
Smith, Grace L; Ganz, Patricia A; Bekelman, Justin E; Chmura, Steven J; Dignam, James J; Efstathiou, Jason A; Jagsi, Reshma; Johnstone, Peter A; Steinberg, Michael L; Williams, Stephen B; Yu, James B; Zietman, Anthony L; Weichselbaum, Ralph R; Tina Shih, Ya-Chen
2017-03-01
Leaders in the oncology community are sounding a clarion call to promote "value" in cancer care decisions. Value in cancer care considers the clinical effectiveness, along with the costs, when selecting a treatment. To discuss possible solutions to the current obstacles to achieving value in the use of advanced technologies in oncology, the National Cancer Policy Forum of the National Academies of Sciences, Engineering, and Medicine held a workshop, "Appropriate Use of Advanced Technologies for Radiation Therapy and Surgery in Oncology" in July 2015. The present report summarizes the discussions related to radiation oncology. The workshop convened stakeholders, including oncologists, researchers, payers, policymakers, and patients. Speakers presented on key themes, including the rationale for a value discussion on advanced technology use in radiation oncology, the generation of scientific evidence for value of advanced radiation technologies, the effect of both scientific evidence and "marketplace" (or economic) factors on the adoption of technologies, and newer approaches to improving value in the practice of radiation oncology. The presentations were followed by a panel discussion with dialogue among the stakeholders. Challenges to generating evidence for the value of advanced technologies include obtaining contemporary, prospective, randomized, and representative comparative effectiveness data. Proposed solutions include the use of prospective registry data; integrating radiation oncology treatment, outcomes, and quality benchmark data; and encouraging insurance coverage with evidence development. Challenges to improving value in practice include the slow adoption of higher value and the de-adoption of lower value treatments. The proposed solutions focused on engaging stakeholders in iterative, collaborative, and evidence-based efforts to define value and promote change in radiation oncology practice. Recent examples of ongoing or successful responses to the discussed challenges were provided. Discussions of "value" have increased as a priority in the radiation oncology community. Practitioners in the radiation oncology community can play a critical role in promoting a value-oriented framework to approach radiation oncology treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Quality Indicators in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Jeffrey M.; Das, Prajnan, E-mail: prajdas@mdanderson.org
Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts tomore » define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Eleanor; Abdel-Wahab, May; Spangler, Ann E.
2009-06-01
Purpose: To survey the radiation oncology residency program directors on the topics of departmental and institutional support systems, residency program structure, Accreditation Council for Graduate Medical Education (ACGME) requirements, and challenges as program director. Methods: A survey was developed and distributed by the leadership of the Association of Directors of Radiation Oncology Programs to all radiation oncology program directors. Summary statistics, medians, and ranges were collated from responses. Results: Radiation oncology program directors had implemented all current required aspects of the ACGME Outcome Project into their training curriculum. Didactic curricula were similar across programs nationally, but research requirements and resourcesmore » varied widely. Program directors responded that implementation of the ACGME Outcome Project and the external review process were among their greatest challenges. Protected time was the top priority for program directors. Conclusions: The Association of Directors of Radiation Oncology Programs recommends that all radiation oncology program directors have protected time and an administrative stipend to support their important administrative and educational role. Departments and institutions should provide adequate and equitable resources to the program directors and residents to meet increasingly demanding training program requirements.« less
Prostate cancer patients who have failed standard radiation therapy have the options of surgery, radioactive seed implantation or cryoablation. Deborah Citrin, M.D., of the Radiation Oncology Branch is leading a study of stereotactic body radiation therapy (SBRT) to treat prostate cancer that has recurred locally after standard radiation therapy. The goal of this study is to use a novel imaging approach to guide treatment and to define the best dose of SBRT for patients whose prostate cancer has recurred after standard radiotherapy. Read more...
Radiation oncology: a primer for medical students.
Berman, Abigail T; Plastaras, John P; Vapiwala, Neha
2013-09-01
Radiation oncology requires a complex understanding of cancer biology, radiation physics, and clinical care. This paper equips the medical student to understand the fundamentals of radiation oncology, first with an introduction to cancer treatment and the use of radiation therapy. Considerations during radiation oncology consultations are discussed extensively with an emphasis on how to formulate an assessment and plan including which treatment modality to use. The treatment planning aspects of radiation oncology are then discussed with a brief introduction to how radiation works, followed by a detailed explanation of the nuances of simulation, including different imaging modalities, immobilization, and accounting for motion. The medical student is then instructed on how to participate in contouring, plan generation and evaluation, and the delivery of radiation on the machine. Lastly, potential adverse effects of radiation are discussed with a particular focus on the on-treatment patient.
Mainali, Apeksha; Sumanth, K N; Ongole, Ravikiran; Denny, Ceena
2011-01-01
Mouth and pharyngeal cancers account for approximately 6% of cancers worldwide. Radiotherapy is one of the means of treatment of head and neck cancer. Consultation with a dental team experienced in caring for patients undergoing treatment for head and neck cancer will improve the quality of life of such patients. To evaluate the attitude of oncologists toward dental consultation to patients planning for/prior to/undergoing/post radiation therapy for head and neck cancers and to evaluate the number of radiation oncologists who encounter oral complaints and consider worth referring to a dentist. A questionnaire-based study was carried out following mailing of covering letter and self-administered questionnaire comprising 11 items, to 25 radiation oncology centers selected in India based on convenient sampling. Out of the 25 centers, we received response from 20 centers with 60 completely filled questionnaires. Five centers did not respond for further correspondences. The study indicated a need for awareness and education among radiation oncologists regarding dental consultation in patients planned/undergoing /post radiation therapy for head and neck cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Tracy A.; Chen, M.-H.; Harris, Jay R.
2007-05-01
Purpose: The United States healthcare system has witnessed declining reimbursement and increasing documentation requirements for longer than 10 years. These have decreased the time available to academic faculty for teaching and mentorship. The impact of these changes on the career choices of residents is unknown. The purpose of this report was to determine whether changes have occurred during the past decade in the proportion of radiation oncology trainees from a single institution entering and staying in academic medicine. Methods and Materials: We performed a review of the resident employment experience of Harvard Joint Center for Radiation Therapy residents graduating duringmore » 13 recent consecutive years (n = 48 residents). The outcomes analyzed were the initial selection of an academic vs. nonacademic career and career changes during the first 3 years after graduation. Results: Of the 48 residents, 65% pursued an academic career immediately after graduation, and 44% remained in academics at the last follow-up, after a median of 6 years. A later graduation year was associated with a decrease in the proportion of graduates immediately entering academic medicine (odds ratio, 0.78; 95% confidence interval, 0.65-0.94). However, the retention rate at 3 years of those who did immediately enter academics increased with a later graduation year (p = 0.03). Conclusion: During a period marked by notable changes in the academic healthcare environment, the proportion of graduating Harvard Joint Center for Radiation Therapy residents pursuing academic careers has been declining; however, despite this decline, the retention rates in academia have increased.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattes, Malcolm D., E-mail: mdm9007@nyp.org; Kharofa, Jordan; Zeidan, Youssef H.
Purpose/Objective(s): To determine the timeline used by postgraduate year (PGY)-5 radiation oncology residents during the job application process and the factors most important to them when deciding on a first job. Methods and Materials: In 2012 and 2013, the Association of Residents in Radiation Oncology conducted a nationwide electronic survey of PGY-5 radiation oncology residents in the United States during the final 2 months of their training. Descriptive statistics are reported. In addition, subgroup analysis was performed. Results: Surveys were completed by 180 of 314 residents contacted. The median time to start networking for the purpose of employment was Januarymore » PGY-4; to start contacting practices, complete and upload a curriculum vitae to a job search website, and use the American Society of Radiation Oncology Career Center was June PGY-4; to obtain letters of recommendation was July PGY-5; to start interviewing was August PGY-5; to finish interviewing was December PGY-5; and to accept a contract was January PGY-5. Those applying for a community position began interviewing at an earlier average time than did those applying for an academic position (P=.04). The most important factors to residents when they evaluated job offers included (in order from most to least important) a collegial environment, geographic location, emphasis on best patient care, quality of support staff and facility, and multidisciplinary approach to patient care. Factors that were rated significantly different between subgroups based on the type of position applied for included adequate mentoring, dedicated research time, access to clinical trials, amount of time it takes to become a partner, geographic location, size of group, starting salary, and amount of vacation and days off. Conclusions: The residents' perspective on the job application process over 2 years is documented to provide a resource for current and future residents and employers to use.« less
Mattes, Malcolm D; Kharofa, Jordan; Zeidan, Youssef H; Tung, Kaity; Gondi, Vinai; Golden, Daniel W
2014-01-01
To determine the timeline used by postgraduate year (PGY)-5 radiation oncology residents during the job application process and the factors most important to them when deciding on a first job. In 2012 and 2013, the Association of Residents in Radiation Oncology conducted a nationwide electronic survey of PGY-5 radiation oncology residents in the United States during the final 2 months of their training. Descriptive statistics are reported. In addition, subgroup analysis was performed. Surveys were completed by 180 of 314 residents contacted. The median time to start networking for the purpose of employment was January PGY-4; to start contacting practices, complete and upload a curriculum vitae to a job search website, and use the American Society of Radiation Oncology Career Center was June PGY-4; to obtain letters of recommendation was July PGY-5; to start interviewing was August PGY-5; to finish interviewing was December PGY-5; and to accept a contract was January PGY-5. Those applying for a community position began interviewing at an earlier average time than did those applying for an academic position (P=.04). The most important factors to residents when they evaluated job offers included (in order from most to least important) a collegial environment, geographic location, emphasis on best patient care, quality of support staff and facility, and multidisciplinary approach to patient care. Factors that were rated significantly different between subgroups based on the type of position applied for included adequate mentoring, dedicated research time, access to clinical trials, amount of time it takes to become a partner, geographic location, size of group, starting salary, and amount of vacation and days off. The residents' perspective on the job application process over 2 years is documented to provide a resource for current and future residents and employers to use. Copyright © 2014 Elsevier Inc. All rights reserved.
Cost-benefit analysis of establishing and operating radiation oncology services in Fiji.
Kim, Eunkyoung; Cho, Yoon-Min; Kwon, Soonman; Park, Kunhee
2017-10-01
Rising demand for services of cancer patients has been recognised by the Government of Fiji as a national health priority. Increasing attention has been paid to the lack of service of radiation therapy or radiotherapy in Fiji. This study aims to estimate and compare the costs and benefits of introducing radiation oncology services in Fiji from the societal perspective. Time horizon for cost-benefit analysis (CBA) was 15 years from 2021 to 2035. The benefits and costs were converted to the present values of 2016. Estimates for the CBA model were taken from previous studies and expert opinions and data obtained from field visits to Fiji in January 2016. Sensitivity analyses with changing assumptions were undertaken. The estimated net benefit, applying the national minimum wage (NMW) to measure monetary value for life-year gained, was -31,624,421 FJD with 0.69 of benefit-cost (B/C) ratio. If gross national income (GNI) per capita was used for the value of life years, net benefit was 3,975,684 FJD (B/C ratio: 1.04). With a pessimistic scenario, establishing the center appeared to be not cost-beneficial, and the net benefit was -53,634,682 FJD (B/C ratio: 0.46); net benefit with an optimistic scenario was estimated 23,178,189 FJD (B/C ratio: 1.20). Based on the CBA results from using GNI per capita instead of the NMW, this project would be cost-beneficial. Introducing a radiation oncology center in Fiji would have potential impacts on financial sustainability, financial protection, and accessibility and equity of the health system. Copyright © 2017 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.
Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe
2016-07-01
To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Protons -- The Future of Radiation Therapy?
NASA Astrophysics Data System (ADS)
Avery, Steven
2007-03-01
Cancer is the 2^nd highest cause of death in the United States. The challenges of controlling this disease remain more difficult as the population lives longer. Proton therapy offers another choice in the management of cancer care. Proton therapy has existed since the late 1950s and the first hospital based center in the United States opened in 1990. Since that time four hospital based proton centers are treating patients with other centers either under construction or under consideration. This talk will focus on an introduction to proton therapy: it's medical advantages over current treatment modalities, accelerators and beam delivery systems, applications to clinical radiation oncology and the future outlook for proton therapy.
Clinical oncologic applications of PET/MRI: a new horizon
Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R
2014-01-01
Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986
Woodhouse, Kristina D; Volz, Edna; Bellerive, Marc; Bergendahl, Howard W; Gabriel, Peter E; Maity, Amit; Hahn, Stephen M; Vapiwala, Neha
2016-01-01
In 2010, the American Society for Radiation Oncology launched a national campaign to improve patient safety in radiation therapy. One recommendation included the expansion of educational programs dedicated to quality and safety. We subsequently implemented a quality and safety culture education program (Q-SCEP) in our large radiation oncology department. The purpose of this study is to describe the design, implementation, and impact of this Q-SCEP. In 2010, we instituted a comprehensive Q-SCEP, consisting of a longitudinal series of lectures, meetings, and interactive workshops. Participation was mandatory for all department members across all network locations. Electronic surveys were administered to assess employee engagement, knowledge retention, preferred learning styles, and the program's overall impact. The Agency for Healthcare Research and Quality (AHRQ) Survey on Patient Safety Culture was administered. Analysis of variance was used for statistical analysis. Between 2010 and 2015, 100% of targeted staff participated in Q-SCEP. Thirty-three percent (132 of 400) and 30% (136 of 450) responded to surveys in 2012 and 2014, respectively. Mean scores improved from 73% to 89% (P < .001), with the largest improvement seen among therapists (+21.7%). The majority strongly agreed that safety culture education was critical to performing their jobs well. Full course compliance was achieved despite the sizable number of personnel and treatment centers. Periodic assessments demonstrated high knowledge retention, which significantly improved over time in nearly all department divisions. Additionally, our AHRQ patient safety grade remains high and continues to improve. These results will be used to further enhance ongoing internal safety initiatives and to inform future innovative efforts. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaorsky, Nicholas G.; Malatesta, Theresa M.; Den, Robert B.
Purpose: Few medical students are given proper clinical training in oncology, much less radiation oncology. We attempted to assess the value of adding a radiation oncology clinical rotation to the medical school curriculum. Methods and Materials: In July 2010, Jefferson Medical College began to offer a 3-week radiation oncology rotation as an elective course for third-year medical students during the core surgical clerkship. During 2010 to 2012, 52 medical students chose to enroll in this rotation. The rotation included outpatient clinics, inpatient consults, didactic sessions, and case-based presentations by the students. Tests of students' knowledge of radiation oncology were administeredmore » anonymously before and after the rotation to evaluate the educational effectiveness of the rotation. Students and radiation oncology faculty were given surveys to assess feedback about the rotation. Results: The students' prerotation test scores had an average of 64% (95% confidence interval [CI], 61-66%). The postrotation test scores improved to an average of 82% (95% CI, 80-83%; 18% absolute improvement). In examination question analysis, scores improved in clinical oncology from 63% to 79%, in radiobiology from 70% to 77%, and in medical physics from 62% to 88%. Improvements in all sections but radiobiology were statistically significant. Students rated the usefulness of the rotation as 8.1 (scale 1-9; 95% CI, 7.3-9.0), their understanding of radiation oncology as a result of the rotation as 8.8 (95% CI, 8.5-9.1), and their recommendation of the rotation to a classmate as 8.2 (95% CI, 7.6-9.0). Conclusions: Integrating a radiation oncology clinical rotation into the medical school curriculum improves student knowledge of radiation oncology, including aspects of clinical oncology, radiobiology, and medical physics. The rotation is appreciated by both students and faculty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenstein, Barry S., E-mail: barry.rosenstein@mssm.ed; Department of Radiation Oncology, New York University School of Medicine, New York, NY; Held, Kathryn D.
2009-11-01
Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educatorsmore » whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.« less
The white book of radiation oncology in Spain.
Herruzo, Ismael; Romero, Jesús; Palacios, Amalia; Mañas, Ana; Samper, Pilar; Bayo, Eloísa; Guedea, Ferran
2011-06-01
The White Book of Radiation Oncology provides a comprehensive overview of the current state of the speciality of radiation oncology in Spain and is intended to be used as a reference for physicians, health care administrators and hospital managers. The present paper summarises the most relevant aspects of the book's 13 chapters in order to bring the message to a wider audience. Among the topics discussed are the epidemiology of cancer in Spain, the role of the radiation oncologist in cancer care, human and material resource needs, new technologies, training of specialists, clinical and cost management, clinical practice, quality control, radiological protection, ethics, relevant legislation, research & development, the history of radiation oncology in Spain and the origins of the Spanish Society of Radiation Oncology (SEOR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burmeister, Jay, E-mail: burmeist@karmanos.org; Chen, Zhe; Chetty, Indrin J.
Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The newmore » curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since the publication of previous recommended curricula, and to provide practical training modules in clinical radiation oncology physics and treatment planning. The PCCSC is committed to keeping the curriculum current and consistent with the ABR examination blueprint.« less
Burmeister, Jay; Chen, Zhe; Chetty, Indrin J; Dieterich, Sonja; Doemer, Anthony; Dominello, Michael M; Howell, Rebecca M; McDermott, Patrick; Nalichowski, Adrian; Prisciandaro, Joann; Ritter, Tim; Smith, Chadd; Schreiber, Eric; Shafman, Timothy; Sutlief, Steven; Xiao, Ying
2016-07-15
The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since the publication of previous recommended curricula, and to provide practical training modules in clinical radiation oncology physics and treatment planning. The PCCSC is committed to keeping the curriculum current and consistent with the ABR examination blueprint. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Aristei, Cynthia; Amichetti, Maurizio; Ciocca, Mario; Nardone, Luigia; Bertoni, Filippo; Vidali, Cristiana
2008-01-01
The aim of surveys on clinical practice is to stimulate discussion and optimize practice. In this paper the current Italian radiotherapy practice after breast-conserving surgery for early breast cancer is described and adherence to national and international guidelines is assessed. Furthermore, results are compared with an earlier survey in northern Italy and international reports. A multiple-choice questionnaire sent to all 138 Italian radiation oncology centers. 48% of centers responded. Most performed breast-conserving surgery when tumor size was < or =3 cm. All centers routinely performed axillary dissection; 45 carried out sentinel node biopsy followed by axillary dissection when the sentinel node was positive. Most centers re-excised when resection margins were positive. The median interval between surgery and radiotherapy, when chemotherapy was not administered, was 60 days. Adjuvant chemotherapy was preferably administered before radiotherapy. Regional lymph nodes were never irradiated in 10 centers; in all others irradiation depended on the number of positive lymph nodes and/or involvement of axillary fat and/or tumor location in medial quadrants. All centers used standard fractionation; hypofractionated schemes were available in 6. Most centers used 4-6 MV photons. In 59 centers the boost dose of 10 Gy could be increased if margins were not negative. All centers ensured patient setup reproducibility. Treatment planning was computerized in 59 centers. The irradiation dose was prescribed at the ICRU point in 56 centers and portal films were made in 54 centers. Intraoperative radiotherapy was used in 4 centers: for partial breast irradiation in 1 and for boost administration in 3 centers. Although the quality of radiotherapy delivery has improved in Italy in recent years, approaches that do not conform to international standards persist.
Hall, William A; Bergom, Carmen; Thompson, Reid F; Baschnagel, Andrew M; Vijayakumar, Srinivasan; Willers, Henning; Li, X Allen; Schultz, Christopher J; Wilson, George D; West, Catharine M L; Capala, Jacek; Coleman, C Norman; Torres-Roca, Javier F; Weidhaas, Joanne; Feng, Felix Y
2018-06-01
To summarize important talking points from a 2016 symposium focusing on real-world challenges to advancing precision medicine in radiation oncology, and to help radiation oncologists navigate the practical challenges of precision, radiation oncology. The American Society for Radiation Oncology, American Association of Physicists in Medicine, and National Cancer Institute cosponsored a meeting on precision medicine in radiation oncology. In June 2016 numerous scientists, clinicians, and physicists convened at the National Institutes of Health to discuss challenges and future directions toward personalized radiation therapy. Various breakout sessions were held to discuss particular components and approaches to the implementation of personalized radiation oncology. This article summarizes the genomically guided radiation therapy breakout session. A summary of existing genomic data enabling personalized radiation therapy, ongoing clinical trials, current challenges, and future directions was collected. The group attempted to provide both a current overview of data that radiation oncologists could use to personalize therapy, along with data that are anticipated in the coming years. It seems apparent from the provided review that a considerable opportunity exists to truly bring genomically guided radiation therapy into clinical reality. Genomically guided radiation therapy is a necessity that must be embraced in the coming years. Incorporating these data into treatment recommendations will provide radiation oncologists with a substantial opportunity to improve outcomes for numerous cancer patients. More research focused on this topic is needed to bring genomic signatures into routine standard of care. Published by Elsevier Inc.
MO-A-16A-01: QA Procedures and Metrics: In Search of QA Usability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiaseelan, V; Thomadsen, B
Radiation therapy has undergone considerable changes in the past two decades with a surge of new technology and treatment delivery methods. The complexity of radiation therapy treatments has increased and there has been increased awareness and publicity about the associated risks. In response, there has been proliferation of guidelines for medical physicists to adopt to ensure that treatments are delivered safely. Task Group recommendations are copious, and clinical physicists' hours are longer, stretched to various degrees between site planning and management, IT support, physics QA, and treatment planning responsibilities.Radiation oncology has many quality control practices in place to ensure themore » delivery of high-quality, safe treatments. Incident reporting systems have been developed to collect statistics about near miss events at many radiation oncology centers. However, tools are lacking to assess the impact of these various control measures. A recent effort to address this shortcoming is the work of Ford et al (2012) who recently published a methodology enumerating quality control quantification for measuring the effectiveness of safety barriers. Over 4000 near-miss incidents reported from 2 academic radiation oncology clinics were analyzed using quality control quantification, and a profile of the most effective quality control measures (metrics) was identified.There is a critical need to identify a QA metric to help the busy clinical physicists to focus their limited time and resources most effectively in order to minimize or eliminate errors in the radiation treatment delivery processes. In this symposium the usefulness of workflows and QA metrics to assure safe and high quality patient care will be explored.Two presentations will be given:Quality Metrics and Risk Management with High Risk Radiation Oncology ProceduresStrategies and metrics for quality management in the TG-100 Era Learning Objectives: Provide an overview and the need for QA usability metrics: Different cultures/practices affecting the effectiveness of methods and metrics. Show examples of quality assurance workflows, Statistical process control, that monitor the treatment planning and delivery process to identify errors. To learn to identify and prioritize risks and QA procedures in radiation oncology. Try to answer the question: Can a quality assurance program aided by quality assurance metrics help minimize errors and ensure safe treatment delivery. Should such metrics be institution specific.« less
Artificial Intelligence in Medicine and Radiation Oncology
Weidlich, Vincent
2018-01-01
Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations. PMID:29904616
Artificial Intelligence in Medicine and Radiation Oncology.
Weidlich, Vincent; Weidlich, Georg A
2018-04-13
Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayr, Nina A., E-mail: ninamayr@uw.edu; Hu, Kenneth S.; Liao, Zhongxing
In this era of globalization and rapid advances in radiation oncology worldwide, the American Society for Radiation Oncology (ASTRO) is committed to help decrease profound regional disparities through the work of the International Education Subcommittee (IES). The IES has expanded its base, reach, and activities to foster educational advances through a variety of educational methods with broad scope, in addition to committing to the advancement of radiation oncology care for cancer patients around the world, through close collaboration with our sister radiation oncology societies and other educational, governmental, and organizational groups.
Vorwerk, H; Zink, K; Schiller, R; Budach, V; Böhmer, D; Kampfer, S; Popp, W; Sack, H; Engenhart-Cabillic, R
2014-05-01
A number of national and international societies published recommendations regarding the required equipment and manpower assumed to be necessary to treat a number of patients with radiotherapy. None of these recommendations were based on actual time measurements needed for specific radiotherapy procedures. The German Society of Radiation Oncology (DEGRO) was interested in substantiating these recommendations by prospective evaluations of all important core procedures of radiotherapy in the most frequent cancers treated by radiotherapy. The results of the examinations of radiotherapy with intensity-modulated radiation therapy (IMRT) in patients with different tumor entities are presented in this manuscript. Four radiation therapy centers [University Hospital of Marburg, University Hospital of Giessen, University Hospital of Berlin (Charité), Klinikum rechts der Isar der Technischen Universität München] participated in this prospective study. The workload of the different occupational groups and room occupancies for the core procedures of radiotherapy were prospectively documented during a 2-month period per center and subsequently statistically analyzed. The time needed per patient varied considerably between individual patients and between centers for all the evaluated procedures. The technical preparation (contouring of target volume and organs at risk, treatment planning, and approval of treatment plan) was the most time-consuming process taking 3 h 54 min on average. The time taken by the medical physicists for this procedure amounted to about 57%. The training part of the preparation time was 87% of the measured time for the senior physician and resident. The total workload for all involved personnel comprised 74.9 min of manpower for the first treatment, 39.7 min for a routine treatment with image guidance, and 22.8 min without image guidance. The mean room occupancy varied between 10.6 min (routine treatment without image guidance) and 23.7 min (first treatment with image guidance). The prospective data presented here allow for an estimate of the required machine time and manpower needed for the core procedures of radiotherapy in an average radiation treatment with IMRT. However, one should be aware that a number of necessary and time-consuming activities were not evaluated in the present study.
Dietzel, C T; Jablonska, K; Niyazi, M; Gauer, T; Ebert, N; Ostheimer, C; Krug, D
2018-04-01
To evaluate the current situation of young radiation oncologists in Germany with regard to the contents and quality of training and level of knowledge, as well as their working conditions and professional satisfaction. From June 2016 to February 2017, a survey was conducted by the young DEGRO (yDEGRO) using an online platform. The questionnaire consisted of 28 items examining a broad range of aspects influencing residency. There were 96 completed questionnaires RESULTS: 83% of participants stated to be very or mostly pleased with their residency training. Moderate working hours and a good colleagueship contribute to a comfortable working environment. Level of knowledge regarding the most common tumor sites (i.e. palliative indications, lung, head and neck, brain, breast, prostate) was pleasing. Radiochemotherapy embodies a cornerstone in training. Modern techniques such as intensity-modulated radiotherapy (IMRT) and stereotactic procedures are now in widespread use. Education for rare indications and center-based procedures offers room for improvement. Radiation oncology remains an attractive and versatile specialty with favorable working conditions. Continuing surveys in future years will be a valuable measuring tool to set further priorities in order to preserve and improve quality of training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaddui, T; Yu, J; Xiao, Y
Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2Dmore » and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance quality assurance services and to be consistently adaptive to the new advances in radiation therapy. This project was supported by NCI grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Paul E., E-mail: pwallner@theabr.org; Anscher, Mitchell S.; Barker, Christopher A.
In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective ofmore » relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.« less
Wallner, Paul E; Anscher, Mitchell S; Barker, Christopher A; Bassetti, Michael; Bristow, Robert G; Cha, Yong I; Dicker, Adam P; Formenti, Silvia C; Graves, Edward E; Hahn, Stephen M; Hei, Tom K; Kimmelman, Alec C; Kirsch, David G; Kozak, Kevin R; Lawrence, Theodore S; Marples, Brian; McBride, William H; Mikkelsen, Ross B; Park, Catherine C; Weidhaas, Joanne B; Zietman, Anthony L; Steinberg, Michael
2014-01-01
In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report. Copyright © 2014 Elsevier Inc. All rights reserved.
Chinese literatures of radiation oncology covered by PubMed over the past five years.
Niu, Dao-Li; Zhen, Jun-Jie; He, Fen
2010-04-01
PubMed is generally acknowledged for its scientificity in literature coverage and authority of literature retrieval . In recent years, many studies have been published in China about radiation oncology. We aimed to investigate the literatures about radiation oncology in China covered by PubMed over the past five years. We collected primary data by searching the PubMed database using the related subject words. The collected data were analyzed and evaluated by bibliometric methods. In the past five years, 550 articles by Chinese authors related to radiotherapy were indexed in PubMed. These articles were published in 160 journals among 26 Chinese provinces/cities. These articles mainly focused on radiation dose and computer-aided radiation therapy. Sixty-four articles were published by Chinese Journal of Cancer , which ranked the top. Forty-four articles were published by the International Journal of Radiation Oncology Biology Physics (IF=4.29), with the largest number among SCI journals. One hundred and sixteen articles from Guangdong Province were covered, accounting for 21.09%. Over the past five years, the discipline of radiation oncology has been greatly developed. The literatures mainly focus on clinical radiation oncology and their regional distribution is uneven.
10 CFR 35.490 - Training for use of manual brachytherapy sources.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minimum of 3 years of residency training in a radiation oncology program approved by the Residency Review... supervised clinical experience in radiation oncology, under an authorized user who meets the requirements in... approved by the Residency Review Committee for Radiation Oncology of the Accreditation Council for Graduate...
10 CFR 35.490 - Training for use of manual brachytherapy sources.
Code of Federal Regulations, 2011 CFR
2011-01-01
... minimum of 3 years of residency training in a radiation oncology program approved by the Residency Review... supervised clinical experience in radiation oncology, under an authorized user who meets the requirements in... approved by the Residency Review Committee for Radiation Oncology of the Accreditation Council for Graduate...
10 CFR 35.490 - Training for use of manual brachytherapy sources.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minimum of 3 years of residency training in a radiation oncology program approved by the Residency Review... supervised clinical experience in radiation oncology, under an authorized user who meets the requirements in... approved by the Residency Review Committee for Radiation Oncology of the Accreditation Council for Graduate...
10 CFR 35.490 - Training for use of manual brachytherapy sources.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minimum of 3 years of residency training in a radiation oncology program approved by the Residency Review... supervised clinical experience in radiation oncology, under an authorized user who meets the requirements in... approved by the Residency Review Committee for Radiation Oncology of the Accreditation Council for Graduate...
10 CFR 35.490 - Training for use of manual brachytherapy sources.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minimum of 3 years of residency training in a radiation oncology program approved by the Residency Review... supervised clinical experience in radiation oncology, under an authorized user who meets the requirements in... approved by the Residency Review Committee for Radiation Oncology of the Accreditation Council for Graduate...
WE-H-BRB-02: Where Do We Stand in the Applications of Big Data in Radiation Oncology?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, L.
Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at themore » NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.« less
WE-H-BRB-00: Big Data in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at themore » NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.« less
WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNutt, T.
Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at themore » NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.« less
NIH funding in Radiation Oncology – A snapshot
Steinberg, Michael; McBride, William H.; Vlashi, Erina; Pajonk, Frank
2013-01-01
Currently, pay lines for NIH grants are at a historical low. In this climate of fierce competition knowledge about the funding situation in a small field like Radiation Oncology becomes very important for career planning and recruitment of faculty. Unfortunately, this data cannot be easily extracted from the NIH s database because it does not discriminate between Radiology and Radiation Oncology Departments. At the start of fiscal year 2013, we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from Radiation Oncology Departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in Radiation Oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to PIs at the Full Professor level and 122 PIs held a PhD degree. In 79% of the grants the research topic fell into the field of Biology, in 13 % into the field of Medical Physics. Only 7.6% of the proposals were clinical investigations. Our data suggests that the field of Radiation Oncology is underfunded by the NIH, and that the current level of support does not match the relevance of Radiation Oncology for cancer patients or the potential of its academic work force. PMID:23523324
Van Onselen, Christina; Dunn, Laura B.; Lee, Kathryn; Dodd, Marylin; Koetters, Theresa; West, Claudia; Paul, Steven M.; Aouizerat, Bradley E.; Wara, William; Swift, Patrick; Miaskowski, Christine
2010-01-01
Purpose of the research The purpose of this study was to describe the occurrence of significant mood disturbance and evaluate for differences in sleep quality among four mood groups (i.e., neither anxiety nor depression, only anxiety, only depression, anxiety and depression) prior to the initiation of radiation therapy (RT). Methods and sample Patients (n=179) with breast, prostate, lung, and brain cancer were evaluated prior to the initiation of RT using the Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiological Studies Depression Scale, and the Spielberger State Anxiety Inventory. Differences in sleep disturbance among the four mood groups were evaluated using analyses of variance. Key results While 38% of the patients reported some type of mood disturbance, 57% of the patients reported sleep disturbance. Patients with clinically significant levels of anxiety and depression reported the highest levels of sleep disturbance. Conclusions Overall, oncology patients with mood disturbances reported more sleep disturbance than those without mood disturbance. Findings suggest that oncology patients need to be assessed for mood and sleep disturbances. PMID:20080444
NASA Astrophysics Data System (ADS)
De Jesús, M.; Trujillo-Zamudio, F. E.
2010-12-01
A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.
Physician attitudes and practices related to voluntary error and near-miss reporting.
Smith, Koren S; Harris, Kendra M; Potters, Louis; Sharma, Rajiv; Mutic, Sasa; Gay, Hiram A; Wright, Jean; Samuels, Michael; Ye, Xiaobu; Ford, Eric; Terezakis, Stephanie
2014-09-01
Incident learning systems are important tools to improve patient safety in radiation oncology, but physician participation in these systems is poor. To understand reporting practices and attitudes, a survey was sent to staff members of four large academic radiation oncology centers, all of which have in-house reporting systems. Institutional review board approval was obtained to send a survey to employees including physicians, dosimetrists, nurses, physicists, and radiation therapists. The survey evaluated barriers to reporting, perceptions of errors, and reporting practices. The responses of physicians were compared with those of other professional groups. There were 274 respondents to the survey, with a response rate of 81.3%. Physicians and other staff agreed that errors and near-misses were happening in their clinics (93.8% v 88.7%, respectively) and that they have a responsibility to report (97% overall). Physicians were significantly less likely to report minor near-misses (P = .001) and minor errors (P = .024) than other groups. Physicians were significantly more concerned about getting colleagues in trouble (P = .015), liability (P = .009), effect on departmental reputation (P = .006), and embarrassment (P < .001) than their colleagues. Regression analysis identified embarrassment among physicians as a critical barrier. If not embarrassed, participants were 2.5 and 4.5 times more likely to report minor errors and major near-miss events, respectively. All members of the radiation oncology team observe errors and near-misses. Physicians, however, are significantly less likely to report events than other colleagues. There are important, specific barriers to physician reporting that need to be addressed to encourage reporting and create a fair culture around reporting. Copyright © 2014 by American Society of Clinical Oncology.
Potential interoperability problems facing multi-site radiation oncology centers in The Netherlands
NASA Astrophysics Data System (ADS)
Scheurleer, J.; Koken, Ph; Wessel, R.
2014-03-01
Aim: To identify potential interoperability problems facing multi-site Radiation Oncology (RO) departments in the Netherlands and solutions for unambiguous multi-system workflows. Specific challenges confronting the RO department of VUmc (RO-VUmc), which is soon to open a satellite department, were characterized. Methods: A nationwide questionnaire survey was conducted to identify possible interoperability problems and solutions. Further detailed information was obtained by in-depth interviews at 3 Dutch RO institutes that already operate in more than one site. Results: The survey had a 100% response rate (n=21). Altogether 95 interoperability problems were described. Most reported problems were on a strategic and semantic level. The majority were DICOM(-RT) and HL7 related (n=65), primarily between treatment planning and verification systems or between departmental and hospital systems. Seven were identified as being relevant for RO-VUmc. Departments have overcome interoperability problems with their own, or with tailor-made vendor solutions. There was little knowledge about or utilization of solutions developed by Integrating the Healthcare Enterprise Radiation Oncology (IHE-RO). Conclusions: Although interoperability problems are still common, solutions have been identified. Awareness of IHE-RO needs to be raised. No major new interoperability problems are predicted as RO-VUmc develops into a multi-site department.
Liauw, Stanley L.; Connell, Philip P.; Weichselbaum, Ralph R.
2013-01-01
The primary objective of radiation oncology is to exploit the biological interaction of radiation within tissue to promote tumor death while minimizing damage to surrounding normal tissue. The clinical delivery of radiation relies on principles of radiation physics that define how radiation energy is deposited in the body, as well as technology that facilitates accurate tumor targeting. This review will summarize the current landscape of recent biological and technological advances in radiation oncology, describe the challenges that exist, and offer potential avenues for improvement. PMID:23427246
Shifting the focus to practice quality improvement in radiation oncology.
Crozier, Cheryl; Erickson-Wittmann, Beth; Movsas, Benjamin; Owen, Jean; Khalid, Najma; Wilson, J Frank
2011-09-01
To demonstrate how the American College of Radiology, Quality Research in Radiation Oncology (QRRO) process survey database can serve as an evidence base for assessing quality of care in radiation oncology. QRRO has drawn a stratified random sample of radiation oncology facilities in the USA and invited those facilities to participate in a Process Survey. Information from a prior QRRO Facilities Survey has been used along with data collected under the current National Process Survey to calculate national averages and make statistically valid inferences for national process measures for selected cancers in which radiation therapy plays a major role. These measures affect outcomes important to patients and providers and measure quality of care. QRRO's survey data provides national benchmark data for numerous quality indicators. The Process Survey is "fully qualified" as a Practice Quality Improvement project by the American Board of Radiology under its Maintenance of Certification requirements for radiation oncology and radiation physics. © 2011 National Association for Healthcare Quality.
Shaverdian, Narek; Yoo, Sun Mi; Cook, Ryan; Chang, Eric M; Jiang, Naomi; Yuan, Ye; Sandler, Kiri; Steinberg, Michael; Lee, Percy
2017-08-01
Internists and primary care providers play a growing role in cancer care. We therefore evaluated the awareness of radiation therapy in general and specifically the clinical utility of stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC) among current US internal medicine residents. A web-based institutional review board-approved multi-institutional survey was distributed to US internal medicine residency programs. The survey evaluated trainee demographic characteristics, baseline radiation oncology awareness, knowledge of the role of SBRT for early-stage NSCLC, and whether the survey successfully improved awareness. Thirty US internal medicine programs participated, with an overall participant response rate of 46% (1177 of 2551). Of the trainees, 93% (n=1076) reported no radiation oncology education in their residency, 39% (n=452) reported confidence in knowing when to consult radiation oncology in an oncologic emergency, and 26% (n=293) reported confidence in knowing when to consult radiation oncology in the setting of a newly diagnosed cancer. Of the participants, 76% (n=850) correctly identified that surgical resection is the standard treatment in operable early-stage NSCLC, but only 50% (n=559) of participants would recommend SBRT to a medically inoperable patient, followed by 31% of participants (n=347) who were unsure of the most appropriate treatment, and 10% (n=117) who recommended waiting to offer palliative therapy. Ninety percent of participants (n=1029) agreed that they would benefit from further training on when to consult radiation oncology. Overall, 96% (n=1072) indicated that the survey increased their knowledge and awareness of the role of SBRT. The majority of participating trainees received no education in radiation oncology in their residency, reported a lack of confidence regarding when to consult radiation oncology, and overwhelmingly agreed that they would benefit from further training. These findings should serve as a call to increase the educational collaboration between internal medicine and radiation oncology departments to ensure optimal cancer care. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, S.
Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at themore » NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.« less
National Institutes of Health Funding in Radiation Oncology: A Snapshot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Michael; McBride, William H.; Vlashi, Erina
Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually.more » Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force.« less
National Institutes of Health funding in radiation oncology: a snapshot.
Steinberg, Michael; McBride, William H; Vlashi, Erina; Pajonk, Frank
2013-06-01
Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force. Copyright © 2013 Elsevier Inc. All rights reserved.
Report of China's innovation increase and research growth in radiation oncology.
Zhu, Hongcheng; Yang, Xi; Qin, Qin; Bian, Kangqi; Zhang, Chi; Liu, Jia; Cheng, Hongyan; Sun, Xinchen
2014-06-01
To investigate the research status of radiation oncology in China through survey of literature in international radiation oncology journals and retrospectively compare the outputs of radiation oncology articles of the three major regions of China-Mainland (ML), Taiwan (TW) and Hong Kong (HK). Radiation oncology journals were selected from "oncology" and "radiology, nuclear & medical image" category from Science Citation Index Expand (SCIE). Articles from the ML, TW and HK were retrieved from MEDLINE. The number of total articles, clinical trials, case reports, impact factors (IF), institutions and articles published in each journals were conducted for quantity and quality comparisons. A total 818 articles from 13 radiation oncology journals were searched, of which 427 are from ML, 259 from TW, and 132 from HK. Ninety-seven clinical trials and 5 case reports are reported in China. Accumulated IF of articles from ML (1,417.11) was much higher than that of TW (1,003.093) and HK (544.711), while the average IF of articles from ML is the lowest. The total number of articles from China especially ML increased significantly in the last decade. The number of articles published from the ML has exceeded those from TW and HK. However, the quality of articles from TW and HK is better than that from ML.
Evaluation of Health Economics in Radiation Oncology: A Systematic Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Timothy K.; Goodman, Chris D.; Boldt, R. Gabriel
Purpose: Despite the rising costs in radiation oncology, the impact of health economics research on radiation therapy practice analysis patterns is unclear. We performed a systematic review of cost-effectiveness analyses (CEAs) and cost-utility analyses (CUAs) to identify trends in reporting quality in the radiation oncology literature over time. Methods and Materials: A systematic review of radiation oncology economic evaluations up to 2014 was performed, using MEDLINE and EMBASE databases. The Consolidated Health Economic Evaluation Reporting Standards guideline informed data abstraction variables including study demographics, economic parameters, and methodological details. Tufts Medical Center CEA registry quality scores provided a basis formore » qualitative assessment of included studies. Studies were stratified by 3 time periods (1995-2004, 2005-2009, and 2010-2014). The Cochran-Armitage trend test and linear trend test were used to identify trends over time. Results: In total, 102 articles were selected for final review. Most studies were in the context of a model (61%) or clinical trial (28%). Many studies lacked a conflict of interest (COI) statement (67%), a sponsorship statement (48%), a reported study time horizon (35%), and the use of discounting (29%). There was a significant increase over time in the reporting of a COI statement (P<.001), health care payer perspective (P=.019), sensitivity analyses using multivariate (P=.043) or probabilistic methods (P=.011), incremental cost-effectiveness threshold (P<.001), secondary source utility weights (P=.010), and cost effectiveness acceptability curves (P=.049). There was a trend toward improvement in Tuft scores over time (P=.065). Conclusions: Recent reports demonstrate improved reporting rates in economic evaluations; however, there remains significant room for improvement as reporting rates are still suboptimal. As fiscal pressures rise, we will rely on economic assessments to guide our practice decisions and policies. We recommend improved adherence to published guidelines and further research to determine the clinical implications of our findings.« less
Evaluation of Health Economics in Radiation Oncology: A Systematic Review.
Nguyen, Timothy K; Goodman, Chris D; Boldt, R Gabriel; Warner, Andrew; Palma, David A; Rodrigues, George B; Lock, Michael I; Mishra, Mark V; Zaric, Gregory S; Louie, Alexander V
2016-04-01
Despite the rising costs in radiation oncology, the impact of health economics research on radiation therapy practice analysis patterns is unclear. We performed a systematic review of cost-effectiveness analyses (CEAs) and cost-utility analyses (CUAs) to identify trends in reporting quality in the radiation oncology literature over time. A systematic review of radiation oncology economic evaluations up to 2014 was performed, using MEDLINE and EMBASE databases. The Consolidated Health Economic Evaluation Reporting Standards guideline informed data abstraction variables including study demographics, economic parameters, and methodological details. Tufts Medical Center CEA registry quality scores provided a basis for qualitative assessment of included studies. Studies were stratified by 3 time periods (1995-2004, 2005-2009, and 2010-2014). The Cochran-Armitage trend test and linear trend test were used to identify trends over time. In total, 102 articles were selected for final review. Most studies were in the context of a model (61%) or clinical trial (28%). Many studies lacked a conflict of interest (COI) statement (67%), a sponsorship statement (48%), a reported study time horizon (35%), and the use of discounting (29%). There was a significant increase over time in the reporting of a COI statement (P<.001), health care payer perspective (P=.019), sensitivity analyses using multivariate (P=.043) or probabilistic methods (P=.011), incremental cost-effectiveness threshold (P<.001), secondary source utility weights (P=.010), and cost effectiveness acceptability curves (P=.049). There was a trend toward improvement in Tuft scores over time (P=.065). Recent reports demonstrate improved reporting rates in economic evaluations; however, there remains significant room for improvement as reporting rates are still suboptimal. As fiscal pressures rise, we will rely on economic assessments to guide our practice decisions and policies. We recommend improved adherence to published guidelines and further research to determine the clinical implications of our findings. Copyright © 2016 Elsevier Inc. All rights reserved.
Gender Trends in Radiation Oncology in the United States: A 30-Year Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Awad A.; Egleston, Brian; Holliday, Emma
Purpose: Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials: We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared with female representation in journals of general medicine andmore » other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the past 3 decades, using Association of American Medical Colleges data. Results: The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Conclusions: Female first and senior authorship in the Red Journal has increased significantly, as has women's participation among full-time faculty, but women remain underrepresented among radiation oncology residents compared with their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Awad A., E-mail: Awad.ahmed@jhsmiami.org; Holliday, Emma B.; Deville, Curtiland
Purpose: A significant physician shortage has been projected to occur by 2025, and demand for oncologists is expected to outpace supply to an even greater degree. In response to this, many have called to increase the number of radiation oncology residency positions. The purpose of this study is to evaluate National Resident Matching Program (NRMP) data for the number of residency positions between 2004 and 2015 as well as the number and caliber of applicants for those positions and to compare radiation oncology to all residency specialties. Methods: NRMP data for all specialties participating in the match, including radiation oncology,more » were assessed over time examining the number of programs participating in the match, the number of positions offered, and the ratio of applicants to positions in the match from 2004 to 2015. Results: From 2004 to 2015, the number of total programs participating in the match has increased by 26.7%, compared to the increase of 28.6% in the number of radiation oncology programs from during the same time period. The total number of positions offered in the match increased by 53.4%, whereas radiation oncology positions increased by 56.3%, during the same time period. The ratio of applicants (defined as those selecting a specialty as their first or only choice) to positions for all specialties has fluctuated over this time period and has gone from 1.21 to 1.15, whereas radiation oncology experienced a decrease from 1.45 to 1.14. Conclusions: NRMP data suggest that senior medical student applications to radiation oncology are decreasing compared to those of other specialties. If we hope to continue to attract the best and brightest to enter our field, we must continue to support early exposure to radiation oncology, positive educational experiences, and dedicated mentorship to interested medical students.« less
Gender trends in radiation oncology in the United States: a 30-year analysis.
Ahmed, Awad A; Egleston, Brian; Holliday, Emma; Eastwick, Gary; Takita, Cristiane; Jagsi, Reshma
2014-01-01
Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared with female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the past 3 decades, using Association of American Medical Colleges data. The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Female first and senior authorship in the Red Journal has increased significantly, as has women's participation among full-time faculty, but women remain underrepresented among radiation oncology residents compared with their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology. Copyright © 2014 Elsevier Inc. All rights reserved.
GENDER TRENDS IN RADIATION ONCOLOGY IN THE UNITED STATES: A 30 YEAR ANALYSIS
Ahmed, Awad A; Egleston, Brian; Holliday, Emma; Eastwick, Gary; Takita, Cristiane; Jagsi, Reshma
2013-01-01
Purpose/Objective Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women’s participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials We examined the gender of first and senior U.S. physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010 and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared to female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the last three decades, using AAMC data. Results The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Conclusion Female first and senior authorship in the Red Journal has increased significantly, as has women’s participation among full-time faculty, but women remain under-represented among radiation oncology residents as compared to their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology. PMID:24189127
Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment.
Lenneman, Carrie G; Sawyer, Douglas B
2016-03-18
Through the success of basic and disease-specific research, cancer survivors are one of the largest growing subsets of individuals accessing the healthcare system. Interestingly, cardiovascular disease is the second leading cause of morbidity and mortality in cancer survivors after recurrent malignancy. This recognition has helped stimulate a collaboration between oncology and cardiology practitioners and researchers, and the portmanteau cardio-oncology (also known as onco-cardiology) can now be found in many medical centers. This collaboration promises new insights into how cancer therapies impact cardiovascular homeostasis and long-term effects on cancer survivors. In this review, we will discuss the most recent views on the cardiotoxicity related to various classes of chemotherapy agents and radiation. We will also discuss broadly the current strategies for treating and preventing cardiovascular effects of cancer therapy. © 2016 American Heart Association, Inc.
2003 survey of Canadian radiation oncology residents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Don; Fairchild, Alysa; Keyes, Mira
2005-06-01
Purpose: Radiation oncology's popularity as a career in Canada has surged in the past 5 years. Consequently, resident numbers in Canadian radiation oncology residencies are at all-time highs. This study aimed to survey Canadian radiation oncology residents about their opinions of their specialty and training experiences. Methods and Materials: Residents of Canadian radiation oncology residencies that enroll trainees through the Canadian Resident Matching Service were identified from a national database. Residents were mailed an anonymous survey. Results: Eight of 101 (7.9%) potential respondents were foreign funded. Fifty-two of 101 (51.5%) residents responded. A strong record of graduating its residents wasmore » the most important factor residents considered when choosing programs. Satisfaction with their program was expressed by 92.3% of respondents, and 94.3% expressed satisfaction with their specialty. Respondents planning to practice in Canada totaled 80.8%, and 76.9% plan to have academic careers. Respondents identified job availability and receiving adequate teaching from preceptors during residency as their most important concerns. Conclusions: Though most respondents are satisfied with their programs and specialty, job availability and adequate teaching are concerns. In the future, limited time and resources and the continued popularity of radiation oncology as a career will magnify the challenge of training competent radiation oncologists in Canada.« less
Radiation Therapy for Lung Cancer
... You have many issues to cope with. . . Your oncology team along with family and friends are available ... Therapy Answers www.rtanswers.org ABOUT THE RADIATION ONCOLOGY TEAM Radiation oncologists are cancer doctors who also ...
Radiation Therapy for Skin Cancer
... ask friends, family, support groups and your radiation oncology treatment team for help. Visit www.rtanswers.org ... rtanswers.org LEARNING ABOUT CLINICAL TRIALS The radiation oncology treatment team is constantly exploring new ways to ...
Radiation Therapy for Gynecologic Cancers
... A RE LEARNING ABOUT CLINICAL TRIALS The radiation oncology team is constantly exploring new ways to treat ... Cl inical Trials. gov www.clinicaltrials.gov NRG Oncology (Clinical Trials Using Radiation) www.nrgoncology.org Gynecologic ...
Developing a national radiation oncology registry: From acorns to oaks.
Palta, Jatinder R; Efstathiou, Jason A; Bekelman, Justin E; Mutic, Sasa; Bogardus, Carl R; McNutt, Todd R; Gabriel, Peter E; Lawton, Colleen A; Zietman, Anthony L; Rose, Christopher M
2012-01-01
The National Radiation Oncology Registry (NROR) is a collaborative initiative of the Radiation Oncology Institute and the American Society of Radiation Oncology, with input and guidance from other major stakeholders in oncology. The overarching mission of the NROR is to improve the care of cancer patients by capturing reliable information on treatment delivery and health outcomes. The NROR will collect patient-specific radiotherapy data electronically to allow for rapid comparison of the many competing treatment modalities and account for effectiveness, outcome, utilization, quality, safety, and cost. It will provide benchmark data and quality improvement tools for individual practitioners. The NROR steering committee has determined that prostate cancer provides an appropriate model to test the concept and the data capturing software in a limited number of sites. The NROR pilot project will begin with this disease-gathering treatment and outcomes data from a limited number of treatment sites across the range of practice; once feasibility is proven, it will scale up to more sites and diseases. When the NROR is fully implemented, all radiotherapy facilities, along with their radiation oncologists, will be solicited to participate in it. With the broader participation of the radiation oncology community, NROR has the potential to serve as a resource for determining national patterns of care, gaps in treatment quality, comparative effectiveness, and hypothesis generation to identify new linkages between therapeutic processes and outcomes. The NROR will benefit radiation oncologists and other care providers, payors, vendors, policy-makers, and, most importantly, cancer patients by capturing reliable information on population-based radiation treatment delivery. Copyright © 2012 (c) 2010 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maraldo, Maja V., E-mail: dra.maraldo@gmail.com; Dabaja, Bouthaina S.; Filippi, Andrea R.
Purpose: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Methods: Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontouredmore » clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Results: Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. Conclusions: RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs.« less
Ahmed, Awad A; Holliday, Emma B; Deville, Curtiland; Jagsi, Reshma; Haffty, Bruce G; Wilson, Lynn D
2015-12-01
A significant physician shortage has been projected to occur by 2025, and demand for oncologists is expected to outpace supply to an even greater degree. In response to this, many have called to increase the number of radiation oncology residency positions. The purpose of this study is to evaluate National Resident Matching Program (NRMP) data for the number of residency positions between 2004 and 2015 as well as the number and caliber of applicants for those positions and to compare radiation oncology to all residency specialties. NRMP data for all specialties participating in the match, including radiation oncology, were assessed over time examining the number of programs participating in the match, the number of positions offered, and the ratio of applicants to positions in the match from 2004 to 2015. From 2004 to 2015, the number of total programs participating in the match has increased by 26.7%, compared to the increase of 28.6% in the number of radiation oncology programs from during the same time period. The total number of positions offered in the match increased by 53.4%, whereas radiation oncology positions increased by 56.3%, during the same time period. The ratio of applicants (defined as those selecting a specialty as their first or only choice) to positions for all specialties has fluctuated over this time period and has gone from 1.21 to 1.15, whereas radiation oncology experienced a decrease from 1.45 to 1.14. NRMP data suggest that senior medical student applications to radiation oncology are decreasing compared to those of other specialties. If we hope to continue to attract the best and brightest to enter our field, we must continue to support early exposure to radiation oncology, positive educational experiences, and dedicated mentorship to interested medical students. Copyright © 2015 Elsevier Inc. All rights reserved.
First Author Research Productivity of United States Radiation Oncology Residents: 2002-2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Peter B.; Sopka, Dennis M.; Kathpal, Madeera
2009-08-01
Purpose: Participation in investigative research is a required element of radiation oncology residency in the United States. Our purpose was to quantify the first author research productivity of recent U.S. radiation oncology residents during their residency training. Methods and Materials: We performed a computer-based search of PubMed and a manual review of the proceedings of the annual meetings of the American Society for Therapeutic Radiology and Oncology to identify all publications and presented abstracts with a radiation oncology resident as the first author between 2002 and 2007. Results: Of 1,098 residents trained at 81 programs, 50% published {>=}1 article (range,more » 0-9), and 53% presented {>=}1 abstract (range, 0-3) at an American Society for Therapeutic Radiology and Oncology annual meeting. The national average was 1.01 articles published and 1.09 abstracts presented per resident during 4 years of training. Of 678 articles published, 82% represented original research and 18% were review articles. Residents contributed 15% of all abstracts at American Society for Therapeutic Radiology and Oncology annual meetings, and the resident contribution to orally presented abstracts increased from 12% to 21% during the study period. Individuals training at programs with >6 residents produced roughly twice as many articles and abstracts. Holman Research Pathway residents produced double the national average of articles and abstracts. Conclusion: Although variability exists among individuals and among training programs, U.S. radiation oncology residents routinely participate in investigative research suitable for publication or presentation at a scientific meeting. These data provide national research benchmarks that can assist current and future radiation oncology residents and training programs in their self-assessment and research planning.« less
Epstein, Joel B; Parker, Ira R; Epstein, Matthew S; Gupta, Anurag; Kutis, Susan; Witkowski, Daniela M
2007-04-01
The oral complications and morbidity resulting from overall cancer therapy utilizing radiation, chemotherapy, and/or stem cell transplantation can have significant impact on a patient's health, quality of life, cost of care, and cancer management. There has been minimal health services research focusing on the status of medically necessary, oral supportive services at US cancer centers. A pre-tested, survey questionnaire was distributed to the directors of National Cancer Institute (NCI)-designated comprehensive cancer centers to assess each institution's resource availability and clinical practices, as it relates to the prevention and management of oral complications during cancer treatment. Sixteen of the 39 comprehensive cancer centers responded to the survey. Of the respondents, 56% of the centers did not have a dental department. The sites of delivery of oral supportive care services range from the provision of in-house dental care to community-based, private practice sites. No standard protocols were in place for either oral preventive care or for supportive services for oral complications during or after cancer therapy. Fifty percent of the responding comprehensive cancer centers reported orally focused research and/or clinical trial activities. Comprehensive cancer care must include an oral care component, particularly for those cancer patients who are at high risk for oral complications. This requires a functional team of oral care providers collaborating closely within the oncology team. Considering the number of cancer patients receiving aggressive oncologic treatment that may result in oral toxicity, the impact of oral conditions on a compromised host, and the potential lack of appropriate resources and healthcare personnel to manage these complications, future research efforts are needed to identify the strengths and weaknesses of present oral supportive care delivery systems at both NCI-designated cancer centers and community-based oncology practices.
TH-D-204-00: The Pursuit of Radiation Oncology Performance Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care,more » increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.« less
TH-D-204-01: The Pursuit of Radiation Oncology Performance Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sternick, E.
The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care,more » increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, J; Imbergamo, P
The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less
Learning From Trials on Radiation Dose in Non-Small Cell Lung Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Jeffrey, E-mail: jbradley@wustl.edu; Hu, Chen
2016-11-15
In this issue of the International Journal of Radiation Oncology • Biology • Physics, Taylor et al present a meta-analysis of published data supporting 2 findings: (1) radiation dose escalation seems to benefit patients who receive radiation alone for non-small cell lung cancer; and (2) radiation dose escalation has a detrimental effect on overall survival in the setting of concurrent chemotherapy. The latter finding is supported by data but has perplexed the oncology community. Perhaps these findings are not perplexing at all. Perhaps it is simply another lesson in the major principle in radiation oncology, to minimize radiation dose to normalmore » tissues.« less
Mitchell, James D; Parhar, Preeti; Narayana, Ashwatha
2010-09-01
Under the Accreditation Council for Graduate Medical Education (ACGME) Outcome Project, residency programs are required to provide data on educational outcomes and evidence for how this information is used to improve resident education. To teach and assess systems-based practice through a course in health care policy, finance, and law for radiation oncology residents, and to determine its efficacy. We designed a pilot course in health care policy, finance, and law related to radiation oncology. Invited experts gave lectures on policy issues important to radiation oncology and half of the participants attended the American Society for Therapeutic Radiation and Oncology (ASTRO) Advocacy Day. Participants completed pre- and postcourse tests to assess their knowledge of health policy. Six radiation oncology residents participated, with 5 (84%) completing all components. For the 5 residents completing all assessments, the mean precourse score was 64% and the mean postcourse score was 84% (P = .05). Improvement was noted in all 3 sections of health policy, finance, and medical law. At the end of the course, 5 of 6 residents were motivated to learn about health policy, and 4 of 6 agreed it was important for physicians to be involved in policy matters. Teaching radiation oncology residents systems-based practice through a course on health policy, finance, and law is feasible and was well received. Such a course can help teaching programs comply with the ACGME Outcome Project and would also be applicable to trainees in other specialties.
Mitchell, James D.; Parhar, Preeti; Narayana, Ashwatha
2010-01-01
Background Under the Accreditation Council for Graduate Medical Education (ACGME) Outcome Project, residency programs are required to provide data on educational outcomes and evidence for how this information is used to improve resident education. Objective To teach and assess systems-based practice through a course in health care policy, finance, and law for radiation oncology residents, and to determine its efficacy. Methods and Materials We designed a pilot course in health care policy, finance, and law related to radiation oncology. Invited experts gave lectures on policy issues important to radiation oncology and half of the participants attended the American Society for Therapeutic Radiation and Oncology (ASTRO) Advocacy Day. Participants completed pre- and postcourse tests to assess their knowledge of health policy. Results Six radiation oncology residents participated, with 5 (84%) completing all components. For the 5 residents completing all assessments, the mean precourse score was 64% and the mean postcourse score was 84% (P = .05). Improvement was noted in all 3 sections of health policy, finance, and medical law. At the end of the course, 5 of 6 residents were motivated to learn about health policy, and 4 of 6 agreed it was important for physicians to be involved in policy matters. Conclusions Teaching radiation oncology residents systems-based practice through a course on health policy, finance, and law is feasible and was well received. Such a course can help teaching programs comply with the ACGME Outcome Project and would also be applicable to trainees in other specialties. PMID:21976087
Prabhu, Arpan V; Hansberry, David R; Agarwal, Nitin; Clump, David A; Heron, Dwight E
2016-11-01
Physicians encourage patients to be informed about their health care options, but much of the online health care-related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Radiation oncology-related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, RadiologyInfo.org, and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each physician-patient interaction more productive and efficient. Copyright © 2016 Elsevier Inc. All rights reserved.
Patterns of Care for Lung Cancer in Radiation Oncology Departments of Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demiral, Ayse Nur; Alicikus, Zuemre Arican; Isil Ugur, Vahide
2008-12-01
Purpose: To determine the patterns of care for lung cancer in Turkish radiation oncology centers. Methods and Materials: Questionnaire forms from 21 of 24 (87.5%) centers that responded were evaluated. Results: The most frequent histology was non-small cell lung cancer (NSCLC) (81%). The most common postoperative radiotherapy (RT) indications were close/(+) surgical margins (95%) and presence of pN2 disease (91%). The most common indications for postoperative chemotherapy (CHT) were '{>=} IB' disease (19%) and the presence of pN2 disease (19%). In Stage IIIA potentially resectable NSCLC, the most frequent treatment approach was neoadjuvant concomitant chemoradiotherapy (CHRT) (57%). In Stage IIIAmore » unresectable and Stage IIIB disease, the most frequent approach was definitive concomitant CHRT (91%). In limited SCLC, the most common treatment approach was concomitant CHRT with cisplatin+etoposide for cycles 1-3, completion of CHT to cycles 4-6, and finally prophylactic cranial irradiation in patients with complete response (71%). Six cycles of cisplatin + etoposide CHT and palliative thoracic RT, when required, was the most commonly used treatment (81%) in extensive SCLC. Sixty-two percent of centers did not have endobronchial brachytherapy (EBB) facilities. Conclusion: There is great variation in diagnostic testing, treatment strategies, indications for postoperative RT and CHT, RT features, and EBB availability for LC cases. To establish standards, national guidelines should be prepared using a multidisciplinary approach.« less
Mullen, Kristin H; Berry, Donna L; Zierler, Brenda K
2004-09-01
To determine the acceptability and usability of a computerized quality-of-life (QOL) and symptom assessment tool and the graphically displayed QOL and symptom output in an ambulatory radiation oncology clinic. Descriptive, cross-sectional. Radiation oncology clinic located in an urban university medical center. 45 patients with cancer being evaluated for radiation therapy and 10 clinicians, who submitted 12 surveys. Acceptability of the computerized assessment was measured with an online, 16-item, Likert-style survey delivered as 45 patients undergoing radiation therapy completed a 25-item QOL and symptom assessment. Usability of the graphic output was assessed with clinician completion of a four-item paper survey. Acceptability and usability of computerized patient assessment. The patient acceptability survey indicated that 70% (n = 28) liked computers and 10% (n = 4) did not. The program was easy to use for 79% (n = 26), easy to understand for 91% (n = 30), and enjoyable for 71% (n = 24). Seventy-six percent (n = 25) believed that the amount of time needed to complete the computerized survey was acceptable. Sixty-six percent (n = 21) responded that they were satisfied with the program, and none of the participants chose the very dissatisfied response. Eighty-three percent (n = 10) of the clinicians found the graphic output helpful in promoting communication with patients, 75% (n = 9) found the output report helpful in identifying appropriate areas of QOL deficits or concerns, and 83% (n = 10) indicated that the output helped guide clinical interactions with patients. The computer-based QOL and symptom assessment tool is acceptable to patients, and the graphically displayed QOL and symptom output is useful to radiation oncology nurses and physicians. Wider application of computerized patient-generated data can continue in various cancer settings and be tested for clinical and organizational outcomes.
Authorship in Radiation Oncology: Proliferation Trends Over 30 Years.
Ojerholm, Eric; Swisher-McClure, Samuel
2015-11-15
To investigate authorship trends in the radiation oncology literature. We examined the authorship credits of "original research articles" within 2 popular radiation oncology journals-International Journal of Radiation Oncology, Biology, Physics and Radiotherapy and Oncology-in 1984, 1994, 2004, and 2014. We compared the number of authors per publication during these 4 time periods using simple linear regression as a test for trend. We investigated additional author characteristics in a subset of articles. A total of 2005 articles were eligible. The mean number of authors per publication rose from 4.3 in 1984 to 9.1 in 2014 (P<.001). On subset analysis of 400 articles, there was an increase in the percentage of multidisciplinary bylines (from 52% to 72%), multi-institutional bylines (from 20% to 53%), and publications with a trainee first author (from 16% to 56%) during the study period. The mean number of authors per publication has more than doubled over the last 30 years in the radiation oncology literature. Possible explanations include increasingly complex and collaborative research as well as honorary authorship. Explicit documentation of author contributions could help ensure that scientific work is credited according to accepted standards. Copyright © 2015 Elsevier Inc. All rights reserved.
TU-G-201-00: Imaging Equipment Specification and Selection in Radiation Oncology Departments
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezzell, G; Sanscrainte, E; Tomlinson, C
Have a question about RO-ILS: Radiation Oncology Incident Learning System™, or interested in learning more? Sponsored by the American Society for Radiation Oncology (ASTRO) and AAPM, RO-ILS is the only medical specialty society-sponsored incident learning system for radiation oncology. It facilitates safer and higher quality care in radiation oncology by providing a mechanism for shared learning in a secure and non-punitive environment. Please join our RO-ILS experts for a question and answer session on Wednesday, July 15th at 8:30 in the Partners in Solutions Room in Exhibit Hall C. Our experts include: Gary Ezzell, PhD, Mayo Clinic Arizona, [Brett Miller,more » Phillip Beron, and Derek Brown], Emily Sanscrainte from Clarity PSO and Cindy Tomlinson, MPP, ASTRO.« less
The Growth of Academic Radiation Oncology: A Survey of Endowed Professorships in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, Todd H.; Smith, Steven M.; Powell, Simon N.
2009-06-01
Purpose: The academic health of a medical specialty can be gauged by the level of university support through endowed professorships. Methods and Materials: We conducted a survey of the 86 academic programs in radiation oncology to determine the current status of endowed chairs in this discipline. Results: Over the past decade, the number of endowed chairs has more than doubled, and it has almost tripled over the past 13 years. The number of programs with at least one chair has increased from 31% to 65%. Conclusions: Coupled with other indicators of academic growth, such as the proportion of graduating residentsmore » seeking academic positions, there has been clear and sustained growth in academic radiation oncology.« less
Barker, Christopher A.; Mutter, Robert W.; Shapiro, Lauren Q.; Zhang, Zhigang; Wolden, Suzanne L.; Yahalom, Joachim
2016-01-01
Purpose Intravenous contrast media (ICM) administration is recommended as part of radiation therapy (RT) simulation in a variety of clinical scenarios, but can cause adverse events. We sought to assess radiation oncology resident knowledge about ICM, and to determine if an educational intervention (EI) could improve this level of knowledge. In conjunction, we retrospectively analyzed risk factors and adverse events related to ICM use before and after the EI to determine whether any improvements in patient outcomes could be realized. Methods Over 2 years, 21 residents in radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC) participated in a pretest-EI-posttest study based on the ACR’s Manual on Contrast Media. Medical and RT records were reviewed, and ICM use, risk factors and adverse events were recorded. Results There was no significant difference in resident understanding of ICM use in residents of different years of training (p=0.85). Understanding of ICM use increased in residents that attended the EI (p<0.05), but this was not sustained 1 year after the EI (p=0.48). Of the 6852 RT simulations that were performed at MSKCC, 1350 (19.7%) involved ICM. Mild adverse events occurred in a few patients (<5%) simulated with ICM, but there was no difference in the number of risk factors or adverse events before and after the EI. Conclusions The EI effectively improved short-term understanding of ICM use. However, the effect was not sustained. The frequency of adverse events related to ICM use was small and not significantly impacted by the EI. PMID:21129689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eich, Hans Theodor; Engenhart-Cabillic, Rita; Hansemann, Katja
2008-08-01
Purpose: The German Hodgkin Study Group (GHSG) set up a radiotherapy (RT) reference center within the Department of Radiation Oncology at University of Cologne to undertake quality assurance of the group's clinical studies. In the HD10 trial (early-favorable stages) and HD11 trial (early-unfavorable stages) all patients received involved field (IF)-RT (30 Gy vs. 20 Gy) within a combined-modality approach. For these patients a central prospective review of all diagnostic imaging was performed by expert radiation oncologists to control disease extension and to define IF treatment volume. Methods and Materials: On the basis of simulation films, verification films, and radiotherapy casemore » report form (CRF) an expert panel evaluated retrospectively the adequacy of irradiated IF treatment portals according to the RT prescription, applied radiation doses, treatment time, and technical parameters. Results: Between 1999 and 2006 a total of 825 of 1370 randomized patients of the HD10 trial (60%) and 954 of 1422 patients of the HD11 trial (67%) were evaluated by the panel. Radiotherapy was rated as suboptimal in 47% of all reviewed cases. Although the participating RT centers received a precise RT prescription, most difficulties occurred in the adequate coverage of the IF (40%), followed by technical faults (12%). Deviations from the prescribed single daily dose (1.8-2 Gy), weekly dose, and total reference dose were rare (1%). Conclusions: As a consequence of these findings, radiation oncologists were trained on the definition of IF-RT at GHSG meetings and at the annual meetings of the German Society for Therapeutic Radiation Oncology. Possible correlations between RT quality and relapse rate will be investigated.« less
Application of systems and control theory-based hazard analysis to radiation oncology.
Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G
2016-03-01
Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve safety and prevent accidents and warrants further investigation.
Wei, Randy L; Colbert, Lauren E; Jones, Joshua; Racsa, Margarita; Kane, Gabrielle; Lutz, Steve; Vapiwala, Neha; Dharmarajan, Kavita V
The purpose of this study was to assess the state of palliative and supportive care (PSC) and palliative radiation therapy (RT) educational curricula in radiation oncology residency programs in the United States. We surveyed 87 program directors of radiation oncology residency programs in the United States between September 2015 and November 2015. An electronic survey on PSC and palliative RT education during residency was sent to all program directors. The survey consisted of questions on (1) perceived relevance of PSC and palliative RT to radiation oncology training, (2) formal didactic sessions on domains of PSC and palliative RT, (3) effective teaching formats for PSC and palliative RT education, and (4) perceived barriers for integrating PSC and palliative RT into the residency curriculum. A total of 57 responses (63%) was received. Most program directors agreed or strongly agreed that PSC (93%) and palliative radiation therapy (99%) are important competencies for radiation oncology residents and fellows; however, only 67% of residency programs had formal educational activities in principles and practice of PSC. Most programs had 1 or more hours of formal didactics on management of pain (67%), management of neuropathic pain (65%), and management of nausea and vomiting (63%); however, only 35%, 33%, and 30% had dedicated lectures on initial management of fatigue, assessing role of spirituality, and discussing advance care directives, respectively. Last, 85% of programs reported having a formal curriculum on palliative RT. Programs were most likely to have education on palliative radiation to brain, bone, and spine, but less likely on visceral, or skin, metastasis. Residency program directors believe that PSC and palliative RT are important competencies for their trainees and support increasing education in these 2 educational domains. Many residency programs have structured curricula on PSC and palliative radiation education, but room for improvement exists in management of fatigue, assessing role of spirituality, and discussion regarding advance care planning. Copyright © 2016 American Society of Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Multiple Authorship in Two English-Language Journals in Radiation Oncology.
ERIC Educational Resources Information Center
Halperin, Edward C.; And Others
1992-01-01
A study of multiple authorship in 1,908 papers in the "International Journal of Radiation Oncology, Biology, and Physics" and "Radiotherapy and Oncology" from 1983-87 investigated patterns and trends in number of authors per article by journal, article type, country, author's institution, author gender, and order of listing of…
Accuracy and Precision of a Veterinary Neuronavigation System for Radiation Oncology Positioning
Ballegeer, Elizabeth A.; Frey, Stephen; Sieffert, Rob
2018-01-01
Conformal radiation treatment plans such as IMRT and other radiosurgery techniques require very precise patient positioning, typically within a millimeter of error for best results. CT cone beam, real-time navigation, and infrared position sensors are potential options for success but rarely present in veterinary radiation centers. A neuronavigation system (Brainsight Vet, Rogue Research) was tested 22 times on a skull for positioning accuracy and precision analysis. The first 6 manipulations allowed the authors to become familiar with the system but were still included in the analyses. Overall, the targeting mean error in 3D was 1.437 mm with SD 1.242 mm. This system could be used for positioning for radiation therapy or radiosurgery. PMID:29666822
Current status of brachytherapy in Korea: a national survey of radiation oncologists
Kim, Joo-Young; Park, Won; Kim, Young Seok
2016-01-01
Objective The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Methods Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. Results The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using 192Ir (26 centers) or 60Co (two centers). Among the 26 centers using 192Ir sources, 11 treated fewer than 40 patients per year. In the two centers using 60Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. Conclusion The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy. PMID:27102244
Current status of brachytherapy in Korea: a national survey of radiation oncologists.
Kim, Haeyoung; Kim, Joo Young; Kim, Juree; Park, Won; Kim, Young Seok; Kim, Hak Jae; Kim, Yong Bae
2016-07-01
The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using (192)Ir (26 centers) or (60)Co (two centers). Among the 26 centers using (192)Ir sources, 11 treated fewer than 40 patients per year. In the two centers using (60)Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy.
Medical Malpractice Claims in Radiation Oncology: A Population-Based Study 1985-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Deborah C.; Punglia, Rinaa S.; Fox, Dov
Purpose: The purpose of this study was to determine trends in radiation oncology malpractice claims and expenses during the last 28 years and to compare radiation oncology malpractice claims to those of other specialties. Methods and Materials: We performed a retrospective analysis of closed malpractice claims filed from 1985 to 2012, collected by a nationwide medical liability insurance trade association. We analyzed characteristics and trends among closed claims, indemnity payments (payments to plaintiff), and litigation expenses. We also compared radiation oncology malpractice claims to those of 21 other medical specialties. Time series dollar amounts were adjusted for inflation (2012 was themore » index year). Results: There were 1517 closed claims involving radiation oncology, of which 342 (22.5%) were paid. Average and median indemnity payments were $276,792 and $122,500, respectively, ranking fifth and eighth, respectively, among the 22 specialty groups. Linear regression modeling of time trends showed decreasing total numbers of claims (β = −1.96 annually, P=.003), increasing average litigation expenses paid (β = +$1472 annually, P≤.001), and no significant changes in average indemnity payments (β = −$681, P=.89). Conclusions: Medical professional liability claims filed against radiation oncologists are not common and have declined in recent years. However, indemnity payments in radiation oncology are large relative to those of many other specialties. In recent years, the average indemnity payment has been stable, whereas litigation expenses have increased.« less
Considerations for Observational Research Using Large Data Sets in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagsi, Reshma, E-mail: rjagsi@med.umich.edu; Bekelman, Justin E.; Chen, Aileen
The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concisemore » and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold substantial promise for advancing our understanding of many unanswered questions of importance to the field of radiation oncology.« less
Considerations for observational research using large data sets in radiation oncology.
Jagsi, Reshma; Bekelman, Justin E; Chen, Aileen; Chen, Ronald C; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D; Yu, James B
2014-09-01
The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold substantial promise for advancing our understanding of many unanswered questions of importance to the field of radiation oncology. Copyright © 2014 Elsevier Inc. All rights reserved.
Ahern, Verity; Klein, Linda; Bentvelzen, Adam; Garlan, Karen; Jeffery, Heather
2011-04-01
Many radiation oncology registrars have no exposure to paediatrics during their training. To address this, the Paediatric Special Interest Group of the Royal Australian and New Zealand College of Radiologists has convened a biennial teaching course since 1997. The 2009 course incorporated the use of a Structured, Clinical, Objective-Referenced, Problem-orientated, Integrated and Organized (SCORPIO) teaching model for small group tutorials. This study evaluates whether the paediatric radiation oncology curriculum can be adapted to the SCORPIO teaching model and to evaluate the revised course from the registrars' perspective. Teaching and learning resources included a pre-course reading list, a lecture series programme and a SCORPIO workshop. Three evaluation instruments were developed: an overall Course Evaluation Survey for all participants, a SCORPIO Workshop Survey for registrars and a Teacher's SCORPIO Workshop Survey. Forty-five radiation oncology registrars, 14 radiation therapists and five paediatric oncology registrars attended. Seventy-three per cent (47/64) of all participants completed the Course Evaluation Survey and 95% (38/40) of registrars completed the SCORPIO Workshop Survey. All teachers completed the Teacher's SCORPIO Survey (10/10). The overall educational experience was rated as good or excellent by 93% (43/47) of respondents. Ratings of satisfaction with lecture sessions were predominantly good or excellent. Registrars gave the SCORPIO workshop high ratings on each of 10 aspects of quality, with 82% allocating an excellent rating overall for the SCORPIO activity. Both registrars and teachers recommended more time for the SCORPIO stations. The 2009 course met the educational needs of the radiation oncology registrars and the SCORPIO workshop was a highly valued educational component. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.
Technology for Innovation in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Indrin J.; Martel, Mary K., E-mail: mmartel@mdanderson.org; Jaffray, David A.
Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14,more » 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.« less
Technology for Innovation in Radiation Oncology.
Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W
2015-11-01
Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.
Antioch, K M; Walsh, M K; Anderson, D; Wilson, R; Chambers, C; Willmer, P
1998-01-01
The Victorian Department of Human Services has developed a classification and funding model for non-admitted radiation oncology patients. Agencies were previously funded on an historical cost input basis. For 1996-97, payments were made according to the new Non-admitted Radiation Oncology Classification System and include four key components. Fixed grants are based on Weighted Radiation Therapy Services targets for megavoltage courses, planning procedures (dosimetry and simulation) and consultations. The additional throughput pool covers additional Weighted Radiation Therapy Services once targets are reached, with access conditional on the utilisation of a minimum number of megavoltage fields by each hospital. Block grants cover specialised treatments, such as brachytherapy, allied health payments and other support services. Compensation grants were available to bring payments up to the level of the previous year. There is potential to provide incentives to promote best practice in Australia through linking appropriate practice to funding models. Key Australian and international developments should be monitored, including economic evaluation studies, classification and funding models, and the deliberations of the American College of Radiology, the American Society for Therapeutic Radiology and Oncology, the Trans-Tasman Radiation Oncology Group and the Council of Oncology Societies of Australia. National impact on clinical practice guidelines in Australia can be achieved through the Quality of Care and Health Outcomes Committee of the National Health and Medical Research Council.
Shen, Xinglei; Showalter, Timothy N; Mishra, Mark V; Barth, Sanford; Rao, Vijay; Levin, David; Parker, Laurence
2014-07-01
We evaluated long-term changes in the volume and payments for radiation oncology services in the intensity-modulated radiation therapy (IMRT) era from 2000 to 2010 using a database of Medicare claims. We used the Medicare Physician/Supplier Procedure Summary Master File (PSPSMF) for each year from 2000 to 2010 to tabulate the volume and payments for radiation oncology services. This database provides a summary of each billing code submitted to Medicare part B. We identified all codes used in radiation oncology services and categorized billing codes by treatment modality and place of service. We focused our analysis on office-based practices. Total office-based patient volume increased 8.2% from 2000 to 2010, whereas total payments increased 217%. Increase in overall payments increased dramatically from 2000 to 2007, but subsequently plateaued from 2008 to 2010. Increases in complexity of care, and image guidance in particular, have also resulted in higher payments. The cost of radiation oncology services increased from 2000 to 2010, mostly due to IMRT, but also with significant contribution from increased overall complexity of care. A cost adjustment occurred after 2007, limiting further growth of payments. Future health policy studies should explore the potential for further cost containment, including differences in use between freestanding and hospital outpatient facilities. Copyright © 2014 by American Society of Clinical Oncology.
Thureau, S; Challand, T; Bibault, J-E; Biau, J; Cervellera, M; Diaz, O; Faivre, J-C; Fumagalli, I; Leroy, T; Lescut, N; Martin, V; Pichon, B; Riou, O; Dubray, B; Giraud, P; Hennequin, C
2013-10-01
A national survey was conducted among the radiation oncology residents about their clinical activities and responsibilities. The aim was to evaluate the clinical workload and to assess how medical tasks are delegated and supervised. A first questionnaire was administered to radiation oncology residents during a national course. A second questionnaire was mailed to 59 heads of departments. The response rate was 62% for radiation oncology residents (99 questionnaires) and 51% for heads of department (30). Eighteen heads of department (64%) declared having written specifications describing the residents' clinical tasks and roles, while only 31 radiation oncology residents (34%) knew about such a document (P=0.009). A majority of residents were satisfied with the amount of medical tasks that were delegated to them. Older residents complained about insufficient exposure to new patient's consultation, treatment planning and portal images validation. The variations observed between departments may induce heterogeneous trainings and should be addressed specifically. National specifications are necessary to reduce heterogeneities in training, and to insure that the residents' training covers all the professional skills required to practice radiation oncology. A frame endorsed by academic and professional societies would also clarify the responsibilities of both residents and seniors. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Igaki, Hiroshi; Onishi, Hiroshi; Nakagawa, Keiichi; Dokiya, Takushi; Nemoto, Kenji; Shigematsu, Naoyuki; Nishimura, Yasumasa; Hiraoka, Masahiro
2013-12-01
The consultation fee for outpatient radiotherapy was newly introduced in the national health insurance system in Japan in April 2012. We conducted a survey on the use of this consultation fee and its effect on clinical practices. The health insurance committee of the Japanese Society of Therapeutic Radiology and Oncology conducted a questionnaire survey. The questionnaire form was mailed to 160 councilors of the Society, the target questionees. A total of 94 answers (58% of the target questionees) sent back were used for analyses. The analyses revealed that 75% of the hospitals charged most of the patients who receive radiotherapy in an outpatient setting a consultation fee. The introduction of the consultation fee led to some changes in radiation oncology clinics, as evidenced by the response of 'more careful observations by medical staff' in 37% of questionees and a 12% increase in the number of full-time radiation oncology nurses. It was also shown that the vast majority (92%) of radiation oncologists expected a positive influence of the consultation fee on radiation oncology clinics in Japan. Our questionnaire survey revealed the present status of the use of a newly introduced consultation fee for outpatient radiotherapy, and the results suggested its possible effect on promoting a multidisciplinary medical care system in radiation oncology departments in Japan.
Meeting Report--NASA Radiation Biomarker Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straume, Tore; Amundson, Sally A,; Blakely, William F.
2008-05-01
A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triagemore » following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu; Chadha, Manjeet; Rengan, Ramesh
Purpose: To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. Methods and Materials: A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. Results: We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education inmore » intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Conclusion: Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo–US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives.« less
Grover, Surbhi; Chadha, Manjeet; Rengan, Ramesh; Williams, Tim R; Morris, Zachary S; Morgan, David A L; Tripuraneni, Prabhakar; Hu, Kenneth; Viswanathan, Akila N
2015-12-01
To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo-US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives. Copyright © 2015 Elsevier Inc. All rights reserved.
Lambert, Carole; Gagnon, Robert; Nguyen, David; Charlin, Bernard
2009-01-01
Background The Script Concordance test (SCT) is a reliable and valid tool to evaluate clinical reasoning in complex situations where experts' opinions may be divided. Scores reflect the degree of concordance between the performance of examinees and that of a reference panel of experienced physicians. The purpose of this study is to demonstrate SCT's usefulness in radiation oncology. Methods A 90 items radiation oncology SCT was administered to 155 participants. Three levels of experience were tested: medical students (n = 70), radiation oncology residents (n = 38) and radiation oncologists (n = 47). Statistical tests were performed to assess reliability and to document validity. Results After item optimization, the test comprised 30 cases and 70 questions. Cronbach alpha was 0.90. Mean scores were 51.62 (± 8.19) for students, 71.20 (± 9.45) for residents and 76.67 (± 6.14) for radiation oncologists. The difference between the three groups was statistically significant when compared by the Kruskall-Wallis test (p < 0.001). Conclusion The SCT is reliable and useful to discriminate among participants according to their level of experience in radiation oncology. It appears as a useful tool to document the progression of reasoning during residency training. PMID:19203358
Smartphones and tablets: Reshaping radiation oncologists’ lives
Gomez-Iturriaga, Alfonso; Bilbao, Pedro; Casquero, Francisco; Cacicedo, Jon; Crook, Juanita
2012-01-01
Background Smartphones and tablets are new handheld devices always connected to an information source and capable of providing instant updates, they allow doctors to access the most updated information and provide decision support at the point of care. Aim The practice of radiation oncology has always been a discipline that relies on advanced technology. Smartphones provide substantial processing power, incorporating innovative user interfaces and applications. Materials and methods The most popular smartphone and tablet app stores were searched for “radiation oncology” and “oncology” related apps. A web search was also performed searching for smartphones, tablets, oncology, radiology and radiation oncology. Results Smartphones and tablets allow rapid access to information in the form of podcasts, apps, protocols, reference texts, recent research and more. Conclusion With the rapidly changing advances in radiation oncology, the trend toward accessing resources via smartphones and tablets will only increase, future will show if this technology will improve clinical care. PMID:24669308
Medical Physics Panel Discussion
NASA Astrophysics Data System (ADS)
Guèye, Paul; Avery, Steven; Baird, Richard; Soares, Christopher; Amols, Howard; Tripuraneni, Prabhakar; Majewski, Stan; Weisenberger, Drew
2006-03-01
The panel discussion will explore opportunities and vistas in medical physics research and practice, medical imaging, teaching medical physics to undergraduates, and medical physics curricula as a recruiting tool for physics departments. Panel members consist of representatives from NSBP (Paul Guèye and Steven Avery), NIH/NIBIB (Richard Baird), NIST (Christopher Soares), AAPM (Howard Amols), ASTRO (Prabhakar Tripuraneni), and Jefferson Lab (Stan Majewski and Drew Weisenberger). Medical Physicists are part of Departments of Radiation Oncology at hospitals and medical centers. The field of medical physics includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. It also ranges from basic researcher (at college institutions, industries, and laboratories) to applications in clinical environments.
Subspecialist training in surgical gynecologic oncology in the Nordic countries.
Antonsen, Sofie L; Avall-Lundqvist, Elisabeth; Salvesen, Helga B; Auranen, Annika; Salvarsdottir, Anna; Høgdall, Claus
2011-08-01
To survey the centers that can provide subspecialty surgical training and education in gynecological oncology in the Nordic countries, we developed an online questionnaire in co-operation with the Nordic Society of Gynecological Oncology. The link to the survey was mailed to 22 Scandinavian gynecological centers in charge of surgical treatment of cancer patients. Twenty (91%) centers participated. Four centers reported to be accredited European subspecialty training centers, a further six were interested in being accredited, and 11 centers were accredited by the respective National Board. Fourteen (74%) centers were interested in being listed for exchange of fellows. Our data show a large Nordic potential and interest in improving the gynecologic oncology standards and can be used to enhance the awareness of gynecologic oncology training in Scandinavia and to facilitate the exchange of fellows between Nordic countries. © 2011 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2011 Nordic Federation of Societies of Obstetrics and Gynecology.
Proctor, Julian W; Martz, Elaine; Schenken, Larry L; Rainville, Rebecca; Marlowe, Ursula
2011-05-01
To investigate the effectiveness of a screening tool to enhance clinical trial participation at a community radiation oncology center involved in a National Cancer Institute-funded disparities program but lacking on-site clinical trials personnel. The screening form was pasted to the front of the charts and filled out for all new patients over the 9-month period of the study, during which time five external beam radiation therapy (EBRT) trials and a patient perception study were open for accrual. Patient consent was obtained by assorted personnel at several different sites. Patients potentially eligible for a trial were identified and approached by one of the clinic staff. Patients who were under- or uninsured, age > 80 years, members of an racial/ethnic minority, or recipients of medical assistance were identified as at risk for health care disparities and were offered patient navigator services. Of 196 patients consulted during the study, 144 were treated with EBRT. Of the 24 patients eligible for EBRT trials, 23 were approached (one had an incomplete screening form), and 15 accepted. Of 77 patients eligible for a patient perception trial, 72 were approached (five had incomplete forms), and 45 accepted. The eligibility and acceptance rates for EBRT trials were similar for disparities and nondisparities patients. Screening was completed for 96 patients (67%). When completed, the screening tool ensured clinical trial accrual. The major factor limiting overall accrual was a shortage of available trials.
Proctor, Julian W.; Martz, Elaine; Schenken, Larry L.; Rainville, Rebecca; Marlowe, Ursula
2011-01-01
Purpose: To investigate the effectiveness of a screening tool to enhance clinical trial participation at a community radiation oncology center involved in a National Cancer Institute–funded disparities program but lacking on-site clinical trials personnel. Patients and Methods: The screening form was pasted to the front of the charts and filled out for all new patients over the 9-month period of the study, during which time five external beam radiation therapy (EBRT) trials and a patient perception study were open for accrual. Patient consent was obtained by assorted personnel at several different sites. Patients potentially eligible for a trial were identified and approached by one of the clinic staff. Patients who were under- or uninsured, age > 80 years, members of an racial/ethnic minority, or recipients of medical assistance were identified as at risk for health care disparities and were offered patient navigator services. Results: Of 196 patients consulted during the study, 144 were treated with EBRT. Of the 24 patients eligible for EBRT trials, 23 were approached (one had an incomplete screening form), and 15 accepted. Of 77 patients eligible for a patient perception trial, 72 were approached (five had incomplete forms), and 45 accepted. The eligibility and acceptance rates for EBRT trials were similar for disparities and nondisparities patients. Screening was completed for 96 patients (67%). Conclusion: When completed, the screening tool ensured clinical trial accrual. The major factor limiting overall accrual was a shortage of available trials. PMID:21886496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vichare, Anushree; Washington, Raynard; Patton, Caroline
Purpose: To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. Methods and Materials: An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results ismore » presented in this paper. Results: A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. Conclusions: This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for future studies, as many changes in the healthcare field exert pressure on the workforce.« less
Vichare, Anushree; Washington, Raynard; Patton, Caroline; Arnone, Anna; Olsen, Christine; Fung, Claire Y; Hopkins, Shane; Pohar, Surjeet
2013-12-01
To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results is presented in this paper. A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for future studies, as many changes in the healthcare field exert pressure on the workforce. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhu, Arpan V.; Hansberry, David R.; Agarwal, Nitin
Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Associationmore » of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each physician-patient interaction more productive and efficient.« less
Contemporary Trends in Radiation Oncology Resident Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vivek; Burt, Lindsay; Gimotty, Phyllis A.
Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int Jmore » Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These contemporary figures may be useful to medical students considering radiation oncology, current residents, training programs, and prospective employers.« less
Contemporary Trends in Radiation Oncology Resident Research.
Verma, Vivek; Burt, Lindsay; Gimotty, Phyllis A; Ojerholm, Eric
2016-11-15
To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals-most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These contemporary figures may be useful to medical students considering radiation oncology, current residents, training programs, and prospective employers. Copyright © 2016 Elsevier Inc. All rights reserved.
SU-F-P-01: Changing Your Oncology Information System: A Detailed Process and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abing, C
Purpose: Radiation Oncology departments are faced with many options for pairing their treatment machines with record and verify systems. Recently, there is a push to have a single-vendor-solution. In order to achieve this, the department must go through an intense and rigorous transition process. Our department has recently completed this process and now offer a detailed description of the process along with lessons learned. Methods: Our cancer center transitioned from a multi-vendor department to a single-vendor department over the 2015 calendar year. Our staff was partitioned off into superuser groups, an interface team, migration team, and go-live team. Six monthsmore » after successful implementation, a detailed survey was sent to the radiation oncology department to determine areas for improvement as well as successes in the process. Results: The transition between record and verify systems was considered a complete success. The results of the survey did point out some areas for improving inefficiencies with our staff; both interactions between each other and the vendors. Conclusion: Though this process was intricate and lengthy, it can be made easier with careful planning and detailed designation of project responsibilities. Our survey results and retrospective analysis of the transition are valuable to those wishing to make this change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yahalom, Joachim, E-mail: yahalomj@mskcc.org; Illidge, Tim; Specht, Lena
Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of ENL, involving any organ in the body and the spectrum of histological sub-types, poses a challenge both for routine clinical care and for the conduct of prospective and retrospective studies. This has led to uncertainty and lack of consistency in RT approaches between centers and clinicians. Thus far there is a lack of guidelines for the use of RT inmore » the management of ENL. This report presents an effort by the International Lymphoma Radiation Oncology Group (ILROG) to harmonize and standardize the principles of treatment of ENL, and to address the technical challenges of simulation, volume definition and treatment planning for the most frequently involved organs. Specifically, detailed recommendations for RT volumes are provided. We have applied the same modern principles of involved site radiation therapy as previously developed and published as guidelines for Hodgkin lymphoma and nodal NHL. We have adopted RT volume definitions based on the International Commission on Radiation Units and Measurements (ICRU), as has been widely adopted by the field of radiation oncology for solid tumors. Organ-specific recommendations take into account histological subtype, anatomy, the treatment intent, and other treatment modalities that may be have been used before RT.« less
Shi, Diana D; DiGiovanni, Julia; Skamene, Sonia; Noveroske Philbrick, Sarah; Wang, Yanbing; Barnes, Elizabeth A; Chow, Edward; Sullivan, Adam; Balboni, Tracy A
2018-04-01
A significant portion of radiation treatment (30-40%) is delivered with palliative intent. Given the frequency of palliative care (PC) in radiation oncology, we determined the patterns of research focusing on symptom control and palliative care (SCPC) in two prominent radiation oncology journals from 2005-2014. Original research manuscripts published from 2005-2014 in the International Journal of Radiation Oncology *Biology* Physics (Red Journal) and the Radiotherapy and Oncology Journal (Green Journal) were reviewed to categorize articles as PC and/or SCPC. Articles were categorized as PC if it pertained to any aspect of treatment of metastatic cancer, and as SCPC if symptom control in the metastatic cancer setting was the goal of the research inquiry and/or any domain of palliative clinical practice guidelines was the goal of research inquiry. From 2005-2014, 4.9% (312/6,386) of original research articles published in the Red Journal and 3.5% (84/2,406) published in the Green Journal pertained to metastatic cancer, and were categorized as PC. In the Red Journal, 1.3% (84/6,386) of original research articles were categorized as SCPC; 1.3% (32/2,406) of articles in the Green Journal were categorized as SCPC. There was no trend observed in the proportion of SCPC articles published over time in the Red Journal (P=0.76), the Green Journal (P=0.48), or both journals in aggregate (P=0.38). Despite the fact that palliative radiotherapy is a critical part of radiation oncology practice, PC and SCPC-focused original research is poorly represented in the Red Journal and the Green Journal.
Group consensus peer review in radiation oncology: commitment to quality.
Duggar, W Neil; Bhandari, Rahul; Yang, Chunli Claus; Vijayakumar, Srinivasan
2018-03-27
Peer review, especially prospective peer review, has been supported by professional organizations as an important element in optimal Radiation Oncology practice based on its demonstration of efficacy at detecting and preventing errors prior to patient treatment. Implementation of peer review is not without barriers, but solutions do exist to mitigate or eliminate some of those barriers. Peer review practice at our institution involves three key elements: new patient conference, treatment planning conference, and chart rounds. The treatment planning conference is an adaptation of the group consensus peer review model from radiology which utilizes a group of peers reviewing each treatment plan prior to implementation. The peer group in radiation oncology includes Radiation Oncologists, Physician Residents, Medical Physicists, Dosimetrists, and Therapists. Thus, technical and clinical aspects of each plan are evaluated simultaneously. Though peer review is held in high regard in Radiation Oncology, many barriers commonly exist preventing optimal implementation such as time intensiveness, repetition, and distraction from clinic time with patients. Through the use of automated review tools and commitment by individuals and administration in regards to staffing, scheduling, and responsibilities, these barriers have been mitigated to implement this Group Consensus Peer Review model into a Radiation Oncology Clinic. A Group Consensus Peer Review model has been implemented with strategies to address common barriers to effective and efficient peer review.
Evaluating stress, burnout and job satisfaction in New Zealand radiation oncology departments.
Jasperse, M; Herst, P; Dungey, G
2014-01-01
This research aimed to determine the levels of occupational stress, burnout and job satisfaction among radiation oncology workers across New Zealand. All oncology staff practising in all eight radiation oncology departments in New Zealand were invited to participate anonymously in a questionnaire, which consisted of the Maslach Burnout Inventory and measures of stress intensity associated with specific occupational stressors, stress reduction strategies and job satisfaction. A total of 171 (out of 349) complete responses were analysed using spss 19; there were 23 oncologists, 111 radiation therapists, 22 radiation nurses and 15 radiation physicists. All participants, regardless of profession, reported high stress levels associated with both patient-centred and organisational stressors. Participants scored high in all three domains of burnout: emotional exhaustion, depersonalisation and personal accomplishment. Interestingly, although organisational stressors predicted higher emotional exhaustion and emotional exhaustion predicted lower job satisfaction, patient stressors were associated with higher job satisfaction. Job satisfaction initiatives such as ongoing education, mentoring and role extension were supported by many participants as was addressing organisational stressors, such as lack of recognition and support from management and unrealistic expectations and demands. New Zealand staff exhibit higher levels of burnout than Maslach Burnout Inventory medical norms and oncology workers in previous international studies. © 2013 John Wiley & Sons Ltd.
Abdel-Wahab, May; Rengan, Ramesh; Curran, Bruce; Swerdloff, Stuart; Miettinen, Mika; Field, Colin; Ranjitkar, Sunita; Palta, Jatinder; Tripuraneni, Prabhakar
2010-02-01
To describe the processes and benefits of the integrating healthcare enterprises in radiation oncology (IHE-RO). The IHE-RO process includes five basic steps. The first step is to identify common interoperability issues encountered in radiation treatment planning and the delivery process. IHE-RO committees partner with vendors to develop solutions (integration profiles) to interoperability problems. The broad application of these integration profiles across a variety of vender platforms is tested annually at the Connectathon event. Demonstration of the seamless integration and transfer of patient data to the potential users are then presented by vendors at the public demonstration event. Users can then integrate these profiles into requests for proposals and vendor contracts by institutions. Incorporation of completed integration profiles into requests for proposals can be done when purchasing new equipment. Vendors can publish IHE integration statements to document the integration profiles supported by their products. As a result, users can reference integration profiles in requests for proposals, simplifying the systems acquisition process. These IHE-RO solutions are now available in many of the commercial radiation oncology-related treatment planning, delivery, and information systems. They are also implemented at cancer care sites around the world. IHE-RO serves an important purpose for the radiation oncology community at large. Copyright 2010 Elsevier Inc. All rights reserved.
Patient-Reported Outcomes and Survivorship in Radiation Oncology: Overcoming the Cons
Siddiqui, Farzan; Liu, Arthur K.; Watkins-Bruner, Deborah; Movsas, Benjamin
2014-01-01
Purpose Although patient-reported outcomes (PROs) have become a key component of clinical oncology trials, many challenges exist regarding their optimal application. The goal of this article is to methodically review these barriers and suggest strategies to overcome them. This review will primarily focus on radiation oncology examples, will address issues regarding the “why, how, and what” of PROs, and will provide strategies for difficult problems such as methods for reducing missing data. This review will also address cancer survivorship because it closely relates to PROs. Methods Key articles focusing on PROs, quality of life, and survivorship issues in oncology trials are highlighted, with an emphasis on radiation oncology clinical trials. Publications and Web sites of various governmental and regulatory agencies are also reviewed. Results The study of PROs in clinical oncology trials has become well established. There are guidelines provided by organizations such as the US Food and Drug Administration that clearly indicate the importance of and methodology for studying PROs. Clinical trials in oncology have repeatedly demonstrated the value of studying PROs and suggested ways to overcome some of the key challenges. The Radiation Therapy Oncology Group (RTOG) has led some of these efforts, and their contributions are highlighted. The current state of cancer survivorship guidelines is also discussed. Conclusion The study of PROs presents significant benefits in understanding and treating toxicities and enhancing quality of life; however, challenges remain. Strategies are presented to overcome these hurdles, which will ultimately improve cancer survivorship. PMID:25113760
Lara, Pedro; Calvo, Felipe A; Guedea, Ferran; Bilbao, Pedro; Biete, Alberto
2013-11-09
Most medical schools in Spain (80%) offer undergraduate training in oncology. This education is highly variable in terms of content (theory and practical training), number of credits, and the medical specialty and departmental affiliation of the professors. Much of this variability is due to university traditions in the configuration of credits and programmes, and also to the structure of the hospital-based practical training. Undergraduate medical students deserve a more coherent and modern approach to education with a strong emphasis on clinical practice. Oncology is an interdisciplinary science that requires the input of professors from multiple specialties to provide the primary body of knowledge and skills needed to obtain both a theoretical and clinical understanding of cancer. Clinical skills should be a key focus due to their importance in the current model of integrated medical management and care. Clinical radiation oncology is a traditional and comprehensive hospital-based platform for undergraduate education in oncology. In Spain, a significant number (n = 80) of radiation oncology specialists have a contractual relationship to teach university courses. Most Spanish universities (80%) have a radiation oncologist on staff, some of whom are department chairs and many others are full professors who have been hired and promoted under competitive conditions of evaluation as established by the National Agency for Quality Evaluation. The Spanish Society of Radiation Oncology (SEOR) has identified new opportunities to improve undergraduate education in oncology. In this article, we discuss proposals related to theoretical (20 items) and practical clinical training (9 items). We also describe the SEOR University Forum, which is an initiative to develop a strategic plan to implement and organize cancer education at the undergraduate level in an interdisciplinary teaching spirit and with a strong contribution from radiation oncologists.
Sabater, S; Montero, A; López Fernández, T; González Ferrer, J J; Arenas, M
2018-05-23
There is an increasing number of patients with cardiac implantable electronic devices (CIED), either pacemakers or defibrillators, who are receiving a course of radiotherapy. Several guidelines have been published by national societies, but no Spanish national guidelines for management of these patients have been published. More importantly, national clinical practice regarding these patients is not standardised. Members of the Spanish Breast Cancer Radiation Oncology Group (GEORM in Spanish) were surveyed through an online questionnaire on behalf of the Spanish radiation oncology departments. Only 39.3% of the Spanish radiation oncology departments have policies aimed at CIED carrier patients. Regardless of that, 96.4% of those who responded to the survey refer these patients to their Cardiology department before the start of the course of radiotherapy, and 17.8% of respondents said to manipulate the CIED without any cardiology department direction. A wide range of responses was obtained related to concepts such as "distance from the irradiation field to the CIED" or "safe accumulated doses". Our results demonstrate the need for national guidelines for CIED patients and the need to promote educational activities addressed to standardise clinical management of these patients in the radiation oncology departments.
Metals as radio-enhancers in oncology: The industry perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent
Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology.more » - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.« less
Clonal Evaluation of Prostate Cancer by ERG/SPINK1 Status to Improve Prognosis Prediction
2016-10-01
clinical oncology , cancer genetics, genomic science/bioinformatics, clinical pathology, social and behavioral sciences, and bioethics in order to...Interpret and translate sequence variants into clinical oncology setting; 5) Assess and evaluate costs associated with clinical sequencing. Role...Lethal Prostate Cancer Goal(s): Radiation Therapy Oncology Group (RTOG) 96-01 represents a phase III trial of of salvage radiation therapy (RT) alone
Harmon, Rachael E; Boulmay, Brian C
2011-01-01
Oncology services at Charity Hospital were discontinued following Hurricane Katrina in August 2005. Medical oncology and chemotherapy services resumed at the Louisiana State University Interim Public Hospital in 2007. Demographic, clinical, and displacement data of the re-established patient cohort were reviewed. Patients evaluated in the Louisiana State University Health Sciences Center (LSUHSC) Oncology Clinics from September 1, 2007, to August 31, 2009, were identified and data collected included time from diagnosis of malignancy to initial oncology evaluation, insurance status, percentage displaced for six months or more due to Hurricane Katrina, ethnicity, referrals for radiation oncology, and the number of outpatient clinical encounters (OCE). 464 patients were evaluated in the study time period. Sixty-five percent of the patients had new cancer diagnoses and 35% re-established cancer care in the Charity System and a substantial proportion were either unfunded or had Medicaid coverage. Thirty-four percent were confirmed to be displaced from New Orleans for greater than six months and the majority of patients were black. The majority of new cancer diagnoses were breast, lung, and colon cancer. Human immunodeficiency virus (HIV) positive patients made up 7.5% of the patient cohort. There was a 70% decline in patient volumes following Hurricane Katrina. Oncology services for a minority-based, underinsured patient population were severely impacted by Hurricane Katrina. Following the storm, persistent systemwide resource limitations led to suboptimal timeliness of medical oncology evaluations. Health care systems serving underinsured patients require a disaster plan to minimize interruption of oncology care. Our experience illustrates the need for resources to ensure rapid re-establishment of care for economically disadvantaged patients following natural disasters.
McClelland, Shearwood; Thomas, Charles R; Wilson, Lynn D; Holliday, Emma B; Jaboin, Jerry J
The decision of radiation oncology residents to pursue academic versus private practice careers plays a central role in shaping the present and future of the field, but factors that are potentially predictive of this decision are lacking. This study was performed to examine the role of several factors publicly available before residency on postresidency career choice, including preresidency peer-reviewed publications (PRPs), which have been associated with resident career choice in comparably competitive subspecialties such as neurosurgery. Using a combination of Internet searches, telephone interviews, and the 2015 Association of Residents in Radiation Oncology directory, a list of 2016 radiation oncology resident graduates was compiled, along with their postresidency career choice. PRP was defined as the number of PubMed publications encompassing the end of the calendar year (2010) in which residency applications were due; this number was then correlated with career choice. A total of 163 residents from 76 Accreditation Council for Graduate Medical Education-certified programs were examined: 78% were male, 22% were MDs/PhDs, and 79 graduates (48%) chose academic careers. Fifty-two percent of graduates had at least 1 PRP at the time of application to radiation oncology residency; 35% had more than 1 PRP. Regarding career choice, the difference between 0 and 1+ PRP was statistically significant (odds ratio, 3.3; P < .01), but not between 1 and >1 PRP. Sex, PhD, or non-PhD dual degree status were not associated with career choice. Radiation oncology residency graduates with 1 or more PRPs at the time of residency application were roughly 2 times more likely to choose an academic career as their initial career choice than graduates with no preresidency PRPs. This information may prove useful to medical students, medical school advisors, and residency program directors and deserves further prospective investigation. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, C.
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
TU-G-201-02: An MRI Simulator From Proposal to Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.
2015-06-15
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szumacher, Ewa; Warner, Eiran; Zhang Liying
Purpose: To assess radiation oncology residents' needs and satisfaction in their first postgraduate year (PGY-1) in the province of Ontario. Methods and Materials: Of 62 radiation oncology residents, 58 who had completed their PGY-1 and were either enrolled or had graduated in 2006 were invited to participate in a 31-item survey. The questionnaire explored PGY-1 residents' needs and satisfaction in four domains: clinical workload, faculty/learning environment, stress level, and discrimination/harassment. The Fisher's exact and Wilcoxon nonparametric tests were used to determine relationships between covariate items and summary scores. Results: Of 58 eligible residents, 44 (75%) responded. Eighty-four percent of residentsmore » felt that their ward and call duties were appropriate. More than 50% of respondents indicated that they often felt isolated from their radiation oncology program. Only 77% agreed that they received adequate feedback, and 40% received sufficient counseling regarding career planning. More than 93% of respondents thought that faculty members had contributed significantly to their learning experience. Approximately 50% of residents experienced excessive stress and inadequate time for leisure or for reading the medical literature. Less than 10% of residents indicated that they had been harassed or experienced discrimination. Eighty-three percent agreed or strongly agreed that their PGY-1 experience had been outstanding. Conclusions: Most Ontario residents were satisfied with their PGY-1 training program. More counseling by radiation oncology faculty members should be offered to help residents with career planning. The residents might also benefit from more exposure to 'radiation oncology' and an introduction to stress management strategies.« less
The modern trends of the evolution laser information technology in oncology
NASA Astrophysics Data System (ADS)
Mikov, A. A.; Svirin, V. N.
2008-04-01
Laser-optical information technologies and devices develop since the 70- years at the end of 20 century and are broadly used for diagnostics and treatment of oncological diseases to date. Although such methods as photodynamic therapy (PDT), laser-induce thermotherapy (LITT), fluorescent diagnostics and spectrophotometry already more than 30 years are used for treatment and diagnostics of oncological diseases, nevertheless, they are enough new methods and, as a rule, are used in large scientific centers and medical institutions. This is bound, first of all, with lack of information on modern method of cancer treatment, the absence of widely available laser procedures and corresponding devices in the polyclinics and even in district hospitals, as well as insufficient understanding of application areas, where laser methods has an advantage by comparison, for instance, with beam or chemotherapy. At present day laser methods are fast upcoming direction of the treatment oncological diseases. This is explained by progress in development essentially laser, particularly diode, improvement electronic and computing components and broad introduction software-algorithmic methods of control the undertaking therapeutic and diagnostic procedures. In article are considered new laser methods of the undertaking diagnostic and therapeutic procedures and is shown that introduction multiwave laser radiation for probe and influences on tissue, the different methods of the determination of the functional state of tissues, realization of the on-line diagnostics when carrying out the therapeutic procedures, automatic control systems of the power laser radiation, which depends on state patient tissue, as well as software-algorithmic methods of management session therapeutic and diagnostic procedures greatly raises efficiency of the treatment oncological diseases. On an example of the multipurpose laser therapeutic devices("MLTA") developed and introduced in clinical practice and multipurpose laser diagnostic complexes ("MLDC"), the realizing offered methods, are shown the basic tendencies of development laser methods in oncology, concrete technical decisions and the experimental clinical material showing increase of efficiency of treatment of a cancer at their realization are resulted. It is shown, that realization of the offered methods and technical technologies opens new competitive advantages laser technologies in comparison with beam and chemical-therapy at treatment of oncological diseases.
Industry Funding Among Leadership in Medical Oncology and Radiation Oncology in 2015.
Yoo, Stella K; Ahmed, Awad A; Ileto, Jan; Zaorsky, Nicholas G; Deville, Curtiland; Holliday, Emma B; Wilson, Lynn D; Jagsi, Reshma; Thomas, Charles R
2017-10-01
To quantify and determine the relationship between oncology departmental/division heads and private industry vis-à-vis potential financial conflict of interests (FCOIs) as publicly reported by the Centers for Medicare and Medicaid Services Open Payments database. We extracted the names of the chairs/chiefs in medical oncology (MO) and chairs of radiation oncology (RO) for 81 different institutions with both RO and MO training programs as reported by the Association of American Medical Colleges. For each leader, the amount of consulting fees and research payments received in 2015 was determined. Logistic modeling was used to assess associations between the 2 endpoints of receiving a consulting fee and receiving a research payment with various institution-specific and practitioner-specific variables included as covariates: specialty, sex, National Cancer Institute designation, PhD status, and geographic region. The majority of leaders in MO were reported to have received consulting fees or research payments (69.5%) compared with a minority of RO chairs (27.2%). Among those receiving payments, the average (range) consulting fee was $13,413 ($200-$70,423) for MO leaders and $6463 ($837-$16,205) for RO chairs; the average research payment for MO leaders receiving payments was $240,446 ($156-$1,234,762) and $295,089 ($160-$1,219,564) for RO chairs. On multivariable regression when the endpoint was receipt of a research payment, those receiving a consulting fee (odds ratio [OR]: 5.34; 95% confidence interval [CI]: 2.22-13.65) and MO leaders (OR: 5.54; 95% CI: 2.62-12.18) were more likely to receive research payments. Examination of the receipt of consulting fees as the endpoint showed that those receiving a research payment (OR: 5.41; 95% CI: 2.23-13.99) and MO leaders (OR: 3.06; 95% CI: 1.21-8.13) were more likely to receive a consulting fee. Leaders in academic oncology receive consulting or research payments from industry. Relationships between oncology leaders and industry can be beneficial, but guidance is needed to develop consistent institutional policies to manage FCOIs. Copyright © 2017 Elsevier Inc. All rights reserved.
Specht, Lena; Dabaja, Bouthaina; Illidge, Tim; Wilson, Lynn D; Hoppe, Richard T
2015-05-01
Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Marks, Lawrence B.; Adams, Robert D.; Pawlicki, Todd; Blumberg, Albert L.; Hoopes, David; Brundage, Michael D.; Fraass, Benedick A.
2013-01-01
This report is part of a series of white papers commissioned for the American Society for Radiation Oncology (ASTRO) Board of Directors as part of ASTRO's Target Safely Campaign, focusing on the role of peer review as an important component of a broad safety/quality assurance (QA) program. Peer review is one of the most effective means for assuring the quality of qualitative, and potentially controversial, patient-specific decisions in radiation oncology. This report summarizes many of the areas throughout radiation therapy that may benefit from the application of peer review. Each radiation oncology facility should evaluate the issues raised and develop improved ways to apply the concept of peer review to its individual process and workflow. This might consist of a daily multidisciplinary (eg, physicians, dosimetrists, physicists, therapists) meeting to review patients being considered for, or undergoing planning for, radiation therapy (eg, intention to treat and target delineation), as well as meetings to review patients already under treatment (eg, adequacy of image guidance). This report is intended to clarify and broaden the understanding of radiation oncology professionals regarding the meaning, roles, benefits, and targets for peer review as a routine quality assurance tool. It is hoped that this work will be a catalyst for further investigation, development, and study of the efficacy of peer review techniques and how these efforts can help improve the safety and quality of our treatments. PMID:24175002
Baker, Stephen R; Romero, Michelle J; Geannette, Christian; Patel, Amish
2009-07-15
Although a 12-month clinical internship is the traditional precursor to a radiation oncology residency, the continuance of this mandated training sequence has been questioned. This study was performed to evaluate the perceptions of current radiation oncology residents with respect to the value of their internship experience. A survey was sent to all US radiation oncology residents. Each was queried about whether they considered the internship to be a necessary prerequisite for a career as a radiation oncologist and as a physician. Preferences were listed on a Likert scale (1 = not at all necessary to 5 = absolutely necessary). Seventy-one percent considered the internship year mostly (Likert Scale 4) or absolutely necessary (Likert Scale 5) for their development as a radiation oncologist, whereas 19.1% answered hardly or not at all (Likert Scale 2 and 1, respectively). With respect to their collective considerations about the impact of the internship year on their development as a physician, 89% had a positive response, 5.8% had a negative response, and 4.7% had no opinion. Although both deemed the preliminary year favorably, affirmative answers were more frequent among erstwhile internal medicine interns than former transitional program interns. A majority of radiation oncology residents positively acknowledged their internship for their development as a specialist and an even greater majority valued it for their development as a physician. This affirmative opinion was registered more frequently by those completing an internal medicine internship compared with a transitional internship.
Mentorship Programs in Radiation Oncology Residency Training Programs: A Critical Unmet Need
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhami, Gurleen; Gao, Wendy; Gensheimer, Michael F.
Purpose: To conduct a nationwide survey to evaluate the current status of resident mentorship in radiation oncology. Methods and Materials: An anonymous electronic questionnaire was sent to all residents and recent graduates at US Accreditation Council for Graduate Medical Education–accredited radiation oncology residency programs, identified in the member directory of the Association of Residents in Radiation Oncology. Factors predictive of having a mentor and satisfaction with the mentorship experience were identified using univariate and multivariate analyses. Results: The survey response rate was 25%, with 85% of respondents reporting that mentorship plays a critical role in residency training, whereas only 53%more » had a current mentor. Larger programs (≥10 faculty, P=.004; and ≥10 residents, P<.001) were more likely to offer a formal mentorship program, which makes it more likely for residents to have an active mentor (88% vs 44%). Residents in a formal mentoring program reported being more satisfied with the overall mentorship experience (univariate odds ratio 8.77, P<.001; multivariate odds ratio 5, P<.001). On multivariate analysis, women were less likely to be satisfied with the mentorship experience. Conclusions: This is the first survey focusing on the status of residency mentorship in radiation oncology. Our survey highlights the unmet need for mentorship in residency programs.« less
Authorship in Radiation Oncology: Proliferation Trends Over 30 Years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojerholm, Eric, E-mail: eric.ojerholm@uphs.upenn.edu; Swisher-McClure, Samuel
Purpose: To investigate authorship trends in the radiation oncology literature. Methods and Materials: We examined the authorship credits of “original research articles” within 2 popular radiation oncology journals–International Journal of Radiation Oncology, Biology, Physics and Radiotherapy and Oncology–in 1984, 1994, 2004, and 2014. We compared the number of authors per publication during these 4 time periods using simple linear regression as a test for trend. We investigated additional author characteristics in a subset of articles. Results: A total of 2005 articles were eligible. The mean number of authors per publication rose from 4.3 in 1984 to 9.1 in 2014 (P<.001).more » On subset analysis of 400 articles, there was an increase in the percentage of multidisciplinary bylines (from 52% to 72%), multi-institutional bylines (from 20% to 53%), and publications with a trainee first author (from 16% to 56%) during the study period. Conclusions: The mean number of authors per publication has more than doubled over the last 30 years in the radiation oncology literature. Possible explanations include increasingly complex and collaborative research as well as honorary authorship. Explicit documentation of author contributions could help ensure that scientific work is credited according to accepted standards.« less
Chera, Bhishamjit S; Mazur, Lukasz; Jackson, Marianne; Taylor, Kinely; Mosaly, Prithima; Chang, Sha; Deschesne, Kathy; LaChapelle, Dana; Hoyle, Lesley; Saponaro, Patricia; Rockwell, John; Adams, Robert; Marks, Lawrence B
2014-01-01
We have systematically been incorporating several operational efficiency and safety initiatives into our academic radiation oncology clinic. We herein quantify the impact of these initiatives on prospectively collected, clinically meaningful, metrics. The data from 5 quality improvement initiatives, each focused on a specific safety/process concern in our clinic, are presented. Data was collected prospectively: operational metrics recorded before and after implementation of the initiative were compared using statistical analysis. Results from the Agency for Health Care Research and Quality (AHRQ) patient safety culture surveys administered during and after many of these initiatives were similarly compared. (1) Workload levels for nurses assisting with brachytherapy were high (National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores >55-60, suggesting, "overwork"). Changes in work flow and procedure room layout reduced workload to more acceptable levels (NASA-TLX <55; P < .01). (2) The rate of treatment therapists being interrupted was reduced from a mean of 4 (range, 1-11) times per patient treatment to a mean <1 (range, 0-3; P < .001) after implementing standards for electronic communication and placement of monitors informing patients and staff of the treatment machine status (ie, delayed, on time). (3) The rates of replans by dosimetrists was reduced from 11% to 6% (P < .01) through a more systematic pretreatment peer review process. (4) Standardizing nursing and resident functions reduced patient wait times by ≈ 45% (14 min; P < .01). (5) Standardizing presimulation instructions from the physician reduced the number of patients experiencing delays on the simulator (>50% to <10%; P < .01). To assess the overall changes in "patient safety culture," we conducted a pre- and postanalysis using the AHRQ survey. Improvements in all measured dimensions were noted. Quality improvement initiatives can be successfully implemented in an academic radiation oncology department to yield measurable improvements in operations resulting in improvement in patient safety culture. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohar, Surjeet, E-mail: spohar@iuhealth.org; Fung, Claire Y.; Hopkins, Shane
Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs andmore » RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention for the healthcare sector as a whole.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jessica; Griffith, Kent A.; Hawley, Sarah T.
2013-12-01
Purpose: Population-based studies suggest underuse of radiation therapy, especially after mastectomy. Because radiation oncology is a referral-based specialty, knowledge and attitudes of upstream providers, specifically surgeons, may influence patients' decisions regarding radiation, including whether it is even considered. Therefore, we sought to evaluate surgeons' knowledge of pertinent risk information, their patterns of referral, and the correlates of surgeon knowledge and referral in specific breast cancer scenarios. Methods and Materials: We surveyed a national sample of 750 surgeons, with a 67% response rate. We analyzed responses from those who had seen at least 1 breast cancer patient in the past yearmore » (n=403), using logistic regression models to identify correlates of knowledge and appropriate referral. Results: Overall, 87% of respondents were general surgeons, and 64% saw >10 breast cancer patients in the previous year. In a scenario involving a 45-year-old undergoing lumpectomy, only 45% correctly estimated the risk of locoregional recurrence without radiation therapy, but 97% would refer to radiation oncology. In a patient with 2 of 20 nodes involved after mastectomy, 30% would neither refer to radiation oncology nor provide accurate information to make radiation decisions. In a patient with 4 of 20 nodes involved after mastectomy, 9% would not refer to radiation oncology. Fewer than half knew that the Oxford meta-analysis revealed a survival benefit from radiation therapy after lumpectomy (45%) or mastectomy (32%). Only 16% passed a 7-item knowledge test; female and more-experienced surgeons were more likely to pass. Factors significantly associated with appropriate referral to radiation oncology included breast cancer volume, tumor board participation, and knowledge. Conclusions: Many surgeons have inadequate knowledge regarding the role of radiation in breast cancer management, especially after mastectomy. Targeted educational interventions may improve the quality of care.« less
Relating physician's workload with errors during radiation therapy planning.
Mazur, Lukasz M; Mosaly, Prithima R; Hoyle, Lesley M; Jones, Ellen L; Chera, Bhishamjit S; Marks, Lawrence B
2014-01-01
To relate subjective workload (WL) levels to errors for routine clinical tasks. Nine physicians (4 faculty and 5 residents) each performed 3 radiation therapy planning cases. The WL levels were subjectively assessed using National Aeronautics and Space Administration Task Load Index (NASA-TLX). Individual performance was assessed objectively based on the severity grade of errors. The relationship between the WL and performance was assessed via ordinal logistic regression. There was an increased rate of severity grade of errors with increasing WL (P value = .02). As the majority of the higher NASA-TLX scores, and the majority of the performance errors were in the residents, our findings are likely most pertinent to radiation oncology centers with training programs. WL levels may be an important factor contributing to errors during radiation therapy planning tasks. Published by Elsevier Inc.
Gallagher, Sarah A; Smith, Angela B; Matthews, Jonathan E; Potter, Clarence W; Woods, Michael E; Raynor, Mathew; Wallen, Eric M; Rathmell, W Kimryn; Whang, Young E; Kim, William Y; Godley, Paul A; Chen, Ronald C; Wang, Andrew; You, Chaochen; Barocas, Daniel A; Pruthi, Raj S; Nielsen, Matthew E; Milowsky, Matthew I
2014-01-01
The management of genitourinary malignancies requires a multidisciplinary care team composed of urologists, medical oncologists, and radiation oncologists. A genitourinary (GU) oncology clinical database is an invaluable resource for patient care and research. Although electronic medical records provide a single web-based record used for clinical care, billing, and scheduling, information is typically stored in a discipline-specific manner and data extraction is often not applicable to a research setting. A GU oncology database may be used for the development of multidisciplinary treatment plans, analysis of disease-specific practice patterns, and identification of patients for research studies. Despite the potential utility, there are many important considerations that must be addressed when developing and implementing a discipline-specific database. The creation of the GU oncology database including prostate, bladder, and kidney cancers with the identification of necessary variables was facilitated by meetings of stakeholders in medical oncology, urology, and radiation oncology at the University of North Carolina (UNC) at Chapel Hill with a template data dictionary provided by the Department of Urologic Surgery at Vanderbilt University Medical Center. Utilizing Research Electronic Data Capture (REDCap, version 4.14.5), the UNC Genitourinary OncoLogy Database (UNC GOLD) was designed and implemented. The process of designing and implementing a discipline-specific clinical database requires many important considerations. The primary consideration is determining the relationship between the database and the Institutional Review Board (IRB) given the potential applications for both clinical and research uses. Several other necessary steps include ensuring information technology security and federal regulation compliance; determination of a core complete dataset; creation of standard operating procedures; standardizing entry of free text fields; use of data exports, queries, and de-identification strategies; inclusion of individual investigators' data; and strategies for prioritizing specific projects and data entry. A discipline-specific database requires a buy-in from all stakeholders, meticulous development, and data entry resources to generate a unique platform for housing information that may be used for clinical care and research with IRB approval. The steps and issues identified in the development of UNC GOLD provide a process map for others interested in developing a GU oncology database. Copyright © 2014 Elsevier Inc. All rights reserved.
Anderson, Roberta; Armour, Elwood; Beeckler, Courtney; Briner, Valerie; Choflet, Amanda; Cox, Andrea; Fader, Amanda N; Hannah, Marie N; Hobbs, Robert; Huang, Ellen; Kiely, Marilyn; Lee, Junghoon; Morcos, Marc; McMillan, Paige E; Miller, Dave; Ng, Sook Kien; Prasad, Rashmi; Souranis, Annette; Thomsen, Robert; DeWeese, Theodore L; Viswanathan, Akila N
As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Improving breast cancer services for African-American women living in St. Louis.
Noel, Lailea; Connors, Shahnjayla K; Goodman, Melody S; Gehlert, Sarah
2015-11-01
A mixed methods, community-based research study was conducted to understand how provider-level factors contribute to the African-American and white disparity in breast cancer mortality in a lower socioeconomic status area of North St. Louis. This study used mixed methods including: (1) secondary analysis of Missouri Cancer Registry data on all 885 African-American women diagnosed with breast cancer from 2000 to 2008 while living in the geographic area of focus; (2) qualitative interviews with a subset of these women; (3) analysis of data from electronic medical records of the women interviewed; and (4) focus group interviews with community residents, patient navigators, and other health care professionals. 565 women diagnosed with breast cancer from 2000 to 2008 in the geographic area were alive at the time of secondary data analysis; we interviewed (n = 96; 17 %) of these women. Provider-level obstacles to completion of prescribed treatment included fragmented navigation (separate navigators at Federally Qualified Health Centers, surgical oncology, and medical oncology, and no navigation services in surgical oncology). Perhaps related to the latter, women described radiation as optional, often in the same words as they described breast reconstruction. Discontinuous and fragmented patient navigation leads to failure to associate radiation therapy with vital treatment recommendations. Better integrated navigation that continues throughout treatment will increase treatment completion with the potential to improve outcomes in African Americans and decrease the disparity in mortality.
Future trends in the supply and demand for radiation oncology physicists.
Mills, Michael D; Thornewill, Judah; Esterhay, Robert J
2010-04-12
Significant controversy surrounds the 2012 / 2014 decision announced by the Trustees of the American Board of Radiology (ABR) in October of 2007. According to the ABR, only medical physicists who are graduates of a Commission on Accreditation of Medical Physics Education Programs, Inc. (CAMPEP) accredited academic or residency program will be admitted for examination in the years 2012 and 2013. Only graduates of a CAMPEP accredited residency program will be admitted for examination beginning in the year 2014. An essential question facing the radiation oncology physics community is an estimation of supply and demand for medical physicists through the year 2020. To that end, a Demand & Supply dynamic model was created using STELLA software. Inputs into the model include: a) projected new cancer incidence and prevalence 1990-2020; b) AAPM member ages and retirement projections 1990-2020; c) number of ABR physics diplomates 1990-2009; d) number of patients per Qualified Medical Physicist from Abt Reports I (1995), II (2002) and III (2008); e) non-CAMPEP physicists trained 1990-2009 and projected through 2014; f) CAMPEP physicists trained 1993-2008 and projected through 2014; and g) working Qualified Medical Physicists in radiation oncology in the United States (1990-2007). The model indicates that the number of qualified medical physicists working in radiation oncology required to meet demand in 2020 will be 150-175 per year. Because there is some elasticity in the workforce, a portion of the work effort might be assumed by practicing medical physicists. However, the minimum number of new radiation oncology physicists (ROPs) required for the health of the profession is estimated to be 125 per year in 2020. The radiation oncology physics community should plan to build residency programs to support these numbers for the future of the profession.
Considerations for Observational Research using Large Datasets in Radiation Oncology
Jagsi, Reshma; Bekelman, Justin E.; Chen, Aileen; Chen, Ronald C.; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D.; Yu, James B.
2014-01-01
The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based datasets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the Red Journal assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytic challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold substantial promise for advancing our understanding of many unanswered questions of importance to the field of radiation oncology. PMID:25195986
Claude, Line; Morelle, Magali; Mancini, Sandrine; Duncan, Anita; Sebban, Henri; Carrie, Christian; Marec-Berard, Perrine
2016-11-01
General anesthesia (GA) is often needed for radiotherapy (RT) in young children. This study aimed to evaluate the place of the rituals and/or hypnosis in pediatric in a reference center in pediatric radiation oncology in Rhône-Alpes Auvergne. This observational study retrospectively collected data on AG in children<5 years treated by RT in Leon-Berard regional center, Lyon, France between 2003 and 2014. Two-time periods, before and after 2008 have been compared, the second one introducing accompaniment methods such as hypnosis systematically. Explanatory analyses of AG were performed using logistic regression. One hundred and thirty-two children benefited from RT in that period and were included (70 patients until 2008, 62 after 2008). Fifty-three percent were irradiated under GA. There was significant reduction (P<0.1) in the use of GA after 2008. The use of GA was not significantly associated with the RT techniques. The patients more likely to undergo RT without GA were the oldest and the patients treated for abdominal lesions (P<0.01). The study confirms that rituals and hypnosis can be used instead of GA in about half of patients under 5 years, even also with high-technicity RT requiring optimal immobilization. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
The first survey on defensive medicine in radiation oncology.
Ramella, Sara; Mandoliti, Giovanni; Trodella, Lucio; D'Angelillo, Rolando Maria
2015-05-01
Defensive Medicine occurs when doctors order tests, procedures, visits or avoid high-risk patients and procedures, primarily to reduce their exposure to malpractice liability. Some medical specialities are at "high-risk" for legal argument, but no data is actually available for radiation oncology. We present here the first survey of radiation oncologists' views regarding malpractice liability and defensive medicine practice. A three-page questionnaire was sent to 611 active radiation oncologists, members of the Italian Association of Radiation Oncology (AIRO), with questions pertaining to the incidence, nature and causes in their practice of defensive medicine. A total of 361 questionnaires were completed (59 % feedback). Physicians practise defensive medicine by ordering further imaging studies (39 %) or laboratory tests (35 %), referring patients to consultants (43 %) or prescribing additional medication (35 %). Approximately, 70 % declared that the climate of opinion that exists towards doctors is one of the major issues for practising defensive medicine. Although radiation oncology is generally considered a "medium/low risk" speciality for defensive medicine, the present survey reflects a widespread use of this behaviour in daily practice. Investigating which radiation oncologist categories are more prone to defensive medical behaviour can be advantageous for implementing programmes aimed at improving awareness of this phenomenon and to increase good clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Stephen R.; Romero, Michelle J. M.A.; Geannette, Christian M.D.
2009-07-15
Purpose: Although a 12-month clinical internship is the traditional precursor to a radiation oncology residency, the continuance of this mandated training sequence has been questioned. This study was performed to evaluate the perceptions of current radiation oncology residents with respect to the value of their internship experience. Methods and Materials: A survey was sent to all US radiation oncology residents. Each was queried about whether they considered the internship to be a necessary prerequisite for a career as a radiation oncologist and as a physician. Preferences were listed on a Likert scale (1 = not at all necessary to 5more » = absolutely necessary). Results: Seventy-one percent considered the internship year mostly (Likert Scale 4) or absolutely necessary (Likert Scale 5) for their development as a radiation oncologist, whereas 19.1% answered hardly or not at all (Likert Scale 2 and 1, respectively). With respect to their collective considerations about the impact of the internship year on their development as a physician, 89% had a positive response, 5.8% had a negative response, and 4.7% had no opinion. Although both deemed the preliminary year favorably, affirmative answers were more frequent among erstwhile internal medicine interns than former transitional program interns. Conclusions: A majority of radiation oncology residents positively acknowledged their internship for their development as a specialist and an even greater majority valued it for their development as a physician. This affirmative opinion was registered more frequently by those completing an internal medicine internship compared with a transitional internship.« less
Image storage in radiation oncology: What did we learn from diagnostic radiology?
NASA Astrophysics Data System (ADS)
Blodgett, Kurt; Luick, Marc; Colonias, Athanasios; Gayou, Olivier; Karlovits, Stephen; Werts, E. Day
2009-02-01
The Digital Imaging and Communications in Medicine (DICOM) standard was developed by the National Electrical Manufacturers Association (NEMA) and the American College of Radiology (ACR) for medical image archiving and retrieval. An extension to this implemented a standard named DICOM-RT for use in Radiation Oncology. There are currently seven radiotherapy-specific DICOM objects which include: RT Structure Set, RT Plan, RT Dose, RT Image, RT Beams Treatment Record, RT Brachy Treatment Record, and RT Treatment Summary Record. The type of data associated with DICOM-RT includes (1) Radiation treatment planning datasets (CT, MRI, PET) with radiation treatment plans showing beam arrangements, isodose distributions, and dose volume histograms of targets/normal tissues and (2) Image-guided radiation modalities such as Siemens MVision mega-voltage cone beam CT (MV-CBCT). With the advent of such advancing technologies, there has been an exponential increase in image data collected for each patient, and the need for reliable and accessible image storage has become critical. A potential solution is a Radiation Oncology specific picture archiving and communication systems (PACS) that would allow data storage from multiple vendor devices and support the storage and retrieval needs not only of a single site but of a large, multi-facility network of radiation oncology clinics. This PACS system must be reliable, expandable, and cost-effective to operate while protecting sensitive patient image information in a Health Insurance Portability and Accountability Act (HIPAA) compliant environment. This paper emphasizes the expanding DICOM-RT storage requirements across our network of 8 radiation oncology clinics and the initiatives we undertook to address the increased volume of data by using the ImageGrid (CANDELiS Inc, Irvine CA) server and the IGViewer license (CANDELiS Inc, Irvine CA) to create a DICOM-RT compatible PACS system.
Rosenberg, Stephen A; Francis, David M; Hullet, Craig R; Morris, Zachary S; Brower, Jeffrey V; Anderson, Bethany M; Bradley, Kristin A; Bassetti, Michael F; Kimple, Randall J
Nearly two-thirds of cancer patients seek information about their diagnosis online. We assessed the readability of online patient education materials found on academic radiation oncology department Web sites to determine whether they adhered to guidelines suggesting that information be presented at a sixth-grade reading level. The Association of American Medical Colleges Web site was used to identify all academic radiation oncology departments in the United States. One-third of these department Web sites were selected for analysis using a random number generator. Both general information on radiation therapy and specific information regarding various radiation modalities were collected. To test the hypothesis that the readability of these online educational materials was written at the recommended grade level, a panel of 10 common readability tests was used. A composite grade level of readability was constructed using the 8 readability measures that provide a single grade-level output. A mean of 5605 words (range, 2058-12,837) from 30 department Web sites was collected. Using the composite grade level score, the overall mean readability level was determined to be 13.36 (12.83-13.89), corresponding to a collegiate reading level. This was significantly higher than the target sixth-grade reading level (middle school, t (29) = 27.41, P < .001). Online patient educational materials from academic radiation oncology Web sites are significantly more complex than recommended by the National Institutes of Health and the Department of Health and Human Services. To improve patients' comprehension of radiation therapy and its role in their treatment, our analysis suggests that the language used in online patient information should be simplified to communicate the information at a more appropriate level. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W
2017-06-01
This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.
Joiner, Michael C.; Tracey, Monica W.; Kacin, Sara E.; Burmeister, Jay W.
2017-01-01
This article provides a summary and status report of the ongoing advanced education program IBPRO – Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists. PMID:28328309
SU-E-T-524: Web-Based Radiation Oncology Incident Reporting and Learning System (ROIRLS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, R; Palta, J; Hagan, M
Purpose: Describe a Web-based Radiation Oncology Incident Reporting and Learning system that has the potential to improve quality of care for radiation therapy patients. This system is an important facet of continuing effort by our community to maintain and improve safety of radiotherapy.Material and Methods: The VA National Radiation Oncology Program office has embarked on a program to electronically collect adverse events and near miss data of radiation treatment of over 25,000 veterans treated with radiotherapy annually. Software used for this program is deployed on the VAs intranet as a Website. All data entry forms (adverse event or near missmore » reports, work product reports) utilize standard causal, RT process step taxonomies and data dictionaries defined in AAPM and ASTRO reports on error reporting (AAPM Work Group Report on Prevention of Errors and ASTROs safety is no accident report). All reported incidents are investigated by the radiation oncology domain experts. This system encompasses the entire feedback loop of reporting an incident, analyzing it for salient details, and developing interventions to prevent it from happening again. The operational workflow is similar to that of the Aviation Safety Reporting System. This system is also synergistic with ROSIS and SAFRON. Results: The ROIRLS facilitates the collection of data that help in tracking adverse events and near misses and develop new interventions to prevent such incidents. The ROIRLS electronic infrastructure is fully integrated with each registered facility profile data thus minimizing key strokes and multiple entries by the event reporters. Conclusions: OIRLS is expected to improve the quality and safety of a broad spectrum of radiation therapy patients treated in the VA and fulfills our goal of Effecting Quality While Treating Safely The Radiation Oncology Incident Reporting and Learning System software used for this program has been developed, conceptualized and maintained by TSG Innovations Inc. and is deployed on the VA intranet as a Website. The Radiation Oncology Incident Reporting and Learning System software used for this program has been developed, conceptualized and maintained by TSG Innovations Inc. and is deployed on the VA intranet as a Website.« less
Lambrecht, Maarten; Eekers, Daniëlle B P; Alapetite, Claire; Burnet, Neil G; Calugaru, Valentin; Coremans, Ida E M; Fossati, Piero; Høyer, Morten; Langendijk, Johannes A; Romero, Alejandra Méndez; Paulsen, Frank; Perpar, Ana; Renard, Laurette; de Ruysscher, Dirk; Timmermann, Beate; Vitek, Pavel; Weber, Damien C; van der Weide, Hiske L; Whitfield, Gillian A; Wiggenraad, Ruud; Roelofs, Erik; Nyström, Petra Witt; Troost, Esther G C
2018-05-17
For unbiased comparison of different radiation modalities and techniques, consensus on delineation of radiation sensitive organs at risk (OARs) and on their dose constraints is warranted. Following the publication of a digital, online atlas for OAR delineation in neuro-oncology by the same group, we assessed the brain OAR-dose constraints in a follow-up study. We performed a comprehensive search to identify the current papers on OAR dose constraints for normofractionated photon and particle therapy in PubMed, Ovid Medline, Cochrane Library, Embase and Web of Science. Moreover, the included articles' reference lists were cross-checked for potential studies that met the inclusion criteria. Consensus was reached among 20 radiation oncology experts in the field of neuro-oncology. For the OARs published in the neuro-oncology literature, we summarized the available literature and recommended dose constraints associated with certain levels of normal tissue complication probability (NTCP) according to the recent ICRU recommendations. For those OARs with lacking or insufficient NTCP data, a proposal for effective and efficient data collection is given. The use of the European Particle Therapy Network-consensus OAR dose constraints summarized in this article is recommended for the model-based approach comparing photon and proton beam irradiation as well as for prospective clinical trials including novel radiation techniques and/or modalities. Copyright © 2018 Elsevier B.V. All rights reserved.
Supply and Demand for Radiation Oncology in the United States: Updated Projections for 2015 to 2025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Hubert Y.; Haffty, Bruce G.; Falit, Benjamin P.
Purpose: Prior studies have forecasted demand for radiation therapy to grow 10 times faster than the supply between 2010 and 2020. We updated these projections for 2015 to 2025 to determine whether this imbalance persists and to assess the accuracy of prior projections. Methods and Materials: The demand for radiation therapy between 2015 and 2025 was estimated by combining current radiation utilization rates determined by the Surveillance, Epidemiology, and End Results data with population projections provided by the US Census Bureau. The supply of radiation oncologists was forecast by using workforce demographics and full-time equivalent (FTE) status provided by themore » American Society for Radiation Oncology (ASTRO), current resident class sizes, and expected survival per life tables from the US Centers for Disease Control. Results: Between 2015 and 2025, the annual total number of patients receiving radiation therapy during their initial treatment course is expected to increase by 19%, from 490,000 to 580,000. Assuming a graduating resident class size of 200, the number of FTE physicians is expected to increase by 27%, from 3903 to 4965. In comparison with prior projections, the new projected demand for radiation therapy in 2020 dropped by 24,000 cases (a 4% relative decline). This decrease is attributable to an overall reduction in the use of radiation to treat cancer, from 28% of all newly diagnosed cancers in the prior projections down to 26% for the new projections. By contrast, the new projected supply of radiation oncologists in 2020 increased by 275 FTEs in comparison with the prior projection for 2020 (a 7% relative increase), attributable to rising residency class sizes. Conclusion: The supply of radiation oncologists is expected to grow more quickly than the demand for radiation therapy from 2015 to 2025. Further research is needed to determine whether this is an appropriate correction or will result in excess capacity.« less
Evolving management of low grade glioma: No consensus amongst treating clinicians.
Field, K M; Rosenthal, M A; Khasraw, M; Sawkins, K; Nowak, A K
2016-01-01
Following the widely publicized presentation of the Radiation Therapy Oncology Group (RTOG) 9802 data, we sought to understand how these data had been translated to the management of low grade gliomas (LGG) by Australian neuro-oncology clinicians. The de novo management of LGG is transitioning to include postoperative radiotherapy and chemotherapy after the RTOG 9802 study results demonstrated a survival benefit in this setting. In 2014, neurosurgeons, radiation oncologists and neuro-oncologists who were members of the Australian Cooperative Trials Group for Neuro-oncology (COGNO), as well as additional attendants of the COGNO annual scientific meeting, were surveyed. The survey presented six LGG clinical scenarios and asked respondents to select their preferred management strategy. Some additional questions included the respondents' approach to 1p/19q testing and chemotherapy preferences. The response rate was 30.2% (61/202), with the majority (77%) working in tertiary referral neuro-oncology centers. There was no consensus regarding the management approach for each scenario, with postsurgery observation alone remaining a popular strategy. Only 25% of respondents reported that their institution routinely tests for 1p/19q status in LGG, although 69% were of the opinion that all LGG patients should be tested. The majority (81%) preferred to use temozolomide rather than the procarbazine, lomustine, and vincristine combination as the first line chemotherapy for LGG, but only 44% would actually use it in this setting. Up front chemotherapy, prior to radiotherapy, would be considered by 52% of respondents for certain LGG patients. This survey assessed the management strategies for LGG since the updated RTOG 9802 data were presented. It demonstrates no consensus in the postoperative treatment approaches for LGG. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experience of wireless local area network in a radiation oncology department.
Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan
2010-01-01
The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.
Misadministration of radiation therapy in veterinary medicine: a case report and literature review.
Arkans, M M; Gieger, T L; Nolan, M W
2017-03-01
Recent technical advancements in radiation therapy have allowed for improved targeting of tumours and sparing nearby normal tissues, while simultaneously decreasing the risk for medical errors by incorporating additional safety checks into electronic medical record keeping systems. The benefits of these new technologies, however, depends on their proper integration and use in the oncology clinic. Despite the advancement of technology for treatment delivery and medical record keeping, misadministration errors have a significant impact on patient care in veterinary oncology. The first part of this manuscript describes a medical incident that occurred at an academic veterinary referral hospital, in a dog receiving a combination of stereotactic radiation therapy and full-course intensity-modulated, image-guided radiation therapy. The second part of the report is a literature review, which explores misadministration errors and novel challenges which arise with the implementation of advancing technologies in veterinary radiation oncology. © 2015 John Wiley & Sons Ltd.
Leung, John; Le, Hien; Turner, Sandra; Munro, Philip; Vukolova, Natalia
2014-02-01
This paper reports the key findings of the first Faculty of Radiation Oncology survey of trainees dealing with experiences and perceptions on work practices and choice of specialty. The survey was conducted in mid 2012 using a 37-question instrument. This was distributed by email to 159 current trainees and advertised through the Radiation Oncology Trainees Committee and other channels. There were six email reminders. Respondents were reassured that their responses were anonymous. The overall response rate was 82.8%. Gender was balanced among respondents with 67 (51.5%) being male and 63 (48.5%) being female. The most common age bracket was the 31 to 35 years range. There were similar proportions of trainee responders in each of the five years of training. A substantial number of trainees held other degrees besides medical degrees. The large majority were satisfied with radiation oncology as a career choice and with the Training Network within which they were training. Interest in oncology patients, lifestyle after training and work hours were given as the major reasons for choosing radiation oncology as a career. Nearly half of trainees were interested in undertaking some of their training in a part-time capacity and working part time as a radiation oncologist in the future. Over 70% of trainees stated they were working 36-55 clinical hours per week with additional non-clinical tasks, after-hours work and on-call duties. Nearly half of all trainees reported having one or less hours of protected time per week. Nonetheless, 40% of respondents indicated they had enough time to pursue outside interests. Radiation treatment planning and maintaining currency in general medicine were considered the most difficult aspects of training in radiation oncology. Most respondents were keen on the concept of fostering a research mentor. In terms of views on practice after completion of training, the majority were interested in pursuing a fellowship, and nearly all expressed an interest in maintaining an element of academic practice. The large majority of respondents preferred to work in an urban department as a component of their practice after training and nearly all wanted a component of public sector practice. There were only four per cent who preferred to work only within the private sector. Job availability was a concern for 94% of trainees, which far outweighed any other concerns. Trainees in radiation oncology are generally satisfied with their choice of specialty and their training. Most trainees are interested in fellowship positions, links with academia and largely public sector work in the future. Job availability for the future is their major concern. © 2013 The Royal Australian and New Zealand College of Radiologists.
Choi, Mehee; Fuller, Clifton D; Thomas, Charles R
2009-05-01
Advancement in academic radiation oncology is largely contingent on research productivity and the perceived external influence of an individual's scholarly work. The purpose of this study was to use the Hirsch index (h-index) to estimate the research productivity of current radiation oncology faculty at U.S. academic institutions between 1996 and 2007. We performed bibliometric citation database searches for available radiation oncology faculty at domestic residency-training institutions (n = 826). The outcomes analyzed included the total number of manuscripts, total number of citations, and the h-index between 1996 and 2007. Analysis of overall h-index rankings with stratification by academic ranking, junior vs. senior faculty status, and gender was performed. Of the 826 radiation oncologists, the mean h-index was 8.5. Of the individuals in the top 10% by the h-index, 34% were chairpersons, 88% were senior faculty, and 13% were women. A greater h-index was associated with a higher academic ranking and senior faculty status. Recursive partitioning analysis revealed an h-index threshold of 15 (p <0.0001) as an identified breakpoint between the senior and junior faculty. Overall, women had lower h-indexes compared with men (mean, 6.4 vs. 9.4); however, when stratified by academic ranking, the gender differential all but disappeared. Using the h-index as a partial surrogate for research productivity, it appears that radiation oncologists in academia today comprise a prolific group, however, with a highly skewed distribution. According to the present analysis, the h-index correlated with academic ranking. Thus, it potentially has utility in the process of promotion decisions. Overall, women in radiation oncology were less academically productive than men; the possible reasons for the gender differential are discussed.
Small, William; James, Jennifer L; Moore, Timothy D; Fintel, Dan J; Lutz, Stephen T; Movsas, Benjamin; Suntharalingam, Mohan; Garces, Yolanda I; Ivker, Robert; Moulder, John; Pugh, Stephanie; Berk, Lawrence B
2018-04-01
The primary objective of NRG Oncology Radiation Therapy Oncology Group 0123 was to test the ability of the angiotensin-converting enzyme inhibitor captopril to alter the incidence of pulmonary damage after radiation therapy for lung cancer; secondary objectives included analyzing pulmonary cytokine expression, quality of life, and the long-term effects of captopril. Eligible patients included stage II-IIIB non-small cell lung cancer, stage I central non-small cell lung cancer, or limited-stage small cell. Patients who met eligibility for randomization at the end of radiotherapy received either captopril or standard care for 1 year. The captopril was to be escalated to 50 mg three times a day. Primary endpoint was incidence of grade 2+ radiation-induced pulmonary toxicity in the first year. Eighty-one patients were accrued between June 2003 and August 2007. Given the low accrual rate, the study was closed early. No significant safety issues were encountered. Eight patients were ineligible for registration or withdrew consent before randomization and 40 patients were not randomized postradiation. Major reasons for nonrandomization included patients' refusal and physician preference. Of the 33 randomized patients, 20 were analyzable (13 observation, 7 captopril). The incidence of grade 2+ pulmonary toxicity attributable to radiation therapy was 23% (3/13) in the observation arm and 14% (1/7) in the captopril arm. Despite significant resources and multiple amendments, NRG Oncology Radiation Therapy Oncology Group 0123 was unable to test the hypothesis that captopril mitigates radiation-induced pulmonary toxicity. It did show the safety of such an approach and the use of newer angiotensin-converting enzyme inhibitors started during radiotherapy may solve the accrual problems.
"Radio-oncomics" : The potential of radiomics in radiation oncology.
Peeken, Jan Caspar; Nüsslin, Fridtjof; Combs, Stephanie E
2017-10-01
Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow. After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created. Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information ("radiogenomics") and could be used for tumor characterization. Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches. This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
Winkler, Cornelia; Duma, M N; Popp, W; Sack, H; Budach, V; Molls, M; Kampfer, S
2014-10-01
The technical progress in radiotherapy in recent years has been tremendous. This also implies a change of human and time resources. However, there is a lack of data on this topic. Therefore, the DEGRO initiated several studies in the QUIRO project on this subject. The present publication focuses on results for tomotherapy systems and compares them with other IMRT techniques. Over a period of several months, time allocation was documented using a standard form at two university hospitals. The required time for individual steps in the treatment planning process was recorded for all involved professional groups (physicist, technician, and physician) by themselves. The time monitoring at the treatment machines was performed by auxiliary employees (student research assistants). Evaluation of the data was performed for all recorded data as well as by tumor site. A comparison was made between the two involved institutions. A total of 1,691 records were analyzed: 148 from head and neck (H&N) tumors, 460 from prostate cancer, 136 from breast cancer, and 947 from other tumor entities. The mean value of all data from both centers for the definition of the target volumes for H&N tumors took a radiation oncology specialist 75 min, while a physicist needed for the physical treatment planning 214 min. For prostate carcinomas, the times were 60 and 147 min, respectively, and for the group of other entities 63 and 192 min, respectively. For the first radiation treatment, the occupancy time of the linear accelerator room was 31, 26, and 30 min for each entity (H&N, prostate, other entities, respectively). For routine treatments 22, 18, and 21 min were needed for the particular entities. Major differences in the time required for the individual steps were observed between the two centers. This study gives an overview of the time and personnel requirements in radiation therapy using a tomotherapy system. The most representative analysis could be done for the room occupancy times during treatment in both centers. Due to the partly small amount of data and differing planning workflows between the two centers, it is problematic to draw a firm conclusion with regard to planning times. Overall, the time required for the tomotherapy treatment and planning is slightly higher compared to other IMRT techniques.
Big Data and machine learning in radiation oncology: State of the art and future prospects.
Bibault, Jean-Emmanuel; Giraud, Philippe; Burgun, Anita
2016-11-01
Precision medicine relies on an increasing amount of heterogeneous data. Advances in radiation oncology, through the use of CT Scan, dosimetry and imaging performed before each fraction, have generated a considerable flow of data that needs to be integrated. In the same time, Electronic Health Records now provide phenotypic profiles of large cohorts of patients that could be correlated to this information. In this review, we describe methods that could be used to create integrative predictive models in radiation oncology. Potential uses of machine learning methods such as support vector machine, artificial neural networks, and deep learning are also discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngwa, W; University Massachusetts Lowell, Lowell, MA; Sajo, E
Purpose: Recent publications have highlighted the potential of Information and Communication Technologies (ICTs) to catalyze collaborations in cancer care, research and education in global radiation oncology. This work reports on the use of ICTs for global Medical Physics education and training across three countries: USA, Tanzania and Kuwait Methods: An online education platform was established by Radiation Oncology Faculty from Harvard Medical School, and the University of Pennsylvania with integrated Medical Physics Course modules accessible to trainees in Tanzania via partnership with the Muhimbili University of Health and Allied Sciences, and the Ocean Road Cancer Institute. The course modules incorporatedmore » lectures covering Radiation Therapy Physics with videos, discussion board, assessments and grade center. Faculty at Harvard Medical School and the University of Massachusetts Lowell also employed weekly Skype meetings to train/mentor three graduate students, living out-of-state and in Kuwait for up to 9 research credits per semester for over two semesters towards obtaining their graduate degrees Results: Students were able to successfully access the Medical Physics course modules and participate in learning activities, online discussion boards, and assessments. Other instructors could also access/co-teach the course modules from USA and Tanzania. Meanwhile all three graduate students with remote training via Skype and email made major progress in their graduate training with each one of them submitting their research results as abstracts to be presented at the 2016 AAPM conference. One student has also published her work already and all three are developing these abstracts for publication in peer-reviewed journals. Conclusion: Altogether, this work highlights concrete examples/model on how ICTs can be used for capacity building in Medical Physics across continents, for both education and research training needed for Masters/PhD degrees. The developed modules and model will be scaled to benefit many more trainees and other developing countries.« less
[Quality assurance in ENT tumor surgery].
Eckel, H E; Streppel, M; Schmalenbach, K; Volling, P; Schrappe, M; Dietz, A; Bootz, F
2000-12-01
Quality control is of special importance in head and neck oncology since the quality of medical care constitutes a vital parameter for the diseased patient. In contrast to other medical specialties, no quality assurance program for head and neck cancer patients has yet been established in Germany. Therefore, a survey was conducted to assess the quality assurance instruments that are in use today in otorhinolaryngology-head and neck (ORL-HNS) centers. In a nationwide survey, questionnaires were sent out to 146 German ORL-HNS departments (the return rate was 75%). 56% of all departments apply dedicated quality assurance processes, and 38% have appointed a formal quality assurance officer. Interdisciplinary oncological conferences are held in the vast majority of all departments with the participation of radiation oncologists in 86 (78%), medical oncologists in 84 (76%), diagnostic radiologists in 82 (74%), and pathologists in 73 (66%). Morbidity-mortality conferences are held in seven departments (6%). A standardized follow-up of oncological patients is carried out in 95 units (86%), and 53 departments use computer-assisted data bases to organize their follow-up data (48%). A wide variety of documentation systems is in use throughout the country: 78 units (71%) offer formal follow-up to their oncological patients. This survey documents a wide-spread interest in quality assurance procedures. Many individual efforts are being undertaken. However, no uniform quality assurance or auditing system is currently in use in Germany nor is a commonly accepted data base available. The ability to offer oncological follow-up within the national social security system is generally considered indispensable for the maintenance of high-quality oncological care in ORL-HNS departments.
International Conference on Advances in Radiation Oncology (ICARO): outcomes of an IAEA meeting.
Salminen, Eeva K; Kiel, Krystyna; Ibbott, Geoffrey S; Joiner, Michael C; Rosenblatt, Eduardo; Zubizarreta, Eduardo; Wondergem, Jan; Meghzifene, Ahmed
2011-02-04
The IAEA held the International Conference on Advances in Radiation Oncology (ICARO) in Vienna on 27-29 April 2009. The Conference dealt with the issues and requirements posed by the transition from conventional radiotherapy to advanced modern technologies, including staffing, training, treatment planning and delivery, quality assurance (QA) and the optimal use of available resources. The current role of advanced technologies (defined as 3-dimensional and/or image guided treatment with photons or particles) in current clinical practice and future scenarios were discussed.ICARO was organized by the IAEA at the request of the Member States and co-sponsored and supported by other international organizations to assess advances in technologies in radiation oncology in the face of economic challenges that most countries confront. Participants submitted research contributions, which were reviewed by a scientific committee and presented via 46 lectures and 103 posters. There were 327 participants from 70 Member States as well as participants from industry and government. The ICARO meeting provided an independent forum for the interaction of participants from developed and developing countries on current and developing issues related to radiation oncology.
Miller, Alexis Andrew; Phillips, Aaron K
The development of software in radiation oncology departments has seen the increase in capability from the Record and Verify software focused on patient safety to a fully-fledged Oncology Information System (OIS). This paper reports on the medical aspects of the implementation of a modern Oncology Information System (IMPAC MultiAccess, also known as the Siemens LANTIS) in a New Zealand hospital oncology department. The department was successful in translating paper procedures into electronic procedures, and the report focuses on the changes in approach to organisation and data use that occurred. The difficulties that were faced, which included procedural re-design, management of change, removal of paper, implementation cost, integration with the HIS, quality assurance and datasets, are highlighted along with the local solutions developed to overcome these problems.
Anderson, Kelly L; Bruce, Susan D
2002-01-01
This article describes the experiences of a nurse in a new role in a freestanding radiation oncology clinic. Networking to find the resources that patients need and providing guidance to the patients in using the resources through their course of treatment are discussed. Local and national resources that can be used as tools in radiation therapy nursing also are described.
MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standardsmore » like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Ankit; Koottappillil, Brian; Shah, Bhartesh
Purpose: There is a recognized need for more robust training in oncology for medical students. At our institution, we have offered a core dedicated oncology block, led by a radiation oncologist course director, during the second year of the medical school curriculum since the 2008-2009 academic year. Herein, we report the outcomes of the oncology block over the past 5 years through an analysis of student perceptions of the course, both immediately after completion of the block and in the third year. Methods and Materials: We analyzed 2 separate surveys. The first assessed student impressions of how well the course metmore » each of the course's learning objectives through a survey that was administered to students immediately after the oncology block in 2012. The second was administered after students completed the oncology block during the required radiology clerkship in the third year. All questions used a 5-level Likert scale and were analyzed by use of a Wilcoxon signed-rank test. Results: Of the 169 students who took the oncology course in 2012, 127 (75.1%) completed the course feedback survey. Over 73% of students agreed or strongly agreed that the course met its 3 learning objectives. Of the 699 medical students who took the required radiology clerkship between 2010 and 2013, 538 participated in the second survey, for a total response rate of 77%. Of these students, 368 (68.4%) agreed or strongly agreed that the course was effective in contributing to their overall medical education. Conclusion: Student perceptions of the oncology block are favorable and have improved across multiple categories since the inception of the course. Students self-reported that a dedicated preclinical oncology block was effective in helping identify the basics of cancer therapy and laying the foundation for clinical electives in oncology, including radiation oncology.« less
Giuliani, Meredith; Gospodarowicz, Mary
2018-01-01
In this article we provide an overview of the Canadian healthcare system and the cancer care system in Canada as it pertains to the governance, funding and delivery of radiotherapy programmes. We also review the training and practice for radiation oncologists, medical physicists and radiation therapists in Canada. We describe the clinical practice of radiation medicine from patients' referral, assessment, case conferences and the radiotherapy process. Finally, we provide an overview of the practice culture for Radiation Oncology in Canada. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cattari, Gabriella; Delmastro, Elena; Bresciani, Sara; Gribaudo, Sergio; Melano, Antonella; Giannelli, Flavio; Tessa, Maria; Chiarlone, Renato; Scolaro, Tindaro; Krengli, Marco; Urgesi, Alessandro; Gabriele, Pietro
2016-04-01
We focused the attention on radiation therapy practices about the gynecological malignancies in Piedmont, Liguria, and Valle d'Aosta to know the current treatment practice and to improve the quality of care. We proposed a cognitive survey to evaluate the standard practice patterns for gynecological cancer management, adopted from 2012 to 2014 by radiotherapy (RT) centers with a large amount of gynecological cancer cases. There were three topics: 1. Taking care and multidisciplinary approach, 2. Radiotherapy treatment and brachytherapy, 3. Follow-up. Nineteen centers treated gynecological malignancies and 12 of these had a multidisciplinary dedicated team. Radiotherapy option has been used in all clinical setting: definitive, adjuvant, and palliative. In general, 1978 patients were treated. There were 834 brachytherapy (BRT) treatments. The fusion between diagnostic imaging (magnetic resonance imaging - MRI, positron emission tomography - PET) and computed tomography (CT) simulation was used for contouring in all centers. Conformal RT and intensity modulated radiation therapy (IMRT) were the most frequent techniques. The image guided radiation therapy (IGRT) was used in 10/19 centers. There were 8 active BRT centers. Brachytherapy was performed both with radical intent and as boost, mostly by HDR (6/8 centers). The doses for exclusive BRT were between 20 to 30 Gy. The doses for BRT boost were between 10 and 20 Gy. Four centers used CT-MRI compatible applicators but only one used MRI for planning. The BRT plans on vaginal cuff were still performed on traditional radiographies in 2 centers. The plan sum was evaluated in only 1 center. Only 1 center performed in vivo dosimetry. In the last three years, multidisciplinary approach, contouring, treatment techniques, doses, and control systems were similar in Liguria-Piedmont and Valle d'Aosta. However, the technology implementation didn't translate in a real treatment innovation so far.
Cattari, Gabriella; Delmastro, Elena; Bresciani, Sara; Gribaudo, Sergio; Melano, Antonella; Giannelli, Flavio; Tessa, Maria; Chiarlone, Renato; Scolaro, Tindaro; Krengli, Marco; Urgesi, Alessandro
2016-01-01
Purpose We focused the attention on radiation therapy practices about the gynecological malignancies in Piedmont, Liguria, and Valle d'Aosta to know the current treatment practice and to improve the quality of care. Material and methods We proposed a cognitive survey to evaluate the standard practice patterns for gynecological cancer management, adopted from 2012 to 2014 by radiotherapy (RT) centers with a large amount of gynecological cancer cases. There were three topics: 1. Taking care and multidisciplinary approach, 2. Radiotherapy treatment and brachytherapy, 3. Follow-up. Results Nineteen centers treated gynecological malignancies and 12 of these had a multidisciplinary dedicated team. Radiotherapy option has been used in all clinical setting: definitive, adjuvant, and palliative. In general, 1978 patients were treated. There were 834 brachytherapy (BRT) treatments. The fusion between diagnostic imaging (magnetic resonance imaging – MRI, positron emission tomography – PET) and computed tomography (CT) simulation was used for contouring in all centers. Conformal RT and intensity modulated radiation therapy (IMRT) were the most frequent techniques. The image guided radiation therapy (IGRT) was used in 10/19 centers. There were 8 active BRT centers. Brachytherapy was performed both with radical intent and as boost, mostly by HDR (6/8 centers). The doses for exclusive BRT were between 20 to 30 Gy. The doses for BRT boost were between 10 and 20 Gy. Four centers used CT-MRI compatible applicators but only one used MRI for planning. The BRT plans on vaginal cuff were still performed on traditional radiographies in 2 centers. The plan sum was evaluated in only 1 center. Only 1 center performed in vivo dosimetry. Conclusions In the last three years, multidisciplinary approach, contouring, treatment techniques, doses, and control systems were similar in Liguria-Piedmont and Valle d'Aosta. However, the technology implementation didn't translate in a real treatment innovation so far. PMID:27257417
Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.
2012-01-01
Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697
Berriochoa, Camille; Weller, Michael; Berry, Danielle; Reddy, Chandana A; Koyfman, Shlomo; Tendulkar, Rahul
Our goals were toexamine the educational approachesused at radiation oncology residency programs nationwide andto evaluate program director(PD) and chief resident (CR) perceptions of their educational environment. We distributed a survey regarding curricular structure via email toall identified US radiation oncology residency PDs and CRs. Pearson χ 2 test was used toevaluate whether differences existed between answers provided by the 2 study populations. The survey was disseminated to 200 individuals in 85 US residency programs: 49/85PDs(58%)and 74/115 (64%)CRs responded. More than one-half of PDs and CRs report that attending physicians discussed management, reviewed contours, and conducted mock oral board examinations with the residents. At nearly 50% of programs, the majority of teaching conferences use a lecture-based approach, whereas only 20% reported predominant utilization of the Socratic method. However, both PDs (63%) and CRs (49%) reported that Socratic teaching is more effective than didactic lectures (16% and 20%, respectively), with the remainder responding that they are equally effective. Teaching sessions were reported to be resident-led ≥75% of the time by 50% of CRs versus 18% of PDs (P = .002). Significantly more CRs than PDs felt that faculty-led teaching conferences were more effective than resident-led conferences (62% vs 26%, respectively; P < .001). There was a difference in perception regarding the protection of educational time, with 85% of PDs versus 59% of CRs reporting this time as being "never" or "infrequently" compromised by clinical duties (P = .005). There is considerable variability between PDs and CRs in the perceived structure and effectiveness of resident education in US radiation oncology residency programs. These data suggest opportunity for improvement in radiation oncology residency training, such as encouraging more faculty-led, Socratic-based teaching conferences. Increased communication between PDs and CRs can better align perceptions with educational goals. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Darafsheh, Arash; Zhang, Rongxiao; Kassaee, Alireza; Finlay, Jarod C.
2018-03-01
Visible light generated as the result of interaction of ionizing radiation with matter can be used for radiation therapy quality assurance. In this work, we characterized the visible light observed during proton irradiation of poly(methyl methacrylate) (PMMA) and silica glass fiber materials by performing luminescence spectroscopy. The spectra of the luminescence signal from PMMA and silica glass fibers during proton irradiation showed continuous spectra whose shape were different from that expected from Čerenkov radiation, indicating that Čerenkov radiation cannot be the responsible radioluminescence signal. The luminescence signal from each material showed a Bragg peak pattern and their corresponding proton ranges are in agreement with measurements performed by a standard ion chamber. The spectrum of the silica showed two peaks at 460 and 650 nm stem from the point defects of the silica: oxygen deficiency centers (ODC) and non-bridging oxygen hole centers (NBOHC), respectively. The spectrum of the PMMA fiber showed a continuous spectrum with a peak at 410 nm whose origin is connected with the fluorescence of the PMMA material. Our results are of interest for various applications based on imaging radioluminescent signal in proton therapy and will inform on the design of high-resolution fiber probes for proton therapy dosimetry.
A critical appraisal of the clinical utility of proton therapy in oncology
Wang, Dongxu
2015-01-01
Proton therapy is an emerging technology for providing radiation therapy to cancer patients. The depth dose distribution of a proton beam makes it a preferable radiation modality as it reduces radiation to the healthy tissue outside the tumor, compared with conventional photon therapy. While theoretically beneficial, its clinical values are still being demonstrated from the increasing number of patients treated with proton therapy, from several dozen proton therapy centers around the world. High equipment and facility costs are often the major obstacle for its wider adoption. Because of the high cost and lack of definite clinical evidence of its superiority, proton therapy treatment faces criticism on its cost-effectiveness. Technological development is causing a gradual lowering of costs, and research and clinical studies are providing further evidence on its clinical utility. PMID:26604838
How Advances in Imaging Will Affect Precision Radiation Oncology.
Jaffray, David A; Das, Shiva; Jacobs, Paula M; Jeraj, Robert; Lambin, Philippe
2018-06-01
Radiation oncology is 1 of the most structured disciplines in medicine. It is of a highly technical nature with reliance on robotic systems to deliver intervention, engagement of diverse expertise, and early adoption of digital approaches to optimize and execute the application of this highly effective cancer treatment. As a localized intervention, the dependence on sensitive, specific, and accurate imaging to define the extent of disease, its heterogeneity, and adjacency to normal tissues directly affects the therapeutic ratio. Image-based in vivo temporal monitoring of the response to treatment enables adaptation and further affects the therapeutic ratio. Thus, more precise intervention will enable fractionation schedules that better interoperate with advances such as immunotherapy. In the data set-rich era that promises precision and personalized medicine, the radiation oncology field will integrate these new data into highly protocoled pathways of care that begin with multimodality prediction and enable patient-specific adaptation of therapy based on quantitative measures of the individual's dose-volume temporal trajectory and midtherapy predictions of response. In addition to advancements in computed tomography imaging, emerging technologies, such as ultra-high-field magnetic resonance and molecular imaging will bring new information to the design of treatments. Next-generation image guided radiation therapy systems will inject high specificity and sensitivity data and stimulate adaptive replanning. In addition, a myriad of pre- and peritherapeutic markers derived from advances in molecular pathology (eg, tumor genomics), automated and comprehensive imaging analytics (eg, radiomics, tumor microenvironment), and many other emerging biomarkers (eg, circulating tumor cell assays) will need to be integrated to maximize the benefit of radiation therapy for an individual patient. We present a perspective on the promise and challenges of fully exploiting imaging data in the pursuit of personalized radiation therapy, drawing from the presentations and broader discussions at the 2016 American Society of Therapeutic Radiation Oncology-National Cancer Institute workshop on Precision Medicine in Radiation Oncology (Bethesda, MD). Copyright © 2018. Published by Elsevier Inc.
WE-A-BRC-01: Introduction to the Certificate Course
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palta, J.
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
WE-A-BRC-03: Lessons Learned: IROC Audits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Followill, D.
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
WE-A-BRC-02: Lessons Learned: Clinical Trials and Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, S.
Quality and safety in healthcare are inextricably linked. There are compelling data that link poor quality radiation therapy to inferior patient survival. Radiation Oncology clinical trial protocol deviations often involve incorrect target volume delineation or dosing, akin to radiotherapy incidents which also often involve partial geometric miss or improper radiation dosing. When patients with radiation protocol variations are compared to those without significant protocol variations, clinical outcome is negatively impacted. Traditionally, quality assurance in radiation oncology has been driven largely by new technological advances, and safety improvement has been driven by reactive responses to past system failures and prescriptive mandatesmore » recommended by professional organizations and promulgated by regulators. Prescriptive approaches to quality and safety alone often do not address the huge variety of process and technique used in radiation oncology. Risk-based assessments of radiotherapy processes provide a mechanism to enhance quality and safety, both for new and for established techniques. It is imperative that we explore such a paradigm shift at this time, when expectations from patients as well as providers are rising while available resources are falling. There is much we can learn from our past experiences to be applied towards the new risk-based assessments. Learning Objectives: Understand the impact of clinical and technical quality on outcomes Understand the importance of quality care in radiation oncology Learn to assess the impact of quality on clinical outcomes D. Followill, NIH Grant CA180803.« less
Management of radiation therapy patients with cardiac defibrillator or pacemaker.
Salerno, Francesca; Gomellini, Sara; Caruso, Cristina; Barbara, Raffaele; Musio, Daniela; Coppi, Tamara; Cardinale, Mario; Tombolini, Vincenzo; de Paula, Ugo
2016-06-01
The increasing growth of population with cardiac implantable electronic devices (CIEDs) such as Pacemaker (PM) and Implantable Cardiac Defibrillators (ICD), requires particular attention in management of patients needing radiation treatment. This paper updates and summarizes some recommendations from different international guidelines. Ionizing radiation and/or electromagnetic interferences could cause device failure. Current approaches to treatment in patients who have these devices vary among radiation oncology centres. We refer to the German Society of Radiation Oncology and Cardiology guidelines (ed. 2015); to the Society of Cardiology Australia and New Zealand Statement (ed. 2015); to the guidelines in force in the Netherlands (ed. 2012) and to the Italian Association of Radiation Oncology recommendations (ed. 2013) as reported in the guidelines for the treatment of breast cancer in patients with CIED. Although there is not a clear cut-off point, risk of device failure increases with increasing doses. Cumulative dose and pacing dependency have been combined to categorize patients into low-, medium- and high-risk groups. Measures to secure patient safety are described for each category. The use of energy ≤6MV is preferable and it's strongly recommended not to exceed a total dose of 2 Gy to the PM and 1 Gy for ICD. Given the dangers of device malfunction, radiation oncology departments should adopt all the measures designed to minimize the risk to patients. For this reason, a close collaboration between cardiologist, radiotherapist and physicist is necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Ying, E-mail: ying.xiao@jefferson.edu; De Amorim Bernstein, Karen; Chetty, Indrin J.
Purpose: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Methods and Materials: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by amore » representative from the ABR and other physics and clinical experts. Results: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. Conclusions: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.« less
Xiao, Ying; Bernstein, Karen De Amorim; Chetty, Indrin J; Eifel, Patricia; Hughes, Lesley; Klein, Eric E; McDermott, Patrick; Prisciandaro, Joann; Paliwal, Bhudatt; Price, Robert A; Werner-Wasik, Maria; Palta, Jatinder R
2011-11-15
In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years. Copyright © 2011 Elsevier Inc. All rights reserved.
Supportive care services in hemato-oncology centers: a national survey.
Mercadante, Sebastiano; Costanzi, Andrea; David, Fabrizio; Villari, Patrizia; Musso, Maurizio; Marchetti, Paolo; Casuccio, Alessandra
2016-10-01
In the field of hemato-oncology, there is paucity of data assessing models of integration between hemato-oncology and other partner specialties. The aim of this national survey was to gather information about the status of the integration of this kind of activity in hemato-oncologic units existing in Italy. A national telephone survey was conducted to gather information about the status of the integration of hemato-oncologic and supportive care/anesthesiological services. From the national registry of hemato-oncology units, 149 centers were contacted by phone and a dedicated doctor was identified to gather information about the center through a telephone interview. Eighty-one centers (54.3 %) agreed to participate. A mean of 206 (SD 132) painful procedures/year/center were performed. No significant differences among regions and centers were found (P = 0.680). Of the centers, 41.9 % usually asked for anesthesiological consultation to perform painful procedures. No differences were found between the regions (P = 0.137). A mean of 1.8 (SD 1.2) days elapsed from the request to the procedure performance (P = 0.271). No differences among the regions were found (P = 0.350). A mean of 220 (SD 89) central venous vascular accesses/year/center were performed. No differences among regions were found (P = 0.170). No differences among the centers were found (P = 0.691). A mean of 1.8 (SD 1.2) days elapsed from the request to the performance of procedure. Of the centers, 64.2 % had a palliative care team. No differences among regions were found (P = 0.331). A mean of 31.5 (SD 12.2) consultations/year/center for pain control were required. No differences among the regions were found (P = 0.556). Of the centers, 30.8 % had some beds for palliative care. No differences among the regions were found (P = 0.641). Of the centers, 32 % had a hospice was available. No differences among regions were found (P = 0.298). Integration between hemato-oncology and other professionals is unlikely to be optimal in Italy. Such integration is complex and needs great efforts to solve several organizational problems.
Radiation Oncology Physics and Medical Physics Education
NASA Astrophysics Data System (ADS)
Bourland, Dan
2011-10-01
Medical physics, an applied field of physics, is the applications of physics in medicine. Medical physicists are essential professionals in contemporary healthcare, contributing primarily to the diagnosis and treatment of diseases through numerous inventions, advances, and improvements in medical imaging and cancer treatment. Clinical service, research, and teaching by medical physicists benefits thousands of patients and other individuals every day. This talk will cover three main topics. First, exciting current research and development areas in the medical physics sub-specialty of radiation oncology physics will be described, including advanced oncology imaging for treatment simulation, image-guided radiation therapy, and biologically-optimized radiation treatment. Challenges in patient safety in high-technology radiation treatments will be briefly reviewed. Second, the educational path to becoming a medical physicist will be reviewed, including undergraduate foundations, graduate training, residency, board certification, and career opportunities. Third, I will introduce the American Association of Physicists in Medicine (AAPM), which is the professional society that represents, advocates, and advances the field of medical physics (www.aapm.org).
American Society of Pediatric Hematology/Oncology
... Learn More Explore career opportunities in pediatric hematology/oncology Visit the ASPHO Career Center. Learn More Join ... Privacy Policy » © The American Society of Pediatric Hematology/Oncology
75 FR 28623 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... 20892, (301) 435- 0682, [email protected] . Name of Committee: Oncology 1--Basic Translational... . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology [email protected] . Name of Committee: Oncology 1-Basic Translational Integrated Review Group, Cancer...
77 FR 28890 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
...: Oncology 2--Translational Clinical Integrated Review Group; Clinical Oncology Study Section. Date: June 11..., (301) 435-0682, [email protected] . Name of Committee: Oncology 1-Basic Translational Integrated... Committee: Oncology 2--Translational Clinical Integrated Review Group; Developmental Therapeutics Study...
Factors Affecting Gender-based Experiences for Residents in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry, Parul N., E-mail: pnbarr01@louisville.edu; Miller, Karen H.; Ziegler, Craig
Purpose: Although women constitute approximately half of medical school graduates, an uneven gender distribution exists among many specialties, including radiation oncology, where women fill only one third of residency positions. Although multiple social and societal factors have been theorized, a structured review of radiation oncology resident experiences has yet to be performed. Methods and Materials: An anonymous and voluntary survey was sent to 611 radiation oncology residents practicing in the United States. Residents were asked about their gender-based experiences in terms of mentorship, their professional and learning environment, and their partnerships and personal life. Results: A total of 203 participantsmore » submitted completed survey responses. Fifty-seven percent of respondents were men, and 43% were women, with a mean age of 31 years (standard deviation=3.7 years). Although residents in general value having a mentor, female residents prefer mentors of the same gender (P<.001), and noted having more difficulty finding a mentor (P=.042). Women were more likely to say that they have observed preferential treatment based on gender (P≤.001), and they were more likely to perceive gender-specific biases or obstacles in their professional and learning environment (P<.001). Women selected residency programs based on gender ratios (P<.001), and female residents preferred to see equal numbers of male and female faculty (P<.001). Women were also more likely to perceive work-related strain than their male counterparts (P<.001). Conclusions: Differences in experiences for male and female radiation oncology residents exist with regard to mentorship and in their professional and learning environment.« less
Development of new on-line statistical program for the Korean Society for Radiation Oncology
Song, Si Yeol; Ahn, Seung Do; Chung, Weon Kuu; Choi, Eun Kyung; Cho, Kwan Ho
2015-01-01
Purpose To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. Materials and Methods The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Results Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. Conclusion The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology. PMID:26157684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangaraj, D; Chan, K; Boddu, S
Lean thinking has revolutionized the manufacturing industry. Toyota has pioneered and leveraged this aspect of Lean thinking. Application of Lean thinking and Lean Six Sigma techniques into Healthcare and in particular in Radiation Oncology has its merits and challenges. To improve quality, safety and patient satisfaction with available resources or reducing cost in terms of time, staff and resources is demands of today's healthcare. Radiation oncology treatment involves many processes and steps, identifying and removing the non-value added steps in a process can significantly improve the efficiency. Real projects undertaken in radiation oncology department in cutting down the procedure timemore » for MRI guided brachytherapy to 40% less using lean thinking will be narrated. Simple Lean tools and techniques such as Gemba walk, visual control, daily huddles, standard work, value stream mapping, error-proofing, etc. can be applied with existing resources and how that improved the operation in a Radiation Oncology department's two year experience will be discussed. Lean thinking focuses on identifying and solving the root-cause of a problem by asking “Why” and not “Who” and this requires a culture change of no blame. Role of leadership in building lean culture, employee empowerment and trains and develops lean thinkers will be presented. Why Lean initiatives fail and how to implement lean successfully in your clinic will be discussed. Learning Objectives: Concepts of lean management or lean thinking. Lean tools and techniques applied in Radiation Oncology. Implement no blame culture and focus on system and processes. Leadership role in implementing lean culture. Challenges for Lean thinking in healthcare.« less
Development of new on-line statistical program for the Korean Society for Radiation Oncology.
Song, Si Yeol; Ahn, Seung Do; Chung, Weon Kuu; Shin, Kyung Hwan; Choi, Eun Kyung; Cho, Kwan Ho
2015-06-01
To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology.
Kasatov, D; Makarov, A; Shchudlo, I; Taskaev, S
2015-12-01
Epithermal neutron source based on a tandem accelerator with vacuum insulation and lithium target has been proposed, developed and operated in Budker Institute of Nuclear Physics. The source is regarded as a prototype of a future compact device suitable for carrying out BNCT in oncology centers. In this work the measurements of gamma-ray and neutron radiation are presented for the interaction of a 2 MeV proton beam with various materials (Li, C, F, Al, V, Ti, Cu, Mo, stainless steel, and Ta). The obtained results enabled the optimization of the neutron-generating target and the high energy beam transportation path. Copyright © 2015 Elsevier Ltd. All rights reserved.
Turner, Sandra; Eriksen, Jesper G; Trotter, Theresa; Verfaillie, Christine; Benstead, Kim; Giuliani, Meredith; Poortmans, Philip; Holt, Tanya; Brennan, Sean; Pötter, Richard
2015-10-01
Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders from the ESTRO School, encompassing many European countries adopting the ESTRO Core Curriculum, and clinician educators from Canada, Denmark, the United Kingdom, Australia and New Zealand considered the training and educational arrangements within their jurisdictions, identifying similarities and challenges between programs. Common areas of educational interest and need were defined, which included development of new competency statements and assessment tools, and the application of the latter. The group concluded that such an international cooperation, which might expand to include others with similar goals, would provide a valuable vehicle to ensure training program currency, through sharing of resources and expertise, and enhance high quality radiation oncology education. Potential projects for the Global Radiation Oncology Collaboration in Education (GRaCE) were agreed upon, as was a strategy designed to maintain momentum. This paper describes the rationale for establishing this collaboration, presents a comparative view of training in the jurisdictions represented, and reports early goals and priorities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Review of Shared Decision-Making and Patient Decision Aids in Radiation Oncology.
Woodhouse, Kristina Demas; Tremont, Katie; Vachani, Anil; Schapira, Marilyn M; Vapiwala, Neha; Simone, Charles B; Berman, Abigail T
2017-06-01
Cancer treatment decisions are complex and may be challenging for patients, as multiple treatment options can often be reasonably considered. As a result, decisional support tools have been developed to assist patients in the decision-making process. A commonly used intervention to facilitate shared decision-making is a decision aid, which provides evidence-based outcomes information and guides patients towards choosing the treatment option that best aligns with their preferences and values. To ensure high quality, systematic frameworks and standards have been proposed for the development of an optimal aid for decision making. Studies have examined the impact of these tools on facilitating treatment decisions and improving decision-related outcomes. In radiation oncology, randomized controlled trials have demonstrated that decision aids have the potential to improve patient outcomes, including increased knowledge about treatment options and decreased decisional conflict with decision-making. This article provides an overview of the shared-decision making process and summarizes the development, validation, and implementation of decision aids as patient educational tools in radiation oncology. Finally, this article reviews the findings from decision aid studies in radiation oncology and offers various strategies to effectively implement shared decision-making into clinical practice.
Multidisciplinary Treatment of Head and Neck Cancer
Varkey, Prashanth; Liu, Yi-Tien; Tan, Ngian Chye
2010-01-01
Head and neck cancer remains a significant cause of morbidity worldwide. Multimodality treatment is often the only way to achieve improved function, quality of life, and survival, calling for a multidisciplinary team approach, particularly in view of the rapid advances being made in various fields. The roles of the head and neck surgeon and reconstructive surgeon are discussed, together with the input afforded by specialists in areas such as diagnostic imaging, radiation therapy, medical oncology, and gene therapy. Telemedicine is of importance in centers where multidisciplinary expertise is not available. PMID:22550455
75 FR 1795 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-13
... funding cycle. Name of Committee: Oncology 1--Basic Translational Integrated Review Group, Tumor... Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology Study Section. Date...
Comprehensive Oncologic Emergencies Research Network (CONCERN)
The Comprehensive Oncologic Emergencies Research Network (CONCERN) was established in March 2015 with the goal to accelerate knowledge generation, synthesis and translation of oncologic emergency medicine research through multi-center collaborations.
Brundage, Michael; Foxcroft, Sophie; McGowan, Tom; Gutierrez, Eric; Sharpe, Michael; Warde, Padraig
2013-01-01
Objectives To describe current patterns of practice of radiation oncology peer review within a provincial cancer system, identifying barriers and facilitators to its use with the ultimate aim of process improvement. Design A survey of radiation oncology programmes at provincial cancer centres. Setting All cancer centres within the province of Ontario, Canada (n=14). These are community-based outpatient facilities overseen by Cancer Care Ontario, the provincial cancer agency. Participants A delegate from each radiation oncology programme filled out a single survey based on input from their multidisciplinary team. Outcome measures Rated importance of peer review; current utilisation; format of the peer-review process; organisation and timing; case attributes; outcomes of the peer-review process and perceived barriers and facilitators to expanding peer-review processes. Results 14 (100%) centres responded. All rated the importance of peer review as at least 8/10 (10=extremely important). Detection of medical error and improvement of planning processes were the highest rated perceived benefits of peer review (each median 9/10). Six centres (43%) reviewed at least 50% of curative cases; four of these centres (29%) conducted peer review in more than 80% of cases treated with curative intent. Fewer than 20% of cases treated with palliative intent were reviewed in most centres. Five centres (36%) reported usually conducting peer review prior to the initiation of treatment. Five centres (36%) recorded the outcomes of peer review on the medical record. Thirteen centres (93%) planned to expand peer-review activities; a critical mass of radiation oncologists was the most important limiting factor (median 6/10). Conclusions Radiation oncology peer-review practices can vary even within a cancer system with provincial oversight. The application of guidelines and standards for peer-review processes, and monitoring of implementation and outcomes, will require effective knowledge translation activities. PMID:23903814
Verkooijen, Helena M; Kerkmeijer, Linda G W; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris
2017-01-01
The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved outcomes has been generated. The standard phase I-IV framework for drug evaluation is not the most efficient and desirable framework for assessment of technological innovations. In order to provide a standard assessment methodology for clinical evaluation of innovations in radiotherapy, we adapted the surgical IDEAL framework to fit the radiation oncology setting. Like surgery, clinical evaluation of innovations in radiation oncology is complicated by continuous technical development, team and operator dependence, and differences in quality control. Contrary to surgery, radiotherapy innovations may be used in various ways, e.g., at different tumor sites and with different aims, such as radiation volume reduction and dose escalation. Also, the effect of radiation treatment can be modeled, allowing better prediction of potential benefits and improved patient selection. Key distinctive features of R-IDEAL include the important role of predicate and modeling studies (Stage 0), randomization at an early stage in the development of the technology, and long-term follow-up for late toxicity. We implemented R-IDEAL for clinical evaluation of a recent innovation in radiation oncology, the MRI-guided linear accelerator (MR-Linac). MR-Linac combines a radiotherapy linear accelerator with a 1.5-T MRI, aiming for improved targeting, dose escalation, and margin reduction, and is expected to increase the use of hypofractionation, improve tumor control, leading to higher cure rates and less toxicity. An international consortium, with participants from seven large cancer institutes from Europe and North America, has adopted the R-IDEAL framework to work toward coordinated, evidence-based introduction of the MR-Linac. R-IDEAL holds the promise for timely, evidence-based introduction of radiotherapy innovations with proven superior effectiveness, while preventing unnecessary exposure of patients to potentially harmful interventions.
Value: A Framework for Radiation Oncology
Teckie, Sewit; McCloskey, Susan A.; Steinberg, Michael L.
2014-01-01
In the current health care system, high costs without proportional improvements in quality or outcome have prompted widespread calls for change in how we deliver and pay for care. Value-based health care delivery models have been proposed. Multiple impediments exist to achieving value, including misaligned patient and provider incentives, information asymmetries, convoluted and opaque cost structures, and cultural attitudes toward cancer treatment. Radiation oncology as a specialty has recently become a focus of the value discussion. Escalating costs secondary to rapidly evolving technologies, safety breaches, and variable, nonstandardized structures and processes of delivering care have garnered attention. In response, we present a framework for the value discussion in radiation oncology and identify approaches for attaining value, including economic and structural models, process improvements, outcome measurement, and cost assessment. PMID:25113759
Zargan, S.; Ghafarian, P.; Shabestani Monfared, A.; Sharafi, A.A.; Bakhshayeshkaram, M.; Ay, M.R.
2017-01-01
Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT and cyclotron center. Materials and Methods: 80 patients participated in this study. Thermoluminescence, electronic personal dosimeter and Geiger-Muller dosimeter were also utilized for measurement purpose. Results: The mean annual equivalent organ dose for scanning operator with regard to lens of eyes, thyroid, breast and finger according to mean±SD value, were 0.262±0.044, 0.256±0.046, 0.257±0.040 and 0.316±0.118, respectively. The maximum and minimum estimated annual whole body doses were observed for injector and the chemist group with values of (3.98±0.021) mSv/yr and (1.64±0.014) mSv/yr, respectively. The observed dose rates were 5.67 µSv/h in uptake room at the distance of 0.5 meter from the patient whereas the value 4.94 and 3.08 µSv/h were recorded close to patient’s head in PET/CT room and 3.5 meter from the reception desk. Conclusion: In this study, the injector staff and scanning operator received the first high level and second high level of radiation. This study confirmed that low levels of radiation dose were received by all radiation staff during PET/CT procedure using 18F-FDG due to efficient shielding and using trained radiation staff in PET/CT and cyclotron center of Masih Daneshvari hospital. PMID:28451574
The National Cancer Institute's Physical Sciences - Oncology Network
NASA Astrophysics Data System (ADS)
Espey, Michael Graham
In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.
Nabavizadeh, Nima; Burt, Lindsay M; Mancini, Brandon R; Morris, Zachary S; Walker, Amanda J; Miller, Seth M; Bhavsar, Shripal; Mohindra, Pranshu; Kim, Miranda B; Kharofa, Jordan
2016-02-01
The purpose of this project was to survey radiation oncology chief residents to define their residency experience and readiness for independent practice. During the academic years 2013 to 2014 and 2014 to 2015, the Association of Residents in Radiation Oncology (ARRO) conducted an electronic survey of post-graduate year-5 radiation oncology residents in the United States during the final 3 months of training. Descriptive statistics are reported. Sixty-six chief residents completed the survey in 2013 to 2014 (53% response rate), and 69 completed the survey in 2014 to 2015 (64% response rate). Forty to 85% percent of residents reported inadequate exposure to high-dose rate and low-dose rate brachytherapy. Nearly all residents in both years (>90%) reported adequate clinical experience for the following disease sites: breast, central nervous system, gastrointestinal, genitourinary, head and neck, and lung. However, as few as 56% reported adequate experience in lymphoma or pediatric malignancies. More than 90% of residents had participated in retrospective research projects, with 20% conducting resident-led prospective clinical trials and 50% conducting basic science or translational projects. Most chief residents reported working 60 or fewer hours per week in the clinical/hospital setting and performing fewer than 15 hours per week tasks that were considered to have little or no educational value. There was more than 80% compliance with Accreditation Council for Graduate Medical Education (ACGME) work hour limits. Fifty-five percent of graduating residents intended to join an established private practice group, compared to 25% who headed for academia. Residents perceive the job market to be more competitive than previous years. This first update of the ARRO chief resident survey since the 2007 to 2008 academic year documents US radiation oncology residents' experiences and conditions over a 2-year period. This analysis may serve as a valuable tool for those seeking to improve training of the next generation of oncology leaders. Copyright © 2016 Elsevier Inc. All rights reserved.
Kirkpatrick, John P; Light, Kim L; Walker, Robyn M; Georgas, Debra L; Antoine, Phillip A; Clough, Robert W; Cozart, Heidi B; Yin, Fang-Fang; Yoo, Sua; Willett, Christopher G
2013-01-01
While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR) eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality, or productivity. In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT) specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes. Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes, and treatment summaries; the latter includes treatment plans, daily therapy records, and quality assurance reports. To manage the former, we utilized the enterprise-wide system, which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems.) The ability to access both systems simultaneously from a single workstation (WS) was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality, or confidentiality. However, compared to paper charts, time required by clinicians to access/enter patient information has substantially increased. While productivity is improving with experience, substantial growth will require better integration of the system components, decreased access times, and improved user interfaces. $127K was spent on new hardware and software; elimination of paper yields projected savings of $21K/year. One year after conversion to an EMR, more than 90% of department staff favored the EMR over the previous paper charts. Successful implementation of a Radiation Oncology EMR required not only the effort and commitment of all functions of the department, but support from senior health system management, corporate IT, and vendors. Realization of the full benefits of an EMR will require experience, faster/better integrated software, and continual improvement in underlying clinical processes.
78 FR 312 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-03
..., Bethesda, MD 20892, 301-435- 1198, [email protected] . Name of Committee: Oncology 2--Translational... . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology Study...
Itazawa, Tomoko; Tamaki, Yukihisa; Komiyama, Takafumi; Nishimura, Yasumasa; Nakayama, Yuko; Ito, Hiroyuki; Ohde, Yasuhisa; Kusumoto, Masahiko; Sakai, Shuji; Suzuki, Kenji; Watanabe, Hirokazu; Asamura, Hisao
2017-01-01
The purpose of this study was to develop a consensus-based computed tomographic (CT) atlas that defines lymph node stations in radiotherapy for lung cancer based on the lymph node map of the International Association for the Study of Lung Cancer (IASLC). A project group in the Japanese Radiation Oncology Study Group (JROSG) initially prepared a draft of the atlas in which lymph node Stations 1-11 were illustrated on axial CT images. Subsequently, a joint committee of the Japan Lung Cancer Society (JLCS) and the Japanese Society for Radiation Oncology (JASTRO) was formulated to revise this draft. The committee consisted of four radiation oncologists, four thoracic surgeons and three thoracic radiologists. The draft prepared by the JROSG project group was intensively reviewed and discussed at four meetings of the committee over several months. Finally, we proposed definitions for the regional lymph node stations and the consensus-based CT atlas. This atlas was approved by the Board of Directors of JLCS and JASTRO. This resulted in the first official CT atlas for defining regional lymph node stations in radiotherapy for lung cancer authorized by the JLCS and JASTRO. In conclusion, the JLCS-JASTRO consensus-based CT atlas, which conforms to the IASLC lymph node map, was established. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology.
Eekers, Daniëlle Bp; In 't Ven, Lieke; Roelofs, Erik; Postma, Alida; Alapetite, Claire; Burnet, Neil G; Calugaru, Valentin; Compter, Inge; Coremans, Ida E M; Høyer, Morton; Lambrecht, Maarten; Nyström, Petra Witt; Romero, Alejandra Méndez; Paulsen, Frank; Perpar, Ana; de Ruysscher, Dirk; Renard, Laurette; Timmermann, Beate; Vitek, Pavel; Weber, Damien C; van der Weide, Hiske L; Whitfield, Gillian A; Wiggenraad, Ruud; Troost, Esther G C
2018-03-13
To create a digital, online atlas for organs at risk (OAR) delineation in neuro-oncology based on high-quality computed tomography (CT) and magnetic resonance (MR) imaging. CT and 3 Tesla (3T) MR images (slice thickness 1 mm with intravenous contrast agent) were obtained from the same patient and subsequently fused. In addition, a 7T MR without intravenous contrast agent was obtained from a healthy volunteer. Based on discussion between experienced radiation oncologists, the clinically relevant organs at risk (OARs) to be included in the atlas for neuro-oncology were determined, excluding typical head and neck OARs previously published. The draft atlas was delineated by a senior radiation oncologist, 2 residents in radiation oncology, and a senior neuro-radiologist incorporating relevant available literature. The proposed atlas was then critically reviewed and discussed by European radiation oncologists until consensus was reached. The online atlas includes one CT-scan at two different window settings and one MR scan (3T) showing the OARs in axial, coronal and sagittal view. This manuscript presents the three-dimensional descriptions of the fifteen consensus OARs for neuro-oncology. Among these is a new OAR relevant for neuro-cognition, the posterior cerebellum (illustrated on 7T MR images). In order to decrease inter- and intra-observer variability in delineating OARs relevant for neuro-oncology and thus derive consistent dosimetric data, we propose this atlas to be used in photon and particle therapy. The atlas is available online at www.cancerdata.org and will be updated whenever required. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, Hiram A., E-mail: hgay@radonc.wustl.edu; Barthold, H. Joseph; Beth Israel Deaconess Medical Center, Boston, MA
2012-07-01
Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The followingmore » were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.« less
Prostate Cancer Clinical Trials Group - The University of Michigan Site
2014-06-01
Medicine and Urology University of Michigan Comprehensive Cancer Center Internal Medicine , Hematology Oncology 7314 Cancer Center, SPC 5946 Ann...Arbor, MI 48109-5946 mahahuss@umich.edu David C. Smith, M.D., FACP, Professor, Departments of Internal Medicine and Urology University of Michigan...Comprehensive Cancer Center Internal Medicine , Hematology Oncology 7302 Cancer Center, SPC 5946 Ann Arbor, MI 48109-5946 dcsmith@umich.edu
Workplace Bullying in Radiology and Radiation Oncology.
Parikh, Jay R; Harolds, Jay A; Bluth, Edward I
2017-08-01
Workplace bullying is common in health care and has recently been reported in both radiology and radiation oncology. The purpose of this article is to increase awareness of bullying and its potential consequences in radiology and radiation oncology. Bullying behavior may involve abuse, humiliation, intimidation, or insults; is usually repetitive; and causes distress in victims. Workplace bullying is more common in health care than in other industries. Surveys of radiation therapists in the United States, student radiographers in England, and physicians-in-training showed that substantial proportions of respondents had been subjected to workplace bullying. No studies were found that addressed workplace bullying specifically in diagnostic radiology or radiation oncology residents. Potential consequences of workplace bullying in health care include anxiety, depression, and health problems in victims; harm to patients as a result of victims' reduced ability to concentrate; and reduced morale and high turnover in the workplace. The Joint Commission has established leadership standards addressing inappropriate behavior, including bullying, in the workplace. The ACR Commission on Human Resources recommends that organizations take steps to prevent bullying. Those steps include education, including education to ensure that the line between the Socratic method and bullying is not crossed, and the establishment of policies to facilitate reporting of bullying and support victims of bullying. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Yolanda D., E-mail: ydtseng@partners.org; Krishnan, Monica S.; Sullivan, Adam J.
2013-11-01
Purpose: We surveyed how radiation oncologists think about and incorporate a palliative cancer patient’s life expectancy (LE) into their treatment recommendations. Methods and Materials: A 41-item survey was e-mailed to 113 radiation oncology attending physicians and residents at radiation oncology centers within the Boston area. Physicians estimated how frequently they assessed the LE of their palliative cancer patients and rated the importance of 18 factors in formulating LE estimates. For 3 common palliative case scenarios, physicians estimated LE and reported whether they had an LE threshold below which they would modify their treatment recommendation. LE estimates were considered accurate whenmore » within the 95% confidence interval of median survival estimates from an established prognostic model. Results: Among 92 respondents (81%), the majority were male (62%), from an academic practice (75%), and an attending physician (70%). Physicians reported assessing LE in 91% of their evaluations and most frequently rated performance status (92%), overall metastatic burden (90%), presence of central nervous system metastases (75%), and primary cancer site (73%) as “very important” in assessing LE. Across the 3 cases, most (88%-97%) had LE thresholds that would alter treatment recommendations. Overall, physicians’ LE estimates were 22% accurate with 67% over the range predicted by the prognostic model. Conclusions: Physicians often incorporate LE estimates into palliative cancer care and identify important prognostic factors. Most have LE thresholds that guide their treatment recommendations. However, physicians overestimated patient survival times in most cases. Future studies focused on improving LE assessment are needed.« less
Teaching the Anatomy of Oncology: Evaluating the Impact of a Dedicated Oncoanatomy Course
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chino, Junzo P., E-mail: junzo.chino@duke.ed; Lee, W. Robert; Madden, Richard
Purpose: Anatomic considerations are often critical in multidisciplinary cancer care. We developed an anatomy-focused educational program for radiation oncology residents integrating cadaver dissection into the didactic review of diagnostic, surgical, radiologic, and treatment planning, and herein assess its efficacy. Methods and Materials: Monthly, anatomic-site based educational modules were designed and implemented during the 2008-2009 academic year at Duke University Medical Center. Ten radiation oncology residents participated in these modules consisting of a 1-hour didactic introduction followed by a 1-hour session in the gross anatomy lab with cadavers prepared by trained anatomists. Pretests and posttests were given for six modules, andmore » post-module feedback surveys were distributed. Additional review questions testing knowledge from prior sessions were integrated into the later testing to evaluate knowledge retention. Paired analyses of pretests and postests were performed by Wilcoxon signed-rank test. Results: Ninety tests were collected and scored with 35 evaluable pretest and posttest pairs for six site-specific sessions. Posttests had significantly higher scores (median percentage correct 66% vs. 85%, p < 0.001). Of 47 evaluable paired pretest and review questions given 1-3 months after the intervention, correct responses rates were significantly higher for the later (59% vs. 86%, p = 0.008). Resident course satisfaction was high, with a median rating of 9 of 10 (IQR 8-9); with 1 being 'less effective than most educational interventions' and 10 being 'more effective than most educational interventions.' Conclusions: An integrated oncoanatomy course is associated with improved scores on post-intervention tests, sustained knowledge retention, and high resident satisfaction.« less
The state of survivorship care in radiation oncology: Results from a nationally distributed survey.
Frick, Melissa A; Rosenthal, Seth A; Vapiwala, Neha; Monzon, Brian T; Berman, Abigail T
2018-04-18
Survivorship care has become an increasingly critical component of oncologic care as well as a quality practice and reimbursement metric. To the authors' knowledge, the current climate of survivorship medicine in radiation oncology has not been investigated fully. An institutional review board-approved, Internet-based survey examining practices and preparedness in survivorship care was distributed to radiation oncology practices participating in the American College of Radiology Radiation Oncology Practice Accreditation program between November 2016 and January 2017. A total of 78 surveys were completed. Among these, 2 were nonphysicians, resulting in 76 evaluable responses. Radiation oncologists (ROs) frequently reported that they are the primary provider in the evaluation of late toxicities and the recurrence of primary cancer. Although approximately 68% of ROs frequently discuss plans for future care with survivors, few provide a written survivorship care plan to their patients (18%) or the patients' primary care providers (24%). Patient prognosis, disease site, and reimbursement factors often influence the provision of survivorship care. Although ROs report that several platforms offer training in survivorship medicine, the quality of these resources is variable and extensive instruction is rare. Fewer than one-half of ROs believe they are expertly trained in survivorship care. ROs play an active role within the multidisciplinary team in the cancer-related follow-up care of survivors. Investigation of barriers to the provision of survivorship care and optimization of service delivery should be pursued further. The development of high-quality, easily accessible educational programming is needed so that ROs can participate more effectively in the care of cancer survivors. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.
Burnout in United States Academic Chairs of Radiation Oncology Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusano, Aaron S.; Thomas, Charles R., E-mail: thomasch@ohsu.edu; Bonner, James A.
Purpose: The aims of this study were to determine the self-reported prevalence of burnout in chairs of academic radiation oncology departments, to identify factors contributing to burnout, and to compare the prevalence of burnout with that seen in other academic chair groups. Methods and Materials: An anonymous online survey was administered to the membership of the Society of Chairs of Academic Radiation Oncology Programs (SCAROP). Burnout was measured with the Maslach Burnout Inventory-Human Services Survey (MBI-HSS). Results: Questionnaires were returned from 66 of 87 chairs (76% response rate). Seventy-nine percent of respondents reported satisfaction with their current positions. Common majormore » stressors were budget deficits and human resource issues. One-quarter of chairs reported that it was at least moderately likely that they would step down in the next 1 to 2 years; these individuals demonstrated significantly higher emotional exhaustion. Twenty-five percent of respondents met the MBI-HSS criteria for low burnout, 75% for moderate burnout, and none for high burnout. Group MBI-HSS subscale scores demonstrated a pattern of moderate emotional exhaustion, low depersonalization, and moderate personal accomplishment, comparing favorably with other specialties. Conclusions: This is the first study of burnout in radiation oncology chairs with a high response rate and using a validated psychometric tool. Radiation oncology chairs share similar major stressors to other chair groups, but they demonstrate relatively high job satisfaction and lower burnout. Emotional exhaustion may contribute to the anticipated turnover in coming years. Further efforts addressing individual and institutional factors associated with burnout may improve the relationship with work of chairs and other department members.« less
The radiation oncology workforce: A focus on medical dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Gregg F., E-mail: grobinson@medicaldosimetry.org; Mobile, Katherine; Yu, Yan
2014-07-01
The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%),more » whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field.« less
WE-A-BRD-01: MR Imaging for Treatment Planning: What Every Physicist Should Know
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, K.
2015-06-15
Ever since its introduction as a diagnostic imaging modality over 30 years ago, the radiation therapy community has acknowledged the utility of MR imaging as a tool for not only improved visualization of the target volume but also for demarcation of adjacent organs at risk. However, the adaptation of MR imaging in radiation oncology has, until recently been slow due in large part to the inability to image radiation therapy patients in their treatment position. With the introduction of so-called wide bore high field MR scanners, multi element flexible receive only RF coils, high performance imaging gradients and a rangemore » of volumetric imaging sequences it is now possible to obtain both high resolution and high signal-to-noise ratio images of in-treatment radiation therapy patients within clinically feasible imaging times. As a Result, there is renewed interest in the use of MR imaging for radiation oncology treatment planning that is being translated into physical siting and integration of these systems into radiation oncology departments. As MR imaging expands into the radiation oncology domain there is a significant and unmet need for radiation therapy physicists to become educated regarding the strengths, limitations and technical challenges associated with MR imaging. The purpose of this presentation is to address this need by providing an educational overview of the techniques and challenges associated with MR imaging of patients for radiation therapy treatment planning. As such this presentation will: 1) describe the fundamental differences between imaging of patients for diagnostic and therapeutic purposes (i.e. radiation therapy planning), 2) describe most commonly used imaging sequences and contrasts for identification of disease for radiation planning, 3) identify the most common sources of image distortion and techniques to reduce their effect on spatial fidelity of the MR data, 4) describe the effects of motion and methods to quantify/correct it, and 5) identify emergent techniques for performing MR only treatment simulation. Upon completion attendees will have a working understanding of the basic methodologies associated with MR imaging in radiation oncology, the unique technical challenges imposed by MR imaging in the treatment position and techniques to address these. Learning Objectives: 1. Understand the differences between MR imaging for diagnostic imaging and for radiation therapy planning. 2. Identify the most common sources of distortion and artifacts and simple methods to correct them. 3. Understand the challenges with MR imaging in the therapy treatment position and appropriate techniques to address them.« less
Park, Catherine C; Yom, Sue S; Podgorsak, Matthew B; Harris, Eleanor; Price, Robert A; Bevan, Alison; Pouliot, Jean; Konski, Andre A; Wallner, Paul E
2010-03-15
The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because of their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site. Copyright 2010. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Catherine C., E-mail: cpark@radonc.ucsf.ed; Yom, Sue S.; Podgorsak, Matthew B.
The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because ofmore » their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site.« less
Distance learning in the Applied Sciences of Oncology.
Barton, Michael B; Thode, Richard J
2010-04-01
The major impediment to the expansion of oncology services is a shortage of personnel. To develop a distance learning course for radiation oncology trainees. Under the sponsorship of the Asia Pacific Regional Cooperative Agreement administered by the International Atomic Energy Agency (IAEA), a CD ROM-based Applied Sciences of Oncology (ASOC) distance learning course of 71 modules was created. The course covers communications, critical appraisal, functional anatomy, molecular biology, pathology. The materials include interactive text and illustrations that require students to answer questions before they can progress. The course aims to supplement existing oncology curricula and does not provide a qualification. It aims to assist students in acquiring their own profession's qualification. The course was piloted in seven countries in Asia, Africa and Latin America during 2004. After feedback from the pilot course, a further nine modules were added to cover imaging physics (three modules), informed consent, burnout and coping with death and dying, Economic analysis and cancer care, Nutrition, cachexia and fatigue, radiation-induced second cancers and mathematical tools and background for radiation oncology. The course was widely distributed and can be downloaded from http://www.iaea.org/Publications/Training/Aso/register.html. ASOC has been downloaded over 1100 times in the first year after it was posted. There is a huge demand for educational materials but the interactive approach is labour-intensive and expensive to compile. The course must be maintained to remain relevant. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Cancer concepts and principles: primer for the interventional oncologist-part I.
Hickey, Ryan; Vouche, Michael; Sze, Daniel Y; Hohlastos, Elias; Collins, Jeremy; Schirmang, Todd; Memon, Khairuddin; Ryu, Robert K; Sato, Kent; Chen, Richard; Gupta, Ramona; Resnick, Scott; Carr, James; Chrisman, Howard B; Nemcek, Albert A; Vogelzang, Robert L; Lewandowski, Robert J; Salem, Riad
2013-08-01
A sophisticated understanding of the rapidly changing field of oncology, including a broad knowledge of oncologic disease and the therapies available to treat them, is fundamental to the interventional radiologist providing oncologic therapies, and is necessary to affirm interventional oncology as one of the four pillars of cancer care alongside medical, surgical, and radiation oncology. The first part of this review intends to provide a concise overview of the fundamentals of oncologic clinical trials, including trial design, methods to assess therapeutic response, common statistical analyses, and the levels of evidence provided by clinical trials. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, Edward, E-mail: Edward.Chow@sunnybrook.ca; Hoskin, Peter; Mitera, Gunita
2012-04-01
Purpose: To update the international consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases by surveying international experts regarding previous uncertainties within the 2002 consensus, changes that may be necessary based on practice pattern changes and research findings since that time. Methods and Materials: A two-phase survey was used to determine revisions and new additions to the 2002 consensus. A total of 49 experts from the American Society for Radiation Oncology, the European Society for Therapeutic Radiology and Oncology, the Faculty of Radiation Oncology of the Royal Australian and New Zealand College of Radiologists, and the Canadianmore » Association of Radiation Oncology who are directly involved in the care of patients with bone metastases participated in this survey. Results: Consensus was established in areas involving response definitions, eligibility criteria for future trials, reirradiation, changes in systemic therapy, radiation techniques, parameters at follow-up, and timing of assessments. Conclusion: An outline for trials in bone metastases was updated based on survey and consensus. Investigators leading trials in bone metastases are encouraged to adopt the revised guideline to promote consistent reporting. Areas for future research were identified. It is intended for the consensus to be re-examined in the future on a regular basis.« less
US radiation oncology practice patterns for posttreatment survivor care.
Koontz, Bridget F; Benda, Rashmi; De Los Santos, Jennifer; Hoffman, Karen E; Huq, M Saiful; Morrell, Rosalyn; Sims, Amber; Stevens, Stephanie; Yu, James B; Chen, Ronald C
2016-01-01
Increasing numbers of cancer survivors have driven a greater focus on care of cancer patients after treatment. Radiation oncologists have long considered follow-up of patients an integral part of practice. We sought to document current survivor-focused care patterns and identify barriers to meeting new regulatory commission guidelines for survivorship care plans (SCPs) and provide guidance for survivorship care. A 23-question electronic survey was e-mailed to all practicing US physician American Society of Radiation Oncology members. Responses were collected for 25 days in March 2014. Survey data were descriptively analyzed. A total of 574 eligible providers responded, for a response percentage of 14.7%. Almost all providers follow their patients after treatment (97%). Length of follow-up was frequently extensive: 17% followed up to 2 years, 40% for 3-5 years, 12% for 6-10 years, and 31% indefinitely. Ancillary services, particularly social work and nutrition services, are commonly available onsite to patients in follow-up. Fewer than half of respondents (40%) indicated that they currently use SCPs for curative intent patients and those who do generally use internally developed templates. SCPs typically go to patients (91%), but infrequently to primary care providers (22%). The top 3 barriers to implementation of SCPs were cost (57%), duplicative survivorship care plans provided by other physicians (43%), and lack of consensus or professional guidelines (40%). Eighty-seven percent indicated that SCPs built into an electronic medical record system would be useful. A significant part of radiation oncology practice includes the care of those in the surveillance of follow-up phase of care. SCPs may be beneficial in improving communication with the patient and other care but are not widely used within our field. This survey identified key barriers to use of SCPs and provides specialty guidance for important information to be included in a radiation oncology oriented SCP. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Michelle, E-mail: Mhoward24601@yahoo.com
ABSTRACT: Burnout and compassion fatigue (CF) adversely affect medical professionals, including those employed in radiation oncology. Previously conducted research acknowledged the presence of burnout in populations of radiation therapists, radiation oncologists, and oncology nursing staff. The aim of the following research was to measure the incidence of burnout or CF in the specific population of medical dosimetrists surveyed. As professional members of the radiation oncology team, this group had not been included in published research data to date. The hypothesis of the subsequent study stated that a comparable incidence of burnout would be observed among medical dosimetrists as had beenmore » reported by earlier researchers for a population of radiation therapists. A survey tool based on the Maslach Burnout Inventory (MBI) and distributed to full members of the American Association of Medical Dosimetrists (AAMD) was utilized as the research measurement method. Results obtained indicated an incidence rates of burnout or CF for medical dosimetrists were less than the rates previously measured for radiation therapists (53% vs 11% for emotional exhaustion [EE] and 45% vs 27% for depersonalization [DP]). The incidence of burnout was based on the Burnout Inventory (BI) developed for the research project. Each of the subscales, EE, DP, and decreased personal accomplishment (PA), was considered and analyzed independently. Although not as prevalent among medical dosimetrists as a variety of additional radiation oncology professionals, a significant portion of the population demonstrated signs of burnout or CF. Future concerns abound for the population of medical dosimetrists as a large number of members scored positive for intermediate risk of burnout and CF. Additionally, a large portion of the population was found to be rapidly approaching retirement.« less
Increasing minority patient participation in cancer clinical trials using oncology nurse navigation.
Holmes, Dennis Ricky; Major, Jacquelyn; Lyonga, Doris Efosi; Alleyne, Rebecca Simone; Clayton, Sheilah Marie
2012-04-01
Residential distance from an academic or cancer center is a significant barrier to minority patient participation in cancer research. Most cancer clinical trials (CTs) are only accessible at academic and cancer centers, yet most cancer patients receive treatment in their home communities where access to CTs may be limited. Oncology nurse navigation is an innovative approach for increasing minority CT participation by facilitating access to cancer CTs in communities where minority patients live. The purpose of this study was to evaluate the impact of oncology nurse navigation on community-based recruitment of black patients to breast cancer CTs at a major cancer center. We merged the roles of a traditional oncology research nurse and a professional patient navigator to create a novel health care provider role, the oncology nurse navigator. The primary duties of the oncology nurse navigator were to engage black cancer patients in the offices of their community physicians and to collaborate with community physicians to increase black patient participation in cancer research. The oncology nurse navigator played a key role in all phases of the CT participation process (e.g., screening for eligibility and completion of informed consent and clinical research forms) and guided each patient around barriers in the health care system. The accrual of eligible patients to breast cancer CTs was used to assess the impact of oncology nurse navigation on community-based recruitment of blacks to cancer CTs. Between January 2007 and December 2008, a total of 132 black breast cancer patients were screened by a single oncology nurse navigator for eligibility to University of Southern California-sponsored breast cancer CTs. Fifty-nine patients were eligible for CTs, and each was invited to participate in 1 or more CTs for which they were eligible. Fifty-one of 59 eligible black patients (86% of eligible patients) were enrolled to 1 or more research protocols. The estimated cost per enrolled patient was $5,677, nearly half the expected per patient cost of treating patients on CT at an academic or cancer center. Oncology nurse navigation is an effective outreach strategy for increasing black patient participation in cancer research and may be achieved at nearly half the cost of traditional methods of enrolling patients in CTs at cancer centers. Copyright © 2012 Elsevier Inc. All rights reserved.
Gebhardt, Brian J; Heron, Dwight E; Beriwal, Sushil
Clinical pathways are patient management plans that standardize evidence-based practices to ensure high-quality and cost-effective medical care. Implementation of a pathway is a collaborative process in our network, requiring the active involvement of physicians. This approach promotes acceptance of pathway recommendations, although a peer review process is necessary to ensure compliance and to capture and approve off-pathway selections. We investigated the peer review process and factors associated with time to completion of peer review. Our cancer center implemented radiation oncology pathways for every disease site throughout a large, integrated network. Recommendations are written based upon national guidelines, published literature, and institutional experience with evidence evaluated hierarchically in order of efficacy, toxicity, and then cost. Physicians enter decisions into an online, menu-driven decision support tool that integrates with medical records. Data were collected from the support tool and included the rate of on- and off-pathway selections, peer review decisions performed by disease site directors, and time to complete peer review. A total of 6965 treatment decisions were entered in 2015, and 605 (8.7%) were made off-pathway and were subject to peer review. The median time to peer review decision was 2 days (interquartile range, 0.2-6.8). Factors associated with time to peer review decision >48 hours on univariate analysis include disease site (P < .0001) with a trend toward significance (P = .066) for radiation therapy modality. There was no difference between recurrent and non-recurrent disease (P = .267). Multivariable analysis revealed disease site was associated with time to peer review (P < .001), with lymphoma and skin/sarcoma most strongly influencing decision time >48 hours. Clinical pathways are an integral tool for standardizing evidence-based care throughout our large, integrated network, with 91.3% of all treatment decisions being made as per pathway. The peer review process was feasible, with <1% selections ultimately rejected, suggesting that awareness of peer review of treatment decisions encourages compliance with clinical pathway recommendations. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
The Evolving Role of Regional Radiation Oncology Societies in Resident Education.
Mattes, Malcolm D
2015-09-01
The goal of this study is to develop insight into how a regional radiation oncology organization like the New York Roentgen Society (NYRS) can best assist in the education and development of residents. From April to June 2012, an electronic survey was sent to all 41 post-graduate year 2-4 radiation oncology residents in the New York metropolitan area. Questions were formatted using Likert scales (ranging from 1 to 5), and the Friedman and Wilcoxon signed-rank tests were used to compare the mean ratings of each answer option. Surveys were completed by 34 residents (response rate 83 %). The three highest rated features that residents hope to get out of their membership in the NYRS included "networking" (mean 4.21), "career mentoring" (mean 4.18), and "education" (mean 4.15), all of which were rated significantly higher (p < 0.002) than the lowest rated "physics boards review" (mean 3.36) and "radiation biology boards review" (mean 3.15). The three highest rated types of subject matter for meetings included "boards review" (mean 4.03), "debate on a controversial clinical topic" (mean 3.97), and a "career mentoring workshop" (mean 3.93), all of which were rated significantly higher (p < 0.001) than the lowest rated "lecture on a research topic" (mean 2.40) and "lecture on a radiation biology/physics topic" (mean 2.07). Residents favor networking, career mentoring, and clinical educational content (particularly as it relates to boards review) from their regional radiation oncology society. These findings may be applicable to similar organizations in other cities, as a guide for future programming.
NASA Astrophysics Data System (ADS)
Amols, Howard
2006-03-01
The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.
Careers in Medical Physics and the American Association of Physicists in Medicine
NASA Astrophysics Data System (ADS)
Amols, Howard
2006-03-01
The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members is based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.
Villa, S; Bertoni, F; Bossi, A; Caraffini, B; Corbella, F; Di Lorenzo, I; Italia, C; Leoni, M; Nava, S; Sarti, E; Vavassori, V; Villa, E; Palazzi, M
1998-01-01
We report the results of a survey performed in 1994 by the AIRO-Lombardia Cooperative Group, on the clinical patterns of radiation treatment for prostatic carcinoma in Lombardy, Italy, involving all radiotherapy centers serving an overall local population of about 8,800,000 people. A questionnaire was sent to all 13 radiotherapy centers throughout Lombardy, asking for demographic and treatment details concerning the local population of patients with a localized (T1-4, N0-1, M0) carcinoma of the prostate treated with radiotherapy; 12 centers responded, making the basis for the present report. Analysis of collected data showed that in Lombardy: a) approximately 400 patients per year are irradiated for a localized carcinoma of the prostate, accounting for less than 30% of the total expected number of patients with this disease presentation; b) a complete staging (with PSA, transrectal ultrasonography, abdomino-pelvic CT or MRI scan and total-body bone scan) is performed in over 95% of patients before initiating radiotherapy; c) significant differences exist between radiotherapy centers as regards treatment planning and delivery. An urgent need exists for implementing procedures aimed at standardizing radiotherapy procedures within Lombardy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Lena, E-mail: lena.specht@regionh.dk; Dabaja, Bouthaina; Illidge, Tim
Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus viewmore » of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era.« less
76 FR 24894 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... personal privacy. Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; Chemo... . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; [email protected] . Name of Committee: Oncology 1--Basic Translational Integrated Review Group...
Implanted Cardiac Defibrillator Care in Radiation Oncology Patient Population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelblum, Daphna Y.; Amols, Howard
2009-04-01
Purpose: To review the experience of a large cancer center with radiotherapy (RT) patients bearing implantable cardiac defibrillators (ICDs) to propose some preliminary care guidelines as we learn more about the devices and their interaction with the therapeutic radiation environment. Methods and Materials: We collected data on patients with implanted ICDs treated with RT during a 2.5-year period at any of the five Memorial Sloan-Kettering clinical campuses. Information regarding the model, location, and dose detected from the device, as well as the treatment fields, fraction size, and treatment energy was collected. During this time, a new management policy for thesemore » patients had been implemented requiring treatment with low-energy beams (6 MV) and close surveillance of the patients in partnership with their electrophysiologist, as they received RT. Results: During the study period, 33 patients were treated with an ICD in place. One patient experienced a default of the device to its initial factory setting that was detected by the patient hearing an auditory signal from the device. This patient had initially been treated with a 15-MV beam. After this episode, his treatment was replanned to be completed with 6-MV photons, and he experienced no further events. Conclusion: Patients with ICDs and other implanted computer-controlled devices will be encountered more frequently in the RT department, and proper management is important. We present a policy for the safe treatment of these patients in the radiation oncology environment.« less
Probing Androgen Receptor Signaling in Circulating Tumor Cells in Prostate Cancer
2016-07-01
6), Nature Reviews Clinical Oncology (5), and Cell Reports (7). During this reporting period, an additional manuscript was published in Science...international meetings, including oral presentations at the American Society for Radiation Oncology Annual Meeting, the Chabner Colloquium sponsored...by the Society for Translational Oncology , and the Global Summit on Genitourinary Malignancies. It is anticipated that several additional
Technical aspects of quality assurance in radiation oncology
Saw, CB; Ferenci, MS; Wanger, H
2008-01-01
The technical aspects of quality assurance (QA) in radiation oncology as practice in the United States will be reviewed and updated in the spirit of offering the experience to the radiation oncology communities in the Asia-Pacific region. The word “technical” is used to express the organisational components or processes and not the materials within the QA program. A comprehensive QA program in radiation oncology will have an official statement declaring the quality plan for effective patient care services it provides in a document. The QA program will include all aspects of patient care: physical, clinical, and medical aspects of the services. The document will describe the organisational structure, responsibilities, checks and procedures, and resources allocated to ensure the successful implementation of the quality of patient management. Regulatory guidelines and guidelines from accreditation agencies should be incorporated in the QA program to ensure compliance. The organisational structure will have a multidisciplinary QA committee that has the authority to evaluate continuously the effectiveness of the QA program to provide prompt corrective recommendations and to request feedback as needed to monitor the response. The continuous monitoring aspects require meetings to be held at regular intervals with the minutes of the meetings officially recorded and documented. To ensure that a QA program is effective, the program itself should be audited for quality at regular intervals at least annually. It has been recognised that the current QA program has not kept abreast with the rapid implementation of new and advanced radiation therapy technologies with the most recent in image-based radiation therapy technology. The societal bodies (ASTRO and AAPM) and federal agency (NCI) acknowledge this inadequacy and have held workshops to address this issue. The challenges for the societal bodies and federal agency are numerous that include (a) the prescriptive methodology used may not be appropriate for currently implemented new technologies, (b) resources are becoming scarce, (c) advanced radiation therapy technologies have been introduced too rapidly, (d) advances in radiation therapy technologies have become too sophisticated and specialised with each therapy modality having its own separate set of equipment, for example its own dose planning software, computer system and dose delivery systems requiring individualised QA procedures. At the present time, industrial engineers are being recruited to assist in devising a methodology that is broad-based and more process-oriented risk-based formulation of QA in radiation oncology. PMID:21611011
Cost accounting in radiation oncology: a computer-based model for reimbursement.
Perez, C A; Kobeissi, B; Smith, B D; Fox, S; Grigsby, P W; Purdy, J A; Procter, H D; Wasserman, T H
1993-04-02
The skyrocketing cost of medical care in the United States has resulted in multiple efforts in cost containment. The present work offers a rational computer-based cost accounting approach to determine the actual use of resources in providing a specific service in a radiation oncology center. A procedure-level cost accounting system was developed by using recorded information on actual time and effort spent by individual staff members performing various radiation oncology procedures, and analyzing direct and indirect costs related to staffing (labor), facilities and equipment, supplies, etc. Expenditures were classified as direct or indirect and fixed or variable. A relative value unit was generated to allocate specific cost factors to each procedure. Different costs per procedure were identified according to complexity. Whereas there was no significant difference in the treatment time between low-energy (4 and 6 MV) or high-energy (18 MV) accelerators, there were significantly higher costs identified in the operation of a high-energy linear accelerator, a reflection of initial equipment investment, quality assurance and calibration procedures, maintenance costs, service contract, and replacement parts. Utilization of resources was related to the complexity of the procedures performed and whether the treatments were delivered to inpatients or outpatients. In analyzing time motion for physicians and other staff, it was apparent that a greater effort must be made to train the staff to accurately record all times involved in a given procedure, and it is strongly recommended that each institution perform its own time motion studies to more accurately determine operating costs. Sixty-six percent of our facility's global costs were for labor, 20% for other operating expenses, 10% for space, and 4% for equipment. Significant differences were noted in the cost allocation for professional or technical functions, as labor, space, and equipment costs are higher in the latter. External beam treatment-related procedures accounted for more than 50% of all technical and professional revenues, simulation for 8% to 10%, and other physics/dosimetry procedures for 11% to 14% of revenues. Some discrepancies were identified between the actual cost and level of reimbursement of various procedures. Details are described in the manuscript. It is imperative to develop an equitable reimbursement system for radiation oncology services, based on cost accounting and other measures that may enhance productivity and reduce the cost per procedure unit, while at the same time preserving the highest quality of service provided to patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, K; Curran, B
I. Information Security Background (Speaker = Kevin McDonald) Evolution of Medical Devices Living and Working in a Hostile Environment Attack Motivations Attack Vectors Simple Safety Strategies Medical Device Security in the News Medical Devices and Vendors Summary II. Keeping Radiation Oncology IT Systems Secure (Speaker = Bruce Curran) Hardware Security Double-lock Requirements “Foreign” computer systems Portable Device Encryption Patient Data Storage System Requirements Network Configuration Isolating Critical Devices Isolating Clinical Networks Remote Access Considerations Software Applications / Configuration Passwords / Screen Savers Restricted Services / access Software Configuration Restriction Use of DNS to restrict accesse. Patches / Upgrades Awareness Intrusionmore » Prevention Intrusion Detection Threat Risk Analysis Conclusion Learning Objectives: Understanding how Hospital IT Requirements affect Radiation Oncology IT Systems. Illustrating sample practices for hardware, network, and software security. Discussing implementation of good IT security practices in radiation oncology. Understand overall risk and threats scenario in a networked environment.« less
Sternick, Edward S
2011-01-01
The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance US business competitiveness and economic growth. Administered by the National Institute of Standards and Technology, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement, and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice's operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.
Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams
NASA Astrophysics Data System (ADS)
Jakel, Oliver
2014-03-01
-Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.
Radiogenomics and radiotherapy response modeling
NASA Astrophysics Data System (ADS)
El Naqa, Issam; Kerns, Sarah L.; Coates, James; Luo, Yi; Speers, Corey; West, Catharine M. L.; Rosenstein, Barry S.; Ten Haken, Randall K.
2017-08-01
Advances in patient-specific information and biotechnology have contributed to a new era of computational medicine. Radiogenomics has emerged as a new field that investigates the role of genetics in treatment response to radiation therapy. Radiation oncology is currently attempting to embrace these recent advances and add to its rich history by maintaining its prominent role as a quantitative leader in oncologic response modeling. Here, we provide an overview of radiogenomics starting with genotyping, data aggregation, and application of different modeling approaches based on modifying traditional radiobiological methods or application of advanced machine learning techniques. We highlight the current status and potential for this new field to reshape the landscape of outcome modeling in radiotherapy and drive future advances in computational oncology.
McClelland, Shearwood; Chernykh, Marina; Dengina, Natalia; Gillespie, Erin F; Likhacheva, Anna; Usychkin, Sergey; Pankratov, Alexandr; Kharitonova, Ekaterina; Egorova, Yulia; Tsimafeyeu, Ilya; Tjulandin, Sergei; Thomas, Charles R; Mitin, Timur
2018-06-25
Radiation oncologists in Russia face a number of unique professional difficulties including lack of standardized training and continuing medical education. To combat this, under the auspices of the Russian Society of Clinical Oncology (RUSSCO), our group has developed a series of ongoing in-person interactive contouring workshops that are held during the major Russian oncology conferences in Moscow, Russia. Since November 2016 during each workshop, we utilized a web-based open-access interactive three-dimensional contouring atlas as part of our didactics. We sought to determine the impact of this resource on radiation oncology practice in Russia. We distributed an IRB-approved web-based survey to 172 practicing radiation oncologists in Russia. We inquired about practice demographics, RUSSCO contouring workshop attendance, and the clinical use of open-access English language interactive contouring atlas (eContour). The survey remained open for 2 months until November 2017. Eighty radiation oncologists completed the survey with a 46.5% response rate. Mean number of years in practice was 13.7. Sixty respondents (75%) attended at least one RUSSCO contouring workshop. Of those who were aware of eContour, 76% were introduced during a RUSSCO contouring workshop, and 81% continue to use it in their daily practice. The greatest obstacles to using the program were language barrier (51%) and internet access (38%). Nearly 90% reported their contouring practices changed since they started using the program, particularly for delineation of clinical target volumes (57%) and/or organs at risk (46%). More than 97% found the clinical pearls/links to cooperative group protocols in the software helpful in their daily practice. The majority used the contouring program several times per month (43%) or several times per week (41%). Face-to-face contouring instruction in combination with open-access web-based interactive contouring resource had a meaningful impact on perceived quality of radiation oncology contours among Russian practitioners and has the potential to have applications worldwide.
Intensity-Modulated Radiation Therapy (IMRT)
... specialized training in the field of radiation oncology physics, ensures the linear accelerator delivers the precise radiation ... critical normal structures, as well as the patient's health. Typically, patients are scheduled for IMRT sessions five ...
Medical and Dental Patient Issues
... procedures. Because the Health Physics Society recommends against quantitative estimates of health risks for radiation doses below ... Society for Radiation Oncology Cancer Mechanisms - Radiation Effects Research Foundation Dose and Risk Calculator for Standard Medical ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu; Burt, Lindsay M.; Mancini, Brandon R.
Purpose: The purpose of this project was to survey radiation oncology chief residents to define their residency experience and readiness for independent practice. Methods and Materials: During the academic years 2013 to 2014 and 2014 to 2015, the Association of Residents in Radiation Oncology (ARRO) conducted an electronic survey of post-graduate year-5 radiation oncology residents in the United States during the final 3 months of training. Descriptive statistics are reported. Results: Sixty-six chief residents completed the survey in 2013 to 2014 (53% response rate), and 69 completed the survey in 2014 to 2015 (64% response rate). Forty to 85% percent ofmore » residents reported inadequate exposure to high-dose rate and low-dose rate brachytherapy. Nearly all residents in both years (>90%) reported adequate clinical experience for the following disease sites: breast, central nervous system, gastrointestinal, genitourinary, head and neck, and lung. However, as few as 56% reported adequate experience in lymphoma or pediatric malignancies. More than 90% of residents had participated in retrospective research projects, with 20% conducting resident-led prospective clinical trials and 50% conducting basic science or translational projects. Most chief residents reported working 60 or fewer hours per week in the clinical/hospital setting and performing fewer than 15 hours per week tasks that were considered to have little or no educational value. There was more than 80% compliance with Accreditation Council for Graduate Medical Education (ACGME) work hour limits. Fifty-five percent of graduating residents intended to join an established private practice group, compared to 25% who headed for academia. Residents perceive the job market to be more competitive than previous years. Conclusions: This first update of the ARRO chief resident survey since the 2007 to 2008 academic year documents US radiation oncology residents' experiences and conditions over a 2-year period. This analysis may serve as a valuable tool for those seeking to improve training of the next generation of oncology leaders.« less
77 FR 27073 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... . Name of Committee: Oncology 1-Basic Translational Integrated Review Group; Tumor Progression [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; Cancer....nih.gov . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; Cancer...
Swisher, Stephen G; Moughan, Jennifer; Komaki, Ritsuko U; Ajani, Jaffer A; Wu, Tsung T; Hofstetter, Wayne L; Konski, Andre A; Willett, Christopher G
2017-02-01
The impact of selective surgical resection for patients with esophageal cancer treated with definitive chemoradiation has not been clearly evaluated long-term. NRG (National Surgical Adjuvant Breast and Bowel Project, Radiation Therapy Oncology Group, Gynecologic Oncology Group) Oncology Radiation Therapy Oncology Group 0246 was a multi-institutional, single-arm, open-label, nonrandomized phase II study that enrolled 43 patients from September 2003 to March 2008 with clinical stage T1-4N0-1M0 squamous cell or adenocarcinoma of the esophagus or gastroesophageal junction from 19 sites. Patients received induction chemotherapy with fluorouracil (650 mg/m 2 /d), cisplatin (15 mg/m 2 /d), and paclitaxel (200 mg/m 2 /d) for two cycles followed by concurrent chemoradiation consisting of 50.4 Gy of radiation (1.8 Gy per fraction) and daily fluorouracil (300 mg/m 2 /d) with cisplatin (15 mg/m 2 /d) over the first 5 days. After definitive chemoradiation, patients were evaluated for residual disease. Selective esophagectomy was considered only for patients with residual disease after chemoradiation (clinical incomplete response) or recurrent disease on surveillance. This report looks at the long-term outcome of this selective surgical strategy. With a median follow-up of 8.1 years (minimum to maximum for 12 alive patients 7.2-9.8 years), the estimated 5- and 7-year survival rates are 36.6% (95% confidence interval [CI]: 22.3-51.0) and 31.7% (95% CI: 18.3-46.0). Clinical complete response was achieved in 15 patients (37%), with 5- and 7-yearr survival rates of 53.3% (95% CI: 26.3-74.4) and 46.7% (95% CI: 21.2-68.7). Esophageal resection was not required in 20 of 41 patients (49%) on this trial. The long-term results of NRG Oncology Radiation Therapy Oncology Group 0246 demonstrate promising efficacy of a selective surgical resection strategy and suggest the need for larger randomized studies to further evaluate this organ-preserving approach. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
McCavit, Timothy L.; Winick, Naomi
2011-01-01
Time-to-antibiotic administration (TTA) has been suggested as a quality-of-care (QOC) measure for pediatric oncology patients with febrile neutropenia (FN). Unknown, however, is to what extent pediatric oncology centers utilize TTA. Therefore, we designed and administered an electronic survey (68% response rate) of programs in the Children's Oncology Group to assess TTA utilization. Nearly half of respondents track TTA. Most reported using a benchmark of less than 60 minutes from arrival. TTA is a commonly used QOC measure for pediatric FN despite an absence of studies establishing its validity and a lack of data supporting its impact on outcomes of FN. PMID:21509930
Total centralisation and optimisation of an oncology management suite via Citrix®
NASA Astrophysics Data System (ADS)
James, C.; Frantzis, J.; Ripps, L.; Fenton, P.
2014-03-01
The management of patient information and treatment planning is traditionally an intra-departmental requirement of a radiation oncology service. Epworth Radiation Oncology systems must support the transient nature of Visiting Medical Officers (VMOs). This unique work practice created challenges when implementing the vision of a completely paperless solution that allows for a responsive and efficient service delivery. ARIA® and EclipseTM (Varian Medical Systems, Palo Alto, CA, USA) have been deployed across four dedicated Citrix® (Citrix Systems, Santa Clara, CA, USA) servers allowing VMOs to access these applications remotely. A range of paperless solutions were developed within ARIA® to facilitate clinical and organisational management whilst optimising efficient work practices. The IT infrastructure and paperless workflow has enabled VMOs to securely access the VarianTM (Varian Medical Systems, Palo Alto, CA, USA) oncology software and experience full functionality from any location on multiple devices. This has enhanced access to patient information and improved the responsiveness of the service. Epworth HealthCare has developed a unique solution to enable remote access to a centralised oncology management suite, while maintaining a secure and paperless working environment.
Murakami, Naoya; Norihisa, Yoshiki; Isohashi, Fumiaki; Murofushi, Keiko; Ariga, Takuro; Kato, Tomoyasu; Inaba, Koji; Okamoto, Hiroyuki; Ito, Yoshinori; Toita, Takafumi; Itami, Jun
2016-01-01
The aim of this study was to develop an appropriate definition for vaginal cuff and paracolpium clinical target volume (CTV) for postoperative intensity modulated radiation therapy in patients with uterine cervical cancer. A working subgroup was organized within the Radiation Therapy Study Group of the Japan Clinical Oncology Group to develop a definition for the postoperative vaginal cuff and paracolpium CTV in December 2013. The group consisted of 5 radiation oncologists who specialized in gynecologic oncology and a gynecologic oncologist. A comprehensive literature review that included anatomy, surgery, and imaging fields was performed and was followed by multiple discreet face-to-face discussions and e-mail messages before a final consensus was reached. Definitions for the landmark structures in all directions that demarcate the vaginal cuff and paracolpium CTV were decided by consensus agreement of the working group. A table was created that showed boundary structures of the vaginal cuff and paracolpium CTV in each direction. A definition of the postoperative cervical cancer vaginal cuff and paracolpium CTV was developed. It is expected that this definition guideline will serve as a template for future radiation therapy clinical trial protocols, especially protocols involving intensity modulated radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Hasan, Haroon; Muhammed, Taaha; Yu, Jennifer; Taguchi, Kelsi; Samargandi, Osama A; Howard, A Fuchsia; Lo, Andrea C; Olson, Robert; Goddard, Karen
2017-10-01
The objective of our study was to evaluate the methodological quality of systematic reviews and meta-analyses in Radiation Oncology. A systematic literature search was conducted for all eligible systematic reviews and meta-analyses in Radiation Oncology from 1966 to 2015. Methodological characteristics were abstracted from all works that satisfied the inclusion criteria and quality was assessed using the critical appraisal tool, AMSTAR. Regression analyses were performed to determine factors associated with a higher score of quality. Following exclusion based on a priori criteria, 410 studies (157 systematic reviews and 253 meta-analyses) satisfied the inclusion criteria. Meta-analyses were found to be of fair to good quality while systematic reviews were found to be of less than fair quality. Factors associated with higher scores of quality in the multivariable analysis were including primary studies consisting of randomized control trials, performing a meta-analysis, and applying a recommended guideline related to establishing a systematic review protocol and/or reporting. Systematic reviews and meta-analyses may introduce a high risk of bias if applied to inform decision-making based on AMSTAR. We recommend that decision-makers in Radiation Oncology scrutinize the methodological quality of systematic reviews and meta-analyses prior to assessing their utility to inform evidence-based medicine and researchers adhere to methodological standards outlined in validated guidelines when embarking on a systematic review. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation therapy oncology group gynecologic oncology working group: comprehensive results.
Gaffney, David K; Jhingran, Anuja; Portelance, Lorraine; Viswanathan, Akila; Schefter, Tracey; Weidhaas, Joanne; Small, William
2014-06-01
The purpose of this report was to comprehensively describe the activities of the Gynecologic Oncology Working Group within the Radiation Therapy Oncology Group (RTOG). Clinical trials will be reviewed as well as translational science and ancillary activities. During the past 40 years, a myriad of clinical trials have been performed within the RTOG with the aim of improving overall survival (OS) and decreasing morbidity in women with cervical or endometrial cancer. Major study questions have included hyperbaric oxygen, neutron radiotherapy, altered fractionation, hypoxic cell sensitization, chemosensitization, and volume-directed radiotherapy.RTOG 7920 demonstrated improvement in OS in patients with stages IB through IIB cervical carcinoma receiving prophylactic para-aortic irradiation compared to pelvic radiation alone. RTOG 9001 demonstrated that cisplatin and 5-FU chemoradiotherapy to the pelvis for advanced cervix cancer markedly improved OS compared to extended field radiotherapy alone. More recent trials have used radioprotectors, molecular-targeted therapy, and intensity-modulated radiation therapy. Ancillary studies have developed clinical target volume atlases for research protocols and routine clinical use. Worldwide practice patterns have been investigated in cervix, endometrial, and vulvar cancer through the Gynecologic Cancer Intergroup. Translational studies have focused on immunohistochemical markers, changes in gene expression, and miRNA patterns impacting prognosis.The RTOG gynecologic working group has performed clinical trials that have defined the standard of care, improved survival, and added to our understanding of the biology of cervical and endometrial cancers.
Health economics in radiation oncology: introducing the ESTRO HERO project.
Lievens, Yolande; Grau, Cai
2012-04-01
New evidence based regimens and novel high precision technology have reinforced the important role of radiotherapy in the management of cancer. Current data estimate that more than 50% of all cancer patients would benefit from radiotherapy during the course of their disease. Within recent years, the radiotherapy community has become more than conscious of the ever-increasing necessity to come up with objective data to endorse the crucial role and position of radiation therapy within the rapidly changing global oncology landscape. In an era of ever expanding health care costs, proven safety and effectiveness is not sufficient anymore to obtain funding, objective data about cost and cost-effectiveness are nowadays additionally requested. It is in this context that ESTRO is launching the HERO-project (Health Economics in Radiation Oncology), with the overall aim to develop a knowledge base and a model for health economic evaluation of radiation treatments at the European level. To accomplish these objectives, the HERO project will address needs, accessibility, cost and cost-effectiveness of radiotherapy. The results will raise the profile of radiotherapy in the European cancer management context and help countries prioritizing radiotherapy as a highly cost-effective treatment strategy. This article describes the different steps and aims within the HERO-project, starting from evidence on the role of radiotherapy within the global oncology landscape and highlighting weaknesses that may undermine this position. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
MO-AB-204-01: IHE RO Overview [Health Care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, S.
You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standardsmore » like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.« less
MO-AB-204-02: IHE RAD [Health care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, J.
You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standardsmore » like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.« less
MO-AB-204-04: Connectathons and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosch, W.
You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standardsmore » like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.« less
MO-AB-204-03: Profile Development and IHE Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, C.
You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standardsmore » like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.« less
Thirty year celebration of journal publications on radiation oncology medical physics.
Oliver, L D
2007-03-01
The Australasian Physical & Engineering Sciences in Medicine Journal (APESM) is an avenue for the profession to report scientific work in medicine; provide a facility for the publication of current work, new research and new techniques developed or reviewed; report on professional news from elsewhere and; publish the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) policies and protocols. The journal is a vital instrument within the ACPSEM organisation with a worldwide circulation. This review of APESM on medical physics in radiation oncology is meant to be a progress summary of work in that specialty. Even so, it has become a lengthy appraisal due to the many years involved. In considering publications related to medical physics in radiation oncology, this review has shown the progression of the College journal to an international journal. There is an increase in the number of papers contributed from Asia and other countries world wide for this discipline. Growth in the number of contributions should continue to rise. In order to provide some appreciation of where the present medical physics activity arose from, this article commences its discussion in 1959 and progresses towards the present, describing along the way, from radiation oncology papers published in APESM, the use of linear accelerators, brachytherapy, the medical physics workforce, the formation of the ACPSEM, and the more modern developments in radiotherapy such as 3-D treatment planning and IMRT.
The Radiation Oncology Job Market: The Economics and Policy of Workforce Regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falit, Benjamin P., E-mail: bfalit2@allianceoncology.com; Pan, Hubert Y.; Smith, Benjamin D.
Examinations of the US radiation oncology workforce offer inconsistent conclusions, but recent data raise significant concerns about an oversupply of physicians. Despite these concerns, residency slots continue to expand at an unprecedented pace. Employed radiation oncologists and professional corporations with weak contracts or loose ties to hospital administrators would be expected to suffer the greatest harm from an oversupply. The reduced cost of labor, however, would be expected to increase profitability for equipment owners, technology vendors, and entrenched professional groups. Policymakers must recognize that the number of practicing radiation oncologists is a poor surrogate for clinical capacity. There is likelymore » to be significant opportunity to augment capacity without increasing the number of radiation oncologists by improving clinic efficiency and offering targeted incentives for geographic redistribution. Payment policy changes significantly threaten radiation oncologists' income, which may encourage physicians to care for greater patient loads, thereby obviating more personnel. Furthermore, the implementation of alternative payment models such as Medicare's Oncology Care Model threatens to decrease both the utilization and price of radiation therapy by turning referring providers into cost-conscious consumers. Medicare funds the vast majority of graduate medical education, but the extent to which the expansion in radiation oncology residency slots has been externally funded is unclear. Excess physician capacity carries a significant risk of harm to society by suboptimally allocating intellectual resources and creating comparative shortages in other, more needed disciplines. There are practical concerns associated with a market-based solution in which medical students self-regulate according to job availability, but antitrust law would likely forbid collaborative self-regulation that purports to restrict supply. Because Congress is unlikely to create one central body to govern residency controls for all specialties, we recommend better reporting of program-specific employment metrics and careful, intellectually honest re-evaluation of existing Accreditation Council for Graduate Medical Education accreditation standards.« less
The Radiation Oncology Job Market: The Economics and Policy of Workforce Regulation.
Falit, Benjamin P; Pan, Hubert Y; Smith, Benjamin D; Alexander, Brian M; Zietman, Anthony L
2016-11-01
Examinations of the US radiation oncology workforce offer inconsistent conclusions, but recent data raise significant concerns about an oversupply of physicians. Despite these concerns, residency slots continue to expand at an unprecedented pace. Employed radiation oncologists and professional corporations with weak contracts or loose ties to hospital administrators would be expected to suffer the greatest harm from an oversupply. The reduced cost of labor, however, would be expected to increase profitability for equipment owners, technology vendors, and entrenched professional groups. Policymakers must recognize that the number of practicing radiation oncologists is a poor surrogate for clinical capacity. There is likely to be significant opportunity to augment capacity without increasing the number of radiation oncologists by improving clinic efficiency and offering targeted incentives for geographic redistribution. Payment policy changes significantly threaten radiation oncologists' income, which may encourage physicians to care for greater patient loads, thereby obviating more personnel. Furthermore, the implementation of alternative payment models such as Medicare's Oncology Care Model threatens to decrease both the utilization and price of radiation therapy by turning referring providers into cost-conscious consumers. Medicare funds the vast majority of graduate medical education, but the extent to which the expansion in radiation oncology residency slots has been externally funded is unclear. Excess physician capacity carries a significant risk of harm to society by suboptimally allocating intellectual resources and creating comparative shortages in other, more needed disciplines. There are practical concerns associated with a market-based solution in which medical students self-regulate according to job availability, but antitrust law would likely forbid collaborative self-regulation that purports to restrict supply. Because Congress is unlikely to create one central body to govern residency controls for all specialties, we recommend better reporting of program-specific employment metrics and careful, intellectually honest re-evaluation of existing Accreditation Council for Graduate Medical Education accreditation standards. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ataman, Ozlem U., E-mail: ouataman@hotmail.com; Sambrook, Sally J.; Wilks, Chris
2012-11-15
Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, andmore » PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such trials are not given priority by pharmaceutical companies. The potential reasons for this and some challenges and possible solutions are discussed.« less
Keilholz, L; Willner, J; Thiel, H-J; Zamboglou, N; Sack, H; Popp, W
2014-01-01
In order to evaluate resource requirements, the German Society of Radiation Oncology (DEGRO) recorded the times needed for core procedures in the radio-oncological treatment of various cancer types within the scope of its QUIRO trial. The present study investigated the personnel and infrastructural resources required in radiotherapy of prostate cancer. The investigation was carried out in the setting of definitive radiotherapy of prostate cancer patients between July and October 2008 at two radiotherapy centers, both with well-trained staff and modern technical facilities at their disposal. Personnel attendance times and room occupancy times required for core procedures (modules) were each measured prospectively by two independently trained observers using time measurements differentiated on the basis of professional group (physician, physicist, and technician), 3D conformal (3D-cRT), and intensity-modulated radiotherapy (IMRT). Total time requirements of 983 min for 3D-cRT and 1485 min for step-and-shoot IMRT were measured for the technician (in terms of professional group) in all modules recorded and over the entire course of radiotherapy for prostate cancer (72-76 Gy). Times needed for the medical specialist/physician were 255 min (3D-cRT) and 271 min (IMRT), times of the physicist were 181 min (3D-cRT) and 213 min (IMRT). The difference in time was significant, although variations in time spans occurred primarily as a result of various problems during patient treatment. This investigation has permitted, for the first time, a realistic estimation of average personnel and infrastructural requirements for core procedures in quality-assured definitive radiotherapy of prostate cancer. The increased time needed for IMRT applies to the step-and-shoot procedure with verification measurements for each irradiation planning.
[Artificial intelligence applied to radiation oncology].
Bibault, J-E; Burgun, A; Giraud, P
2017-05-01
Performing randomised comparative clinical trials in radiation oncology remains a challenge when new treatment modalities become available. One of the most recent examples is the lack of phase III trials demonstrating the superiority of intensity-modulated radiation therapy in most of its current indications. A new paradigm is developing that consists in the mining of large databases to answer clinical or translational issues. Beyond national databases (such as SEER or NCDB), that often lack the necessary level of details on the population studied or the treatments performed, electronic health records can be used to create detailed phenotypic profiles of any patients. In parallel, the Record-and-Verify Systems used in radiation oncology precisely document the planned and performed treatments. Artificial Intelligence and machine learning algorithms can be used to incrementally analyse these data in order to generate hypothesis to better personalize treatments. This review discusses how these methods have already been used in previous studies. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Radiation therapy facilities in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballas, Leslie K.; Elkin, Elena B.; Schrag, Deborah
2006-11-15
Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA),more » as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care.« less
Patil, Vijay; Noronha, Vanita; Joshi, Amit; Parikh, Purvish; Bhattacharjee, Atanu; Chakraborty, Santam; Jandyal, Sunny; Muddu, Vamshi; Ramaswamy, Anant; Babu, K. Govinda; Lokeshwar, Nilesh; Hingmire, Sachin; Ghadyalpatil, Nikhil; Banavali, Shripad
2017-01-01
Purpose Adherence to international antiemetic prophylaxis guidelines like those of ASCO can result in better control of chemotherapy-induced nausea and vomiting; however, the extent of implementation of such guidelines in India is unknown. Therefore, this survey was planned. Methods This study was an anonymized cross-sectional survey approved by the ethics committee. Survey items were generated from the clinical questions given in the ASCO guidelines. The survey was disseminated through personal contacts at an oncology conference and via e-mail to various community oncology centers across India. The B1, B2, and B3 domains included questions regarding the optimal antiemetic prophylaxis for high, moderate, and low-minimal emetogenic regimens. Results Sixty-six (62.9%) of 105 responded and 65 centers (98.5%) were aware of the published guidelines. The partial, full, and no implementation scores were 92.5%, 4.5%, and 3.0%, respectively. Full implementation was better for the low-minimal emetogenic regimens (34.8%) than the highly emetogenic regimens (6.1%). The three most frequent reasons for hampered implementation of ASCO guidelines in routine chemotherapy practice cited by centers were a lack of sensitization (26 centers; 39.4%), lack of national guidelines (12 centers; 18.2%), and lack of administrative support (10 centers; 15.2%). Conclusion Awareness regarding ASCO antiemetic guidelines is satisfactory in Indian oncology practices; however, there is a need for sensitization of oncologists toward complete implementation of these guidelines in their clinical practice. PMID:28831443
The CAROLE (CArdiac Related Oncologic Late Effects) Study
2018-03-29
Coronary Artery Disease; Cardiac Disease; Cardiac Toxicity; Radiation; Radiation Therapy; Atherosclerotic Heart Disease; Cardiotoxicity; Breast Cancer; Lung Cancer; Lymphoma; Cancer; Carcinoma, Intraductal, Noninfiltrating
Turner, S; Sundaresan, P; Mann, K; Pryor, D; Gebski, V; Shaw, T
2016-05-01
To evaluate the learner's perspectives on a novel workshop programme designed to improve skills in biostatistics, research methodology and critical appraisal in oncology. Trainees were surveyed anonymously at the completion of each annual workshop from 2012 to 2015. In total, 103 trainees in years 2-4 of training in radiation oncology responded, giving a 94% survey response rate. A 1 day workshop, designed by biostatisticians and radiation oncologist facilitators, is the central component of a programme teaching skills in biostatistics, research methods and critical appraisal. This links short didactic lectures about statistical concepts to interactive trainee discussions around discipline-related publications. The workshop was run in conjunction with the major radiation oncology clinical trials group meeting with alternating programmes (A and B). Most of the participants (44-47/47 for A and 48-55/56 for B), reported that their understanding of one or more individual topics improved as a result of teaching. Refinement of the workshop over time led to a more favourable perception of the 'optimal' balance between didactic/interactive teaching: nine of 27 (33%) 'optimal' responses seen in 2013 compared with 23 of 29 (79%) in 2015 (P < 0.001). Commonly reported themes were: clinician facilitators and access to biostatisticians helped contextualise learning and small group, structured discussions provided an environment conducive to learning. Overall, radiation oncology trainees reported positive perceptions of the educational value of this programme, with feedback identifying areas where this resource might be improved. This model could readily be adapted to suit other medical disciplines and/or other training environments, using specialty-specific research to illuminate key statistical concepts. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Kline, Ron; Adelson, Kerin; Kirshner, Jeffrey J; Strawbridge, Larissa M; Devita, Marsha; Sinanis, Naralys; Conway, Patrick H; Basch, Ethan
2017-01-01
Cancer care delivery in the United States is often fragmented and inefficient, imposing substantial burdens on patients. Costs of cancer care are rising more rapidly than other specialties, with substantial regional differences in quality and cost. The Centers for Medicare & Medicaid Services (CMS) Innovation Center (CMMIS) recently launched the Oncology Care Model (OCM), which uses payment incentives and practice redesign requirements toward the goal of improving quality while controlling costs. As of March 2017, 190 practices were participating, with approximately 3,200 oncologists providing care for approximately 150,000 unique beneficiaries per year (approximately 20% of the Medicare Fee-for-Service population receiving chemotherapy for cancer). This article provides an overview of the program from the CMS perspective, as well as perspectives from two practices implementing OCM: an academic health system (Yale Cancer Center) and a community practice (Hematology Oncology Associates of Central New York). Requirements of OCM, as well as implementation successes, challenges, financial implications, impact on quality, and future visions, are provided from each perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, Michael J.; University of California Irvine School of Medicine, Irvine, California; Tringale, Kathryn
Purpose: To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non–radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Methods and Materials: Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Resultsmore » for RODs were compared with those for other devices by Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; P<.001). Time from 510(k) market approval to recall was shorter among RODs (P<.001) and progressively shortened over time. Radiation oncology devices had fewer recalled devices in commerce than other devices (P<.001). Conclusions: Compared with other class II devices, RODs experience recalls sooner after market approval and are trending sooner still. Most of these recalls were moderate in severity, and software issues are prevalent. Comprehensive analysis of recall data can identify areas for device improvement, such as better system design among RODs.« less
Usability study of the EduMod eLearning Program for contouring nodal stations of the head and neck.
Deraniyagala, Rohan; Amdur, Robert J; Boyer, Arthur L; Kaylor, Scott
2015-01-01
A major strategy for improving radiation oncology education and competence evaluation is to develop eLearning programs that reproduce the real work environment. A valuable measure of the quality of an eLearning program is "usability," which is a multidimensional endpoint defined from the end user's perspective. The gold standard for measuring usability is the Software Usability Measurement Inventory (SUMI). The purpose of this study is to use the SUMI to measure usability of an eLearning course that uses innovative software to teach and test contouring of nodal stations of the head and neck. This is a prospective institutional review board-approved study in which all participants gave written informed consent. The study population was radiation oncology residents from 8 different programs across the United States. The subjects had to pass all sections of the same 2 eLearning modules and then complete the SUMI usability evaluation instrument. We reached the accrual goal of 25 participants. Usability results for the EduMod eLearning course, "Nodal Stations of the Head and Neck," were compared with a large database of scores of other major software programs. Results were evaluated in 5 domains: Affect, Helpfulness, Control, Learnability, and Global Usability. In all 5 domains, usability scores for the study modules were higher than the database mean and statistically superior in 4 domains. This is the first study to evaluate usability of an eLearning program related to radiation oncology. Usability of 2 representative modules related to contouring nodal stations of the head and neck was highly favorable, with scores that were superior to the industry standard in multiple domains. These results support the continued development of this type of eLearning program for teaching and testing radiation oncology technical skills. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
McClelland, Shearwood; Mitin, Timur; Wilson, Lynn D; Thomas, Charles R; Jaboin, Jerry J
2018-05-01
To assess h-index data and their association with radiation oncology resident choice of academic versus private-practice career, using a recent resident graduating class. A list of 2016 radiation oncology resident graduates (163 residents from 76 Accreditation Council for Graduate Medical Education-certified programs) and their postresidency career choice (academic vs private practice) was compiled. The Scopus bibliometric citation database was then searched to collect h-index data for each resident. Demographics included in analyses were gender and PhD degree status. Mean h-index score for all resident graduates was 4.15. Residents with a PhD had significantly higher h-index scores (6.75 vs 3.42; P < .01), whereas there was no statistically significant difference in h-index scores between male and female residents (4.38 vs 3.36; P = .06). With regard to career choice, residents choosing academic careers had higher h-index scores than those choosing private practice (5.41 vs 2.96; P < .01). There was no significant difference in mean h-index scores between male and female residents regardless of private-practice (3.15 vs 2.19; P = .25) or academic (5.80 vs 4.30; P = .13) career choice. The average radiation oncology resident graduate published a minimum of 4 manuscripts cited at least 4 times. Graduates with a PhD are significantly more likely to have higher h-index scores, as are residents who choose academic over private-practice careers. There is no significant difference in h-index score between male and female residents, regardless of career choice. These results offer up-to-date benchmarks for evaluating radiation oncology resident productivity and have potential utility in predicting postresidency career choices. Copyright © 2018 Elsevier Inc. All rights reserved.
Kim, Hyun; Bar Ad, Voichita; McAna, John; Dicker, Adam P
2016-01-01
The yearly radiation oncology in-training examination (ITE) by the American College of Radiology is a widely used, norm-referenced educational assessment, with high test reliability and psychometric performance. We distributed a national survey to evaluate the academic radiation oncology community's perception of the ITE. In June 2014, a 7-question online survey was distributed via e-mail to current radiation oncology residents, program directors, and attending physicians who had completed residency in the past 5 years or junior attendings. Survey questions were designed on a 5-point Likert scale. Sign test was performed with P ≤ .05 considered statistically different from neutral. Thirty-one program directors (33.3%), 114 junior attendings (35.4%), and 225 residents (41.2%) responded. Junior attendings and program directors reported that the ITE directly contributed to their preparation for the American Board of Radiology written certification (P = .050 and .004, respectively). Residents did not perceive the examination as an accurate assessment of relevant clinical and scientific knowledge (P < .0001) and feel the quality assurance is insufficient in its current form (P < .0001). Residents and junior attendings agree that there are factual errors, and unclear questions/answers (P < .0001 and .04, respectively). Free response suggestions included: less questions on rare disease sites (16.4%), more relevance to clinical practice (15.4%), avoiding questions that discriminate between a few percentage points (11.8%), and designing the test similar to the written certification examination (9.2%). Despite high examination reliability and psychometric performance, resident and attending physicians report a need for improved quality assurance and clinical relevance in the ITE. Although the current examination allows limited feedback, establishing a venue for individualized feedback may allow continual and timely improvement of the ITE. Adopting a criterion-referenced examination may further increase resident investment in and utilization of this valuable learning tool. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paige A., E-mail: pataylor@mdanderson.org; Kry, Stephen F.; Alvarez, Paola
Purpose: The purpose of this study was to summarize the findings of anthropomorphic proton phantom irradiations analyzed by the Imaging and Radiation Oncology Core Houston QA Center (IROC Houston). Methods and Materials: A total of 103 phantoms were irradiated by proton therapy centers participating in clinical trials. The anthropomorphic phantoms simulated heterogeneous anatomy of a head, liver, lung, prostate, and spine. Treatment plans included those for scattered, uniform scanning, and pencil beam scanning beam delivery modalities using 5 different treatment planning systems. For every phantom irradiation, point doses and planar doses were measured using thermoluminescent dosimeters (TLD) and film, respectively. Differencesmore » between measured and planned doses were studied as a function of phantom, beam delivery modality, motion, repeat attempt, treatment planning system, and date of irradiation. Results: The phantom pass rate (overall, 79%) was high for simple phantoms and lower for phantoms that introduced higher levels of difficulty, such as motion, multiple targets, or increased heterogeneity. All treatment planning systems overestimated dose to the target, compared to TLD measurements. Errors in range calculation resulted in several failed phantoms. There was no correlation between treatment planning system and pass rate. The pass rates for each individual phantom are not improving over time, but when individual institutions received feedback about failed phantom irradiations, pass rates did improve. Conclusions: The proton phantom pass rates are not as high as desired and emphasize potential deficiencies in proton therapy planning and/or delivery. There are many areas for improvement with the proton phantom irradiations, such as treatment planning system dose agreement, range calculations, accounting for motion, and irradiation of multiple targets.« less
Nag, S; Owen, J B; Farnan, N; Pajak, T F; Martinez, A; Porter, A; Blasko, J; Harrison, L B
1995-01-01
To obtain reliable data on the extent of the brachytherapy practice in the United States by conducting a comprehensive survey of all facilities. The Clinical Research Committee of the AES surveyed all 1321 radiation oncology facilities identified in the Patterns of Care Study (PCS) of the American College of Radiology (ACR). Multiple mailings and follow-up were made to obtain a high response rate. Survey responders and nonresponders were compared using chi-square tests. Summary statistics were reported. Of the 1321 facilities, 1054 responded (80%). Hospital-based and larger facilities had a statistically significant higher rate of response. Brachytherapy was being performed at 819 facilities (the median number of procedures = 21-50). Two hundred and two facilities did no brachytherapy. The common isotopes used were 137Cs (705 facilities), 192Ir (585 facilities), 125I (236 facilities), and 131I (194 facilities). The common brachytherapy techniques used were intracavitary (751 facilities), interstitial (536 facilities), intraluminal (310 facilities), and plaques (148 facilities). Remote afterloaded brachytherapy was used at 205 centers as follows: high dose rate (HDR) (164), medium dose rate (MDR) (5), and low dose rate (LDR) (36). Computerized dosimetry was most commonly used (790 facilities), followed by Patterson-Parker (104 facilities) and Quimby (72 facilities). The common sites treated were cervix (701 facilities), endometrium (565 facilities), head and neck (354 facilities), and lung (344 facilities). Data regarding brachytherapy practice has been obtained from a large percentage (80%) of all facilities in the United States. The majority (78-81%) of radiation oncology facilities perform brachytherapy; however, its use is restricted to gynecological implants in many of these centers. The results from this survey will be used to develop a pattern of care study and data registry in brachytherapy.
Dr. Jennifer Temel is an Associate Professor of Medicine at Harvard Medical School and Director of the Cancer Outcomes Research Program at the Massachusetts General Hospital (MGH) Cancer Center. She is also the Clinical Director of Thoracic Oncology at the MGH Cancer Center and provides oncology care for patients with lung and esophageal cancer. Her research focuses on improving palliative, supportive and end of life care for patients with cancer and their families. She has received funding from the National Cancer Institute, the National Institute of Nursing Research, the Patient Centered Outcomes Research Institute, and the American Cancer Society to study novel methods of improving the care of cancer patients. One of the main focuses of Dr. Temel’s research involves studying the integration of palliative and oncology care in patients with advanced cancers. Her work in this area has been published in the New England Journal of Medicine, the Journal of Clinical Oncology, and JAMA. She was awarded a National Cancer Institute mid-career development award to mentor others in palliative and end of life care in oncology and serves as the co-Principal Investigator on a National Cancer Institute grant to conduct a workshop on methods in supportive oncology research for junior faculty. Dr. Temel recently received the American Academy of Hospice and Palliative Medicine Award for Excellence in Scientific Research, the American Cancer Society Pathfinder Award for her impact on the field of palliative care, and the American Psychosocial Oncology Society Award for Outstanding Education and Training.
2001-02-01
being seen approximately every 6 months PAP levels was found (Table 3). Pretreatment PSAs >10 with interval history, physical examination, serum PSA...Aknowledgments-This study was supported in part by Depart- 1507 I. J. Radiation Oncology 0 Biology @ Physics Volume 48, Number 5, 2000 of hormone...than nonspecific one standard deviation above and below the mean. 1510 I. J. Radiation Oncology 0 Biology 0 Physics Volume 48, Number 5, 2000 significant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, S; Jaffray, D; Chetty, I
Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologiesmore » in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their efficacy, and provided a glimpse into the future. Learning Objectives: To understand the impact of technology on the field of radiation therapy To learn about the trends of technology development for the field of radiation oncology To understand the opportunities for in innovative technology research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, H; Bubric, K; Giovannetti, H
2016-06-15
Purpose: As a quality improvement measure, we undertook this work to incorporate usability testing into the implementation procedures for new electronic documents and forms used by four affiliated radiation therapy centers. Methods: A human factors specialist provided training in usability testing for a team of medical physicists, radiation therapists, and radiation oncologists from four radiotherapy centers. A usability testing plan was then developed that included controlled scenarios and standardized forms for qualitative and quantitative feedback from participants, including patients. Usability tests were performed by end users using the same hardware and viewing conditions that are found in the clinical environment.more » A pilot test of a form used during radiotherapy CT simulation was performed in a single department; feedback informed adaptive improvements to the electronic form, hardware requirements, resource accessibility and the usability testing plan. Following refinements to the testing plan, usability testing was performed at three affiliated cancer centers with different vault layouts and hardware. Results: Feedback from the testing resulted in the detection of 6 critical errors (omissions and inability to complete task without assistance), 6 non-critical errors (recoverable), and multiple suggestions for improvement. Usability problems with room layout were detected at one center and problems with hardware were detected at one center. Upon amalgamation and summary of the results, three key recommendations were presented to the document’s authors for incorporation into the electronic form. Documented inefficiencies and patient safety concerns related to the room layout and hardware were presented to administration along with a request for funding to purchase upgraded hardware and accessories to allow a more efficient workflow within the simulator vault. Conclusion: By including usability testing as part of the process when introducing any new document or procedure into clinical use, associated risks can be identified and mitigated before patient care and clinical workflow are impacted.« less
78 FR 28599 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... 20892, (301) 402-4411, [email protected] . Name of Committee: Oncology 2--Translational Clinical..., Bethesda, MD 20892, (301) 408-9724, [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology Study Section. Date: June 10, 2013. Time: 8:00 a.m. to...
75 FR 54156 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... personal privacy. Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Basic... 3211, MSC 7808, Bethesda, MD 20892, 301-435- 0903, [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology Study Section. Date: October 11-12, 2010. Time...
76 FR 3643 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
..., Bethesda, MD 20892. (301) 435- 1725. [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology Study Section. Date: February 14-15, 2011. Time: 8 a.m..., Bethesda, MD 20892. 301-451-0131. [email protected] . Name of Committee: Oncology 1--Basic Translational...
A Nationwide Medical Student Assessment of Oncology Education
Patel, Krishnan R.; Burt, Lindsay M.; Hirsch, Ariel E.
2017-01-01
Cancer is the second leading cause of death in the USA, but there is minimal data on how oncology is taught to medical students. The purpose of this study is to characterize oncology education at US medical schools. An electronic survey was sent between December 2014 and February 2015 to a convenience sample of medical students who either attended the American Society for Radiation Oncology annual meeting or serve as delegates to the American Association of Medical Colleges. Information on various aspects of oncology instruction at participants’ medical schools was collected. Seventy-six responses from students in 28 states were received. Among the six most common causes of death in the USA, cancer reportedly received the fourth most curricular time. During the first, second, and third years of medical school, participants most commonly reported 6–10, 16–20, and 6–10 h of oncology teaching, respectively. Participants were less confident in their understanding of cancer treatment than workup/ diagnosis or basic science/natural history of cancer (p<0.01). During the preclinical years, pathologists, scientists/Ph.D.’s, and medical oncologists reportedly performed the majority of teaching, whereas during the clinical clerkships, medical and surgical oncologists reportedly performed the majority of teaching. Radiation oncologists were significantly less involved during both periods (p<0.01). Most schools did not require any oncology-oriented clerkship. During each mandatory rotation, ≤20 % of patients had a primary diagnosis of cancer. Oncology education is often underemphasized and fragmented with wide variability in content and structure between medical schools, suggesting a need for reform. PMID:26123764
A Nationwide Medical Student Assessment of Oncology Education.
Mattes, Malcolm D; Patel, Krishnan R; Burt, Lindsay M; Hirsch, Ariel E
2016-12-01
Cancer is the second leading cause of death in the USA, but there is minimal data on how oncology is taught to medical students. The purpose of this study is to characterize oncology education at US medical schools. An electronic survey was sent between December 2014 and February 2015 to a convenience sample of medical students who either attended the American Society for Radiation Oncology annual meeting or serve as delegates to the American Association of Medical Colleges. Information on various aspects of oncology instruction at participants' medical schools was collected. Seventy-six responses from students in 28 states were received. Among the six most common causes of death in the USA, cancer reportedly received the fourth most curricular time. During the first, second, and third years of medical school, participants most commonly reported 6-10, 16-20, and 6-10 h of oncology teaching, respectively. Participants were less confident in their understanding of cancer treatment than workup/diagnosis or basic science/natural history of cancer (p < 0.01). During the preclinical years, pathologists, scientists/Ph.D.'s, and medical oncologists reportedly performed the majority of teaching, whereas during the clinical clerkships, medical and surgical oncologists reportedly performed the majority of teaching. Radiation oncologists were significantly less involved during both periods (p < 0.01). Most schools did not require any oncology-oriented clerkship. During each mandatory rotation, <20 % of patients had a primary diagnosis of cancer. Oncology education is often underemphasized and fragmented with wide variability in content and structure between medical schools, suggesting a need for reform.
NASA Astrophysics Data System (ADS)
Cleary, Kevin R.; Mulcahy, Maureen; Piyasena, Rohan; Zhou, Tong; Dieterich, Sonja; Xu, Sheng; Banovac, Filip; Wong, Kenneth H.
2005-04-01
Tracking organ motion due to respiration is important for precision treatments in interventional radiology and radiation oncology, among other areas. In interventional radiology, the ability to track and compensate for organ motion could lead to more precise biopsies for applications such as lung cancer screening. In radiation oncology, image-guided treatment of tumors is becoming technically possible, and the management of organ motion then becomes a major issue. This paper will review the state-of-the-art in respiratory motion and present two related clinical applications. Respiratory motion is an important topic for future work in image-guided surgery and medical robotics. Issues include how organs move due to respiration, how much they move, how the motion can be compensated for, and what clinical applications can benefit from respiratory motion compensation. Technology that can be applied for this purpose is now becoming available, and as that technology evolves, the subject will become an increasingly interesting and clinically valuable topic of research.
Direct-to-consumer advertising in oncology.
Abel, Gregory A; Penson, Richard T; Joffe, Steven; Schapira, Lidia; Chabner, Bruce A; Lynch, Thomas J
2006-02-01
Shortly before his death in 1995, Kenneth B. Schwartz, a cancer patient at Massachusetts General Hospital (MGH), founded The Kenneth B. Schwartz Center at MGH. The Schwartz Center is a nonprofit organization dedicated to supporting and advancing compassionate health care delivery, which provides hope to patients and support to caregivers while encouraging the healing process. The center sponsors the Schwartz Center Rounds, a monthly multidisciplinary forum in which caregivers reflect on important psychosocial issues faced by patients, their families, and their caregivers, and gain insight and support from fellow staff members. Increasingly, cancer patients are subjected to advertisements related to oncologic therapies and other cancer-related products in the popular media. Such direct-to-consumer advertising is controversial: while it may inform, educate, and perhaps even empower patients, it also has the ability to misinform patients, and strain their relationships with oncology providers. The U.S. Food and Drug Administration requires that direct-to-consumer advertising provide a balanced presentation of a product's benefits, risks, and side effects, but this can be difficult to achieve. Through a discussion of this topic by an oncology fellow, ethicist, cancer survivor, and senior oncologist, the role of direct-to-consumer advertising and its often subtle effects on clinical practice in oncology are explored. Although sparse, the medical literature on this increasingly prevalent type of medical communication is also reviewed.
Germline Variation in HSD3B1 as a Novel Biomarker in Prostate Cancer
2016-10-01
this work in Lancet Oncology . Our target time frame was 14 months for the first milestone: validation of the predictive value of HSD3B1 genotype in...professor sessions, radiation oncology grand rounds, and meetings with Dr. Sharifi and collaborators. Additionally, I have had the privilege of...Lancet Oncology ; Oct;17(10): 2016; 1435-1444. Federal funding support acknowledged. Books or other non-periodical, one time publications
Tamaki, Yukihisa; Itazawa, Tomoko; Okabe, Tomoyuki; Toda, Kazuma; Abe, Eisuke; Nakamura, Satoaki; Inomata, Taisuke
2013-11-01
The radiation oncology seminar for medical students and residents was initiated by the Japanese Society for Therapeutic Radiology and Oncology (JASTRO) with the aim of increasing the numbers of radiation oncologists. We investigated the long-term results related to the career paths of the program participants. This study enrolled 531 individuals who were medical students and residents at the time of program participation, between 1995 and 2011. We surveyed participants with regard to their affiliation status with the Japan Radiological Society (JRS) and JASTRO and whether they were board-certified radiation oncologists. Forty-two percent of the participants were members of JRS and 26.4 % were members of JASTRO. The membership status with JASTRO was investigated in program participants from 2004 to 2009, and comparison by status revealed that 30.1 % of medical students and 47.2 % of residents were members, with a significant difference (p = 0.013). As high as 92.3 % of the participants in the 1995-2001 cohort who had joined JRS and JASTRO were board-certified radiation oncologists. This program has greatly contributed to increasing the numbers of radiation oncologists. Because residents had a higher rate of affiliation than medical students, it is necessary to share information with not only medical universities, but also teaching hospitals.
Defining a Leader Role curriculum for radiation oncology: A global Delphi consensus study.
Turner, Sandra; Seel, Matthew; Trotter, Theresa; Giuliani, Meredith; Benstead, Kim; Eriksen, Jesper G; Poortmans, Philip; Verfaillie, Christine; Westerveld, Henrike; Cross, Shamira; Chan, Ming-Ka; Shaw, Timothy
2017-05-01
The need for radiation oncologists and other radiation oncology (RO) professionals to lead quality improvement activities and contribute to shaping the future of our specialty is self-evident. Leadership knowledge, skills and behaviours, like other competencies, can be learned (Blumenthal et al., 2012). The objective of this study was to define a globally applicable competency set specific to radiation oncology for the CanMEDS Leader Role (Frank et al., 2015). A modified Delphi consensus process delivering two rounds of on-line surveys was used. Participants included trainees, radiation/clinical oncologists and other RO team members (radiation therapists, physicists, and nurses), professional educators and patients. 72 of 95 (76%) invitees from nine countries completed the Round 1 (R1) survey. Of the 72 respondents to RI, 70 completed Round 2 (R2) (97%). In R1, 35 items were deemed for 'inclusion' and 21 for 'exclusion', leaving 41 'undetermined'. After review of items, informed by participant comments, 14 competencies from the 'inclusion' group went into the final curriculum; 12 from the 'undetermined' group went to R2. In R2, 6 items reached consensus for inclusion. This process resulted in 20 RO Leader Role competencies with apparent global applicability. This is the first step towards developing learning, teaching and assessment tools for this important area of training. Copyright © 2017 Elsevier B.V. All rights reserved.
Halkett, G K B; McKay, J; Hegney, D G; Breen, Lauren J; Berg, M; Ebert, M A; Davis, M; Kearvell, R
2017-09-01
Workforce recruitment and retention are issues in radiation oncology. The working environment is likely to have an impact on retention; however, there is a lack of research in this area. The objectives of this study were to: investigate radiation therapists' (RTs) and radiation oncology medical physicists' (ROMPs) perceptions of work and the working environment; and determine the factors that influence the ability of RTs and ROMPs to undertake their work and how these factors affect recruitment and retention. Semi-structured interviews were conducted and thematic analysis was used. Twenty-eight RTs and 21 ROMPs participated. The overarching themes were delivering care, support in work, working conditions and lifestyle. The overarching themes were mostly consistent across both groups; however, the exemplars reflected the different roles and perspectives of RTs and ROMPs. Participants described the importance they placed on treating patients and improving their lives. Working conditions were sometimes difficult with participants reporting pressure at work, large workloads and longer hours and overtime. Insufficient staff numbers impacted on the effectiveness of staff, the working environment and intentions to stay. Staff satisfaction is likely to be improved if changes are made to the working environment. We make recommendations that may assist departments to support RTs and ROMPs. © 2016 John Wiley & Sons Ltd.
Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H
2016-01-01
The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.
Software tool for physics chart checks.
Li, H Harold; Wu, Yu; Yang, Deshan; Mutic, Sasa
2014-01-01
Physics chart check has long been a central quality assurance (QC) measure in radiation oncology. The purpose of this work is to describe a software tool that aims to accomplish simplification, standardization, automation, and forced functions in the process. Nationally recognized guidelines, including American College of Radiology and American Society for Radiation Oncology guidelines and technical standards, and the American Association of Physicists in Medicine Task Group reports were identified, studied, and summarized. Meanwhile, the reported events related to physics chart check service were analyzed using an event reporting and learning system. A number of shortfalls in the chart check process were identified. To address these problems, a software tool was designed and developed under Microsoft. Net in C# to hardwire as many components as possible at each stage of the process. The software consists of the following 4 independent modules: (1) chart check management; (2) pretreatment and during treatment chart check assistant; (3) posttreatment chart check assistant; and (4) quarterly peer-review management. The users were a large group of physicists in the author's radiation oncology clinic. During over 1 year of use the tool has proven very helpful in chart checking management, communication, documentation, and maintaining consistency. The software tool presented in this work aims to assist physicists at each stage of the physics chart check process. The software tool is potentially useful for any radiation oncology clinics that are either in the process of pursuing or maintaining the American College of Radiology accreditation.
Determining an Imaging Literacy Curriculum for Radiation Oncologists: An International Delphi Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, Meredith E., E-mail: Meredith.Giuliani@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Gillan, Caitlin
2014-03-15
Purpose: Rapid evolution of imaging technologies and their integration into radiation therapy practice demands that radiation oncology (RO) training curricula be updated. The purpose of this study was to develop an entry-to-practice image literacy competency profile. Methods and Materials: A list of 263 potential imaging competency items were assembled from international objectives of training. Expert panel eliminated redundant or irrelevant items to create a list of 97 unique potential competency items. An international 2-round Delphi process was conducted with experts in RO. In round 1, all experts scored, on a 9-point Likert scale, the degree to which they agreed anmore » item should be included in the competency profile. Items with a mean score ≥7 were included, those 4 to 6 were reviewed in round 2, and items scored <4 were excluded. In round 2, items were discussed and subsequently ranked for inclusion or exclusion in the competency profile. Items with >75% voting for inclusion were included in the final competency profile. Results: Forty-nine radiation oncologists were invited to participate in round 1, and 32 (65%) did so. Participants represented 24 centers in 6 countries. Of the 97 items ranked in round 1, 80 had a mean score ≥7, 1 item had a score <4, and 16 items with a mean score of 4 to 6 were reviewed and rescored in round 2. In round 2, 4 items had >75% of participants voting for inclusion and were included; the remaining 12 were excluded. The final list of 84 items formed the final competency profile. The 84 enabling competency items were aggregated into the following 4 thematic groups of key competencies: (1) imaging fundamentals (42 items); (2) clinical application (27 items); (3) clinical management (5 items); and (4) professional practice (10 items). Conclusions: We present an imaging literacy competency profile which could constitute the minimum training standards in radiation oncology residency programs.« less
78 FR 29373 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... Committee: Oncology 2--Translational Clinical Integrated Review Group; Developmental Therapeutics [email protected] . Name of Committee: Oncology 1-Basic Translational Integrated Review Group; Cancer...
Omidvari, Shapour; Talei, Abdolrasoul; Tahmasebi, Sedigheh; Moaddabshoar, Leila; Dayani, Maliheh; Mosalaei, Ahmad; Ahmadloo, Niloofar; Ansari, Mansour; Mohammadianpanah, Mohammad
2015-01-01
Radiotherapy plays an important role as adjuvant treatment in locally advanced breast cancer and in those patients who have undergone breast-conserving surgery. This study aimed to investigate the prognostic impact of adjuvant radiation on oncologic outcomes in elderly women with breast cancer. In this retrospective study, we reviewed and analyzed the characteristics, treatment outcome and survival of elderly women (aged ≥ 60 years) with breast cancer who were treated and followed-up between 1993 and 2014. The median follow up for the surviving patients was 38 (range 3-207) months. One hundred and seventy-eight patients with a median age of 74 (range 60-95) years were enrolled in the study. Of the total, 60 patients received postoperative adjuvant radiation (radiation group) and the remaining 118 did not (control group). Patients in the radiation group were significantly younger than those in the control group (P value=0.004). In addition, patients in radiation group had higher node stage (P value<0.001) and disease stage (P=0.003) and tended to have higher tumor grade (P=0.031) and received more frequent (P value <0.001) adjuvant and neoadjuvant chemotherapy compared to those in the control group. There was no statistically significant difference between two groups regarding the local control, disease-free survival and overall survival rates. In this study, we did not find a prognostic impact for adjuvant radiation on oncologic outcomes in elderly women with breast cancer.
Brundage, Michael D; Hart, Margaret; O'Donnell, Jennifer; Reddeman, Lindsay; Gutierrez, Eric; Foxcroft, Sophie; Warde, Padraig
Peer review of radiation oncology treatment plans is increasingly recognized as an important component of quality assurance in radiation treatment planning and delivery. Peer review of treatment plans can directly improve the quality of those plans and can also have indirect effects on radiation treatment programs. We undertook a systematic, qualitative approach to describing the indirect benefits of peer review, factors that were seen to facilitate or act as barriers to the implementation of peer review, and strategies to address these barriers across a provincial jurisdiction of radiation oncology programs (ROPs). Semistructured qualitative interviews were held with radiation oncology department heads and radiation therapy managers (or delegates) in all 14 ROPs in Ontario, Canada. We used a theoretically guided phenomenological qualitative approach to design and analyze the interview content. Themes were recorded by 2 independent reviewers, and any discordance was resolved by consensus. A total of 28 interviews were completed with 32 interviewees. Twenty-two unique themes addressed perceived benefits of peer review, relating to either peer review structure (n = 3), process (n = 9), or outcome (n = 10). Of these 22 themes, 19 related to indirect benefits to ROPs. In addition, 18 themes related to factors that facilitated peer review activities and 30 themes related to key barriers to implementing peer review were identified. Findings were consistent with, and enhanced the understanding of, previous survey-based assessments of the benefits and challenges of implementing peer review programs. Although challenges and concerns regarding the implementation of peer review were evident, the indirect benefits to radiation programs are numerous, far outweigh the implementation challenges, and strongly complement the direct individual-patient benefits that result from peer review quality assurance of radiation treatment plans. Copyright © 2016. Published by Elsevier Inc.
Olson, Robert A; Tiwana, Manpreet; Barnes, Mark; Cai, Eric; McGahan, Colleen; Roden, Kelsey; Yurkowski, Emily; Gentles, Quinn; French, John; Halperin, Ross; Olivotto, Ivo A
2016-01-01
To assess the impact of a population-based intervention to increase the consistency and use of single-fraction radiation therapy (SFRT) for bone metastases. In 2012, an audit of radiation therapy prescriptions for bone metastases in British Columbia identified significant interphysician and -center (26%-73%) variation in the use of SFRT. Anonymous physician-level and identifiable regional cancer center SFRT use data were presented to all radiation oncologists, together with published guidelines, meta-analyses, and recommendations from practice leaders. The use of SFRT for bone metastases from 2007 through 2011 was compared with use of SFRT in 2013, to assess the impact of the audit and educational intervention. Multilevel logistic regression was used to assess the relationship between the usage of SFRT and the timing of the radiation while controlling for potentially confounding variables. Physician and center were included as group effects to account for the clustered structure of the data. A total of 16,898 courses of RT were delivered from 2007 through 2011, and 3200 courses were delivered in 2013. The rates of SFRT use in 2007, 2008, 2009, 2010, 2011, and 2013 were 50.5%, 50.9%, 48.3%, 48.5%, 48.0%, and 59.7%, respectively (P<.001). Use of SFRT increased in each of 5 regional centers: A: 26% to 32%; B: 36% to 56%; C: 39% to 57%; D: 49% to 56%; and E: 73% to 85.0%. Use of SFRT was more consistent; 3 of 5 centers used SFRT for 56% to 57% of bone metastases RT courses. The regression analysis showed strong evidence that the usage of SFRT increased after the 2012 intervention (odds ratio 2.27, 95% confidence interval 2.06-2.50, P<.0001). Assessed on a population basis, an audit-based intervention increased utilization of SFRT for bone metastases. The intervention reversed a trend to decreasing SFRT use, reduced costs, and improved patient convenience. This suggests that dissemination of programmatic quality indicators in oncology can lead to increased utilization of evidence-based practice. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Robert A., E-mail: rolson2@bccancer.bc.ca; University of Northern British Columbia, Prince George, British Columbia; University of British Columbia, Vancouver, British Columbia
Purpose: To assess the impact of a population-based intervention to increase the consistency and use of single-fraction radiation therapy (SFRT) for bone metastases. Methods and Materials: In 2012, an audit of radiation therapy prescriptions for bone metastases in British Columbia identified significant interphysician and -center (26%-73%) variation in the use of SFRT. Anonymous physician-level and identifiable regional cancer center SFRT use data were presented to all radiation oncologists, together with published guidelines, meta-analyses, and recommendations from practice leaders. The use of SFRT for bone metastases from 2007 through 2011 was compared with use of SFRT in 2013, to assess themore » impact of the audit and educational intervention. Multilevel logistic regression was used to assess the relationship between the usage of SFRT and the timing of the radiation while controlling for potentially confounding variables. Physician and center were included as group effects to account for the clustered structure of the data. Results: A total of 16,898 courses of RT were delivered from 2007 through 2011, and 3200 courses were delivered in 2013. The rates of SFRT use in 2007, 2008, 2009, 2010, 2011, and 2013 were 50.5%, 50.9%, 48.3%, 48.5%, 48.0%, and 59.7%, respectively (P<.001). Use of SFRT increased in each of 5 regional centers: A: 26% to 32%; B: 36% to 56%; C: 39% to 57%; D: 49% to 56%; and E: 73% to 85.0%. Use of SFRT was more consistent; 3 of 5 centers used SFRT for 56% to 57% of bone metastases RT courses. The regression analysis showed strong evidence that the usage of SFRT increased after the 2012 intervention (odds ratio 2.27, 95% confidence interval 2.06-2.50, P<.0001). Conclusion: Assessed on a population basis, an audit-based intervention increased utilization of SFRT for bone metastases. The intervention reversed a trend to decreasing SFRT use, reduced costs, and improved patient convenience. This suggests that dissemination of programmatic quality indicators in oncology can lead to increased utilization of evidence-based practice.« less
Reese, Christina; Weis, Joachim; Schmucker, Dieter; Mittag, Oskar
2017-10-01
The goal of this project was to develop evidence- and consensus-based practice guidelines for psychological interventions in the rehabilitation of patients with oncological disease (breast, prostate, or colorectal cancer). First of all, we conducted a literature search and survey of all oncological rehabilitation centers in Germany (N = 145) to obtain a thorough perspective of the recent evidence, guidelines, the structural framework, and practice of psychological services in oncological rehabilitation. Next, an expert workshop was held with national experts from scientific departments, clinicians from rehabilitation centers, and patients. In this workshop, we drafted and agreed upon an initial version of the practice guidelines. Afterwards, the practice guidelines were sent to all head physicians and senior psychologists at oncological rehabilitation centers in Germany for approval (N = 280 questionnaires). In addition, key recommendations were discussed with a group of rehabilitation patients. Finally, the practice guidelines were revised by the expert panel and made available online to the public. The practice guidelines have been widely accepted by both the expert panel and the surveyed clinicians and patients. They include recommendations for psycho-oncological interventions that should be offered to all rehabilitation patients with breast, prostate, or colorectal cancer. They also comprise recommendations for specific problem areas concerning psychological functions, body functions, and environmental and personal factors. The practice guidelines provide detailed recommendations for high-quality psychosocial care in an oncological rehabilitation context. It is their aim to guide the multidisciplinary team, especially psychologists and physicians, in their daily practice. Copyright © 2016 John Wiley & Sons, Ltd.
Development and Impact Evaluation of an E-Learning Radiation Oncology Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfieri, Joanne, E-mail: Joanne.alfieri@mail.mcgill.ca; Portelance, Lorraine; Souhami, Luis
Purpose: Radiation oncologists are faced with the challenge of irradiating tumors to a curative dose while limiting toxicity to healthy surrounding tissues. This can be achieved only with superior knowledge of radiologic anatomy and treatment planning. Educational resources designed to meet these specific needs are lacking. A web-based interactive module designed to improve residents' knowledge and application of key anatomy concepts pertinent to radiotherapy treatment planning was developed, and its effectiveness was assessed. Methods and Materials: The module, based on gynecologic malignancies, was developed in collaboration with a multidisciplinary team of subject matter experts. Subsequently, a multi-centre randomized controlled studymore » was conducted to test the module's effectiveness. Thirty-six radiation oncology residents participated in the study; 1920 were granted access to the module (intervention group), and 17 in the control group relied on traditional methods to acquire their knowledge. Pretests and posttests were administered to all participants. Statistical analysis was carried out using paired t test, analysis of variance, and post hoc tests. Results: The randomized control study revealed that the intervention group's pretest and posttest mean scores were 35% and 52%, respectively, and those of the control group were 37% and 42%, respectively. The mean improvement in test scores was 17% (p < 0.05) for the intervention group and 5% (p = not significant) for the control group. Retrospective pretest and posttest surveys showed a statistically significant change on all measured module objectives. Conclusions: The use of an interactive e-learning teaching module for radiation oncology is an effective method to improve the radiologic anatomy knowledge and treatment planning skills of radiation oncology residents.« less
Hepel, Jaroslaw T; Heron, Dwight E; Mundt, Arno J; Yashar, Catheryn; Feigenberg, Steven; Koltis, Gordon; Regine, William F; Prasad, Dheerendra; Patel, Shilpen; Sharma, Navesh; Hebert, Mary; Wallis, Norman; Kuettel, Michael
2017-05-01
Accreditation based on peer review of professional standards of care is essential in ensuring quality and safety in administration of radiation therapy. Traditionally, medical chart reviews have been performed by a physical onsite visit. The American College of Radiation Oncology Accreditation Program has remodeled its process whereby electronic charts are reviewed remotely. Twenty-eight radiation oncology practices undergoing accreditation had three charts per practice undergo both onsite and online review. Onsite review was performed by a single reviewer for each practice. Online review consisted of one or more disease site-specific reviewers for each practice. Onsite and online reviews were blinded and scored on a 100-point scale on the basis of 20 categories. A score of less than 75 was failing, and a score of 75 to 79 was marginal. Any failed charts underwent rereview by a disease site team leader. Eighty-four charts underwent both onsite and online review. The mean scores were 86.0 and 86.9 points for charts reviewed onsite and online, respectively. Comparison of onsite and online reviews revealed no statistical difference in chart scores ( P = .43). Of charts reviewed, 21% had a marginal (n = 8) or failing (n = 10) score. There was no difference in failing charts ( P = .48) or combined marginal and failing charts ( P = .13) comparing onsite and online reviews. The American College of Radiation Oncology accreditation process of online chart review results in comparable review scores and rate of failing scores compared with traditional on-site review. However, the modern online process holds less potential for bias by using multiple reviewers per practice and allows for greater oversight via disease site team leader rereview.
Development of a residency program in radiation oncology physics: an inverse planning approach.
Khan, Rao F H; Dunscombe, Peter B
2016-03-08
Over the last two decades, there has been a concerted effort in North America to organize medical physicists' clinical training programs along more structured and formal lines. This effort has been prompted by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) which has now accredited about 90 residency programs. Initially the accreditation focused on standardized and higher quality clinical physics training; the development of rounded professionals who can function at a high level in a multidisciplinary environment was recognized as a priority of a radiation oncology physics residency only lately. In this report, we identify and discuss the implementation of, and the essential components of, a radiation oncology physics residency designed to produce knowledgeable and effective clinical physicists for today's safety-conscious and collaborative work environment. Our approach is that of inverse planning, by now familiar to all radiation oncology physicists, in which objectives and constraints are identified prior to the design of the program. Our inverse planning objectives not only include those associated with traditional residencies (i.e., clinical physics knowledge and critical clinical skills), but also encompass those other attributes essential for success in a modern radiation therapy clinic. These attributes include formal training in management skills and leadership, teaching and communication skills, and knowledge of error management techniques and patient safety. The constraints in our optimization exercise are associated with the limited duration of a residency and the training resources available. Without compromising the knowledge and skills needed for clinical tasks, we have successfully applied the model to the University of Calgary's two-year residency program. The program requires 3840 hours of overall commitment from the trainee, of which 7%-10% is spent in obtaining formal training in nontechnical "soft skills".
National survey of perspectives of palliative radiation therapy: role, barriers, and needs.
McCloskey, Susan A; Tao, May Lin; Rose, Christopher M; Fink, Arlene; Amadeo, Alessandra M
2007-01-01
Despite growth of palliative care programs and evidence on the effectiveness of radiotherapy in palliating cancer symptoms, radiotherapy is probably underused in this setting. Radiation and medical oncologists and palliative medicine specialists were surveyed regarding the perceived role of palliative radiotherapy and barriers to its use. The survey was sent electronically to all physician members of the American Society for Therapeutic Radiology and Oncology (ASTRO) and the American Academy of Hospice and Palliative Medicine (AAHPM) and a random sample of American Society of Clinical Oncology (ASCO) members, with known e-mail addresses. Response rates were 27%, 14% and 26% for ASTRO, ASCO, and AAHPM respondents, respectively. Although most felt radiotherapy is an effective and important option for palliation of some common cancer symptoms, referrals for such therapy may be declining. Most agreed that radiation oncologists should be more involved in palliative care; however, multiple barriers were identified, such as poor reimbursement, emotional burden of care, insufficient training/knowledge, and the sense of unwillingness of others to share delivery of such services. Although multiple barriers limit optimal integration, most agree that there should be greater national and professional society efforts to promote the advancement of radiation oncology in the area of palliative care.
Expanding the use of real-time electromagnetic tracking in radiation oncology.
Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L
2011-11-15
In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.
Expanding the use of real‐time electromagnetic tracking in radiation oncology
Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.
2011-01-01
In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Emma B.; Ahmed, Awad A.; Yoo, Stella K.
Purpose: Quality cancer care is best delivered through a multidisciplinary approach requiring awareness of current evidence for all oncologic specialties. The highest impact journals often disseminate such information, so the distribution and characteristics of oncology studies by primary intervention (local therapies, systemic therapies, and targeted agents) were evaluated in 10 high-impact journals over a 20-year period. Methods and Materials: Articles published in 1994, 2004, and 2014 in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology, Radiotherapy and Oncology, International Journal of Radiation Oncology, Biology, Physics, Annals ofmore » Surgical Oncology, and European Journal of Surgical Oncology were identified. Included studies were prospectively conducted and evaluated a therapeutic intervention. Results: A total of 960 studies were included: 240 (25%) investigated local therapies, 551 (57.4%) investigated systemic therapies, and 169 (17.6%) investigated targeted therapies. More local therapy trials (n=185 [77.1%]) evaluated definitive, primary treatment than systemic (n=178 [32.3%]) or targeted therapy trials (n=38 [22.5%]; P<.001). Local therapy trials (n=16 [6.7%]) also had significantly lower rates of industry funding than systemic (n=207 [37.6%]) and targeted therapy trials (n=129 [76.3%]; P<.001). Targeted therapy trials represented 5 (2%), 38 (10.2%), and 126 (38%) of those published in 1994, 2004, and 2014, respectively (P<.001), and industry-funded 48 (18.9%), 122 (32.6%), and 182 (54.8%) trials, respectively (P<.001). Compared to publication of systemic therapy trial articles, articles investigating local therapy (odds ratio: 0.025 [95% confidence interval: 0.012-0.048]; P<.001) were less likely to be found in high-impact general medical journals. Conclusions: Fewer studies evaluating local therapies, such as surgery and radiation, are published in high-impact oncology and medicine literature. Further research and attention are necessary to guide efforts promoting appropriate representation of all oncology studies in high-impact, broad-readership journals.« less
Holliday, Emma B; Ahmed, Awad A; Yoo, Stella K; Jagsi, Reshma; Hoffman, Karen E
2015-07-15
Quality cancer care is best delivered through a multidisciplinary approach requiring awareness of current evidence for all oncologic specialties. The highest impact journals often disseminate such information, so the distribution and characteristics of oncology studies by primary intervention (local therapies, systemic therapies, and targeted agents) were evaluated in 10 high-impact journals over a 20-year period. Articles published in 1994, 2004, and 2014 in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology, Radiotherapy and Oncology, International Journal of Radiation Oncology, Biology, Physics, Annals of Surgical Oncology, and European Journal of Surgical Oncology were identified. Included studies were prospectively conducted and evaluated a therapeutic intervention. A total of 960 studies were included: 240 (25%) investigated local therapies, 551 (57.4%) investigated systemic therapies, and 169 (17.6%) investigated targeted therapies. More local therapy trials (n=185 [77.1%]) evaluated definitive, primary treatment than systemic (n=178 [32.3%]) or targeted therapy trials (n=38 [22.5%]; P<.001). Local therapy trials (n=16 [6.7%]) also had significantly lower rates of industry funding than systemic (n=207 [37.6%]) and targeted therapy trials (n=129 [76.3%]; P<.001). Targeted therapy trials represented 5 (2%), 38 (10.2%), and 126 (38%) of those published in 1994, 2004, and 2014, respectively (P<.001), and industry-funded 48 (18.9%), 122 (32.6%), and 182 (54.8%) trials, respectively (P<.001). Compared to publication of systemic therapy trial articles, articles investigating local therapy (odds ratio: 0.025 [95% confidence interval: 0.012-0.048]; P<.001) were less likely to be found in high-impact general medical journals. Fewer studies evaluating local therapies, such as surgery and radiation, are published in high-impact oncology and medicine literature. Further research and attention are necessary to guide efforts promoting appropriate representation of all oncology studies in high-impact, broad-readership journals. Copyright © 2015. Published by Elsevier Inc.
77 FR 28610 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... personal privacy. Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; Chemo...
Ethics in the Legal and Business Practices of Radiation Oncology.
Wall, Terry J
2017-10-01
Ethical issues arise when a professional endeavor such as medicine, which seeks to place the well-being of others over the self-interest of the practitioner, meets granular business and legal decisions involved in making a livelihood out of a professional calling. The use of restrictive covenants, involvement in self-referral patterns, and maintaining appropriate comity among physicians while engaged in the marketplace are common challenges in radiation oncology practice. A paradigm of analysis is presented to help navigate these management challenges. Copyright © 2017 Elsevier Inc. All rights reserved.
Nagayama, Yasunori; Tanoue, Shota; Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yoshida, Eri; Yoshida, Morikatsu; Kidoh, Masafumi; Tateishi, Machiko; Yamashita, Yasuyuki
2018-05-01
To evaluate the image quality, radiation dose, and renal safety of contrast medium (CM)-reduced abdominal-pelvic CT combining 80-kVp and sinogram-affirmed iterative reconstruction (SAFIRE) in patients with renal dysfunction for oncological assessment. We included 45 patients with renal dysfunction (estimated glomerular filtration rate <45 ml per min per 1.73 m 2 ) who underwent reduced-CM abdominal-pelvic CT (360 mgI kg -1 , 80-kVp, SAFIRE) for oncological assessment. Another 45 patients without renal dysfunction (estimated glomerular filtration rate >60 ml per lmin per 1.73 m 2 ) who underwent standard oncological abdominal-pelvic CT (600 mgI kg -1 , 120-kVp, filtered-back projection) were included as controls. CT attenuation, image noise, and contrast-to-noise ratio (CNR) were compared. Two observers performed subjective image analysis on a 4-point scale. Size-specific dose estimate and renal function 1-3 months after CT were measured. The size-specific dose estimate and iodine load of 80-kVp protocol were 32 and 41%,, respectively, lower than of 120-kVp protocol (p < 0.01). CT attenuation and contrast-to-noise ratio of parenchymal organs and vessels in 80-kVp images were significantly better than those of 120-kVp images (p < 0.05). There were no significant differences in quantitative or qualitative image noise or subjective overall quality (p > 0.05). No significant kidney injury associated with CM administration was observed. 80-kVp abdominal-pelvic CT with SAFIRE yields diagnostic image quality in oncology patients with renal dysfunction under substantially reduced iodine and radiation dose without renal safety concerns. Advances in knowledge: Using 80-kVp and SAFIRE allows for 40% iodine load and 32% radiation dose reduction for abdominal-pelvic CT without compromising image quality and renal function in oncology patients at risk of contrast-induced nephropathy.
Pediatric cancer center; Pediatric oncology center; Comprehensive cancer center ... Treating childhood cancer is not the same as treating adult cancer. The cancers are different. So are the treatments and the ...
76 FR 49779 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
..., [email protected] . Name of Committee: Oncology 1-Basic Translational Integrated Review Group, Tumor..., [email protected] . Name of Committee: Oncology 2-Translational Clinical Integrated Review Group...
78 FR 32260 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... 20892, (301) 435-4445, [email protected] . Name of Committee: Oncology 1-Basic Translational... . Name of Committee: Oncology 1-Basic Translational Integrated Review Group Molecular Oncogenesis Study...
Monson, John R T; Probst, Christian P; Wexner, Steven D; Remzi, Feza H; Fleshman, James W; Garcia-Aguilar, Julio; Chang, George J; Dietz, David W
2014-10-01
This study examines recent adherence to recommended neoadjuvant chemoradiotherapy guidelines for patients with rectal cancer across geographic regions and institution volume and assesses trends over time. A recent report by the Institute of Medicine described US cancer care as chaotic. Cited deficiencies included wide variation in adherence to evidence-based guidelines even where clear consensus exists. Patients operated on for clinical stage II and III rectal cancer were selected from the 2006-2011 National Cancer Data Base. Multivariable logistic regressions were used to assess variation in chemotherapy and radiation use by cancer center type, geographical location, and hospital volume. The analysis controlled for patient age at diagnosis, sex, race/ethnicity, primary payer, average household income, average education, urban/rural classification of patient residence, comorbidity, and oncologic stage. There were 30,994 patients who met the inclusion criteria. Use of neoadjuvant radiation therapy and chemotherapy varied significantly by type of cancer center. The highest rates of adherence were observed in high-volume centers compared with low-volume centers (78% vs 69%; adjusted odds ratio = 1.46; P < 0.001). This variation is mirrored by hospital geographic location. Primary payer and year of diagnosis were not predictive of rates of neoadjuvant chemoradiotherapy. Adherence to evidence-based treatment guidelines in rectal cancer is suboptimal in the United States, with significant differences based on hospital volume and geographic regions. Little improvement has occurred in the last 5 years. These results support the implementation of standardized care pathways and a Centers of Excellence program for US patients with rectal cancer.
Faculty of Radiation Oncology 2010 workforce survey.
Leung, John; Vukolova, Natalia
2011-12-01
This paper outlines the key results of the Faculty of Radiation Oncology 2010 workforce survey and compares these results with earlier data. The workforce survey was conducted in mid-2010 using a custom-designed 17-question survey. The overall response rate was 76%. The majority of radiation oncologist respondents were male (n = 212, 71%), but the majority of trainee respondents were female (n = 59, 52.7%). The age range of fellows was 32-92 years (median: 47 years; mean: 49 years) and that of trainees was 27-44 years (median: 31 years; mean: 31.7 years). Most radiation oncologists worked at more than one practice (average: two practices). The majority of radiation oncologists worked in the public sector (n = 169, 64.5%), with some working in 'combination' of public and private sectors (n = 65, 24.8%) and a minority working in the private sector only (n = 28, 10.7%). The hours worked per week ranged from 1 to 85 (mean: 44 h; median: 45 h) for radiation oncologists, while for trainees the range was 16-90 (mean: 47 h; median: 45 h). The number of new cases seen in a year ranged from 1 to 1100 (mean: 275; median: 250). Most radiation oncologists considered themselves generalists with a preferred sub-specialty (43.3%) or specialists (41.9%), while a minority considered themselves as generalists (14.8%). There are a relatively large and increasing number of radiation oncologists and trainees compared with previous years. The excessive workloads evident in previous surveys appear to have diminished. However, further work is required on assessing the impact of ongoing feminisation and sub-specialisation. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teshima, Teruki, E-mail: teshima@sahs.med.osaka-u.ac.j; Numasaki, Hodaka; Shibuya, Hitoshi
2010-12-01
Purpose: To evaluate the ongoing structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and improve any deficiencies. Methods and Materials: A questionnaire-based national structure survey was conducted from March to December 2008 by the Japanese Society of Therapeutic Radiology and Oncology (JASTRO). These data were analyzed in terms of the institutional stratification of the Patterns of Care Study. Results: The total numbers of new cancer patients and total cancer patients (new and repeat) treated with radiation in 2007 were estimated at 181,000 and 218,000, respectively. There were 807 linear accelerator,more » 15 telecobalt, 46 Gamma Knife, 45 {sup 60}Co remote-controlled after-loading, and 123 {sup 192}Ir remote-controlled after-loading systems in actual use. The linear accelerator systems used dual-energy function in 539 units (66.8%), three-dimensional conformal radiation therapy in 555 (68.8%), and intensity-modulated radiation therapy in 235 (29.1%). There were 477 JASTRO-certified radiation oncologists, 826.3 full-time equivalent (FTE) radiation oncologists, 68.4 FTE medical physicists, and 1,634 FTE radiation therapists. The number of interstitial radiotherapy (RT) administrations for prostate, stereotactic body radiotherapy, and intensity-modulated radiation therapy increased significantly. Patterns of Care Study stratification can clearly identify the maturity of structures based on their academic nature and caseload. Geographically, the more JASTRO-certified physicians there were in a given area, the more RT tended to be used for cancer patients. Conclusions: The Japanese structure has clearly improved during the past 17 years in terms of equipment and its use, although a shortage of personnel and variations in maturity disclosed by Patterns of Care Study stratification were still problematic in 2007.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... experienced exposure relevant for certification. A recent publication in The Lancet Oncology by the...). According to the Working Group's article, published in The Lancet Oncology,\\4\\ a review of more than 70... Lancet Oncology 14(4):287-288. \\5\\ According to the Lancet article, the Working Group's assessments will...
Pediatric Oncology Branch - training- resident electives | Center for Cancer Research
Resident Electives Select pediatric residents may be approved for a 4-week elective rotation at the Pediatric Oncology Branch. This rotation emphasizes the important connection between research and patient care in pediatric oncology. The resident is supervised directly by the Branch’s attending physician and clinical fellows. Residents attend daily in-patient and out-patient
Verma, Vivek
2017-10-01
To quantitate financial conflicts of interest (FCOIs) among radiation oncology peer-reviewers, specifically editorial board members of the 3 American Society for Radiation Oncology journals. The public Centers for Medicare and Medicaid Services Open Payments database delineates payments in 3 categories (general payments, research funding, and company ownership). After excluding non-US and non-MDs, names of board members were searched. Values of each FCOI were extracted for 2013 to 2015 and compiled. Of 85 board members, 65 (76%) received any form of payment during the overall period. The majority of delivered payments were general payments: 59 (69%) received at least 1 general payment during these 3 years. In each year, 9 board members (11%) received research funding, and 3 board members (4%) reported company ownership. Over the studied period, all board members received a sum total of $5,387,985; this was composed of $665,801 (12%) in general payments, $3,758,968 (70%) in research funding, and $963,216 (18%) in company ownership. The mean general payment and research funding amounts (all members) were $2,621 and $14,741, respectively. Median (interquartile range) general payments and research funding only in board members receiving payments were $419 ($91-$5072) and $56,250 ($13,345-$200,000), respectively. When assessing general payments according to amount, the vast majority of editorial board members received lower-quantity or no such payments, along with a smaller proportion that received higher-volume payments. The most frequent sources of general payments were Varian, Elekta, and Bristol-Myers Squibb. Merck and Varian were the most frequent funding sources for research payments. In this population, the majority of FCOIs were general payments, but research funding comprised the highest monetary sums. Large-volume FCOIs do not apply to the vast majority of editorial board members, implying that the maintained integrity of academic peer-review is likely not influenced to a large extent by FCOIs. Copyright © 2017 Elsevier Inc. All rights reserved.
76 FR 55929 - CENTER FOR SCIENTIFIC REVIEW; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... personal privacy. Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; Basic..., Bethesda, MD 20892, (301) 435- 1153, [email protected] . Name of Committee: Oncology 2--Translational...
75 FR 78716 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... 4114, MSC 7816, Bethesda, MD 20892. (301) 435- 1782. [email protected] . Name of Committee: Oncology... Committee: Oncology 2--Translational Clinical Integrated Review Group. Basic Mechanisms of Cancer...
77 FR 29672 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... of Committee: Oncology 1--Basic Translational Integrated Review Group; Tumor Cell Biology Study... 20892, 301-435- 1146, [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated...
MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labby, Z; Sensakovic, W; Hipp, E
2014-06-15
Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely whatmore » the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning Objectives: To review the basic physical science principles of CT, PET, MR, and ultrasound imaging. To understand how the images are created, and present their specific role in patient management and treatment planning for therapeutic radiation (both external beam and brachytherapy). To discuss when and how each specific imaging modality is currently used in clinical practice, as well as how they may come to be used in the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teshima, Teruki; Numasaki, Hodaka; Shibuya, Hitoshi
2008-09-01
Purpose: To evaluate the structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and improve any deficiencies. Methods and Materials: A questionnaire-based national structure survey was conducted between March 2006 and February 2007 by the Japanese Society of Therapeutic Radiology and Oncology. These data were analyzed in terms of the institutional stratification of the Patterns of Care Study. Results: The total numbers of new cancer patients and total cancer patients (new and repeat) treated with radiotherapy in 2005 were estimated at approximately 162,000 and 198,000, respectively. In actual use were 765more » linear accelerators, 11 telecobalt machines, 48 GammaKnife machines, 64 {sup 60}Co remote-controlled after-loading systems, and 119 {sup 192}Ir remote-controlled after-loading systems. The linear accelerator systems used dual-energy function in 498 systems (65%), three-dimensional conformal radiotherapy in 462 (60%), and intensity-modulated radiotherapy in 170 (22%). There were 426 Japanese Society of Therapeutic Radiology and Oncology-certified radiation oncologists, 774 full-time equivalent radiation oncologists, 117 medical physicists, and 1,635 radiation therapists. Geographically, a significant variation was found in the use of radiotherapy, from 0.9 to 2.1 patients/1,000 population. The annual patient load/FTE radiation oncologist was 247, exceeding the Blue Book guidelines level. Patterns of Care Study stratification can clearly discriminate the maturity of structures according to their academic nature and caseload. Conclusions: The Japanese structure has clearly improved during the past 15 years in terms of equipment and its use, although the shortage of manpower and variations in maturity disclosed by this Patterns of Care Study stratification remain problematic. These constitute the targets for nationwide improvement in quality assurance and quality control.« less
77 FR 4050 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
..., Bethesda, MD 20892, (301) 435-1046, [email protected] . Name of Committee: Oncology 1--Basic...- 4467, [email protected] . Name of Committee: Oncology 1--Basic Translational Integrated Review Group...
77 FR 56216 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... personal privacy. Name of Committee: Oncology 1-Basic Translational Integrated Review Group; Cancer... 20892, 301-435-1254, [email protected]ih.gov . Name of Committee: Oncology 1-Basic Translational...
A Profile of Academic Training Program Directors and Chairs in Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Lynn D., E-mail: Lynn.wilson@yale.edu; Haffty, Bruce G.; Smith, Benjamin D.
Purpose: To identify objective characteristics and benchmarks for program leadership in academic radiation oncology. Methods and Materials: A study of the 87 Accreditation Council for Graduate Medical Education radiation oncology training program directors (PD) and their chairs was performed. Variables included age, gender, original training department, highest degree, rank, endowed chair assignment, National Institutes of Health (NIH) funding, and Hirsch index (H-index). Data were gathered from online sources such as departmental websites, NIH RePORTER, and Scopus. Results: There were a total of 87 PD. The median age was 48, and 14 (16%) were MD/PhD. A total of 21 (24%) weremore » female, and rank was relatively equally distributed above instructor. Of the 26 professors, at least 7 (27%) were female. At least 24 (28%) were working at the institution from which they had received their training. A total of 6 individuals held endowed chairs. Only 2 PD had active NIH funding in 2012. The median H-index was 12 (range, 0-51) but the index dropped to 9 (range, 0-38) when those who served as both PD and chair were removed from the group. A total of 76 chairs were identified at the time of the study. The median age was 55, and 9 (12%) were MD/PhD. A total of 7 (9%) of the chairs were female, and rank was professor for all with the exception of 1 who was listed as “Head” and was an associate professor. Of the 76 chairs, at least 10 (13%) were working at the institution from which they received their training. There were a total of 21 individuals with endowed chairs. A total of 13 (17%) had NIH funding in 2012. The median H-index was 29 (range, 3-60). Conclusions: These data provide benchmarks for individuals and departments evaluating leadership positions in the field of academic radiation oncology. Such data are useful for evaluating leadership trends over time and comparing academic radiation oncology with other specialties.« less
Ju, Melody; Berman, Abigail T; Hwang, Wei-Ting; Lamarra, Denise; Baffic, Cordelia; Suneja, Gita; Vapiwala, Neha
2014-04-01
There is a lack of data for the structured development and evaluation of communication skills in radiation oncology residency training programs. Effective communication skills are increasingly emphasized by the Accreditation Council for Graduate Medical Education and are critical for a successful clinical practice. We present the design of a novel, pilot standardized patient (SP) program and the evaluation of communication skills among radiation oncology residents. Two case scenarios were developed to challenge residents in the delivery of "bad news" to patients: one scenario regarding treatment failure and the other regarding change in treatment plan. Eleven radiation oncology residents paired with 6 faculty participated in this pilot program. Each encounter was scored by the SPs, observing faculty, and residents themselves based on the Kalamazoo guidelines. Overall resident performance ratings were "good" to "excellent," with faculty assigning statistically significant higher scores and residents assigning lower scores. We found inconsistent inter rater agreement among faculty, residents, and SPs. SP feedback was also valuable in identifying areas of improvement, including more collaborative decision making and less use of medical jargon. The program was well received by residents and faculty and regarded as a valuable educational experience that could be used as an annual feedback tool. Poor inter rater agreement suggests a need for residents and faculty physicians to better calibrate their evaluations to true patient perceptions. High scores from faculty members substantiate the concern that resident evaluations are generally positive and nondiscriminating. Faculty should be encouraged to provide honest and critical feedback to hone residents' interpersonal skills. Copyright © 2014 Elsevier Inc. All rights reserved.
Arenas, Meritxell; Gomez, David; Sabater, Sebastià; Rovirosa, Angeles; Biete, Albert; Colomer, Jordi
2014-01-01
Background The concept of satellite radiotherapy originates in countries whose populations are largely dispersed in order to treat homogenously the population by a unique fixed team. Aim This report describes the creation and management of a satellite radiotherapy unit in Spain (RUTE-Radiotherapy Unit, Terres de l’Ebre). It is managed by the Radiation Oncology Department at Hospital Universitari Sant Joan de Reus. We report the benefit gained in the comfort of patients and the economic benefit gained by reducing the expense of transport for the health care system. Materials and methods RUTE is equipped with a linear accelerator. A team of 10 physicians, specialised in different oncology pathologies, travel to RUTE on a rotational basis from the main Radiation Oncology Department. Simulation and planning of treatment is managed at the Radiation Oncology Department in Reus. Patients from RUTE only have to visit the centre in Reus once throughout the treatment process. Results Since August 2008, 1500 patients have completed treatment in the satellite unit. The implementation of RUTE has greatly improved the comfort of patients and along with that, there have been important savings in transport costs to the regional health care system. Conclusions Despite the high technological requirements of our speciality, decentralising radiotherapy is feasible. We can guarantee the highest standards of treatment with no differences from attending the main centre. It implies a clear benefit for the comfort of the patients and an economic benefit by decreasing transport costs. PMID:25859402
Fifteen-minute music intervention reduces pre-radiotherapy anxiety in oncology patients.
Chen, Lee-Chen; Wang, Tze-Fang; Shih, Yi-Nuo; Wu, Le-Jung
2013-08-01
Oncology patients may respond to radiation treatment with anxiety expressed as stress, fear, depression, and frustration. This study aimed to investigate effects of music intervention on reducing pre-radiotherapy anxiety in oncology patients. Quasi-experimental study with purposeful sampling was conducted in the Department of Radiation Oncology, at Far Eastern Memorial Hospital, Taipei, Taiwan. Subjects were assigned into a music group (n = 100) receiving 15 min of music therapy prior to radiation and a control group (n = 100) receiving 15 min rest prior to radiation. Both groups were evaluated for pre- and post-test anxiety using the State-Trait Anxiety Inventory. Physiological indicators of anxiety were measured pre- and post-test. Baseline State/Trait scores and vital signs were comparable between groups (P > 0.05). Mean change in pre- and post-test State/Trait scores showed significant decreases from baseline to post-test in both groups (all P < 0.05). A statistically significant difference was observed between music therapy and control groups in mean change of State anxiety scores (mean decreases 7.19 and 1.04, respectively; P < 0.001) and Trait anxiety scores (mean decreases 2.77 and 1.13, respectively; P = 0.036). In vital signs, both groups had significant decreases in pre- and post-test heart rate and respiration rate (P < 0.05). A statistically significant difference in mean change of systolic pressure was found between music and control groups (-5.69 ± 0.41 mmHg vs. -0.67 ± 1.29 mmHg, respectively; P = 0.009). Music therapy decreased State anxiety levels, Trait anxiety levels and systolic blood pressure in oncology patients who received the intervention prior to radiotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abbasi, Khadijeh; Hazrati, Maryam; Mohamadi, Nasrin Pourali; Rajaeefard, Abdolreza
2013-11-01
Several studies have established that all nurses need continuing education, especially those who are working in oncology wards. In the current programs, there are just two general patterns for teaching: Teacher-centered and student-centered patterns. In this study, the effect of teacher-centered (lecture) and student-centered (module) teaching methods in relation to safety standards with cytotoxic drugs on the knowledge and practice of oncology nurses was compared. This research was a quasi-experimental study with two intervention groups (module and lecture) and a control group. In this study, 86 nurses in Shiraz, Fars province in 2011, who participated in the prescription of cytotoxic drugs to patients were selected and randomly divided into three groups. The module group used a self-directed module, the lecture group was taught by an experienced lecturer in the classroom and the control group did not receive any intervention. Data in relation to knowledge and practice of oncology nurses in the three groups were collected before and 8 weeks after the intervention by using a questionnaire and checklist. To analyze the data paired-samples t-test and one way ANOVA analysis were used. Knowledge and practice scores increased significantly from baseline in both intervention groups, but there was no significant difference between the scores of the two groups. No considerable changes were observed in the control group. Both module and lecture methods have similar effects on improving the knowledge and practice of nurses in oncology wards. Therefore, considering the advantages of student-centered educational methods, the work load of nurses and the sensitivity of their jobs, we suggest using module.
Fradley, Michael G.; Brown, Allen C.; Shields, Bernadette; Viganego, Federico; Damrongwatanasuk, Rongras; Patel, Aarti A.; Hartlage, Gregory; Roper, Natalee; Jaunese, Julie; Roy, Larry; Ismail-Khan, Roohi
2017-01-01
Cardio-oncology is a multidisciplinary field focusing on the management and prevention of cardiovascular complications in cancer patients and survivors. While the initial focus of this specialty was on heart failure associated with anthracycline use, novel anticancer agents are increasingly utilized and are associated with many other cardiotoxicities including hypertension, arrhythmias and vascular disease. Since its inception, the field has developed at a rapid pace with the establishment of programs at many major academic institutions and community practices. Given the complexities of this patient population, it is important for providers to possess knowledge of not only cardiovascular disease but also cancer subtypes and their specific therapeutics. Developing a cardio-oncology program at a stand-alone cancer center can present unique opportunities and challenges when compared to those affiliated with other institutions including resource allocation, cardiovascular testing availability and provider education. In this review, we present our experiences establishing the cardio-oncology program at Moffitt Cancer Center and provide guidance to those individuals interested in developing a program at a similar independent cancer institution. PMID:28781723
Access to Cancer Services for Rural Colorectal Cancer Patients
ERIC Educational Resources Information Center
Baldwin, Laura-Mae; Cai, Yong; Larson, Eric H.; Dobie, Sharon A.; Wright, George E.; Goodman, David C.; Matthews, Barbara; Hart, L. Gary
2008-01-01
Context: Cancer care requires specialty surgical and medical resources that are less likely to be found in rural areas. Purpose: To examine the travel patterns and distances of rural and urban colorectal cancer (CRC) patients to 3 types of specialty cancer care services--surgery, medical oncology consultation, and radiation oncology consultation.…
Pediatric Oncology Branch - training- medical student rotations | Center for Cancer Research
Medical Student Rotations Select 4th-year medical students may be approved for a 4-week elective rotation at the Pediatric Oncology Branch. This rotation emphasizes the important connection between research and patient care in pediatric oncology. The student is supervised directly by the Branch’s attending physician and clinical fellows. Students attend daily in-patient and
77 FR 512 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
..., Bethesda, MD 20892, (301) 435- 1198, [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology Study Section. Date: February 6-7, 2012. Time: 8 a.m...
Teshima, Teruki; Numasaki, Hodaka; Nishio, Masamichi; Ikeda, Hiroshi; Sekiguchi, Kenji; Kamikonya, Norihiko; Koizumi, Masahiko; Tago, Masao; Ando, Yutaka; Tsukamoto, Nobuhito; Terahara, Atsuro; Nakamura, Katsumasa; Murakami, Masao; Takahashi, Mitsuhiro; Nishimura, Tetsuo
2012-09-01
The ongoing structure of radiation oncology in Japan in terms of equipment, personnel, patient load and geographic distribution was evaluated in order to radiation identify and improve any deficiencies. A questionnaire-based national structure survey was conducted from March 2010 to January 2011 by the Japanese Society for Therapeutic Radiology and Oncology (JASTRO). These data were analyzed in terms of the institutional stratification of the Patterns of Care Study (PCS). The total numbers of new cancer patients and total of cancer patients (new and repeat) treated with radiation in 2009 were estimated at 201,000 and 240,000, respectively. The type and numbers of systems in actual use consisted of Linac (816), telecobalt (9), Gamma Knife (46), (60)Co remote afterloading system (RALS) (29) and (192)Ir RALS systems (130). The Linac systems used dual energy function for 586 (71.8%), 3DCRT for 663 (81.3%) and IMRT for 337 units (41.3%). There were 529 JASTRO-certified radiation oncologists (ROs), 939.4 full-time equivalent (FTE) ROs, 113.1 FTE medical physicists and 1836 FTE radiation therapists. The frequency of interstitial radiation therapy use for prostate and of intensity-modulated radiotherapy increased significantly. PCS stratification can clearly identify the maturity of structures based on their academic nature and caseload. Geographically, the more JASTRO-certified physicians there were in a given area, the more radiation therapy tended to be used for cancer patients. In conclusion, the Japanese structure has clearly improved during the past 19 years in terms of equipment and its use, although a shortage of manpower and variations in maturity disclosed by PCS stratification remained problematic in 2009.
30 Years of radiotherapy service in Southern Thailand: workload vs resources.
Phungrassami, Temsak; Funsian, Amporn; Sriplung, Hutcha
2013-01-01
To study the pattern of patient load, personnel and equipment resources from 30-years experience in Southern Thailand. This retrospective study collected secondary data from the Division of Therapeutic Radiology and Oncology and the Songklanagarind Hospital Tumor Registry database, Faculty of Medicine, Prince of Songkla University, during the period of 1982-2012. The number of new patients who had radiation treatment gradually increased from 121 in 1982 to 2,178 in 2011. Shortages of all kinds of personnel were demonstrated as compared to the recommendations, especially in radiotherapy technicians. In 2011, Southern Thailand, with two radiotherapy centers, had 0.44 megavoltage radiotherapy machines (cobalt or linear accelerator) per million of population. This number is suboptimal, but could be managed cost-effectively by prolonging machine operating times during personnel shortages. This study identified a discrepancy between workload and resources in one medical school radiotherapy center in.
Cost Analysis of a Surgical Consensus Guideline in Breast-Conserving Surgery.
Yu, Jennifer; Elmore, Leisha C; Cyr, Amy E; Aft, Rebecca L; Gillanders, William E; Margenthaler, Julie A
2017-08-01
The Society of Surgical Oncology and American Society of Radiation Oncology consensus statement was the first professional guideline in breast oncology to declare "no ink on tumor" as a negative margin in patients with stages I/II breast cancer undergoing breast-conservation therapy. We sought to analyze the financial impact of this guideline at our institution using a historic cohort. We identified women undergoing re-excision after breast-conserving surgery for invasive breast cancer from 2010 through 2013 using a prospectively maintained institutional database. Clinical and billing data were extracted from the medical record and from administrative resources using CPT codes. Descriptive statistics were used in data analysis. Of 254 women in the study population, 238 (93.7%) had stage I/II disease and 182 (71.7%) had invasive disease with ductal carcinoma in situ. A subcohort of 83 patients (32.7%) who underwent breast-conservation therapy for stage I/II disease without neoadjuvant chemotherapy had negative margins after the index procedure, per the Society of Surgical Oncology and American Society of Radiation Oncology guideline. The majority had invasive ductal carcinoma (n = 70 [84.3%]) and had invasive disease (n = 45 [54.2%]), and/or ductal carcinoma in situ (n = 49 [59.0%]) within 1 mm of the specimen margin. Seventy-nine patients underwent 1 re-excision and 4 patients underwent 2 re-excisions, accounting for 81 hours of operative time. Considering facility fees and primary surgeon billing alone, the overall estimated cost reduction would have been $195,919, or $2,360 per affected patient, under the guideline recommendations. Implementation of the Society of Surgical Oncology and American Society of Radiation Oncology consensus guideline holds great potential to optimize resource use. Application of the guideline to a retrospective cohort at our institution would have decreased the overall re-excision rate by 5.6% and reduced costs by nearly $200,000. Additional analysis of patient outcomes and margin assessment methods is needed to define the long-term impact on surgical practice. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, David L., E-mail: david.schwartz@utsw.edu; Harris, Jonathan; Yao, Min
2015-03-15
Purpose: To evaluate candidate fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging biomarkers for head-and-neck chemoradiotherapy outcomes in the cooperative group trial setting. Methods and Materials: Radiation Therapy Oncology Group (RTOG) protocol 0522 patients consenting to a secondary FDG-PET/CT substudy were serially imaged at baseline and 8 weeks after radiation. Maximum standardized uptake value (SUVmax), SUV peak (mean SUV within a 1-cm sphere centered on SUVmax), and metabolic tumor volume (MTV) using 40% of SUVmax as threshold were obtained from primary tumor and involved nodes. Results: Of 940 patients entered onto RTOG 0522, 74 were analyzable for this substudy. Neither high baselinemore » SUVmax nor SUVpeak from primary or nodal disease were associated with poor treatment outcomes. However, primary tumor MTV above the cohort median was associated with worse local-regional control (hazard ratio 4.01, 95% confidence interval 1.28-12.52, P=.02) and progression-free survival (hazard ratio 2.34, 95% confidence interval 1.02-5.37, P=.05). Although MTV and T stage seemed to correlate (mean MTV 6.4, 13.2, and 26.8 for T2, T3, and T4 tumors, respectively), MTV remained a strong independent prognostic factor for progression-free survival in bivariate analysis that included T stage. Primary MTV remained prognostic in p16-associated oropharyngeal cancer cases, although sample size was limited. Conclusion: High baseline primary tumor MTV was associated with worse treatment outcomes in this limited patient subset of RTOG 0522. Additional confirmatory work will be required to validate primary tumor MTV as a prognostic imaging biomarker for patient stratification in future trials.« less
Nishio, Teiji; Shirato, Hiroki; Ishikawa, Masayori; Miyabe, Yuki; Kito, Satoshi; Narita, Yuichirou; Onimaru, Rikiya; Ishikura, Satoshi; Ito, Yoshinori; Hiraoka, Masahiro
2014-05-01
A domestic multicenter phase I study of stereotactic body radiotherapy (SBRT) for T2N0M0 non-small cell lung cancer in inoperable patients or elderly patients who refused surgery was initiated as the Japan Clinical Oncology Group trial (JCOG0702) in Japan. Prior to the clinical study, the accuracy of dose calculation in radiation treatment-planning systems was surveyed in participating institutions, and differences in the irradiating dose between the institutions were investigated. We developed a water tank-type lung phantom appropriate for verification of the exposure dose in lung SBRT. Using this water tank-type lung phantom, the dose calculated in the radiation treatment-planning system and the measured dose using a free air ionization chamber and dosimetric film were compared in a visiting survey of the seven institutions participating in the clinical study. In all participating institutions, differences between the calculated and the measured dose in the irradiation plan were as follows: the accuracy of the absolute dose in the center of the simulated tumor measured using a free air ionization chamber was within 2%, the mean gamma value was ≤ 0.47 on gamma analysis following the local dose criteria, and the pass rate was >87% for 3%/3 mm from measurement of dose distribution with dosimetric film. These findings confirmed the accuracy of delivery doses in the institutions participating in the clinical study, so that a study with integration of the institutions could be initiated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konski, Andre, E-mail: akonski@med.wayne.ed; Bhargavan, Mythreyi; Owen, Jean
Purpose: The specific aim of this analysis was to evaluate the feasibility of performing a cost-effectiveness analysis using Medicare data from patients treated on a randomized Phase III clinical trial. Methods and Materials: Cost data included Medicare Part A and Part B costs from all providers-inpatient, outpatient, skilled nursing facility, home health, hospice, and physicians-and were obtained from the Centers for Medicare and Medicaid Services for patients eligible for Medicare, treated on Radiation Therapy Oncology Group (RTOG) 9111 between 1992 and 1996. The 47-month expected discounted (annual discount rate of 3%) cost for each arm of the trial was calculatedmore » in 1996 dollars, with Kaplan-Meier sampling average estimates of survival probabilities for each month and mean monthly costs. Overall and disease-free survival was also discounted 3%/year. The analysis was performed from a payer's perspective. Incremental cost-effectiveness ratios were calculated comparing the chemotherapy arms to the radiation alone arm. Results: Of the 547 patients entered, Medicare cost data and clinical outcomes were available for 66 patients. Reasons for exclusion included no RTOG follow-up, Medicare HMO enrollment, no Medicare claims since trial entry, and trial entry after 1996. Differences existed between groups in tumor characteristics, toxicity, and survival, all which could affect resource utilization. Conclusions: Although we were able to test the methodology of economic analysis alongside a clinical trial using Medicare data, the results may be difficult to translate to the entire trial population because of non-random missing data. Methods to improve Medicare data capture and matching to clinical trial samples are required.« less
Rizzo, Monica; Bumpers, Harvey; Okoli, Joel; Senior-Crosby, Diana; O'Regan, Ruth; Zelnak, Amelia; Pan, Lin; Mosunjac, Marina; Patterson, Sharla Gayle; Gabram, Sheryl G A
2011-01-01
In April 2007, the National Quality Forum (NQF) endorsed the first nationally recognized hospital-based performance measures for stage I, II, and III breast cancer. The purpose of this study was to document compliance with the 3 NQF breast quality indicators during 2 time intervals in a metropolitan public hospital. Tumor registry and medical records were used to identify patient demographics and treatments before (2005-2006) and after (2008) implementations in 2007 as a result of the NQF audit. Program changes included: hiring a dedicated medical oncology nurse practitioner, requiring the radiation oncology case manager to attend weekly multidisciplinary conferences, educating Patient Navigators of the importance of multimodal care, and providing support groups for patients addressing importance of completion of all treatment options. A total of 213 female patients were diagnosed with and treated for stage I, II, or III breast cancer in 2005-2006 and 2008. Of these, 189 (89%) were African American (AA) women. Also, 70 patients of 86 (81.3%) received radiation therapy, 60 of 77 (77.9%) received or were considered for adjuvant chemotherapy, and 124 of 144 (86.1%) for hormonal therapy according to NQF indicators. After 2007, patients receiving radiation therapy increased from 75.8 to 95.8%. Patients receiving or considered for adjuvant chemotherapy or hormonal therapy increased from 73.7 to 93.7% and from 84.1 to 90.0%, respectively. NQF breast cancer indicators provided a mechanism to improve compliance of multimodal treatment in our center. Raising awareness of these indicators in the multidisciplinary conference, hiring dedicated personnel, and educating patients has led to major improvements in breast cancer care.
Neuman, Heather B; Schumacher, Jessica R; Schneider, David F; Winslow, Emily R; Busch, Rebecca A; Tucholka, Jennifer L; Smith, Maureen A; Greenberg, Caprice C
2017-03-01
The current guidelines do not delineate the types of providers that should participate in early breast cancer follow-up care (within 3 years after completion of treatment). This study aimed to describe the types of providers participating in early follow-up care of older breast cancer survivors and to identify factors associated with receipt of follow-up care from different types of providers. Stages 1-3 breast cancer survivors treated from 2000 to 2007 were identified in the Surveillance, Epidemiology and End results Medicare database (n = 44,306). Oncologist (including medical, radiation, and surgical) follow-up and primary care visits were defined using Medicare specialty provider codes and linked American Medical Association (AMA) Masterfile. The types of providers involved in follow-up care were summarized. Stepped regression models identified factors associated with receipt of medical oncology follow-up care and factors associated with receipt of medical oncology care alone versus combination oncology follow-up care. Oncology follow-up care was provided for 80 % of the patients: 80 % with a medical oncologist, 46 % with a surgeon, and 39 % with a radiation oncologist after radiation treatment. The patients with larger tumor size, positive axillary nodes, estrogen receptor (ER)-positive status, and chemotherapy treatment were more likely to have medical oncology follow-up care than older patients with higher Charlson comorbidity scores who were not receiving axillary care. The only factor associated with increased likelihood of follow-up care with a combination of oncology providers was regular primary care visits (>2 visits/year). Substantial variation exists in the types of providers that participate in breast cancer follow-up care. Improved guidance for the types of providers involved and delineation of providers' responsibilities during follow-up care could lead to improved efficiency and quality of care.
Chowdhury, Rezwan; Boyce, Andrew; Halperin, Ross
2015-01-01
Background: Lung cancer is associated with rapid disease progression, which can significantly progress over a duration of four to eight weeks. This study examines the time interval lung cancer patients from the interior of British Columbia (BC) experience while undergoing diagnostic evaluation, biopsy, staging, and preparation for treatment. Methods: A chart review of lung cancer patients (n=231) referred to the BC Cancer Agency Centre for the Southern Interior between January 1, 2010 and December 31, 2011 was performed. Time zero was defined as the date of the first abnormal chest imaging. Time intervals, expressed as median averages, to specialist consult, biopsy, oncologic referral, initial oncology consultation, and commencement of oncologic treatment were obtained. Results: The median time interval from first abnormal chest imaging to a specialist consultation was 18 days (interquartile range, IQR, 7-36). An additional nine days elapsed prior to biopsy in the form of bronchoscopy, CT-guided biopsy, or sputum cytology (median; IQR, 3-21); if lobectomy was required, 18 days elapsed (median; IQR, 9-28). Eight days were required for pathologic diagnosis and subsequent referral to the cancer centre (median; IQR, 3-16.5). Once referral was received, 10 days elapsed prior to consultation with either a medical or radiation oncologist (median, IQR 5-18). Finally, eight days was required for initiation of radiation and/or chemotherapy (median; IQR, 1-15). The median wait time from detection of lung cancer on imaging to oncologic treatment in the form of radiation and/or chemotherapy was 65.5 days (IQR, 41.5-104.3). Interpretation: Patients in the BC Southern Interior experience considerable delays in accessing lung cancer care. During this time, the disease has the potential to significantly progress and it is possible that a subset of patients may lose their opportunity for curative intent treatment. PMID:26543688
Machine Learning in Radiation Oncology: Opportunities, Requirements, and Needs
Feng, Mary; Valdes, Gilmer; Dixit, Nayha; Solberg, Timothy D.
2018-01-01
Machine learning (ML) has the potential to revolutionize the field of radiation oncology, but there is much work to be done. In this article, we approach the radiotherapy process from a workflow perspective, identifying specific areas where a data-centric approach using ML could improve the quality and efficiency of patient care. We highlight areas where ML has already been used, and identify areas where we should invest additional resources. We believe that this article can serve as a guide for both clinicians and researchers to start discussing issues that must be addressed in a timely manner. PMID:29719815
Vali, Faisal; Hong, Robert
2007-10-11
With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs.
Evidence based radiation oncology with existing technology
Isa, Nicolas
2013-01-01
Aim To assess the real contribution of modern radiation therapy (RT) technology in the more common tumoral types in Central America, Caribbean and South America. Background RT is an essential tool in the management of cancer. RT can be either palliative or of curative intent. In general, for palliative radiotherapy, major technologies are not needed. Materials and methods We analyzed the contribution of RT technology based on published evidence for breast, lung, gastric, gallbladder, colorectal, prostate and cervix cancer in terms of disease control, survival or toxicity with especial focus on Latin America. Results Findings indicate that three dimensional conformal radiation therapy (3D RT) is the gold standard in most common type of cancer in the studied regions. Prostate cancer is probably the pathology that has more benefits when using new RT technology such as intensity modulated radiation therapy (IMRT) versus 3DRT in terms of toxicity and biochemical progression-free survival. Conclusions In light of the changes in technology, the ever-increasing access of developing countries to such technology, and its current coverage in Latin America, any efforts in this area should be aimed at improving the quality of the radiotherapy departments and centers that are already in place. PMID:25061519
Step-by-Step: A Model for Practice-Based Learning
ERIC Educational Resources Information Center
Kane, Gabrielle M.
2007-01-01
Introduction: Innovative technology has led to high-precision radiation therapy that has dramatically altered the practice of radiation oncology. This qualitative study explored the implementation of this innovation into practice from the perspective of the practitioners in a large academic radiation medicine program and aimed to improve…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... Classification of Diseases IMRT Intensity Modulated Radiation Therapy IOM Internet-only Manual IPCI Indirect... RIA Regulatory impact analysis RVU Relative value unit SBRT Stereotactic body radiation therapy SGR... adjust the payment rates for two common radiation oncology treatment delivery methods, intensity...
Clinical Pathways: Recommendations for Putting Patients at the Center of Value-Based Care.
Abrahams, Edward; Balch, Alan; Goldsmith, Patricia; Kean, Marcia; Miller, Amy M; Omenn, Gilbert; Sonet, Ellen; Sprandio, John; Tyne, Courtney; Westrich, Kimberly
2017-08-15
Two major trends that have been affecting the provision of oncology care in the United States are a shift from volume-based to value-based care and a push toward patient-centered healthcare. However, these two trends are not always completely aligned with each other. Value-based payment models, including clinical pathways, are one strategy being implemented by oncology stakeholders to help encourage the uptake of value-based oncology care. If structured with the patient in mind, they can improve quality of care for patients with cancer, decrease inappropriate care while enabling appropriate personalization of care, and constrain rising prices by demanding a stronger link between cost and value. If not structured appropriately, they can limit patient choice, impede access to innovative treatments, and encourage one-size-fits-all oncology care. Clin Cancer Res; 23(16); 4545-9. ©2017 AACR . ©2017 American Association for Cancer Research.
Hansra, D M; McIntyre, K; Ramdial, J; Sacks, S; Patrick, C S; Cutler, J; McIntyre, B; Feister, K; Miller, M; Taylor, A K; Farooq, F; de Mayolo, J Antunez; Ahn, E
2018-01-01
Evidence regarding opinions on integrative modalities by patients and physicians is lacking. Methods . A survey study was conducted assessing how integrative modalities were valued among hematology/oncology patients and hematologists and oncologists at a major tertiary medical center. Results. 1008 patients and 55 physicians were surveyed. With the exception of support groups, patients valued nutrition services, exercise therapy, spiritual/religious counseling, supplement/herbal advice, support groups, music therapy, and other complimentary medicine services significantly more than physicians ( P ≤ 0.05). Conclusion . With the exception of support groups, patients value integrative modalities more than physicians. Perhaps with increasing education, awareness, and acceptance by providers and traditional institutions, integrative modalities could be equally valued between patients and providers. It is possible that increased availability and utilization of integrative oncology modalities at tertiary hospital sites could improve patient satisfaction, quality of life, and other clinical endpoints.
Kindler, Hedy L; Ismaila, Nofisat; Armato, Samuel G; Bueno, Raphael; Hesdorffer, Mary; Jahan, Thierry; Jones, Clyde Michael; Miettinen, Markku; Pass, Harvey; Rimner, Andreas; Rusch, Valerie; Sterman, Daniel; Thomas, Anish; Hassan, Raffit
2018-05-01
Purpose To provide evidence-based recommendations to practicing physicians and others on the management of malignant pleural mesothelioma. Methods ASCO convened an Expert Panel of medical oncology, thoracic surgery, radiation oncology, pulmonary, pathology, imaging, and advocacy experts to conduct a literature search, which included systematic reviews, meta-analyses, randomized controlled trials, and prospective and retrospective comparative observational studies published from 1990 through 2017. Outcomes of interest included survival, disease-free or recurrence-free survival, and quality of life. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. Results The literature search identified 222 relevant studies to inform the evidence base for this guideline. Recommendations Evidence-based recommendations were developed for diagnosis, staging, chemotherapy, surgical cytoreduction, radiation therapy, and multimodality therapy in patients with malignant pleural mesothelioma. Additional information is available at www.asco.org/thoracic-cancer-guidelines and www.asco.org/guidelineswiki .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solberg, T; Robar, J; Gevaert, T
Purpose: The ASTRO document “Safety is no accident: A FRAMEWORK FOR QUALITY RADIATION ONCOLOGY AND CARE” recommends external reviews of specialized modalities. The purpose of this presentation is to describe the implementation of such a program for Stereotactic Radiosurgery (SRS) and Stereotactic Body radiation Therapy (SBRT). Methods: The margin of error for SRS and SBRT delivery is significantly smaller than that of conventional radiotherapy and therefore requires special attention and diligence. The Novalis Certified program was created to fill an unmet need for specialized SRS / SBRT credentialing. A standards document was drafted by a panel of experts from severalmore » disciplines, including medical physics, radiation oncology and neurosurgery. The document, based on national and international standards, covers requirements in program structure, personnel, training, clinical application, technology, quality management, and patient and equipment QA. The credentialing process was modeled after existing certification programs and includes an institution-generated self-study, extensive document review and an onsite audit. Reviewers generate a descriptive report, which is reviewed by a multidisciplinary expert panel. Outcomes of the review may include mandatory requirements and optional recommendations. Results: 15 institutions have received Novalis Certification, including 3 in the US, 7 in Europe, 4 in Australia and 1 in Asia. 87 other centers are at various stages of the process. Nine reviews have resulted in mandatory requirements, however all of these were addressed within three months of the audit report. All reviews have produced specific recommendations ranging from programmatic to technical in nature. Institutions felt that the credentialing process addressed a critical need and was highly valuable to the institution. Conclusion: Novalis Certification is a unique peer review program assessing safety and quality in SRS and SBRT, while recognizing international practice standards. The approach is capable of highlighting outstanding requirements and providing recommendations to enhance both new and established programs. Timothy Solberg is co-owner of Global Radiosurgery services, LLC.« less
TU-C-9A-01: IROC Organization and Clinical Trial Credentialing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Followill, D; Molineu, A; Xiao, Y
2014-06-15
As a response to recommendations from a report from the Institute of Medicine, NCI is reorganizing it clinical trial groups into a National Clinical Trial Network (NCTN) that consists of four adult groups (Alliance, ECOGACRIN, NRG, and SWOG) and one children’s group (COG). NRG will house CIRO, a center to promote innovative radiation therapy research and intergroup collaboration in radiation. The quality assurance groups that support clinical trials have also been restructured. ITC, OSU Imaging corelab, Philadelphia Imaging core-lab, QARC, RPC, and RTOGQA have joined together to create the Imaging and Radiation Oncology Core (IROC) Group. IROC’s mission is tomore » provide integrated radiation oncology and diagnostic imaging quality control programs in support of the NCI’s NCTN thereby assuring high quality data for clinical trials designed to improve the clinical outcomes for cancer patients worldwide. This will be accomplished through five core services: site qualification, trial design support, credentialing, data management, case review.These changes are important for physicist participating in NCI clinical trials to understand. We will describe in detail the IROC’s activities and five core services so that as a user, the medical physicist can learn how to efficiently utilize this group. We will describe common pitfalls encountered in credentialing for current protocols and present methods to avoid them. These may include the which benchmarks are required for NSABP B-51/RTOG 1304 and how to plan them as well as tips for phantom planning. We will explain how to submit patient and phantom cases in the TRIAD system used by IROC. Learning Objectives: To understand the basic organization of IROC, its mission and five core services To learn how to use TRIAD for patient and phantom data submission To learn how to avoid common pitfalls in credentialing for current trials.« less
Gabriel, Peter E; Woodhouse, Kristina D; Lin, Alexander; Finlay, Jarod C; Young, Richard B; Volz, Edna; Hahn, Stephen M; Metz, James M; Maity, Amit
Assuring quality in cancer care through peer review has become increasingly important in radiation oncology. In 2012, our department implemented an automated electronic system for managing radiation treatment plan peer review. The purpose of this study was to compare the overall impact of this electronic system to our previous manual, paper-based system. In an effort to improve management, an automated electronic system for case finding and documentation of review was developed and implemented. The rates of missed initial reviews, late reviews, and missed re-reviews were compared for the pre- versus postelectronic system cohorts using Pearson χ 2 test and relative risk. Major and minor changes or recommendations were documented and shared with the assigned clinical provider. The overall rate of missed reviews was 7.6% (38/500) before system implementation versus 0.4% (28/6985) under the electronic system (P < .001). In terms of relative risk, courses were 19.0 times (95% confidence interval, 11.8-30.7) more likely to be missed for initial review before the automated system. Missed re-reviews occurred in 23.1% (3/13) of courses in the preelectronic system cohort and 6.6% (10/152) of courses in the postelectronic system cohort (P = .034). Late reviews were more frequent during high travel or major holiday periods. Major changes were recommended in 2.2% and 2.8% in the pre- versus postelectronic systems, respectively. Minor changes were recommended in 5.3% of all postelectronic cases. The implementation of an automated electronic system for managing peer review in a large, complex department was effective in significantly reducing the number of missed reviews and missed re-reviews when compared to our previous manual system. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi
2012-01-01
Purpose: To evaluate the actual work environment of radiation oncologists (ROs) in Japan in terms of working pattern, patient load, and quality of cancer care based on the relative time spent on patient care. Methods and Materials: In 2008, the Japanese Society of Therapeutic Radiology and Oncology produced a questionnaire for a national structure survey of radiation oncology in 2007. Data for full-time ROs were crosschecked with data for part-time ROs by using their identification data. Data of 954 ROs were analyzed. The relative practice index for patients was calculated as the relative value of care time per patient onmore » the basis of Japanese Blue Book guidelines (200 patients per RO). Results: The working patterns of RO varied widely among facility categories. ROs working mainly at university hospitals treated 189.2 patients per year on average, with those working in university hospitals and their affiliated facilities treating 249.1 and those working in university hospitals only treating 144.0 patients per year on average. The corresponding data were 256.6 for cancer centers and 176.6 for other facilities. Geographically, the mean annual number of patients per RO per quarter was significantly associated with population size, varying from 143.1 to 203.4 (p < 0.0001). There were also significant differences in the average practice index for patients by ROs working mainly in university hospitals between those in main and affiliated facilities (1.07 vs 0.71: p < 0.0001). Conclusions: ROs working in university hospitals and their affiliated facilities treated more patients than the other ROs. In terms of patient care time only, the quality of cancer care in affiliated facilities might be worse than that in university hospitals. Under the current national medical system, working patterns of ROs of academic facilities in Japan appear to be problematic for fostering true specialization of radiation oncologists.« less
Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi; Ikeda, Hiroshi; Sekiguchi, Kenji; Kamikonya, Norihiko; Koizumi, Masahiko; Tago, Masao; Ando, Yutaka; Tsukamoto, Nobuhiro; Terahara, Atsuro; Nakamura, Katsumasa; Mitsumori, Michihide; Nishimura, Tetsuo; Hareyama, Masato; Teshima, Teruki
2012-01-01
To evaluate the actual work environment of radiation oncologists (ROs) in Japan in terms of working pattern, patient load, and quality of cancer care based on the relative time spent on patient care. In 2008, the Japanese Society of Therapeutic Radiology and Oncology produced a questionnaire for a national structure survey of radiation oncology in 2007. Data for full-time ROs were crosschecked with data for part-time ROs by using their identification data. Data of 954 ROs were analyzed. The relative practice index for patients was calculated as the relative value of care time per patient on the basis of Japanese Blue Book guidelines (200 patients per RO). The working patterns of RO varied widely among facility categories. ROs working mainly at university hospitals treated 189.2 patients per year on average, with those working in university hospitals and their affiliated facilities treating 249.1 and those working in university hospitals only treating 144.0 patients per year on average. The corresponding data were 256.6 for cancer centers and 176.6 for other facilities. Geographically, the mean annual number of patients per RO per quarter was significantly associated with population size, varying from 143.1 to 203.4 (p < 0.0001). There were also significant differences in the average practice index for patients by ROs working mainly in university hospitals between those in main and affiliated facilities (1.07 vs 0.71: p < 0.0001). ROs working in university hospitals and their affiliated facilities treated more patients than the other ROs. In terms of patient care time only, the quality of cancer care in affiliated facilities might be worse than that in university hospitals. Under the current national medical system, working patterns of ROs of academic facilities in Japan appear to be problematic for fostering true specialization of radiation oncologists. Copyright © 2012 Elsevier Inc. All rights reserved.
Reft, Chester; Alecu, Rodica; Das, Indra J; Gerbi, Bruce J; Keall, Paul; Lief, Eugene; Mijnheer, Ben J; Papanikolaou, Nikos; Sibata, Claudio; Van Dyk, Jake
2003-06-01
This document is the report of a task group of the Radiation Therapy Committee of the AAPM and has been prepared primarily to advise hospital physicists involved in external beam treatment of patients with pelvic malignancies who have high atomic number (Z) hip prostheses. The purpose of the report is to make the radiation oncology community aware of the problems arising from the presence of these devices in the radiation beam, to quantify the dose perturbations they cause, and, finally, to provide recommendations for treatment planning and delivery. Some of the data and recommendations are also applicable to patients having implanted high-Z prosthetic devices such as pins, humeral head replacements. The scientific understanding and methodology of clinical dosimetry for these situations is still incomplete. This report is intended to reflect the current state of scientific understanding and technical methodology in clinical dosimetry for radiation oncology patients with high-Z hip prostheses.
Chemotherapy and treatment scheduling: the Johns Hopkins Oncology Center Outpatient Department.
Majidi, F.; Enterline, J. P.; Ashley, B.; Fowler, M. E.; Ogorzalek, L. L.; Gaudette, R.; Stuart, G. J.; Fulton, M.; Ettinger, D. S.
1993-01-01
The Chemotherapy and Treatment Scheduling System provides integrated appointment and facility scheduling for very complex procedures. It is fully integrated with other scheduling systems at The Johns Hopkins Oncology Center and is supported by the Oncology Clinical Information System (OCIS). It provides a combined visual and textual environment for the scheduling of events that have multiple dimensions and dependencies on other scheduled events. It is also fully integrated with other clinical decision support and ancillary systems within OCIS. The system has resulted in better patient flow through the ambulatory care areas of the Center. Implementing the system required changes in behavior among physicians, staff, and patients. This system provides a working example of building a sophisticated rule-based scheduling system using a relatively simple paradigm. It also is an example of what can be achieved when there is total integration between the operational and clinical components of patient care automation. PMID:8130453
Hypofractionated conformal irradiation of patients with malignant glioma.
Aboziada, Mohamed A; Abo-Kresha, Ahmed E
2012-09-01
The aim of the study is to evaluate the effect of a conformal irradiation in short fractionation scheme of 49.5Gy in 15 fractions in an overall time of 3 weeks, in terms of overall survival (OAS) and progression free survival (PFS) rates in brain glioma patients. A prospective study was conducted on 54 brain glioma patients and was carried out in the Radiation Oncology Department, South Egypt Cancer Institute, Assiut University during the period from April 2006 till June 2009. Patients were treated by hypofractionated conformal irradiation (49.5 Gy/15 fractions/3 weeks). The median follow up was 23 months (range: 9-39 months). Two-year OAS and PFS rates were 68% and 60%, respectively. In univariate analysis, age >50 years, poor performance status [Karnofasky score of ≥40-≤70%], poor neuroperformance status of score III, high-grade tumor [glioblastoma multiforme], and biopsy were all associated with statistically significant reduction in OAS and PFS rates. Multivariate analysis, showed that age >50 years and glioblastoma pathology were the only independent prognostic factors that were associated with poor OAS (p=0.003 and p=0.004, respectively), and PFS (p=0.027 and p=0.011, respectively). Hypofractionated conformal radiotherapy was as effective as the conventional radiotherapy, with time sparing for patients, and for radiation oncology centers. Hypofractionated radiotherapy may be considered the radiotherapy regimen of choice in clinical practice for patients with gliomas. Copyright © 2012. Published by Elsevier B.V.
Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada.
Battista, Jerry J; Clark, Brenda G; Patterson, Michael S; Beaulieu, Luc; Sharpe, Michael B; Schreiner, L John; MacPherson, Miller S; Van Dyk, Jacob
2012-01-05
The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center-specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per-case staffing ratios were also determined for larger-scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center-specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full-time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, M.
The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less
Stress and Burnout Among Residency Program Directors in United States Radiation Oncology Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, Sonya; Kusano, Aaron S.; Carter, Justin Nathaniel
Purpose: To evaluate stressors among radiation oncology residency program directors (PDs) and determine the prevalence and indicators of burnout. Methods and Materials: An anonymous, online, cross-sectional survey was offered to PDs of US radiation oncology programs in the fall of 2014. Survey content examined individual and program demographics, perceptions surrounding the role of PD, and commonly encountered stressors. Burnout was assessed using the validated Maslach Burnout Inventory-Human Services Survey. Results: In total, 47 of 88 PDs (53%) responded to the survey. Although 78% of respondents reported feeling “satisfied” or “highly satisfied” with their current role, 85% planned to remain as PDmore » for <5 years. The most commonly cited stressors were satisfying Accreditation Council for Graduate Medical Education/Residency Review Committee requirements (47%), administrative duties (30%) and resident morale (28%). Three-quarters of respondents were satisfied that they became PDs. Overall, 11% of respondents met criteria for low burnout, 83% for moderate burnout, and 6% for high burnout. Not having served as a PD at a prior institution correlated with high depersonalization (OR 6.75, P=.04) and overall burnout (odds ratio [OR], 15.6; P=.04). Having more years on faculty prior to becoming PD correlated with less emotional exhaustion (OR, 0.44, P=.05) and depersonalization (OR, 0.20, P=.04). Finally, having dedicated time for PD duties correlated with less emotional exhaustion (OR, 0.27, P=.04). Conclusions: Moderate levels of burnout are common in U.S. radiation oncology PDs with regulatory stressors being common. Despite this, many PDs are fulfilled with their role. Longitudinal studies assessing dynamic external factors and their influence on PD burnout would be beneficial.« less
Pugh, Stephanie L.; Wyatt, Gwen; Wong, Raimond K. W.; Sagar, Stephen M.; Yueh, Bevan; Singh, Anurag K.; Yao, Min; Nguyen-Tan, Phuc Felix; Yom, Sue S.; Cardinale, Francis S.; Sultanem, Khalil; Hodson, D. Ian; Krempl, Greg A.; Chavez, Ariel; Yeh, Alexander M.; Bruner, Deborah W.
2016-01-01
Context The 15-item University of Washington Quality of Life questionnaire – Radiation Therapy Oncology Group (RTOG) modification (UW-QOL-RTOG modification) has been used in several trials of head and neck cancer conducted by NRG Oncology such as RTOG 9709, RTOG 9901, RTOG 0244, and RTOG 0537. Objectives This study is an exploratory factor analysis (EFA) to establish validity and reliability of the instrument subscales. Methods EFA on the UW-QOL - RTOG modification was conducted using baseline data from NRG Oncology's RTOG 0537, a trial of acupuncture-like transcutaneous electrical nerve stimulation in treating radiation-induced xerostomia. Cronbach's α coefficient was calculated to measure reliability; correlation with the University of Michigan Xerostomia Related Quality of Life Scale (XeQOLS) was used to evaluate concurrent validity; and correlations between consecutive time points were used to assess test-retest reliability. Results The 15-item EFA of the modified tool resulted in 11 items split into 4 factors: mucus, eating, pain, and activities. Cronbach's α ranged from 0.71 to 0.93 for the factors and total score, consisting of all 11 items. There were strong correlations (ρ≥0.60) between consecutive time points and between total score and the XeQOLS total score (ρ>0.65). Conclusion The UW-QOL-RTOG modification is a valid tool that can be used to assess symptom burden of head and neck cancer patients receiving radiation therapy or those who have recently completed radiation. The modified tool has acceptable reliability, concurrent validity, and test-retest reliability in this patient population, as well as the advantage of having being shortened from 15 to 11 items. PMID:27899312
Medical physics aspects of cancer care in the Asia Pacific region
Kron, T; Cheung, KY; Dai, J; Ravindran, P; Soejoko, D; Inamura, K; Song, JY; Bold, L; Srivastava, R; Rodriguez, L; Wong, TJ; Kumara, A; Lee, CC; Krisanachinda, A; Nguyen, XC; Ng, KH
2008-01-01
Medical physics plays an essential role in modern medicine. This is particularly evident in cancer care where medical physicists are involved in radiotherapy treatment planning and quality assurance as well as in imaging and radiation protection. Due to the large variety of tasks and interests, medical physics is often subdivided into specialties such as radiology, nuclear medicine and radiation oncology medical physics. However, even within their specialty, the role of radiation oncology medical physicists (ROMPs) is diverse and varies between different societies. Therefore, a questionnaire was sent to leading medical physicists in most countries/areas in the Asia/Pacific region to determine the education, role and status of medical physicists. Answers were received from 17 countries/areas representing nearly 2800 radiation oncology medical physicists. There was general agreement that medical physicists should have both academic (typically at MSc level) and clinical (typically at least 2 years) training. ROMPs spent most of their time working in radiotherapy treatment planning (average 17 hours per week); however radiation protection and engineering tasks were also common. Typically, only physicists in large centres are involved in research and teaching. Most respondents thought that the workload of physicists was high, with more than 500 patients per year per physicist, less than one ROMP per two oncologists being the norm, and on average, one megavoltage treatment unit per medical physicist. There was also a clear indication of increased complexity of technology in the region with many countries/areas reporting to have installed helical tomotherapy, IMRT (Intensity Modulated Radiation Therapy), IGRT (Image Guided Radiation Therapy), Gamma-knife and Cyber-knife units. This and the continued workload from brachytherapy will require growing expertise and numbers in the medical physics workforce. Addressing these needs will be an important challenge for the future. PMID:21611001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Emma B.; Thomas, Charles R., E-mail: thomasch@ohsu.edu; Kusano, Aaron S.
Purpose: The aim of this study was to examine the experiences of radiation oncology applicants and to evaluate the prevalence of behaviors that may be in conflict with established ethical standards. Methods and Materials: An anonymous survey was sent to all 2013 applicants to a single domestic radiation oncology residency program through the National Resident Matching Program (NRMP). Questions included demographics, survey of observed behaviors, and opinions regarding the interview and matching process. Descriptive statistics were presented. Characteristics and experiences of respondents who matched were compared with those who did not match. Results: Questionnaires were returned by 87 of 171more » applicants for a 51% response rate. Eighty-two questionnaires were complete and included for analysis. Seventy-eight respondents (95.1%) reported being asked at least 1 question in conflict with the NRMP code of conduct. When asked where else they were interviewing, 64% stated that this query made them uncomfortable. Forty-five respondents (54.9%) reported unsolicited post-interview contact by programs, and 31 (37.8%) felt pressured to give assurances. Fifteen respondents (18.3%) reported being told their rank position or that they were “ranked to match” prior to Match day, with 27% of those individuals indicating this information influenced how they ranked programs. Half of respondents felt applicants often made dishonest or misleading assurances, one-third reported that they believed their desired match outcome could be improved by deliberately misleading programs, and more than two-thirds felt their rank position could be improved by having faculty from their home institutions directly contact programs on their behalf. Conclusions: Radiation oncology applicants report a high prevalence of behaviors in conflict with written NRMP policies. Post-interview communication should be discouraged in order to enhance fairness and support the professional development of future radiation oncologists.« less
ASTRO's core physics curriculum for radiation oncology residents.
Klein, Eric E; Balter, James M; Chaney, Edward L; Gerbi, Bruce J; Hughes, Lesley
2004-11-01
In 2002, the Radiation Physics Committee of the American Society of Therapeutic Radiology and Oncology (ASTRO) appointed an Ad-hoc Committee on Physics Teaching to Medical Residents. The main initiative of the committee was to develop a core curriculum for physics education. Prior publications that have analyzed physics teaching have pointed to wide discrepancies among teaching programs. The committee was composed of physicists or physicians from various residency program based institutions. Simultaneously, members had associations with the American Association of Physicists in Medicine (AAPM), ASTRO, Association of Residents in Radiation Oncology (ARRO), American Board of Radiology (ABR), and the American College of Radiology (ACR). The latter two organizations' representatives were on the physics examination committees, as one of the main agendas was to provide a feedback loop between the examining organizations and ASTRO. The document resulted in a recommended 54-h course. Some of the subjects were based on American College of Graduate Medical Education (ACGME) requirements (particles, hyperthermia), whereas the majority of the subjects along with the appropriated hours per subject were devised and agreed upon by the committee. For each subject there are learning objectives and for each hour there is a detailed outline of material to be covered. Some of the required subjects/h are being taught in most institutions (i.e., Radiation Measurement and Calibration for 4 h), whereas some may be new subjects (4 h of Imaging for Radiation Oncology). The curriculum was completed and approved by the ASTRO Board in late 2003 and is slated for dissemination to the community in 2004. It is our hope that teaching physicists will adopt the recommended curriculum for their classes, and simultaneously that the ABR for its written physics examination and the ACR for its training examination will use the recommended curriculum as the basis for subject matter and depth of understanding. To ensure that the subject matter and emphasis remain current and relevant, the curriculum will be updated every 2 years.
Development of a residency program in radiation oncology physics: an inverse planning approach
Dunscombe, Peter B.
2016-01-01
Over the last two decades, there has been a concerted effort in North America to organize medical physicists’ clinical training programs along more structured and formal lines. This effort has been prompted by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) which has now accredited about 90 residency programs. Initially the accreditation focused on standardized and higher quality clinical physics training; the development of rounded professionals who can function at a high level in a multidisciplinary environment was recognized as a priority of a radiation oncology physics residency only lately. In this report, we identify and discuss the implementation of, and the essential components of, a radiation oncology physics residency designed to produce knowledgeable and effective clinical physicists for today's safety‐conscious and collaborative work environment. Our approach is that of inverse planning, by now familiar to all radiation oncology physicists, in which objectives and constraints are identified prior to the design of the program. Our inverse planning objectives not only include those associated with traditional residencies (i.e., clinical physics knowledge and critical clinical skills), but also encompass those other attributes essential for success in a modern radiation therapy clinic. These attributes include formal training in management skills and leadership, teaching and communication skills, and knowledge of error management techniques and patient safety. The constraints in our optimization exercise are associated with the limited duration of a residency and the training resources available. Without compromising the knowledge and skills needed for clinical tasks, we have successfully applied the model to the University of Calgary's two‐year residency program. The program requires 3840 hours of overall commitment from the trainee, of which 7%–10% is spent in obtaining formal training in nontechnical “soft skills”. PACS number(s): 01.40 Di, 01.40.gb, 87.10‐e PMID:27074469
Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.
Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D
2016-05-01
Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. Copyright © 2016 Elsevier Inc. All rights reserved.
Wilson, Feleta L; Mood, Darlene; Nordstrom, Cheryl K
2010-11-01
To test patients' knowledge of side effects after they review six easy-to-read pamphlets on radiation side effects. Nonexperimental. Urban radiation oncology clinic. 47 patients receiving radiation treatment. The Knowledge of Radiation Side Effects Test was administered. Patient literacy and knowledge level. The self-report of highest grade completed in school was 10th grade; however, the actual reading level was 4th-6th grade. Scores for each knowledge test increased with literacy level, with statistically significant correlations for pamphlets on fatigue, skin problems for women, and skin problems for men. Participants who read at the 4th-6th-grade level scored higher than expected. Although the pamphlets were deemed easy to read, patients who had the lowest reading levels still had difficulty understanding them. In addition to written patient information, oncology nurses should use innovative teaching strategies to improve patient understanding and self-care behaviors. A need exists for continued nursing inquiry that will focus on self-care behaviors to manage radiation side effects, particularly for patients with low literacy.
The 2nd Edition of the handbook, Pediatric Psycho-Oncology: A Quick Reference on the Psychosocial Dimensions of Cancer Symptom Management, by Oxford Press, 2015 fills an important niche, as it provides practical hands-on information on many aspects of psychological and psychiatric aspects of pediatric oncology care. It is organized with sections addressing specific clinical
Impact Analysis of Age on Fallout Fatality Estimations for IND Scenarios
2017-11-30
management of the acute radiation syndrome : recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 140: 1037-51...dependent radiation dose response for acute effects was evaluated in detail. The analysis included data from animal studies, radiation oncology, and other...probability of 60-day mortality (assuming no treatment) for acute radiation exposure. This model has been adapted to account for protracted fallout
Barni, S; Venturini, M; Beretta, G D; Gori, S; Molino, A; Carnaghi, C; Labianca, R; Sgarbi, S; Simoni, L; Maiello, E
2007-06-01
RIGHT (Research for the Identification of the most effective and hIGhly accepted clinical guidelines for the cancer Treatment) is a project promoted by the Italian Association of Medical Oncology (AIOM) to measure the concordance between oncology guidelines and clinical practice. The goal of this pilot phase was to develop and test a reliable process to measure this concordance nationwide. Twenty Italian centers participated to the survey. Breast cancer (BC) and colorectal cancer (CRC): guidelines issued by AIOM in 2003 were selected. A total of 29 indicators linked to the process of care were abstracted. Patients who had their first visit at the oncology center between February 2004 and June 2005, with a diagnosis of invasive BC (stage 1 or 2), colon cancer (stage 3), rectal cancer (stage T3-4 or N1-2) or advanced CRC were enclosed. One hundred and sixty-one patients (80%) were analyzed. On average, 93% of BC and 80.3% of colorectal patients received recommended care. These first results indicate that the RIGHT system provides a valid measurement of oncology care to assess agreement with guidelines. A second larger phase of this nationwide monitoring program will enable results to be generalized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Followill, D; Galvin, J; Michalski, J
Purpose: The Imaging and Radiation Oncology Core (IROC) Cooperative has been active for the past two years supporting the National Clinical Trial Network and the details of that support are reported. Methods: There are six QA centers (Houston, Ohio, Philadelphia-RT, Philadelphia-DI, Rhode Island, St. Louis) providing an integrated RT and DI quality control program in support of the NCI’s clinical trials. The QA Center’s efforts are focused on assuring high quality data for clinical trials designed to improve the clinical outcomes for cancer patients worldwide. This program is administered through five core services: site qualification, trial design support, credentialing, datamore » management, and case review. Results: IROC currently provides core support for 172 NCTN trials with RT, DI and RT/DI components. Many of these trials were legacy trial from the previous cooperative group program. IROC monitors nearly 1800 RT photon and 20 proton institutions. Over 28,000 beams outputs were monitored with 8% of the sites requiring repeat audits due to beam out of criteria. As part of credentialing, 950 QA phantoms have been irradiated, 515 imaging modalities evaluated and almost 4000 credentialing letters have been issued. In just year 2, 5290 RT and 4934 DI patient datasets were received (many using TRIAD) by IROC QA Centers to be prepared for review. During the past 2 years, a total of 6300 RT cases and 19,000 DI image sets were reviewed by IROC technical staff. To date, IROC has published 36 manuscripts. Conclusion: The QA services provided by IROC are numerous and are continually being evaluated for effectiveness, harmonized across all NCTN Groups and administered in an efficient and timely manner to enhance accurate and per protocol trial data submission. These efforts increase each NCTN Group’s ability to derive meaningful outcomes from their clinical trials. This work was supported by DHHS NIH grant 5U24CA180803.« less
Sanchez, Hanny C; Karlson, Cynthia W; Hsu, Johann H; Ostrenga, Andrew; Gordon, Catherine
2015-11-01
To examine the prevalence and modalities of complementary and alternative medicine (CAM) use in children with cancer and sickle cell disease; the reasons for use of CAM; and the use of CAM before, during, and after treatment in children with cancer. This single-center, observational study administered caregivers a written questionnaire regarding the use of CAM therapies. A total of 101 caregivers completed questionnaires. Including prayer, total CAM use in oncology and sickle cell disease was 64% and 63%, respectively. Non-prayer CAM use was 30% in oncology and 23% in sickle cell disease. Of respondents who reported using any CAM, the three most commonly used types were prayer (62.3% oncology; 60.0% sickle cell disease), vitamins/minerals (14.8% oncology; 10.0% sickle cell disease), and massage (9.8% oncology; 7.5% sickle cell disease). The primary reasons for using CAM were to provide hope, to improve quality of life, and to lessen adverse effects. In oncology patients, CAM use tended to increase during treatment compared with before and after treatment. The reported prevalence of non-prayer CAM use was lower (23%-30%) in this sample than has been reported in national samples or other geographic regions of the United States. Nonetheless, participants reported many positive reasons for using CAM, including to gain hope, improve quality of life, and control pain. Thus, CAM use appears to be an important aspect of medical care for many pediatric hematology/oncology families and should be a consideration when providers are discussing treatment and quality of care with families.
Quality research in radiation oncology: a self-improvement initiative 30 years ahead of its time?
Wilson, J Frank; Owen, Jean
2005-12-01
The quality of cancer care in the United States should be better than it is. Society has demanded improvement, but much work remains to be done to define and measure both the current quality of care and the steps needed to optimize such care. Various public and private organizations are directing early efforts toward attempts to determine the quality of selected oncology services as a first step in a broad-based quality improvement process. In contrast, the ACR Patterns of Care Study (PCS) for over 30 years has relied on exemplary voluntary engagement by American radiation oncologists in critical self-assessment and self-improvement as a highly effective pathway to improved practice quality. This article provides an overview of the documented historical and recent impact of PCS research findings on practice and describes the deliberate adaptation of the PCS identity and methodology to the quality-sensitive national environment with the new project name Quality Research in Radiation Oncology. The article concludes with a discussion of the rationale for continuing this unique quality improvement initiative and some of the challenges to this imperative that are being faced.
Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?
Thompson, Reid F; Valdes, Gilmer; Fuller, Clifton D; Carpenter, Colin M; Morin, Olivier; Aneja, Sanjay; Lindsay, William D; Aerts, Hugo J W L; Agrimson, Barbara; Deville, Curtiland; Rosenthal, Seth A; Yu, James B; Thomas, Charles R
2018-06-12
Artificial intelligence (AI) is emerging as a technology with the power to transform established industries, and with applications from automated manufacturing to advertising and facial recognition to fully autonomous transportation. Advances in each of these domains have led some to call AI the "fourth" industrial revolution [1]. In healthcare, AI is emerging as both a productive and disruptive force across many disciplines. This is perhaps most evident in Diagnostic Radiology and Pathology, specialties largely built around the processing and complex interpretation of medical images, where the role of AI is increasingly seen as both a boon and a threat. In Radiation Oncology as well, AI seems poised to reshape the specialty in significant ways, though the impact of AI has been relatively limited at present, and may rightly seem more distant to many, given the predominantly interpersonal and complex interventional nature of the specialty. In this overview, we will explore the current state and anticipated future impact of AI on Radiation Oncology, in detail, focusing on key topics from multiple stakeholder perspectives, as well as the role our specialty may play in helping to shape the future of AI within the larger spectrum of medicine. Published by Elsevier B.V.
SU-A-210-01: Why Should We Learn Radiation Oncology Billing?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, H.
The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less
Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Lynn D.; Flynn, Daniel F.; Haffty, Bruce G.
2005-06-01
Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated andmore » analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an academic career path. The following variables were ranked significantly differently in hierarchy (p < 0.05) by those seeking an academic versus private practice path with respect to having influence on the career decision: lifestyle, income, case-mix, autonomy, ability to sub-specialize, basic research, clinical research, teaching, patient care, board structure, practice environment, and mentoring. Conclusion: These data offer descriptive information regarding variables that lead to radiation oncology trainee career path decisions. Such information may be of use in modification of training programs to meet future personnel and programmatic needs within the specialty.« less
A Clinical Information Display System
Blum, Bruce J.; Lenhard, Raymond E.; Braine, Hayden; Kammer, Anne
1977-01-01
A clinical information display system has been implemented as part of a prototype Oncology Clinical Information System for the Johns Hopkins Oncology Center. The information system has been developed to support the management of patient therapy. Capabilities in the prototype include a patient data system, a patient abstract, a tumor registry, an appointment system, a census system, and a clinical information display system. This paper describes the clinical information display component of the prototype. It has the capability of supporting up to 10,000 patient records with online data entry and editing. At the present time, the system is being used only in the Oncology Center. There are plans, however, for trial use by other departments, and the system represents a tool with a potential for more general application.
The National Practice Benchmark for oncology, 2014 report on 2013 data.
Towle, Elaine L; Barr, Thomas R; Senese, James L
2014-11-01
The National Practice Benchmark (NPB) is a unique tool to measure oncology practices against others across the country in a way that allows meaningful comparisons despite differences in practice size or setting. In today's economic environment every oncology practice, regardless of business structure or affiliation, should be able to produce, monitor, and benchmark basic metrics to meet current business pressures for increased efficiency and efficacy of care. Although we recognize that the NPB survey results do not capture the experience of all oncology practices, practices that can and do participate demonstrate exceptional managerial capability, and this year those practices are recognized for their participation. In this report, we continue to emphasize the methodology introduced last year in which we reported medical revenue net of the cost of the drugs as net medical revenue for the hematology/oncology product line. The effect of this is to capture only the gross margin attributable to drugs as revenue. New this year, we introduce six measures of clinical data density and expand the radiation oncology benchmarks. Copyright © 2014 by American Society of Clinical Oncology.
[Patients' satisfaction and waiting time in oncology day care centers in Champagne-Ardenne].
Debreuve-Theresette, A; Jovenin, N; Stona, A C; Kraïem-Leleu, M; Burde, F; Parent, D; Hettler, D; Rey, J B
2015-12-01
Quality of life of patients suffering from cancer may be influenced by the way healthcare is organized and by patient experiences. Nowadays, chemotherapy is often provided in day care centers. This study aimed to assess patient waiting time and satisfaction in oncology day care centers in Champagne-Ardenne, France. This cross-sectional survey involved all patients receiving ambulatory chemotherapy during a one-week period in day care centers of Champagne-Ardenne public and private healthcare institutions participating in the study. Sociodemographic, medical and outpatient data were collected. Patient satisfaction was measured using the Out-Patsat35 questionnaire. Eleven (out of 16) oncology day care centers and 441 patients participated in the study. Most of the patients were women (n=252, 57.1%) and the mean age was 61±12 years. The mean satisfaction score was 82±14 (out of 100) and the mean waiting time between the assigned appointment time and administration of chemotherapy was 97±60 min. This study has shown that waiting times are important. However, patients are satisfied with the healthcare organization, especially regarding nursing support. Early preparation of chemotherapy could improve these parameters. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui Yunfeng; Galvin, James M.; Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania
2013-01-01
Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is establishedmore » at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective. The magnitude of registration discrepancy between institution and reviewer was presented, and the major issues were investigated to further improve this remote evaluation process.« less
2014-01-01
Background Cancer is the leading cause of deaths in the world. A widening disparity in cancer burden has emerged between high income and low-middle income countries. Closing this cancer divide is an ethical imperative but there is a dearth of data on cancer services from developing countries. Methods This was a multi-center, retrospective observational cohort study which enrolled women with breast cancer (BC) attending 8 participating cancer centers in Malaysia in 2011. All patients were followed up for 12 months from diagnosis to determine their access to therapies. We assess care performance using measures developed by Quality Oncology Practice Initiative, American Society of Clinical Oncology/National Comprehensive Cancer Network, American College of Surgeons’ National Accreditation Program for Breast Centers as well as our local guideline. Results Seven hundred and fifty seven patients were included in the study; they represent about 20% of incident BC in Malaysia. Performance results were mixed. Late presentation was 40%. Access to diagnostic and breast surgery services were timely; the interval from presentation to tissue diagnosis was short (median = 9 days), and all who needed surgery could receive it with only a short wait (median = 11 days). Performance of radiation, chemo and hormonal therapy services showed that about 75 to 80% of patients could access these treatments timely, and those who could not were because they sought alternative treatment or they refused treatment. Access to Trastuzumab was limited to only 19% of eligible patients. Conclusions These performance results are probably acceptable for a middle income country though far below the 95% or higher adherence rates routinely reported by centres in developed countries. High cost trastuzumab was inaccessible to this population without public funding support. PMID:24650245
Itazawa, Tomoko; Tamaki, Yukihisa; Komiyama, Takafumi; Nishimura, Yasumasa; Nakayama, Yuko; Ito, Hiroyuki; Ohde, Yasuhisa; Kusumoto, Masahiko; Sakai, Shuji; Suzuki, Kenji; Watanabe, Hirokazu; Asamura, Hisao
2017-01-01
The purpose of this study was to develop a consensus-based computed tomographic (CT) atlas that defines lymph node stations in radiotherapy for lung cancer based on the lymph node map of the International Association for the Study of Lung Cancer (IASLC). A project group in the Japanese Radiation Oncology Study Group (JROSG) initially prepared a draft of the atlas in which lymph node Stations 1–11 were illustrated on axial CT images. Subsequently, a joint committee of the Japan Lung Cancer Society (JLCS) and the Japanese Society for Radiation Oncology (JASTRO) was formulated to revise this draft. The committee consisted of four radiation oncologists, four thoracic surgeons and three thoracic radiologists. The draft prepared by the JROSG project group was intensively reviewed and discussed at four meetings of the committee over several months. Finally, we proposed definitions for the regional lymph node stations and the consensus-based CT atlas. This atlas was approved by the Board of Directors of JLCS and JASTRO. This resulted in the first official CT atlas for defining regional lymph node stations in radiotherapy for lung cancer authorized by the JLCS and JASTRO. In conclusion, the JLCS–JASTRO consensus-based CT atlas, which conforms to the IASLC lymph node map, was established. PMID:27609192
Wynants, Laure; Timmerman, Dirk; Verbakel, Jan Y; Testa, Antonia; Savelli, Luca; Fischerova, Daniela; Franchi, Dorella; Van Holsbeke, Caroline; Epstein, Elisabeth; Froyman, Wouter; Guerriero, Stefano; Rossi, Alberto; Fruscio, Robert; Leone, Francesco Pg; Bourne, Tom; Valentin, Lil; Van Calster, Ben
2017-09-01
Purpose: To evaluate the utility of preoperative diagnostic models for ovarian cancer based on ultrasound and/or biomarkers for referring patients to specialized oncology care. The investigated models were RMI, ROMA, and 3 models from the International Ovarian Tumor Analysis (IOTA) group [LR2, ADNEX, and the Simple Rules risk score (SRRisk)]. Experimental Design: A secondary analysis of prospectively collected data from 2 cross-sectional cohort studies was performed to externally validate diagnostic models. A total of 2,763 patients (2,403 in dataset 1 and 360 in dataset 2) from 18 centers (11 oncology centers and 7 nononcology hospitals) in 6 countries participated. Excised tissue was histologically classified as benign or malignant. The clinical utility of the preoperative diagnostic models was assessed with net benefit (NB) at a range of risk thresholds (5%-50% risk of malignancy) to refer patients to specialized oncology care. We visualized results with decision curves and generated bootstrap confidence intervals. Results: The prevalence of malignancy was 41% in dataset 1 and 40% in dataset 2. For thresholds up to 10% to 15%, RMI and ROMA had a lower NB than referring all patients. SRRisks and ADNEX demonstrated the highest NB. At a threshold of 20%, the NBs of ADNEX, SRrisks, and RMI were 0.348, 0.350, and 0.270, respectively. Results by menopausal status and type of center (oncology vs. nononcology) were similar. Conclusions: All tested IOTA methods, especially ADNEX and SRRisks, are clinically more useful than RMI and ROMA to select patients with adnexal masses for specialized oncology care. Clin Cancer Res; 23(17); 5082-90. ©2017 AACR . ©2017 American Association for Cancer Research.
Kline, Ronald M; Bazell, Carol; Smith, Erin; Schumacher, Heidi; Rajkumar, Rahul; Conway, Patrick H
2015-03-01
Cancer is a medically complex and expensive disease with costs projected to rise further as new treatment options increase and the United States population ages. Studies showing significant regional variation in oncology quality and costs and model tests demonstrating cost savings without adverse outcomes suggest there are opportunities to create a system of oncology care in the US that delivers higher quality care at lower cost. The Centers for Medicare and Medicaid Services (CMS) have designed an episode-based payment model centered around 6 month periods of chemotherapy treatment. Monthly per-patient care management payments will be made to practices to support practice transformation, including additional patient services and specific infrastructure enhancements. Quarterly reporting of quality metrics will drive continuous quality improvement and the adoption of best practices among participants. Practices achieving cost savings will also be eligible for performance-based payments. Savings are expected through improved care coordination and appropriately aligned payment incentives, resulting in decreased avoidable emergency department visits and hospitalizations and more efficient and evidence-based use of imaging, laboratory tests, and therapeutic agents, as well as improved end of life care. New therapies and better supportive care have significantly improved cancer survival in recent decades. This has come at a high cost, with cancer therapy consuming $124 billion in 2010. CMS has designed an episode-based model of oncology care that incorporates elements from several successful model tests. By providing care management and performance based payments in conjunction with quality metrics and a rapid learning environment, it is hoped that this model will demonstrate how oncology care in the US can transform into a high value, high quality system. Copyright © 2015 by American Society of Clinical Oncology.
Montgomery, Logan; Fava, Palma; Freeman, Carolyn R; Hijal, Tarek; Maietta, Ciro; Parker, William; Kildea, John
2018-01-01
Collaborative incident learning initiatives in radiation therapy promise to improve and standardize the quality of care provided by participating institutions. However, the software interfaces provided with such initiatives must accommodate all participants and thus are not optimized for the workflows of individual radiation therapy centers. This article describes the development and implementation of a radiation therapy incident learning system that is optimized for a clinical workflow and uses the taxonomy of the Canadian National System for Incident Reporting - Radiation Treatment (NSIR-RT). The described incident learning system is a novel version of an open-source software called the Safety and Incident Learning System (SaILS). A needs assessment was conducted prior to development to ensure SaILS (a) was intuitive and efficient (b) met changing staff needs and (c) accommodated revisions to NSIR-RT. The core functionality of SaILS includes incident reporting, investigations, tracking, and data visualization. Postlaunch modifications of SaILS were informed by discussion and a survey of radiation therapy staff. There were 240 incidents detected and reported using SaILS in 2016 and the number of incidents per month tended to increase throughout the year. An increase in incident reporting occurred after switching to fully online incident reporting from an initial hybrid paper-electronic system. Incident templating functionality and a connection with our center's oncology information system were incorporated into the investigation interface to minimize repetitive data entry. A taskable actions feature was also incorporated to document outcomes of incident reports and has since been utilized for 36% of reported incidents. Use of SaILS and the NSIR-RT taxonomy has improved the structure of, and staff engagement with, incident learning in our center. Software and workflow modifications informed by staff feedback improved the utility of SaILS and yielded an efficient and transparent solution to categorize incidents with the NSIR-RT taxonomy. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Randomized controlled trials and neuro-oncology: should alternative designs be considered?
Mansouri, Alireza; Shin, Samuel; Cooper, Benjamin; Srivastava, Archita; Bhandari, Mohit; Kondziolka, Douglas
2015-09-01
Deficiencies in design and reporting of randomized controlled trials (RCTs) hinders interpretability and critical appraisal. The reporting quality of recent RCTs in neuro-oncology was analyzed to assess adequacy of design and reporting. The MEDLINE and EMBASE databases were searched to identify non-surgical RCTs (years 2005-2014, inclusive). The CONSORT and Jadad scales were used to assess the quality of design/reporting. Studies published in 2005-2010 were compared as a cohort against studies published in 2011-2014, in terms of general characteristics and reporting quality. A PRECIS-based scale was used to designate studies on the pragmatic-explanatory continuum. Spearman's test was used to assess correlations. Regression analysis was used to assess associations. Overall 68 RCTs were identified. Studies were often chemotherapy-based (n = 41 studies) focusing upon high grade gliomas (46 %) and metastases (41 %) as the top pathologies. Multi-center trials (71 %) were frequent. The overall median CONSORT and Jadad scores were 34.5 (maximum 44) and 2 (maximum 5), respectively; these scores were similar in radiation and chemotherapy-based trials. Major areas of deficiency pertained to allocation concealment, implementation of methods, and blinding whereby less than 20 % of articles fulfilled all criteria. Description of intervention, random sequence generation, and the details regarding recruitment were also deficient; less than 50 % of studies fulfilled all criteria. Description of sample size calculations and blinding improved in later published cohorts. Journal impact factor was significantly associated with higher quality (p = 0.04). Large academic consortia, multi-center designs, ITT analysis, collaboration with biostatisticians, larger sample sizes, and studies with pragmatic objectives were more likely to achieve positive primary outcomes on univariate analysis; none of these variables were significant on multivariate analysis. Deficiencies in the quality of design/reporting of RCTs in neuro-oncology persist. Quality improvement is necessary. Consideration of alternative strategies should be considered.
Exercise therapy in oncology rehabilitation in Australia: A mixed-methods study.
Dennett, Amy M; Peiris, Casey L; Shields, Nora; Morgan, Delwyn; Taylor, Nicholas F
2017-10-01
Oncology rehabilitation improves outcomes for cancer survivors but little is known about program availability in Australia. The aims of this study were: to describe oncology rehabilitation programs in Australia: determine whether the exercise component of programs is consistent with guidelines: and to explore barriers and facilitators to program implementation. A sequential, explanatory mixed-methods study was completed in two phases: (1) a survey of Australian oncology rehabilitation programs; and (2) purposively sampled follow-up semistructured interviews with senior clinicians working in oncology rehabilitation who were involved with exercise prescription. Hospitals and/or cancer centers from 42 public hospital health networks (representing 163 hospitals) and 39 private hospitals were contacted to identify 31 oncology rehabilitation programs. All 31 surveys were returned (100% response rate). Programs were typically multidisciplinary, ran twice weekly, provided education and exercise and included self-management strategies. Exercise prescription and progression was patient centered and included a combination of resistance and aerobic training supplemented by balance, pelvic floor, and core stability exercises. Challenges to implementation included a lack of awareness of programs in the community and organizational barriers such as funding. Strong links with oncologists facilitated program referrals. Despite evidence to support oncology rehabilitation, there are few programs in Australia and there are challenges that limit it becoming part of standard practice. Programs that exist are multidisciplinary with a focus on exercise with the majority of programs following a cardiac rehabilitation model of care. © 2016 John Wiley & Sons Australia, Ltd.
Actionable data analytics in oncology: are we there yet?
Barkley, Ronald; Greenapple, Rhonda; Whang, John
2014-03-01
To operate under a new value-based paradigm, oncology providers must develop the capability to aggregate, analyze, measure, and report their value proposition--that is, their outcomes and associated costs. How are oncology providers positioned currently to perform these functions in a manner that is actionable? What is the current state of analytic capabilities in oncology? Are oncology providers prepared? This line of inquiry was the basis for the 2013 Cancer Center Business Summit annual industry research survey. This article reports on the key findings and implications of the 2013 research survey with regard to data analytic capabilities in the oncology sector. The essential finding from the study is that only a small number of oncology providers (7%) currently possess the analytic tools and capabilities necessary to satisfy internal and external demands for aggregating and reporting clinical outcome and economic data. However there is an expectation that a majority of oncology providers (60%) will have developed such capabilities within the next 2 years.
Development of a virtual multidisciplinary lung cancer tumor board in a community setting.
Stevenson, Marvaretta M; Irwin, Tonia; Lowry, Terry; Ahmed, Maleka Z; Walden, Thomas L; Watson, Melanie; Sutton, Linda
2013-05-01
Creating an effective platform for multidisciplinary tumor conferences can be challenging in the rural community setting. The Duke Cancer Network created an Internet-based platform for a multidisciplinary conference to enhance the care of patients with lung cancer. This conference incorporates providers from different physical locations within a rural community and affiliated providers from a university-based cancer center 2 hours away. An electronic Web conferencing tool connects providers aurally and visually. Conferences were set up using a commercially available Web conferencing platform. The video platform provides a secure Web site coupled with a secure teleconference platform to ensure patient confidentiality. Multiple disciplines are invited to participate, including radiology, radiation oncology, thoracic surgery, pathology, and medical oncology. Participants only need telephone access and Internet connection to participate. Patient histories and physicals are presented, and the Web conferencing platform allows radiologic and histologic images to be reviewed. Treatment plans for patients are discussed, allowing providers to coordinate care among the different subspecialties. Patients who need referral to the affiliated university-based cancer center for specialized services are identified. Pertinent treatment guidelines and journal articles are reviewed. On average, there are 10 participants with one to two cases presented per session. The use of a Web conferencing platform allows subspecialty providers throughout the community and hours away to discuss lung cancer patient cases. This platform increases convenience for providers, eliminating travel to a central location. Coordination of care for patients requiring multidisciplinary care is facilitated, shortening evaluation time before definitive treatment plan.
Developing an effective lung cancer program in a community hospital setting.
Fischel, Richard J; Dillman, Robert O
2009-07-01
Lung cancer remains the number one cause of cancer-based mortality in men and women. The importance of proper lung cancer care outside of major academic centers cannot be overemphasized because the vast majority of lung cancer care occurs in community hospital settings. We have had the opportunity to develop a highly successful community hospital-based lung cancer program. Utilizing a multidisciplinary approach, we have achieved steadily improving survival rates that are much higher than those observed nationally for patients diagnosed with lung cancer. Key components of this successful program include: (1) a weekly multidisciplinary lung cancer case conference with medical doctor representatives from medical oncology, thoracic surgery, pulmonary medicine, radiology, radiation oncology, and nuclear medicine who discuss patient presentation, test results, treatment history, and plans for therapy; (2) thoracic surgeons skilled in minimally invasive video-assisted thoracoscopic surgery; (3) nurse navigator/coordinators to help patients through the process from detection to recovery and provide a personal bond that greatly improves patient satisfaction; (4) utilization of treatment guidelines for patient-specific treatment strategies; (5) formal continuing medical education; (6) an emphasis on early detection that includes consideration of computed tomography screening of former smokers; (6) a cancer center that allows for many services to be offered at a single location for patient convenience and to promote interdisciplinary care; and (7) access to research protocols. These components have helped us provide a quality lung cancer program in a community hospital setting that is associated with excellent clinical outcomes.
Psycho-oncology in Korea: past, present and future.
Lee, Hyun Jeong; Lee, Kwang-Min; Jung, Dooyoung; Shim, Eun-Jung; Hahm, Bong-Jin; Kim, Jong-Heun
2017-01-01
Psycho-oncology in Korea was introduced among the circle of consultation-liaison psychiatrists, in the 1990s. For almost 25 years, the field has been developing at a steady pace as the psychosocial needs of patients with cancer continue to increase. In this study, we review the history of psycho-oncology in Korea, in a chronological order, within the domains of clinical practice, research activity, training, and public policy. Before the 1990s, patients with cancer with psychiatric comorbidities were usually taken care of by consultation-liaison psychiatrists in general hospitals. In 1993, psycho-oncology was first introduced by psychiatrists. Psychologists, nurses, and social workers have also been increasingly involved in providing psychosocial care for patients with cancer. Professionals from various disciplines began to communicate, and agreed to found the Korean Psycho-Oncology Study Group (KPOSG) in 2006, the first academic society in this field. In 2009, National Cancer Center published the "Recommendations for Distress Management in Patients with Cancer", which are consensus-based guidelines for Korean patients. In 2014, the KPOSG was dissolved and absorbed into a new organization, the Korean Psycho-Oncology Society (KPOS). It functions as a center of development of psycho-oncology, publishing official journals, and hosting annual conferences. There are many challenges, including, low awareness of psycho-oncology, presence of undertreated psychiatric disorders in patients with cancer, shortage of well-trained psycho-oncologists, stigma, and suicide risk. It is important to improve the cancer care system to the extent that psycho-oncology is integrated with mainstream oncology. Considering the socio-cultural characteristics of Korean cancer care, a Korean model of distress management is being prepared by the KPOS. This article provides an overview of the development, current issues, and future challenges of psycho-oncology in Korea. Through its long journey to overcome the many barriers and stigmas of cancer and mental illnesses, psycho-oncology is now acknowledged as an essential part of integrated supportive care in cancer. Active research and international cooperation can gradually shape the Korean model of distress management.
Utilization of rapid response resources and outcomes in a comprehensive cancer center*.
Austin, Charles A; Hanzaker, Chris; Stafford, Renae; Mayer, Celeste; Culp, Loc; Lin, Feng-Chang; Chang, Lydia
2014-04-01
To compare the differences in characteristics and outcomes of cancer center patients with other subspecialty medical patients reviewed by rapid response teams. A retrospective cohort study of hospitalized general medicine patients, subspecialty medicine patients, and oncology patients requiring rapid response team activation over a 2-year period from September 2009 to August 2011. Five hundred fifty-seven subspecialty medical patients required rapid response team intervention. A single academic medical center in the southeastern United States (800+ bed) with a dedicated 50-bed inpatient comprehensive cancer care center. Data abstraction from computerized medical records and a hospital quality improvement rapid response database. Of the 557 patients, 135 were cancer center patients. Cancer center patients had a significantly higher Charlson Comorbidity Score (4.4 vs 2.9, < 0.001). Cancer center patients had a significantly longer hospitalization period prior to rapid response team activation (11.4 vs 6.1 d, p < 0.001). There was no significant difference between proportions of patients requiring ICU transfer between the two groups (odds ratio, 1.2; 95% CI, 0.8-1.8). Cancer center patients had a significantly higher in-hospital mortality compared with the other subspecialty medical patients (33% vs 18%; odds ratio, 2.2; 95% CI, 1.50-3.5). If the rapid response team event required an ICU transfer, this finding was more pronounced (56% vs 23%; odds ratio, 4.0; 95% CI, 2.0-7.8). The utilization of rapid response team resources during the 2-year period studied was also much higher for the oncology patients with 37.34 activations per 1,000 patient discharges compared with 20.86 per 1,000 patient discharges for the general medical patients. Oncology patients requiring rapid response team activation have a significantly higher in-hospital mortality rate, particularly if the rapid response team requires ICU transfer. Oncology patients also utilize rapid response team resources at a much higher rate.
The Tumor Imaging Metrics Core (TIMC), a CCSG Shared-Resource of the Dana-Farber/Harvard Cancer Center, has developed software for managing the workflow and image measurements for oncology clinical trials. This system currently is in use across the five Harvard hospitals to manage over 600 active clinical trials, with 800 users, and has been licensed and implemented at several other Cancer Centers, including Yale, Utah/Huntsman Cancer Institute, and UW/Seattle Cancer Care Alliance.
Sci-Thur PM – Colourful Interactions: Highlights 05: Opal–the Oncology Patient Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Ackeem; Herrera, David; Kildea, John
We describe Opal (Oncology portal and application), the mobile phone app and patient portal that we have developed and are deploying for Radiation Oncology patients at our cancer centre. Opal is a novel tool to empower patients with their own personal medical data, including appointment schedules, consultation notes, test results, radiotherapy treatment planning information and wait time management. Furthermore, due to its integration with our electronic medical record and treatment planning database, Opal will allow us to collect patient reported outcomes from consenting patients and link them directly with dose volume histograms and other treatment data.
Reconstruction of Peripelvic Oncologic Defects.
Weichman, Katie E; Matros, Evan; Disa, Joseph J
2017-10-01
After studying this article, the participant should be able to: 1. Understand the anatomy of the peripelvic area. 2. Understand the advantages and disadvantages of performing peripelvic reconstruction in patients undergoing oncologic resection. 3. Select the appropriate local, pedicled, or free-flap reconstruction based on the location of the defect and donor-site characteristics. Peripelvic reconstruction most commonly occurs in the setting of oncologic ablative surgery. The peripelvic area contains several distinct reconstructive regions, including vagina, vulva, penis, and scrotum. Each area provides unique reconstructive considerations. In addition, prior or future radiation therapy or chemotherapy along with cancer cachexia can increase the complexity of reconstruction.
Safety Strategies in an Academic Radiation Oncology Department and Recommendations for Action
Terezakis, Stephanie A.; Pronovost, Peter; Harris, Kendra; DeWeese, Theodore; Ford, Eric
2013-01-01
Background Safety initiatives in the United States continue to work on providing guidance as to how the average practitioner might make patients safer in the face of the complex process by which radiation therapy (RT), an essential treatment used in the management of many patients with cancer, is prepared and delivered. Quality control measures can uncover certain specific errors such as machine dose mis-calibration or misalignments of the patient in the radiation treatment beam. However, they are less effective at uncovering less common errors that can occur anywhere along the treatment planning and delivery process, and even when the process is functioning as intended, errors still occur. Prioritizing Risks and Implementing Risk-Reduction Strategies Activities undertaken at the radiation oncology department at the Johns Hopkins Hospital (Baltimore) include Failure Mode and Effects Analysis (FMEA), risk-reduction interventions, and voluntary error and near-miss reporting systems. A visual process map portrayed 269 RT steps occurring among four subprocesses—including consult, simulation, treatment planning, and treatment delivery. Two FMEAs revealed 127 and 159 possible failure modes, respectively. Risk-reduction interventions for 15 “top-ranked” failure modes were implemented. Since the error and near-miss reporting system’s implementation in the department in 2007, 253 events have been logged. However, the system may be insufficient for radiation oncology, for which a greater level of practice-specific information is required to fully understand each event. Conclusions The “basic science” of radiation treatment has received considerable support and attention in developing novel therapies to benefit patients. The time has come to apply the same focus and resources to ensuring that patients safely receive the maximal benefits possible. PMID:21819027
Investigating the Role of NOS2 in Breast Cancer | Center for Cancer Research
Inducible nitric oxide synthase (NOS2) is often elevated in breast tumors that lack expression of the estrogen receptor (ER) and predicts a poor prognosis for patients with these tumors. However, it is unclear whether NOS2 directly contributes to ER-negative breast cancer aggressiveness or how NOS2 expression is controlled within the tumor microenvironment. To tease apart the regulatory pathways upstream and downstream of NOS2, David Wink, Jr., Ph.D., Senior Investigator in CCR’s Radiation Biology Branch, along with colleagues from CCR’s Pediatric Oncology Branch, Laboratory of Human Carcinogenesis, and Laboratory of Experimental Immunology and from the Prostate Cancer Institute in Ireland, carried out studies in cell culture and mouse models.
Pałucka, A; Walewski, J; Siedlecki, P; Zborzil, J
1990-01-01
Eighteen patients with advanced malignant lymphomas who had progressed with previous chemotherapy were treated with LEPP (chlorambucil, VP-16, procarbazine, prednisone). One complete response and 5 partial remissions were observed, yielding an overall response rate of 33%, with median response duration of about 2 months. Twenty three patients with advanced Hodgkin's disease all who had progressed with previous chemotherapy (MOPP and ABVD) and 19 of them also after radiation therapy were treated with third line salvage chemotherapy consisting of OPEC (VP- 16, chlorambucil, vincristine and prednisone). Two complete response and 3 partial remissions were obtained for overall response rate of 21% with median duration of about 9 months.
Gastrointestinal surgery in gynecologic oncology: evaluation of surgical techniques.
Penalver, M; Averette, H; Sevin, B U; Lichtinger, M; Girtanner, R
1987-09-01
In recent years, the use of surgical staples has become popular in all subspecialties of surgery. The advantages proposed have been a decrease in operative time and morbidity. This paper reviews the University of Miami/Jackson Memorial Medical Center, Division of Gynecologic Oncology experience with the use of surgical staples in gastrointestinal surgery on patients with a diagnosis of a gynecologic malignancy. Between January 1, 1979 and July 1, 1985, a total of 152 procedures were done, 81 by stapler and 71 by suture anastomosis. Ninety-one patients had received previous radiation or chemotherapy. The average age of the patients was 52 years. The results show a decrease in operating time, blood loss, and postoperative hospital stay in those patients where the stapler anastomosis was used. The postoperative morbidity and mortality were not increased. Twenty-seven total pelvic exenterations were performed during the period of study and they were evaluated separately. The hospital stay and blood loss as well as the operative time were significantly less using staplers. This report includes a detailed evaluation of the results. From this study, we concluded that surgical staples are a safe alternative in gastrointestinal surgery in patients with a gynecologic malignancy.
The University of Texas M.D. Anderson Cancer Center Proton Therapy Facility
NASA Astrophysics Data System (ADS)
Smith, Alfred; Newhauser, Wayne; Latinkic, Mitchell; Hay, Amy; McMaken, Bruce; Styles, John; Cox, James
2003-08-01
The University of Texas M.D. Anderson Cancer Center (MDACC), in partnership with Sanders Morris Harris Inc., a Texas-based investment banking firm, and The Styles Company, a developer and manager of hospitals and healthcare facilities, is building a proton therapy facility near the MDACC main complex at the Texas Medical Center in Houston, Texas USA. The MDACC Proton Therapy Center will be a freestanding, investor-owned radiation oncology center offering state-of-the-art proton beam therapy. The facility will have four treatment rooms: three rooms will have rotating, isocentric gantries and the fourth treatment room will have capabilities for both large and small field (e.g. ocular melanoma) treatments using horizontal beam lines. There will be an additional horizontal beam room dedicated to physics research and development, radiation biology research, and outside users who wish to conduct experiments using proton beams. The first two gantries will each be initially equipped with a passive scattering nozzle while the third gantry will have a magnetically swept pencil beam scanning nozzle. The latter will include enhancements to the treatment control system that will allow for the delivery of proton intensity modulation treatments. The proton accelerator will be a 250 MeV zero-gradient synchrotron with a slow extraction system. The facility is expected to open for patient treatments in the autumn of 2005. It is anticipated that 675 patients will be treated during the first full year of operation, while full capacity, reached in the fifth year of operation, will be approximately 3,400 patients per year. Treatments will be given up to 2-shifts per day and 6 days per week.
Merabi, Zeina; Abboud, Miguel R.; Muwakkit, Samar; Noun, Peter; Gemayel, Gladys; Bechara, Elie; Khalifeh, Hassan; Farah, Roula; Kabbara, Nabil; El-Khoury, Tarek; Al-Yousef, Rasha; Haidar, Rachid; Saghieh, Said; Eid, Toufic; Akel, Samir; Khoury, Nabil; Bayram, Layal; Krasin, Matthew J.; Jeha, Sima; El-Solh, Hassan
2017-01-01
Background Children with malignant bone tumors have average 5-year survival rates of 60% to 70% with current multimodality therapy. Local control modalities aimed at preserving function greatly influence the quality of life of long-term survivors. In developing countries, the limited availability of multidisciplinary care and limited expertise in specialized surgery and pediatric radiation therapy, as well as financial cost, all form barriers to achieving optimal outcomes in this population. Methods We describe the establishment of a collaborative pediatric bone tumor program among a group of pediatric oncologists in Lebanon and Syria. This program provides access to specialized local control at a tertiary children’s cancer center to pediatric patients with newly diagnosed bone tumors at participating sites. Central review of pathology, staging, and treatment planning is performed in a multidisciplinary tumor board setting. Patients receive chemotherapy at their respective centers on a unified treatment plan. Surgery and/or radiation therapy are performed centrally by specialized staff at the children’s cancer center. Cost barriers were resolved through a program development initiative led by St Jude Children’s Research Hospital. Once program feasibility was achieved, the Children’s Cancer Center of Lebanon Foundation, via fundraising efforts, provided continuation of program-directed funding. Results Findings over a 3-year period showed the feasibility of this project, with timely local control and protocol adherence at eight collaborating centers. We report success in providing standard-of-care multidisciplinary therapy to this patient population with complex needs and financially challenging surgical procedures. Conclusion This initiative can serve as a model, noting that facilitating access to specialized multidisciplinary care, resolution of financial barriers, and close administrative coordination all greatly contributed to the success of the program. PMID:28717738
Specialty Payment Model Opportunities and Assessment: Oncology Simulation Report.
White, Chapin; Chan, Chris; Huckfeldt, Peter J; Kofner, Aaron; Mulcahy, Andrew W; Pollak, Julia; Popescu, Ioana; Timbie, Justin W; Hussey, Peter S
2015-07-15
This article describes the results of a simulation analysis of a payment model for specialty oncology services that is being developed for possible testing by the Center for Medicare and Medicaid Innovation at the Centers for Medicare & Medicaid Services (CMS). CMS asked MITRE and RAND to conduct simulation analyses to preview some of the possible impacts of the payment model and to inform design decisions related to the model. The simulation analysis used an episode-level dataset based on Medicare fee-for-service (FFS) claims for historical oncology episodes provided to Medicare FFS beneficiaries in 2010. Under the proposed model, participating practices would continue to receive FFS payments, would also receive per-beneficiary per-month care management payments for episodes lasting up to six months, and would be eligible for performance-based payments based on per-episode spending for attributed episodes relative to a per-episode spending target. The simulation offers several insights into the proposed payment model for oncology: (1) The care management payments used in the simulation analysis-$960 total per six-month episode-represent only 4 percent of projected average total spending per episode (around $27,000 in 2016), but they are large relative to the FFS revenues of participating oncology practices, which are projected to be around $2,000 per oncology episode. By themselves, the care management payments would increase physician practices' Medicare revenues by roughly 50 percent on average. This represents a substantial new outlay for the Medicare program and a substantial new source of revenues for oncology practices. (2) For the Medicare program to break even, participating oncology practices would have to reduce utilization and intensity by roughly 4 percent. (3) The break-even point can be reduced if the care management payments are reduced or if the performance-based payments are reduced.
Alexander, Sarah; Greenberg, Mark; Malkin, David; Portwine, Carol; Johnston, Donna; Silva, Mariana; Zelcer, Shayna; Sonshine, Samantha; Manzo, Janet; Bennett, Carla; Brodeur-Robb, Kathy; Deveault, Catherine; Ramachandran, Nivetha; Gibson, Paul
2018-04-01
Opportunities for participation in clinical trials are a core component of the care of children with cancer. In Ontario, many pediatric patients live long distances from their cancer center. This paper describes the work that was done in order to allow patients participating in Children's Oncology Group trials to receive care, including research protocol related care, jointly between the tertiary pediatric cancer center and the closer-to-home satellite center. The system is a pragmatic risk-based model, supporting excellence in care while ensuring good conduct of the research in compliance with applicable regulations and guidelines, including ethics oversight. © 2017 Wiley Periodicals, Inc.
Iodine-131 tositumomab (Bexxar) in a radiation oncology environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macklis, Roger M.
2006-10-01
Iodine-131 (I-131) tositumomab (Bexxar; GlaxoSmithKline, Research Triangle Park, NC) is one of two recently approved radiolabeled antibodies directed against the CD20 surface antigen found on normal B cells and in more than 95% of B cell non-Hodgkin's lymphoma. The compound itself is formulated as an IgG2a immunoglobulin radiolabeled with the mixed beta/gamma emitter I-131. Multicenter clinical trials have repeatedly shown impressive clinical responses (20-40% complete response rates and 60-80% overall response rates) in the patient groups for whom this treatment is indicated. Treatment-related toxicity is generally extremely mild and typically involves only reversible hematopoietic suppression and (in some cases) amore » risk of treatment-induced hypothyroidism. Owing to Radiation safety concerns necessitated by the clinical use of this targeted radiopharmaceutical, it is important for radiation oncology departments wishing to participate in the care of these patients to establish methodologies and standard operating procedures for safe and efficient departmental use. This summary reviews the pertinent background information related to the current clinical experience with I-131 tositumomab and highlights some of the major opportunities for the participation of radiation oncology in the patient evaluation and treatment process. I-131 tositumomab provides an excellent example of the way in which the increasingly important new field of 'targeted therapy' intersects with the practice of clinical radiotherapy. The author contends that it will be worth the time and effort involved in establishing a firm basis for the development of a comprehensive program for systemic targeted radiopharmaceutical therapies (STaRT) within Radiation medicine domain.« less
Development of an electronic radiation oncology patient information management system.
Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan
2008-01-01
The quality of patient care is critically influenced by the availability of accurate information and its efficient management. Radiation oncology consists of many information components, for example there may be information related to the patient (e.g., profile, disease site, stage, etc.), to people (radiation oncologists, radiological physicists, technologists, etc.), and to equipment (diagnostic, planning, treatment, etc.). These different data must be integrated. A comprehensive information management system is essential for efficient storage and retrieval of the enormous amounts of information. A radiation therapy patient information system (RTPIS) has been developed using open source software. PHP and JAVA script was used as the programming languages, MySQL as the database, and HTML and CSF as the design tool. This system utilizes typical web browsing technology using a WAMP5 server. Any user having a unique user ID and password can access this RTPIS. The user ID and password is issued separately to each individual according to the person's job responsibilities and accountability, so that users will be able to only access data that is related to their job responsibilities. With this system authentic users will be able to use a simple web browsing procedure to gain instant access. All types of users in the radiation oncology department should find it user-friendly. The maintenance of the system will not require large human resources or space. The file storage and retrieval process would be be satisfactory, unique, uniform, and easily accessible with adequate data protection. There will be very little possibility of unauthorized handling with this system. There will also be minimal risk of loss or accidental destruction of information.
NASA Astrophysics Data System (ADS)
Kessel, Kerstin A.; Jäger, Andreas; Bohn, Christian; Habermehl, Daniel; Zhang, Lanlan; Engelmann, Uwe; Bougatf, Nina; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E.
2013-03-01
To date, conducting retrospective clinical analyses is rather difficult and time consuming. Especially in radiation oncology, handling voluminous datasets from various information systems and different documentation styles efficiently is crucial for patient care and research. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using analysis tools connected with a documentation system. A total number of 783 patients have been documented into a professional, web-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported. For patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose-volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are stored in the database and included in statistical calculations. The main goal of using an automatic evaluation system is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the evaluation system to other types of tumors in radiation oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welsh, James S.; Kennedy, Andrew S.; Thomadsen, Bruce
2006-10-01
Introduction: Selective internal radiation therapy (SIRT) is a relatively new commercially available microbrachytherapy technique for treatment of malignant hepatic lesions using {sup 9}Y embedded in resin microspheres, which are infused directly into the hepatic arterial circulation. It is FDA approved for liver metastases secondary to colorectal carcinoma and is under investigation for treatment of other liver malignancies, such as hepatocellular carcinoma and neuroendocrine malignancies. Materials/Methods: A modest number of clinical trials, preclinical animal studies, and dosimetric studies have been reported. Here we review several of the more important results. Results: High doses of beta radiation can be selectively delivered tomore » tumors, resulting in impressive local control and survival rates. Ex vivo analyses have shown that microspheres preferentially cluster around the periphery of tumor nodules with a high tumor:normal tissue ratio of up to 200:1. Toxicity is usually mild, featuring fatigue, anorexia, nausea, abdominal discomfort, and slight elevations of liver function tests. Conclusions: Selective internal radiation therapy represents an effective means of controlling liver metastases from colorectal adenocarcinoma. Clinical trials have demonstrated improved local control of disease and survival with relatively low toxicity. Investigations of SIRT for other hepatic malignancies and in combination with newer chemotherapy agents and targeted biologic therapies are under way or in planning. A well-integrated team involving interventional radiology, nuclear medicine, medical oncology, surgical oncology, medical physics, and radiation oncology is essential for a successful program. Careful selection of patients through the combined expertise of the team can maximize therapeutic efficacy and reduce the potential for adverse effects.« less
Kura, Branislav; Babal, Pavel; Slezak, Jan
2017-10-01
Radiotherapy is the most commonly used methodology to treat oncological disease, one of the most widespread causes of death worldwide. Oncological patients cured by radiotherapy applied to the mediastinal area have been shown to suffer from cardiovascular disease. The increase in the prevalence of radiation-induced heart disease has emphasized the need to seek new therapeutic targets to mitigate the negative impact of radiation on the heart. In this regard, microRNAs (miRNAs) have received considerable interest. miRNAs regulate post-transcriptional gene expression by their ability to target various mRNA sequences because of their imperfect pairing with mRNAs. It has been recognized that miRNAs modulate a diverse spectrum of cardiac functions with developmental, pathophysiological, and clinical implications. This makes them promising potential targets for diagnosis and treatment. This review summarizes the recent findings about the possible involvement of miRNAs in radiation-induced heart disease and their potential use as diagnostic or treatment targets in this respect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.
2011-03-01
High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal,more » breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.« less
A survey of veterinary radiation facilities in 2010.
Farrelly, John; McEntee, Margaret C
2014-01-01
A survey of veterinary radiation therapy facilities in the United States, Canada, and Europe was done in 2010, using an online survey tool, to determine the type of equipment available, radiation protocols used, caseload, tumor types irradiated, as well as other details of the practice of veterinary radiation oncology. The results of this survey were compared to a similar survey performed in 2001. A total of 76 facilities were identified including 24 (32%) academic institutions and 52 (68%) private practice external beam radiation therapy facilities. The overall response rate was 51% (39/76 responded). Based on this survey, there is substantial variation among facilities in all aspects ranging from equipment and personnel to radiation protocols and caseloads. American College of Veterinary Radiology boarded radiation oncologists direct 90% of the radiation facilities, which was increased slightly compared to 2001. All facilities surveyed in 2010 had a linear accelerator. More facilities reported having electron capability (79%) compared to the 2001 survey. Eight facilities had a radiation oncology resident, and academic facilities were more likely to have residents. Patient caseload information was available from 28 sites (37% of radiation facilities), and based on the responses 1376 dogs and 352 cats were irradiated in 2010. The most frequently irradiated tumors were soft tissue sarcomas in dogs, and oral squamous cell carcinoma in cats. © 2014 American College of Veterinary Radiology.
Jégoux, Franck; Goyenvalle, Eric; Cognet, Ronan; Malard, Olivier; Moreau, Francoise; Daculsi, Guy; Aguado, Eric
2009-12-15
The bone tissue engineering models used today are still a long way from any oncologic application as immediate postimplantation irradiation would decrease their osteoinductive potential. The aim of this study was to reconstruct a segmental critical size defect in a weight-bearing bone irradiated after implantation. Six white New Zealand rabbits were immediately implanted with a biomaterial associating resorbable collagen membrane EZ(R) filled and micro-macroporous biphasic calcium phosphate granules (MBCP+(R)). After a daily schedule of radiation delivery, and within 4 weeks, a total autologous bone marrow (BM) graft was injected percutaneously into the center of the implant. All the animals were sacrificed at 16 weeks. Successful osseous colonization was found to have bridged the entire length of the defects. Identical distribution of bone ingrowth and residual ceramics at the different levels of the implant suggests that the BM graft plays an osteoinductive role in the center of the defect. Periosteum-like formation was observed at the periphery, with the collagen membrane most likely playing a role. This model succeeded in bridging a large segmental defect in weight-bearing bone with immediate postimplantation fractionated radiation delivery. This has significant implications for the bone tissue engineering approach to patients with cancer-related bone defects.
MO-D-213-01: Workflow Monitoring for a High Volume Radiation Oncology Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laub, S; Dunn, M; Galbreath, G
2015-06-15
Purpose: Implement a center wide communication system that increases interdepartmental transparency and accountability while decreasing redundant work and treatment delays by actively monitoring treatment planning workflow. Methods: Intake Management System (IMS), a program developed by ProCure Treatment Centers Inc., is a multi-function database that stores treatment planning process information. It was devised to work with the oncology information system (Mosaiq) to streamline interdepartmental workflow.Each step in the treatment planning process is visually represented and timelines for completion of individual tasks are established within the software. The currently active step of each patient’s planning process is highlighted either red or greenmore » according to whether the initially allocated amount of time has passed for the given process. This information is displayed as a Treatment Planning Process Monitor (TPPM), which is shown on screens in the relevant departments throughout the center. This display also includes the individuals who are responsible for each task.IMS is driven by Mosaiq’s quality checklist (QCL) functionality. Each step in the workflow is initiated by a Mosaiq user sending the responsible party a QCL assignment. IMS is connected to Mosaiq and the sending or completing of a QCL updates the associated field in the TPPM to the appropriate status. Results: Approximately one patient a week is identified during the workflow process as needing to have his/her treatment start date modified or resources re-allocated to address the most urgent cases. Being able to identify a realistic timeline for planning each patient and having multiple departments communicate their limitations and time constraints allows for quality plans to be developed and implemented without overburdening any one department. Conclusion: Monitoring the progression of the treatment planning process has increased transparency between departments, which enables efficient communication. Having built-in timelines allows easy prioritization of tasks and resources and facilitates effective time management.« less
Schuurhuis, Jennifer M; Stokman, Monique A; Roodenburg, Johannes L N; Reintsema, Harry; Langendijk, Johannes A; Vissink, Arjan; Spijkervet, Frederik K L
2011-12-01
Head-neck radiotherapy is accompanied by a life-long risk of developing severe oral problems. This study retrospectively assessed oral foci detected during pre-radiation dental screening and follow-up in order to assess risk factors for developing oral problems after radiotherapy. Charts of 185 consecutive head-neck cancer patients, subjected to a pre-radiation dental screening in the University Medical Center Groningen, the Netherlands, between January 2004 and December 2008 were reviewed. Eighty (partially) dentulous patients scheduled for curative head-neck radiotherapy met the inclusion criteria. Oral foci were found in 76% of patients, predominantly periodontal disease. Osteoradionecrosis had developed in 9 out of 80 patients (11%). Overall, patients presenting with periodontal pockets ≥ 6mm at dental screening had an increased risk (19%) of developing osteoradionecrosis compared to the total group of patients. Patients in whom periodontal disease treatment was composed of initial periodontal in stead of removal of the affected teeth, the risk of developing osteoradionecrosis was even higher, viz. 33%. A worse periodontal condition at dental screening and initial periodontal therapy to safeguard these patients to develop severe oral sequelae after radiotherapy were shown to be major risk factors of developing osteoradionecrosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Skeletal sequelae of radiation therapy for malignant childhood tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, M.S.; Robertson, W.W. Jr.; Rate, W.
1990-02-01
One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) hadmore » scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.« less
Next-generation sequencing: hype and hope for development of personalized radiation therapy?
Tinhofer, Ingeborg; Niehr, Franziska; Konschak, Robert; Liebs, Sandra; Munz, Matthias; Stenzinger, Albrecht; Weichert, Wilko; Keilholz, Ulrich; Budach, Volker
2015-08-28
The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets. Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be given on potential clinical applications of this innovative technique in the field of radiation oncology.
NCI-CONNECT - Comprehensive Oncology Network Evaluating Rare CNS Tumors | Center for Cancer Research
NCI-CONNECT: Comprehensive Oncology Network Evaluating Rare CNS Tumors Purpose NCI-CONNECT aims to advance the understanding of rare adult central nervous system (CNS) cancers by establishing and fostering patient-advocacy-provider partnerships and networks to improve approaches to care and treatment.
Pediatric Oncology Branch - Support Services | Center for Cancer Research
Support Services As part of the comprehensive care provided at the NCI Pediatric Oncology Branch, we provide a wide range of services to address the social, psychological, emotional, and practical facets of pediatric cancer and to support patients and families while they are enrolled in clinical research protocols.
Pareja, Rene; Nick, Alpa M; Schmeler, Kathleen M; Frumovitz, Michael; Soliman, Pamela T; Buitrago, Carlos A; Borrero, Mauricio; Angel, Gonzalo; Reis, Ricardo Dos; Ramirez, Pedro T
2012-05-01
To help determine whether global collaborations for prospective gynecologic surgery trials should include hospitals in developing countries, we compared surgical and oncologic outcomes of patients undergoing laparoscopic radical hysterectomy at a large comprehensive cancer center in the United States and a cancer center in Colombia. Records of the first 50 consecutive patients who underwent laparoscopic radical hysterectomy at The University of Texas MD Anderson Cancer Center in Houston (between April 2004 and July 2007) and the first 50 consecutive patients who underwent the same procedure at the Instituto de Cancerología-Clínica las Américas in Medellín (between December 2008 and October 2010) were retrospectively reviewed. Surgical and oncologic outcomes were compared between the 2 groups. There was no significant difference in median patient age (US 41.9 years [range 23-73] vs. Colombia 44.5 years [range 24-75], P=0.09). Patients in Colombia had a lower median body mass index than patients in the US (24.4 kg/m(2) vs. 28.7 kg/m(2), P=0.002). Compared to patients treated in Colombia, patients who underwent surgery in the US had a greater median estimated blood loss (200 mL vs. 79 mL, P<0.001), longer median operative time (328.5 min vs. 235 min, P<0.001), and longer postoperative hospital stay (2 days vs. 1 day, P<0.001). Surgical and oncologic outcomes of laparoscopic radical hysterectomy were not worse at a cancer center in a developing country than at a large comprehensive cancer center in the United States. These results support consideration of developing countries for inclusion in collaborations for prospective surgical studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Geriatric Oncology Program Development and Gero-Oncology Nursing.
Lynch, Mary Pat; DeDonato, Dana Marcone; Kutney-Lee, Ann
2016-02-01
To provide a critical analysis of current approaches to the care of older adults with cancer, outline priority areas for geriatric oncology program development, and recommend strategies for improvement. Published articles and reports between 1999 and 2015. Providing an interdisciplinary model that incorporates a holistic geriatric assessment will ensure the delivery of patient-centered care that is responsive to the comprehensive needs of older patients. Nursing administrators and leaders have both an opportunity and responsibility to shape the future of geriatric oncology. Preparations include workforce development and the creation of programs that are designed to meet the complex needs of this population. Copyright © 2015 Elsevier Inc. All rights reserved.
Otis-Green, Shirley; Jones, Barbara; Zebrack, Brad; Kilburn, Lisa; Altilio, Terry A; Ferrell, Betty
2015-09-01
ExCEL in Social Work: Excellence in Cancer Education & Leadership was a multi-year National Cancer Institute (NCI)-funded grant for the development and implementation of an innovative educational program for oncology social workers. The program's curriculum focused upon six core competencies of psychosocial-spiritual support necessary to meet the standard of care recommended by the 2008 Institute of Medicine (IOM) Report: Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. The curriculum was delivered through a collaborative partnership between the City of Hope National Medical Center and the two leading professional organizations devoted exclusively to representing oncology social workers--the Association of Oncology Social Work and the Association of Pediatric Oncology Social Workers. Initial findings support the feasibility and acceptability of this tailored leadership skills-building program for participating oncology social workers.
Otis-Green, Shirley; Jones, Barbara; Zebrack, Brad; Kilburn, Lisa; Altilio, Terry A.; Ferrell, Betty
2014-01-01
ExCEL in Social Work : Excellence in Cancer Education & Leadership was a multi-year National Cancer Institute (NCI)-funded grant for the development and implementation of an innovative educational program for oncology social workers. The program’s curriculum focused upon six core competencies of psychosocial-spiritual support necessary to meet the standard of care recommended by the 2008 Institute of Medicine (IOM) Report: Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. The curriculum was delivered through a collaborative partnership between the City of Hope National Medical Center and the two leading professional organizations devoted exclusively to representing oncology social workers - the Association of Oncology Social Work and the Association of Pediatric Oncology Social Workers. Initial findings support the feasibility and acceptability of this tailored leadership skills-building program for participating oncology social workers. PMID:25146345
Nikolai Fedorovich Gamaliya (1932-2016).
2016-06-01
Professor Nikolai Fedorovich Gamaliya, well-known scientist in the field of laser biomedical research, biophysicist, authority in experimental oncology, Laureate of the State Prize in Science and Techno-logy of Ukraine, Head of the Department of Biological Effects of Ionizing and Non-Ionizing Radiation of R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences (NAS) of Ukraine died on June 14, 2016 at the age of 83.
Pediatric Oncology Branch - training- resident electives | Center for Cancer Research
Resident Electives Select pediatric residents may be approved for a 4-week elective rotation at the Pediatric Oncology Branch. This rotation emphasizes the important connection between research and patient care in pediatric oncology. The resident is supervised directly by the Branch’s attending physician and clinical fellows. Residents attend daily in-patient and out-patient rounds, multiple weekly Branch conferences, and are expected to research relevant topics and present a 30-minute talk toward the end of their rotation.
Pediatric Oncology Branch - training- medical student rotations | Center for Cancer Research
Medical Student Rotations Select 4th-year medical students may be approved for a 4-week elective rotation at the Pediatric Oncology Branch. This rotation emphasizes the important connection between research and patient care in pediatric oncology. The student is supervised directly by the Branch’s attending physician and clinical fellows. Students attend daily in-patient and out-patient rounds and multiple weekly Branch conferences, and are expected to research relevant topics and present a 30-minute talk near the end of their rotation.
[Gynecologic oncology at the Royal Hospital for Women, Sidney. Report on a 10 month overseas stay].
Gitsch, G
1995-01-01
Gynecologic oncology is centralized in Australia. In centers like the Royal Hospital for Women in Sydney, more than 300 patients/year with gynecologic malignancies are operated on. The establishment of gynecologic oncology as a special field is illustrated. In addition, the 3-year training program of gynecologic oncologists is reviewed. The international trend towards specialization is emphasized, and the advantages of centralization and additional training are pointed out. An adaptation of the Australian model for Austrian circumstances is proposed.
Kim, Do Yeun; Lee, Yun Gyoo; Kim, Bong-Seog
2017-07-01
This study was conducted to investigate the current role of medical oncologists in cancer care with a focus on increasing the recognition of medical oncology as an independent specialty. Questionnaires modified from the Medical Oncology Status in Europe Survey dealing with oncology structure, resources, research, and patterns of care given by medical oncologists were selected. Several modifications were made to the questionnaire after feedback from the insurance and policy committee of the Korean Association for Clinical Oncology (KACO). The online survey was then sent to KACO members. A total of 214 medical oncologists (45.8% of the total inquiries), including 71 directors of medical oncology institutions, took the survey. Most institutions had various resources, including a medical oncology department (94.1%) and a department of radiation oncology (82.4%). There was an average of four medical oncologists at each institution. Medical oncologists were involved in various treatments from diagnosis to end-of-life care. They were also chemotherapy providers from a wide range of institutions that treated many types of solid cancers. In addition, 86.2% of the institutions conducted research. This is the first national survey in Korea to show that medical oncologists are involved in a wide range of cancer treatments and care. This survey emphasizes the contributions and proper roles of medical oncologists in the evolving health care environment in Korea.