Science.gov

Sample records for radiation processes annual

  1. A retrospective study on annual evaluation of radiation processing for frozen bone allografts complying to quality system requirements.

    PubMed

    Ramalingam, Saravana; Mohd, Suhaili; Samsuddin, Sharifah Mazni; Min, N G Wuey; Yusof, Norimah; Mansor, Azura

    2015-12-01

    Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed. PMID:25687771

  2. Annual Cycle of Surface Longwave Radiation

    NASA Technical Reports Server (NTRS)

    Mlynczak, Pamela E.; Smith, G. Louis; Wilber, Anne C.; Stackhouse, Paul W.

    2011-01-01

    The annual cycles of upward and downward longwave fluxes at the Earth s surface are investigated by use of the NASA/GEWEX Surface Radiation Budget Data Set. Because of the immense difference between the heat capacity of land and ocean, the surface of Earth is partitioned into these two categories. Principal component analysis is used to quantify the annual cycles. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.

  3. Radiation processing of polyethylene

    NASA Astrophysics Data System (ADS)

    Barlow, A.; Biggs, J. W.; Meeks, L. A.

    This paper covers two areas (a) the use of high energy radiation for the synthesis and improvement of polymer properties and (b) the formulation of radiation curable compounds for automotive/appliance wire applications and high voltage insulation. The first part discusses the use of gamma radiation for the bulk polymerization of ethylene and the properties of the polymer produced. The use of low dose radiation to increase polymer molecular weight and modify polydispersity is also described together with its projected operational cost. An update is provided of the cost savings that can be realized when using radiation crosslinked heavy duty film, which expands its applications, compared with noncrosslinked materials. The second section of the paper considers the advantages and disadvantages of radiation vs. peroxide curing of wire and cable compounds. The formulation of a radiation curable, automotive/appliance wire compound is discussed together with the interactions between the various ingredients; i.e., base resin, antioxidants, flame retardant filler, coupling agents, processing aids and radiation to achieve the desired product. In addition, the general property requirements of a radiation curable polyethylene for high voltage insulation are discussed; these include crosslinking efficiency, thermal stability, wet tree resistance and satisfactory dielectric properties. Preliminary data generated in the development of a 230KV radiation crosslinked polyethylene insulation are included.

  4. Dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Miller, Arne

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed.

  5. Current state of radiation processing

    NASA Astrophysics Data System (ADS)

    Pikaev, Alexei K.

    1995-06-01

    A review of common trends in the development of modern radiation processing is presented. The sources of ionising radiation and the most important processes practically induced under the influence of this radiation are discussed. It is shown that radiation methods can be used successfully for the modification of materials, for the sterilisation of medical articles, for the solution of ecological problems, for treatment of food products, in radiation engineering, etc. Special attention is paid to processes at the pilot plant and industrial scales. The bibliography includes 548 references.

  6. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    SciTech Connect

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  7. Thermal effects in radiation processing

    SciTech Connect

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  8. Annual Cycle of Cloud Forcing of Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.

    2006-01-01

    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.

  9. Occupational radiation exposures in Canada, 1987. Annual publication

    SciTech Connect

    Not Available

    1989-01-01

    The information in this tenth annual report is derived from the National Dose Registry of the Bureau of Radiation and Medical Devices, Dept. of National Health and Welfare. It provides statistics on occupational radiation exposures of all monitored workers in Canada from NDR records as well as from data submitted by nuclear power generating stations, Atomic Energy of Canada Ltd. and uranium mines. This report presents by occupation: Average yearly whole body doses by region, dose distributions, and variations of the average doses with time. Statistical data are tabulated in summary form.

  10. Assessment of radiative feedback in climate models using satellite observations of annual flux variation.

    PubMed

    Tsushima, Yoko; Manabe, Syukuro

    2013-05-01

    In the climate system, two types of radiative feedback are in operation. The feedback of the first kind involves the radiative damping of the vertically uniform temperature perturbation of the troposphere and Earth's surface that approximately follows the Stefan-Boltzmann law of blackbody radiation. The second kind involves the change in the vertical lapse rate of temperature, water vapor, and clouds in the troposphere and albedo of the Earth's surface. Using satellite observations of the annual variation of the outgoing flux of longwave radiation and that of reflected solar radiation at the top of the atmosphere, this study estimates the so-called "gain factor," which characterizes the strength of radiative feedback of the second kind that operates on the annually varying, global-scale perturbation of temperature at the Earth's surface. The gain factor is computed not only for all sky but also for clear sky. The gain factor of so-called "cloud radiative forcing" is then computed as the difference between the two. The gain factors thus obtained are compared with those obtained from 35 models that were used for the fourth and fifth Intergovernmental Panel on Climate Change assessment. Here, we show that the gain factors obtained from satellite observations of cloud radiative forcing are effective for identifying systematic biases of the feedback processes that control the sensitivity of simulated climate, providing useful information for validating and improving a climate model.

  11. Assessment of radiative feedback in climate models using satellite observations of annual flux variation.

    PubMed

    Tsushima, Yoko; Manabe, Syukuro

    2013-05-01

    In the climate system, two types of radiative feedback are in operation. The feedback of the first kind involves the radiative damping of the vertically uniform temperature perturbation of the troposphere and Earth's surface that approximately follows the Stefan-Boltzmann law of blackbody radiation. The second kind involves the change in the vertical lapse rate of temperature, water vapor, and clouds in the troposphere and albedo of the Earth's surface. Using satellite observations of the annual variation of the outgoing flux of longwave radiation and that of reflected solar radiation at the top of the atmosphere, this study estimates the so-called "gain factor," which characterizes the strength of radiative feedback of the second kind that operates on the annually varying, global-scale perturbation of temperature at the Earth's surface. The gain factor is computed not only for all sky but also for clear sky. The gain factor of so-called "cloud radiative forcing" is then computed as the difference between the two. The gain factors thus obtained are compared with those obtained from 35 models that were used for the fourth and fifth Intergovernmental Panel on Climate Change assessment. Here, we show that the gain factors obtained from satellite observations of cloud radiative forcing are effective for identifying systematic biases of the feedback processes that control the sensitivity of simulated climate, providing useful information for validating and improving a climate model. PMID:23613585

  12. Radiation processes in corundum crystals

    NASA Astrophysics Data System (ADS)

    Bessonova, T. S.

    The latest research on the radiation-spectral characteristics of corundum is reviewed. The review covers recently published works on the structure defects (e.g., V and F centers) in nominally pure corundum and on the trapping centers in ruby and in corundum with Ti, V, Mn, Fe, and Ni impurities. Various models of radiation defects and method of defect analysis are examined.

  13. Apparatus for processing electromagnetic radiation and method

    NASA Technical Reports Server (NTRS)

    Gatewood, George D. (Inventor)

    1983-01-01

    Measuring apparatus including a ruled member having alternate transparent and opaque zones. An optical coupler connecting the ruled member with electromagnetic radiation-conversion apparatus. The conversion apparatus may include a photomultiplier and a discriminator. Radiation impinging on the ruled member will, in part, be converted to electrical pulses which correspond to the intensity of the radiation. A method of processing electromagnetic radiation includes providing a member having alternating dark and light zones, establishing movement of the member through the beam of electromagnetic radiation with the dark zones interrupting passage of radiation through the rule, providing an optical coupler to connect a portion of the radiation with a conversion station where the radiation portion is converted into an electrical pulse which is related to the intensity of the radiation received at the conversion station. The electrical pulses may be counted and the digitized signals stored or permanently recorded to produce positional information.

  14. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    SciTech Connect

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  15. Radiation processing of plastics for decorative purposes

    NASA Astrophysics Data System (ADS)

    Knizhnik, E. I.; Onisko, A. D.; Gaydamaka, A. V.

    Methods are reviewed for the radiation processing of polymeric films, sheets, plates and panels to form patterns, drawings, images and decorative finishing which have been recently developed in various countries. Methods of beam and radiation processing of transparent plastics are described for making a decorative article with a pattern inside the volume; advantages and shortcomings of the methods are shown. The method of radiation processing of transparent dielectric plastics by electron beam of a Microton is considered in detail. It provides an economical method of fabrication of large-size highly artistic decorative articles with an original pattern inside the volume. Radiation processing operations are presented which are aimed at creation and visualization of regions of extended thermalized electron space charges stored by irradiation of dielectric. Examples are presented of large-size highly artistic decorative articles of polymethylmethacrylate which were used in interior of buildings and demonstrated at home and international exhibitions.

  16. Effect of radiation processing on meat tenderisation

    NASA Astrophysics Data System (ADS)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  17. Maximal acceleration and radiative processes

    NASA Astrophysics Data System (ADS)

    Papini, Giorgio

    2015-08-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass m has the upper limit 𝒜m = 2mc3/ℏ. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to 𝒜m and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws due to the maximal acceleration (MA) with that for particles in gravitational fields, we find that the model of Caianiello allows, in principle, the use of charged particles as tools to distinguish inertial from gravitational fields locally.

  18. The topographic distribution of annual incoming solar radiation in the Rio Grande River basin

    NASA Technical Reports Server (NTRS)

    Dubayah, R.; Van Katwijk, V.

    1992-01-01

    We model the annual incoming solar radiation topoclimatology for the Rio Grande River basin in Colorado, U.S.A. Hourly pyranometer measurements are combined with satellite reflectance data and 30-m digital elevation models within a topographic solar radiation algorithm. Our results show that there is large spatial variability within the basin, even at an annual integration length, but the annual, basin-wide mean is close to that measured by the pyranometers. The variance within 16 sq km and 100 sq km regions is a linear function of the average slope in the region, suggesting a possible parameterization for sub-grid-cell variability.

  19. Hybrid Sulfur Thermochemical Process Development Annual Report

    SciTech Connect

    Summers, William A.; Buckner, Melvin R.

    2005-07-21

    The Hybrid Sulfur (HyS) Thermochemical Process is a means of producing hydrogen via water-splitting through a combination of chemical reactions and electrochemistry. Energy is supplied to the system as high temperature heat (approximately 900 C) and electricity. Advanced nuclear reactors (Generation IV) or central solar receivers can be the source of the primary energy. Large-scale hydrogen production based on this process could be a major contributor to meeting the needs of a hydrogen economy. This project's objectives include optimization of the HyS process design, analysis of technical issues and concerns, creation of a development plan, and laboratory-scale proof-of-concept testing. The key component of the HyS Process is the SO2-depolarized electrolyzer (SDE). Studies were performed that showed that an electrolyzer operating in the range of 500-600 mV per cell can lead to an overall HyS cycle efficiency in excess of 50%, which is superior to all other currently proposed thermochemical cycles. Economic analysis indicated hydrogen production costs of approximately $1.60 per kilogram for a mature nuclear hydrogen production plant. However, in order to meet commercialization goals, the electrolyzer should be capable of operating at high current density, have a long operating lifetime , and have an acceptable capital cost. The use of proton-exchange-membrane (PEM) technology, which leverages work for the development of PEM fuel cells, was selected as the most promising route to meeting these goals. The major accomplishments of this project were the design and construction of a suitable electrolyzer test facility and the proof-of-concept testing of a PEM-based SDE.

  20. Thermodynamic processes induced by coherent radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.

    1977-01-01

    It is shown by quantum statistics that under certain stated conditions the entropy of coherent radiation is zero and it is still negligible for multimode laser operation. This makes possible gas kinetic processes which, to a small extent, have already been observed or even utilized, but which can be greatly enhanced by an optimized choice of molecular structures and radiation conditions. Radiative cooling of gases is discussed in detail. The conditions for maximum heat withdrawal are derived, and it is proposed that the processes of cooling and relaxation heating can be sufficiently separated in time to achieve certain effects and thermodynamic cycles. One of these is the complete conversion, possible in principle, of coherent radiation into work. This concept is based on a heat pump process followed by heat-to-work conversion, the heat rejected being just equal to that withdrawn by radiation. The conditions for complete conversion turn out to be the same as for maximum heat withdrawal. The feasibility of these processes depends on the degree to which practical conditions can be met, and on the validity of certain assumptions which have to await experimental verification.

  1. Radiation Exposures for DOE and DOE Contractor Employees - 1989. Twenty-second annual report

    SciTech Connect

    Smith, M. H.; Eschbach, P. A.; Harty, R.; Millet, W. H.; Scholes, V. A.

    1992-12-01

    This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year and identify trends in exposures being experienced over the years.

  2. Benefits of radiation processing to public health

    NASA Astrophysics Data System (ADS)

    Kampelmacher, E. H.

    The problem of foodborne diseases, in which especially food of animals origin and the infected animal is involved, is reviewed. Salmonella and Campylobacter contamination of meat and poultry may today, together with parasites in meat and fish be considered as an increasing public health problem. Control and prevention measures, especially including radiation processing is summarized and with regard to specific micro-organisms and parasites and to various food commodities suitable for irradiation purposes. The possibilities of this new processing technique for reduction and probably elimination of pathogens and parasites are discussed and recommendations are given for practical application of radiation in order to eliminate health risks eliminating from contaminated food.

  3. Silicon web process development. Annual report

    SciTech Connect

    Duncan, C.S.; Seidensticker, R.G.; McHugh, J.P.; Hill, F.E.; Skutch, M.E.; Driggers, J.M.; Hopkins, R.H.

    1980-06-30

    During this reporting period significant milestones have been met. A new barrier crucible design which consistently maintains melt stability over long periods of time has been successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours (a one day growth cycle). The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and, during the preparation of this report, operated successfully for 3 1/2 hours demonstrating the feasibility of semi-automated dendritic web growth. The web throughput task has resulted in a demonstration of wider good quality web as well as a demonstration of higher throughput rates. The accomplishments during the report period are described in detail. The economic analysis of the dendritic web process was updated. The sensitivity of the cost of sheet to variations in capital equipment cost and recycling dendrites was calculated; and it was shown that these factors have relatively little impact on sheet cost. An important finding was that dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  4. Radiation exposures for DOE and DOE contractor employees - 1991. Twenty-fourth annual report

    SciTech Connect

    Smith, M.H.; Hui, T.E.; Millet, W.H.; Scholes, V.A.

    1994-11-01

    This is the 24th annual radiation exposure report published by US DOE and its predecessor agencies. This report summarizes the radiation exposures received by both employees and visitors at DOE and COE contractor facilities during 1991. Trends in radiations exposures are evaluated. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimates from expert groups.

  5. 40 CFR 35.9015 - Summary of annual process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Summary of annual process. 35.9015 Section 35.9015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9015...

  6. 40 CFR 35.9015 - Summary of annual process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Summary of annual process. 35.9015 Section 35.9015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9015...

  7. 40 CFR 35.9015 - Summary of annual process.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Summary of annual process. 35.9015 Section 35.9015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9015...

  8. 40 CFR 35.9015 - Summary of annual process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Summary of annual process. 35.9015 Section 35.9015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9015...

  9. 40 CFR 35.9015 - Summary of annual process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Summary of annual process. 35.9015 Section 35.9015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9015...

  10. The radiation crosslinking process and new products

    NASA Astrophysics Data System (ADS)

    Ueno, Keiji

    In 1988 there were over 90 EB accelerators for industrial use in Japan. The number one industrial application was Wire and Cable, the 2nd was PE foam and Curing, and the 3rd was Precure of tyre. R & D has a very high ration of EB accelerator use. Low energy industrial applications were coated steel (white board), plaster slab, coated paper, magnetic tape and floppy disks. As a new application of the radiation crosslinking process, we have studied radiation crosslinking of engineering plastics and succeeded in improving the hea tresistivity without using glass fibers. Many kinds of polyfunctional monomers used as crosslinking reagents of irradiated Nylon and PBT were studied.

  11. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  12. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing

    NASA Astrophysics Data System (ADS)

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-01

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  13. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  14. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation. PMID:16778887

  15. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    SciTech Connect

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  16. ADVANCED RADIATION THEORY SUPPORT ANNUAL REPORT 2002, FINAL REPORT

    SciTech Connect

    J. DAVIS; J. APRUZESE; , Y. CHONG; R. CLARK; A. DASGUPTA; J. GIULIANI; P. KEPPLE; R. TERRY; J. THORNHILL; A. VELIKOVICH

    2003-05-01

    Z-PINCH PHYSICS RADIATION FROM WIRE ARRAYS. This report describes the theory support of DTRA's Plasma Radiation Source (PRS) program carried out by NRL's Radiation Hydrodynamics Branch (Code 6720) in FY 2002. Included is work called for in DTRA MIPR 02-2045M - ''Plasma Radiation Theory Support'' and in DOE's Interagency Agreement DE-AI03-02SF22562 - ''Spectroscopic and Plasma Theory Support for Sandia National Laboratories High Energy Density Physics Campaign''. Some of this year's work was presented at the Dense Z-Pinches 5th International Conference held June 23-28 in Albuquerque, New Mexico. A common theme of many of these presentations was a demonstration of the importance of correctly treating the radiation physics for simulating Plasma Radiation Source (PRS) load behavior and diagnosing load properties, e.g, stagnation temperatures and densities. These presentations are published in the AIP Conference Proceedings and, for reference, they are included in Section 1 of this report. Rather than describe each of these papers in the Executive Summary, they refer to the abstracts that accompany each paper. As a testament to the level of involvement and expertise that the Branch brings to DTRA as well as the general Z-Pinch community, eight first-authored presentations were contributed at this conference as well as a Plenary and an Invited Talk. The remaining four sections of this report discuss subjects either not presented at the conference or requiring more space than allotted in the Proceedings.

  17. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  18. Diffusion processes in general relativistic radiating spheres

    SciTech Connect

    Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )

    1989-09-01

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  19. Fast dynamic processes of solar radiation

    SciTech Connect

    Tomson, Teolan

    2010-02-15

    This paper studies dynamic processes of fast-alternating solar radiation which are assessed by alternation of clouds. Most attention is devoted to clouds of type Cumulus Humilis, identified through visual recognition and/or a specially constructed automatic sensor. One second sampling period was used. Recorded data series were analyzed with regard to duration of illuminated 'windows' between shadows, their stochastic intervals, fronts and the magnitude of increments of solar irradiance. (author)

  20. Radiation and Photochemistry Section annual report, October 1991--September 1992

    SciTech Connect

    Not Available

    1992-11-01

    A survey is presented of research on reactive intermediates in the condensed phase and chemistry induced by energetic radiation. The survey is presented in two major parts: (1) ions, excited states, and other transients in condensed phase; and (2) role of solvents in chemical reactivity. Accelerator activities (20-MeV linac, 3-MeV Van de Graaff) are summarized.

  1. Public relations and the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  2. Microwave processing of ceramic oxide filaments. Annual report, FY1997

    SciTech Connect

    Vogt, G.J.

    1998-12-31

    The objective of the microwave filament processing project is to develop microwave techniques to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company. Continuous ceramic filaments are a principal component in many advanced high temperature materials like continuous fiber ceramic composites (CFCC) and woven ceramic textiles. The use of continuous ceramic filaments in CFCC radiant burners, gas turbines, waste incineration, and hot gas filters in U.S. industry and power generation is estimated to save at least 2.16 quad/yr by year 2010 with energy cost savings of at least $8.1 billion. By year 2010, continuous ceramic filaments and CFCC`s have the potential to abate pollution emissions by 917,000 tons annually of nitrous oxide and 118 million tons annually of carbon dioxide (DOE Report OR-2002, February, 1994).

  3. Processes linking the hydrological cycle and the atmospheric radiative budget

    NASA Astrophysics Data System (ADS)

    Fueglistaler, Stephan; Dinh, Tra

    2016-04-01

    We study the response of the strength of the global hydrological cycle to changes in carbon dioxide (CO2) using the HiRAM General Circulation Model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), with the objective to better connect the well-known energetic constraints to physical processes. We find that idealized model setups using a global slab ocean and annual mean insolation give similar scalings as coupled atmosphere-ocean models with realistic land and topography. Using the surface temperatures from the slab ocean runs, we analyse the response in the atmospheric state and hydrological cycle separately for a change in CO2 (but fixed surface temperature), and for a change in surface temperature (but fixed CO2). The former perturbation is also referred to as the "fast" response, whereas the latter is commonly used to diagnose a model's climate sensitivity. As expected from the perspective of the atmospheric radiative budget, an increase in CO2 at fixed surface temperature decreases the strength of the hydrological cycle, and an increase in surface temperature increases the strength of the hydrological cycle. However, the physical processes that connect the atmospheric radiative energy budget to the sensible and latent heat fluxes at the surface remain not well understood. The responses to the two perturbations are linearly additive, and we find that the experiment with fixed surface temperature and changes in CO2 is of great relevance to understanding the total response. This result points to the importance of local radiative heating rate changes rather than just the net atmospheric radiative loss of energy. Although larger in magnitude, the response to changes in surface temperature is dominated by the temperature dependence of the water vapor pressure, but in both cases changes in near-surface relative humidity are very important.

  4. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    SciTech Connect

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  5. 27th Annual national conference on radiation control

    SciTech Connect

    1995-12-31

    A wide variety of topics related to radiation control are presented in the 21 papers selected for the database. Topics covered include: radioactive soil cleanup standards, low-level radioactive waste, Licensing State Designation program, health physics, radioactive contamination of scrap metal, radioactive contamination of food, U.S. Nuclear Regulatory Commission materials licensing program, high and pulsed dose rate medical therapy, licensing of a commercial mixed waste facility, radioactive sewer discharge regulations, air emission standards for radionuclides, and regulation of naturally occurring radioactive materials in oil and gas fields. Other topics covered, but not selected for the database, are primarily related to medical x-ray programs.

  6. Annual cycle of radiation fluxes over the Arctic ocean: Sensitivity to cloud optical properties

    SciTech Connect

    Curry, J.A. ); Ebert, E.E. )

    1992-11-01

    The relationship between cloud optical properties and the radiative fluxes over the Arctic Ocean is explored by conducting a series of modeling experiments. The annual cycle of arctic cloud optical properties that are required to reproduce both the outgoing radiative fluxes at the top of the atmosphere as determined from satellite observations and the available determinations of surface radiative fluxes are derived. Existing data on cloud fraction and cloud microphysical properties are utilized. Four types of cloud are considered: low stratus clouds, midlevel clouds, citrus clouds, and wintertime ice crystal precipitation. Internally consistent annual cycles of surface temperature, surface albedo, cloud fraction and cloud optical properties, components of surface and top of atmosphere radiative fluxes, and cloud radiative forcing are presented. The modeled total cloud optical depth (weighted by cloud fraction) ranges from a low value in winter of 2 to a high summertime value of 8. Infrared emmissivities for liquid water clouds are shown to be substantially less than unity during the cold half of the year. Values of modeled surface cloud radiative forcing are positive except for two weeks in midsummer; over the course of the year clouds have a net warming effect on the surface in the Arctic. Total cloud radiative forcing at the top of the atmosphere is determined to be positive only briefly in early autumn. Surface longwave fluxes are shown to be very sensitive to the presence of lower-tropospheric ice crystal precipitation during the cold half of the year.

  7. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  8. Factors determining the viability of radiation processing in developing countries

    NASA Astrophysics Data System (ADS)

    van der Linde, HJ; Basson, RA

    In the fifteen years since the introduction of radiation processing to South Africa, four commercial irradiation facilities have been established. These are involved in the processing of a large variety of products, from syringes and prostheses to strawberries and sugar yeast. Three of the facilities are devoted mainly to food irradiation and several thousand tonnes are now processed annually. During this period it was repeatedly experienced that the successful introduction of radiation processing in general, and food radurization in particular, on a commercial scale was critically dependent on the following factors: acceptance by the producer, industry and consumer; initial capital expenditure; running costs and overheads in general; and continous throughput. All of these factors contribute to the processing cost which is the ultimate factor in determing the value/price ratio for the potential entrepreneur and customer of this new technology. After a market survey had identified the need for a new food irradiation facility to cope with the growing interest in commercial food radurization in the Western Cape, the above-mentioned factors were of cardinal importance in the design and manufacture of a new irradiator. The resulting batch-pallet facility which was commisioned in August 1986, is rather inefficient as far as energy utilization is concerned but this shortcoming is compensated for by its low cost, versatility and low hold-up. Although the facility has limitations as far as the processing of really large volumes of produce is concerned, it is particularly suitable not only for developing countries, but for developed countries in the introductory phase of commercial food radurization.

  9. Radiation and Photochemistry Section annual report, October 1992--November 1993

    SciTech Connect

    1993-11-01

    The research described in this survey is a study of transient intermediates and chemistry induced by energetic radiation in the condensed phase. The survey is presented in two major parts: the first one studies ions, excited states, and other transients in the condensed phase; the second one studies the role of solvents in chemical reactivity. Some highlights of the past year were observations of ion-molecule reactions of excited aromatic cations via flash photolysis and transient dc conductivity; anion solvation study revealing role of solvent molecular structure; zeolite matrix study of C{sub 7}H{sub 8} radical cation chemistry; and H atom reaction with O{sub 2}, I{sup {minus}}, and comparison of diffusion of H, D, and muonium in ice. Refs, 25 figs, 5 tabs.

  10. Radiative processes in external gravitational fields

    SciTech Connect

    Papini, Giorgio

    2010-07-15

    Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These can be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the field-free expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. Transition probabilities, emission power, and spectra are, to leading order, linear in the metric deviation. It is also shown how a small dissipation term in the particle wave equations can trigger a strong backreaction that introduces resonances in the radiative process and deeply affects the resulting gravitational background.

  11. Radiation processing with the Messina electron linac

    NASA Astrophysics Data System (ADS)

    Auditore, L.; Barnà, R. C.; De Pasquale, D.; Emanuele, U.; Loria, D.; Morgana, E.; Trifirò, A.; Trimarchi, M.

    2008-05-01

    In the last decades radiation processing has been more and more applied in several fields of industrial treatments and scientific research as a safe, reliable and economic technique. In order to improve existing industrial techniques and to develop new applications of this technology, at the Physics Department of Messina University a high power 5 MeV electron linac has been studied and set-up. The main features of the accelerating structure will be described together with the distinctive features of the delivered beam and several results obtained by electron beam irradiations, such as improvement of the characteristics of polymers and polymer composite materials, synthesis of new hydrogels for pharmaceutical and biomedical applications, reclaim of culture ground, sterilization of medical devices, development of new dosimeters for very high doses and dose rates required for monitoring of industrial irradiations.

  12. Radiative torque alignment: essential physical processes

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2008-07-01

    We study the physical processes that affect the alignment of grains subject to radiative torques (RATs). To describe the action of RATs, we use the analytical model (AMO) of RATs introduced in our previous paper. We focus our discussion on the alignment by anisotropic radiation flux with respect to the magnetic field, which defines the axis of grain Larmor precession. Such an alignment does not invoke paramagnetic dissipation (i.e. the Davis-Greenstein mechanism), but, nevertheless, grains tend to be aligned with long axes perpendicular to the magnetic field. When we account for thermal fluctuations within grains, we show that for grains that are characterized by a triaxial ellipsoid of inertia, the zero-J attractor point obtained in our earlier study develops into a low-J attractor point. The value of angular momentum at the low-J attractor point is of the order of the thermal angular momentum corresponding to the grain temperature. We show that, for situations when the direction of radiative flux is nearly perpendicular to a magnetic field, the alignment of grains with long axes parallel to the magnetic field (i.e. `wrong alignment') reported in our previous paper, disappears in the presence of thermal fluctuations. Thus, all grains are aligned with their long axes perpendicular to the magnetic field. We study the effects of stochastic gaseous bombardment and show that gaseous bombardment can drive grains from low-J to high-J attractor points in cases when high-J attractor points are present. As the alignment of grain axes with respect to angular momentum is higher for higher values of J, counter-intuitively, gaseous bombardment can increase the degree of grain alignment with respect to the magnetic field. We also study the effects of torques induced by H2 formation and show that they can change the value of angular momentum at high-J attractor points, but marginally affect the value of angular momentum at low-J attractor points. We compare the AMO results with

  13. Radiation exposures for DOE and DOE contractor employees, 1990. Twenty-third annual report

    SciTech Connect

    Smith, M.H.; Hui, T.E.; Millet, W.H.; Scholes, V.A.

    1994-03-01

    This is the 23rd in a series of annual radiation exposure reports published by the Department of Energy (DOE) or its predecessors. This report summarizes the radiation exposures received by both employees and visitors at DOE and DOE contractor facilities during 1990. Trends in radiation exposures are evaluated by comparing the doses received in 1990 to those received in previous years. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimated from expert groups. This report is the third that is based on detailed exposure data for each individual monitored at a DOE facility. Prior to 1988, only summarized data from each facility were available. This report contains information on different types of radiation doses, including total effective, internal, penetrating, shallow, neutron, and extremity doses. It also contains analysis of exposures by age, sex, and occupation of the exposed individuals. This report also continues the precedent established in the Twenty-First (1988) Annual Report by conducting a detailed, one-time review and analysis of a particular topic of interest. The special topic for this report is a comparison of total effective, internal, and extremity dose equivalent values against penetrating dose equivalent values.

  14. Radiation processing and functional properties of soybean ( Glycine max)

    NASA Astrophysics Data System (ADS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V.; Sharma, Arun

    2010-04-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  15. The annual radiation balance of the earth-atmosphere system during 1969-70 from Nimbus 3 measurements.

    NASA Technical Reports Server (NTRS)

    Raschke, E.; Vonder Haar, T. H.; Bandeen, W. R.; Pasternak , M.

    1973-01-01

    Measurements of reflected solar radiation and emitted thermal radiation taken with a radiometer on the meteorological satellite Nimbus 3 during 10 semi-monthly periods (April-15 August, 3-17 October, 1969; 21 January-3 February, 1970) provided for the first time high-resolution data on the earth's annual global radiation budget. Results on the planetary albedo, the amount of absorbed solar radiation, the infrared radiation loss to space, and the radiation balance of the earth-atmosphere system are discussed at various scales: global, hemispherical, and zonal averages; as well as global and polar maps with a spatial resolution of about synoptic scale.

  16. Radiation processing of minimally processed vegetables and aromatic plants

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Sousa, M. B.; Sapata, M. M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M. L.; Veloso, M. G.

    2009-07-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander ( Coriandrum sativum L .), mint ( Mentha spicata L.), parsley ( Petroselinum crispum Mill, (A.W. Hill)), lettuce ( Lactuca sativa L.) and watercress ( Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (⩾2 log). Based on the determined D10, the amount of radiation necessary to kill 10 5E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  17. Electrical Analogs of Atomic Radiative Decay Processes

    ERIC Educational Resources Information Center

    Fontana, Peter R.; Srivastava, Rajendra P.

    1977-01-01

    Analyzes simple electrical circuits, showing that for high frequencies they have frequency and time responses identical to the spontaneous radiative decay of atoms. Compares a two-circuit electrical system with a two-level atom. (MLH)

  18. Process of Coping with Radiation Therapy.

    ERIC Educational Resources Information Center

    Johnson, Jean E.; And Others

    1989-01-01

    Evaluated ability of self-regulation and emotional-drive theories to explain effects of informational intervention entailing objective descriptions of experience on outcomes of coping with radiation therapy among 84 men with prostate cancer. Consistent with self-regulation theory, similarity between expectations and experience and degree of…

  19. Reporting of Uncertainty at the 2013 Annual Meeting of the American Society for Radiation Oncology

    SciTech Connect

    Lee, W. Robert

    2014-05-01

    Purpose: The annual meeting of the American Society for Radiation Oncology (ASTRO) is designed to disseminate new scientific findings and technical advances to professionals. Best practices of scientific dissemination require that some level of uncertainty (or imprecision) is provided. Methods and Materials: A total of 279 scientific abstracts were selected for oral presentation in a clinical session at the 2013 ASTRO Annual Meeting. A random sample of these abstracts was reviewed to determine whether a 95% confidence interval (95% CI) or analogous measure of precision was provided for time-to-event analyses. Results: A sample of 140 abstracts was reviewed. Of the 65 abstracts with Kaplan-Meier or cumulative incidence analyses, 6 included some measure of precision (6 of 65 = 9%; 95% CI, 2-16). Of the 43 abstracts reporting ratios for time-to-event analyses (eg, hazard ratio, risk ratio), 22 included some measure of precision (22 of 43 = 51%; 95% CI, 36-66). Conclusions: Measures of precision are not provided in a significant percentage of abstracts selected for oral presentation at the Annual Meeting of ASTRO.

  20. Guide for preparing annual reports on radiation-safety testing of electronic products (general)

    SciTech Connect

    Not Available

    1987-10-01

    For manufacturers of electronic products other than those for which a specific guide has been issued, the guide replaces the Guide for the Filing of Annual Reports (21 CFR Subchapter J, Section 1002.11), HHS Publication FDA 82-8127. The electronic product (general) annual reporting guide is applicable to the following products: products intended to produce x radiation (accelerators, analytical devices, therapy x-ray machines); microwave diathermy machines; cold-cathode discharge tubes; and vacuum switches and tubes operating at or above 15,000 volts. To carry out its responsibilities under Public Law 90-602, the Food and Drug Administration's Center for Devices and Radiological Health (CDRH) has issued a series of regulations contained in Title 21 of the Code of Federal Regulations (CFR). Part 1002 of 21 CFR deals with records and reports. Section 1002.61 categorizes electronic products into Groups A through C. Section 1002.30 requires manufacturers of products in Groups B and C to establish and maintain certain records, while Section 1002.11 requires such manufacturers to submit an Annual Report summarizing the contents of the required records. Section 1002.7 requires that reports conform to reporting guides issued by CDRH unless an acceptable justification for an alternate format is provided.

  1. Evolution of the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2013-04-01

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  2. Evolution of the radiation processing industry

    SciTech Connect

    Cleland, Marshall R.

    2013-04-19

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  3. Measurement of radiation property of long infrared emitter and examination of infrared radiation heating process

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Miyanaga, T.; Miyakawa, M.

    1989-05-01

    Long infrared radiation is becoming widely used for process heating, drying and space heating. In order to make more effective use of long infrared radiation, the investigations on measuring method of radiation property of long infrared emitter, the measuring results, and selection of suitable emitters for heating objects, were carried out. Using Fourier transform infrared radiation spectrophotometer, trial manufacture of an apparatus for measuring spectral emissivity of long infrared emitters was conducted and the measuring method was established. By this, the following knowledges on ceramic long infrared emitter were obtained: spectral emissivity almost never depends on temperature of the emitter, variation with time is hardly shown, and radiation efficiency is shown to be 50 to 60 percent. Infrared radiation heating processes on foods and synthetic resins were investigated, and an examination on the method for selecting emitters, which are suitable to materials to be heated, was conducted.

  4. Utilization of carbohydrates by radiation processing

    NASA Astrophysics Data System (ADS)

    Kume, T.; Nagasawa, N.; Yoshii, F.

    2002-03-01

    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use.

  5. Reaction of runaway electron distributions to radiative processes

    NASA Astrophysics Data System (ADS)

    Stahl, Adam; Embréus, Ola; Hirvijoki, Eero; Pusztai, István; Decker, Joan; Newton, Sarah L.; Fülöp, Tünde

    2015-11-01

    The emission of electromagnetic radiation by a charged particle in accelerated motion is associated with a reduction in its energy, accounted for by the inclusion of a radiation reaction force in the kinetic equation. For runaway electrons in plasmas, the dominant radiative processes are the emission of bremsstrahlung and synchrotron radiation. In this contribution, we investigate the impact of the associated radiation reaction forces on the runaway electron distribution, using both analytical and numerical studies, and discuss the corresponding change to the runaway electron growth rate, which can be substantial. We also report on the formation of non-monotonic features in the runaway electron tail as a consequence of the more complicated momentum-space dynamics in the presence of radiation reaction.

  6. Radiative Torque Alignment: Essential Physical Processes

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2007-05-01

    Aligned grains provide a unique way to trace magnetic field topology in many astrophysical environments. In Lazarian & Hoang (2006), we derived analytical expressions for radiative torque (RAT) components, and studied the dynamics of grains assuming that the maximal inertia axis is always parallel to angular momentum. In this paper, to get insight into the dynamics of grains when thermal fluctuations are accounted for, we use AMO, and perform analytically averaging for RAT components. In addition, we study the RAT alignment for irregular grains (shape 1 and 3). We also evaluate the influence of suprathermal torques arising from H2 formation, as well as randomizing collisions with atomic gas on the alignment of grains driven by radiative torques (RATs). Our study is both based on the analytical model (AMO) and numerical calculations of RATs for irregular grains. To describe the H2 formation torques and random collisions we use the Langevin equation approach. We show that when thermal fluctuations are included, for both AMO and irregular grains, RATs tend to align grains at attractor points with low angular momentum (low-J attractor point). We found that random collisions by atomic gas act to substantially disalign the grain alignment in the case the phase trajectory map has only the low-J attractor point. In particular, if there exist attractor points at high angular momentum in the phase trajectory map, gas bombardment can move grains from the low- J attractor point to the high-J attractor point. Thus the degree of alignment increases.

  7. Annual Conference on Nuclear and Space Radiation Effects, 16th, Santa Cruz, Calif., July 17-20, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Bombardt, J.

    1979-01-01

    Papers are presented on the following topics: radiation effects in bipolar microcircuits; basic radiation mechanisms in materials and devices; energy deposition and dosimetry; and system responses from SGEMP, IEMP, and EMP. Also considered are basic processes in SGEMP and IEMP, radiation effects in MOS microcircuits, and space radiation effects and spacecraft charging.

  8. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants.

    PubMed

    Salama, Hediat M H; Al Watban, Ahlam A; Al-Fughom, Anoud T

    2011-01-01

    Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400-700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400-700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400-700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g(-1) f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g(-1) f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g(-1) f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of all

  9. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants

    PubMed Central

    Salama, Hediat M.H.; Al Watban, Ahlam A.; Al-Fughom, Anoud T.

    2010-01-01

    Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400–700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400–700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400–700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g−1 f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g−1 f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g−1 f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of

  10. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants.

    PubMed

    Salama, Hediat M H; Al Watban, Ahlam A; Al-Fughom, Anoud T

    2011-01-01

    Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400-700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400-700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400-700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g(-1) f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g(-1) f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g(-1) f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of all

  11. NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES (PHASE I) 2000 ANNUAL REPORT, NUMBER 242

    EPA Science Inventory

    This annual report presents the proceedings of the Third Annual NATO/CCMS pilot study meeting in Copenhagen, Denmark. Guest speakers focused on efforts in the area of research of clean products and processes, life cycle analysis, computer tools and pollution prevention.

  12. 45 CFR 270.10 - How will we annually review the award process?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES HIGH PERFORMANCE BONUS AWARDS § 270.10 How will we annually review the award process? (a) Annual determination... on: (1) Our experience in awarding high performance bonuses in previous years; and (2)...

  13. NATO CCMS PILOT STUDY ON CLEAN PRODUCTS AND PROCESSES -(PHASE I) - 2002 ANNUAL REPORT

    EPA Science Inventory

    The annual report summarizes the activities of the NATO CCMS Pilot Study on clean products and processes for 2002, including the proceedings of the 2002 annual meeting held in Vilnius, Lithuania. The report presents a wealth of information on cleaner production activities in ove...

  14. Influence of radiation processing of grapes on wine quality

    NASA Astrophysics Data System (ADS)

    Gupta, Sumit; Padole, Rupali; Variyar, Prasad S.; Sharma, Arun

    2015-06-01

    Grapes (Var. Shiraz and Cabernet) were subjected to radiation processing (up to 2 kGy) and wines were prepared and matured (4 months, 15 °C). The wines were analyzed for chromatic characteristics, total anthocyanin (TA), phenolic (TP) and total antioxidant (TAC) content. Aroma of wines was analyzed by GC/MS and sensory analysis was carried out using descriptive analysis. TA, TP and TAC were 77, 31 and 37 percent higher for irradiated (1500 Gy) Cabernet wines, while irradiated Shiraz wines demonstrated 47, 18 and 19 percent higher TA, TP and TAC, respectively. HPLC-DAD analysis revealed that radiation processing of grapes resulted in increased extraction of phenolic constituents in wine with no qualitative changes. No major radiation induced changes were observed in aroma constituents of wine. Sensory analysis revealed that 1500 Gy irradiated samples had higher fruity and berry notes. Thus, radiation processing of grapes resulted in wines with improved organoleptic and antioxidant properties.

  15. A basic interpretation of the technical language of radiation processing

    NASA Astrophysics Data System (ADS)

    Deeley, Catherine M.

    2004-09-01

    For the food producer contemplating the purchase of radiation processing equipment the task of evaluating the strengths and weaknesses of the available technologies, electron beam (E-beam), X-ray and gamma, to determine the best option for their application, is onerous. Not only is the level of investment daunting but also, to be sure of comparing like with like, the evaluator requires a basic understanding of the science underpinning radiation processing. There have been many papers published that provide technical specialists with a rigorous interpretation of this science (In: Gaughran, E.R.L., Goudie, A.J. (Eds.), Technical Developments and Prospects of Sterilization by Ionizing Radiation, International Conference, Vienna. Multiscience Publications Ltd., pp. 145-172). The objective for this paper is to give non-specialists an introduction to the language of radiation processing and to clarify some of the terminology associated with the use of radioactive sources for this application.

  16. Processes controlling the annual cycle of Arctic aerosol number and size distributions

    NASA Astrophysics Data System (ADS)

    Croft, Betty; Martin, Randall V.; Leaitch, W. Richard; Tunved, Peter; Breider, Thomas J.; D'Andrea, Stephen D.; Pierce, Jeffrey R.

    2016-03-01

    Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate

  17. Perioperative employee annual evaluations: a 30-second process.

    PubMed

    Olmstead, John; Falcone, Deborah; Lopez, Jacy; Sharpe, Lorraine; Michna, Jody

    2012-12-01

    In response to complaints about the annual evaluation tool used at The Community Hospital in Munster, Indiana, the surgical services management team created a tool to rate the perioperative RNs on skills pertinent to the surgical services department. The hospital-wide evaluation tool uses vague criteria, which are regularly challenged by employees who disagree with their manager's evaluation. The new Surgical Services Employee Evaluation takes a manager approximately 30 seconds to complete and can be added to the generic hospital evaluation form to make the employee evaluation more accurate and meaningful. The tool evaluates three major categories: teamwork, patient care, and job preparation. Use of this additional tool has greatly reduced postevaluation employee complaints, and the tool is now being used in other departments, with slight department-specific variations. Employees now express less frustration with annual evaluations, and managers report a high degree of satisfaction with the tool because it helps them in the difficult task of employee evaluation and counseling.

  18. Annual and interannual variations of Earth-emitted radiation based on a 10-year data set

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis; Charlock, Thomas P.; Rose, Fred G.

    1989-01-01

    The method of empirical orthogonal functions (EOF) was applied to a 10-year data set of outgoing longwave radiation. Spherical harmonic functions are used as a basis set for producing equal area map results. The following findings are noted. The first EOF accounts for 66 percent of the variance. After that, each EOF accounts for only a small variance, forming a slowly converging series. The first two EOF's describe mainly the annual cycle. The third EOF is primarily the semiannual cycle although many other EOF's also contain significant semiannual parts. These results reaffirm those based on a shorter data set. In addition, a much stronger spring/fall mode was found in the central equatorial Pacific Ocean for the second EOF than was found earlier. This difference is attributed to the use of broadband radiometer data which were available for the present study. The earlier study used data from a window channel instrument which is not as sensitive to water vapor variations. The fourth EOF describes much of the 1976 to 1977 and 1982 to 1983 ENSO phenomena. There is typically a gap in the spectrum between a semiannual peak and the annual cycle for all but the first EOF. A semiannual OLR dipole straddles the Asian-Australian monsoon track.

  19. Food processors requirements met by radiation processing

    NASA Astrophysics Data System (ADS)

    Durante, Raymond W.

    2002-03-01

    Processing food using irradiation provides significant advantages to food producers by destroying harmful pathogens and extending shelf life without any detectable physical or chemical changes. It is expected that through increased public education, food irradiation will emerge as a viable commercial industry. Food production in most countries involves state of the art manufacturing, packaging, labeling, and shipping techniques that provides maximum efficiency and profit. In the United States, food sales are extremely competitive and profit margins small. Most food producers have heavily invested in equipment and are hesitant to modify their equipment. Meat and poultry producers in particular utilize sophisticated production machinery that processes enormous volumes of product on a continuous basis. It is incumbent on the food irradiation equipment suppliers to develop equipment that can easily merge with existing processes without requiring major changes to either the final food product or the process utilized to produce that product. Before a food producer can include irradiation as part of their food production process, they must be certain the available equipment meets their needs. This paper will examine several major requirements of food processors that will most likely have to be provided by the supplier of the irradiation equipment.

  20. Critical review of radiation processing of hydrogel and polysaccharide

    NASA Astrophysics Data System (ADS)

    Makuuchi, K.

    2010-03-01

    Radiation processing of an aqueous solution of polymer initiated by rad OH radicals formed by radiolysis of water is applied for preparation of hydrogel wound dressing and plant growth promoter. Recently, Fenton reagent that generates rad OH radicals was successfully applied to synthesize PVP hydrogel. The Fenton reaction also can be applied to the depolymerization of chitosan. These progresses in the syntheses of hydrogel and oligo-chitosan by radiation and non-radiation methods such as hydrolysis, oxidative degradation, photolysis, sonolysis and degradation by microwave are reviewed to survey a possibility to reduce the costs of production. Radiation synthesized hydrogel should target value-added medical products because only radiation can crosslink and sterilize simultaneously. Oligo-chitosan can be produced economically by irradiation of solid chitin by Fenton reagent, if necessary.

  1. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultraviolet radiation for the processing and..., PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.39 Ultraviolet radiation for the processing and treatment of food. Ultraviolet radiation for the processing and treatment of food may...

  2. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ultraviolet radiation for the processing and..., PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.39 Ultraviolet radiation for the processing and treatment of food. Ultraviolet radiation for the processing and treatment of food may...

  3. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ultraviolet radiation for the processing and..., PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.39 Ultraviolet radiation for the processing and treatment of food. Ultraviolet radiation for the processing and treatment of food may...

  4. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ultraviolet radiation for the processing and..., PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.39 Ultraviolet radiation for the processing and treatment of food. Ultraviolet radiation for the processing and treatment of food may...

  5. Research studies on radiative collisional processes

    NASA Astrophysics Data System (ADS)

    Harris, S. E.; Young, J. F.

    1982-01-01

    This program has supported theoretical and experimental studies in three broad areas. The first is a study of pair absorption processes which may be viewed as a collisional process in which two atoms and a photon simultaneously react and exchange energy. The present goal is to investigate the possibility of using such processes to construct new types of lasers. Secondly, we have invented and developed a promising new technique for pumping high pressure gas systems using high power microwave pulses. This work has led to two related projects: excitation of rare gas halide excimer lasers to achieve long pulse lengths, high reliability and good efficiencies, and the excitation of metal vapors to create new lasers. Finally, we have been applying the anti-Stokes light source developed here to practical measurements of VUV spectral features both to elucidate the physics of such innershell transitions and to search for transitions suitable for short wavelength lasers. This last project has also been partially supported by NASA. Section 2 summarizes our research findings for these projects, and Sections 3 and 4 list the publications and personnel, respectively, supported by this program.

  6. Collisional and Radiative Processes in Optically Thin Plasmas

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen J.; Raymond, John

    2013-10-01

    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.

  7. Collisional and Radiative Processes in Optically Thin Plasmas

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen J.; Raymond, John

    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.

  8. On possibility of diamond formations in radiation process

    NASA Technical Reports Server (NTRS)

    Fisenko, A. V.; Semjonova, L. F.; Bolsheva, L. N.; Grachjova, T. V.; Verchovsky, A. B.; Shukolyukov, Yu. A.

    1993-01-01

    The possibility of diamond formation in radiation processes was checked by studying diamond contents in carburanium sample. The diamonds were not found and this result is discussed. At present one possible process of formation of nanometer-size diamond crystals in some meteorites and Earth's diamonds (carbonado), the radiation mechanism, is suggested: the formation of diamonds from carbonaceous matter in tracks of U fragment fissions and heavy fragmentation due to the action of energetic particles of cosmic rays. Bjakov et. al. have carried out the calculations and shown that the volume of formed diamonds in carbonaceous chondrites by radiation processes corresponds to discovery of diamond volume in chondrites. The discovery by Ozima et. al. of the unsupported fission of Xe and Kr in carbonado supports the supposition that carbonado could be formed by radiation processes. The possibility of diamond formation in radiation processes leads to the study of diamond contents in Earth's samples enriched by uranium and carbon. The attempt to release the diamonds from carburanium was undertaken.

  9. Signal Processing Model for Radiation Transport

    SciTech Connect

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  10. The broad base of radiation processing using cobalt-60 in the United States

    NASA Astrophysics Data System (ADS)

    Ransohoff, J. A.

    Only recently, an integrated, highly interdependent radiation processing industry based on the use of cobalt-60 has become established in the United States. The principal participants include nearly all the suppliers of disposable medical supplies, several major chemical companies, several privately owned corporations of modest size, the Crown Corporation of a foreign government, and several hundred firms which purchase radiation processing service. The total investment in radiation processing plant and equipment is on the order of fifty million dollars, and the annual retail value of products processed is in the many hundreds of millions of dollars. In all there are twenty-six process irradiators operating in fourteen different states, utilizing nearly twenty million Curies of cobalt-60. Sixteen of these systems are owned and operated by companies which process their own products more or less exclusively. The other ten are owned and operated by six different contract processors who produce and sell little if any product of their own manufacture. The successful efforts of the industry to develop new products and processes are supplemented by the activities of dozens of corporate, government and university research and test facilities located throughout the country. Several firms have designed and constructed viable radiation processing plants, and among the operating medical supply irradiators, there are four different types of conveying mechanism that have proven to be viable. There are two established suppliers of cobalt-60 sources in the megacurie range. Based upon the number of new plants that have been announced, ordered and are under construction, the base appears to be growing at the rate of about 20 percent per year, and many of the existing plants are experiencing increased utilization.

  11. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  12. Modeling of clouds and radiation for developing parameterizations for general circulation models. Annual report, 1995

    SciTech Connect

    Toon, O.B.; Westphal, D.L.

    1996-07-01

    We have used a hierarchy of numerical models for cirrus and stratus clouds and for radiative transfer to improve the reliability of general circulation models. Our detailed cloud microphysical model includes all of the physical processes believed to control the lifecycles of liquid and ice clouds in the troposphere. We have worked on specific GCM parameterizations for the radiative properties of cirrus clouds, making use of a mesocale model as the test-bed for the parameterizations. We have also modeled cirrus cloud properties with a detailed cloud physics model to better understand how the radiatively important properties of cirrus are controlled by their environment. We have used another cloud microphysics model to investigate of the interactions between aerosols and clouds. This work is some of the first to follow the details of interactions between aerosols and cloud droplets and has shown some unexpected relations between clouds and aerosols. We have also used line-by- line radiative transfer results verified with ARM data, to derive a GCMS.

  13. Radiation processing of dry food ingredients - a review

    NASA Astrophysics Data System (ADS)

    Farkas, J.

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives, does not leave residues and is highly efficient. Its dose requirement is moderate. Radiation doses of 3 to 10 kGy proved to be sufficient to reduce the viable cell counts to a satisfactory level. Ionizing radiations do not cause any significant rise in temperature and the flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for a satisfactory decontamination. The microflora surviving the cell-count reduction by irradiation is more sensitive to subsequent food processing treatments than the microflora of untreated ingredients. Recontamination can be prevented since the product can be irradiated in its final packaging. Irradiation can be carried out in commercial containers and it results in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of dry ingredients is an emerging technology in several countries and more-and-more clearances on irradiated foods are issued or expected to be granted in the near future.

  14. Stimulated Cerenkov-radiation processes in dusty AGN

    SciTech Connect

    Krishan, V.

    1994-01-01

    An electron moving with a superluminal velocity in a dielectric medium gives rise to spontaneous Cerenkov radiation. If, instead of a single electron, a high density superluminal electron beam is made to pass through a dielectric, the spontaneously generated radiation will grow exponential with distance and is known as stimulated Cerenkov-Compton radiation. If, in addition, an incident electromagnetic field interacts with a strong superluminal or subluminal electron beam, a frequency up-converted stimulated scattered radiation is produced, which by analogy to a similar process in vacuum with subluminal electron beams, is known as Cerenkov-Raman radiation. We explore and point out the role of these processes in the dust environs of Active Galactic Nuclei (AGN). Since, the refractive index of the dust matter is a key factor in these processes, their inclusion links the properties of the dust grains with the characteristics of the non-thermal continuum especially in the infrared range, which, the observations show to be particularly bumpy and therefore requires additional contributions over the thermal continuum.

  15. Radiation exposures for DOE and DOE contractor employees, 1984. Seventeenth annual report

    SciTech Connect

    Not Available

    1985-12-01

    A total of 89,526 DOE and DOE contractor employees were monitored for whole-body ionizing radiation exposures in 1984. This represents 53.9% of all DOE and DOE contractor employees and is an increase (1243) from the number of employees monitored in 1983. In addition to the employees, 88,214 visitors were monitored. Of all employees monitored, 52.8% received a dose equivalent that was less than measurable, 45.4% a measurable exposure less than 1 rem, and 1.8% an exposure greater than 1 rem. The exposure received by 93.4% of the visitors to DOE facilities was less than measurable. Only 6.6% of the visitors received a measurable exposure less than 1 rem, and 0.01% of the visitors received an exposure greater than 1 rem. No employees or visitors received a dose equivalent greater than 5 rem. The collective dose equivalent for DOE and DOE contractor employees was 7926 person-rem. The collective dose equivalent for visitors was 352 person-rem. The total dose equivalent for employees and visitors combined was 8278 person-rem. The average dose equivalent for all individuals (employees and visitors) monitored was 47 mrem, and the average dose equivalent for all individuals who received a measurable exposure was 172 mrem. The highest average dose equivalent for all monitored individuals was observed at fuel fabrication facilities (258 mrem), and the lowest was observed for visitors (4 mrem) to DOE facilities. These averages are significantly less than the DOE 5-rem/year radiation protection standard for whole-body exposures. One new case of internal deposition was reported in 1984. The deposition was less than 50% of the annual dose-equivalent standard. The internal deposition was the result of an accidental, not planned, exposure. Six other cases reported during 1984 were considered to be the continued tracking of previous depositions.

  16. One Hair Postulate for Hawking Radiation as Tunneling Process

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Cai, Qing-Yu; Liu, Xu-Feng; Sun, Chang-Pu

    2014-03-01

    For Hawking radiation, treated as a tunneling process, the no-hair theorem of black hole together with the law of energy conservation is utilized to postulate that the tunneling rate only depends on the external qualities (e.g., the mass for the Schwarzschild black hole) and the energy of the radiated particle. This postulate is justified by the WKB approximation for calculating the tunneling probability. Based on this postulate, a general formula for the tunneling probability is derived without referring to the concrete form of black hole metric. This formula implies an intrinsic correlation between the successive processes of the black hole radiation of two or more particles. It also suggests a kind of entropy conservation and thus resolves the puzzle of black hole information loss in some sense.

  17. Effectiveness of radiation processing for elimination of Salmonella Typhimurium from minimally processed pineapple (Ananas comosus Merr.).

    PubMed

    Shashidhar, Ravindranath; Dhokane, Varsha S; Hajare, Sachin N; Sharma, Arun; Bandekar, Jayant R

    2007-04-01

    The microbiological quality of market samples of minimally processed (MP) pineapple was examined. The effectiveness of radiation treatment in eliminating Salmonella Typhimurium from laboratory inoculated ready-to-eat pineapple slices was also studied. Microbiological quality of minimally processed pineapple samples from Mumbai market was poor; 8.8% of the samples were positive for Salmonella. D(10) (the radiation dose required to reduce bacterial population by 90%) value for S. Typhimurium inoculated in pineapple was 0.242 kGy. Inoculated pack studies in minimally processed pineapple showed that the treatment with a 2-kGy dose of gamma radiation could eliminate 5 log CFU/g of S. Typhimurium. The pathogen was not detected from radiation-processed samples up to 12 d during storage at 4 and 10 degrees C. The processing of market samples with 1 and 2 kGy was effective in improving the microbiological quality of these products.

  18. Processing and circuit design enhance a data converter's radiation tolerance

    SciTech Connect

    Heuner, R.; Zazzu, V.; Pennisi, L.

    1988-12-01

    Rad-hard CMOS/SOS processing has been applied to a novel comparator-inverter circuit design to develop 6 and 8-bit parallel (flash) ADC (analog-to-digital converter) circuits featuring high-speed operation, low power consumption, and total-dose radiation tolerances up to 1 Mrad(Si).

  19. The Iron Project:. Radiative Atomic Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2011-06-01

    Astronomical objects, such as, stars, galaxies, blackhole environments, etc are studied through their spectra produced by various atomic processes in their plasmas. The positions, shifts, and strengths of the spectral lines provide information on physical processes with elements in all ionization states, and various diagnostics for temperature, density, distance, etc of these objects. With presence of a radiative source, such as a star, the astrophysical plasma is dominated by radiative atomic processes such as photoionization, electron-ion recombination, bound-bound transitions or photo-excitations and de-excitations. The relevant atomic parameters, such as photoionization cross sections, electron-ion recombination rate coefficients, oscillator strengths, radiative transition rates, rates for dielectronic satellite lines etc are needed to be highly accurate for precise diagnostics of physical conditions as well as accurate modeling, such as, for opacities of astrophysical plasmas. for opacities of astrophysical plasmas. This report illustrates detailed features of radiative atomic processes obtained from accurate ab initio methods of the latest developments in theoretical quantum mechanical calculations, especially under the international collaborations known as the Iron Project (IP) and the Opacity Project (OP). These projects aim in accurate study of radiative and collsional atomic processes of all astrophysically abundant atoms and ions, from hydrogen to nickel, and calculate stellar opacities and have resulted in a large number of atomic parameters for photoionization and radiative transition probabilities. The unified method, which is an extension of the OP and the IP, is a self-consistent treatment for the total electron-ion recombination and photoionization. It incorporates both the radiative and the dielectronic recombination processes and provides total recombination rates and level-specific recombination rates for hundreds of levels for a wide range of

  20. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOEpatents

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  1. Food Processing and Agriculture. Wisconsin Annual Farm Labor Report, 1968.

    ERIC Educational Resources Information Center

    Wisconsin State Employment Service, Madison.

    A yearly report on the migrant farm worker situation in Wisconsin evaluates the year 1968 in relation to past years and makes projections for the future. Comparisons are made of trends in year-round employment practices, seasonal food processing, the cherry industry, and the cucumber industry. The report includes a discussion on the social aspects…

  2. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but

  3. Radiation processing applications in the Czechoslovak water treatment technologies

    NASA Astrophysics Data System (ADS)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  4. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  5. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992; Twenty-fifth annual report, Volume 14

    SciTech Connect

    Raddatz, C.T.; Hagemeyer, D.

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC`s Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv).

  6. Ionizing radiation induced catalysis on metal oxide particles. 1998 annual progress report

    SciTech Connect

    Fryberger, T.; Chambers, S.A.; Daschbach, J.L.; Henderson, M.A.; Peden, C.H.F.; Su, Y.; Wang, Y.

    1998-06-01

    'High-level radioactive waste storage tanks within DOE sites contain significant amounts of organic components (solid and liquid phases) in the form of solvents, extractants, complexing agents, process chemicals, cleaning agents and a variety of miscellaneous compounds. These organics pose several safety and pretreatment concerns, particularly for the Hanford tank waste. Remediation technologies are needed that significantly reduce the amounts of problem organics without resulting in toxic or flammable gas emissions, and without requiring thermal treatments. These restrictions pose serious technological barriers for current organic destruction methods which utilize oxidation achieved by thermal or chemical activation. This project focuses on using ionizing radiation (a,b,g) to catalytically destroy organics over oxide materials through reduction/oxidation (redox) chemistry resulting from electron-hole (e{sup -}/h{sup +}) pair generation. Conceptually this process is an extension of visible and near-UV photocatalytic processes known to occur at the interfaces of narrow bandgap semiconductors in both solution and gas phases. In these processes, an electron is excited across the energy gap between the filled and empty states in the semiconductor. The excited electron does reductive chemistry and the hole (where the electron was excited from) does oxidative chemistry. The energy separation between the hole and the excited electron reflects the redox capability of the e{sup -}/h{sup +} pair, and is dictated by the energy of the absorbed photon and the bandgap of the material. The use of ionizing radiation overcomes optical transparency limitations associated with visible and near-UV illumination (g-rays penetrate much farther into a solution than UV/Vis light), and permits the use of wider bandgap materials (such as ZrO{sub 2}) which possess potentially greater redox capabilities than those with narrow bandgap materials. Experiments have been aimed at understanding the

  7. The unique processing of rubber-insulated wires by radiation

    NASA Astrophysics Data System (ADS)

    Ishitani, Hayao; Saito, Eisuke; Sasaki, Yasushi

    Ethylene-propylene rubbers are able to be crosslinked (vulcanized) by high energy radiation. The radiation-induced crosslinking of ethylene-propylene copolymer or ethylene-propylene-diene terpolymer depends upon the ethylene/propylene ratio, the molecular weight of the polymer, the unsaturating degree of terpolymer and kinds of tercomponents. The mechanical properties of the crosslinked rubber were affected mainly by the E/P ratio and the molecular weight, and improved by blending of low density polyethylene or ethylene-vinylacetate copolymer. Aging of the rubber, due to kinds and contents of tercomponents, was mostly determined by addition of antioxidants to the compound. We developed EP rubber compounds for wire insulation crosslinked by electron beam radiation and applied to the insulation cores of the ship's cables, in the place of the wire vulcanized conventionally by the pressurized steam in the continuous vulcanizer. The rubber compounds are consisted of ethylene-propylene-diene terpolymer with high ethylene contents, ethylene-vinylacetate copolymer and antioxidants. The high-ethylene polymers are supplied in the shape of pellets, and antioxidants were added to the compounds by means of dry blending of concentrates in which antioxidants are mixed into pellets of ethylene copolymer. The EP rubbers were covered on the copper wire by the extruder, used to plastic material, and irradiated with the electron beam from an accelerator. These insulated cores manufactured on radiation processing had the excellent properties, particularly aging and electrical properties. Further, they are more simply colored. Therefore, they will be considered to be used to other applications. This method of manufacturing of the rubber-insulated wires made it possible to reduce both the material costs by simple compounding and the operating costs by radiation-induced crosslinking, to compare with the conventional compounding and vulcanizing process, in which the materials are

  8. Status and future trends of radiation processing in Brazil

    NASA Astrophysics Data System (ADS)

    Lugão, A. B.; Andrade, E.; Silva, L. G.

    1998-06-01

    Electron-beam and gamma irradiation of polymers are widely applied in Brazil today. The main applications are: - radio-induced crosslinking of wire and cable for automobile and appliance industry; - heat shrinkable tubes for appliance, automobile and electronic; - heat shrinkable packing for food processing industry; - sterilization of medical supplies and so on. Nevertheless, there are only a few industrial facilities about 20 years old in full operation at present and there are some new low energy machines for food packing. The reason for such absence of investment in this area was studied and the relation between automobile and appliance production with radiation processing was fully demonstrated for Brazil case. In conclusion, it was shown that the industry of radiation processing of polymers is likely to experience a strong growth based on the continuous increase in the production of automobiles and appliances. The R&D activities of IPEN are an important support for developing the necessary technology and developing the necessary confidence in the radiation as tool for economical and social growth.

  9. The Impact of Gamma Radiation on Sediment Microbial Processes

    PubMed Central

    Brown, Ashley R.; Boothman, Christopher; Pimblott, Simon M.

    2015-01-01

    Microbial communities have the potential to control the biogeochemical fate of some radionuclides in contaminated land scenarios or in the vicinity of a geological repository for radioactive waste. However, there have been few studies of ionizing radiation effects on microbial communities in sediment systems. Here, acetate and lactate amended sediment microcosms irradiated with gamma radiation at 0.5 or 30 Gy h−1 for 8 weeks all displayed NO3− and Fe(III) reduction, although the rate of Fe(III) reduction was decreased in 30-Gy h−1 treatments. These systems were dominated by fermentation processes. Pyrosequencing indicated that the 30-Gy h−1 treatment resulted in a community dominated by two Clostridial species. In systems containing no added electron donor, irradiation at either dose rate did not restrict NO3−, Fe(III), or SO42− reduction. Rather, Fe(III) reduction was stimulated in the 0.5-Gy h−1-treated systems. In irradiated systems, there was a relative increase in the proportion of bacteria capable of Fe(III) reduction, with Geothrix fermentans and Geobacter sp. identified in the 0.5-Gy h−1 and 30-Gy h−1 treatments, respectively. These results indicate that biogeochemical processes will likely not be restricted by dose rates in such environments, and electron accepting processes may even be stimulated by radiation. PMID:25841009

  10. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    SciTech Connect

    R. Paul Drake

    2007-04-05

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  11. Influence of Cloud-Radiative Processes on Predecessor Rain Events

    NASA Astrophysics Data System (ADS)

    Nava, Omar Angelo

    Predecessor rain events (PREs) are coherent mesoscale rainstorms that occur well in advance of recurving tropical cyclones (TCs) and have a high potential to cause flooding and adverse societal impacts. In 2007, a PRE associated with TC Erin produced record-breaking rainfall (> 350 mm) across southern Minnesota and Wisconsin, contributing to seven fatalities and over $170 million in property damage. A series of idealized numerical simulations is conducted using an aquaplanet version of the Weather Research and Forecasting model Advanced Research core (WRF-ARW) v.3.6 to examine the influence of cloud-radiative processes on the development of PREs. This study finds that cloud-radiative feedback (CRF), the interaction of hydrometeor cloud species with longwave (LW) and shortwave (SW) radiation, produces a more robust PRE structure with stronger convective activity and, ultimately, more precipitation. It is demonstrated that LW cooling associated with clouds outside of the PRE region induces a stronger horizontal pressure gradient that enhances low level con ergence and drives more vigorous ascent. Therefore, the primary radiation driver of PRE formation occurs outside of the PRE itself and is based on how the model responds radiatively to low clouds. In addition, the warming component of CRF enhances parcel buoyancy and reduces vertical stabilities within the PRE structure. In particular, the distribution of cloud ice produces a greater depth of in-cloud, primarily LW warming conducive to stronger convective processes. In contrast, SW CRF effects weaken PRE development through a combination of in-cloud cooling and low level cloud top warming, countering the LW CRF effects responsible for greater rainfall production. Moreover, PRE formation is found to be sensitive to the diurnal cycle, resulting in faster development at night and slower development during the day. A seasonal sensitivity also brings about weaker PRE intensification during the summer season; shorter

  12. NATO/CCMS PILOT STUDY CLEAN PRODUCTS AND PROCESSES (PHASE II) 2003 ANNUAL REPORT

    EPA Science Inventory

    The 6th annual meeting of the NATO CCMS Pilot Study, Clean Products and Processes, was held in Cetraro, Italy, from May 11 to 15, 2003. This was also the first meeting of its Phase II study. 24 country representatives attended this meeting. This meeting was very ably run by th...

  13. 40 CFR 63.1431 - Process vent annual epoxides emission factor plan requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... factor plan requirements. 63.1431 Section 63.1431 Protection of Environment ENVIRONMENTAL PROTECTION... Polyether Polyols Production § 63.1431 Process vent annual epoxides emission factor plan requirements. (a) Applicability of emission factor plan requirements. An owner or operator electing to comply with an...

  14. Annual and semi-annual variability in the lower and upper atmosphere-ionosphere coupling processes by observations from Abastumani (41.75 N, 42.82 E)

    NASA Astrophysics Data System (ADS)

    Didebulidze, G. G.; Todua, M.; Javakhishvili, G.

    2015-12-01

    The importance of annual and semi-annual variability in the long-term variations of the ionosphere F2 layer parameters (NmF2, hmF2), the hydroxyl OH bands, the oxygen green 557.7 nm and red 630.0 line intensities observed from Abastumani is noted. The amplitudes of the semi-annual variations of these upper atmosphere-ionosphere parameters with maxima at equinoctial months depend on the value of the planetary geomagnetic Ap index, also observed in the inter-annual distribution of the total ozone content (TOC) and cloud covering over this region of South Caucasus. The observed dependence of semi-annual variations of these parameters on Ap index indicated possible influence of cosmic factors on the lower and upper atmosphere-ionosphere coupling processes.

  15. Evolution Characteristics of Electromagnetic Power Radiated in Lightning Discharge Processes.

    PubMed

    Zhao, Jin-cui; Yuan, Ping; Cen, Jian-yong; Li, Ya-jun; Wang, Jie

    2015-06-01

    Combining the spectra of could-to-ground lightning discharge processes obtained by a slit-less spectrograph with synchronous electric field information, the temperature, the conductivity, the current peak, electromagnetic power peak and the luminance of the discharge channel are calculated. The values are in a normal range reported by references. The correlation among cut-off time before a subsequent return stroke, the luminance and electromagnetic power peak of the channel is discussed. The change trends of the conductivity, the current peak and electromagnetic power peak are also investigated. The results show when cut-off time is long, neutralized charges will grow, the current will rise and electromagnetic power radiated from the channel will increase. When the conductivity and the peak of the electric field change increase simultaneously, the current in the channel will rise and electromagnetic power radiated from the channel will be greater. This work will provide some references for calculating optical and electromagnetic energy radiated by lightning discharge processes. PMID:26601350

  16. Evolution Characteristics of Electromagnetic Power Radiated in Lightning Discharge Processes.

    PubMed

    Zhao, Jin-cui; Yuan, Ping; Cen, Jian-yong; Li, Ya-jun; Wang, Jie

    2015-06-01

    Combining the spectra of could-to-ground lightning discharge processes obtained by a slit-less spectrograph with synchronous electric field information, the temperature, the conductivity, the current peak, electromagnetic power peak and the luminance of the discharge channel are calculated. The values are in a normal range reported by references. The correlation among cut-off time before a subsequent return stroke, the luminance and electromagnetic power peak of the channel is discussed. The change trends of the conductivity, the current peak and electromagnetic power peak are also investigated. The results show when cut-off time is long, neutralized charges will grow, the current will rise and electromagnetic power radiated from the channel will increase. When the conductivity and the peak of the electric field change increase simultaneously, the current in the channel will rise and electromagnetic power radiated from the channel will be greater. This work will provide some references for calculating optical and electromagnetic energy radiated by lightning discharge processes.

  17. Annual variations in the surface radiation budget and soil water and heat content in the Upper Yellow River area

    NASA Astrophysics Data System (ADS)

    Li, Suosuo; Lü, Shihua; Ao, Yinhuan; Shang, Lunyu

    2009-03-01

    Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state of the soil, the maximum soil thermal conductivity value was 1.21 W m-1°C-1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m-1°C-1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months. The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m-1°C-1, respectively.

  18. Non-thermal Radiation Processes in Relativistic Outflows from AGN

    NASA Astrophysics Data System (ADS)

    Lefa, Eva

    2012-11-01

    Non-thermal, leptonic radiation processes have been extensively studied for the interpretation of the observed radiation from jets of Active Galactic Nuclei (AGN). This work addresses the synchrotron and Inverse Compton scattering (ICS) mechanisms, and investigates the potential of a self-consistent, time-dependent approach to currently unsolved problems. Furthermore, it examines how deviations from standard, one-zone models can modify the radiated spectrum. A detailed analysis of the shape of the ICS spectrum is also performed. In the first part a possible interpretation of the hard γ-ray blazar spectra in the framework of leptonic models is investigated. It is demonstrated that hard γ-ray spectra can be generated and maintained in the presence of energy losses, under the basic assumption of a narrow electron energy distribution (EED). Broader spectra can also be modeled if multiple zones contribute to the emission. In such a scheme, hard flaring events, like the one in Mkn 501 in 2009, can be successfully interpreted within a "leading blob" scenario, when one or few zones of emission become dominant. In the second part the shape of the Compton spectrum close to the maximum cutoff is investigated. Analytical approximations for the spectral shape in the cutoff region are derived for various soft photon fields, providing a direct link between the parent EED and the upscattered spectrum. Additionally, a generalization of the beaming pattern for various processes is derived, which accounts for non-stationary, anisotropic and non-homogeneous EEDs. It is shown that anisotropic EEDs may lead to radiated spectra substantially different from the isotropic case. Finally, a self-consistent, non-homogeneous model describing the synchrotron emission from stratified jets is developed. It is found that transverse jet stratification leads to characteristic features in the emitted spectrum different to expectations in homogeneous models.

  19. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  20. Radiation-resistant Macrococcus caseolyticus (A) isolated from radiation-processed semidried prawns.

    PubMed

    Karani, Manisha; Shashidhar, Ravindranath; Kakatkar, Aarti; Gautam, Raj Kamal; Sukhi, Shibani; Pansare-Godambe, Lipika; Bandekar, Jayant

    2015-01-01

    A radiation-resistant bacterial isolate from gamma-radiation-processed (5 kGy) semidried prawns was identified as a new strain of Macrococcus caseolyticus and was designated as M. caseolyticus (A) on the basis of morphological and biochemical characterization and 16S rRNA sequencing. DNA-DNA hybridization studies with M. caseolyticus DSM 20597(T) further confirmed the isolate as M. caseolyticus. Major fatty acids present in M. caseolyticus (A) were C14:0, C16:1ω11c, and C18:1ω9c, whereas C15:0anteiso, C16:0iso, and C18:0iso were absent. The closest match for the isolate, as per fatty acid methyl ester analysis, was M. caseolyticus DSM 20597(T). However, the similarity index was significantly low (0.112), which indicates that the isolate could be a new strain of M. caseolyticus. The decimal reduction dose (D10) for M. caseolyticus (A), M. caseolyticus JCSC5402, and Staphylococcus aureus MTCC96 was 1.18, 0.607, and 0.19 kGy, respectively. This is the first report on radiation resistance of M. caseolyticus. Macrococcus caseolyticus (A) is more resistant to gamma and UV radiation stress than are M. caseolyticus JCSC5402 and S. aureus MTCC96; however, it is sensitive to heat as well as desiccation stress.

  1. Perspectives on Gravity-Induced Radiative Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    Papini, Giorgio

    2015-04-01

    Single-vertex Feynman diagrams represent the dominant contribution to physical processes, but are frequently forbidden kinematically. This is changed when the particles involved propagate in a gravitational background and acquire an effective mass. Procedures are introduced that allow the calculation of lowest order diagrams, their corresponding transition probabilities, emission powers and spectra to all orders in the metric deviation, for particles of any spin propagating in gravitational fields described by any metric. Physical properties of the "space-time medium" are also discussed. It is shown in particular that a small dissipation term in the particle wave equations can trigger a strong back-reaction that introduces resonances in the radiative process and affects the resulting gravitational background.

  2. Possible implications of large scale radiation processing of food

    NASA Astrophysics Data System (ADS)

    Zagórski, Z. P.

    Large scale irradiation has been discussed in terms of the participation of processing cost in the final value of the improved product. Another factor has been taken into account and that is the saturation of the market with the new product. In the case of succesful projects the participation of irradiation cost is low, and the demand for the better product is covered. A limited availability of sources makes the modest saturation of the market difficult with all food subjected to correct radiation treatment. The implementation of the preservation of food needs a decided selection of these kinds of food which comply to all conditions i.e. of acceptance by regulatory bodies, real improvement of quality and economy. The last condition prefers the possibility of use of electron beams of low energy. The best fullfilment of conditions for succesful processing is observed in the group of dry food, in expensive spices in particular.

  3. Modeling of clouds and radiation for developing parameterizations for general circulation models. Annual report, 1994

    SciTech Connect

    1994-12-31

    We are using a hierarchy of numerical models of cirrus and stratus clouds and radiative transfer to improve the reliability of general circulation models. Our detailed cloud microphysical model includes all of the physical processes believed to control the lifecycle of liquid and ice clouds in the troposphere. In our one-dimensional cirrus studies, we find that the ice crystal number and size in cirrus clouds are not very sensitive to the number of condensation nuclei which are present. We have compared our three-dimensional meoscale simulations of cirrus clouds with radar, lidar satellite and other observations of water vapor and cloud fields and find that the model accurately predicts the characteristics of a cirrus cloud system. The model results reproduce several features detected by remote sensing (lidar and radar) measurements, including the appearance of the high cirrus cloud at about 15 UTC and the thickening of the cloud at 20 UTC. We have developed a new parameterizations for production of ice crystals based on the detailed one-dimensional cloud model, and are presently testing the parameterization in three-dimensional simulations of the FIRE-II November 26 case study. We have analyzed NWS radiosonde humidity data from FIRE and ARM and found errors, biases, and uncertainties in the conversion of the sensed resistance to humidity.

  4. CIRRPC: Committee on Interagency Radiation Research and Policy Coordination. Eighth annual report

    SciTech Connect

    Young, A.L.

    1992-12-01

    CIRRPC`s eighth year was marked by the completion of several CIRRPC projects, including: An independent study on the possible health effects of extremely low-frequency electric and magnetic fields; a report evaluating the uncertainties identified in a National Academy of Sciences (NAS) report on the biological effects of ionizing radiation and their impact on the report`s application to Federal risk assessment; an analysis of the use of two reports on radiation risk assessment from NAS and the United Nations; and an update of Part 11 of ORAU`s radiation protection fact sheets, a compilation of major US radiation protection standards and guides. CIRRPC also sponsored a workshop on internal dosimetry and provided financial support to the 1991 Health Physics Society Summer School on the biological basis of radiation protection practice. The program highlights are briefly described in this report.

  5. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1995: Twenty-eighth annual report. Volume 17

    SciTech Connect

    Thomas, M.L.; Hagemeyer, D.

    1997-01-01

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 1995 annual reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Since there are no geologic repositories for high-level waste currently licensed, only six categories will be considered in this report. In 1995, the annual collective dose per reactor for light water reactor licensees (LWRs) was 199 person-cSv (person-rem). This is the same value that was reported for 1994. The annual collective dose per reactor for boiling water reactors (BWRs) was 256 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 170 person-cSv (person-rem). Analyses of transient worker data indicate that 17,153 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1995, the average measurable dose calculated from reported data was 0.26 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.32 cSv (rem).

  6. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  7. Influence on the atmospheric general circulation caused by the direct effect which dust exerts on radiation process

    NASA Astrophysics Data System (ADS)

    Chiba, M.

    2004-12-01

    The total amount of the soil particle (Aeolian-dust) danced by the wind from the dryness area is called annual 1000-3000Tg on the whole earth. The thing from Sahara Desert in North Africa occupies more than the half of these. The small particle of particle diameter piles up into the atmosphere among the danced soil particles for a long period of time (being weight quantity around about 1%). The particle which piles up into the atmosphere has the work which is scattered about or absorbs solar radiation. On the other hand, aeolian dust has the work which performs absorption and discharge as black-body to infrared radiation, and serves as a substance which has greenhouse effect to an earth air system. We developed an general circulation model (MASINGAR) incorporating each model about the radiation process in consideration of the influence on the solar radiation by generating of aeolian dust, transportation, each self-possessed process, and dust, and infrared radiation. The numerical experiment about influence done to the atmospheric general circulation of aeolian dust using this was conducted.

  8. NREL Solar Radiation Resource Assessment Project: Status and outlook. FY 1991 annual progress report

    SciTech Connect

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL`s Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU`s), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL`s Solar Radiation Research Laboratory. 17 refs.

  9. Quantization effects in radiation spectroscopy based on digital pulse processing

    SciTech Connect

    Jordanov, V. T.; Jordanova, K. V.

    2011-07-01

    Radiation spectra represent inherently quantization data in the form of stacked channels of equal width. The spectrum is an experimental measurement of the discrete probability density function (PDF) of the detector pulse heights. The quantization granularity of the spectra depends on the total number of channels covering the full range of pulse heights. In analog pulse processing the total number of channels is equal to the total digital values produced by a spectroscopy analog-to-digital converter (ADC). In digital pulse processing each detector pulse is sampled and quantized by a fast ADC producing certain number of quantized numerical values. These digital values are linearly processed to obtain a digital quantity representing the peak of the digitally shaped pulse. Using digital pulse processing it is possible to acquire a spectrum with the total number of channels greater than the number of ADC values. Noise and sample averaging are important in the transformation of ADC quantized data into spectral quantized data. Analysis of this transformation is performed using an area sampling model of quantization. Spectrum differential nonlinearity (DNL) is shown to be related to the quantization at low noise levels and small number of averaged samples. Theoretical analysis and experimental measurements are used to obtain the condition to minimize the DNL due to quantization. (authors)

  10. Processability improvement of polyolefins through radiation-induced branching

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Phillips, Ed; Parks, Lewis

    2010-03-01

    Radiation-induced long-chain branching for the purpose of improving melt strength and hence the processability of polypropylene (PP) and polyethylene (PE) is reviewed. Long-chain branching without significant gel content can be created by low dose irradiation of PP or PE under different atmospheres, with or without multifunctional branching promoters. The creation of long-chain branching generally leads to improvement of melt strength, which in turn may be translated into processability improvement for specific applications in which melt strength plays an important role. In this paper, the changes of the melt flow rate and the melt strength of the irradiated polymer and the relationship between long-chain branching and melt strength are reviewed. The effects of the atmosphere and the branching promoter on long-chain branching vs. degradation are discussed. The benefits of improved melt strength on the processability, e.g., sag resistance and strain hardening, are illustrated. The implications on practical polymer processing applications such as foams and films are also discussed.

  11. Untangling complex processes within Earth's radiation belts with the Radiation Belt Storm Probes (RBSP) mission

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Fox, N. J.; Sibeck, D. G.; Kanekal, S. G.; Kessel, R.

    2011-12-01

    Progress towards developing a predictive understanding of Earth's dynamic radiation belts requires that we: 1) better understand individual transport and energization mechanisms, and 2) better understand how these mechanisms act together to yield the complex behaviors that are observed. An example of the former imperative is to understand the extent to which non-linearities modify the role that whistler mode waves play in exchanging energy with and scattering radiation belt electrons. However, the latter imperative represents a greater challenge. What is the relationship between processes that supply electron source populations and those that generate the Ultra Low Frequency waves that can help transport those particles? What is the role of substorm injections in creating or modifying the global electric fields that transport and redistribute the injected plasma populations? How dependent is the wave activity that energizes radiation belt electrons on the global electric field that creates the conditions for wave generation? Two characteristics of the Radiation Belt Storm Probes (RBSP) mission will enable researchers to address these interdependent mechanisms. First, the payload complement is unusually comprehensive, measuring all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (dE and dB) needed to address the most critical science questions. However, the ability of the two RBSP spacecraft to make multiple, identical, and simultaneous measurements over a wide range of spatial scales is even more critical. RBSP comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1 x 5.8 RE, 10 degrees). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal affects over spatial scales ranging from ~0.1 to 5 RE. Here we discuss how the unique capabilities of

  12. SERI Solar Radiation Resource Assessment Project: Fiscal Year 1990 Annual Progress Report

    SciTech Connect

    Riordan, C; Maxwell, E; Stoffel, T; Rymes, M; Wilcox, S

    1991-07-01

    The purpose of the Solar Radiation Resource Project is to help meet the needs of the public, government, industry, and utilities for solar radiation data, models, and assessments as required to develop, design, deploy, and operate solar energy conversion systems. The project scientists produce information on the spatial (geographic), temporal (hourly, daily, and seasonal), and spectral (wavelength distribution) variability of solar radiation at different locations in the United States. Resources committed to the project in FY 1990 supported about four staff members, including part-time administrative support. With these resources, the staff must concentrate on solar radiation resource assessment in the United States; funds do not allow for significant efforts to respond to a common need for improved worldwide data. 34 refs., 21 figs., 6 tabs.

  13. NATO/CCMS PILOT STUDY CLEAN PRODUCTS AND PROCESSES (PHASE 1) 1998 ANNUAL REPORT (EPA/600/R-98/065)

    EPA Science Inventory

    This annual report presents the proceedings of the first annual NATO/CCMS pilot study meeting in Cincinnati in March 1998. Guest speakers focused on efforts in the research arena of clean products, clean processes, life cycle analysis, ecolabeling, and pollution prevention tools.

  14. A genipin-gelatin gel dosimeter for radiation processing

    NASA Astrophysics Data System (ADS)

    Davies, J. B.; Bosi, S. G.; Baldock, C.

    2012-08-01

    Genipin, a fruit extract from Gardenia jasminoides Ellis, forms cross-links in solutions of gelatin, to form a blue hydrogel that bleaches quantitatively upon irradiation and the colour change can be measured with a spectrophotometer. With the addition of sulphuric acid this dosimeter is sufficiently sensitive for quality assurance of radiotherapy level dosimetry. Without sulphuric acid the gel has a reduced sensitivity and responds linearly with dose between 100 and 1000 Gy, making it potentially useful as a dosimeter for radiation processing applications such as the phytosanitary irradiation treatment of food. We investigated the dose response characteristics of this new formulation and found that the darker gels are more sensitive to dose and have a reduced uncertainty.

  15. Boundary effects on radiative processes of two entangled atoms

    NASA Astrophysics Data System (ADS)

    Arias, E.; Dueñas, J. G.; Menezes, G.; Svaiter, N. F.

    2016-07-01

    We analyze radiative processes of a quantum system composed by two identical two-level atoms interacting with a massless scalar field prepared in the vacuum state in the presence of perfect reflecting flat mirrors. We consider that the atoms are prepared in a stationary maximally entangled state. We investigate the spontaneous transitions rates from the entangled states to the collective ground state induced by vacuum fluctuations. In the empty-space case, the spontaneous decay rates can be enhanced or inhibited depending on the specific entangled state and changes with the distance between the atoms. Next, we consider the presence of perfect mirrors and impose Dirichlet boundary conditions on such surfaces. In the presence of a single mirror the transition rate for the symmetric state undergoes a slight reduction, whereas for the antisymmetric state our results indicate a slightly enhancement. Finally, we investigate the effect of multiple reflections by two perfect mirrors on the transition rates.

  16. UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES

    EPA Science Inventory

    The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...

  17. Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1992-01-01

    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.

  18. Process of coping with intracavity radiation treatment for gynecologic cancer

    SciTech Connect

    Nail, L.M.D.

    1985-01-01

    The purpose of this study was to describe the process of coping with the experience of receiving intracavity radiation treatment (ICR) for gynecologic cancer. Data were collected on the outcomes of coping, emotion (Profile of Mood States) and level of function (Sickness Impact Profile), and symptom severity and upset the evening before, during, the day after, and 1 to 2 weeks after treatment. The subjects (N = 28) had a mean age of 52 years, 39% were employed full-time, 56% had occupations as manual workers, 57% had completed 12 or more years of education, and 68% were married or widowed. The treatment required the subjects to be hospitalized on complete bedrest with radiation precautions for an average of 48 hours. Intrauterine devices were used to treat 18 subjects and vaginal applications were used to treat 10 subjects. Negative mood and level of disruption in function were generally low. Repeated measures ANOVA showed no change in negative mood over time while the change in function was attributable to the increase in disruption during treatment. Utilization of affective coping strategies and problem-oriented coping strategies was positively correlated with negative mood and disruption in function over the points of measurement. The results indicate that subjects tolerated ICR well and rapidly resumed usual function following discharge from the hospital, despite the persistence of some symptoms 1 to 2 weeks after treatment. The positive association between the utilization of coping strategies and negative outcomes of coping suggests a need to examine the measurement of coping strategies and consider the possibility that these actions represent a response to a stressful situation rather than a method of dealing with the situation.

  19. Processes forming and sustaining Saturn's proton radiation belts

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Paranicas, C.; Krupp, N.; Haggerty, D. K.

    2013-01-01

    Saturn's proton radiation belts extend over the orbits of several moons that split this region of intense radiation into several distinct belts. Understanding their distribution requires to understand how their particles are created and evolve. High-energy protons are thought to be dominantly produced by cosmic ray albedo neutron decay (CRAND). The source of the lower energies and the role of other effects such as charge exchange with the gas originating from Enceladus is still an open question. There is also no certainty so far if the belts exist independently from each other and the rest of the magnetosphere or if and how particles are exchanged between these regions. We approach these problems by using measurements acquired by the MIMI/LEMMS instrument onboard the Cassini spacecraft. Protons in the range from 500 keV to 40 MeV are considered. Their intensities are averaged over 7 years of the mission and converted to phase space densities at constant first and second adiabatic invariant. We reproduce the resulting radial profiles with a numerical model that includes radial diffusion, losses from moons and interactions with gas, and a phenomenological source. Our results show that the dominating effects away from the moon sweeping corridors are diffusion and the source, while interactions with gas are secondary. Based on a GEANT4 simulation of the interaction of cosmic rays with Saturn's rings, we conclude that secondary particles produced within the rings can only account for the high-energy part of the source. A comparison with the equivalent processes within Earth's atmosphere shows that Saturn's atmosphere can contribute to the production of the lower energies and might be even dominating at the higher energies. Other possibilities to supply the belts and exchange particles between them, as diffusion and injections from outside the belts, or stripping of ENAs, can be excluded.

  20. Advances in Linac-Based Technology for Industrial Radiation Processing

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph

    1997-04-01

    Experience with the Industrial Materials Processing Electron Linear Accelerator, IMPELA, over 30,000 hours of 50 kW operation is reported for three irradiators, two of which are in commercial service. Operations are sufficiently mature that research is now concentrated on split beams, photon conversion, dose monitoring, beam scanning, new shielding designs and QA controls. The efficacy of increasing the incident electron energy on bremsstrahlung converters to 7.5 MeV, as proposed by an IAEA committee, is examined experimentally on an IMPELA accelerator over the energy range 7 MeV to 11 MeV to evaluate conversion efficiency, activation of machine components, converter engineering and the activation of red meat. Above 8 MeV the radioactive isotopes ^38Cl and ^24Na, formed primarily by neutrons produced in a tantalum converter, were clearly identified in the meat, while above 10.5 MeV the radiation from ^13N becomes dominant. Implications for the practicality of processing other high density products are discussed.

  1. Economic evaluation of radiation processing in urban solid wastes treatment

    NASA Astrophysics Data System (ADS)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  2. Image processing pipeline for synchrotron-radiation-based tomographic microscopy.

    PubMed

    Hintermüller, C; Marone, F; Isenegger, A; Stampanoni, M

    2010-07-01

    With synchrotron-radiation-based tomographic microscopy, three-dimensional structures down to the micrometer level can be visualized. Tomographic data sets typically consist of 1000 to 1500 projections of 1024 x 1024 to 2048 x 2048 pixels and are acquired in 5-15 min. A processing pipeline has been developed to handle this large amount of data efficiently and to reconstruct the tomographic volume within a few minutes after the end of a scan. Just a few seconds after the raw data have been acquired, a selection of reconstructed slices is accessible through a web interface for preview and to fine tune the reconstruction parameters. The same interface allows initiation and control of the reconstruction process on the computer cluster. By integrating all programs and tools, required for tomographic reconstruction into the pipeline, the necessary user interaction is reduced to a minimum. The modularity of the pipeline allows functionality for new scan protocols to be added, such as an extended field of view, or new physical signals such as phase-contrast or dark-field imaging etc.

  3. Image processing pipeline for synchrotron-radiation-based tomographic microscopy.

    PubMed

    Hintermüller, C; Marone, F; Isenegger, A; Stampanoni, M

    2010-07-01

    With synchrotron-radiation-based tomographic microscopy, three-dimensional structures down to the micrometer level can be visualized. Tomographic data sets typically consist of 1000 to 1500 projections of 1024 x 1024 to 2048 x 2048 pixels and are acquired in 5-15 min. A processing pipeline has been developed to handle this large amount of data efficiently and to reconstruct the tomographic volume within a few minutes after the end of a scan. Just a few seconds after the raw data have been acquired, a selection of reconstructed slices is accessible through a web interface for preview and to fine tune the reconstruction parameters. The same interface allows initiation and control of the reconstruction process on the computer cluster. By integrating all programs and tools, required for tomographic reconstruction into the pipeline, the necessary user interaction is reduced to a minimum. The modularity of the pipeline allows functionality for new scan protocols to be added, such as an extended field of view, or new physical signals such as phase-contrast or dark-field imaging etc. PMID:20567088

  4. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, C. W. (Editor)

    1985-01-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  5. Committee on Interagency Radiation Research and Policy Coordination (CIRRPC). Seventh annual report

    SciTech Connect

    Young, A.L.

    1991-06-30

    In 1990--91 CIRRPC`s program included efforts to improve interagency coordination on ionizing radiation risk assessments, a review of the reported health risks to humans from exposure to extremely low- frequency electric and magnetic fields (ELF/EMF), and increased coordination with national and international organizations such as NCRP and ICRP.

  6. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    SciTech Connect

    Hutchinson, D.L.

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  7. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1994. Twenty-seventh annual report

    SciTech Connect

    Thomas, M.L.; Hagemeyer, D.

    1996-01-01

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). Annual reports for 1994 were received from a total of 303 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 303 licensees indicated that 152,028 individuals were monitored, 79,780 of whom received a measurable dose. The collective dose incurred by these individuals was 24,740 person-cSv (person-rem){sup 2} which represents a 15% decrease from the 1993 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.31 cSv (rem) for 1994. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. In 1994, the annual collective dose per reactor for light water reactor licensees (LWRs) was 198 person-cSv (person-rem). This represents a 18% decrease from the 1993 value of 242 person-cSv (person-rem). The annual collective dose per reactor for boiling water reactors (BWRs) was 327 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 131 person-cSv (person-rem). Analyses of transient worker data indicate that 18,178 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1994, the average measurable dose calculated from reported data was 0.28 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.31 cSv (rem).

  8. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  9. Factors contributing to process variance in annual survival of female greater sage-grouse in Montana.

    PubMed

    Moynahan, Brendan J; Lindberg, Mark S; Thomas, Jack Ward

    2006-08-01

    Populations of Greater Sage-Grouse (Centrocercus urophasianus) have declined by 69-99% from historic levels, and information on population dynamics of these birds at a landscape scale is essential to informed management. We examined the relationships between hen survival and a suite of landscape-scale habitat and environmental conditions. We radio-marked 237 female Sage-Grouse and measured 426 vegetation plots during 2001-2004 at four sites in a 3200-km2 landscape in north-central Montana, USA. We used program MARK to model monthly survival rates for 11 seasonal intervals. There was strong support for the best-approximating model (AICc weight = 0.810), which indicated that (1) hen survival varied by season within years and by year within seasons, (2) nesting hens had higher nesting-season survival than non-nesting hens, and (3) individuals at one site had lower hunting-season survival than at other sites. We observed considerable variation in hen survival. Process variation was 0.255, with an expected range of annual survival of 0.12 to 1.0. The ratio of process to total variation was 0.999, indicating that observed variation was real and not attributable to sampling variation. We observed a nearly fourfold difference in maximum and minimum annual survival, ranging from 0.962 +/- 0.024 (mean +/- SE) for nesting hens in 2001-2002 to 0.247 +/- 0.050) for non-nesters in 2003-2004. Low annual survival in 2003 resulted from the compounded effects of a West Nile virus outbreak in August and a severe winter in 2003-2004. Increased hen mortality associated with severe winter weather contrasts with prior beliefs that Sage-Grouse populations are typically unaffected by winter weather conditions and underscores the importance of protecting winter sagebrush (Artemisia spp.) habitats.

  10. Improvements in opti-chromic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Humpherys, K. C.; Kantz, A. D.

    "Opti-Chromic" dosimeters consisting of radiachromic dye in flourinated polymer tubing have been introduced as a dosimetry system in the range from 10 1 to 5 × 10 4 Gy. Batches of "Opti-Chromic" dosimeters have been produced to evaluate performance under large scale industrial conditions. A systematic study was undertaken to determine the effect of various dosimeter parameters on radiation sensitivity, shelf life, and response characteristics at the higher absorbed doses. These parameters were (A) Type of flourinated polymer tubing; (B) Organic solvent used to activate the radiachromic dye; (C) Concentration of radiachromic dye; (D) Additives to provide proper viscosity, color stability, and high-dose response. Prototype batches were produced and experimental dosimeters exposed to a range of absorbed doses and the response measured as a function of shelf life and dose. The results of the study are presented, and an improved formulation recommended for application to Food Processing. Other formulations may be of value in specific requirements of sensitivity or temperature.

  11. Processing and characterization of epitaxial GaAs radiation detectors

    NASA Astrophysics Data System (ADS)

    Wu, X.; Peltola, T.; Arsenovich, T.; Gädda, A.; Härkönen, J.; Junkes, A.; Karadzhinova, A.; Kostamo, P.; Lipsanen, H.; Luukka, P.; Mattila, M.; Nenonen, S.; Riekkinen, T.; Tuominen, E.; Winkler, A.

    2015-10-01

    GaAs devices have relatively high atomic numbers (Z=31, 33) and thus extend the X-ray absorption edge beyond that of Si (Z=14) devices. In this study, radiation detectors were processed on GaAs substrates with 110 - 130 μm thick epitaxial absorption volume. Thick undoped and heavily doped p+ epitaxial layers were grown using a custom-made horizontal Chloride Vapor Phase Epitaxy (CVPE) reactor, the growth rate of which was about 10 μm / h. The GaAs p+/i/n+ detectors were characterized by Capacitance Voltage (CV), Current Voltage (IV), Transient Current Technique (TCT) and Deep Level Transient Spectroscopy (DLTS) measurements. The full depletion voltage (Vfd) of the detectors with 110 μm epi-layer thickness is in the range of 8-15 V and the leakage current density is about 10 nA/cm2. The signal transit time determined by TCT is about 5 ns when the bias voltage is well above the value that produces the peak saturation drift velocity of electrons in GaAs at a given thickness. Numerical simulations with an appropriate defect model agree with the experimental results.

  12. Human genetic marker for resistance to radiations and chemicals. 1998 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1998-06-01

    'The broad objective of the project is to understand the molecular basis for the response of cells to radiations and chemicals, with the pragmatic goal of being able to identify human subpopulations that are exceptionally sensitive to DNA damaging agents. The project focuses on HRAD9, a human orthologue of the fission yeast Schizosaccharomyces pombe gene rad9. S. pombe rad9::ura4+ mutant cells are highly sensitive to ionizing radiation, UV and many chemicals, such as the DNA synthesis inhibitor hydroxyurea. They also lack the ability to delay cycling transiently in S phase or in G2 following a block in DNA replication or after incurring DNA damage, respectively -i.e., they lack checkpoint controls. The attempt by mutant cells to progress through mitosis in the absence of fully intact DNA accounts at least in part for their sensitivity to DNA damaging agents. Cells bearing rad9::ura4+ also aberrantly regulate UVDE, an enzyme that participates in a secondary DNA excision repair pathway. The key role played by S. pombe rad9 in promoting resistance to chemicals and radiations suggests that the evolutionarily conserved human cognate also has important functions in mammals. The first set of aims in this proposal centers on characterizing the structure and expression of HRAD9, to assess structure/function relationships and potentially link protein activity to a specific tissue. The next set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer.'

  13. Treatment of LW and SW Radiative Processes in a Climate GCM

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.; Oinas, V.

    2010-12-01

    Of the physical processes that convert, transport, and redistribute energy within the climate system, radiation is by far the fastest. Radiation is also the best understood of these physical processes and therefore the most amenable for accurate parameterization. As an illustrative example, we describe the radiative modeling treatment of the LW and SW radiation in the GISS ModelE climate GCM and its comparison to LBL calculated heating and cooling rates, including radiative forcing sensitivity. We also compare and analyze the spectral and height dependence of he radiative forcing sensitivity for the principal greenhouse gases based on 1-D LBL radiative/convective equilibrium calculations. We also describe the ModelE LW flux parameterization to account for multiple scattering effects for LW TOA and BOA fluxes, and the laboratory based parameterization scheme for modeling the relative humidity dependence of aerosol radiative properties for hygroscopic aerosol species.

  14. Application of radiation processing in asia and the pacific region: Focus on malaysia

    NASA Astrophysics Data System (ADS)

    Mohd Dahlan, Khairul Zaman HJ.

    1995-09-01

    Applications of radiation processing in Malaysia and other developing countries in Asia and the Pacific region is increasing as the countries move toward industrialisation. At present, there are more than 85 gamma facilities and 334 electron accelerators in Asia and the Pacific region which are mainly in Japan, Rep. of Korea and China. The main applications which are in the interest of the region are radiation sterilisation of medical products; radiation crosslinking of wire and cable, heat shrinkable film and tube, and foam; radiation curing of surface coatings, printing inks and adhesive; radiation vulcanisation of natural rubber latex; radiation processing of agro-industrial waste; radiation treatment of sewage sludge and municipal waste; food irradiation; tissue grafts and radiation synthesis of bioactive materials.

  15. The Bioelectromagnetics Society eleventh annual meeting, 1989. [Extremely low frequency radiation

    SciTech Connect

    Not Available

    1989-01-01

    This volume contains the abstracts from the symposia and poster sessions at the Eleventh Annual Meeting of the Bioelectromagnetics Society, held on June 18--22, 1989, in Tucson, AZ. Five special symposia were held which dealt with: Extremely Low Frequency (ELF) fields and neuroendocrine function; electromagnetic (EM) therapy for cardiac arrythmia; application of time-varying fields for tissue healing; the biophysics of resonance phenomena in EM interactions with biomolecular systems; and new probes for biological assessments. Additional symposia dealt with radiofrequency (RF) and microwave effects on neural and ocular systems; pulsed and ELF fields; calcium and ELF; ELF and static magnetic fields; ELF and RF, dosimetry and instrumentation; ELF and biomembranes; RF and ultrasound; behavioral effects of EM; physiological effects of RF; RF hyperthermia and tumor treatment; modeling; and the neurological and endocrine effects of ELF.

  16. Determinability of inter-annual global and regional climatic changes of the earth radiation budget

    NASA Technical Reports Server (NTRS)

    Ardanuy, P. E.

    1983-01-01

    The degradation characteristics of Earth Radiation Budget (ERB) experiments are examined with reference to the results of recent investigations into the calibration adjustments of the Wide Field of View channels on board the Nimbus 6 and 7 ERB experiments. The mechanisms of degradation are discussed, and changes in the transmissive and reflective properties of radiometers affecting their sensitivities and calibrations are estimated. It is emphasized that in order to observe interannual climate change on a global or a regional scale, calibration adjustments are a necessity.

  17. Radiation processing of carbon fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit

    2001-12-01

    Carbon fibre-reinforced advanced composites are being used for a variety of structural applications, because of their useful mechanical properties, including high strength-to-weight ratio and corrosion resistance. Thermal curing of composite products results in internal stresses, due to the mismatch of the coefficients of expansion of the tools and the composite products. Because radiation curing can be done at ambient temperatures, the possibility that the residual stresses might be absent, or much lower in the radiation-cured products, originally led to the start of work on radiation curing of advanced composites at AECL's Whiteshell Laboratories in Pinawa, Canada, in 1985. Research work during the last two decades has shown that advanced composites can be radiation-cured with electron beams or γ radiation. Many of the advantages of radiation curing, as compared to thermal curing, which include curing at ambient temperature, reduced curing time, improved resin stability and reduced volatile emissions, have now been demonstrated. The initial work focussed on electron curing of acrylated epoxy matrices. Since then, procedures have been developed to radiation cure conventional aerospace epoxies, as well. Electron beam cured advanced composites are now being developed for use in the aircraft and aerospace industry. Repair of advanced composite structures is also possible using radiation curing technology. Radiation curing work is continuing at Pinawa and has also been done by Aerospatiale, who have facilities for electron curing composite rocket motor casings and by Chappas and co-workers who have electron cured part of a boat hull. In this paper, the work done on this emerging new technology by the various groups is briefly reviewed.

  18. Community Radiation Monitoring Program annual report, October 1, 1989--September 30, 1990

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1991-07-01

    The events of FY 1990 indicate that another successful year in the evolution of the Community Radiation Monitoring Program is in the books. The agencies and organizations involved in the program have developed a sound and viable working relationship, and it appears that the major objectives, primarily dispelling some of the concerns over weapons testing and radiation on the part of the public, are being effectively addressed. The program is certainly a dynamic operation, growing and changing to meet perceived needs and goals as more experience is gained through our work. The change in focus on our public outreach efforts will lead us to contacts with more students and schools, service clubs and special interest groups in the future, and will refine, and hopefully improve, our communication with the public. If that can be accomplished, plus perhaps influencing a few more students to stay in school and even grow up to be scientists, engineers and better citizens, we will be closer to having achieved our goals. It is important to note that the success of the program has occurred only because the people involved, from the Department of Energy, the Environmental Protection Agency, the Desert Research Institute, the University of Utah and the Station Managers and Alternates work well and hard together. Our extended family'' is doing a good job. 9 refs., 1 fig., 3 tabs.

  19. [Packaging in the process of radiation sterilization. II. Physicochemical studies].

    PubMed

    Pekala, W; Burczak, K; Czerniawski, E

    1986-01-01

    The penetrability of the ionizing radiation through the matter makes possible the sterilization of the medical devices in the packed form by radiation method. The effect of the radiation should not bring any destructive changes in the material used for the package. In this paper have been discussed the results of the investigations of the one--and multilayer packaging materials from the point of view their utility for the radiation sterilization purposes. The changes of the useful parameters of the investigated materials have been determined in the dependence on the absorbed dose immediately after irradiation and the period of the durable keeping after the sterilization. The results of the mechanical investigations in the correlation to the results of the microbiological effects of the sterilized materials enabled to draw practical conclusions concerned the usability of the particular packages. PMID:3797357

  20. QED Radiative Corrections in Processes of Exclusive Pion Electroproduction

    SciTech Connect

    Andrei Afanasev; I. Akushevich; Volker Burkert; K. Joo

    2002-03-01

    Formalism for radiative correction (RC) calculation in exclusive pion electroproduction on the proton is presented. A FORTRAN code EXCLURAD is developed for the RC procedure. The numerical analysis is done in the kinematics of current Jefferson Lab experiments.

  1. Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    Space radiation from cosmic ray particles is one of the main challenges for human space explorations such-as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  2. Radiative-Convective Processes in Regulating Tropical Ocean-Atmosphere

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Li, X.; Ho, C.-H.

    2000-01-01

    Relationship between sea surface temperature (SST) and cloud/water vapor reveals important information about radiative-climate feedbacks. Many previous studies have found that cloud amount and SST are positively correlated for SST between 28-29.5 C, for SST greater than 29.5 C, cloud amount actually decreases with increasing SST. The breakdown of SST-cloud correlation at 29.5 C was suggested to be related to the formation of localized hot spots with very high SST due to increased solar radiation in regions of strong subsidence forced by convection elsewhere. In this study, the breakdown is related to the radiative cooling in the subsidence regime over the cold pool surrounding the warm pool. We show model and observational evidence that radiative cooling over the cold pool limits the strength of SST-induced tropical circulation. As a result, occurrence of convection is also limited when SST contrast between the warm pool and cold pool is large.

  3. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    SciTech Connect

    1995-02-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy`s Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole.

  4. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Annual technical progress report, [1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologies who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second year has been on measurements of (1) chromosome aberrations in patients imaged with thallium-201, (2) mutant frequencies in patients imaged with technetium-99, (3) mutant frequencies in nuclear medicine technicians and physical therapists, (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described.

  5. Radiation Exposures for DOE and DOE Contractor Employees - 1990. Twenty-third annual report

    SciTech Connect

    Smith, M. H.; Hui, T. E.; Millet, W. H.; Scholes, V. A.

    1993-11-01

    All U.S. Department of Energy and DOE contractors are required by DOE Order 5484.1, Chapter IV, to submit occupational radiation exposure records to a central depository. For 1990, data were required to be submitted for all employees who were required to be monitored in accordance with DOE Order 5480.11 and for all visitors who had a positive exposure. The data required included the total effective dose equivalent, external penetrating whole-body dose equivalent, internal dose equivalent, the shallow dose equivalent, neutron dose equivalent, and extremity dose equivalent. Data regarding the exposed individuals included the individual's age, sex, and occupation category. This report is a summary of data reported by DOE and DOE contractors for the calendar year 1990.

  6. 50 CFR 648.96 - Monkfish annual adjustment process and framework specifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... meet on or before November 15 of each year to develop target TACs for the upcoming fishing year in.... (b) Annual Adjustment Procedures—(1) Annual Target TACs for FY 2007 through FY 2009—(i) NFMA. The annual target TAC for the NFMA is 5,000 mt for FY 2007 through FY 2009, unless otherwise recommended...

  7. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1996: Twenty-ninth annual report. Volume 18

    SciTech Connect

    Thomas, M.L.; Hagemeyer, D.

    1998-02-01

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 1996 annual reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Since there are no geologic repositories for high level waste currently licensed, only six categories will be considered in this report. Annual reports for 1996 were received from a total of 300 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 300 licensees indicated that 138,310 individuals were monitored, 75,139 of whom received a measurable dose. The collective dose incurred by these individuals was 21,755 person-cSv (person-rem){sup 2} which represents a 13% decrease from the 1995 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.29 cSv (rem) for 1996. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. Analyses of transient worker data indicate that 22,348 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1996, the average measurable dose calculated from reported was 0.24 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.29 cSv (rem).

  8. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  9. Radiation Characteristics of a 0.11 Micrometer Modified Commercial CMOS Process

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Kim, Hak; Berg, Melanie D.; Forney, Jim; Seidleck, Christina; Vilchis, Miguel A.; Phan, Anthony; Irwin, Tim; LaBel, Kenneth A.; Saigusa, Rajan K.; Mirabedini, Mohammad R.; Finlinson, Rick; Suvkhanov, Agajan; Hornback, Verne; Sung, Jun; Tung, Jeffrey

    2006-01-01

    We present radiation data, Total Ionizing Dose and Single Event Effects, on the LSI Logic 0.11 micron commercial process and two modified versions of this process. Modified versions include a buried layer to guarantee Single Event Latchup immunity.

  10. Pulsed combustion process for black liquor gasification. Second annual report, [November 1990--February 1992

    SciTech Connect

    Not Available

    1993-02-01

    This second annual report summarizes the work accomplished during the period November 1990 through February 1992 for DOE Cooperative Agreement No. DE-FC05-90CE40893. The overall project objective is to field test an energy-efficient, innovative black liquor recovery system at a significant industrial scale. This is intended to demonstrate the maturity of the technology in an industrial environment and serve as an example to the industry of the safer and more energy-efficient processing technique. The project structure is comprised of three primary activities: process characterization testing, scale-up hardware development, and field testing. The objective of the process characterization testing was to resolve key technical issues regarding the black liquor recovery process that were identified during earlier laboratory verification tests. This was intended to provide a sound engineering data base for the design, construction and testing of a nominal 1.0 TPH integrated black liquor recovery gasifier. The objective of the scale-up hardware development effort was to ensure that key hardware components, in particular the pulse heater module, would perform reliably and safely in the field. Finally, the objective of the field test is to develop an industrial data base sufficient to demonstrate the capabilities and performance of the operating system with respect to thermal efficiency, product quality, fuel handling, system control, reliability and cost. These tests are to provide long-term and continuous operating data at a capacity unattainable in the bench-scale apparatus.

  11. Breaking of a single asperity: Rupture process and seismic radiation

    NASA Astrophysics Data System (ADS)

    Das, S.; Kostrov, B. V.

    1983-05-01

    The problem of spontaneous shear rupture of a single circular asperity on an infinite fault plane is studied. Initially, the fault plane is broken everywhere except at a circular asperity. An applied displacement at infinity results in a stress concentration along the bounding edge of the asperity. The frictional stress on the broken part of the fault plane is taken to be a constant. Once a point on the asperity breaks, the stress there drops to the same value as on the `main' fault surface. The rupture is started by relaxing the shear stress at a point on the asperity edge and is then allowed to propagate spontaneously, using a critical stress level fracture criterion. The rupture process is calculated numerically. It is found that for asperities of constant strength, the rupture first propagates around the edge of the asperity and then inward, a phenomenon best described by the well-known term of classic military maneuver: `the double encircling pincer movement.' In the appendix, the expressions for the far-field seismic radiation due to the rupture of such an asperity are derived. It is shown that the nth Cartesian component of the far-field displacement at (x, t) for P, SV, and SH waves, using the notation of Aki and Richards (1980), is given by un(x, t) = (Dni/4πρc2R)∫∫s0τi3{ξ, t - [(R - ξ · γ)/c]} dS(ξ). Thus the far-field pulses can be directly found from the stress drops on the fault plane. This formula is also true for `crack' or `dislocation' problems. The directivity function Dni for displacement for the asperity problem is found to be that for the double couple, modified by some factor. In particular, the fault plane is a nodal plane for SV waves. For the rupturing of asperities on a finite fault, these directivity functions are applicable only to the initial part of observed pulses at a receiver, provided the receiver is not located on the fault plane outside the broken part of the main crack edge, in which case it is inapplicable for all

  12. FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)

    SciTech Connect

    Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

    2007-01-01

    We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

  13. Community Radiation Monitoring Program; Annual report, October 1, 1990--September 30, 1991

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1992-06-01

    The Community Radiation Monitoring Program is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (U of U). This eleventh year of the program began in the summer of 1991 and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which the DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of those efforts. One of the primary methods used to improve the communication link with the potentially impacted area has been the hiring and training of local citizens as Managers and program representatives in 19 communities adjacent to and downwind from the NTS. These Managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  14. Human genetic marker for resistance to radiations and chemicals. 1997 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1997-01-01

    'The specific aims listed in the original application will essentially be pursued as indicated. The major goal of the grant is to characterize a human homologue of the fission yeast Schizosaccharomyces pombe rad9 checkpoint control, radioresistance and chemoresistance gene, which is called HRAD9. The purpose is to gain information about the gene, including its structure and function, such that it can potentially be developed as a human genetic marker indicative of hypersensitivity to the deleterious effects associated with exposure to radiations or certain chemicals. The specific aims are divided into two major sections. The first section includes experiments designed to characterize the HRAD9 gene at the molecular level. Specifically, the genomic version of the gene will be isolated and its DNA sequence determined, in vitro mutagenesis will be used to assess structure/function relationships, and expression in cells and tissues will be examined. The second major set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer. For this aim, human HRAD9 mutants will be constructed and characterized. In addition, the status of HRAD9 in cancer cells and tissues will be assessed.'

  15. Decay processes and radiative cooling of small anionic copper clusters

    NASA Astrophysics Data System (ADS)

    Breitenfeldt, Christian; Blaum, Klaus; Froese, Michael W.; George, Sebastian; Guzmán-Ramírez, Gregorio; Lange, Michael; Menk, Sebastian; Schweikhard, Lutz; Wolf, Andreas

    2016-09-01

    The decay of copper clusters Cun- with size n =4 -7 , produced in a metal ion sputter source, was studied in an electrostatic ion-beam trap. The neutral products after electron emission and fragmentation were monitored for ion storage times of up to a second. The observations indicated the presence of radiative cooling. The energy distributions of the remaining clusters were probed by laser irradiation up to several further seconds of storage time. This defined excitation lead to photoinduced decay signals which, again, showed signs of radiative cooling for Cu6,7 -, not, however, for Cu4,5 -.

  16. Community Radiation Monitoring Program. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect

    Cooper, E.N.

    1993-05-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE); the US Environmental Protection Agency (EPA); the Desert Research Institute (DRI), a division of the University and Community College System of Nevada and the Nuclear Engineering Laboratory of the University of Utah (UNEL). The twelfth year of the program began in the fall of 1991, and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The program began as an outgrowth of activities that occurred during the Three Mile Island incident in 1979. The local interest and public participation that took place there were thought to be transferrable to the situation at the NTS, so, with adaptations, that methodology was implemented for this program. The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the existing EPA monitoring network, and has since expanded to 19 locations in Nevada, Utah and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with people in the potentially impacted area has been the hiring and training of local citizens as station managers and program representatives in those selected communities in the offsite area. These managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  17. Community radiation monitoring program. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Cooper, E.N.

    1994-08-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (UUNEL). The thirteenth year of this program began in the fall of 1992, and the work continues as an integral part of the DOE--sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the then-existing EPA monitoring network around the NTS, and has since expanded to 19 locations in Nevada, Utah, and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with the people in the potentially impacted area has been the hiring and training of local citizens as Station Managers and program representatives in those selected communities in the offsite area. These mangers, active science teachers wherever possible, have succeeded through their training, experience, community standing, and effort in becoming a very visible, able, and valuable asset in this link.

  18. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    SciTech Connect

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  19. Radon loss from encapsulated sediments in Ge gamma-ray spectrometry for the annual radiation dose determination in luminescence dating

    NASA Astrophysics Data System (ADS)

    de Corte, F.; Vandenberghe, D.; de Wispelaere, A.; Buylaert, J.-P.; van den Haute, P.

    2006-01-01

    In Ge gamma-ray spectrometry for the annual radiation dose determination in the luminescence dating of sediments, the picture of 226Ra enrichment or depletion (in the 238U decay series) obtained via measurement of its 214Pb and 214Bi daughters may be disturbed by the 222Rn-content of the sample being decreased due to manipulations such as drying and pulverizing. Therefore, it is common practice to start the measurement only about 1 month after encapsulating the material, after which the 226Ra(1600 a)- 222Rn(3.82 d) mother-daughter equilibrium is re-established. Evidently, this only holds on condition that no significant escape of Rn occurs out of the sediment after making it up for counting. In order to experimentally investigate this effect, in the present work measurements were carried out with various types of dried and pulverized sediments that were either encapsulated in screw-cap polystyrene vials or in sealed glass containers, or that were mixed with molten wax followed by solidification in a cylindrical geometry. From the results obtained, it could be concluded that preparation and counting of the sediment-wax mixture is the method of choice.

  20. Improving degradation of paracetamol by integrating gamma radiation and Fenton processes.

    PubMed

    Cruz-González, Germán; Rivas-Ortiz, Iram B; González-Labrada, Katia; Rapado-Paneque, Manuel; Chávez-Ardanza, Armando; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises J

    2016-10-14

    Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.

  1. Effectiveness of radiation processing in elimination of Aeromonas from food

    NASA Astrophysics Data System (ADS)

    Nagar, Vandan; Bandekar, Jayant R.

    2011-08-01

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Contaminated water, sprouts, vegetables, seafood and food of animal origin have been considered to be the important sources of Aeromonas infection. In the present study, radiation sensitivity of indigenous strains of Aeromonas spp. from different food samples was evaluated. The decimal reduction dose (D10) values of different Aeromonas isolates in saline at 0-4 °C were in the range of 0.031-0.046 kGy. The mixed sprouts, chicken and fish samples were inoculated with a cocktail of five most resistant isolates (A. salmonicida Y567, A. caviae A85, A. jandaei A514A, A. hydrophila CECT 839T and A. veronii Y47) and exposed to γ radiation to study the effectiveness of radiation treatment in elimination of Aeromonas. D10 values of Aeromonas cocktail in mixed sprouts, chicken and fish samples were found to be 0.081±0.001, 0.089±0.003 and 0.091±0.003 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples. No recovery of Aeromonas was observed in the 1.5 kGy treated samples stored at 4 °C up to 12 (mixed sprouts) and 7 days (chicken and fish samples), even after enrichment and selective plating. This study demonstrates that a 1.5 kGy dose of irradiation treatment could result in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples.

  2. Quantum information processing with long-wavelength radiation

    NASA Astrophysics Data System (ADS)

    Murgia, David; Weidt, Sebastian; Randall, Joseph; Lekitsch, Bjoern; Webster, Simon; Navickas, Tomas; Grounds, Anton; Rodriguez, Andrea; Webb, Anna; Standing, Eamon; Pearce, Stuart; Sari, Ibrahim; Kiang, Kian; Rattanasonti, Hwanjit; Kraft, Michael; Hensinger, Winfried

    To this point, the entanglement of ions has predominantly been performed using lasers. Using long wavelength radiation with static magnetic field gradients provides an architecture to simplify construction of a large scale quantum computer. The use of microwave-dressed states protects against decoherence from fluctuating magnetic fields, with radio-frequency fields used for qubit manipulation. I will report the realisation of spin-motion entanglement using long-wavelength radiation, and a new method to efficiently prepare dressed-state qubits and qutrits, reducing experimental complexity of gate operations. I will also report demonstration of ground state cooling using long wavelength radiation, which may increase two-qubit entanglement fidelity. I will then report demonstration of a high-fidelity long-wavelength two-ion quantum gate using dressed states. Combining these results with microfabricated ion traps allows for scaling towards a large scale ion trap quantum computer, and provides a platform for quantum simulations of fundamental physics. I will report progress towards the operation of microchip ion traps with extremely high magnetic field gradients for multi-ion quantum gates.

  3. Resonant electron diffusion as a saturation process of the synchrotron maser instability. [of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1986-01-01

    The theory of resonant electron diffusion as an effective saturation process of the auroral kilometric radiation has been formulated. The auroral kilometric radiation is assumed to be amplified by the synchrotron maser instability that is driven by an electron distribution of the loss-cone type. The calculated intensity of the saturated radiation is found to have a significantly lower value in comparison with that caused by the quasi-linear diffusion process as an alternative saturation process. This indicates that resonant electron diffusion dominates over quasi-linear diffusion in saturating the synchrotron maser instability.

  4. Latest Development of Infrared Radiation Heating for Food Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrared (IR) heating could be an alternative technology for thermal and dehydration processing of food and agricultural products with many advantages, including high process and energy efficiencies, high product quality, improved food safety and reduced environmental pollution. This paper reviews ...

  5. The scrapie disease process is unaffected by ionizing radiation

    SciTech Connect

    Fraser, H.; Farquhar, C.F.; McConnell, I.; Davies, D. )

    1989-01-01

    The incubation period of scrapie, its degenerative neuropathology and the replication of its causal unconventional virus are all tightly controlled parameters of the experimental disease in mice. Each parameter can vary depending on the strain and dose of virus, on the route of infection, and on the host genotype. Exposure to whole-body gamma-irradiation from Cesium 137 has no effect on the progress or development of the disease, based on the three independent indices of incubation period, neuropathology, or infectibility by high or low doses of virus. These results are based on an extensive series of experiments in many mouse strains and are consistent using different strains (ME7, 22A, 79A, 87V) and doses of virus, routes of infection, timing and dose of radiation (3-15 Gy) administered as single or fractionated exposures with or without bone-marrow (b.m.) replacement therapy. Levels of infection in the spleen are unaltered after lethal whole-body irradiation of the scrapie-infected host, despite several-fold reductions in tissue mass due to the loss of proliferating myeloid and lymphoid precursor cells and their progeny. Contrary to our earlier suggestion, scrapie infection with the 22A virus does not reduce the effectiveness of post-exposure bone-marrow replacements to recolonize an infected host after repeated ionizing radiation totalling 15Gy. This work narrows the search for the candidate cells and biosynthetic systems which replicate the virus in the lymphoreticular and central nervous systems. Many programmed cellular events are radiation sensitive but protein synthesis is extremely radioresistant.

  6. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  7. Twelfth Annual Warren K. Sinclair Keynote Address--the Influence of the NCRP on Radiation Protection in the United States: Guidance and Regulation.

    PubMed

    Kase, Kenneth R

    2016-02-01

    The Warren K. Sinclair Keynote Address for the 2015 Annual Meeting of the National Council on Radiation Protection and Measurements (NCRP) describes the Council's influence in the development of radiation protection guidance in the United States since its founding in 1929 as the U.S. Advisory Committee on X-Ray and Radium Protection. The National Bureau of Standards (NBS) was the coordinating agency for the Advisory Committee, and its reports were published as NBS handbooks. In 1946, the Advisory Committee was renamed the National Committee on Radiation Protection and remained so until NCRP was chartered by the U.S. Congress in 1964. In 1931, the U.S. Advisory Committee on X-Ray and Radium Protection proposed the first formal standard for protecting people from radiation sources as NBS Handbook 15 and issued the first handbook on radium protection, NBS Handbook 18. Revised recommendations for external exposure were issued in 1936 and for radium protection in 1938 and remained in force until 1948. Throughout its 86 y history, the Council and its predecessors have functioned as effective advisors to the nation on radiation protection issues and have provided the fundamental guidance and recommendations necessary for the regulatory basis of the control of radiation exposure, radiation-producing devices, and radioactive materials in the United States.

  8. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    SciTech Connect

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford`s Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste.

  9. Native shrub reestablishment in exotic annual grasslands: do ecosystem processes recover?

    PubMed

    Yelenik, S G; Levine, J M

    2010-04-01

    The impacts of exotic plant species on ecosystem processes are well established, motivating numerous efforts to facilitate native-species recovery. Nonetheless, how the return of native species influences ecosystem processes and how these changes feed back to influence the recovery process are poorly understood. We examined these questions in exotic annual grasslands on Santa Cruz Island, California, USA, where the removal of nonnative herbivores has led to the recovery of the native shrubs Artemisia californica and Eriogonum arborescens. To examine the influence of shrub colonization on nutrient cycling, and the mechanisms by which these changes arise, we measured available nitrogen and phosphorus, and quantified nitrogen mineralization and litterfall rates under shrubs and grasses in the field and in experimental monoculture plots. Both native shrubs altered nitrogen cycling as they colonized the grassland, but they did so in opposite directions. Eriogonum depressed nitrogen pools and mineralization rates via large inputs of nitrogen-poor litter. In contrast Artemisia increased nitrogen and phosphorus pools and nitrogen mineralization rates. Last, to determine if shrub effects on soils favor shrubs or grasses, we conducted a nitrogen and phosphorus fertilization experiment in the field. Only the exotic grass was significantly limited by nitrogen. Thus the depressed nitrogen availability associated with Eriogonum colonization is more harmful to exotic grasses than to the native shrub. By contrast, the elevated nitrogen associated with recovering Artemisia favors grasses over the shrub, possibly hindering recovery of the native. Mechanistic studies of the ecosystem ,impacts of native-plant recovery are useful for managers wishing to predict which native species return ecosystem function, and whether such changes feed back to influence native recovery. PMID:20437958

  10. 42 CFR 137.401 - What role does Tribal consultation play in the IHS annual budget request process?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What role does Tribal consultation play in the IHS annual budget request process? 137.401 Section 137.401 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF...-GOVERNANCE Secretarial Responsibilities Budget Request § 137.401 What role does Tribal consultation play...

  11. 42 CFR 137.401 - What role does Tribal consultation play in the IHS annual budget request process?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false What role does Tribal consultation play in the IHS annual budget request process? 137.401 Section 137.401 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL...

  12. 42 CFR 137.401 - What role does Tribal consultation play in the IHS annual budget request process?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false What role does Tribal consultation play in the IHS annual budget request process? 137.401 Section 137.401 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL...

  13. 42 CFR 137.401 - What role does Tribal consultation play in the IHS annual budget request process?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false What role does Tribal consultation play in the IHS annual budget request process? 137.401 Section 137.401 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL...

  14. 42 CFR 137.401 - What role does Tribal consultation play in the IHS annual budget request process?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false What role does Tribal consultation play in the IHS annual budget request process? 137.401 Section 137.401 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL...

  15. Uniform bulk material processing using multimode microwave radiation

    SciTech Connect

    Varma, Ravi; Vaughn, Worth E.

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  16. Uniform bulk Material Processing using Multimode Microwave Radiation

    SciTech Connect

    Varma, Ravi; Vaughan, Worth E.

    1999-06-18

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE{sub 10}-mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE{sub 11}-, TE{sub 01}- and TM{sub 01}-cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  17. Determination of volatiles produced during radiation processing in Laurus cinnamomum

    NASA Astrophysics Data System (ADS)

    Salum, D. C.; Araújo, M. M.; Fanaro, G. B.; Purgatto, E.; Villavicencio, A. L. C. H.

    2009-07-01

    In order to protect food from pathogenic microorganisms as well as increase its shelf-life, while keeping sensorial properties (e.g., odor and taste), which are important properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. Possible changes in the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties, in order to allow better application of the irradiation technology. The aim of the present study was to analyze volatile formation on cinnamon ( Laurus cinnamomum) samples after gamma irradiation. These samples were irradiated into plastic packages using a 60Co facility. Radiation doses applied were 0, 5, 10, 15, 20 and 25 kGy. For the analysis of the samples, solid-phase microextraction (SPME) was applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation showed the highest decrease in volatile compounds. For L. cinnamomum, the irradiation decreased volatile compounds by nearly 56% and 89.5%, respectively, comparing to volatile from a sample which had not been previously irradiated.

  18. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  19. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  20. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    NASA Astrophysics Data System (ADS)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  1. 1988 IEEE Annual Conference on Nuclear and Space Radiation Effects, 25th, Portland, OR, July 12-15, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    Coakley, Peter G. (Editor)

    1988-01-01

    The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.

  2. Basic physical and chemical processes in space radiation effects on polymers

    NASA Technical Reports Server (NTRS)

    Kamaratos, E.; Wilson, J. W.; Chang, C. K.; Xu, Y. J.

    1982-01-01

    The effects of space ionizing radiation on polymers is investigated in terms of operative physical and chemical processes. A useful model of charged particle impact with a polymer was designed. Principle paths of molecular relaxation were identified and energy handling processes were considered. The focus of the study was on energy absorption and the immediately following events. Further study of the radiation degradation of polymers is suggested.

  3. Annual Conference on Nuclear and Space Radiation Effects, 21st, Colorado Springs, CO, July 23-25, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Winokur, P. S. (Editor)

    1984-01-01

    Radiation effects on electronic systems and devices (particularly spacecraft systems) are examined with attention given to such topics as radiation transport, energy deposition, and charge collection; single-event phenomena; basic mechanisms of radiation effects in structures and materials; and EMP phenomena. Also considered are radiation effects in integrated circuits, spacecraft charging and space radiation effects, hardness assurance for devices and systems, and SGEMP/IEMP phenomena.

  4. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    SciTech Connect

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  5. Annual Conference on Nuclear and Space Radiation Effects, 19th, Las Vegas, NV, July 20-22, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Long, D. M.

    1982-01-01

    The results of research concerning the effects of nuclear and space radiation are presented. Topics discussed include the basic mechanisms of nuclear and space radiation effects, radiation effects in devices, and radiation effects in microcircuits, including studies of radiation-induced paramagnetic defects in MOS structures, silicon solar cell damage from electrical overstress, radiation-induced charge dynamics in dielectrics, and the enhanced radiation effects on submicron narrow-channel NMOS. Also examined are topics in SGEMP/IEMP phenomena, hardness assurance and testing, energy deposition, desometry, and radiation transport, and single event phenomena. Among others, studies are presented concerning the limits to hardening electronic boxes to IEMP coupling, transient radiation screening of silicon devices using backside laser irradiation, the damage equivalence of electrons, protons, and gamma rays in MOS devices, and the single event upset sensitivity of low power Schottky devices.

  6. Microwave-assisted chemical process for treatment of hazardous waste: Annual report

    SciTech Connect

    Varma, R.; Nandi, S.P.; Cleaveland, D.C.

    1987-10-01

    Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. We investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating, and to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed at room temperature on active carbon beds that are loaded with Cu and Cr catalysts. When the bed is heated by a microwave radiation to moderate temperatures (<400/sup 0/C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO/sub 2/ and C/sub 2/H/sub 2/Cl/sub 2/. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N/sub 2/ or moist-air stream is passed through the bed. 4 refs., 5 figs., 10 tabs.

  7. Process for making solid-state radiation-emitting composition

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1993-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  8. Process for making solid-state radiation-emitting composition

    DOEpatents

    Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

    1993-08-31

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  9. Theory of molecular rate processes in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.

    1979-01-01

    The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.

  10. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    SciTech Connect

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-10-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide {approximately}800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding.

  11. Fundamentals of thermal radiation heat transfer; Proceedings of the Winter Annual Meeting, New Orleans, LA, December 9-14, 1984

    NASA Astrophysics Data System (ADS)

    Min, T. C.; Chen, J. L. S.

    1984-12-01

    Recent work in the field of radiation heat transfer is addressed in this symposium volume. Three broad topics are considered: analysis and modeling of radiation theory, radiation with a participating medium in a complex geometry, and radiation and/or other modes. Individual papers examine: Hookean and Stokesean implications of radiative stress; effective emissivity of a fluidized bed; mathematical modelling of heat transfer within the furnace of a pulverized coal-fired boiler equipped with platen superheaters; radiative transfer in axisymmetric, finite cylindrical enclosures; thermal behavior in furnaces of complex geometry; analysis of radiative equilibrium in a rectangular enclosure with gray medium; effects of isotropic scattering on melting and solidification of a semiinfinite, semitransparent medium; simultaneous radiation and forced convection in thermally developing turbulent flow through a parallel plate channel; and recent advances in the numerical analysis of dynamic coupled thermoelasticity.

  12. 1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Ellis, Thomas D. (Editor)

    1986-01-01

    The present conference on the effects of nuclear and space radiation on electronic hardware gives attention to topics in the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, electronic device radiation hardness assurance, SOI/SOS radiation effects, spacecraft charging and space radiation, IC radiation effects and hardening, single-event upset (SEU) phenomena and hardening, and EMP/SGEMP/IEMP phenomena. Specific treatments encompass the generation of interface states by ionizing radiation in very thin MOS oxides, the microdosimetry of meson energy deposited on 1-micron sites in Si, total dose radiation and engineering studies, plasma interactions with biased concentrator solar cells, the transient imprint memory effect in MOS memories, mechanisms leading to SEU, and the vaporization and breakdown of thin columns of water.

  13. Investigation of radiation keeping property of barite coated cloth via image processing method

    SciTech Connect

    Kilincarslan, S.; Akkurt, I.; Molla, T.; Akarslan, F.

    2012-09-06

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  14. Consistency among microphysics-convection-radiation processes in a numerical forecasting model

    NASA Astrophysics Data System (ADS)

    Bae, Soo Ya; Park, Raeseol; Hong, Song-You

    2016-04-01

    Radiative fluxes are mainly affected by the cloud optical properties calculated with effective radius, water path of hydrometeors, and cloud fraction. A prognostic cloud fraction scheme, which considers the cloud fraction with increments as a result of each physics process, is implemented in the Global/Regional Integrated Model system (GRIMs) (Park et al., 2016). However, the original RRTMG scheme does not consider the hydrometeor information from convection processes, resulting in inconsistency between cloud process and radiation activity. To ensure consistency among physics processes, the amount of hydrometeors from both the cumulus parameterization scheme (CPS) and microphysics schemes is explicitly taken into account in computing radiative fluxes. The effects of this modification are tested for a heavy rainfall over Korea to identify the feedback between the precipitation and radiation processes. It is found that the information of hydrometeors from CPS tends to increase water path, which leads to larger cloud optical depth and cooling. Skill scores of the simulated precipitation in a medium-range forecast testbed confirm benefits of the consistent treatment of hydrometeors in both CPS and radiation processes.

  15. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  16. Influence of radiative processes on the ignition of deuterium-tritium plasma containing inactive impurities

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Sherman, V. E.

    2016-08-01

    The degree of influence of radiative processes on the ignition of deuterium-tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result of using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.

  17. Effect of laser frequency on a collision-induced radiative process

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1981-01-01

    A review is presented of the principles of collision induced radiative processes, followed by an examination of the effects of laser frequencies on these processes. A one-dimensional problem involving two electron states is considered, and it is found that the Hamiltonian of the radiation field is dominated by electric-dipole interaction which couples states of different parity. Transitions are noted to be dependent on collisions, and the complexities of three-dimensional systems are expressed as considerations of the angular momentum of the photon, the necessity of treating different states simultaneously, and the fact that a radiation field destroys rotational invariance. Changing the radiation frequency alters the crossing point and offers opportunities to study the interplay of potential surfaces with molecular dynamics. Experiments on Na+A systems are outlined for several collision energies and various laser frequencies. Multiple crossings were obtained, although the total cross-section, at all energies, decreased at 18,350/cm.

  18. The Influence of Dust-radiation-microphysics Processes on Tropical Cyclone Development

    NASA Astrophysics Data System (ADS)

    Chen, S.; Cheng, C.; Chen, J.; Lin, Y.; Lee, H.; Tsai, I.

    2011-12-01

    Saharan dust can modify the Saharan Air Layer (SAL) and its environment by changing the energy budget through direct and indirect radiative forcing. Scattering and absorption of radiation by suspended dust directly modifies the energy budget in the atmosphere and at the surface. Smaller dust particles can remain suspended in the air for prolonged periods and propagate over the Atlantic Ocean along with SAL. These fine particles can reach an altitude of 8-9 km, where they nucleate ice crystals and transform cloud microphysical properties, indirectly changing the energy budget. Thus, the dust within the air mass is likely to affect the evolution of hurricane properties, life cycles, and the corresponding cloud systems through the dust-cloud-radiation interactions. A tracer model based on the Weather Research and Forecasting model (named WRFT) was developed to study the influence of dust-radiation-microphysics effects on hurricane activities. The dust-radiation effects and a two-moment microphysics scheme with dust particles acting as ice nuclei were implemented into WRFT. In this work, two easterly waves, which were precursors of Tropical Storm Debby and Hurricane Ernesto, during 18-25 August 2006 were studied. Four high-resolution numerical experiments were conducted with the combinations of activating/deactivating dust-radiation and/or dust-microphysics processes. Results from these four experiments are compared to investigate the influence of dust-radiation-microphysics processes on these two storm developments.

  19. International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials"

    NASA Astrophysics Data System (ADS)

    2015-04-01

    The International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 14-38-10210 and No. 14-02-20376.

  20. Mathematical modeling of sulfide flash smelting process. Part 2; Quantitative analysis of radiative heat transfer

    SciTech Connect

    Hahn, Y.B. ); Sohn, H.Y. )

    1990-12-01

    This paper reports on a mathematical model developed to describe the rate processes in an axisymmetric copper flash smelting furnace shaft. A particular feature of the model is the incorporation of the four-flux model to describe the radiative heat transfer by combining the absorbing, emitting, and anisotropic scattering phenomena. The importance of various subprocesses of the radiative heat transfer in a flash smelting furnace has been studied. Model predictions showed that the radiation from the furnace walls and between the particles and the surrounding is the dominant mode of heat transfer in a flash smelting furnace.

  1. Role of impurity molecules in radiation-initiated processes in solid carbohydrates

    SciTech Connect

    Kavetskii, V.G.; Yudin, I.V.

    1992-09-01

    Extension of the use of ionizing radiation for sterilization of medicinal preparations is stimulating the study of radiation-initiated processes in solid polyhydroxyl matrixes containing impurities of various organic substances. Such investigations make it possible to establish common characteristics of the effect of impurity molecules on the radiolysis of organic crystals. The materials of the investigation were lactose and rhamnose, precipitated by slow evaporation of the solvent from saturated aqueous solutions with different dihydroxyacetone contents. 4 refs., 1 fig.

  2. Process for producing radiation-induced self-terminating protective coatings on a substrate

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (.apprxeq.5-20 .ANG.) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.

  3. High-energy radiation and polymers: A review of commercial processes and emerging applications

    NASA Astrophysics Data System (ADS)

    Clough, R. L.

    2001-12-01

    Ionizing radiation has been found to be widely applicable in modifying the structure and properties of polymers, and can be used to tailor the performance of either bulk materials or surfaces. Fifty years of research in polymer radiation chemistry has led to numerous applications of commercial and economic importance, and work remains active in the application of radiation to practical uses involving polymeric materials. This paper provides a survey of radiation-processing methods of industrial interest, ranging from technologies already commercially well established, through innovations in the active R&D stage which show exceptional promise for future commercial use. Radiation-processing technologies are discussed under the following categories: cross-linking of plastics and rubbers, curing of coatings and inks, heat-shrink products, fiber-matrix composites, chain-scission for processing control, surface modification, grafting, hydrogels, sterilization, natural product enhancement, plastics recycling, ceramic precursors, electronic property materials, ion-track membranes and lithography for microdevice production. In addition to new technological innovations utilizing conventional gamma and e-beam sources, a number of promising new applications make use of novel radiation types which include ion beams (heavy ions, light ions, highly focused microscopic beams and high-intensity pulses), soft X-rays which are focused, coherent X-rays (from a synchrotron) and e-beams which undergo scattering to generate patterns.

  4. Solar radiation and clouds - an overview on processes, interactions and trends

    NASA Astrophysics Data System (ADS)

    Quante, M.

    2009-09-01

    This talk will provide an overview regarding the many aspects of the solar radiation-cloud interaction. It will address questions of cloud dynamics, the clouds in radiative transfer as well as the important role the cloud-radiation interaction plays in climate. The state of discussion in some disputed fields will be reported. Before solar radiation reaches the surface of the Earth's continents and oceans, it has to pass the atmosphere consisting of a multitude of gases, particles, and hydrometeors. The prime regulator of the radiation field in the atmosphere is clouds. Thus the cloud radiation interaction is of utmost importance for climate, climate change and radiation driven processes in the biosphere or in photochemistry. Solar radiation is strongly steering the lifecycle (generation, maintenance and dissipation) of clouds. Cloud dynamics and the vertical distribution of energy are dependent on the processes involved. Central aspects of the chain of effects will be outlined in this overview. Clouds reflect and absorb solar radiation, both processes are highly dependent on their radiative properties, thus on the detailed microphysical composition of clouds as well as on their geometrical appearance. The talk will provide an update of the current knowledge and state of discussion with respect to theses properties. Additionally, an actually suggested geo-engineering approach building on the deliberate change of cloud radiative properties will be discussed. One bulk measure of the impact of clouds on the radiation balance in a climatological sense is the so called ‘cloud radiative forcing' (CRF). It allows the assessment of the amount by which the presence of clouds alters the top-of-the-atmosphere (TOA) energy budged. CRF is determined by the difference between the cloud-free radiation budget climatology and the average one over all scene types. Estimates from the Earth Radiation budget Experiment (ERBE) and more recent compilations from satellite climatologies

  5. The EM SSAB Annual Work Plan Process: Focusing Board Efforts and Resources - 13667

    SciTech Connect

    Young, Ralph

    2013-07-01

    One of the most daunting tasks for any new member of a local board of the Environmental Management Site Specific Advisory Board (EM SSAB) is to try to understand the scope of the clean-up activities going on at the site. In most cases, there are at least two or three major cleanup activities in progress as well as monitoring of past projects. When planning for future projects is added to the mix, the list of projects can be long. With the clean-up activities involving all major environmental media - air, water, soils, and groundwater, new EM SSAB members can find themselves totally overwhelmed and ineffective. Helping new members get over this initial hurdle is a major objective of EM and all local boards of the EM SSAB. Even as members start to understand the size and scope of the projects at a site, they can still be frustrated at the length of time it takes to see results and get projects completed. Many project and clean-up timelines for most of the sites go beyond 10 years, so it's not unusual for an EM SSAB member to see the completion of only 1 or 2 projects over the course of their 6-year term on the board. This paper explores the annual work planning process of the EM SSAB local boards, one tool that can be used to educate EM SSAB members into seeing the broader picture for the site. EM SSAB local work plans divide the site into projects focused on a specific environmental issue or media such as groundwater and/or waste disposal options. Projects are further broken down into smaller segments by highlighting major milestones. Using these metrics, local boards of the EM SSAB can start to quantify the effectiveness of the project in achieving the ultimate goal of site clean-up. These metrics can also trigger board advice and recommendations for EM. At the beginning of each fiscal year, the EM SSAB work plan provides a road map with quantifiable checkpoints for activities throughout the year. When the work plans are integrated with site-specific, enforceable

  6. 45 CFR 270.10 - How will we annually review the award process?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Annually, as needed, we will review the measures, data sources, and funding allocations specified in this... measures or make changes in the funding allocations for the various measures only through regulations. (b... availability of national, State-reliable, and objective data. (c) Consultation. We will consult with...

  7. 40 CFR 63.1431 - Process vent annual epoxides emission factor plan requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... group determination procedures in the NESHAP for Group I Polymers and Resins (40 CFR part 63, subpart U..., recovery, or recapture device, along with the expected percent efficiency. (iii) Annual emissions after the... section, kg/yr. R = Expected control efficiency of the combustion, recovery, or recapture device,...

  8. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  9. Process of defect formation and diffusion in metals induced by laser radiation

    NASA Astrophysics Data System (ADS)

    Zvonkov, Alexander D.; Boranbaeva, H. M.

    1990-10-01

    There have been conducted researches for the presence of defects in specimens of repined carbonyl iron after the treatment by continuous radiation of C02-laser under subcritical conditions. High degree of presence of the defects is characterized by appearance of cellular dislocation structure and by considerable oversaturation of vacancies. There have been also investigated the conditions of realization of an accelerated diffusion of boron in iron and steels in treating by continuous radiation of CD2-- laser. It was revealed that the boron redistribution from the previously created layer of borides on the metal surface is accomplished in steels to the depthes of up to 3 mm. The accelerated oxygen diffusion stimulated by the laser radiation has been investigated on the basis of the obtained results of the process of internal oxidation of alloy Cu-Sn (0. 55 at 7. ). There has been proposed the model of process of accelerated transport. 2. FORMATION OF DEFECTS IN CARBONYL IRON UNDER CONTINUOUS LASER RADIATION The investigation of the defect formation under the continuous laser radiation 10. 6 sam) was conducted with the specimens (4x0. 8x80) mm of carbonyl iron 0. 008 C 0. 047 Mn Al + Si + S) refined in hydrogen atmosphere. The laser treatment was accomplished without flashing the metal surface. Treatment characteristics: radiation power P (0. 25-1. 1 kV. Specimen displacement speed under the laser beam V (10-2. 5) mm/s

  10. The Collisional and Radiative Processes of the Hydroxyl Radical

    NASA Astrophysics Data System (ADS)

    Steffens, Kristen Lisa

    1995-01-01

    The OH radical is an important species in the chemistry of atmospheric and combustion environments, where an understanding of OH concentration and chemistry is necessary to create and validate chemical models. Laser-induced fluorescence (LIF) is used with great success in OH detection, but OH LIF measurements require a vast knowledge of the collisional and spectroscopic properties of OH. Information is still lacking, especially concerning vibrational levels v^' > 0 of the rm A^2Sigma^+ electronic state. We investigate transition probabilities and collisional processes of these higher vibrational levels. Experimental vibrational band transition probabilities from v^' = 3 and 2 of OH rm A^2Sigma^+ are needed to determine the electronic transition moment for the rm A^2Sigma^+ -rm X^2Pi_{i } system to calculate a consistent set of rotational and vibrational dependent transition probabilities for uses including rm X^2Pi_ {i} temperature determinations and rm A^2Sigma^+ and rm X^2Pi_{i} nascent population determinations. Using LIF in a low -pressure CH_4/O_2 flame, we measured relative emission intensities for vibrational bands (3,0) through (3,5) and (2,0) through (2,6). Our emission intensities have been used in another study to determine the best rm A^2 Sigma^+-rm X^2 Pi_{i} electronic transition moment. For quantitative OH concentration measurements in high pressure flames exciting the predissociative v ^' = 3 level, one must account for vibrational energy transfer (VET). We measure the amounts of VET occurring from v^' = 3 in CH_4/O_2 , CH_4/air, and H _2/O_2 flames at pressures between 14 and 760 Torr. Significant amounts of VET occur in all flames and must be accounted for to get accurate OH concentrations. Stratospheric OH concentration measurement employs OH rm A^2Sigma^+v ^' = 1 excitation, which requires accurate VET and quenching cross sections for major colliders. We use LIF to measure the v^ ' = 1 VET and quenching cross sections for N_2, O_2 and CO_2

  11. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  12. Radiative transfer in real atmospheres. [the implications for recognition processing of multispectral remote sensing data

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1974-01-01

    The problem of multiple radiation scattering in an atmosphere characterized by various amounts of aerosol absorption and different particle size distributions was investigated. The visible part of the spectrum was emphasized, including the effect of ozone absorption. An atmosphere bounded by a nonhomogenous, Lambertian surface was also studied, along with the effect of background radiation on target in terms of various atmopheric and geometric conditions. Results of the investigation indicate that comtaminated atmospheres can change the radiation field by a considerable amount, and that the effect of non-uniform surface significantly alters the intrinsic radiation from a target element. The implications of these results for the recognition processing of multispectral remote sensing data is discussed.

  13. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources

    SciTech Connect

    Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

    2009-02-01

    The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to

  14. Administration of the Radiation Control for Health and Safety Act of 1968, Public Law 90-602, (1987 annual report). Report for January-December 1987

    SciTech Connect

    Not Available

    1988-04-01

    This document is an annual report submitted to the President for transmittal to the Congress. The Food and Drug Administration, through its Center for Devices and Radiological Health, is responsible for the day-to-day administration of the Radiation Control for Health and Safety Act of 1968. The report provides a summary of the operations of the Center in carrying out that responsibility for calendar year 1987. In reviewing the operations of the CDRH as reported in the document, it should be kept in mind that the day-to-day administration of the Act is only part of the Center's function. Other responsibilities include the administration and enforcement of the 1976 Medical Device Amendments to the Federal Food, Drug, and Cosmetic Act (not covered in the report). Manufacturers of electronic products are required by 21 CFR 1002.20 to report accidental radiation occurrences to the CDRH. The Center no longer maintains a Radiation Incidents Registry, since accidental radiation occurrences are reported through the Device Experience Network (DEN) and through the requirements of the Medical Device Reporting (MDR) regulations.

  15. 1990 IEEE Annual Conference on Nuclear and Space Radiation Effects, 27th, Reno, NV, July 16-20, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Fleetwood, Daniel M. (Editor)

    1990-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, single-event upset and latchup, isolation technologies, device and integrated circuit effects and hardening, spacecraft charging and electromagnetic effects.

  16. Process-based distributed hydrological modelling of annual floods in the Upper Zambezi using the Desert Flood Index

    NASA Astrophysics Data System (ADS)

    Meinhardt, Markus; Sven, Kralisch; Manfred, Fink; Daniel, Butchart-Kuhlmann; Anthony, Chabala; Melanie, Fleischer; Jörg, Helmschrot; Wilson, Phiri; Tina, Trautmann; Henry, Zimba; Imasiku, Nyambe

    2016-04-01

    Wetland areas are especially sensitive to changes in hydrological conditions. The catchment of the Luanginga River, a tributary of the Upper Zambezi which covers about 33000 km², shows this characteristic in an exemplary way. Ranging from the Angolan highlands to the Barotse floodplain of the Zambezi River , it is characterized by an annual flow regime and extensive wetland areas. Due to its annual flooding with peak times in April, the area features exceptionally fertile soils with high agricultural production and is further known for its rich cultural heritage, making it especially sensitive to changes of hydrological conditions . To identify possible changes related to projected climate and land management change, especially in the area of the floodplain, there is a need to apply a process-based distributed hydrological model of the annual floods . Remote sensing techniques have shown to be appropriate to identify the extend of the important flooding and were used to validate the model in space and time. The results of this research can be used as a basis with which to provide evidence-based advice and information for all decision-makers and stakeholders in the region. For this assessment , such a modelling approach is applied to adequately represent hydrological processes and to address key water resources management issues at sub-basin levels. Introducing a wetland simulation extension, the model allows to represent the annual flood regime of the system and thus to address the effect of climate change and upstream land use changes on flow regimes in the downstream watershed. In order to provide a basis for model validation and calibration, the inundated area was determined using the Desert Flood Index (DFI), which was generated from a time series of Landsat images. We will give a short introduction to the study area and related water resources management problems, present the intended model structure and show first simulations and model validation results

  17. Ninth Annual Warren K. Sinclair Keynote Address: effects of childhood radiation exposure: an issue from computed tomography scans to Fukushima.

    PubMed

    Mettler, Fred A; Constine, Louis S; Nosske, Dietmar; Shore, Roy E

    2013-11-01

    The acute and chronic effects of radiation on children have been and will continue to be of great social, public health, scientific, and clinical importance. The focus of interest on ionizing radiation and children has been clear for over half a century and ranges from the effects of fallout from nuclear weapons testing to exposures from accidents, natural radiation, and medical procedures. There is a loosely stated notion that "children are three to five times more sensitive to radiation than adults." Is this really true? In fact, children are at greater risk for some health effects, but not all. For a few sequelae, children may be more resistant than adults. Which are those effects? How and why do they occur? While there are clear instances of increased risk of some radiation-induced tumors in children compared to adults, there are other tumor types in which there appears to be little or no difference in risk by age at exposure and some in which published models that assume the same relative increase in risks for child compared to adult exposures apply to nearly all tumor types are not supported by the scientific data. The United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) has a task group producing a comprehensive report on the subject. The factors to be considered include relevant radiation sources; developmental anatomy and physiology; dosimetry; and stochastic, deterministic, and hereditary effects.

  18. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process

    PubMed Central

    Alessio, Nicola; Del Gaudio, Stefania; Capasso, Stefania; Di Bernardo, Giovanni; Cappabianca, Salvatore; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-01-01

    Low doses of radiation may have profound effects on cellular function. Individuals may be exposed to low doses of radiation either intentionally for medical purposes or accidentally, such as those exposed to radiological terrorism or those who live near illegal radioactive waste dumpsites. We studied the effects of low dose radiation on human bone marrow mesenchymal stromal cells (MSC), which contain a subpopulation of stem cells able to differentiate in bone, cartilage, and fat; support hematopoiesis; and contribute to body's homeostasis. The main outcome of low radiation exposure, besides reduction of cell cycling, is the triggering of senescence, while the contribution to apoptosis is minimal. We also showed that low radiation affected the autophagic flux. We hypothesize that the autophagy prevented radiation deteriorative processes, and its decline contributed to senescence. An increase in ATM staining one and six hours post-irradiation and return to basal level at 48 hours, along with persistent gamma-H2AX staining, indicated that MSC properly activated the DNA repair signaling, though some damages remained unrepaired, mainly in non-cycling cells. This suggested that the impaired DNA repair capacity of irradiated MSC seemed mainly related to the reduced activity of a non-homologous end-joining (NHEJ) system rather than HR (homologous recombination). PMID:25544750

  19. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  20. Effect of radiation processing of ragi and acceptability and shelf-life of ragi malt

    NASA Astrophysics Data System (ADS)

    Pednekar, Mrinal D.; Deo, Bhakti V.; Mitra, Anuradha S.; Sharma, Arun K.

    2009-05-01

    Proximate content, sensory quality, viscosity and storage stability of malt prepared from radiation processed (1 and 5 kGy) ragi ( Eleusine coracana) was studied. Irradiation reduced the malting loss and viscosity of the malt porridge without altering the proximate composition and acceptability of the malt porridge up to 6 months. Green gram malt was added to increase the protein content of porridge.

  1. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation

    SciTech Connect

    Chun Lou; Huai-Chun Zhou; Peng-Feng Yu; Zhi-Wei Jiang

    2007-07-01

    Due to the complicated processes for coal particles burning in industrial furnaces, their radiative properties, such as the absorption and scattering coefficients, which are essential to make reliable calculation of radiative transfer in combustion computation, are hard to be given exactly by the existing methods. In this paper, multiple color image detectors were used to capture approximately red, green, and blue monochromatic radiative intensity images in the visible wavelength region, and the flame emissivity and the radiative properties of the particulate media in three pulverized-coal-fired boiler furnaces were got from the flame images. It was shown that as the load increased, the flame emissivity and the radiative properties increased too; these radiative parameters had the largest values near the burner zone, and decreased along the combustion process. Compared with the combustion medium with a low-volatile anthracite coal burning in a 670 t/h boiler, the emissivity and the absorption coefficient of the medium with a high-volatile bituminous coal burning in a 1025 t/h boiler were smaller near the outlet zone, but were larger near the burner zone of the furnace, due to the significant contribution of soot to the radiation. This work will be of practical importance in modeling and calculating the radiative heat transfer in combustion processes, and improving the technology for in situ, multi-dimensional visualization of large-scale combustion processes in coal-fired furnaces of power plants. 18 refs., 10 figs., 8 tabs.

  2. Effect of γ radiation processing on fungal growth and quality characteristcs of millet grains.

    PubMed

    Mahmoud, Nagat S; Awad, Sahar H; Madani, Rayan M A; Osman, Fahmi A; Elmamoun, Khalid; Hassan, Amro B

    2016-05-01

    The aim of this study was to evaluate the effect of gamma radiation processing of millet grains on fungal incidence, germination, free fatty acids content, protein solubility, digestible protein, and antinutritional factors (tannin and phytic acid). The grains were exposed to gamma radiation at doses 0.25, 0.5, 0.75, 1.0, and 2.0 kGy. Obtained results revealed that radiation of millet grains at a dose level higher than 0.5 kGy caused significant (P < 0.05) reduction on the percentage of fungal incidence and the free fatty acid of the seeds, while, no significant change in the germination capacity was observed of the grains after radiation. Additionally, the radiation process caused significant (P < 0.05) reduction on both tannins and phytic acid content and gradual increment on in vitro protein digestibility of the grains. On the other hand, the treatments significantly (P < 0.05) increased the protein solubility of the grains. Obtained results indicate that gamma irradiation might improve the quality characteristics of millet grains, and can be used as a postharvest method for disinfestations and decontamination of millet grains.

  3. Effect of γ radiation processing on fungal growth and quality characteristcs of millet grains.

    PubMed

    Mahmoud, Nagat S; Awad, Sahar H; Madani, Rayan M A; Osman, Fahmi A; Elmamoun, Khalid; Hassan, Amro B

    2016-05-01

    The aim of this study was to evaluate the effect of gamma radiation processing of millet grains on fungal incidence, germination, free fatty acids content, protein solubility, digestible protein, and antinutritional factors (tannin and phytic acid). The grains were exposed to gamma radiation at doses 0.25, 0.5, 0.75, 1.0, and 2.0 kGy. Obtained results revealed that radiation of millet grains at a dose level higher than 0.5 kGy caused significant (P < 0.05) reduction on the percentage of fungal incidence and the free fatty acid of the seeds, while, no significant change in the germination capacity was observed of the grains after radiation. Additionally, the radiation process caused significant (P < 0.05) reduction on both tannins and phytic acid content and gradual increment on in vitro protein digestibility of the grains. On the other hand, the treatments significantly (P < 0.05) increased the protein solubility of the grains. Obtained results indicate that gamma irradiation might improve the quality characteristics of millet grains, and can be used as a postharvest method for disinfestations and decontamination of millet grains. PMID:27247763

  4. Food packaging materials and radiation processing of food: A brief review

    NASA Astrophysics Data System (ADS)

    Chuaqui-Offermanns, N.

    Food is usually packaged to prevent microbial contamination and spoilage. Ionizing radiation can be applied to food-packaging materials in two ways: (i) sterilization of packaging materials for aseptic packaging, and (ii) radiation processing of prepackaged food. In aseptic packaging, a sterile package is filled with a sterile product in a microbiologically controlled environment. In irradiation of prepackaged food, the food and the packaging material are irradiated simultaneously. For both applications, the radiation stability of the packaging material is a key consideration if the technology is to be used successfully. To demonstrate the radiation stability of the packaging material, it must be shown that irradiation does not significantly alter the physical and chemical properties of the material. The irradiated material must protect the food from environmental contamination while maintaining its organoleptic and toxicological properties. Single-layer plastics cannot meet the requirements of either application. Multilayered structures produced by coextrusion would likely satisfy the demands of radiation processing prepackaged food. In aseptic packaging, the package is irradiated prior to filling, making demands on toxicological safety less stringent. Therefore, multilayered structures produced by coextrusion, lamination or co-injection moulding could satisfy the requirements.

  5. Review on the production process and uses of controlled rheology polypropylene—Gamma radiation versus electron beam processing

    NASA Astrophysics Data System (ADS)

    Lugão, A. B.; Otaguro, H.; Parra, D. F.; Yoshiga, A.; Lima, L. F. C. P.; Artel, B. W. H.; Liberman, S.

    2007-11-01

    Controlled rheology polypropylene grades are established commodities in the polymer processing market. However, new types, mainly the so-called high melt strength polypropylene (HMSPP) grades, are being introduced in the last two decades and radiation processing has played an important role. The melt strength properties of a polymer increases with molecular weight and with long-chain branching due to the increase in the entanglement level. As polypropylene (PP) is a linear polymer, the way to improve its elongational viscosity is by the production of a bi-modal polymer. Basell's patents claim the production of long-chain branching on PP by irradiating with electrons under oxygen free atmosphere, followed by two heating steps to allow radical recombination and annihilation reaction. Some other companies have issued patents using electron beam processing, but so far there is no actual production other than the Basell one. As a result of a research joint effort, IPEN, BRASKEM (the biggest Brazilian polymer producer) and EMBRARAD (the major Brazilian radiation processing center) developed a new process to produce HMSPP based on gamma processing. This paper will address some characteristics of each technology and the main industrial opportunities.

  6. Radiation effects and micromechanics of SiC/SiC composites. Annual technical report, November 15, 1991--November 14, 1992

    SciTech Connect

    Ghoniem, N.M.

    1992-12-01

    The basic displacement damage process in SiC has been fully explored, and the mechanisms identified. Major modifications have been made to the theory of damage dosimetry in Fusion, Fission and Ion Simulation studies of Sic. For the first time, calculations of displacements per atoms in SiC can be made in any irradiation environment. Applications to irradiations in fusion first wall neutron spectra (ARIES and PROMETHEUS) as well as in fission spectra (HIFIR and FFTF) are given. Nucleation of helium-filled cavities in SiC was studied, using concepts of stability theory to determine the size of the critical nucleus under continuous generation of helium and displacement damage. It is predicted that a bimodal distribution of cavity sizes is likely to occur in heavily irradiated SiC. A study of the chemical compatibility of SiC composite structures with fusion reactor coolants at high-temperatures was undertaken. It was shown that SiC itself is chemically very stable in helium coolants in the temperature range 500--1000{degree}C. However, current fiber/matrix interfaces, such as C and BN are not. The fracture mechanics of high-temperature matrix cracks with bridging fibers is now in progress. A fundamentally unique approach to study the propagation and interaction of cracks in a composite was initiated. The main focus of our research during the following period will be : (1) Theory and experiments for the micro-mechanics of high-temperature failure; and (2) Analysis of radiation damage and microstructure evolution.

  7. Use of a physiological process model with forestry yield tables to set limits on annual carbon balances.

    PubMed

    Waring, R H; McDowell, Nate

    2002-02-01

    We present an approach that sets limits on annual carbon fluxes for different aged forests by using a simple process-based model (3-PG) and information derived from yield tables and local weather stations. Given a measure of height-growth potential, model predictions are constrained to match stand dynamics described in yield tables. Thus constrained, the model can provide reasonable annual estimates of gross photosynthesis under a specified climate, even with inexact knowledge of soil properties. If we assume that leaf litterfall and fine-root turnover approach equilibrium at canopy closure, maximum net annual ecosystem exchange can also be predicted from modeled estimates of these two detrital components and estimates of foliage, branch, stem and coarse-root production. The latter four components of production are predicted from allometric relationships with mean stem diameter. The approach is demonstrated for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands between Ages 20 and 150 years growing under conditions typical of those at Wind River, Washington, USA. Gross photosynthesis (Pg) by Douglas-fir at Ages 20, 70 and 150 years with leaf area indices (L) of 8.1, 6.9 and 4.0 was predicted at 1630, 1580 and 1160 g C m-2 year(1, respectively. Maximum net ecosystem production (Pe) for the same range in age classes was predicted to average 275, 294 and 207 g C m-2 year-1, respectively. The predicted reductions in L for older stands do not occur because other species fill the canopy gaps created by natural mortality of Douglas-fir. As a result of the development of an understory, total Pg is predicted to decrease only slightly with the aging of the overstory. Estimates of Pe exclude respiration from coarse woody debris, although additions of this component are provided annually by the model. The process-based modeling approach, constrained by yield table estimates of stand properties, sets reasonable limits on annual carbon exchange and suggests which

  8. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  9. A Radiation-Hard Analog Memory In The AVLSI-RA Process

    SciTech Connect

    Britton, C.L. Jr.; Wintenberg, A.L.; Read, K.F.; Simpson, M.L.; Young, G.R.; Clonts, L.G., Kennedy, E.J., Smith, R.S., Swann, B.K.; Musser, J.A.

    1995-12-31

    A radiation hardened analog memory for an Interpolating Pad Camber has been designed at Oak Ridge National Laboratory and fabricated by Harris Semiconductor in the AVLSI-RA CMOS process. The goal was to develop a rad-hard analog pipeline that would deliver approximately 9-bit performance, a readout settling time of 500ns following read enable, an input and output dynamic range of +/-2.25V, a corrected rms pedestal of approximately 5mV or less, and a power dissipation of less than 10mW/channel. The pre- and post-radiation measurements to 5MRad are presented.

  10. Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles.

    PubMed

    Papoff, Francesco; McArthur, Duncan; Hourahine, Ben

    2015-07-09

    We propose a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. We derive conditions on the external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. The control introduces narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts.

  11. Process development studies of the bioconversion of cellulose and production of ethanol. Semi annual report

    SciTech Connect

    Wilke, C.R.; Blanch, H.W.

    1981-04-01

    Progress in the following process development studio is reported: economic evaluation of hydrolysis and ethanol fermentation schemes, economic evaluation of alternative fermentation processes, raw materials evaluation, and evaluation of pretreatment process. Microbiological and enzymatic studies reported are: production of cellulase enzyme from high yielding mutants, hydrolysis reactor development, xylose fermentation, and xylanese production. Fermentation and separation processes include: process development studies on vacuum fermentation and distillation, evaluation of low energy separations processes, large scale hollow fiber reactor development. (MHR)

  12. From research to industry — The establishment of a radiation processing industry in South Africa

    NASA Astrophysics Data System (ADS)

    Plessis, T. A. Du; Stevens, RCB

    In the late sixties the South African Atomic Energy Board in pursuing its objectives to promote the peaceful application of nuclear energy in general, established a research group with the specific purpose of investigating and developing radiation processing as a new technique. During the early years it was realised that the economic and technological facets of establishing a new industry were equally important and, in addition to fundamental research, strong emphasis was placed on the necessity of marketing this new technology. Although the initial emphasis was put on gamma sterilization, and today still forms the backbone of the radiation processing industry, the promising fields of polymer modification and food irradiation hold a lot of promise in the radiation processing industry. Following ten years of successfully introducing and providing a radiation service, the South African Atomic Energy Board in 1980 decided to transfer its service to the private sector. These developments in South Africa are a good sample of how a small country, through initial government envolvement, can acquire a sophisticated new private industry.

  13. Sensorial analysis evaluation in cereal bars preserved by ionizing radiation processing

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Fanaro, G. B.; Rela, P. R.; Mancini-Filho, J.

    2007-11-01

    Gamma-rays utilized as a food-processing treatment to eliminate insect contamination is well established in food industries. Recent troubles in Brazilian cereal bars commercialization require a special consumer's attention because some products were contaminated by insects. To solve the problem, food-irradiation treatment was utilized as a safe and effective solution. The final product was free of insect contamination. The aim of this study was to determine the best radiation dose processing utilized to disinfestations and detect some change on sensorial characteristic by sensorial analysis in cereal bars. In this study, three different kinds of cereal bars were purchased in São Paulo (Brazil) in supermarkets and irradiated with 1.0, 2.0 and 3.0 kGy at "Instituto de Pesquisas Energéticas e Nucleares" (IPEN-CNEN/SP). The samples were treated with ionizing radiation using a 60Co gamma-ray facility (Gammacell 220, A.E.C.L.). That radiation doses were used successfully as an anti-insect treatment in the cereal bars, since in some food industries doses up to 3.0 kGy are used to guarantee at least a dose of 1.0 kGy in internal cereal bars package. Sensorial analysis was necessary since cereal bars contain ingredients very sensitive to ionizing radiation process.

  14. Effects of colonization processes on genetic diversity: differences between annual plants and tree species.

    PubMed Central

    Austerlitz, F; Mariette, S; Machon, N; Gouyon, P H; Godelle, B

    2000-01-01

    Tree species are striking for their high within-population diversity and low among-population differentiation for nuclear genes. In contrast, annual plants show much more differentiation for nuclear genes but much less diversity than trees. The usual explanation for this difference is that pollen flow, and therefore gene flow, is much higher for trees. This explanation is problematic because it relies on equilibrium hypotheses. Because trees have very recently recolonized temperate areas, they have experienced many foundation events, which usually reduce within-population diversity and increase differentiation. Only extremely high levels of gene flow could counterbalance these successive founder effects. We develop a model to study the impact of life cycle of forest trees, in particular of the length of their juvenile phase, on genetic diversity and differentiation during the glacial period and the following colonization period. We show that both a reasonably high level of pollen flow and the life-cycle characteristics of trees are needed to explain the observed structure of genetic diversity. We also show that gene flow and life cycle both have an impact on maternally inherited cytoplasmic genes, which are characterized both in trees and annual species by much less diversity and much more differentiation than nuclear genes. PMID:10757772

  15. Towards a Process-based Representation of Annual Crops Within the Land Surface Model JULES

    NASA Astrophysics Data System (ADS)

    van den Hoof, C.; Vidale, P.

    2008-05-01

    The purpose of this work is to introduce a generic crop structure within the Joint UK Land surface Exchange Scheme JULES (Cox, 1998) that is able to evaluate the interaction between growing crops and the environment at large scales for a wide range of atmospheric conditions. JULES was designed to simulate land surface processes in natural ecosystems. The importance of representing agricultural land within global biosphere models has been pointed out in many studies (De Noblet-Ducoudre et al., 2004; Bondeau 2005 et al.). Prior to any model development, the sensitivity of JULES to morphological and physiological differences between natural vegetation and crops has been investigated by reparameterising a natural C3 grass into a C3 crop. For a case study of fallow versus wheat at Grignon (France), the model output shows important soil water savings after crop harvest at the beginning of the summer. Owing to the lack of a rooting system, the deeper soil moisture cannot contribute anymore to the moisture flux to the atmosphere. On a shorter timescale, the harvest, and by consequence the sudden appearance of bare soil, also disrupt the energy and momentum fluxes between surface and atmosphere. Having established the sensitivity of the JULES system to a crop-like forcing, some components from the crop model SUCROS (Goudriaan and van Laar, 1994) that are relevant to the global water, energy and carbon cycles, have been introduced in JULES. The new version of JULES, denoted by JULES-SUCROS, incorporates crops and natural vegetation within a single modelling framework, without discontinuity in the photosynthesis-assimilation scheme between both vegetation types. Simulations have been performed with JULES-SUCROS for wheat at the Grignon site in current and doubled CO2 atmospheric conditions. Changing atmospheric conditions in JULES-SUCROS affects the sowing date and the length of the growing season. The results show that the positive effect of the CO2 fertilisation partly

  16. Inter-annual variability of exchange processes at the outer Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng

    2014-05-01

    The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black Sea, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the sea in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the sea, the transport of cold waters from the northwest Black Sea shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the exchanges between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal exchange within the CIL is strongly inhibited, so that CIL waters formed in the deep sea (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open sea and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black Sea (NEMO-SHELF-BLS) to quantify the exchange of CIL waters between the open sea and the outer northwest Black Sea shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid

  17. The Annual Cosmic-Radiation Intensities 1391 - 2014; The Annual Heliospheric Magnetic Field Strengths 1391 - 1983, and Identification of Solar Cosmic-Ray Events in the Cosmogenic Record 1800 - 1983

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; Beer, J.

    2015-10-01

    The annual cosmogenic ^{10}Be ice-core data from Dye 3 and the North Greenland Ice-core Project (NGRIP), and neutron-monitor data, 1951 - 2014, are combined to yield a record of the annual cosmic-ray intensity, 1391 - 2014. These data were then used to estimate the intensity of the heliospheric magnetic field (HMF), 1391 - 1983. All of these annual data are provided in the Electronic Supplementary Material. Analysis of these annual data shows that there were significant impulsive increases in ^{10}Be production in the year following the very large solar cosmic-ray events of 1942, 1949, and 1956. There was an additional enhancement that we attribute to six high-altitude nuclear explosions in 1962. All of these enhancements result in underestimates of the strength of the HMF. An identification process is defined, resulting in a total of seven impulsive ^{10}Be events in the interval 1800 - 1942 prior to the first detection of a solar cosmic-ray event using ionization chambers. Excision of the ^{10}Be impulsive enhancements yields a new estimate of the HMF, designated B(PCR-2). Five of the seven ^{10}Be enhancements prior to 1941 are well correlated with the occurrence of very great geomagnetic storms. It is shown that a solar cosmic-ray event similar to that of 25 July 1946, and occurring in the middle of the second or third year of the solar cycle, may merge with the initial decreasing phase of the 11-year cycle in cosmic-ray intensity and be unlikely to be detected in the ^{10}Be data. It is concluded that the occurrence rate for solar energetic-particle (SEP) events such as that on 23 February 1956 is about seven per century, and that there is an upper limit to the size of solar cosmic-ray events.

  18. The effects of radiative and microphysical processes on simulated warm and transition season arctic stratus

    NASA Astrophysics Data System (ADS)

    Harrington, Jerry Y.

    radiative influence; this is attributed to the spurious production of cloud top supersaturations by Eulerian models (Stevens et al., 1996a). Simulations of transition season ASC shows that boundary layer stability is strongly dependent upon ice processes, illustrating that the rapid reduction in fall stratus cloud cover may be forced, in part, by microphysical processes. Cloud stability is shown to be strongly dependent upon the cloud temperature, ice concentration, precipitation rate and the indirect effects of ice crystals on cloud top radiative cooling while ice aggregation has a weak effect. Transitions from predominately mixed to stable boundary layers occur and are a function of ice sublimation and precipitation; ice habit strongly constrains the effect. Frequently observed autumnal stable layers may be formed in this fashion. A new method of multiple cloud layer formation is discussed and occurs through the rapid loss of ice from the upper cloud layer, which moistens and cools (sublimation and radiation) the lower layers causing droplet activation.

  19. Reservoir characterization and process monitoring with EM methods. 1993 Annual report

    SciTech Connect

    Wilt, M.

    1994-09-01

    During the past four years at Lawrence Livermore National Laboratory (LLNL) the authors have applied the EM induction method to the problem of thermal front tracking during EOR operations. During this past year, they have also turned their attention to the larger, but related, problem of petroleum reservoir characterization. As in the past, this research is a collaborative effort. The main focus of activities at LLNL is hardware development, field measurement and geological interpretation of the results. The authors are dependent on others for theoretical and software development, geological information and the availability of sites to test field systems. Collaborative interdependency serves to make research dollars stretch further and allows completion of the tasks in a timely manner. In this annual report the authors discuss the progress in the development of numerical modeling codes, describe improvements to the field system and present some field results.

  20. Monitoring of reinforced composites processed by microwave radiation using fiber-Bragg gratings

    NASA Astrophysics Data System (ADS)

    Barrera, David; Roig, Inma; Sales, Salvador; Emmerich, Rudolf

    2014-05-01

    The use of microwave radiation for curing carbon-fiber reinforced polymer materials (CFRP) can solve the nonhomogeneous heating problems when using conventional techniques based on the use of catalysts and can reduce the processing times. Optical fiber sensors have well-known advantages for Fiber Reinforced Composites (FRC) monitoring. In this paper fiber Bragg gratings (FBGs) are used for online monitoring of the residual stress and distortions produced during the microwave curing process. The CFRP samples are composed by layers of unidirectional carbon fibers and epoxy resin. The results show a very different behavior between the direction of carbon fibers and the perpendicular direction. Results are compared with the conventional processing technique.

  1. Implication of observed cloud variability for parameterizations of microphysical and radiative transfer processes in climate models

    NASA Astrophysics Data System (ADS)

    Huang, D.; Liu, Y.

    2014-12-01

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The PDFs are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest and thus there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

  2. Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water.

    PubMed

    Goel, Narender Kumar; Kumar, Virendra; Misra, Nilanjal; Varshney, Lalit

    2015-11-01

    A cationized adsorbent was prepared from cellulosic cotton fabric waste via a single step-green-radiation grafting process using gamma radiation source, wherein poly[2-(methacryloyloxy) ethyl]trimethylammonium chloride (PMAETC) was covalently attached to cotton cellulose substrate. Radiation grafted (PMAETC-g-cellulose) adsorbent was investigated for removal of acid dyes from aqueous solutions using two model dyes: Acid Blue 25 (AB25) and Acid Blue 74 (AB74). The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherms, whereas kinetic data was analyzed by pseudo first order, pseudo second order, intra particle diffusion and Boyd's models. The PMAETC-g-cellulose adsorbent with 25% grafting yield exhibited equilibrium adsorption capacities of ∼ 540.0mg/g and ∼ 340.0mg/g for AB25 and AB74, respectively. Linear and nonlinear fitting of adsorption data suggested that the equilibrium adsorption process followed Langmuir adsorption isotherm model, whereas, the kinetic adsorption process followed pseudo-second order model. The multi-linearities observed in the intra-particle kinetic plots suggested that the intraparticle diffusion was not the only rate-controlling process in the adsorption of acid dyes on the adsorbent, which was further supported by Boyd's model. The adsorbent could be regenerated by eluting the adsorbed dye from the adsorbent and could be repeatedly used.

  3. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    SciTech Connect

    Schwartz, J.L.

    1993-06-01

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that radiation sensitivity differences in squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent tumor cell radiosensitivity differences or in the success or failure of radiotherapy for squamous cell carcinomas.

  4. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    SciTech Connect

    Schwartz, J.L.

    1993-01-01

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that radiation sensitivity differences in squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent tumor cell radiosensitivity differences or in the success or failure of radiotherapy for squamous cell carcinomas.

  5. Annual Conference on Nuclear and Space Radiation Effects, 14th, College of William and Mary, Williamsburg, Va., July 12-15, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    Stahl, R. H.

    1977-01-01

    Topics related to processing and hardness assurance are considered, taking into account the radiation hardening of CMOS technologies, technological advances in the manufacture of radiation-hardened CMOS integrated circuits, CMOS hardness assurance through process controls and optimized design procedures, the application of operational amplifiers to hardened systems, a hard off-the-shelf SG1524 pulse width modulator, and the gamma-induced voltage breakdown anomaly in a Schottky diode. Basic mechanisms are examined, giving attention to chemical and structural aspects of the irradiation behavior of SiO2 films on silicon, experimental observations of the chemistry of the SiO2/Si interface, leakage current phenomena in irradiated SOS devices, the avalanche injection of holes into SiO2, the low-temperature radiation response of Al2O3 gate insulators, and neutron damage mechanisms in silicon at 10 K. Other subjects discussed are related to radiation effects in devices and circuits, space radiation effects, and aspects of simulation, energy deposition, and dosimetry.

  6. A Coordinated Effort to Improve Parameterization of High-Latitude Cloud and Radiation Processes

    SciTech Connect

    J. O. Pinto, A.H. Lynch

    2005-12-14

    The goal of this project is the development and evaluation of improved parameterization of arctic cloud and radiation processes and implementation of the parameterizations into a climate model. Our research focuses specifically on the following issues: (1) continued development and evaluation of cloud microphysical parameterizations, focusing on issues of particular relevance for mixed phase clouds; and (2) evaluation of the mesoscale simulation of arctic cloud system life cycles.

  7. Section 7.1. new installations. Contribution of engineering to radiation processing

    NASA Astrophysics Data System (ADS)

    Keraron, Y.; Erhart, F.

    The favourable opinion of the Joint FAO/IAEA/WHO Expert Committee on the preservation of food by ionizing radiation has given rise to extensive developments throughout the world. SGN, an engineering company, in cooperation with research centres and the industry, took part to these recent efforts. The authors give examples of industrial programmes for the development of equipment and processes and review the results obtained.

  8. An evaluation of radiation and dust hazards at a mineral sand processing plant.

    PubMed

    Johnston, G

    1991-06-01

    This three-part article discusses the results of a 2-y study on radiation and dust hazards in a mineral sand processing plant involving: (1) evaluation of external gamma radiation levels and determination of isotopic composition of the different sand products; (2) evaluation of radiation carried in long-lived radioactive dust (LLRD) particles; (3) evaluation of Rn gas concentrations within the working environs of the plant. Gamma radiation levels had a mean value of approximately 40 nSv h-1, and monazite sand returned the highest activity concentrations of 0.16% and 3.4% for 238U and 232Th, respectively. Low volume gross respirable dust sampling revealed an average long-lived airborne alpha activity concentration of 0.07 +/- 0.02 Bq m-3 and an average dust mass concentration of 3.3 +/- 2 mg m-3. Gamma spectroscopy applied to high-volume air samples showed average airborne 232Th and 238U activities of 0.012 +/- 0.004 Bq m-3 and 0.005 +/- 0.002 Bq m-3, respectively, giving an airborne 232Th: 238U ratio of 2.4:1. Air sampling using a high volume, five-stage cascade impactor indicated an average activity median aerodynamic diameter (AMAD) of 3.2 microns with an associated average geometric standard deviation (GSD) of 2.8. Average radiation dose arising from the inhalation of LLRD was estimated to be 7 mSv per annum. CR-39 (polycarbonate plastic) nuclear track detectors indicated that Rn gas concentrations in the environs of the processing plant dry mill and main product warehouse ranged from 30 Bq m-3 to 220 Bq m-3, with an average value of 100 Bq m-3, which presents a possible inhaled dose from Rn daughters of 1.5 mSv y-1 (assuming an equilibrium ratio of 0.5).

  9. Effect of radiation processing on nutritional, functional, sensory and antioxidant properties of red kidney beans

    NASA Astrophysics Data System (ADS)

    Marathe, S. A.; Deshpande, R.; Khamesra, Arohi; Ibrahim, Geeta; Jamdar, Sahayog N.

    2016-08-01

    In the present study dry red kidney beans (Phaseolus vulgaris), irradiated in the dose range of 0.25-10.0 kGy were evaluated for proximate composition, functional, sensory and antioxidant properties. Radiation processing up to 10 kGy did not affect proximate composition, hydration capacity and free fatty acid value. All the sensory attributes were unaffected at 1.0 kGy dose. The dose of 10 kGy, showed lower values for odor and taste, however, they were in acceptable range. Significant improvement in textural quality and reduction in cooking time was observed at dose of 10 kGy. Antioxidant activity of radiation processed samples was also assessed after normal processing such as soaking and pressure cooking. Both phenolic content and antioxidant activity evaluated in terms of DPPH free radical scavenging assay and inhibition in lipid peroxidation using rabbit erythrocyte ghost system, were marginally improved (5-10%) at the dose of 10 kGy in dry and cooked samples. During storage of samples for six months, no significant change was observed in sensory, cooking and antioxidant properties. Thus, radiation treatment of 1 kGy can be applied to get extended shelf life of kidney beans with improved functional properties without impairing bioactivity; nutritional quality and sensory property.

  10. Can the Fisher-Lande Process Account for Birds of Paradise and Other Sexual Radiations?

    PubMed

    Arnold, Stevan J; Houck, Lynne D

    2016-06-01

    Models of the Fisher-Lande process (FLP) have been used successfully to explore many aspects of evolution by sexual selection. Despite this success, quantitative tests of these models using data from sexual radiations are rare. Consequently, we do not know whether realistic versions of the FLP can account for the extent and the rate of evolution of sexually selected traits. To answer this question, we generalize the basic FLP model of sexual coevolution and compare predictions of that basic model with patterns observed in an iconic sexual radiation, birds of paradise. Our model tracks the coevolution of male and female traits (two in each sex) while relaxing some restrictive assumptions. Using computer simulations, we evaluate the behavior of the model and confirm that it is an Ornstein-Uhlenbeck (OU) process. We also assess the ability of the FLP to account for the quantitative aspects of ornament evolution in the genus Paradisaea using published measurements of display traits and a phylogeny of the genus. Finally, we use the program OUwie to compare model fits to generic OU and Brownian motion processes and to estimate FLP parameters. We show that to explain the sexual radiation of the genus Paradisaea one must either invoke extremely weak stabilizing selection on female mating preferences or allow the preference optimum to undergo Brownian motion at a modest rate.

  11. Evaluation of phenolic compounds in maté ( Ilex paraguariensis) processed by gamma radiation

    NASA Astrophysics Data System (ADS)

    Furgeri, C.; Nunes, T. C. F.; Fanaro, G. B.; Souza, M. F. F.; Bastos, D. H. M.; Villavicencio, A. L. C. H.

    2009-07-01

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The maté ( Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrão or tererê, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of tererê beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of tererê beverage processed by gamma radiation.

  12. LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing

    NASA Astrophysics Data System (ADS)

    Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min

    2009-06-01

    In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.

  13. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.

    2001-01-01

    The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.

  14. WASTE PROCESSING ANNUAL NUCLEAR SAFETY RELATED R AND D REPORT FOR CY2008

    SciTech Connect

    Fellinger, A.

    2009-10-15

    The Engineering and Technology Office of Waste Processing identifies and reduces engineering and technical risks associated with key waste processing project decisions. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment (TDD). The Office of Waste Processing TDD program prioritizes and approves research and development scopes of work that address nuclear safety related to processing of highly radioactive nuclear wastes. Thirteen of the thirty-five R&D approved work scopes in FY2009 relate directly to nuclear safety, and are presented in this report.

  15. Perception of risk: proceedings of the XVth annual meeting of the National Council on Radiation Protection and Measurements

    SciTech Connect

    Goris, M.L.

    1981-03-01

    The book is a conglomerate of formal papers, discussions, and the textual minutes of a round table discussion with audience participation. The first part, and most interesting from my view-point, deals with the perception of risk or harm and societal attitudes. The second part contains papers that seem to be historical primers concerning radiobiology. This subject is surrounded by controversy, and it seems in part to be approached as an elephant would be by a tribe of blind zoologists. They poke and pinch, sometimes describe small parts in great detail, but never exactly circumscribe the object of the study. The purpose is to present a discussion of the harm due to radiation, specifically radiation from power sources. Closely related to this is the question of the regulatory agencies' role.

  16. United States Transuranium and Uranium Registries: Researching radiation protection. USTUR annual report for February 1, 1999 through January 31, 2000

    SciTech Connect

    Ehrhart, Susan M.; Filipy, Ronald E.

    2000-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 1999 through January 2000.

  17. Adaptive information processing in auditory cortex. Annual report, 1 June 1987-31 May 1988

    SciTech Connect

    Weinberger, N.M.

    1988-05-31

    The fact that learning induces frequency-specific modification of receptive fields in auditory cortex implies that the functional organization of auditory (and perhaps other sensory) cortex comprises an adaptively-constituted information base. This project initiates the first systematic investigation of adaptive information processing in cerebral cortex. A major goal is to determine the circumstances under which adaptive information processing is induced by experience. This project also addresses central hypotheses about rules that govern adaptive information processing, at three levels of spatial scale: (a) parallel processing in different auditory fields: (b) modular processing in different cortical lamina within fields; (c) local processing in different neurons within the same locus within lamina. The author emphasized determining the learning circumstances under which adaptive information processing is invoked by the brain. Current studies reveal that the frequency receptive fields of neurons in the auditory cortex, and the physiologically plastic magnocellular medial geniculate nucleus, develop frequency-specific modification such that maximal shifts in tuning are at or adjacent to the signal frequency. Further, this adaptive re-tuning of neurons develops rapidly during habituation, classical conditioning, and instrumental avoidance conditioning. The generality of re-tuning has established that AIP during learning represents a general brain strategy for the acquisition and subsequent processing of information.

  18. Developing and Implementing a Process for the Review of Nonacademic Units. AIR 1988 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Brown, Marilyn K.

    The process of evaluating college academic-support units is described, and the experience of the University of Maryland (College Park) with such a program is discussed. A review of the literature discusses six models: the goal-attainment model, the systems model, the process model, the multiple-constituency approach, the Goodman and Pennings…

  19. Effective Report Preparation: Streamlining the Reporting Process. AIR 1999 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Dalrymple, Margaret; Wang, Mindy; Frost, Jacquelyn

    This paper describes the processes and techniques used to improve and streamline the standard student reports used at Purdue University (Indiana). Various models for analyzing reporting processes are described, especially the model used in the study, the Shewart or Deming Cycle, a method that aids in continuous analysis and improvement through a…

  20. Evaluation of microbial loads, physical characteristics, chemical constituents and biological properties of radiation processed Fagonia arabica

    NASA Astrophysics Data System (ADS)

    Khattak, Khanzadi Fatima

    2012-06-01

    Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1-10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.

  1. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  2. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  3. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, M.; Sampa, M. H.; Ramamoorthy, N.; Güven, O.; Chmielewski, A. G.

    2007-12-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  4. DOE 2012 occupational radiation exposure

    SciTech Connect

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  5. DOE 2011 occupational radiation exposure

    SciTech Connect

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  6. Scaled physical model studies of the steam drive process. First annual report, September 1977-September 1978

    SciTech Connect

    Doscher, T M

    1980-12-01

    Scaling laws of the heat transport mechanism in steam displacement processes are developed based upon an integral energy balance equation. Unlike the differential approach adopted by previous workers, the above scaling laws do not necessitate the use of any empirical correction factor as has been done in previous scaling calculations. The results provide a complete and consistent scale-down of the energy transport behavior, which is the critical mechanism for the success of a steam injection process. In the course of the study, the scaling problems associated with relative permeability and capillary pressure are also discussed. A method which has often been used in scaling nonthermal displacement processes is applied to reduce errors due to scaling in relative permeability. Both dimensional and inspectional analyses are applied to illustrate their use in steam processes. Scale-up laws appeared in the literature and those used in this study are compared and numerical examples are given.

  7. Chevron: Refinery Identifies $4.4 Million in Annual Savings by Using Process Simulation Models to Perform Energy-Efficiency Assessment

    SciTech Connect

    Not Available

    2004-05-01

    In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.

  8. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  9. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology.

    PubMed

    Yin, Xinyou; Struik, Paul C

    2015-11-01

    A new simple framework was proposed to quantify the efficiency of converting incoming solar radiation into phytoenergy in annual crops. It emphasizes the need to account for (i) efficiency gain when scaling up from the leaf level to the canopy level, and (ii) efficiency loss due to incomplete canopy closure during early and late phases of the crop cycle. Equations are given to estimate losses due to the constraints in various biochemical or physiological steps. For a given amount of daily radiation, a longer daytime was shown to increase energy use efficiency, because of the convex shape of the photosynthetic light response. Due to the higher cyclic electron transport, C4 leaves were found to have a lower energy loss via non-photochemical quenching, compared with C3 leaves. This contributes to the more linear light response in C4 than in C3 photosynthesis. Because of this difference in the curvature of the light response, canopy-to-leaf photosynthesis ratio, benefit from the optimum acclimation of the leaf nitrogen profile in the canopy, and productivity gain from future improvements in leaf photosynthetic parameters and canopy architecture were all shown to be higher in C3 than in C4 species. The indicative efficiency of converting incoming solar radiation into phytoenergy is ~2.2 and 3.0% in present C3 and C4 crops, respectively, when grown under well-managed conditions. An achievable efficiency via future genetic improvement was estimated to be as high as 3.6 and 4.1% for C3 and C4 crops, respectively. PMID:26224881

  10. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology.

    PubMed

    Yin, Xinyou; Struik, Paul C

    2015-11-01

    A new simple framework was proposed to quantify the efficiency of converting incoming solar radiation into phytoenergy in annual crops. It emphasizes the need to account for (i) efficiency gain when scaling up from the leaf level to the canopy level, and (ii) efficiency loss due to incomplete canopy closure during early and late phases of the crop cycle. Equations are given to estimate losses due to the constraints in various biochemical or physiological steps. For a given amount of daily radiation, a longer daytime was shown to increase energy use efficiency, because of the convex shape of the photosynthetic light response. Due to the higher cyclic electron transport, C4 leaves were found to have a lower energy loss via non-photochemical quenching, compared with C3 leaves. This contributes to the more linear light response in C4 than in C3 photosynthesis. Because of this difference in the curvature of the light response, canopy-to-leaf photosynthesis ratio, benefit from the optimum acclimation of the leaf nitrogen profile in the canopy, and productivity gain from future improvements in leaf photosynthetic parameters and canopy architecture were all shown to be higher in C3 than in C4 species. The indicative efficiency of converting incoming solar radiation into phytoenergy is ~2.2 and 3.0% in present C3 and C4 crops, respectively, when grown under well-managed conditions. An achievable efficiency via future genetic improvement was estimated to be as high as 3.6 and 4.1% for C3 and C4 crops, respectively.

  11. Effects of microphysics and radiation on mesoscale processes of a midlatitude squall line

    SciTech Connect

    Chin, Hung-Neng Steve

    1994-04-01

    The understanding of the essential dynamics of mesoscale convective systems (MCSs) was well addressed in the literature. Effects of different physics on mesoscale processes of MCSs are, however, not well understood at some particular aspects, such as the origins of the rear inflow and the transition zone in the radar reflectivity. The objective of this research is focused on these two aspects for a midlatitude broken-line squall system. The existence of the rear inflow in MCSs has been identified in many observational and modeling studies. Although convincing evidence has shown that physical internal to the mesoscale system and pressure gradient effects in the convective and trailing stratiform regions are undoubtedly important in developing the rear inflow, it remains unclear bow these internal processes interact with pressure effects to trigger the rear inflow. Moreover, many modeling studies have replicated the bright melting ban, but the transition zone has not been successfully simulated. With the enhanced model physics, such as radiation, in a cloud model, we can simulate these features and provide some supplemental evidences, at least in part, to explain them. The modulation of the rear inflow by microphysics, long- (LW) and shortwave (SW) radiation, and its related cloud-radiative feedback to the modeled squall line system are also discussed in this study.

  12. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  13. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-05-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data.

  14. Advanced biochemical processes for geothermal brines: Annual operating plan, FY 1995

    SciTech Connect

    Premuzic, E.T.

    1995-02-01

    An R and D program to identify methods for the utilization and/or low cost of environmentally acceptable disposal of toxic geothermal residues has been established at the Brookhaven National Laboratory (BNL). Laboratory work has shown that a biochemical process developed at BNL, would meet regulatory costs and environmental requirements. In this work, microorganisms which can convert insoluble species of toxic metals, including radionuclides, into soluble species, have been identified. These organisms serve as models in the development of a biochemical process in which toxic metals present in geothermal residual sludges are converted into water soluble species. The produced solution can be reinjected or processed further to concentrate and recover commercially valuable metals. After the biochemical detoxification of geothermal residual sludges, the end-products are non-toxic and meet regulatory requirements. The overall process is a technically and environmentally acceptable cost-efficient process. It is anticipated that the new biotechnology will reduce the cost of surface disposal of sludges derived from geothermal brines by 25% or better.

  15. Fundamental chemistry and thermodynamics of hydrothermal oxidation processes. 1998 annual progress report

    SciTech Connect

    Simonson, J.M.; Mesmer, R.E.; Blencoe, J.G.; Cummings, P.T.; Chialvo, A.A.

    1998-06-01

    'The objective of this research program is to provide fundamental scientific information on the physical and chemical properties of solutes in aqueous solutions at high temperatures needed to assess and enhance the applicability of hydrothermal oxidation (HTO) to the remediation of DOE hazardous and mixed wastes. Potential limitations to the use of HTO technology include formation of deposits (scale) from precipitation of inorganic solutes in the waste, corrosion arising from formation of strong acids on oxidation of some organic compounds (e.g., chlorinated hydrocarbons), and unknown effects of fluid density and phase behavior at high temperatures. Focus areas for this project include measurements of the solubility and speciation of actinides and surrogates in model HTO process streams at high temperatures, and the experimental and theoretical development of equations of state for aqueous mixtures under HTO process conditions ranging above the critical temperature of water. A predictive level of understanding of the chemical and physical properties of HTO process streams is being developed through molecular-level simulations of aqueous solutions at high temperatures. Advances in fundamental understanding of phase behavior, density, and solute speciation at high temperatures and pressures contribute directly to the ultimate applicability of this process for the treatment of DOE hazardous and mixed wastes. Research in this project has been divided into individual tasks, with each contributing to a unified understanding of HTO processing problems related to the treatment of DOE wastes. This report summarizes progress attained after slightly less than two years of this three-year project.'

  16. The development of an integrated multistaged fluid bed retorting process. Annual report, October 1991--September 1992

    SciTech Connect

    Carter, S.; Vego, A.; Stehn, J.; Taulbee, D.; Robl, T.; Hower, J.; Mahboub, K.; Robertson, R.; Hornsberger, P.; Oduroh, P.; Simpson, A.

    1992-12-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1991 through September 30, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis (shale oil production), gasification (synthesis gas production), and combustion of the spent oil shale for process heat. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The work completed this year involved several different areas. Basic studies of the cracking and coking kinetics of shale oil vapors were carried out in fluidized and fixed bed reactors using both freshly generated shale oil vapors and model compounds. The design and fabrication of the 50-lb/hr KENTORT II reactor was completed and installation of the process components was initiated. The raw oil shale sample (Cleveland Member from Montgomery County, Kentucky) for the program was mined, prepared, characterized and stored. A preliminary study of KENTORT II-derived oil for possible paving applications was completed, and it was concluded that the shale exhibits acceptable properties as an asphalt recycling agent.

  17. The development of an integrated multistage fluid bed retorting process. Annual report, September 1990--September 1991

    SciTech Connect

    Carter, S.; Vego, A.; Taulbee, D.; Stehn, J.

    1992-01-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II). The KENTORT II process includes integral fluidized bed zone for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The work performed during this year involved projects that will contribute physical and chemical data for the final design of the 50-lb/hr retort. A cold-flow model of the 50-lb/hr retort was built and tested. The unit demonstrated stable operation and proper fluidization of all beds. Good control of solid recirculation up to the maximum design rate for each loop (200 and 500 lb/hr, respectively) was achieved simultaneously. Basically, the cold-flow model is completely operational and translation of the cold-flow design parameters to the design of the retort is ready to begin. In another aspect of the program, a study of the cracking and coking kinetics of shale oil vapors passed over processed shales was initiated. The addition of a mass spectrometer to the system to monitor total carbon, nitrogen and sulfur evolution in real-time was successful. Coking activities of processed shales were ranked as follows: combusted shale > gasified shale > pyrolyzed shale. Arrangements for conducting an evaluation of KENTORT-derived oil for asphalt applications were finalized and testing was initiated.

  18. Linking microbial comunity composition and soil processes in acalifornia annual grassland and mixed-conifer forest

    SciTech Connect

    Balser, T.C.; Firestone, M.K.

    2003-07-21

    To investigate the potential role of microbial community composition in soil carbon and nitrogen cycling, we transplanted soil cores between a grassland and a conifer ecosystem in the Sierra Nevada California and measured soil process rates (N-mineralization, nitrous oxide and carbon dioxide flux, nitrification potential), soil water and temperature, and microbial community parameters (PLFA and substrate utilization profiles) over a 2 year period. Our goal was to assess whether microbial community composition could be related to soil process rates independent of soil temperature and water content. We performed multiple regression analyses using microbial community parameters and soil water and temperature as X-variables and soil process rates and inorganic N concentrations as Y-variables. We found that field soil temperature had the strongest relationship with CO2 production and soil NH4+ concentration, while microbial community characteristics correlated with N2O production, nitrification potential, gross N-mineralization, and soil NO3 concentration, independent of environmental controllers. We observed a relationship between specific components of the microbial community (as determined by PLFA) and soil processes, particularly processes tightly linked to microbial phylogeny (e.g. nitrification). The most apparent change in microbial community composition in response to the 2 year transplant was a change in relative abundance of fungi (there was only one significant change in PLFA biomarkers for bacteria during 2years). The relationship between microbial community composition and soil processes suggests that prediction of ecosystem response to environmental change may be improved by recognizing and accounting for changes in microbial community composition and physiological ecology.

  19. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.; Bennion, Brian J.

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  20. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses.

    PubMed

    Hau-Riege, Stefan P; Bennion, Brian J

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  1. Radiation-dose estimates and hazard evaluations for inhaled airborne radionuclides. Annual progress report, July 1981-June 1982

    SciTech Connect

    Mewhinney, J.A.

    1983-06-01

    The objective was to conduct confirmatory research on aerosol characteristics and the resulting radiation dose distribution in animals following inhalation and to provide prediction of health consequences in humans due to airborne radioactivity which might be released in normal operations or under accident conditions during production of nuclear fuel composed of mixed oxides of U and Pu. Four research reports summarize the results of specific areas of research. The first paper details development of a method for determination of specific surface area of small samples of mixed oxide or pure PuO/sub 2/ particles. The second paper details the extension of the biomathematical model previously used to describe retention, distribution and excretion of Pu from these mixed oxide aerosols to include a description of Am and U components of these aerosols. The third paper summarizes the biological responses observed in radiation dose pattern studies in which dogs, monkeys and rate received inhalation exposures to either 750/sup 0/C heat treated UO/sub 2/ + PuO/sub 2/, 1750/sup 0/C heat-treated (U,Pu)O/sub 2/ or 850/sup 0/C heat-treated pure PuO/sub 2/. The fourth paper described dose-response studies in which rats were exposed to (U,Pu)O/sub 2/ or pure PuO/sub 2/. This paper updates earlier reports and summarizes the status of animals through approximately 650 days after inhalation.

  2. Proceedings of the Fourth Annual Workshop on the Use of Digital Computers in Process Control.

    ERIC Educational Resources Information Center

    Smith, Cecil L., Ed.

    Contents: Computer hardware testing (results of vendor-user interaction); CODIL (a new language for process control programing); the design and implementation of control systems utilizing CRT display consoles; the systems contractor - valuable professional or unnecessary middle man; power station digital computer applications; from inspiration to…

  3. Annual Report: Property Improvement in CZT via Modeling and Processing Innovations

    SciTech Connect

    Henager, Charles H.; Setyawan, Wahyu; Gao, Fei; Hu, Shenyang Y.; Bliss, Mary; Riley, Brian J.; Alvine, Kyle J.; Stave, Jean A.

    2013-09-01

    The objective of this project is to develop growth models of CZT crystals from the melt using vertical gradient freeze (VGF) or vertical Bridgman growth as a typical process. Further, the project will perform critical experiments including single crystal growth to validate the growth models and to provide detailed data for modeling and simulation. Ideally, the project will develop growth models that will provide, for the first time, choices for optimal CZT single crystal growth from the melt based on model input. The overarching goal that guides this research proposal is to produce large, single crystals of CZT with good yield and reproducible properties. In our view this depends on 1) understanding crystal growth processes, including annealing and cool-down processing, and 2) understanding the role of defects on detector response since it is not possible, yet, to produce defect-free materials. Models of defect structure and formation are addressed. Validated models and experiments on reducing defects in melt-grown crystals are used to guide our understanding of growth processes and in-furnace annealing plus cool-down.

  4. Qualitative Information in Annual Reports & the Detection of Corporate Fraud: A Natural Language Processing Perspective

    ERIC Educational Resources Information Center

    Goel, Sunita

    2009-01-01

    High profile cases of fraudulent financial reporting such as those that occurred at Enron and WorldCom have shaken public confidence in the U.S. financial reporting process and have raised serious concerns about the roles of auditors, regulators, and analysts in financial reporting. In order to address these concerns and restore public confidence,…

  5. Ten Talks: Celebrating the Creative Process. Friends of the Library Annual Lecture Series, 1993-2002.

    ERIC Educational Resources Information Center

    Kenyon, Linda, Ed.

    Each spring, the Friends of the Library of the University of Waterloo Library invite the campus community to join in an event celebrating the creative process. The event reflects the day-to-day work of the library staff: bringing together information from a diverse range of disciplines for the purpose of creating new knowledge. This book includes…

  6. DOE occupational radiation exposure 2007 report

    SciTech Connect

    none,

    2007-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The annual DOEOccupational Radiation Exposure 2007 Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and ALARA process requirements. In addition the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  7. Fundamental chemistry and thermodynamics of hydrothermal oxidation processes. 1997 annual progress report

    SciTech Connect

    Simonson, J.M.; Mesmer, R.E.; Blencoe, J.G.; Cummings, P.T.; Chialvo, A.A.

    1997-09-01

    'The objective of this research program is to provide fundamental scientific information on the physical and chemical properties of solutes in aqueous solutions at high temperatures needed to assess and improve the applicability of hydrothermal oxidation (HTO) to the remediation of US Department of Energy (DOE) hazardous and mixed wastes. Investigators in two divisions at Oak Ridge National Laboratory (Chemical and Analytical Sciences, and Chemical Technology) and at the University of Tennessee are focused on the solubility and speciation of actinides and surrogates in model HTO process streams at high temperatures, on the experimental and theoretical development of equations of state for aqueous mixtures containing noncondensible gases under HTO process conditions ranging above the critical temperature of water, and on achieving a predictive level of understanding of the chemical and physical properties of HTO process streams through molecular-level simulations of aqueous solutions at high temperatures. Specific tasks in these three efforts over the past year include measurements of solubility and identification of stable solid phases for UO{sub 3} in aqueous carbonate solutions at temperatures above 100 C, measurements of fluid-phase coexistence boundaries and densities of mixtures in (H{sub 2}O + N{sub 2} + CO{sub 2}) mixtures at high temperatures and pressures, and molecular dynamics simulations of water and aqueous solutions addressing the speciation of simple ionic solutes and the structure of water and aqueous solutions as functions of temperature and density. Research in this project has been divided into individual tasks, each addressing a particular scientific question and each contributing to a unified understanding of HTO processing problems related to the treatment of DOE hazardous and mixed wastes. The three primary tasks are (1) the determination of solubilities of inorganic compounds including actinides and surrogates to determine their likely fate

  8. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    SciTech Connect

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing

  9. Investigation of test methods, material properties, and processes for solar cell encapsulants. Seventh annual report

    SciTech Connect

    Willis, P.B.

    1983-01-01

    The goal of the program is to identify and evaluate encapsulation materials and processes for the protection of silicon solar cells for service in a terrestrial environment. Aging and degradation studies were performed including: thermal aging, sunlamp exposures, aging in controlled environment reactors and outdoor photothermal aging devices, and metal catalyzed degradation. Other tests addressed water absorption, primers and adhesives, soiling experiments, and corrosion protection. (LEW)

  10. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    1980-11-01

    Part 3 consists of appendices 5, 6 and 7, which have been entered individually into EDB and ERA. They deal with regression analysis of pilot plant SRC-II yields to develop thermal response models of the process and the possibility of predicting yields from coal properties. The possibility of a runaway exothermal reaction under some operating conditions on the demonstration plant scale is also considered. (LTN)

  11. Development of X-ray tracer diagnostics for radiatively-driven ablator experiments [annual report FY1998

    SciTech Connect

    J.J. MacFarlane; D.H. Cohen; P. Wang; G.A. Moses; R.R. Peterson; P.A. Jaanimagi; O.L. Langen; R.E. Olson; T.J. Murphy; G.R. Magelssen; N.D. Delamater

    1999-05-01

    This report covers fiscal year 1998 of our ongoing project to develop tracer X-ray spectroscopic diagnostics for hohlraum environments. This effort focused on an experimental campaign carried out at OMEGA on 25--27 August 1998. This phase of the project heavily emphasized experimental design, diagnostic development, and target fabrication, as well as building up numerical models for the experiments. The spectral diagnostic under development involves using two thin (few 1000 {angstrom}) mid-Z tracers in two witness plates mounted on the side of a hohlraum with the tracers' K{sub a} absorption features seen against an X-ray backlighter. The absorption data are used to sample the time-dependent, localized properties of each witness plate as a radiation wave ablates it. The experiments represented the first application of this diagnostic, in this case to side-by-side doped and undoped plastic to investigate the effects of capsule ablator dopants.

  12. Radiation-induced leukemia: Comparative studies in mouse and man. Annual performance report, June 1, 1991--October 31, 1991

    SciTech Connect

    Haas, M.

    1991-12-31

    We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism of T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable? Is it feasible to genetically suppress early and/or progressed A-TCL cells? What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate? During the first grant year we have worked on aspects of all three questions.

  13. Radiation Products in Processed Ices Relevant to Edgeworth-Kuiper-Belt Objects

    NASA Astrophysics Data System (ADS)

    Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    2003-06-01

    Near the inner edge of the Edgeworth-Kuiper Belt (EKB) are Pluto and Charon, which are known to have N2- and H2O-dominated surface ices, respectively. Such non-polar and polar ices, and perhaps mixtures of them, also may be present on other trans-Neptunian objects. Pluto, Charon, and all EKB objects reside in a weak, but constant UV-photon and energetic ion radiation environment that drives chemical reactions in their surface ices. Effects of photon and ion processing include changes in ice composition, volatility, spectra, and albedo, and these have been studied in a number of laboratories. This paper focuses on ice processing by ion irradiation and is aimed at understanding the volatiles, ions, and residues that may exist on outer solar system objects. We summarize radiation chemical products of N2-rich and H2O-rich ices containing CO or CH4, including possible volatiles such as alcohols, acids, and bases. Less-volatile products that could accumulate on EKB objects are observed to form in the laboratory from acid-base reactions, reactions promoted by warming, or reactions due to radiation processing of a relatively pure ice (e.g., CO --> C3O2). New IR spectra are reported for the 1-5 mu;m region, along with band strengths for the stronger features of carbon suboxide, carbonic acid, the ammonium and cyanate ions, polyoxymethylene, and ethylene glycol. These six materials are possible contributors to EKB surfaces, and will be of interest to observers and future missions.

  14. A new modeling system for studying aerosol - cloud -radiation interaction processes

    NASA Astrophysics Data System (ADS)

    Solomos, S.; Kallos, G.; Kuhsta, J.; Tremback, C.

    2008-12-01

    Links and feedbacks between air pollution and climate are complicated and are not accurately described in existing atmospheric models. In an attempt to better understand such links and feedbacks the new Integrated Community Limited Area Modeling System - ICLAMS has been developed. ICLAMS is an enhanced version of RAMS.6 modeling system. It includes submodels for the dust and sea salt cycles, gas and aqueous phase chemistry, gas to particle conversion and heterogeneous chemistry processes. All these processes are directly coupled with meteorology. RAMS has an explicit cloud microphysical scheme with eight categories of hydrometeors. The photochemical processes are directly linked to the RAMS radiative transfer scheme. The system is capable to be configured on two-way interactive nesting with any number of nested grids with resolution ranging from tens of kilometers to a few tens of meters. The system has been developed to study air pollution transport and transformation processes in the Greater Euro-Mediterranean Region and East Atlantic. This area is well known for its regional characteristics where the mixture of different age of anthropogenic air pollutants with Saharan dust and sea salt may lead to the formation of other particles with different characteristics. The mixture of the aerosols and gases from anthropogenic and natural origin (desert dust and sea salt) results in the formation of new types of PM with different physico-chemical properties and especially hygroscopicity (e.g. inside clouds or within the marine boundary layer) through heterogeneous processes. In this presentation, we demonstrate the transport and transformation processes at various spatiotemporal scales and discuss implications related to aerosol composition and their impacts on clouds and radiation (CCN and IN formation). We discuss the composition of the aerosols in the atmosphere along the long paths from Europe to North Africa and Atlantic. The composition changes and therefore the

  15. Radiative resonant energy transfer process in projectile-like ion formed in beam-foil interaction

    NASA Astrophysics Data System (ADS)

    Mishra, Adya P.; Nandi, T.; Jagatap, B. N.

    2013-03-01

    The formation of projectile-like M2555n ion during bombardment of a thin carbon foil by V12+2351 ion beam of energies above the Coulomb barrier is inferred through the observation of unresolved 1s2pP2o3→1sS01 and 1s2pP0o3→1sS01 transitions of He-like Mn at 6.14 keV. From the decay of intensity of this line the measured radiative lifetime of the upper state is found to be 78.7±11.6 ps which is close to the theoretical lifetime of the 1s2pP0o3 state (86.18 ps), but substantially lower than that of 1s2pP2o3 state (147.1 ps). This suggests that the 1s2pP0o3 state is populated more than the 1s2pP2o3 state when He-like Mn exits the carbon foil. This behavior is explained on the basis of radiative resonant energy transfer process in beam-foil excitation as reported recently (Nandi T, et al. J Quant Spectrosc Radiat Transfer 2012;113:783-8).

  16. Energy loss process analysis for radiation degradation and immediate recovery of amorphous silicon alloy solar cells

    NASA Astrophysics Data System (ADS)

    Sato, Shin-ichiro; Beernink, Kevin; Ohshima, Takeshi

    2015-06-01

    Performance degradation of a-Si/a-SiGe/a-SiGe triple-junction solar cells due to irradiation of silicon ions, electrons, and protons are investigated using an in-situ current-voltage measurement system. The performance recovery immediately after irradiation is also investigated. Significant recovery is always observed independent of radiation species and temperature. It is shown that the characteristic time, which is obtained by analyzing the short-circuit current annealing behavior, is an important parameter for practical applications in space. In addition, the radiation degradation mechanism is discussed by analyzing the energy loss process of incident particles (ionizing energy loss: IEL, and non-ionizing energy loss: NIEL) and their relative damage factors. It is determined that ionizing dose is the primarily parameter for electron degradation whereas displacement damage dose is the primarily parameter for proton degradation. This is because the ratio of NIEL to IEL in the case of electrons is small enough to be ignored the damage due to NIEL although the defect creation ratio of NIEL is much larger than that of IEL in the cases of both protons and electrons. The impact of “radiation quality effect” has to be considered to understand the degradation due to Si ion irradiation.

  17. On-site installation and shielding of a mobile electron accelerator for radiation processing

    NASA Astrophysics Data System (ADS)

    Catana, Dumitru; Panaitescu, Julian; Axinescu, Silviu; Manolache, Dumitru; Matei, Constantin; Corcodel, Calin; Ulmeanu, Magdalena; Bestea, Virgil

    1995-05-01

    The development of radiation processing of some bulk products, e.g. grains or potatoes, would be sustained if the irradiation had been carried out at the place of storage, i.e. silo. A promising solution is proposed consisting of a mobile electron accelerator, installed on a couple of trucks and traveling from one customer to another. The energy of the accelerated electrons was chosen at 5 MeV, with 10 to 50 kW beam power. The irradiation is possible either with electrons or with bremsstrahlung. A major problem of the above solution is the provision of adequate shielding at the customer, with a minimum investment cost. Plans for a bunker are presented, which houses the truck carrying the radiation head. The beam is vertical downwards, through the truck floor, through a transport pipe and a scanning horn. The irradiation takes place in a pit, where the products are transported through a belt. The belt path is so chosen as to minimize openings in the shielding. Shielding calculations are presented supposing a working regime with 5 MeV bremsstrahlung. Leakage and scattered radiation are taken into account.

  18. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    SciTech Connect

    Li, Hang; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Song, Tianming; Yang, Jiamin Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye; Hu, Guangyue; Zhao, Bin; Zheng, Jian

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  19. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  20. Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths

    DOEpatents

    Wheeler, David R.

    2004-01-06

    A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.

  1. Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery

    PubMed Central

    Tax, Chantal M. W.; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M.; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning. PMID:25077946

  2. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Starr, David (Technical Monitor)

    2002-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1

  3. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Goriely, S.

    1998-09-01

    The radiative neutron capture by neutron-rich nuclei is estimated with an improved description of the electric giant dipole resonance. In addition, 3 major effects affecting the capture rates by exotic neutron-rich nuclei are studied. These concern the existence of a low-energy E1 pygmy resonance, the overestimate of the statistical predictions for resonance-deficient nuclei and the direct capture mechanism. The total (n,γ) reaction rates including these 3 effects are evaluated for 3100 neutron-rich nuclei and used in parametric r-process calculations to analyze their impact on the r-abundance distribution.

  4. GEMGrid: a wafer post-processed GEM-like radiation detector

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Bilevych, Y.; Chefdeville, M.; Fransen, M.; van der Graaf, H.; Salm, C.; Schmitz, J.; Timmermans, J.

    2009-09-01

    This paper presents a new wafer post-processed micropatterned gaseous radiation detector called GEMGrid. The device consists of a GEM-like structure fabricated with SU-8 photoresist directly on top of a Timepix chip with zero gap distance. The detector characteristics have been studied in several gas mixtures. The device is capable of tracking minimum ionizing particles and exhibits good energy resolution on 55Fe decays. We further show a strongly improved mechanical robustness of these GEM-like structures as compared to a pillar-supported integrated Micromegas.

  5. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  6. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  7. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

    NASA Astrophysics Data System (ADS)

    Xin, Q.; Gong, P.; Li, W.

    2015-06-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  8. Tertiary oil recovery processes research at the University of Texas. Annual report, October 1981-September 1982

    SciTech Connect

    Schechter, R.S.; Wade, W.H.

    1985-01-01

    During the past year we have continued three major projects: (I) further delineation of surfactant adsorption mechanisms, (II) the systematics of chromatographic separation processes, and (III) the design and evaluation of surfactants. In I we have: (a) explored surface condensed structures and plateau adsorption levels; and (b) expanded absorption theory to encompass heterogeneities, studied the critical admicelle concentration and multicomponent adsorption. In II we have traced the composition path for several pure alkyl benzene sulfonates in the grid diagram and examined surfactant wave fronts. In III we have developed two and quantitative surfactant synthesis schemes and finished studies on ..cap alpha..-olefin sulfonates, ethoxylated oleyl sulfonates and alkane sulfonates. The following 5 papers in III have been processed for inclusion in the Energy Data Base: (1) synthesis and performance of isomer-free secondary alkane sulfonate surfactants; (2) synthesis and performance of linear monoisomeric ethylene oxide sulfonate surfactants; (3) alpha-olefin sulfonates for enhanced oil recovery; (4) ethoxylated oleyl sulfonates as model compounds for enhanced oil recovery; (5) phase behavior of simple salt tolerant sulfonates.

  9. Current status and prospects of radiation processing studies in Taiwan, R. O. C.

    NASA Astrophysics Data System (ADS)

    Fu, Ying-Kai

    The research on radiation processing in past 5 years in Taiwan covers industrial application of radiation-induced polymerization and curing, medical application of radiosterilization of medical supplies, chemicals, and amniotic membrane for wound dressing as well as agricultural application of food irradiation and genogenesis etc. Radiation-induced polymerization applied on wood and bamboo plastic composite of methyl methacrylate, radiation curing on polyurethane and silicon rubber for biomedical material using to separate oxygen from nitrogen and on crosslinking of pp and ps for artificial skin for wound dressing were all success. Radio-sterilization of disposable medical supplies appears for immediate application after the studies of the dose requirement of several radioresistant microorganisms, dose distribution measured by chemical dosimeters of ceric sulfate and Fricke dosimeter as well as quality control system were completed. The radiosterilization study of tetracycline - HCl and few detoxic agents like atropine sulfate and toxogonin has shown the promising results on radiosterilization of chemicals, the radiosterilization of amniotic membrane for wound dressing are also success. Food irradiation on sprouting inhibition of potatoes, garlic etc, on radiodisinfestation of cereal insects, tobacco bettles, soybean insects, and flour beetles, as well as on frog legs and porks have been also discussed. The legislation on radiosterilization of medical supplies and food irradiation of 14 items has been approved by National Health Administration, R.O.C. in July of 1982 and January of 1985 respectively. Even 24 hrs-operation of 1 Mega curie irradiation plant at INER can not satisfy the requirement of radiosterilization of medical supplies. A private commercial irradiation plant is urgently needed in Taiwan other than at INER now.

  10. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium at the EMS 2009 Annual Meeting - September 2006

    SciTech Connect

    Morgan, William F.; von Borstel, Robert C.; Brenner, David; Redpath, J. Leslie; Erickson, Barbra E.; Brooks, Antone L.

    2009-11-12

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigenetic mechanisms and early nutrition and bystander effects.

  11. Genetic engineering of a radiation-resistant bacterium for biodegradation of ixed wastes. 1998 annual progress report

    SciTech Connect

    Lidstrom, M.E.

    1998-06-01

    'Because of their tolerance to very high levels of ionizing radiation, members of the genus Deinococcus have received considerable attention over the past years. The type species of the genus, Deinococcus radiodurans, has been studied extensively in several labs. Although researchers are only beginning to understand the mechanisms by which this Gram-positive bacterium is able to repair massive DNA damage after radiation dosages as high as 5 Mrad, it has become evident that its recombination machinery has several unique characteristics (1--4). The aim of the present studies is to engineer D. radiodurans into a detoxifier for bioremediation of complex waste mixtures, containing heavy metals, halo-organics and radionuclides, making use of its ability to be biologically active in environments where they will be exposed to high levels of radiation. For that purpose, the authors aim to clone and express several broad spectrum oxygenases and heavy metal resistance determinants, and test survival and activities of these strains in artificial mixtures of contaminants, designed to simulate DOE mixed waste streams. This report summarizes work after 0.5 year of a 3-year project. The initial studies have focused on the development of an insertional expression system for D. radiodurans R1. This effort has involved two parts, namely: (1) promoter analysis, and (2) development of insertion systems. Several studies have shown that the expression signals used by D. radiodurans differ considerably from those found in other bacteria. Although D. radiodurans contains a typical eubacterial RNA polymerase core enzyme (based on TBLASTN searches on the genome sequence), Escherichia coli promoters are not recognized in D. radiodurans and vice versa (5). To expand the basic understanding of the requirements for transcription, and to optimize expression of (heterologous) genes, they will follow two strategies. First, a promoter-probe vector is being developed for the selection of promoter

  12. Aerosol-radiation-cloud and precipitation processes during dust events (Invited)

    NASA Astrophysics Data System (ADS)

    Kallos, G. B.; Solomos, S.; Kushta, J.; Mitsakou, C.; Athanasiadis, P.; Spyrou, C.; Tremback, C.

    2010-12-01

    In places like the Mediterranean region where anthropogenic aerosols coexist with desert dust the aerosol-radiation-cloud processes are rather complicated. The mixture of different age of air pollutants of anthropogenic origin with Saharan dust and sea salt may lead to the formation of other particles with different characteristics. The mixture of the aerosols and gases from anthropogenic and natural origin (desert dust and sea salt) results in the formation of new types of PM with different physico-chemical properties and especially hygroscopicity (e.g. inside clouds or within the marine boundary layer) through heterogeneous processes. The new particle formation has different characteristics and therefore they have different impacts on cloud formation and precipitation. In an attempt to better understand links and feedbacks between air pollution and climate the new Integrated Community Limited Area Modeling System - ICLAMS has been developed. ICLAMS is an enhanced version of RAMS.v6 modeling system. It includes sub-models for the dust and sea salt cycles, gas and aqueous phase chemistry, gas to particle conversion and heterogeneous chemistry processes. All these processes are directly coupled with meteorology. RAMS has an explicit cloud microphysical scheme with eight categories of hydrometeors. The cloud droplets spectrum is explicitly calculated from model meteorology and prognostic CCN and IN properties (total number concentration, size distribution properties and chemical composition). Sulphate coated dust particles are efficient CCN because of their increased hygroscopicity while uncoated dust particles are efficient IN. The photochemical processes are directly linked to the RAMS radiative transfer scheme, which in the new model is RRTM. Absorption of short wave solar radiation from airborne dust leads to heating of the dust layer which can also affect the cloud processes. Mid and low tropospheric warming by dust is one of the new features that the model can

  13. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    Not Available

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  14. Characteristic parameters in combustion processes and their accessibility to current and future diagnostics. Annual report

    SciTech Connect

    Goulard, R.

    1980-05-01

    A review of current combustion research shows a growing awareness of the potential offered by the new high speed three-dimensional techniques. Some of the recent advances in the fluid dynamics of jet mixing are discussed, with an emphasis on the 10 kHz range (especially vortex shedding). Also the very fast subnanosecond range of radical kinetics is investigated, as well as the comparably fast scattering and fluorescence processes. High speed diagnostics are discussed in these two ranges of time resolution, with an emphasis on optical tomography for the fluid dynamic time range (10/sup -4/ s) and on picosecond techniques for the physical chemistry range (10/sup -9/ s). This work was carried out during the period June 1, 1979 to May 31, 1980.

  15. Scale-up of miscible flood processes for heterogeneous reservoirs. Second annual report

    SciTech Connect

    Orr, F.M. Jr.

    1995-03-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Use of streamtube to model multiphase flow is demonstrated to be a fast and accurate approach for displacements that are dominated by reservoir heterogeneity. The streamtube technique is particularly powerful for multiphase compositional displacements because it represents the effects of phase behavior with a one-dimensional flow and represents the effects of heterogeneity through the locations of streamtubes. A new approach for fast calculations of critical tie-lines directly from criticality conditions is reported. A global triangular structure solution for four-component flow systems, whose tie-lies meet at the edge of a quaternary phase diagram or lie in planes is presented. Also demonstrated is the extension of this solution to multicomponent systems under the same assumptions. The interplay of gravity, capillary and viscous forces on final residual oil saturation is examined experimentally and theoretically. The analysis of vertical equilibrium conditions for three-phase gravity drainage shows that almost all oil can be recovered from the top part of a reservoir. The prediction of spreading and stability of thin film is performed to investigate three-phase gravity drainage mechanisms. Finally, experimental results from gravity drainage of crude oil in the presence of CO{sub 2} suggest that gravity drainage could be an efficient oil recovery process for vertically fractured reservoirs.

  16. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    SciTech Connect

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    1991-02-01

    Part four of the PNL Annual Report for 1990 includes research in physical sciences. Individual reports are processed separately for the data bases in the following areas: Dosimetry Research; Measurement Science; Radiological and Chemical Physics; Radiation Dosimetry; Radiation Biophysics; and Modelling Cellular Response to Genetic Damage. (FL)

  17. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  18. Improved radiation dosimetry/risk estimates to facilitate environmental management of plutonium contaminated sites. 1998 annual progress report

    SciTech Connect

    Scott, B.R.

    1998-06-01

    'The objective of this research is to evaluate distributions of possible alpha radiation doses to the lung, bone, and liver and associated health-risk distributions for plutonium (Pu) inhalation-exposure scenarios relevant to environmental management of PuO{sub 2}-contaminated sites. Currently available dosimetry/risk models do not apply to exposure scenarios where, at most, a small number of highly radioactive PuO{sub 2} particles are inhaled (stochastic exposure [SE] paradigm). For the SE paradigm, risk distributions are more relevant than point estimates of risk. The focus of the research is on the SE paradigm and on high specific activity, alpha-emitting (HSA-aE) particles such as 238 PuO{sub 2} . The scientific goal is to develop a stochastic respiratory tract dosimetry/risk computer model for evaluating the desired absorbed dose distributions and associated health-risk distributions, for Department of Energy (DOE) workers and members of the public. This report summarizes results after 1 year of a 2-year project.'

  19. Quality profile of litchi ( Litchi chinensis) cultivars from India and effect of radiation processing

    NASA Astrophysics Data System (ADS)

    Hajare, Sachin N.; Saxena, Sudhanshu; Kumar, Sanjeev; Wadhawan, Surbhi; More, Varsha; Mishra, B. B.; Narayan Parte, Madan; Gautam, Satyendra; Sharma, Arun

    2010-09-01

    Litchi ( Litchi chinensis) is a non-climacteric tropical fruit. The fruit has a short shelf-life making its marketing difficult. Physical, biochemical, microbiological, and organoleptic properties of two major commercially grown Indian cultivars of litchi, 'Shahi' and 'China' were studied. The effect of gamma radiation processing and low temperature storage on the above parameters was evaluated to standardize the optimal process parameters for shelf-life extension of litchi. Physical and biochemical parameters analyzed included weight, moisture, pH, titratable acidity, texture, color, total and reducing sugar, total soluble solids, vitamin C, and flavonoid content. Weight, moisture content, and pH in the fresh fruit ranged between 21-26 g, 74-77%, and 3.7-4.4, respectively, whereas, total and reducing sugar ranged 10-15, and 10-13 g%, respectively. In 'Shahi' vitamin C content was found to be around 17-19 mg%, whereas, in 'China' it was 22-28 mg%. Flavonoid content was in the range of 26-34 μg catechin equivalents/g of fresh fruit. Total surface and internal bacterial load was around 4 and 3 log cfu/g, respectively. Surface yeast-mold count (YMC) was ˜3 log cfu/g whereas internal YMC was ˜2 log cfu/g. Radiation treatment reduced microbial load in a dose dependent manner. Treatment at 0.5 kGy did not significantly affect the quality parameters of the fruit. Treated fruits retained the "good" organoleptic rating during storage. Thus, radiation treatment (0.5 kGy) in combination with low temperature (4 °C) storage achieved a shelf-life of 28 days for litchi fruit.

  20. Advances in management of malignant diseases with the combination of radiation therapy and chemotherapy. Highlights from the 45th Annual Meeting of the American Society for Therapeutic Radiology and Oncology.

    PubMed

    Corn, Benjamin W

    2004-01-01

    From October 19 through October 24, 2003, the American Society for Therapeutic Radiology and Oncology held its 45th Annual Meeting in Salt Lake City, Utah. The meeting was devoted to the presentation of advances in the management of malignant diseases with radiation modalities. The meeting brought together investigators, clinicians, policy makers and professionals interested in the science and impact of radiation on cancerous disease. This report examines the advances in combined modality approaches (i.e., the use of radiation therapy and chemotherapy) for the treatment of malignant disease. The American Society for Therapeutic Radiology and Oncology sponsors an annual meeting devoted to the presentation of radiation-related advances in malignant disorders. The educational elements of this program are targeted at oncologists of all disciplines (i.e., surgical oncologists, medical oncologists, radiation oncologists), physicists, biologists, nurses, and therapists as well as all health care workers who are involved in the treatment of patients with malignant diseases. The program includes presentations on standard, investigational and experimental therapeutics as well as intensity-modulated radiation therapy, treatment planning, alternative fractionation, and molecular and radiation biology. Specific clinical areas include breast, central nervous system, gastrointestinal, genitourinary, gynecological, head and neck, and lung cancers. In addition, the program addresses quality of life, supportive care and socioeconomic issues. These topics are addressed by a combination of educational sessions, panel discussions, proffered papers and posters. Since a diminishing number of tumors can be managed solely by radiation therapy, among the most noteworthy developments this year were the combined modality approaches (i.e. radiation therapy combined with chemotherapy) in the treatment of malignant disease. In particular, a cluster of seminal papers was presented pertaining to

  1. DOE 2010 occupational radiation exposure

    SciTech Connect

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  2. DOE 2009 occupational radiation exposure

    SciTech Connect

    none,

    2010-09-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2009 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  3. DOE 2008 occupational radiation exposure

    SciTech Connect

    none,

    2009-10-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. The DOE 2008 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  4. Cavitational hydrothermal oxidation: A new remediation process. Annual progress report, September 1996--August 1997

    SciTech Connect

    Suslick, K.S.

    1997-11-21

    'During the past year, the authors have continued to make substantial scientific progress on the understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. The efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  5. Cavitational hydrothermal oxidation: A new remediation process. 1998 annual progress report

    SciTech Connect

    Suslick, K.S.

    1998-06-01

    'The primary goal is to develop a quantitative understanding of cavitation phenomena in aqueous media and the development of applications of cavitation to remediation processes. Efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. This report summarizes work after one year of a three year project. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  6. Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992

    SciTech Connect

    Francis, A.J.; Gillow, J.B.

    1993-09-01

    Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term (< 6 months) and long-term (> 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and underground workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.

  7. Investigation of test methods, material properties, and processes for solar-cell encapsulants. Annual report

    SciTech Connect

    Willis, P. B.; Baum, B.

    1982-07-01

    Potentially useful low cost encapsulation materials are evaluated. The goal of the program is to identify, evaluate, test, and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations have concerned the development of advanced cure chemistries for lamination type pottants, the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. Experiments are underway to assess the durability and cost effectiveness of coatings for protection of steel. Investigations are continuing with commercial maintenance coatings based on fluorocarbon and silicone-alkyd chemistries. Experiments were conducted to determine the effectiveness of occlusive coatings for wood products such as hard-board. An experimental program continued to determine the usefulness of soil resistant coatings. Primers were evaluated for effectiveness in bonding candidate pottants to outer covers, glass and substate materials. A program of accelerated aging and life predictive strategies is being conducted and data are reported for sunlamp exposure and thermal aging. Supporting activities are also discussed briefly. (LEW)

  8. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    SciTech Connect

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1980-07-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Technical activities during the past year have covered a number of topics and have emphasized the development of solar module encapsulation technology that employs ethylene/vinyl acetate, copolymer (EVA) as the pottant. These activities have included: (1) continued production of encapsulation grade EVA in sheet form to meet the needs of the photovoltaic industry; (2) investigations of three non-blocking techniques for EVA sheet; (3) performed an economic analysis of the high volume production of each pottant in order to estimate the large volume selling price (EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate); (4) initiated an experimental corrosion protection program to determine if metal components could be successfully protected by encapsulation; (5) began an investigation to determine the maximum temperature which can be tolerated by the candidate pottant material in the event of hot spot heating or other temperature override; (6) continuation of surveys of potentially useful outer cover materials; and (7) continued with the accelerated artificial weathering of candidate encapsulation materials. Study results are presented. (WHK)

  9. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    Not Available

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operating variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.

  10. Burst speciation processes and genomic expansion in the neotropical annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae).

    PubMed

    García, G; Gutiérrez, V; Ríos, N; Turner, B; Santiñaque, F; López-Carro, B; Folle, G

    2014-02-01

    The extent to which genome sizes and other nucleotypic factors influence the phyletic diversification of lineages has long been discussed but remains largely unresolved. In the present work, we present evidence that the genomes of at least 16 species of the neotropical rivulid killifish genus Austrolebias are unusually large, with an average DNA content of about 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). They are thus larger than the genomes of very nearly all other diploid, i.e. non-(paleo) polyploid species of actinopterygian fishes so far reported. Austrolebias species appear to be conventional diploids in all other respects and there is no reason to believe that they arise from polyploid ancestors. The genome sizes reported for other rivulid killifishes, including a putative sister group, are considerably smaller and fall within the range typical of most other cyprinodontoid species. Therefore, it appears that the ancestor(s) of contemporary Austrolebias have undergone one or more episodes of genome expansion encompassing sudden speciation process during the Pleistocene. In addition, these findings are consistent with the hypothesis of a positive correlation between species richness and genome size.

  11. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    PubMed Central

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2012-01-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal

  12. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of

  13. Radiation dose reduction in digital radiography using wavelet-based image processing methods

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruyuki; Tsai, Du-Yih; Lee, Yongbum; Matsuyama, Eri; Kojima, Katsuyuki

    2011-03-01

    In this paper, we investigate the effect of the use of wavelet transform for image processing on radiation dose reduction in computed radiography (CR), by measuring various physical characteristics of the wavelet-transformed images. Moreover, we propose a wavelet-based method for offering a possibility to reduce radiation dose while maintaining a clinically acceptable image quality. The proposed method integrates the advantages of a previously proposed technique, i.e., sigmoid-type transfer curve for wavelet coefficient weighting adjustment technique, as well as a wavelet soft-thresholding technique. The former can improve contrast and spatial resolution of CR images, the latter is able to improve the performance of image noise. In the investigation of physical characteristics, modulation transfer function, noise power spectrum, and contrast-to-noise ratio of CR images processed by the proposed method and other different methods were measured and compared. Furthermore, visual evaluation was performed using Scheffe's pair comparison method. Experimental results showed that the proposed method could improve overall image quality as compared to other methods. Our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved in hip joint radiography by using the proposed method.

  14. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    SciTech Connect

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Osawa, Hitoshi; Kimura, Shigeru; Ito, Kiminori; Tanaka, Yoshihito; Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro; Yamada, Noboru; Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu; Takata, Masaki

    2013-06-15

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge{sub 2}Sb{sub 2}Te{sub 5} film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width ({Delta}E/E {approx} 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge{sub 2}Sb{sub 2}Te{sub 5} phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge{sub 2}Sb{sub 2}Te{sub 5} layers on laser power.

  15. Dyed polyvinyl chloride films for use as high-dose routine dosimeters in radiation processing

    NASA Astrophysics Data System (ADS)

    Mai, Hoang Hoa; Duong, Nguyen Dinh; Kojima, Takuji

    2004-04-01

    Characteristics of the polyvinyl chloride (PVC) films containing 0.11 wt% of malachite green oxalate or 6GX-setoglausine and about 100 μm in thickness were studied for use as routine dosimeters in radiation processing. These films show basically color bleaching under irradiation with 60Co γ-rays in a dose range of 5-50 kGy. The sensitivity of the dosimeters and the linearity of dose-response curves are improved by adding 2.5% of chloral hydrate [CCl 3CH(OH) 2] and 0.15% hydroquinone [HOC 6H 4OH]. These additions extend the minimum dose limit to 1 kGy covering dosimetry requirements of the quality assurance in radiation processing of food and healthcare products. The dose responses of both dyed PVC films at irradiation temperatures from 20°C to 35°C are constant relative to those at 25°C, and the temperature coefficients for irradiation temperatures from 35°C to 55°C were estimated to be (0.43±0.01)%/°C. The dosimeter characteristics are stable within 1% at 25°C before and 60 days after the end of irradiation.

  16. Optical radiation hazards of laser welding processes. Part II: CO2 laser.

    PubMed

    Rockwell, R J; Moss, C E

    1989-08-01

    There has been an extensive growth within the last five years in the use of high-powered lasers in various metalworking processes. The two types of lasers used most frequently for laser welding/cutting processes are the Neodymium-yttrium-aluminum-garnet (Nd:YAG) and the carbon dioxide (CO2) systems. When such lasers are operated in an open beam configuration, they are designated as a Class IV laser system. Class IV lasers are high-powered lasers that may present an eye and skin hazard under most common exposure conditions, either directly or when the beam has been diffusely scattered. Significant control measures are required for unenclosed (open beam), Class IV laser systems since workers may be exposed to scattered or reflected beams during the operation, maintenance, and service of these lasers. In addition to ocular and/or skin exposure hazards, such lasers also may present a multitude of nonlaser beam occupational concerns. Radiant energy measurements are reported for both the scattered laser radiation and the plasma-related plume radiations released during typical high-powered CO2 laser-target interactions. In addition, the application of the nominal hazard zone (NHZ) and other control measures also are discussed with special emphasis on Class IV industrial CO2 laser systems. PMID:2508455

  17. Temperature response of a number of plastic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Sohrabpour, M.; Kazemi, A. A.; Mousavi, H.; Solati, K.

    1993-10-01

    Various plastic dosemeters are employed for dosimetry control of radiation processing within gamma and electron irradiation facilities. The temperature response of a dosimeter is important when the dose to such a dosimeter is accumulated under varying irradiation temperatures. Such measurements would be significant for proper assessment of the dose for better process control, as well as, performance evaluation of dosimetry systems. In this work we have developed a high current peltier junction temperature controller system for our Gammacell-220. This system has been designed to regulate the operating temperature of the irradiation chamber in the range of 0 to 80 C this system has been applied to measure the temperature response of the red perspex, a local clear PMMA, Gammex, Gammachrome, and Gafchromic dosimeters. The curves of relative performance or variation of the induced optical densities of the above dosemeters versus the irradiation temperature at fixed dose values are obtained.

  18. Evaluation of radiation resistance of the bacterial contaminants from femoral heads processed for allogeneic transplantation

    NASA Astrophysics Data System (ADS)

    Singh, Rita; Singh, Durgeshwer

    2009-09-01

    Femoral heads excised during surgery were obtained from patients who had a fractured neck of the femur and were processed as bone allograft. The bacterial contaminants were isolated from femoral heads at different stages of processing and identified based on morphological characteristics and biochemical tests. Bacterial contaminants on bone were mainly Gram-positive bacilli and cocci (58.3%). Twenty-four isolates from bone samples were screened for resistance to radiation. The D10 values for Gram-negative bacteria isolated from femoral heads ranged from 0.17 to 0.65 kGy. Higher D10 values 0.56-1.04 kGy were observed for Gram-positive bacterial isolates.

  19. Characterization and Calibration of Lightpipe Radiation Thermometers for Use in Rapid Thermal Processing

    NASA Astrophysics Data System (ADS)

    Tsai, B. K.; DeWitt, D. P.

    2003-09-01

    Lightpipe radiation thermometers (LPRTs) are the sensor of choice for temperature measurements in Rapid Thermal Processing (RTP) applications. At the National Institute of Standards and Technology (NIST), we have developed protocols for calibrating and characterizing LPRTs for use in RTP and other applications. In this paper, the LPRTs and the sodium heat pipe blackbody (Na-HPBB) used in the calibration process at NIST will be introduced. The calibration and characterization methods (spatial response, spectral response, temporal response, and optical inspection) of the LPRTs will be described also. Finally, a discussion of the application of LPRTs in an environment outside of the calibration laboratory, along with a list of recommendations for proper use of LPRTs, will be presented.

  20. Economical on-line image processing of synchrotron x-radiation topographs

    NASA Astrophysics Data System (ADS)

    Tanner, B. K.; Clark, G. F.; Goddard, P. A.; Bowen, D. K.; Davies, S. T.; Aleshko-Ozhevsky, O. P.

    1983-04-01

    The modestly priced INTELLECT 100 image processing system has been used to enhance white radiation topographs taken with the TV detector at the X-ray topography station at the Daresbury SRS. A very substantial reduction in noise with a corresponding dramatic improvement in image quality was obtained by gamma variation and integration times of less than 0.5s. This compromise enabled many dynamic processes to be followed, effectively in real time with low noise. With such a processor, the spatial resolution of the system was measured to be 17±2 μm. Examples of the evolution of magnetic and ferroelectric domains in applied fields are presented. Changes in micostructure associated with the phase transition in DKDP are briefly described.

  1. A 60Co multipurpose radiation processing facility at Bahia Blanca, Argentina

    NASA Astrophysics Data System (ADS)

    Curzio, O. A.; Croci, C. A.

    The aim of the project is to have a multipurpose facility which will enable us to show the techno-economic viability of the irradiation process applied to regional products, important from the economic point of view. The topics will fundamentally be connected with regional themes such as food preservation and the modification of polymer structures. This project will make it possible to carry out basic and applied studies related to radiation chemistry, dosimetry and engineering irradiation processes. The facility will operate in the Universidad Nacional del Sur (UNS) with a maximum activity of 18.5 PBq of Co-60. The viability and design of the irradiation facility is supported by the Government of the Buenos Aires Province since it is interested in the socio-economic benefit of this technology at the regional level.

  2. Low-power radiation-hard Gaas Ram. Semi-annual technical report, 10 December 1982-9 June 1983

    SciTech Connect

    Zucca, R.; Vahrenkamp, R.

    1983-08-01

    The scope of this program is to demonstrate a 4K GaAs static RAM having very low power dissipation, 1 microwatt bit in standby, and a short access time, 10 ns, to meet the requirements of the DARPA Advanced On-Board Signal Process (AOSP). At the end of the previous program, a RAM cell capable of the required power dissipation had been developed and a 256-bit RAM had been demonstrated. In the six-month period covered by this report, the processing of several lots of three-inch wafers with 256-bit RAMs (mask set RM3) was completed. Modifications to the Cermet deposition process for high value resistors were required to adapt to the processing of 3-inch wafers, resulting in resistor uniformity that is good or better than the Cermet resistor uniformity formerly achieved for 1-inch wafers. Testing of the 256-bit RAM has been completed. A total of 15 totally functional RAMs have been identified. The read access time was as low as 1 ns. Write operations could be performed with 2 ns write pulses. A 1K RAM was designed, and the corresponding mask set was completed, except for final checking and placement of the circuits on the reticle. Small changes in cell design were made to achieve higher tolerance to threshold voltage variation and to leakage currents.

  3. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    SciTech Connect

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

    2012-09-01

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

  4. Gamma radiation in the reduction of S almonella spp. inoculated on minimally processed watercress ( Nasturtium officinalis)

    NASA Astrophysics Data System (ADS)

    Martins, C. G.; Behrens, J. H.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B.; Landgraf, M.

    2004-09-01

    Consumer attitudes towards foods have changed in the last two decades increasing requirements for freshlike products. Consequently, less extreme treatments or additives are being required. Minimally processed foods have freshlike characteristics and satisfy this new consumer demand. Besides freshness, the minimally processing also provide convenience required by the market. Salad vegetables can be source of pathogen such as Salmonella, Escherichia coli O157:H7, Shigella spp. The minimal processing does not reduce the levels of pathogenic microorganisms to safe levels. Therefore, this study was carried out in order to improve the microbiological safety and the shelf-life of minimally processed vegetables using gamma radiation. Minimally processed watercress inoculated with a cocktail of Salmonella spp was exposed to 0.0, 0.2, 0.5, 0.7, 1.0, 1.2 and 1.5 kGy. Irradiated samples were diluted 1:10 in saline peptone water and plated onto tryptic soy agar that were incubated at 37°C/24 h. D 10 values for Salmonella spp. inoculated in watercress varied from 0.29 to 0.43 kGy. Therefore, a dose of 1.7 kGy will reduce Salmonella population in watercress by 4 log 10. The shelf-life was increased by 1 {1}/{2} day when the product was exposed to 1 kGy.

  5. Schools of Education in a New Era of Accountability: A Case Study of an Annual Report Process Used to Advance a Professional Learning Community

    ERIC Educational Resources Information Center

    Aceves, Manuel A.

    2013-01-01

    Institutions of higher education are entering a new era, one where cost, value, and quality are at the front of mind. To proactively ensure long-term viability, institutions must operate differently. This qualitative case study examined how the St. Alexander University School of Education's Annual Report Process impacted institutional…

  6. Radiation processed polychloroprene-co-ethylene-propene diene terpolymer blends: Effect of radiation vulcanization on solvent transport kinetics

    NASA Astrophysics Data System (ADS)

    Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Kumar, Virendra; Goel, N. K.; Sabharwal, S.

    2009-03-01

    Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM ( p0/ q0 ˜ 0.08), whereas it was the lowest for blends containing 40% PCR ( p0/ q0 ˜ 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The Δ G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.

  7. 1989 IEEE Annual Conference on Nuclear and Space Radiation Effects, 26th, Marco Island, FL, July 25-29, 1989, Proceedings. Part 1

    NASA Technical Reports Server (NTRS)

    Ochoa, Agustin, Jr. (Editor)

    1989-01-01

    Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.

  8. Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes

    PubMed Central

    Groma, G. I.; Hebling, J.; Kozma, I. Z.; Váró, G.; Hauer, J.; Kuhl, J.; Riedle, E.

    2008-01-01

    The kinetics of electrogenic events associated with the different steps of the light-induced proton pump of bacteriorhodopsin is well studied in a wide range of time scales by direct electric methods. However, the investigation of the fundamental primary charge translocation phenomena taking place in the functional energy conversion process of this protein, and in other biomolecular assemblies using light energy, has remained experimentally unfeasible because of the lack of proper detection technique operating in the 0.1- to 20-THz region. Here, we show that extending the concept of the familiar Hertzian dipole emission into the extreme spatial and temporal range of intramolecular polarization processes provides an alternative way to study ultrafast electrogenic events on naturally ordered biological systems. Applying a relatively simple experimental arrangement based on this idea, we were able to observe light-induced coherent terahertz radiation from bacteriorhodopsin with femtosecond time resolution. The detected terahertz signal was analyzed by numerical simulation in the framework of different models for the elementary polarization processes. It was found that the principal component of the terahertz emission can be well described by excited-state intramolecular electron transfer within the retinal chromophore. An additional slower process is attributed to the earliest phase of the proton pump, probably occurring by the redistribution of a H bond near the retinal. The correlated electron and proton translocation supports the concept, assigning a functional role to the light-induced sudden polarization in retinal proteins. PMID:18456840

  9. Structure, process and annual intensive care unit mortality across 69 centers: United States Critical Illness and Injury Trials Group Critical Illness Outcomes Study (USCIITG-CIOS)

    PubMed Central

    Checkley, William; Martin, Greg S; Brown, Samuel M; Chang, Steven Y; Dabbagh, Ousama; Fremont, Richard D; Girard, Timothy D; Rice, Todd W; Howell, Michael D; Johnson, Steven B; O'Brien, James; Park, Pauline K; Pastores, Stephen M; Patil, Namrata T; Pietropaoli, Anthony P; Putman, Maryann; Rotello, Leo; Siner, Jonathan; Sajid, Sahul; Murphy, David J; Sevransky, Jonathan E

    2014-01-01

    Objective Hospital-level variations in structure and process may affect clinical outcomes in intensive care units (ICUs). We sought to characterize the organizational structure, processes of care, use of protocols and standardized outcomes in a large sample of U.S. ICUs. Design We surveyed 69 ICUs about organization, size, volume, staffing, processes of care, use of protocols, and annual ICU mortality. Setting ICUs participating in the United States Critical Illness and Injury Trials Group Critical Illness Outcomes Study (USCIITG-CIOS). Measurements and Main Results We characterized structure and process variables across ICUs, investigated relationships between these variables and annual ICU mortality, and adjusted for illness severity using APACHE II. Ninety-four ICU directors were invited to participate in the study and 69 ICUs (73%) were enrolled, of which 25 (36%) were medical, 24 were surgical (35%) and 20 (29%) were of mixed type, and 64 (93%) were located in teaching hospitals with a median number of 5 trainees per ICU. Average annual ICU mortality was 10.8%, average APACHE II score was 19.3, 58% were closed units and 41% had a 24-hour in-house intensivist. In multivariable linear regression adjusted for APACHE II and multiple ICU structure and process factors, annual ICU mortality was lower in surgical ICUs than in medical ICUs (5.6% lower, 95% CI 2.4%–8.8%) or mixed ICUs (4.5% lower, 95% CI 0.4%–8.7%). We also found a lower annual ICU mortality among ICUs that had a daily plan of care review (5.8% lower, 95% CI 1.6%–10.0%) and a lower bed-to-nurse ratio (1.8% lower when the ratio decreased from 2:1 to 1.5:1; 95% CI 0.25%–3.4%). In contrast, 24-hour intensivist coverage (p=0.89) and closed ICU status (p=0.16) were not associated with a lower annual ICU mortality. Conclusions In a sample of 69 ICUs, a daily plan of care review and a lower bed-to-nurse ratio were both associated with a lower annual ICU mortality. In contrast to 24-hour intensivist

  10. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation. A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors. However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include

  11. Process for crosslinking methylene-containing aromatic polymers with ionizing radiation

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1990-01-01

    A process for crosslinking aromatic polymers containing radiation-sensitive methylene groups (-CH2-) by exposing the polymers to ionizing radiation thereby causing crosslinking of the polymers through the methylene groups is described. Crosslinked polymers are resistant to most organic solvents such as acetone, alcohols, hydrocarbons, methylene, chloride, chloroform, and other halogenated hydrocarbons, to common fuels and to hydraulic fluids in contrast to readily soluble uncrosslinked polymers. In addition, the degree of crosslinking of the polymers depends upon the percentage of the connecting groups which are methylene which ranges from 5 to 50 pct and preferably from 25 to 50 pct of the connecting groups, and is also controlled by the level of irradiation which ranges from 25 to 1000 Mrads and preferably from 25 to 250 Mrads. The temperature of the reaction conditions ranges from 25 to 200 C and preferably at or slightly above the glass transition temperature of the polymer. The crosslinked polymers are generally more resistant to degradation at elevated temperatures such as greater than 150 C, have a reduced tendency to creep under load, and show no significant embrittlement of parts fabricated from the polymers.

  12. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  13. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  14. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  15. PREFACE: International Scientific Conference on Radiation-Thermal Effects and Processes in Inorganic Materials 2015 (RTEP2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The International Scientific Conference "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held fourfold in Tomsk, Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), the island of Cyprus. The XI conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was also held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 15-02-20616.

  16. Theoretical analysis of physicochemical processes occurring during water treatment by ozone and ultraviolet radiation.

    PubMed

    Mishchuk, N A; Goncharuk, V V; Vakulenko, V F

    2008-06-22

    The paper presents a kinetic model developed for ozone dissolution in water and taking into account convective and diffusion processes occurring in the vicinity of floating bubbles that contain an ozone-air mixture. It was shown that the gradient of ozone concentration in a convective-diffusion layer and consequently the rate of ozone transfer from bubbles to the solution depended on the rate of ozone decomposition both in its reaction with organic admixtures and in the conditions of exposure to ultraviolet radiation. The obtained kinetic curves of destruction of organic compounds and changes of ozone concentration in water and ozone-air mixture are compared with experimental data for humic acids. The paper also analyzes additional factors affecting the kinetics of ozone dissolution and the rate of resultant reactions.

  17. Radiative and collisional processes in a high pressure micro-hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Kurunczi, Peter Frank

    Conventional low-pressure hollow cathode glow discharge lamps are well known as intense sources with high emission efficiencies. Reducing the electrode geometries to sub millimeter scales allows us to operate at higher pressures of approximately 500 to 1000 mbar. This high-pressure region is conducive to the formation of rare gas excimers, with applications as a vacuum ultraviolet light source. Here we present the results of vacuum-ultraviolet emission spectroscopy of Neon and Helium excimers. Specifically discussed are the mechanisms of rare gas excimer production, quenching of the neon excimer by H2 resulting in a novel monochromatic hydrogen Lyman-alpha line source, time resolved analysis of the quenching rate constant, and gas kinetic temperatures inferred from vibrational band emission spectra from N2 have been measured. The measured excimer emissions, rate constants, and gas kinetic temperatures have all been shown to be affected by non-radiative collisional processes.

  18. Photo detection process and power spectrum estimation of optical radiation by the multichannel resonant spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Moskaletz, O. D.; Paraskun, A. S.; Vaganov, M. A.

    2016-08-01

    The problem of receiving of an energy spectrum estimation of optical radiations in the new analyzer of optical signals is considered. It is the parallel resonant optical spectrum analyzer (SPECTRUM ANALYZER). Its resolving system is a set of narrow-band optical resonators in the form of interference filters. Each optical resonator is equivalent to a system with lumped parameters. This allows us to consider only oscillations of an optical field in the form of a scalar functions and adopt as a model of analyzed signal harmonized scalar random process. The photodetector operation and average of photocurrent using an integrator and integrating circuit is considered too. On the basis of the application prolate entire spheroidal wave function theory energy spectrum estimation by the integral of photocurrent is obtained. This energy spectrum estimation is consistent and asymptotically unbiased.

  19. Review of measurement techniques for the neutron radiative-capture process

    SciTech Connect

    Poenitz, W.P.

    1981-07-01

    The experimental techniques applied in measurements of the neutron capture process are reviewed. The emphasis is on measurement techniques used in neutron capture cross section measurements. The activation technique applied mainly in earlier work has still its use in some cases, specifically for measurements of technologically important cross sections (/sup 238/U and /sup 232/Th) with high accuracy. Three major prompt neutron radioactive capture detection techniques have evolved: the total gamma radiation energy detection technique (mainly with large liquid scintillation detectors), the gamma-energy proportional detectors (with proportional counters or Moxon-Rae detectors), and the pulse-height weighting technique. These measurement techniques are generally applicable, however, shortcomings limit the achievable accuracy to a approx. = 5 to 15% uncertainty level.

  20. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    DOE PAGES

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are alreadymore » present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.« less

  1. Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology.

    PubMed

    Hoover, Mark D; Myers, David S; Cash, Leigh J; Guilmette, Raymond A; Kreyling, Wolfgang G; Oberdörster, Günter; Smith, Rachel; Cassata, James R; Boecker, Bruce B; Grissom, Michael P

    2015-02-01

    The National Council on Radiation Protection and Measurements (NCRP) established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between ∼1 and 100 nm, where unique phenomena enable novel applications. While the full report is in preparation, this paper presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.

  2. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    SciTech Connect

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.

  3. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    SciTech Connect

    Cavallo, Dario; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  4. Interstellar processes: Ortho/para conversion, radiative association, and dissociative recombination

    NASA Astrophysics Data System (ADS)

    Herbst, Eric

    2015-01-01

    The study of the ortho-to-para ratio of assorted gas-phase interstellar molecules such as H2, H2O, NH3, and H2O+ has gained interest in recent years, based partially on new spectral observations of light hydrides by the Herschel Space Observatory. Although these ratios can yield valuable information about the thermal history of the interstellar cloud where the molecules are found, an understanding of how the ratios are determined involves a number of often poorly studied processes, which can include both gas-phase and grain-surface reactions. In this article, we consider the processes that determine the ortho-to-para ratio of the molecular ion H2O+ in diffuse interstellar clouds and attempt to reproduce an unusual observed ratio for this ion. In addition to the study of ortho-to-para ratios, we look carefully at current uncertainties in the gas-phase formation of large neutral molecules in cold dense interstellar clouds via ion-neutral radiative association and dissociative recombination, among other processes.

  5. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study

    PubMed Central

    Yang, Ji-Hui; Shi, Lin; Wang, Lin-Wang; Wei, Su-Huai

    2016-01-01

    Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials. PMID:26880667

  6. Non-radiative carrier recombination enhanced by two-level process: A first-principles study

    DOE PAGES

    Yang, Ji -Hui; Shi, Lin; Wang, Lin -Wang; Wei, Su -Huai

    2016-02-16

    In this study, non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changesmore » to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center Te2+cd in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.« less

  7. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Shi, Lin; Wang, Lin-Wang; Wei, Su-Huai

    2016-02-01

    Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.

  8. Ab initio Calculation of the np→dγ Radiative Capture Process.

    PubMed

    Beane, Silas R; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J; Tiburzi, Brian C

    2015-09-25

    Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process np→dγ, and the photo-disintegration processes γ^{(*)}d→np. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of m_{π}~450 and 806 MeV, and are combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy inelastic processes. At m_{π}~806 MeV, using only lattice QCD inputs, a cross section σ^{806 MeV}~17 mb is found at an incident neutron speed of v=2,200 m/s. Extrapolating the short-distance contribution to the physical pion mass and combining the result with phenomenological scattering information and one-body couplings, a cross section of σ^{lqcd}(np→dγ)=334.9(+5.2-5.4) mb is obtained at the same incident neutron speed, consistent with the experimental value of σ^{expt}(np→dγ)=334.2(0.5) mb. PMID:26451545

  9. Ab initio calculation of the $np \\to d ³$ radiative capture process

    SciTech Connect

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.

    2015-09-24

    In this study, lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process $np \\to d\\gamma$, and the photo-disintegration processes $\\gamma^{(\\ast)} d \\to np$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $m_\\pi \\sim 450$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $\\sigma^{lqcd}(np\\to d\\gamma)=332.4({\\tiny \\begin{array}{l}+5.4 \\\\ - 4.7\\end{array}})\\ mb$ is obtained at an incident neutron speed of $v=2,200\\ m/s$, consistent with the experimental value of $\\sigma^{expt}(np \\to d\\gamma) = 334.2(0.5)\\ mb$.

  10. Dynamic application of digital image and colour processing in characterizing flame radiation features

    NASA Astrophysics Data System (ADS)

    Huang, Hua Wei; Zhang, Yang

    2010-08-01

    In this work, the experimental investigation of the dynamic flame properties of flame flickering and equivalence ratio sensing of a combustion process was done. In particular, the time-varied flame properties were examined using a novel digital image and colour processing methodology. This technique makes use of the observed correlation between a digital image colour signal and physical flame radiation characteristics in the visible wavelength domain. Aspects of RGB and HSV colour modelling principles were applied to show that the addition of colour identification in the image processing of high-speed flame image data could yield three useful parameters which are related to the dynamic behaviour of different flame emanating components. First, the validity of the colour identities for tracking the yellowish-red diffusion and greenish-blue premixed flame colourations were examined by comparing their respective flickering frequency profiles. Then, the usefulness of the extracted Rdiffusion, Gpremixed and Bpremixed colour signals to abstractly represent the behaviour of soot, C2* and CH* emission characteristics in a dynamic flame transition from diffusion to stoichiometric premixed condition was demonstrated. In particular, the colour signal ratio Bpremixed/Gpremixed was correlated to exemplify the approximate time-varied state of the equivalence ratio from the imaged combustion phenomenon.

  11. Limits Imposed on Heat Produced during Core Formation by Radiative Transfer Processes and Thermodynamic Laws

    NASA Astrophysics Data System (ADS)

    Criss, R. E.; Hofmeister, A.

    2010-12-01

    The popular view that Earth is sufficiently hot to still be shedding primordal heat, largely originating in the core, is inconsistent with thermodynamic constraints and recent heat transport studies. Previous work presumes that the large difference in gravitational potential energy (Ug) between a fictious, homogeneous reference state and Earth’s current layered configuration of metallic core and rocky mantle was converted to frictional heat during core formation, greatly increasing temperature (T) inside the Earth. However, heating (ΔT >0) was deduced by assuming that Ug is positive, which is inconsistent with Newton’s law of gravitation. Use of an erroneous sign for ΔUg has prevented recognition that the process is an exothermic transformation. Thermodynamic principles were not considered in previous analyses: neglecting the effect of the change in configuration on entropy and energy contributes greatly to the view that heat is retained. Instead, stringent limits are set on the permissible temperature increase by the rapid rate of ballistic radiative transfer, a process associated with transient events, as well as by the 1st and 2nd laws of thermodynamics. In the static, instantaneous model of core formation, configurational entropy (S) of the Earth decreases upon forming the ordered layered state; this entropy decrease is offset by a greater increase in S of the surrounding universe, which can only be accomplished by release of heat to space (the surroundings). Instantaneous dissipation of heat in the static model reasonably approximates radiative processes being superfast. Core formation involves negligible changes in volume and rotational energy, so Helmholtz free energy (=Ug-TS) is conserved, as in atmospheric processes and other graviational-thermodynamic problems. Because S of the universe is immense and heat must flow from hotter to colder bodies, negligible heat from core formation is retained, consistent with the exothermic nature of this transition

  12. Two-parametric model of electron beam in computational dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Lazurik, V. M.; Lazurik, V. T.; Popov, G.; Zimek, Z.

    2016-07-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E0 - energy mono-energetic and mono-directional electron source, X0 - the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like Ep- the most probably energy and Rp - practical range) can be linked with characteristics of two-parametric model (E0, X0), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed.

  13. PREFACE: Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya; Faeder, James R.; Hlavacek, William S.; Jiang, Yi; Wall, Michael E.; Zilman, Anton

    2011-10-01

    Summary This special issue consists of 11 original papers that elaborate on work presented at the Fourth Annual q-bio Conference on Cellular Information Processing, which was held on the campus of St John's College in Santa Fe, New Mexico, USA, 11-14 August 2010. Now in its fourth year, the q-bio conference has changed considerably over time. It is now well established and a major event in systems biology. The 2010 conference saw attendees from all continents (except Antarctica!) sharing novel results and participating in lively discussions at both the oral and poster sessions. The conference was oversubscribed and grew to 27 contributed talks, 16 poster spotlights and 137 contributed posters. We deliberately decreased the number of invited speakers to 21 to leave more space for contributed presentations, and the attendee feedback confirmed that the choice was a success. Although the q-bio conference has grown and matured, it has remained true to the original goal of being an intimate and dynamic event that brings together modeling, theory and quantitative experimentation for the study of cell regulation and information processing. Funded in part by a grant from NIGMS and by DOE funds through the Los Alamos National Laboratory Directed Research and Development program, the conference has continued to exhibit youth and vigor by attracting (and partially supporting) over 100 undergraduate, graduate and postdoctoral researchers. The associated q-bio summer school, which precedes the conference each year, further emphasizes the development of junior scientists and makes q-bio a singular event in its impact on the future of quantitative biology. In addition to an increased international presence, the conference has notably diversified its demographic representation within the USA, including increased participation from the southeastern corner of the country. One big change in the conference this year is our new publication partner, Physical Biology. Although we are very

  14. XIIth international meeting on radiation processing Avignon 25-30 March 2001 (Polymer irradiation: past-present and future)

    NASA Astrophysics Data System (ADS)

    Chapiro, Adolphe

    2002-03-01

    Radiations are used efficiently and economically for the production of new or modified polymers. The following processes are considered: Radiation curing; Radiation cross-linking; Radiation grafting. These processes are commonly used today in industry and provide a broad range of new potential applications in various fields. The history of their development is briefly reported. The chemical reactions underlying these processes are described. (1) Radiation curing is used commercially on a large scale for the production of improved coatings, lacquers and inks. The process can be conducted at very high speeds. Curing of magnetic formulations leads to particularly stable products, which compete favourably with more conventional materials. (2) Radiation cross-linking is an established technology in the wire and cable industry. It emparts to the modified insulators improved resistance to solvents, to ageing and to elevated temperatures. The resulting cross-linked network also reduces the migration of fillers and thereby stabilizes in time any message imprinted with magnetic or colored pigments dispersed in a polymer. (3) Radiation grafting is a powerful method for modifying more profoundly the properties of a polymer and for creating numerous, entirely new materials. The chemical modification can be applied at will into the bulk of the material or limited to a surface zone of any desired depth. This method can be used for instance, for introducing polar groups in the bulk or on the surface of non-polar polymers, for increasing or reducing the wettability of a polymer, for imparting a better compatibility of a polymer to a specific coating and the like. The irradiation of water-soluble polymers in aqueous solutions, with or without the addition of another monomer gives rise to a variety of cross-linked gels which find useful applications in the biomedical field. Other promising applications will be considered.

  15. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  16. Radiative levitation in carbon-enhanced metal-poor stars with s-process enrichment

    NASA Astrophysics Data System (ADS)

    Matrozis, E.; Stancliffe, R. J.

    2016-07-01

    A significant fraction of all metal-poor stars are carbon-rich. Most of these carbon-enhanced metal-poor (CEMP) stars also show enhancement in elements produced mainly by the s-process (CEMP-s stars), and evidence suggests that the origin of these non-standard abundances can be traced to mass transfer from a binary asymptotic giant branch (AGB) companion. Thus, observations of CEMP-s stars are commonly used to infer the nucleosynthesis output of low-metallicity AGB stars. A crucial step in this exercise is understanding what happens to the accreted material after mass transfer ceases. Here we present models of the post-mass-transfer evolution of CEMP-s stars considering the physics of thermohaline mixing and atomic diffusion, including radiative levitation. We find that stars with typical CEMP-s star masses, M ≈ 0.85 M⊙, have very shallow convective envelopes (Menv ≲ 10-7 M⊙). Hence, the surface abundance variations arising from the competition between gravitational settling and radiative levitation should be orders of magnitude larger than observed (e.g. [C/Fe] < -1 or [C/Fe] > +4). Lower-mass stars (M ≈ 0.80 M⊙) retain thicker convective envelopes and thus show variations more in line with observations, but are generally too unevolved (log g > 4) when they reach the age of the Universe. We are therefore unable to reproduce the spread in the observed abundances with these models and conclude that some other physical process must largely suppress atomic diffusion in the outer layers of CEMP-s stars. We demonstrate that this could be achieved by some additional (turbulent) mixing process operating at the base of the convective envelope, as found by other authors. Alternatively, mass-loss rates around 10-13 M⊙yr-1 could also negate most of the abundance variations by eroding the surface layers and forcing the base of the convective envelope to move inwards in mass. Since atomic diffusion cannot have a substantial effect on the surface abundances of CEMP

  17. Ab initio calculation of the $$np \\to d ³$$ radiative capture process

    DOE PAGES

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.

    2015-09-24

    In this study, lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture processmore » $$np \\to d\\gamma$$, and the photo-disintegration processes $$\\gamma^{(\\ast)} d \\to np$$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $$m_\\pi \\sim 450$$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $$\\sigma^{lqcd}(np\\to d\\gamma)=332.4({\\tiny \\begin{array}{l}+5.4 \\\\ - 4.7\\end{array}})\\ mb$$ is obtained at an incident neutron speed of $$v=2,200\\ m/s$$, consistent with the experimental value of $$\\sigma^{expt}(np \\to d\\gamma) = 334.2(0.5)\\ mb$$.« less

  18. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  19. Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal

    SciTech Connect

    Gaivoronsky, Vladimir Ya; Shepelyavyi, Yevgenii V; Nazarov, Maksim M; Sapozhnikov, Dmitrii A; Shkel'nyuk, Svetlana A; Shkurinov, A P; Shuvaev, Aleksandr V

    2005-05-31

    The generation of terahertz (THz) pulses by the optical rectification of femtosecond laser pulses in a ZnTe crystal is studied. A substantial decrease in the THz radiation power was observed upon tight focusing of laser radiation into the crystal. It is shown that the consideration of competing two-photon absorption and second-harmonic generation processes proceeding simultaneously with optical rectification cannot explain this effect even qualitatively. It is assumed that the observed decrease in the THz radiation power is caused by a decrease in the size of a source of nonlinear polarisation. The conditions are found for the most efficient generation of THz radiation in the ZnTe crystal. (nonlinear optical phenomena)

  20. QED radiative effects in the processes of exclusive photon electroproduction from polarized protons with the next-to-leading accuracy

    SciTech Connect

    Akushevich, Igor V.; Ilyichev, Alexander; Shumeiko, Nikolai M

    2014-08-01

    Radiative effects in the electroproduction of photons in polarized ep-scattering are calculated with the next-to-leading (NLO) accuracy. The contributions of loops and two photon emission were presented in analytical form. The covariant approach of Bardin and Shumeiko was used to extract the infrared divergence. All contributions to the radiative correction were presented in the form of the correction to the leptonic tensor thus allowing for further applications in other experiments, e.g., deep inelastic scattering. The radiative corrections (RC) to the cross sections and polarization asymmetries were analyzed numerically for kinematical conditions of the current measurement at Jefferson Lab. Specific attention was paid on analyzing kinematical conditions for the process with large radiative effect when momenta of two photons in the final state are collinear to momenta of initial and final electrons, respectively.

  1. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  2. Annual Conference on Nuclear and Space Radiation Effects, 15th, University of New Mexico, Albuquerque, N. Mex., July 18-21, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    Simons, M.

    1978-01-01

    Radiation effects in MOS devices and circuits are considered along with radiation effects in materials, space radiation effects and spacecraft charging, SGEMP, IEMP, EMP, fabrication of radiation-hardened devices, radiation effects in bipolar devices and circuits, simulation, energy deposition, and dosimetry. Attention is given to the rapid anneal of radiation-induced silicon-sapphire interface charge trapping, cosmic ray induced errors in MOS memory cells, a simple model for predicting radiation effects in MOS devices, the response of MNOS capacitors to ionizing radiation at 80 K, trapping effects in irradiated and avalanche-injected MOS capacitors, inelastic interactions of electrons with polystyrene, the photoelectron spectral yields generated by monochromatic soft X radiation, and electron transport in reactor materials.

  3. Radiation mechanism for the aerodynamic sound of gears - An explanation for the radiation process by air flow observation

    NASA Astrophysics Data System (ADS)

    Houjoh, Haruo

    1992-12-01

    One specific feature of the aerodynamic sound produced at the face end region is that the radiation becomes equally weak by filling root spaces as by shortening the center distance. However, one can easily expect that such actions make the air flow faster, and consequently make the sound louder. This paper attempts to reveal the reason for such a feature. First, air flow induced by the pumping action of the gear pair was analyzed regarding a series of root spaces as volume varying cavities which have channels to adjacent cavities as well as the exit/inlet at the face ends. The numerical analysis was verified by the hot wire anemometer measurement. Next, from the obtained flow response, the sound source was estimated to be a combination of symmetrically distributed simple sources. Taking the effect of either the center distance or root filling into consideration, it is shown that the simplified model can explain such a feature rationally.

  4. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  5. 1992 IEEE Annual Conference on Nuclear and Space Radiation Effects, 29th, New Orleans, LA, July 13-17, 1992, Proceedings

    NASA Technical Reports Server (NTRS)

    Van Vonno, Nick W. (Editor)

    1992-01-01

    The papers presented in this volume provide an overview of recent theoretical and experimental research related to nuclear and space radiation effects. Topics dicussed include single event phenomena, radiation effects in particle detectors and associated electronics for accelerators, spacecraft charging, and space environments and effects. The discussion also covers hardness assurance and testing techniques, electromagnetic effects, radiation effects in devices and integrated circuits, dosimetry and radiation facilities, isolation techniques, and basic mechanisms.

  6. [Retrospective Cytogenetic Dose Evaluation. II. Computer Data Processing in Persons Irradiated in Different Radiation Accidents].

    PubMed

    Nugis, V Yu; Khvostunov, I K; Goloub, E V; Kozlova, M G; Nadejinal, N M; Galstian, I A

    2015-01-01

    The method for retrospective dose assessment based on the analysis of cell distribution by the number of dicentrics and unstable aberrations using a special computer program was earlier developed based on the data about the persons irradiated as a result of the accident at the Chernobyl nuclear power plant. This method was applied for the same purpose for data processing of repeated cytogenetic studies of the patients exposed to γ-, γ-β- or γ-neutron radiation in various situations. As a whole, this group was followed up in more distant periods (17-50 years) after exposure than Chernobyl patients (up to 25 years). The use for retrospective dose assessment of the multiple regression equations obtained for the Chernobyl cohort showed that the equation, which includes computer recovered estimate of the dose and the time elapsed after irradiation, was generally unsatisfactory (r = 0.069 at p = 0.599). Similar equations with recovered estimate of the dose and frequency of abnormal chromosomes in a distant period or with all three parameters as variables gave better results (r = 0.686 at p = 0.000000001 and r = 0.542 at p = 0.000008, respectively). PMID:26863777

  7. Radiation effects from first principles : the role of excitons in electronic-excited processes.

    SciTech Connect

    Wong, Bryan Matthew

    2009-09-01

    Electron-hole pairs, or excitons, are created within materials upon optical excitation or irradiation with X-rays/charged particles. The ability to control and predict the role of excitons in these energetically-induced processes would have a tremendous impact on understanding the effects of radiation on materials. In this report, the excitonic effects in large cycloparaphenylene carbon structures are investigated using various first-principles methods. These structures are particularly interesting since they allow a study of size-scaling properties of excitons in a prototypical semi-conducting material. In order to understand these properties, electron-hole transition density matrices and exciton binding energies were analyzed as a function of size. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in these structures. Based on overall trends in exciton binding energies and their spatial delocalization, we find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these systems.

  8. Simulations of microphysical, radiative, and dynamical processes in a continental-scale forest fire smoke plume

    NASA Technical Reports Server (NTRS)

    Westphal, Douglas L.; Toon, Owen B.

    1991-01-01

    The impact of a large forest fire smoke plume on atmospheric processes is studied through a numerical model of meteorology, aerosols, and radiative transfer. The simulated smoke optical depths at 0.63-micron wavelength are in agreement with analyses of satellite data and show values as high as 1.8. The smoke has an albedo of 35 percent, or more than double the clear-sky value, and cools the surface by as much as 5 K. An imaginary refractive index, n sub im, of 0.01 yields results which closely match the observed cooling, single scattering albedo, and the Angstrom wavelength exponent. An n exp im of 0.1, typical of smoke from urban fires, produces 9 K cooling. Coagulation causes the geometric mean radius by number to increase from the initial value of 0.08 micron to a final value of 0.15 micron, while the specific extinction and absorption increase by 40 and 25 percent, respectively.

  9. Degradation of catechol by ionizing radiation, ozone and the combined process ozone-electron-beam

    NASA Astrophysics Data System (ADS)

    Kubesch, K.; Zona, R.; Solar, S.; Gehringer, P.

    2005-03-01

    The influence of oxygen on the radiation-induced degradation of catechol (5×10 -4 mol dm -3, 55 mg dm -3) in distilled water was studied by gamma-radiolysis in the presence of air (A) and using air saturation (AS) during irradiation. Under AS conditions a complete decomposition of catechol as well as of the trihydroxybenzene products was obtained by a dose of 6 kGy, without air saturation all phenolic compounds were still present at 10 kGy. Using AS, at 12 kGy the total organic carbon (TOC) was reduced by 63%, without air saturation by 17.5%. Detoxification was only obtained in AS solutions. In the presence of the natural matrix of the local tap water no trihydroxybenzene products were formed and for total decomposition of catechol in AS solutions 9 kGy were required. The comparison of the effectiveness of an electron beam (EB), an ozone (O 3) and a combined EB/O 3 process showed, that by EB/O 3 the extent of catechol degradation corresponded to the sum of the decay with EB and with ozone, whereas for the chemical oxygen demand and TOC reduction a synergistic effect was evident.

  10. 1991 IEEE Annual Conference on Nuclear and Space Radiation Effects, 28th, San Diego, CA, July 15-19, 1991, Proceedings

    NASA Technical Reports Server (NTRS)

    Millward, Douglas G. (Editor)

    1991-01-01

    Various papers on nuclear science are presented. The general topics addressed are: basic mechanisms of radiation effects, dosimetry and energy-dependent effects, isolation technologies, device radiation response and hardening, microcircuit radiation response and hardening, single-event phenomena, hardness assurance and testing techniques, spacecraft charging, space environments and effects.

  11. Measurements and simulation of the radiation build-up process in a prebunched free-electron maser oscillator

    SciTech Connect

    Gilutin, L.; Pinhasi, Y.; Cohen, M.

    1995-12-31

    Numerical studies of the radiation buildup process in a prebunched free-electron maser oscillator (FEM), were carried out at Tel-Aviv University (TAU) and at the University of Maryland (UMD), and compared to the experimental measurements taken on the prebunched beam FEM experiments in TAU. We present measurements of the temporal evolution of radiation excited from noise until a steady-state operation is established. The evolution of the spectral characteristics of the radiation was investigated using the data collected by a fast digitizing scope, which recorded the IF signal obtained from heterodyning the laser radiation with a stable local oscillator. The mode competition process was observed. The experimental results were compared to analytical calculations of the spontaneous emission power and small-signal gain. Nonlinear {open_quote}amplifier{close_quote} simulation codes were employed for calculation of the extraction efficiency and saturation power. Multi-frequency simulations of the mode competition process were carried out using simulation (MALT ID) code, which is based on a space-time one-dimensional model of a free-electron laser oscillator. Conditions for establishment of single-(longitudinal) mode operation were identified and compared to the experimental measurements. Prebunching of the e-beam current permits external interference in the mode competition and coherence build-up process. We found experimentally and confirmed numerically that prebunching can determine the frequency of oscillation if the e-beam is injected with a sufficient bunching power, and shortens the oscillation buildup and coherence establishment time.

  12. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Nishimura, Y.; Zhang, X.-J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Henderson, M. G.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Angelopoulos, V.

    2016-05-01

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. This study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.

  13. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOEpatents

    Hondorp, Hugh L.

    1984-01-01

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  14. Radiative-dynamical and microphysical processes of thin cirrus clouds controlling humidity of air entering the stratosphere

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Fueglistaler, Stephan

    2016-04-01

    Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.

  15. Laser-radiation scattering by cement in the process of hydration: simulation of the dynamics and experiment.

    PubMed

    Gorsky, M P; Maksimyak, P P; Maksimyak, A P

    2012-04-01

    This paper discusses simulation of speckle-field dynamics during coherent light scattering by a cement surface in the process of hydration. Cement particles are represented by the spheres whose sizes and reflection indices are changing during the hydration process. The study of intensity fluctuations of scattered coherent radiation is a suitable technique for the analysis of both fast and slow processes of mineral binder hydration and formation of polycrystalline structures in the process of hardening. The results of simulation are in good agreement with the experimental data.

  16. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  17. Update on scribe-cleave-passivate (SCP) slim edge technology for silicon sensors: Automated processing and radiation resistance

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Ely, S.; Galloway, Z.; Ngo, J.; Parker, C.; Sadrozinski, H. F.-W.; Christophersen, M.; Phlips, B. F.; Pellegrini, G.; Rafi, J. M.; Quirion, D.; Dalla Betta, G.-F.; Boscardin, M.; Casse, G.; Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S.; Gaubas, E.; Ceponis, T.; Vaitkus, J. V.

    2014-11-01

    We pursue scribe-cleave-passivate (SCP) technology for making "slim edge" sensors. The goal is to reduce the inactive region at the periphery of the devices while maintaining their performance. In this paper we report on two aspects of the current efforts. The first one involves fabrication options for mass production. We describe the automated cleaving tests and a simplified version of SCP post-processing of n-type devices. Another aspect is the radiation resistance of the passivation. We report on the radiation tests of n- and p-type devices with protons and neutrons.

  18. Process and pattern in cichlid radiations - inferences for understanding unusually high rates of evolutionary diversification.

    PubMed

    Seehausen, Ole

    2015-07-01

    The cichlid fish radiations in the African Great Lakes differ from all other known cases of rapid speciation in vertebrates by their spectacular trophic diversity and richness of sympatric species, comparable to the most rapid angiosperm radiations. I review factors that may have facilitated these radiations and compare these with insights from recent work on plant radiations. Work to date suggests that it was a coincidence of ecological opportunity, intrinsic ecological versatility and genomic flexibility, rapidly evolving behavioral mate choice and large amounts of standing genetic variation that permitted these spectacular fish radiations. I propose that spatially orthogonal gradients in the fit of phenotypes to the environment facilitate speciation because they allow colonization of alternative fitness peaks during clinal speciation despite local disruptive selection. Such gradients are manifold in lakes because of the interaction of water depth as an omnipresent third spatial dimension with other fitness-relevant variables. I introduce a conceptual model of adaptive radiation that integrates these elements and discuss its applicability to, and predictions for, plant radiations.

  19. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, October 1, 1988--June 1, 1989

    SciTech Connect

    1989-12-31

    The primary goal of this study is to achieve a more thorough understanding of the mechanisms employed by higher organisms to repair DNA damage induced by both ionizing and nonionizing radiation. These studies are also contributing to an improved understanding of the processes of mutagenesis and carcinogenesis in higher eukaryotes. The studies employ Drosophila as a model organism for investigating repair functions that are common to all higher eukaryotes. Drosophila was chosen in the early phases of this study primarily because of the ease with which one can isolate and characterize repair-deficient mutants in a metazoan organism. The laboratory has gone on to investigate the metabolic defects of such mutants while others have performed complementary genetic and cytogenetic studies which relate DNA repair processes to mutagenesis and chromosome stability. The repair studies have exploited the capacity to introduce mutant Drosophila cells into tissue culture and thereby compare repair defects directly with those of homologous human disorders. Researchers are currently employing recombinant DNA technology to investigate the mechanisms of the DNA repair pathways defined by those mutants.

  20. [Degradation of 3-chlorophenol in aqueous solution by combined process of gamma-radiation and H2O2].

    PubMed

    Hu, Jun; Wang, Jian-long

    2009-10-15

    The radiolytical degradation of 3-chlorophenol (3-CP) in aqueous solution was investigated using gamma-radiation and gamma-radiation/hydrogen peroxide (H2O2) combined process. The effect of absorbed dose, initial concentration of 3-CP and addition of H2O2 on pollutant degradation, dechlorination and the degree of mineralization was studied by measuring the removal efficiency of 3-CP, the variation of total organic carbon (TOC), the dechlorination rate, and the absorbance spectrum of vis-UV. The kinetics of 3-CP degradation was also discussed. The results showed that when 3-CP concentration was 10 mg x L(-1) and the absorbed dose was 2 kGy, the dechlorination rate reached 100%, the TOC removal efficiency was 53%; when the absorbed dose increased to 8 kGy, 3-CP could be completely mineralized and the TOC removal efficiency reached 100%. The radiolysis of 3-CP could be described by one-order reaction kinetics, there existed synergic effect for combined process of gamma-irradiation/hydrogen peroxide for 3-CP degradation. The rate constant of 3-CP degradation for gamma-radiation and gamma-radiation/hydrogen peroxide combined process was 0.279 h(-1) and 0.542 h(-1), respectively.

  1. Parallel processing approach for radiative heat transfer prediction in participating media

    NASA Astrophysics Data System (ADS)

    Saltiel, C.; Naraghi, M. H. N.

    1993-10-01

    Numerical analysis of radiative transfer in participating media can be very complex. Computer simulations of practical situations often require both large computer memory and long calculation times. The use of massively parallel machines has proven very effective in simulating large complex systems. This technical note presents a unified matrix formulation for node-to-node-based radiative exchange in isotropically scattering homogeneous media using the discrete exchange factor (DEF) method. Computational implementation is compared between serial and parallel computing machines. The results demonstrate that parallel computing has the potential for changing the nature of radiative transfer calculations. Parallel computing allows for faster, more manageable calculations; it is especially effective for nonlinear problems.

  2. The impact of detailed urban-scale processing on the composition, distribution, and radiative forcing of anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Cohen, Jason Blake; Prinn, Ronald G.; Wang, Chien

    2011-05-01

    Detailed urban-scale processing has not been included in global 3D chemical transport models due to its large computational demands. Here we present a metamodel for including this processing, and compare it with the use of the traditional approach of dilution of emissions into large grid boxes. This metamodel is used in a global 3D model to simulate the effects of cities around the world on aerosol chemistry, physics, and radiative effects at the global scale. We show that the biases caused by ignoring urban processing on the global values of total aerosol surface concentration, the total aerosol column abundance, the aerosol optical depth (AOD), the absorbing aerosol optical depth (AAOD), and the top of the atmosphere radiative forcing (TOA) respectively are +26 ± 32%, +51 ± 1012%, +42 ± 810%, +8 ± 1618%, and -0.27 ± 0.140.10 W/m2. These results show that failure to consider urban scale processing leads to significantly more negative aerosol radiative forcing compared to when detailed urban scale processing is considered.

  3. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    SciTech Connect

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V.; Bommel, Sebastian; Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  4. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  5. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users. PMID:23635203

  6. Supernova Emulators: Connecting Massively Parallel SN Ia Radiative Transfer Simulations to Data with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel; Thomas, Rollin; Kasen, Daniel

    2015-01-01

    Collaboration between the type Ia supernova (SN Ia) modeling and observation communities hinges on our ability to directly connect simulations to data. Here we introduce supernova emulation, a method for facilitating such a connection. Emulation allows us to instantaneously predict the observables (light curves, spectra, spectral time series) generated by arbitrary SN Ia radiative transfer simulations, with estimates of prediction error. Emulators learn the mapping between physically meaningful simulation inputs and the resulting synthetic observables from a training set of simulation input-output pairs. In our emulation framework, we model PCA-decomposed representations of simulated observables as an ensemble of Gaussian Processes. As a proof of concept, we train a bolometric light curve (BLC) emulator on a grid of 400 simulation inputs and BLCs synthesized with the publicly available, gray, time-dependent Monte Carlo expanding atmospheres code, SMOKE. We emulate SMOKE simulations evaluated at a set of 100 out-of-sample input parameters, and achieve excellent agreement between the emulator predictions and the simulated BLCs. In addition to predicting simulation outputs, emulators allow us to infer the regions of simulation input parameter space that correspond to observed SN Ia light curves and spectra. We present a Bayesian framework for solving this inverse problem using Markov Chain Monte Carlo sampling. We fit published bolometric light curves with our emulator and obtain reconstructed masses (nickel mass, total ejecta mass) in agreement with reconstructions from semi-analytic models. We discuss applications of emulation to supernova cosmology and physics, including how emulators can be used to identify and quantify astrophysical sources of systematic error affecting SNe Ia as distance indicators for cosmology.

  7. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... conditions: (a) The radiation sources consist of low pressure mercury lamps emitting 90 percent of the... in food production. Juice products Turbulent flow through tubes with a minimum Reynolds number of...

  8. Novel Reconstruction Technique for New Physics Processes with Initial State Radiation

    SciTech Connect

    Alwall, Johan; Hiramastsu, Kenji; Nojiri, Mihoko M.; Shimizu, Yasuhiro

    2009-10-09

    The production of heavy particles at hadron colliders is associated with radiation of additional quarks and gluons from incoming partons. They can have significant transverse momenta and the additional initial state radiation (ISR) jets complicate the reconstruction of new particle masses. Taking gluino pair production and decay at the Large Hadron Collider as an example, we develop a novel technique to reduce these effects, allowing for a better reconstruction of masses through the measurement of kinematical end points.

  9. The Formation of the First Stars. II. Radiative Feedback Processes and Implications for the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Tan, Jonathan C.

    2008-07-01

    We consider the radiative feedback processes that operate during the formation of the first stars. (1) Photodissociation of H2 in the local dark matter minihalo occurs early in the growth of the protostar but does not affect subsequent accretion. (2) Lyα radiation pressure acting at the boundary of the H II region that the protostar creates in the accreting envelope reverses infall in the polar directions when the star reaches ~20-30 M⊙ but cannot prevent infall from other directions. (3) Expansion of the H II region beyond the gravitational escape radius for ionized gas occurs at masses ~50-100 M⊙. However, accretion from the equatorial regions can continue since the neutral accretion disk shields a substantial fraction of the accretion envelope from direct ionizing flux. (4) At higher stellar masses, ~140 M⊙ in the fiducial case, photoevaporation-driven mass loss from the disk, together with declining accretion rates, halts the increase in the protostellar mass. We identify this process as the mechanism that determines the mass of Population III.1 stars (i.e., stars with primordial composition that have not been affected by prior star formation). The initial mass function of these stars is set by the distribution of entropy and angular momentum. The Appendix gives approximate solutions to a number of problems relevant to the formation of the first stars: the effect of Rayleigh scattering on line profiles in media of very large optical depth, the intensity of Lyα radiation in very opaque media, radiative acceleration in terms of the gradient of a modified radiation pressure, the flux of radiation in a shell with an arbitrary distribution of opacity, and the vertical structure of an accretion disk supported by gas pressure with constant opacity.

  10. Annual Conference on Nuclear and Space Radiation Effects, 18th, University of Washington, Seattle, WA, July 21-24, 1981, Proceedings

    NASA Technical Reports Server (NTRS)

    Tasca, D. M.

    1981-01-01

    Single event upset phenomena are discussed, taking into account cosmic ray induced errors in IIL microprocessors and logic devices, single event upsets in NMOS microprocessors, a prediction model for bipolar RAMs in a high energy ion/proton environment, the search for neutron-induced hard errors in VLSI structures, soft errors due to protons in the radiation belt, and the use of an ion microbeam to study single event upsets in microcircuits. Basic mechanisms in materials and devices are examined, giving attention to gamma induced noise in CCD's, the annealing of MOS capacitors, an analysis of photobleaching techniques for the radiation hardening of fiber optic data links, a hardened field insulator, the simulation of radiation damage in solids, and the manufacturing of radiation resistant optical fibers. Energy deposition and dosimetry is considered along with SGEMP/IEMP, radiation effects in devices, space radiation effects and spacecraft charging, EMP/SREMP, and aspects of fabrication, testing, and hardness assurance.

  11. Noninvasive radiation burn diagnosis using speckle phenomenon with a fractal approach to processing

    NASA Astrophysics Data System (ADS)

    Carvalho, Odile; Benderitter, Marc; Roy, Laurence

    2010-03-01

    Radiation burns account for the vast majority of damage by accidental radiation exposure. They are characterized by successive and unpredictable inflammatory bursts that are preceded by a clinically latent postirradiation period. Diagnosis and prognosis of the clinical course of radiation burns have proven to be a difficult task. In a classical clinical setting, no technique can distinguish irradiated versus healthy skin during the clinically latent period, hence development of new tools is required. This work describes a noninvasive technique based on speckle phenomenon, designed to support radiation burn diagnosis and prognosis. Speckle produced by strongly scattering media contains information about their optical properties. The difficulty is to extract significant information from speckle patterns to discriminate between strongly scattering media and to characterize any change. Speckle patterns from irradiated and nonirradiated porcine skins are recorded in vivo several times after radiation exposure. A fractal approach is used in the treatment of speckle patterns. The results show that this technique allows discrimination between healthy and irradiated skin, in particular during the clinically latent period (p<0.01). Parameters extracted from speckle patterns discriminate and vary differently with radiation, which means they represent different information about skin changes.

  12. The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Holloway, C. E.; Woolnough, S. J.

    2016-03-01

    Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel (2014), reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a "moisture-memory" effect found in Muller and Bony (2015). Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.

  13. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes.

    PubMed

    Kataria, Sunita; Jajoo, Anjana; Guruprasad, Kadur N

    2014-08-01

    Increased UV-B radiation on the earth's surface due to depletion of stratospheric ozone layer is one of the changes of current climate-change pattern. The deleterious effects of UV-B radiation on photosynthesis and photosynthetic productivity of plants are reviewed. Perusal of relevant literature reveals that UV-B radiation inflicts damage to the photosynthetic apparatus of green plants at multiple sites. The sites of damage include oxygen evolving complex, D1/D2 reaction center proteins and other components on the donor and acceptor sides of PS II. The radiation inactivates light harvesting complex II and alters gene expression for synthesis of PS II reaction center proteins. Mn cluster of water oxidation complex is the most important primary target of UV-B stress whereas D1 and D2 proteins, quinone molecules and cytochrome b are the subsequent targets of UV-B. In addition, photosynthetic carbon reduction is also sensitive to UV-B radiation which has a direct effect on the activity and content of Rubisco. Some indirect effects of UV-B radiation include changes in photosynthetic pigments, stomatal conductance and leaf and canopy morphology. The failure of protective mechanisms makes PS II further vulnerable to the UV-B radiation. Reactive oxygen species are involved in UV-B induced responses in plants, both as signaling and damaging agents. Exclusion of ambient UV components under field conditions results in the enhancement of the rate of photosynthesis, PS II efficiency and subsequently increases the biomass accumulation and crop yield. It is concluded that predicted future increase in UV-B irradiation will have significant impact on the photosynthetic efficiency and the productivity of higher plants.

  14. Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models

    SciTech Connect

    Huang, Dong; Liu, Yangang

    2014-09-17

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and North Slope of Alaska sites of the Department of Energy's Atmospheric Radiation Measurement program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The probability density functions are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

  15. Improvement of Moist and Radiative Processes in Highly Parallel Atmospheric General Circulation Models: Validation and Development

    SciTech Connect

    Frank, William M.; Hack, James J.; Kiehl, Jeffrey T.

    1997-02-24

    Research on designing an integrated moist process parameterization package was carried. This work began with a study that coupled an ensemble of cloud models to a boundary layer model to examine the feasibility of such a methodology for linking boundary layer and cumulus parameterization schemes. The approach proved feasible, prompting research to design and evaluate a coupled parameterization package for GCMS. This research contributed to the development of an Integrated Cumulus Ensemble-Turbulence (ICET) parameterization package. This package incorporates a higher-order turbulence boundary layer that feeds information concerning updraft properties and the variances of temperature and water vapor to the cloud parameterizations. The cumulus ensemble model has been developed, and initial sensitivity tests have been performed in the single column model (SCM) version of CCM2. It is currently being coupled to a convective wake/gust front model. The major function of the convective wake/gust front model is to simulate the partitioning of the boundary layer into disturbed and undisturbed regions. A second function of this model is to predict the nonlinear enhancement of surface to air sensible heat and moisture fluxes that occur in convective regimes due to correlations between winds and anomalously cold, dry air from downdrafts in the gust front region. The third function of the convective wake/gust front model is to predict the amount of undisturbed boundary layer air lifted by the leading edge of the wake and the height to which this air is lifted. The development of the wake/gust front model has been completed, and it has done well in initial testing as a stand-alone component. The current task, to be completed by the end of the funding period, is to tie the wake model to a cumulus ensemble model and to install both components into the single column model version of CCM3 for evaluation. Another area of parametrization research has been focused on the representation

  16. The influence of wavelength-dependent radiation in simulation of lamp-heated rapid thermal processing systems

    SciTech Connect

    Ting, A.

    1994-08-01

    Understanding the thermal response of lamp-heated rapid thermal processing (RTP) systems requires understanding relatively complex radiation exchange among opaque and partially transmitting surfaces and materials. The objective of this paper is to investigate the influence of wavelength-dependent radiative properties. The examples used for the analysis consider axisymmetric systems of the kind that were developed by Texas Instruments (TI) for the Microelectronics Manufacturing Science and Technology (MMST) Program and illustrate a number of wavelength-dependent (spectral) effects. The models execute quickly on workstation class computing flatforms, and thus permit rapid comparison of alternative reactor designs and physical models. The fast execution may also permit the incorporation of these models into real-time model-based process control algorithms.

  17. Development of an intelligent grinding wheel for in-process monitoring of ceramic grinding. Semi-annual report {number_sign}3

    SciTech Connect

    Malkin, S.; Gao, R.; Guo, C.; Varghese, B.; Pathare, S.

    1998-03-26

    This is the third semi-annual report for the project. The overall objective of this project is to develop sensor-integrated intelligent diamond wheels for grinding of ceramics. Such wheels will be smart enough to monitor and supervise both the wheel preparation and grinding processes without the need to instrument the machine tool. Intelligent wheels will utilize re-useable cores integrated with sensors: to measure the acoustic emission (AE) and grinding force. Signals from the sensors will be transmitted from a rotating wheel to a receiver by telemetry. Wheels will be trained to recognize distinct characteristics associated with truing, dressing and grinding. The technical progress is summarized in this report.

  18. High-spatial resolution numerical simulations of in-water radiative transfer processes

    NASA Astrophysics Data System (ADS)

    D'Alimonte, D.; Kajiyama, T.; Zibordi, G.

    2012-04-01

    Monte Carlo (MC) simulations of radiative processes allow for addressing optical radiometric problems strictly linked to complex geometries. Within such a context, MC simulations have been used to investigate uncertainties affecting in-water radiometric measurements performed with free-fall optical profilers commonly utilized for the vicarious calibration of space sensors or the validation of satellite ocean color primary products (e.g, the normalized water leaving radiance). Specifically, a MC code (henceforth called MOX) has been developed to simulate in-water and above-water radiometric fields with high spatial-resolution (up to 1 cm) over a 2-dimensional (2D) domain of tens of meters. This has been achieved by exploiting high performance computing (HPC) solutions (e.g., parallel programs and job-scheduling based on novel performance prediction and optimization schemes) to trace up to 10^12 photons. A dedicated study, focused on the simulation of in-water radiometric fields, has led to the generation of virtual optical profiles accounting for perturbations due to light focusing effect by sea-surface gravity and capillary waves at a spatial resolution comparable to that of actual measurements. Different from field experiments, which are often constrained by environmental factors like illumination conditions and sea-water optical properties, numerical simulations permits analyzing realistic cases whereas allowing for a free input parameter selection. MOX simulations have shown that uncertainties induced by focusing effects upon radiometric data products can be reduced by slowing the deployment speed of free-fall optical profilers, rather than increasing the sampling frequency (i.e., while keeping the same number of samples per depth unit). This result has confirmed the appropriateness of profiling techniques (i.e., multicasting) so far solely supported by a limited number of field measurements and has additionally suggested the possibility of investigating further

  19. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation.

    PubMed

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m(2)/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm(3) in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an

  20. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    PubMed Central

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Doppler backscattered-signal diagnostics of laser-induced surface hydrodynamic processes

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Kurochkin, Nikolay N.; Markov, V. N.; Panchenko, Vladislav Ya; Pogosov, G. A.; Chastukhin, E. M.

    1995-02-01

    A method is proposed for on-line monitoring of laser industrial processing. The method is based on optical heterodyne measurements of the Doppler backscattering signal generated in the interaction zone. Qualitative and quantitative information on hydrodynamic flows in the interaction zone can be obtained. A report is given of measurements, carried out at cw CO2 laser radiation intensities up to 1 kW cm-2, on the surfaces of a number of condensed materials irradiated in the monostatic interaction configuration.

  2. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Moteki, N.; Fast, Jerome D.; Zaveri, Rahul A.

    2013-03-16

    : A new two-dimensional aerosol bin scheme, which resolves both aerosol size and black carbon (BC) mixing state for BC aging processes (e.g., condensation and coagulation), has been developed and implemented into the WRF-chem model (MS-resolved WRF-chem). The mixing state of BC simulated by this model is compared with direct measurements over the East Asian region in spring 2009. Model simulations generally reproduce the observed features of the BC mixing state, such as the size-dependent number fractions of BC-containing and BC-free particles and the coating thickness of BC-containing particles. Sensitivity simulations show that the condensation process is dominant for the growth of thinly coated BC particles, while the coagulation process is necessary to produce thickly coated BC particles. Off-line optical and radiative calculations assuming an average mixing state for each size bin show that the domain- and period-averaged absorption coefficient and heating rate by aerosols are overestimated by 30 – 40% in the boundary layer compared with a benchmark simulation with the detailed treatment of mixing state. The absolute value of aerosol radiative forcing is also overestimated (10%, 3 W m-2) at the surface. However, these overestimations are reduced considerably when all the parameters (including mass and number concentration) are calculated with the simple treatment of mixing state. This is because the overestimation of radiative parameters due to higher absorption efficiency (compared with the benchmark simulation) is largely canceled by the underestimation of BC concentrations due to efficient wet removal processes. The overall errors in radiative forcing can be much smaller because of this cancellation but for the wrong reasons.

  3. Collisional and Radiative Processes in Adiabatic Deceleration, Deflection, and Off-Axis Trapping of a Rydberg Atom Beam

    SciTech Connect

    Seiler, Ch.; Hogan, S. D.; Schmutz, H.; Agner, J. A.; Merkt, F.

    2011-02-18

    A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90 deg., decelerated to zero velocity in less than 25 {mu}s, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed.

  4. Standardization Process for Space Radiation Models Used for Space System Design

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Daly, Eamonn; Brautigam, Donald

    2005-01-01

    The space system design community has three concerns related to models of the radiation belts and plasma: 1) AP-8 and AE-8 models are not adequate for modern applications; 2) Data that have become available since the creation of AP-8 and AE-8 are not being fully exploited for modeling purposes; 3) When new models are produced, there is no authorizing organization identified to evaluate the models or their datasets for accuracy and robustness. This viewgraph presentation provided an overview of the roadmap adopted by the Working Group Meeting on New Standard Radiation Belt and Space Plasma Models.

  5. Effects of quenching, irradiation, and annealing processes on the radiation hardness of silica fiber cladding materials (I)

    NASA Astrophysics Data System (ADS)

    Wen, Jianxiang; Gong, Renxiang; Xiao, Zhongyin; Luo, Wenyun; Wu, Wenkai; Luo, Yanhua; Peng, Gang-ding; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun

    2016-07-01

    Silica optical fiber cladding materials were experimentally treated by a series of processes. The treatments involved quenching, irradiation, followed by annealing and subsequent re-irradiation, and they were conducted in order to improve the radiation hardness. The microstructural properties of the treated materials were subsequently investigated. Following the treatment of the optical fiber cladding materials, the results from the electron spin resonance (ESR) analysis demonstrated that there was a significant decrease in the radiation-induced defect structures. The ESR signals became significantly weaker when the samples were annealed at 1000 °C in combination with re-irradiation. In addition, the microstructure changes within the silica optical fiber cladding material were also analyzed using Raman spectroscopy. The experimental results demonstrate that the Sisbnd Osbnd Si bending vibrations at ω3 = 800-820 cm-1 and ω4 = 1000-1200 cm-1 (with longitudinal optical (LO) and transverse optical (TO) splitting bands) were relatively unaffected by the quenching, irradiation, and annealing treatments. In particular, the annealing process resulted in the disappearance of the defect centers; however, the LO and TO modes at the ω3 and ω4 bands were relatively unchanged. With the additional support of the ESR test results, we can conclude that the combined treatment processes can significantly enhance the radiation hardness properties of the optical fiber cladding materials.

  6. Parallel processing approach for radiative heat transfer prediction in participating media

    SciTech Connect

    Saltiel, C.; Naraghi, M.H.N. Manhattan College, Riverdale, NY )

    1993-12-01

    A unified matrix formulation for node-to-node-based radiative exchange in isotropically scattering inhomogeneous media is developed using the discrete exchange factor method. Computational implementations of the unified matrix formulation on serial and parallel computers are compared. 15 refs.

  7. Effectiveness of radiation processing in elimination of Campylobacter from poultry meat

    NASA Astrophysics Data System (ADS)

    Raut, Amol D.; Shashidhar, Ravindranath; Bandekar, Jayant R.; Kapadnis, Balu P.

    2012-01-01

    Campylobacter, a common poultry intestine commensal, is a well known cause of human gastric illnesses across the globe. Consumption of contaminated poultry meat is a major cause of Campylobacter related infections. In the present study, radiation sensitivity of indigenous strains of C. jejuni and C. coli isolated from poultry was evaluated. The decimal reduction dose (D 10) values of different Campylobacter isolates at 0-4 °C in saline and blood broth were in the range of 0.120-0.210 kGy and 0.170-0.234 kGy, respectively. D 10 values in chicken meat homogenate for Campylobacter were in the range of 0.110-0.190 kGy. Chicken meat samples were inoculated with C. jejuni and exposed to gamma radiation to study the effectiveness of radiation treatment in elimination of Campylobacter. Radiation treatment with a dose of 1 kGy could achieve complete elimination of 10 5 CFU of Campylobacter/g in poultry meat samples. No recovery of Campylobacter was observed, even after enrichment and selective plating in 1 kGy treated chicken meat samples stored at 4 °C up to 7 days. Present study shows that irradiation of poultry meat with 1 kGy can ensure safety of poultry meat.

  8. Determination of important nuclear fragmentation processes for human space radiation protection

    SciTech Connect

    Lin Ziwei

    2007-03-15

    We present a semianalytical method to determine which partial cross sections of nuclear fragmentations most affect the shielded dose equivalent due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies for us to better predict, reduce, and mitigate the radiation exposure in human space explorations.

  9. Determination of Important Nuclear Fragmentation Processes for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    We present a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the shielded dose equivalent due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  10. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  11. Experimental, theoretical and computational study of frequency upshift of electromagnetic radiation using plasma techniques. Annual technical report, January 15, 1992--January 14, 1993

    SciTech Connect

    Joshi, C.

    1992-09-01

    This is a second year progress report on ``Experimental, Theoretical and Computational Study of Frequency Upshift of Electromagnetic Radiation Using Plasma Techniques.`` The highlights are: (I) Ionization fronts have been shown to frequency upshift e.m. radiation by greater than a factor 5. In the experiments, 33 GHz microwave radiation is upshifted to more than 175 GHz using a relativistically propagating ionization front created by a laser beam. (II) A Letter describing the results has been published in Physical Review Letters and an ``invited`` paper has been submitted to IEEE Trans. in Plasma Science.

  12. Proceedings of the workshop on applications of synchrotron radiation to trace impurity analysis for advanced silicon processing

    SciTech Connect

    Laderman, S; Pianetta, P

    1993-03-01

    Wafer surface trace impurity analysis is essential for development of competitive Si circuit technologies. Today's grazing incidence x-ray fluorescence techniques with rotating anodes fall short of requirements for the future. Hewlett Packard/Toshiba experiments indicate that with second generation synchrotron sources such as SSRL, the techniques can be extended sufficiently to meet important needs of the leading edge Si circuit industry through nearly all of the 1990's. This workshop was held to identify people interested in use of synchrotron radiation-based methods and to document needs and concerns for further development. Viewgraphs are included for the following presentations: microcontamination needs in silicon technology (M. Liehr), analytical methods for wafer surface contamination (A. Schimazaki), trace impurity analysis of liquid drops using synchrotron radiation (D. Wherry), TRXRF using synchrotron sources (S. Laderman), potential role of synchrotron radiation TRXRF in Si process R D (M. Scott), potenital development of synchrotron radiation facilities (S. Brennan), and identification of goals, needs and concerns (M. Garner).

  13. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  14. A comparison of two canopy radiative models in land surface processes

    NASA Astrophysics Data System (ADS)

    Dai, Qiudan; Sun, Shufen

    2007-05-01

    This paper compares the predictions by two radiative transfer models—the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes—for different canopies under direct or diffuse radiation conditions. The comparison indicates that there are significant differences between the two models, especially in the near infrared (NIR) band. Results of canopy reflectance from the two-stream model are larger than those from the generalized model. However, results of canopy absorptance from the two-stream model are larger in some cases and smaller in others compared to those from the generalized model, depending on the cases involved. In the visible (VIS) band, canopy reflectance is smaller and canopy absorptance larger from the two-stream model compared to the generalized model when the Leaf Area Index (LAI) is low and soil reflectance is high. In cases of canopies with vertical leaf angles, the differences of reflectance and absorptance in the VIS and NIR bands between the two models are especially large. Two commonly occurring cases, with which the two-stream model cannot deal accurately, are also investigated. One is for a canopy with different adaxial and abaxial leaf optical properties; and the other is for incident sky diffuse radiation with a non-uniform distribution. Comparison of the generalized model within the same canopy for both uniform and non-uniform incident diffuse radiation inputs shows smaller differences in general. However, there is a measurable difference between these radiation inputs for a canopy with high leaf angle. This indicates that the application of the two-stream model to a canopy with different adaxial and abaxial leaf optical properties will introduce non-negligible errors.

  15. A New Look into the Effect of Large Drops on Radiative Transfer Process

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2003-01-01

    Recent studies indicate that a cloudy atmosphere absorbs more solar radiation than any current 1D or 3D radiation model can predict. The excess absorption is not large, perhaps 10-15 W/sq m or less, but any such systematic bias is of concern since radiative transfer models are assumed to be sufficiently accurate for remote sensing applications and climate modeling. The most natural explanation would be that models do not capture real 3D cloud structure and, as a consequence, their photon path lengths are too short. However, extensive calculations, using increasingly realistic 3D cloud structures, failed to produce photon paths long enough to explain the excess absorption. Other possible explanations have also been unsuccessful so, at this point, conventional models seem to offer no solution to this puzzle. The weakest link in conventional models is the way a size distribution of cloud particles is mathematically handled. Basically, real particles are replaced with a single average particle. This "ensemble assumption" assumes that all particle sizes are well represented in any given elementary volume. But the concentration of larger particles can be so low that this assumption is significantly violated. We show how a different mathematical route, using the concept of a cumulative distribution, avoids the ensemble assumption. The cumulative distribution has jumps, or steps, corresponding to the rarer sizes. These jumps result in an additional term, a kind of Green's function, in the solution of the radiative transfer equation. Solving the cloud radiative transfer equation with the measured particle distributions, described in a cumulative rather than an ensemble fashion, may lead to increased cloud absorption of the magnitude observed.

  16. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  17. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  18. Signal Processing and Its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-energy Radiation.

    PubMed

    Marianno, Craig M

    2015-07-01

    Signal processing within a radiation detector affects detection efficiency. Currently, organizations such as private industry, the U.S. Navy, Army, and Air Force are coupling some detector systems with data collection devices to survey large land areas for radioactive contamination. As detector technology has advanced and analog data collection has turned to digital, signal processing is becoming prevalent in some instruments. Using a NIST traceable (241)Am source, detection efficiency for a field instrument for detecting low-energy radiation (FIDLER) was examined for both a static and scanning mode. Experimental results were compared to Monte Carlo-generated efficiencies. Stationary data compared nicely to the theoretical results. Conversely, scanning detection efficiencies were considerably different from their theoretical counterparts. As speed increased, differences in detection efficiency approached two orders of magnitude. To account for these differences, a quasi time-dependent Monte Carlo simulation was created mimicking the signal processing undertaken by the FIDLER detection system. By including signal processing, experimental results fell within the bounds of the Monte Carlo-generated efficiencies, thus demonstrating the negative effects of such processing on detection efficiencies. PMID:26011500

  19. Signal Processing and Its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-energy Radiation.

    PubMed

    Marianno, Craig M

    2015-07-01

    Signal processing within a radiation detector affects detection efficiency. Currently, organizations such as private industry, the U.S. Navy, Army, and Air Force are coupling some detector systems with data collection devices to survey large land areas for radioactive contamination. As detector technology has advanced and analog data collection has turned to digital, signal processing is becoming prevalent in some instruments. Using a NIST traceable (241)Am source, detection efficiency for a field instrument for detecting low-energy radiation (FIDLER) was examined for both a static and scanning mode. Experimental results were compared to Monte Carlo-generated efficiencies. Stationary data compared nicely to the theoretical results. Conversely, scanning detection efficiencies were considerably different from their theoretical counterparts. As speed increased, differences in detection efficiency approached two orders of magnitude. To account for these differences, a quasi time-dependent Monte Carlo simulation was created mimicking the signal processing undertaken by the FIDLER detection system. By including signal processing, experimental results fell within the bounds of the Monte Carlo-generated efficiencies, thus demonstrating the negative effects of such processing on detection efficiencies.

  20. Annual report on the administration of the Radiation Control for health and Safety Act of 1968, Public Law 90-602, April 1, 1991. Rept. for Jan-Dec 90

    SciTech Connect

    Not Available

    1991-04-01

    The Secretary of Health and Human Services is required by Subpart 3, Part F of Title III of the Public Health Service Act; 42 USC 263b et seq. (Public Law 90-602) to submit an annual report to the President for transmittal to the Congress on or before April 1 on the administration of the Radiation Control for Health and Safety Act. The detailed information required in the report is outlined in Section 360D of the Public Health Service Act. The Food and Drug Administration, through its Center for Devices and Radiological Health, is responsible for the day-to-day administration of the Radiation Control for Health and Safety Act of 1968. The report provides a summary of the operations of the Center in carrying out that responsibility for calendar year 1990. In reviewing the operations of the Center for Devices and Radiological Health as reported in the document, it should be kept in mind that the day-to-day administration of the Act is only part of the Center's function. Other responsibilities include the administration and enforcement of the 1976 Medical Device Amendments to the Federal Food, Drug, and Cosmetic Act (not covered in the report). Manufacturers of electronic products are required by 21 CFR 1002.20 to report accidental radiation occurrences to the Center for Devices and Radiological Health. The Center no longer maintains a Radiation Incidents Registry, since accidental radiation occurrences are reported through the Device Experience Network (DEN) and through the requirements of the Medical Device Reporting (MDR) Regulations.

  1. Hazards Control Department annual technology review, 1987

    SciTech Connect

    Griffith, R.V.; Anderson, K.J.

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  2. Space Plasma Ion Processing of the Lunar Soil: Modeling of Radiation-Damaged Rim Widths on Lunar Grains

    NASA Technical Reports Server (NTRS)

    Chamberlin, S.; Christoffersen, R.; Keller, L.

    2007-01-01

    Chemically and microstructurally complex altered rims around grains in the finest size fraction (<20 micron) of the lunar regolith are the result of multi-stage processes involving both solar ion radiation damage and nanoscale deposition of impact or sputter-derived vapors. The formation of the rims is an important part of the space weathering process, and is closely linked to key changes in optical reflectance and other bulk properties of the lunar surface. Recent application of field-emission scanning transmission electron microscope techniques, including energy dispersive X-ray spectral imaging, is making it easier to unravel the "nano-stratigraphy" of grain rims, and to delineate the portions of rims that represent Radiation-Amorphized (RA) host grain from overlying amorphous material that represents vapor/sputter deposits. For the portion of rims formed by host grain amorphization (henceforth called RA rims), we have been investigating the feasibility of using Monte Carlo-type ion-atom collision models, combined with experimental ion irradiation data, to derive predictive numerical models linking the width of RA rims to the grain s integrated solar ion radiation exposure time.

  3. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOEpatents

    Lessing, Paul A.; Kong, Peter C.

    2000-01-01

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  4. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016. PMID:27533027

  5. Effect of in vivo irradiation of blood by therapeutic doses of optical radiation on metabolic processes

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.

    2013-03-01

    We have studied the effect of in vivo irradiation of venous blood by therapeutic doses of optical radiation at different wavelengths (254 nm and 670 nm) on the absorption spectra of blood, the level of hemoglobin oxygen saturation in erythrocytes, and also the blood lactate and glucose levels for individual patients before and after irradiation of the blood. We have determined the differences in short-term (achieved during irradiation) and long-term photoinduced changes in metabolite levels. The changes in the lactate and glucose concentrations measured after completion of the course of treatment were appreciably different for different patients, and depended on two quantities: their initial concentration, and the photoinduced changes in the oxygen saturation of venous blood (Δ S v O2). The strongest normalizing effect of optical radiation occurred for changes in Δ S v O2 in the narrow range -15% < Δ S v O2 < 10%.

  6. Narrow-band radiation wavelength measurement by processing digital photographs in RAW format

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2012-12-31

    The technique of measuring the mean wavelength of narrow-band radiation in the 455 - 625-nm range using the image of the emitting surface is presented. The data from the camera array unprocessed by the built-in processor (RAW format) are used. The method is applied for determining the parameters of response of holographic sensors. Depending on the wavelength and brightness of the image fragment, the mean square deviation of the wavelength amounts to 0.3 - 3 nm. (experimental techniques)

  7. A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process

    NASA Astrophysics Data System (ADS)

    Hemperek, Tomasz; Kishishita, Tetsuichi; Krüger, Hans; Wermes, Norbert

    2015-10-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffers from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.

  8. Radiated energy and the rupture process of the Denali fault earthquake sequence of 2002 from broadband teleseismic body waves

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2004-01-01

    Displacement, velocity, and velocity-squared records of P and SH body waves recorded at teleseismic distances are analyzed to determine the rupture characteristics of the Denali fault, Alaska, earthquake of 3 November 2002 (MW 7.9, Me 8.1). Three episodes of rupture can be identified from broadband (???0.1-5.0 Hz) waveforms. The Denali fault earthquake started as a MW 7.3 thrust event. Subsequent right-lateral strike-slip rupture events with centroid depths of 9 km occurred about 22 and 49 sec later. The teleseismic P waves are dominated by energy at intermediate frequencies (0.1-1 Hz) radiated by the thrust event, while the SH waves are dominated by energy at lower frequencies (0.05-0.2 Hz) radiated by the strike-slip events. The strike-slip events exhibit strong directivity in the teleseismic SH waves. Correcting the recorded P-wave acceleration spectra for the effect of the free surface yields an estimate of 2.8 ?? 1015 N m for the energy radiated by the thrust event. Correcting the recorded SH-wave acceleration spectra similarly yields an estimate of 3.3 ?? 10 16 N m for the energy radiated by the two strike-slip events. The average rupture velocity for the strike-slip rupture process is 1.1??-1.2??. The strike-slip events were located 90 and 188 km east of the epicenter. The rupture length over which significant or resolvable energy is radiated is, thus, far shorter than the 340-km fault length over which surface displacements were observed. However, the seismic moment released by these three events, 4 ?? 1020 N m, was approximately half the seismic moment determined from very low-frequency analyses of the earthquake. The difference in seismic moment can be reasonably attributed to slip on fault segments that did not radiate significant or coherent seismic energy. These results suggest that very large and great strike-slip earthquakes can generate stress pulses that rapidly produce substantial slip with negligible stress drop and little discernible radiated

  9. Radiation Exposure Information Reporting System (REIRS) Update, 2012, Presented at the 32nd Annual International Dosimetry and Records Symposium, June 2-6, 2013

    SciTech Connect

    2013-01-01

    A series of graphs gives data through the year 2012 for annual collective doses, collective dose per reactor, number of individuals with measurable doses both in total and per reactor, number of reactors, electricity generated, measurable doses per individual and per megawatt-year, and collective outage hours. Reactors considered include BWR, PWR, and LWR. Also, the total effective dose equivalent for the period 2010-2012 is tabulated for each nuclear power plant considered, and the change over 2009-2011.

  10. Radiative properties of char, fly-ash, and soot particles in coal flames. First annual report: September 15, 1992--September 15, 1993

    SciTech Connect

    Menguec, M.P.; Manickavsagam, S.; Zhang, W.

    1993-12-31

    This report covers the first twelve months of the project {open_quotes}Radiative Properties of Char, Fly-Ash, and Soot Particles in Coal Flames{close_quotes}, that is from September 15, 1992 to September 15, 1993. The objectives of this project can be summarized as follows: (1) obtain the effective radiative properties of pulverized coal/char and soot particles, and (2) determine the concentration distribution of char, fly-ash, and soot particles in coal laden flames as a function of different flame conditions. Research accomplishments in the following areas are described: effective properties of coal and char particles; multilayer sphere model; soot formation model; and soot radiative properties. The experiments are described and plans for future work are outlined.

  11. DOE 2013 occupational radiation exposure

    SciTech Connect

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  12. 8. annual international energy week conference and exhibition: Conference papers. Book 2: Pipelines, terminals and storage; Processing and refining

    SciTech Connect

    1997-05-01

    This volume contains 37 papers arranged in the following topical sections: Pipeline integrity; Risk management and assessment; Pipeline simulation; Nondestructive examination; New technology and research; Internal corrosion; Cathodic protection; Operational pigging; Pipeline and leak detection; Intelligent pigging; Above ground storage tanks; Gasification; Custom catalyst manufacturing; Petrochemicals; and Gas processing. Papers have been processed separately for inclusion on the database.

  13. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... same plant through chemical reaction, including any associated processes (e.g., purification... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  14. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... same plant through chemical reaction, including any associated processes (e.g., purification... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  15. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... same plant through chemical reaction, including any associated processes (e.g., purification... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  16. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... same plant through chemical reaction, including any associated processes (e.g., purification... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  17. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... same plant through chemical reaction, including any associated processes (e.g., purification... plant sites that produce, process or consume Schedule 2 chemicals in excess of specified thresholds. 713... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION...

  18. Radiation induced changes in the cuticular hydrocarbons of the granary weevil and their relationships to desiccation and adult mortality: Annual report, February 16, 1987-November 20, 1987

    SciTech Connect

    Sriharan, S.

    1987-01-01

    The overall goals and objectives as envisaged for the year (1987) have been pursued. The report of the work may broadly be outlined into two components: post irradiation mortality studies at different combinations of temperature and humidity (studies on the rate of moisture-loss in irradiated weevils and correlation with mortality); and extraction of epicuticular hydrocarbons Sitophilus granarius (L) for both irradiated and control (elucidate the after effects of irradiation and determination of radiation induced changes if any, in the cuticular hydrocarbons of weevils as a result of gamma radiation). 25 figs., 6 tabs.

  19. Applications of radiation processing in combination with conventional treatments to assure food safety: New development

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Turgis, M.; Borsa, J.; Millette, M.; Salmieri, S.; Caillet, S.; Han, J.

    2009-11-01

    Spice extracts under the form of essential oils (Eos) were tested for their efficiency to increase the relative bacterial radiosensitivity (RBR) of Listeria monocytogenes, Escherichia coli and Salmonellatyphi in culture media under different atmospheric conditions. The selected Eos were tested for their ability to reduce the dose necessary to eliminate E. coli and S.typhi in medium fat ground beef (23% fat) and Listeria in ready-to-eat carrots when packed under air or under atmosphere rich in oxygen (MAP). Results have demonstrated that depending of the compound added and the combined treatment used, the RBR increased from 2 to 4 times. In order to evaluate the industrial feasibility, EOs were added in ground beef at a concentration which does not affect the taste and treated at a dose of 1.5 kGy. The content of total mesophilic aerobic, E. coli, Salmonella, total coliform, lactic acid bacteria, and Pseudomonas was determined during 28 days. The results showed that the combined treatment (radiation and EOs) can eliminate Salmonella and E. coli when done under air. When done under MAP, Pseudomonas could be eliminated and a shelf life of more than 28 days was observed. An active edible coating containing EOs was also developed and sprayed on ready-to-eat carrots before radiation treatment and Listeria was evaluated. A complete inhibition of Listeria was obtained at a dose of 0.5 kGy when applied under MAP. Our results have shown that the combination of an edible coating, MAP, and radiation can be used to maintain the safety of meat and vegetables.

  20. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    SciTech Connect

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions.

  1. EPR dosimetric properties of 2-methylalanine pellet for radiation processing application

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.; Ali, Laila I.; Moustafa, H.; Tadros, Soad M.

    2014-09-01

    The dosimetric characteristics of γ-radiation induced free radicals in 2-methylalanine (2MA) pellet dosimeter are investigated using electron paramagnetic resonance (EPR) in the high-dose range of 1-100 kGy. The EPR spectrum of γ-irradiated 2MA exhibits an isotropic EPR signal with seven lines. The dosimeter response is humidity independent in the range of 33-76% relative humidity. The manufactured dosimeter is typically adipose tissue equivalent in the energy level of 0.1-15 MeV. The overall uncertainty (2σ) of the dosimeter is less than 6.9%.

  2. Photoinduced processes in solid polymer solutions of dyes in an interference field of laser radiation

    SciTech Connect

    Sizykh, A G; Tarakanova, E A

    1998-12-31

    An investigation was made of the relationships governing the photochemical mechanism of formation of light-induced gratings in solid polymer solutions of a dye with a high quantum yield of the triplet states. The combined analysis of the results of real and numerical experiments was made for a solution of eosin K in gelatin. The protonation rate constant of the dye was measured and the dependence of the diffraction efficiency on the duration of irradiation was explained taking diffusion of the dye into account. A method was proposed for determination of the duffusion coefficient in a spatially modified interference field of the laser radiation. The diffusion coefficients were found. (nonlinear optical phenomena)

  3. Effect of radiation processing in elimination of Klebsiella pneumoniae from food

    NASA Astrophysics Data System (ADS)

    Gautam, Raj Kamal; Nagar, Vandan; Shashidhar, Ravindranath

    2015-10-01

    Klebsiella pneumoniae has been considered as an important foodborne pathogen which causes severe infections that include meningitis, bronchitis, bacteremia, pneumonia, and urinary tract infections in humans and animals. It is well known to most clinicians as a cause of community-acquired bacterial pneumonia. Klebsiella is an opportunistic pathogen, that primarily attacks neonates, infants, elderly and immuno-compromised patients and therefore impose a serious, emerging public health hazard globally. Contaminated sprouts, vegetables, seafood and other animal meat products are considered as main sources of Klebsiella infection. In the current study, radiation sensitivity of K. pneumoniae MTCC 109 was determined in different food samples. The decimal reduction dose (D10) values of K. pneumoniae MTCC 109 in saline and nutrient broth at 0-4 °C were 0.116±0.009, 0.136±0.005 kGy, respectively. The mixed sprouts, fish and poultry samples were inoculated with K. pneumoniae MTCC 109 and exposed to gamma radiation to evaluate the effectiveness of radiation treatment in the elimination of K. pneumoniae. D10 values of K. pneumoniae in mixed sprouts, poultry and fish samples were found to be 0.142±0.009, 0.125±0.0004 and 0.277±0.012 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in the complete elimination of 3.1±1.8×105 CFU/g of K. pneumoniae from these food samples. No recovery of K. pneumoniae was observed in the 1.5 kGy treated samples stored at 4 °C up to 12 days, even after enrichment and selective plating. This study shows that a 1.5 kGy dose of irradiation treatment could lead to the complete elimination of 3.1±1.8×105 CFU/g of K. pneumoniae from mixed sprouts, poultry and fish samples.

  4. Radiation sickness

    MedlinePlus

    ... process so that they do not cause radiation injury to others. This may complicate the first aid and resuscitation process. Check the person's breathing and pulse. Start CPR , if necessary. Remove the person's clothing and place ...

  5. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun

    2011-02-15

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  6. Spin–flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Slobodeniuk, A. O.; Basko, D. M.

    2016-09-01

    We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin–flip dipole moment perpendicular to the monolayer plane, gives a rate about 100–1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin–flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin–flip dipole.

  7. Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Slobodeniuk, A. O.; Basko, D. M.

    2016-09-01

    We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole.

  8. Automated solar cell assembly team process research. Annual subcontract report, 1 January 1993--31 December 1993

    SciTech Connect

    Nowlan, M J; Hogan, S J; Darkazalli, G; Breen, W F; Murach, J M; Sutherland, S F; Patterson, J S

    1994-06-01

    This report describes work done under the Photovoltaic Manufacturing Technology (PVMaT) project, Phase 3A, which addresses problems that are generic to the photovoltaic (PV) industry. Spire`s objective during Phase 3A was to use its light soldering technology and experience to design and fabricate solar cell tabbing and interconnecting equipment to develop new, high-yield, high-throughput, fully automated processes for tabbing and interconnecting thin cells. Areas that were addressed include processing rates, process control, yield, throughput, material utilization efficiency, and increased use of automation. Spire teamed with Solec International, a PV module manufacturer, and the University of Massachusetts at Lowell`s Center for Productivity Enhancement (CPE), automation specialists, who are lower-tier subcontractors. A number of other PV manufacturers, including Siemens Solar, Mobil Solar, Solar Web, and Texas instruments, agreed to evaluate the processes developed under this program.

  9. Development of Physics-Based Numerical Models for Uncertainty Quantification of Selective Laser Melting Processes - 2015 Annual Progress Report

    SciTech Connect

    Anderson, A.; Delplanque, Jean-Pierre

    2015-10-08

    The primary goal of the proposed research is to characterize the influence of process parameter variability inherent to Selective Laser Melting (SLM) on components manufactured with the SLM technique for space flight systems and their performance.

  10. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    SciTech Connect

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  11. Processes Driving the Adaptive Radiation of a Tropical Tree (Diospyros, Ebenaceae) in New Caledonia, a Biodiversity Hotspot

    PubMed Central

    Paun, Ovidiu; Turner, Barbara; Trucchi, Emiliano; Munzinger, Jérôme; Chase, Mark W.; Samuel, Rosabelle

    2016-01-01

    Due to its special geological history, the New Caledonian Archipelago is a mosaic of soil types, and in combination with climatic conditions this results in a heterogeneous environment across relatively small distances. A group of over 20 endemic species of Diospyros (Ebenaceae) has rapidly and recently radiated on the archipelago after a single long-distance dispersal event. Most of the Diospyros species in the radiating group are morphologically and ecologically well differentiated, but they exhibit low levels of DNA variability. To investigate the processes that shaped the diversification of this group we employed restriction site associated DNA sequencing (RADseq). Over 8400 filtered SNPs generally confirm species delimitations and produce a well-supported phylogenetic tree. Our analyses document local introgression, but only a limited potential for gene flow over longer distances. The phylogenetic relationships point to an early regional clustering among populations and species, indicating that allopatric speciation with respect to macrohabitat (i.e., climatic conditions) may have had a role in the initial differentiation within the group. A later, more rapid radiation involved divergence with respect to microhabitat (i.e., soil preference). Several sister species in the group show a parallel divergence in edaphic preference. Searches for genomic regions that are systematically differentiated in this replicated phenotypic divergence pointed to loci potentially involved in ion binding and cellular transport. These loci appear meaningful in the context of adaptations to soil types that differ in heavy-metal and mineral content. Identical nucleotide changes affected only two of these loci, indicating that introgression may have played a limited role in their evolution. Our results suggest that both allopatric diversification and (parapatric) ecological divergence shaped successive rounds of speciation in the Diospyros radiation on New Caledonia. PMID:26430059

  12. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    PubMed

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  13. OT1_gorton01_1: Variability in Ice Giant Stratospheres: Implications for Radiative, Chemical and Dynamical Processes

    NASA Astrophysics Data System (ADS)

    Orton, G.

    2010-07-01

    We will assess the rotational variability in the stratospheres of the ice giants, Uranus and Neptune, to understand the dynamical and chemical variability of the atmospheric structure of both planets as a function of longitude. This effort follows up observations by the Spitzer IRS that shows consistent evidence for rotational variability of stratospheric hydrocarbons in Uranus and intermediate-term variability in Neptune's emissions, neither of whose origins are not well understood. Herschel provides an opportunity to follow up these observations with its unparalleled sensitivity. Over the 17-hour periods characterizing the equatorial rotation periods of both planets a series of eight PACS dedicated line scans will be made of strategic lines of HD, methane and water vapor. An efficient scheme takes advantage of the simultaneous availability of Uranus and Neptune in Herschel's visibility window. These will assess the variability of hydrocarbons vs temperatures in both atmospheres to an unprecedented accuracy. The results will be analyzed by a team consisting of many members of the Key Project on ``Water and Related Chemistry in the Solar System'' who will apply their expertise with the data and its analysis, as well as researchers who discovered the Spitzer variability and ground-based inhomogeneity. The data will be examined in the context of models by team members who are experts in radiative transfer, photochemistry, and dynamical modeling of circulation and zonal thermal wave structure. By refining quantitative models for interactions between radiative, dynamical and chemical processes in these two cold but radiatively and dynamically diverse planets, a baseline will be created that will be useful in the interpretation of variability in the spectra of giant exoplanets. This work will also be programmatically useful in the evaluation of the variability of radiation from Uranus and Neptune, both which are key members of the Herschel flux calibration system.

  14. Processes Driving the Adaptive Radiation of a Tropical Tree (Diospyros, Ebenaceae) in New Caledonia, a Biodiversity Hotspot.

    PubMed

    Paun, Ovidiu; Turner, Barbara; Trucchi, Emiliano; Munzinger, Jérôme; Chase, Mark W; Samuel, Rosabelle

    2016-03-01

    Due to its special geological history, the New Caledonian Archipelago is a mosaic of soil types, and in combination with climatic conditions this results in a heterogeneous environment across relatively small distances. A group of over 20 endemic species of Diospyros (Ebenaceae) has rapidly and recently radiated on the archipelago after a single long-distance dispersal event. Most of the Diospyros species in the radiating group are morphologically and ecologically well differentiated, but they exhibit low levels of DNA variability. To investigate the processes that shaped the diversification of this group we employed restriction site associated DNA sequencing (RADseq). Over 8400 filtered SNPs generally confirm species delimitations and produce a well-supported phylogenetic tree. Our analyses document local introgression, but only a limited potential for gene flow over longer distances. The phylogenetic relationships point to an early regional clustering among populations and species, indicating that allopatric speciation with respect to macrohabitat (i.e., climatic conditions) may have had a role in the initial differentiation within the group. A later, more rapid radiation involved divergence with respect to microhabitat (i.e., soil preference). Several sister species in the group show a parallel divergence in edaphic preference. Searches for genomic regions that are systematically differentiated in this replicated phenotypic divergence pointed to loci potentially involved in ion binding and cellular transport. These loci appear meaningful in the context of adaptations to soil types that differ in heavy-metal and mineral content. Identical nucleotide changes affected only two of these loci, indicating that introgression may have played a limited role in their evolution. Our results suggest that both allopatric diversification and (parapatric) ecological divergence shaped successive rounds of speciation in the Diospyros radiation on New Caledonia. PMID:26430059

  15. Processes Driving the Adaptive Radiation of a Tropical Tree (Diospyros, Ebenaceae) in New Caledonia, a Biodiversity Hotspot.

    PubMed

    Paun, Ovidiu; Turner, Barbara; Trucchi, Emiliano; Munzinger, Jérôme; Chase, Mark W; Samuel, Rosabelle

    2016-03-01

    Due to its special geological history, the New Caledonian Archipelago is a mosaic of soil types, and in combination with climatic conditions this results in a heterogeneous environment across relatively small distances. A group of over 20 endemic species of Diospyros (Ebenaceae) has rapidly and recently radiated on the archipelago after a single long-distance dispersal event. Most of the Diospyros species in the radiating group are morphologically and ecologically well differentiated, but they exhibit low levels of DNA variability. To investigate the processes that shaped the diversification of this group we employed restriction site associated DNA sequencing (RADseq). Over 8400 filtered SNPs generally confirm species delimitations and produce a well-supported phylogenetic tree. Our analyses document local introgression, but only a limited potential for gene flow over longer distances. The phylogenetic relationships point to an early regional clustering among populations and species, indicating that allopatric speciation with respect to macrohabitat (i.e., climatic conditions) may have had a role in the initial differentiation within the group. A later, more rapid radiation involved divergence with respect to microhabitat (i.e., soil preference). Several sister species in the group show a parallel divergence in edaphic preference. Searches for genomic regions that are systematically differentiated in this replicated phenotypic divergence pointed to loci potentially involved in ion binding and cellular transport. These loci appear meaningful in the context of adaptations to soil types that differ in heavy-metal and mineral content. Identical nucleotide changes affected only two of these loci, indicating that introgression may have played a limited role in their evolution. Our results suggest that both allopatric diversification and (parapatric) ecological divergence shaped successive rounds of speciation in the Diospyros radiation on New Caledonia.

  16. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    PubMed

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions. PMID:22680690

  17. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  18. Multi-energy optimized processing: The use of high intensity ultrasonic and electromagnetic radiation for biofuel production processes

    NASA Astrophysics Data System (ADS)

    Kropf, Matthew Mason

    This work aimed to improve the understanding of the use of microwaves and ultrasound for chemical processes. Using biodiesel production as the case for study, the non-linear effects of high intensity ultrasonics, electromagnetic loss, and microwave heating were explored. Cavitation and atomization phenomena were used to describe the process of ultrasonic emulsification. The dielectric loss mechanisms pertinent to the biodiesel production materials were described as the connection to between the effects of ultrasonic emulsification and microwave heating. Superheating and anisothermal heating phenomena were identified as the specific advantages afforded by microwave heating. High intensity ultrasonics was found to be capable of creating emulsions of biodiesel reactants with uniform dispersed phase droplets. Through optical microscopy, the ability to control the dispersed phase droplet size by altering the frequency and intensity of ultrasound was confirmed. This ultrasonic technique was investigated by measuring complex permittivity of the emulsions from 500 MHz and 5 GHz. The dielectric loss of emulsions consisting of methanol and soybean oil indicated that ultrasonic treatments could be used to alter the microwave absorption. Microwave heating tests of ultrasonically formed emulsions confirmed the permittivity results practically. The superheated boiling point of methanol and heating rate of methanol was extended to higher temperatures and rates in ultrasonically formed emulsions. Microwave heating of ultrasonically mixed emulsions was shown to result in faster transesterification relations than microwave heating of conventionally mixed emulsions. Finally, utilizing ultrasonics to optimize microwave absorption was shown capable of transesterification without catalyst.

  19. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-12-31

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  20. Thermodynamic and stochastic theory of hydrodynamic and power-producing processes. [Annual report], September 1991--September 1992

    SciTech Connect

    Ross, J.

    1992-09-16

    Thermodynamics of the transport processes of diffusion, thermal conduction, and viscous flow at a macroscopic level are developed for the simplest cases of one-dimensional transport in fluids for individual linear and nonlinear processes approaching a stationary non-equilibrium state. Formulation has started of thermodynamic and stochastic theory of combinations of transport processes. Global thermodynamic and stochastic theory of open chemical systems frar from equilibrium is continued with analysis of a broad class of isothermal, multicomponent reaction mechanisms with multiple steady states with assumed local equilibrium. Stationary solutions are obtained of the master equation for single and multi-intermediate autocatalytic chemical systems. A kinetic potential is identified that governs the deterministic time evolution of coupled tank reactors. A second-order response theory was developed to investigate the effects of external periodic perturbations on a chemical reaction at a stable steady state in an open reactor.