The NASA Space Radiation Research Program
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2006-01-01
We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.
NASA Human Research Program Space Radiation Program Element
NASA Technical Reports Server (NTRS)
Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik;
2013-01-01
The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.
Brooks, Antone L
2015-04-01
This commentary provides a very brief overview of the book "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008" ( http://lowdose.energy.gov ). The book summarizes and evaluates the research progress, publications and impact of the U.S. Department of Energy Low Dose Radiation Research Program over its first 10 years. The purpose of this book was to summarize the impact of the program's research on the current thinking and low-dose paradigms associated with the radiation biology field and to help stimulate research on the potential adverse and/or protective health effects of low doses of ionizing radiation. In addition, this book provides a summary of the data generated in the low dose program and a scientific background for anyone interested in conducting future research on the effects of low-dose or low-dose-rate radiation exposure. This book's exhaustive list of publications coupled with discussions of major observations should provide a significant resource for future research in the low-dose and dose-rate region. However, because of space limitations, only a limited number of critical references are mentioned. Finally, this history book provides a list of major advancements that were accomplished by the program in the field of radiation biology, and these bulleted highlights can be found in last part of chapters 4-10.
P'ng, Christine; Ito, Emma; How, Christine; Bezjak, Andrea; Bristow, Rob; Catton, Pam; Fyles, Anthony; Gospodarowicz, Mary; Jaffray, David; Kelley, Shana; Wong, Shun; Liu, Fei-Fei
2012-08-01
To describe and assess an interdisciplinary research training program for graduate students, postdoctoral fellows, and clinical fellows focused on radiation medicine; funded by the Canadian Institutes for Health Research since 2003, the program entitled "Excellence in Radiation Research for the 21st Century" (EIRR21) aims to train the next generation of interdisciplinary radiation medicine researchers. Online surveys evaluating EIRR21 were sent to trainees (n=56), mentors (n=36), and seminar speakers (n=72). Face-to-face interviews were also conducted for trainee liaisons (n=4) and participants in the international exchange program (n=2). Overall response rates ranged from 53% (mentors) to 91% (trainees). EIRR21 was well received by trainees, with the acquisition of several important skills related to their research endeavors. An innovative seminar series, entitled Brainstorm sessions, imparting "extracurricular" knowledge in intellectual property protection, commercialization strategies, and effective communication, was considered to be the most valuable component of the program. Networking with researchers in other disciplines was also facilitated owing to program participation. EIRR21 is an innovative training program that positively impacts the biomedical community and imparts valuable skill sets to foster success for the future generation of radiation medicine researchers. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P'ng, Christine; Ito, Emma; Ontario Cancer Institute, Toronto, Ontario
2012-08-01
Purpose: To describe and assess an interdisciplinary research training program for graduate students, postdoctoral fellows, and clinical fellows focused on radiation medicine; funded by the Canadian Institutes for Health Research since 2003, the program entitled 'Excellence in Radiation Research for the 21st Century' (EIRR21) aims to train the next generation of interdisciplinary radiation medicine researchers. Methods and Materials: Online surveys evaluating EIRR21 were sent to trainees (n=56), mentors (n=36), and seminar speakers (n=72). Face-to-face interviews were also conducted for trainee liaisons (n=4) and participants in the international exchange program (n=2). Results: Overall response rates ranged from 53% (mentors) to 91%more » (trainees). EIRR21 was well received by trainees, with the acquisition of several important skills related to their research endeavors. An innovative seminar series, entitled Brainstorm sessions, imparting 'extracurricular' knowledge in intellectual property protection, commercialization strategies, and effective communication, was considered to be the most valuable component of the program. Networking with researchers in other disciplines was also facilitated owing to program participation. Conclusions: EIRR21 is an innovative training program that positively impacts the biomedical community and imparts valuable skill sets to foster success for the future generation of radiation medicine researchers.« less
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
Space radiation health program plan
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.
Proactive strategy for long-term biological research aimed at low-dose radiation risk in Korea.
Seong, Ki Moon; Kwon, TaeWoo; Park, Jina; Youn, BuHyun; Cha, Hyuk-Jin; Kim, Yonghwan; Moon, Changjong; Lee, Seung-Sook; Jin, Young Woo
2018-06-19
Since the 2011 Fukushima nuclear power plant accident, Korean radiation experts have agreed that reliable data on health risks of low-dose radiation (LDR) are needed to ease the anxiety of lay people. The intent of this study was to devise a sustainable biological program suited for the research environment in Korea and aimed at the health effects of radiation exposures <100 millisieverts (mSv). To address pressing public concerns over LDR risk, we investigated the current understanding of LDR effects by analyzing the previous reports of international authorities for radiation protection and research publications that appeared after the Chernobyl accident. A research program appropriate for societal and scientific inclinations of Korea was then devised based on input from Korean radiation scientists. After review by our advisory committee, program priorities were set, calling for an agenda that focused on dose-response relationships in carcinogenesis, health span responses to lifestyle variations, and systemic metabolic changes. Our long-term biological research program may contribute scientific evidence to reduce the uncertainties of LDR health risks and help stakeholders formulate policies for radiation protection.
Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu
1993-01-01
The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.
HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS
Fountos, Barrett N.
2017-01-01
Abstract Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. PMID:27885077
HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS.
Fountos, Barrett N
2017-04-01
Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu
2014-01-01
This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.
Developing A Radiation Protection Hub.
Hertel, Nolan E
2017-02-01
The Where are the Radiation Professionals (WARP)? statement issued by the National Council on Radiation Protection and Measurements estimates that in 10 y, there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low-volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic, and training communities. The goal of such a consortium would be to engage in research, education, and training of the next generation of radiation protection professionals. Furthermore, the consortium could bring together the strengths of different universities, national laboratory programs, and other entities in a strategic manner to accomplish a multifaceted research, educational, and training agenda. This vision would forge a working and funded relationship between major research universities, national laboratories, 4-y degree institutions, technical colleges, and other partners.
The NASA Space Radiation Health Program
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Sulzman, F. M.
1994-01-01
The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.
GUI to Facilitate Research on Biological Damage from Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, Frances A.; Ponomarev, Artem Lvovich
2010-01-01
A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.
NASA Fundamental Remote Sensing Science Research Program
NASA Technical Reports Server (NTRS)
1984-01-01
The NASA Fundamental Remote Sensing Research Program is described. The program provides a dynamic scientific base which is continually broadened and from which future applied research and development can draw support. In particular, the overall objectives and current studies of the scene radiation and atmospheric effect characterization (SRAEC) project are reviewed. The SRAEC research can be generically structured into four types of activities including observation of phenomena, empirical characterization, analytical modeling, and scene radiation analysis and synthesis. The first three activities are the means by which the goal of scene radiation analysis and synthesis is achieved, and thus are considered priority activities during the early phases of the current project. Scene radiation analysis refers to the extraction of information describing the biogeophysical attributes of the scene from the spectral, spatial, and temporal radiance characteristics of the scene including the atmosphere. Scene radiation synthesis is the generation of realistic spectral, spatial, and temporal radiance values for a scene with a given set of biogeophysical attributes and atmospheric conditions.
Courses in Physics in Medical Colleges
ERIC Educational Resources Information Center
Physics Education, 1975
1975-01-01
Provides information concerning programs in medical physics, radiation biology, and radiation physics at eight British medical colleges. Each institution is separately listed, and the provided information typically includes program descriptions, graduate programs, and main branches of research. (MLH)
NASA Technical Reports Server (NTRS)
Murphy, R. E.; Deering, D. W.
1984-01-01
Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Eleanor; Abdel-Wahab, May; Spangler, Ann E.
2009-06-01
Purpose: To survey the radiation oncology residency program directors on the topics of departmental and institutional support systems, residency program structure, Accreditation Council for Graduate Medical Education (ACGME) requirements, and challenges as program director. Methods: A survey was developed and distributed by the leadership of the Association of Directors of Radiation Oncology Programs to all radiation oncology program directors. Summary statistics, medians, and ranges were collated from responses. Results: Radiation oncology program directors had implemented all current required aspects of the ACGME Outcome Project into their training curriculum. Didactic curricula were similar across programs nationally, but research requirements and resourcesmore » varied widely. Program directors responded that implementation of the ACGME Outcome Project and the external review process were among their greatest challenges. Protected time was the top priority for program directors. Conclusions: The Association of Directors of Radiation Oncology Programs recommends that all radiation oncology program directors have protected time and an administrative stipend to support their important administrative and educational role. Departments and institutions should provide adequate and equitable resources to the program directors and residents to meet increasingly demanding training program requirements.« less
1993-12-01
on Panasonic TLD . Panasonic Industrial Company; Secaucus, New Jersey. 5. Thurlow, Ronald M. "Neutron Dosimetry Using a Panasonic Thermoluminescent...Radiation Dosimetry Branch Brooks Air Force Base San Antonio, Texas 78235 Final Report for: AFOSR Summer Research Program Armstrong Laboratory Sponsored...Associate Radiation Dosimetry Branch Armstrong Laboratory Abstract In an attempt to improve personnel monitoring for neutron emissions, Panasonic has
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
Overview of Atmospheric Ionizing Radiation (AIR)
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.
2003-01-01
The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998 Annual Meeting of the NCRP with proceedings published in the journal of Health Physics.
Developing a Radiation Protection Hub
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertel, Nolan E
The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have beenmore » disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.« less
Research and development program, fiscal year 1966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-04-01
The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for FY 1966 is conducted within the scope of the following categories: Somatic Effects of Radiation; Combating Detrimental Effects of Radiation; Molecular and Cellular Level Studies; Environmental Radiation Studies; Radiological and Health Physics and Instrumentation; Chemical Toxicity; Cancer Research; and Selected Beneficial Applications. The overall objectives of the Laboratory within these areas of the Biology and Medicine program may be summarized as follows: (1) investigation of the effects of ionizing radiation on living organisms and systems of biological significance; (2) investigation of the dynamic aspects of physiological andmore » biochemical processes in man, animals and plants and how these processes are modified by radiation and related pathological states; (3) the assessment and study of the immediate and long term consequences of the operation or detonation of nuclear devices on the fauna, and flora in man's environment and on man; (4) the development of methods of minimizing or preventing the detrimental effects of ionizing radiation; (5) research in, and development of, beneficial uses of ionizing radiation and radioactive substances in medicine and biology; (6) research in the development of new and more efficient radiation detection devices; (7) research, including field studies, as mutually agreed upon by the Commission and the University, in connection with the conduct of weapon tests and biomedical and civil effects experiments at such tests conducted at continental and overseas test sites; and (8) the conduct of training and educational activities in the biological and medical aspects of radiation and related fields.« less
1993-01-01
Panasonic TLD . Panasonic Industrial Company; Secaucus, New Jersey. 5. Thurlow, Ronald M. "Neutron Dosimetry Using a Panasonic Thermoluminescent Dosimeter." A...steps 8-12. 29-15 THE BUILDING OF THE USAF PANASONIC UD-809AS ALGORITHM Katherine M. Arnold Research Associate Radiation Dosimetry Branch Brooks Air...Research August 1993 30-1 THE BUILDING OF THE USAF PANASONIC UD-809AS ALGORITHM Katherine M. Arnold Research Associate Radiation Dosimetry Branch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.
The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climatemore » change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.« less
First Author Research Productivity of United States Radiation Oncology Residents: 2002-2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Peter B.; Sopka, Dennis M.; Kathpal, Madeera
2009-08-01
Purpose: Participation in investigative research is a required element of radiation oncology residency in the United States. Our purpose was to quantify the first author research productivity of recent U.S. radiation oncology residents during their residency training. Methods and Materials: We performed a computer-based search of PubMed and a manual review of the proceedings of the annual meetings of the American Society for Therapeutic Radiology and Oncology to identify all publications and presented abstracts with a radiation oncology resident as the first author between 2002 and 2007. Results: Of 1,098 residents trained at 81 programs, 50% published {>=}1 article (range,more » 0-9), and 53% presented {>=}1 abstract (range, 0-3) at an American Society for Therapeutic Radiology and Oncology annual meeting. The national average was 1.01 articles published and 1.09 abstracts presented per resident during 4 years of training. Of 678 articles published, 82% represented original research and 18% were review articles. Residents contributed 15% of all abstracts at American Society for Therapeutic Radiology and Oncology annual meetings, and the resident contribution to orally presented abstracts increased from 12% to 21% during the study period. Individuals training at programs with >6 residents produced roughly twice as many articles and abstracts. Holman Research Pathway residents produced double the national average of articles and abstracts. Conclusion: Although variability exists among individuals and among training programs, U.S. radiation oncology residents routinely participate in investigative research suitable for publication or presentation at a scientific meeting. These data provide national research benchmarks that can assist current and future radiation oncology residents and training programs in their self-assessment and research planning.« less
UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkind, M.M.; Bedford, J.; Benjamin, S.A.
1990-10-01
A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, themore » study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.« less
NASA Technical Reports Server (NTRS)
2014-01-01
The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.
ARM Climate Research Facility Annual Report 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voyles, J.
2004-12-31
Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency programmore » within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.« less
Space Radiation Research at NASA
NASA Technical Reports Server (NTRS)
Norbury, John
2016-01-01
The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.
Environment of Space Interactions with Space Systems
NASA Technical Reports Server (NTRS)
2004-01-01
The primary product of this research project was a computer program named SAVANT. This program uses the Displacement Damage Dose (DDD) method of calculating radiation damage to solar cells. This calculation method was developed at the Naval Research Laboratory, and uses fundamental physical properties of the solar cell materials to predict radiation damage to the solar cells. This means that fewer experimental measurements are required to characterize the radiation damage to the cells, which results in a substantial cost savings to qualify solar cells for orbital missions. In addition, the DDD method makes it easier to characterize cells that are already being used, but have not been fully tested using the older technique of characterizing radiation damage. The computer program combines an orbit generator with NASA's AP-8 and AE-8 models of trapped protons and electrons. This allows the user to specify an orbit, and the program will calculate how the spacecraft moves during the mission, and the radiation environment that it encounters. With the spectrum of the particles, the program calculates how they would slow down while traversing the coverglass, and provides a slowed-down spectrum.
Mechanisms of radiation interaction with DNA: Potential implications for radiation protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of themore » workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.« less
Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W
2017-06-01
This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.
Joiner, Michael C.; Tracey, Monica W.; Kacin, Sara E.; Burmeister, Jay W.
2017-01-01
This article provides a summary and status report of the ongoing advanced education program IBPRO – Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists. PMID:28328309
The NIAID Radiation Countermeasures Program Business Model
Hafer, Nathaniel; Maidment, Bert W.
2010-01-01
The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a “virtual pharmaceutical firm,” coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies. PMID:21142762
The NIAID Radiation Countermeasures Program business model.
Hafer, Nathaniel; Maidment, Bert W; Hatchett, Richard J
2010-12-01
The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a "virtual pharmaceutical firm," coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies.
Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, G.M.; Tichler, J.L.
The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less
Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)
2002-01-01
Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.
NASA's Biomedical Research Program
NASA Technical Reports Server (NTRS)
Ahn, Chung-Hae
1981-01-01
The biomedical research program has been established to investigate the major physiological and psychological problems encountered by man when he undertakes spaceflight. The program seeks to obtain a better definition of each problem, an understanding of its underlying mechanism, and ultimately a means of prevention. In pursuing these goals the program also includes a major effort to develop the research tools and procedures it needs where these are not being developed elsewhere. After almost twenty years of manned spaceflight activities and after a much longer period of space related ground-based research, the program now recognizes two characteristics of spaceflight which are truly unique to space. These are weightlessness and one specific form of radiation. In its present stage of maturity much of the research focuses on mechanisms underlying the basic responses of man and animals to weightlessness. The program consists of nine elements. Eight of these are referable to specific physiological problems that have either been encountered in previous manned spaceflight or which are anticipated to occur as spaceflights last longer, traverse steeper orbital inclinations, or are otherwise different from previous missions. The ninth addresses problems that have neither arisen nor can be reasonably predicted but are suspected on the basis of theoretical models, ground-based animal research, or for other reasons. The program's current emphasis is directed toward the motion sickness problem because of its relevance to Space Shuttle operations. Increased awareness and understanding of the radiation hazard has resulted in more emphasis being placed on the biological effects of high energy, high mass number particulate radiation and upon radiation protection . Cardiovascular and musculoskeleta1 studies are pursued in recognition of the considerable fundamental knowledge that must be acquired in these areas before effective countermeasures to the effects of repetitive or long-term flight can be devised. Major new avenues of research will deal with the psychological accompaniments of spaceflight and with mathematical modelling of physiological systems.
10 years of Elsevier/JQSRT awards
NASA Astrophysics Data System (ADS)
Stoop, José; Bernath, Peter F.; Mengüç, M. Pinar; Mishchenko, Michael I.; Rothman, Laurence S.
2017-10-01
The Elsevier award program administered by the Editorial Board of the Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT) was conceived in June of 2006 at the 9th Electromagnetic and Light Scattering Conference in St. Petersburg, Russia. Initially the program included three annual Elsevier/JQSRT awards for exceptional early-career scientists working in the main research fields covered by JQSRT: quantitative spectroscopy, radiative transfer, and electromagnetic scattering. In June of 2010 at the 12th Electromagnetic and Light Scattering Conference in Helsinki, Finland, it was decided to expand the award program to include three biennial Elsevier awards intended to celebrate fundamental life-time achievements of internationally recognized leaders in the same research fields. Finally, in 2013 the Elsevier award program was augmented to include a fourth annual early-career award in the category of atmospheric radiation and remote sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SA Edgerton; LR Roeder
The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less
United States Air Force Summer Faculty Research Program (1986). Program Management Report
1986-12-01
become better acquainted with experimental techniques. Obtained new insights into aerodynamic research programs of interest to the Air Force. Broadened his...Provided in-depth analysis and new insights into aerodynamic data. He looked at some new radiations that we are considering for use with printed circuit...1979-1983 period through an AFOSR Minigrant Program. On 1 September 1983, AFOSR replaced the Minigrant Program with a new Research Initiation Program
2015 Space Radiation Standing Review Panel
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2015-01-01
The 2015 Space Radiation Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 8 - 9, 2015. The SRP met with representatives from the Space Radiation Element and members of the Human Research Program (HRP) to review the updated research plan for the Risk of Radiation Carcinogenesis Cancer Risk. The SRP also reviewed the newly revised Evidence Reports for the Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs) (Acute Risk), the Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), and the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation (Degen Risk), as well as a status update on these Risks. The SRP would like to commend Dr. Simonsen, Dr. Huff, Dr. Nelson, and Dr. Patel for their detailed presentations. The Space Radiation Element did a great job presenting a very large volume of material. The SRP considers it to be a strong program that is well-organized, well-coordinated and generates valuable data. The SRP commended the tissue sharing protocols, working groups, systems biology analysis, and standardization of models. In several of the discussed areas the SRP suggested improvements of the research plans in the future. These include the following: It is important that the team has expanded efforts examining immunology and inflammation as important components of the space radiation biological response. This is an overarching and important focus that is likely to apply to all aspects of the program including acute, CVD, CNS, cancer and others. Given that the area of immunology/inflammation is highly complex (and especially so as it relates to radiation), it warrants the expansion of investigators expertise in immunology and inflammation to work with the individual research projects and also the NASA Specialized Center of Research (NSCORs). Historical data on radiation injury to be entered into the Watson “big data” study must be used with caution. The general scientific issues of reproducibility, details of experimental methods and data analysis from preclinical and basic research laboratories have been raised broadly over the last few years (not specific to this work) and indicate that caution must be applied in the ways these data are used. This pertains to preclinical data and also to phase 3 clinical trials in radiation oncology and medical oncology. Of course, appropriate use and analysis of these “big-data” sets also offer the potential of pinpointing limitations and extracting remaining useful information. Emphasis should be placed on the latter possibility. A key target is risk reduction from radiation exposure. Progress of the entire space program, now moving towards the Mars mission, requires timely answers to key components of human risk, which are known to be complex. Periodic review of progress should be conducted with additional resources directed into achieving critical milestones. Turning the long red bars to yellow and green (or for some risks such as CNS possibly to grey) must be high priority. That such progress will require new science and not engineering means that it should be viewed in a knowledge-based light. The technology-based aspects of engineering issues are certainly as important, however, science and knowledge-based problems are solved in a different way than engineering. Timelines for engineering are more predictable, while for science, progress can be methodical with occasional major incremental findings that can rapidly change the rate of progress. As opportunities for rapid incremental changes arise, periodic enhancement of investment is strongly recommended to enable such new knowledge to be quickly and efficiently exploited. Collaborations and linkages with National Institute of Allergy and Infectious Diseases (NIAID), the Biomedical Advanced Research and Development Authority (BARDA) and the Department of Defense (DoD) are in place and more are encouraged, where possible, with the radiation injury and medical countermeasure studies. This could include utilizing some of their animal model testing contracts to facilitate obtaining results using common platforms. Such approach will facilitate the comparison of results among laboratories, and will facilitate and accelerate the development of medical countermeasures. It is particularly noteworthy that the NASA Space Radiation Element is reaching out to the Multidisciplinary European Low Dose Initiative (MELODI) platform coordinating low dose radiation risk research, and to other international agencies that are studying low dose radiation effects in an effort to fill the void generated by the cancelation of the Department of Energy (DOE) low dose radiation program. While NASA is working actively with NIAID and BARDA to integrate their relevant findings of radiation mitigator investigations to NASA programs, the committee notes its disappointment that the United States currently lacks a dedicated low dose radiation program with clear mechanistic orientation and aimed at the quantification and mitigation of human radiation risk on Earth. This void gives to the NASA Space Radiation Program Element special societal value, but also makes its overall design more challenging.
2014 Space Radiation Standing Review Panel
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2015-01-01
The 2014 Space Radiation Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Radiation Program Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 21, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated Research Plan for the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure (Degen Risk). The SRP also received a status update on the Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), the Risk of Acute Radiation Syndromes Due to Solar Particle Events (ARS Risk), and the Risk of Radiation Carcinogenesis (Cancer Risk). The SRP thought the teleconference was very informative and that the Space Radiation Program Element did a great job of outlining where the Element is with respect to our state of knowledge on the risks of carcinogenesis, central nervous system effects, and the risk of cardiovascular disease and other degenerative tissue effects from exposure to space radiation. The SRP was impressed with the quality of research that is being conducted and the progress the Space Radiation Program Element has made in the past year. While much work has been done, the SRP had a few remaining questions regarding the broad applicability of these findings to a manned deep space mission (in terms of cognitive function, the paradigms were still hippocampal based and also using Alzheimer disease models). The SRP believes that NASA should consider developing an approach to follow astronauts long-term (beyond retirement) for potential side-effects/risks of space exposure that may be unknown. Radiation toxicities often occur decades after exposure, and potential consequences would be missed if intensified exams stop after retirement of the astronauts. In addition, while cancer is one consequence of radiation exposure that is monitored, potential other side effects (CNS, Alzheimer Disease, loss of cognitive function, etc.) are not included in long-term studies and would be missed. Inclusion of long-term data would be of benefit to the astronauts themselves who have given their service to the corps but also to future astronauts and the future of space exploration.
DOE Radiation Research Program is floundering - NAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobsenz, G.
1994-04-20
The Energy Department's radiation health effects research program is floundering in a morass of administrative confusion due to an ill-considered 1990 joint management agreement between DOE and the Health and Human Services Department, a National Academy of Sciences panel says. The NAS panel said the [open quotes]administrative difficulties[close quotes] created by the DOE-HHS agreement appear to be [open quotes]stifling creativity and efficiency within DOE's Epidemiology Research Program, delaying the completion and publication of research.[close quotes] The panel also expressed concern that DOE has failed to adequately fund or staff its health research office, and that the department had no mastermore » research plan to identify research needs or set forth uniform, scientifically rigorous data collection procedures. The panel said DOE's lack of commitment was particularly evident in its failure to set up an effective health surveillance program for its nuclear work force. In addition, the panel said DOE had fallen short on promises to create a comprehensive computer bank of health research data that would be continually updated with new information gleaned from an ongoing worker surveillance program. While recommending enhancements, the NAS panel emphasized that DOE's health research program would not be able to function effectively until the department revamped its joint management agreement with HHS.« less
ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biraud, S. C.; Tom, M. S.; Sweeney, C.
2016-01-01
We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO 2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO 2 concentrations over the ARM SGPmore » region, and 3) how greenhouse gases are transported on continental scales.« less
Legacy of Environmental Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Lane, Helen W.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the major environmental lessons learned and the development of countermeasures, monitoring hardware, and procedures.
Space Radiation Program Element Tissue Sharing Initiative
NASA Technical Reports Server (NTRS)
Wu, H.; Huff, J. L.; Simonsen, L. C.
2014-01-01
Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, SRPE is taking the initiative to promote tissue sharing among the scientists in the space radiation research community. This initiative is enthusiastically supported by the community members as voiced in the responses to a recent survey. For retrospective tissue samples, an online platform will be established for the PIs to post a list of the available samples, and to exchange information with the potential recipients. For future animal experiments, a tissue sharing policy is being developed by SRPE.
Overview of NASA's space radiation research program.
Schimmerling, Walter
2003-06-01
NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.
Nuclear Security in the 21^st Century
NASA Astrophysics Data System (ADS)
Archer, Daniel E.
2006-10-01
Nuclear security has been a priority for the United States, starting in the 1940s with the secret cities of the Manhattan Project. In the 1970s, the United States placed radiation monitoring equipment at nuclear facilities to detect nuclear material diversion. Following the breakup of the Soviet Union, cooperative Russian/U.S. programs were launched in Russia to secure the estimated 600+ metric tons of fissionable materials against diversion (Materials Protection, Control, and Accountability -- MPC&A). Furthermore, separate programs were initiated to detect nuclear materials at the country's borders in the event that these materials had been stolen (Second Line of Defense - SLD). In the 2000s, new programs have been put in place in the United States for radiation detection, and research is being funded for more advanced systems. This talk will briefly touch on the history of nuclear security and then focus on some recent research efforts in radiation detection. Specifically, a new breed of radiation monitors will be examined along with the concept of sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, C.C.; Park, J.F.
1994-03-01
This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciencesmore » Research section reports research conducted for the OHER human genome program.« less
The U.S.-Russian radiation health effects research program in the Southern Urals.
Seligman, P J
2000-07-01
The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral U.S.-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Association (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.
The Space Shuttle Program and Its Support for Space Bioresearch
ERIC Educational Resources Information Center
Mason, J. A.; Heberlig, J. C.
1973-01-01
The Space Shuttle Program is aimed at not only providing low cost transportation to and from near earth orbit, but also to conduct important biological research. Fields of research identified include gravitational biology, biological rhythms, and radiation biology. (PS)
Center for Applied Radiation Research (CARR)
NASA Technical Reports Server (NTRS)
Fogarty, Thomas N.
1997-01-01
Prairie View A&M University (PVAMU) Center for Applied Radiation Research (CARR) was established in 1995 to address the tasks, missions and technological needs of NASA. CARR is built on a tradition of radiation research at Prairie View A&M started in 1984 with NASA funding. This continuing program has lead to: (1) A more fundamental and practical understanding of radiation effects on electronics and materials; (2) A dialog between space, military and commercial electronics manufacturers; (3) Innovative electronic circuit designs; (4) Development of state-of-the-art research facilities at PVAMU; (5) Expanded faculty and staff to mentor student research; and (6) Most importantly, increased flow in the pipeline leading to expanded participation of African-Americans and other minorities in science and technological fields of interest to NASA.
NASA Technical Reports Server (NTRS)
1984-01-01
This three day conference, sixth in a series that began in 1974, was held at the NASA Lewis Research Center on October 18-20, 1983. The conference provided a forum for the discussion of space photovoltaic systems, their research status, and program goals. Papers were presented and workshops were held in a variety of technology areas, including basic cell research, advanced blanket technology, and radiation damage.
NASA Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam
2007-01-01
This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.
New Directions in NASA's Materials Science Program
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.
USAF Summer Faculty Research Program. 1980. Research Reports. Volume II.
1980-10-01
Radiation Damage Profiles and Annealing Dr. Samuel C. Ling Effects of 120 keV Sulfur Implants in GaAs 45 Finite Element Modeling of Elastic-Plastic Dr...described more fully in a later section. II. OBJECTIVES: Laboratory management is acutely aware of the shortcomings of the current informational processes...are fixed, there are only two modes of heat trans- fer - radiation and conduction. At the low temperatures necessary for superconductivity, radiation
Cari Kitahara Explores Medical Radiation Exposures and Thyroid Cancer Etiology
Dr. Cari Kitahara has built a multidisciplinary research program to explore cancer risks from occupational and medical radiation exposures, and to investigate the etiology of radiosensitive tumors, including thyroid cancer.
Research for Lunar Exploration: ADVANCE Program
NASA Technical Reports Server (NTRS)
Rojdev, Kristina
2009-01-01
This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.
Overview of the NASA space radiation laboratory.
La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam
2016-11-01
The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.
Effects of cosmic rays on single event upsets
NASA Technical Reports Server (NTRS)
Lowe, Calvin W.; Oladipupo, Adebisi O.; Venable, Demetrius D.
1988-01-01
The efforts at establishing a research program in space radiation effects are discussed. The research program has served as the basis for training several graduate students in an area of research that is of importance to NASA. In addition, technical support was provided for the Single Event Facility Group at Brookhaven National Laboratory.
Rios, Carmen I; Cassatt, David R; Dicarlo, Andrea L; Macchiarini, Francesca; Ramakrishnan, Narayani; Norman, Mai-Kim; Maidment, Bert W
2014-02-01
The possibility of a public health radiological or nuclear emergency in the United States remains a concern. Media attention focused on lost radioactive sources and international nuclear threats, as well as the potential for accidents in nuclear power facilities (e.g., Windscale, Three Mile Island, Chernobyl, and Fukushima) highlight the need to address this critical national security issue. To date, no drugs have been licensed to mitigate/treat the acute and long-term radiation injuries that would result in the event of large-scale, radiation, or nuclear public health emergency. However, recent evaluation of several candidate radiation medical countermeasures (MCMs) has provided initial proof-of-concept of efficacy. The goal of the Radiation Nuclear Countermeasures Program (RNCP) of the National Institute of Allergy and Infectious Diseases (National Institutes of Health) is to help ensure the government stockpiling of safe and efficacious MCMs to treat radiation injuries, including, but not limited to, hematopoietic, gastrointestinal, pulmonary, cutaneous, renal, cardiovascular, and central nervous systems. In addition to supporting research in these areas, the RNCP continues to fund research and development of decorporation agents targeting internal radionuclide contamination, and biodosimetry platforms (e.g., biomarkers and devices) to assess the levels of an individual's radiation exposure, capabilities that would be critical in a mass casualty scenario. New areas of research within the program include a focus on special populations, especially pediatric and geriatric civilians, as well as combination studies, in which drugs are tested within the context of expected medical care management (e.g., antibiotics and growth factors). Moving forward, challenges facing the RNCP, as well as the entire radiation research field, include further advancement and qualification of animal models, dose conversion from animal models to humans, biomarker identification, and formulation development. This paper provides a review of recent work and collaborations supported by the RNCP. Published 2013 Wiley-Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
Metabolic Studies in Military Nutrition.
1977-05-01
The Surgeon General’s Office over a period of years has undertaken an extensive research program into the chemistry, nutrition , and wholesomeness of...Research and Nutrition Laboratory has undertaken the studies of the wholesomeness of food preserved by ionizing radiation. Work on radiated food has been...physiological, metabolic, and nutritional research in normal young adult men has been going on making use of volunteer human test subjects.
NASA Lewis Research Center low-gravity fluid management technology program
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Carney, M. J.; Hochstein, J. I.
1985-01-01
A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.
The impact of the new biology on radiation risks in space
NASA Technical Reports Server (NTRS)
Dicello, John F.
2003-01-01
Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent results, and research in progress are reviewed and discussed.
Kreuzer, M; Auvinen, A; Cardis, E; Durante, M; Harms-Ringdahl, M; Jourdain, J R; Madas, B G; Ottolenghi, A; Pazzaglia, S; Prise, K M; Quintens, R; Sabatier, L; Bouffler, S
2018-03-01
MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).
Dauer, Lawrence T; Kelvin, Joanne F; Horan, Christopher L; St Germain, Jean
2006-06-08
Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses.
Dauer, Lawrence T; Kelvin, Joanne F; Horan, Christopher L; St Germain, Jean
2006-01-01
Background Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. Methods A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. Results As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. Conclusion The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses. PMID:16762060
Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studiesmore » for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
This document is a transcript of an interview of Dr. John Randolph Tottler by representatives of the US DOE Office of Human Radiation Experiments. Dr. Tottler was selected for this interview because of his career with the Atomic Energy Commission Division of Biology and Medicine (DBM), particularly as its director from 1967 to 1972. After a short biographical sketch Dr. Tottler discusses his remembrances on a wide range topics including nucleic acid and leukemia research at Oak Ridge, AEC biochemistry training in South America, DBM`s research focus on radiation effects, early leadership of DBM, relations with the US Public Healthmore » Service, controversies on low-level radiation, iodine from fallout, on John Gofman, and Project Plowshare, funding for AEC Research Programs and for international research, testicular irradiation of prisoners in Washington State and Oregon, Plutonium injections, ethics of government radiation research, and opinions of public misperceptions about radiation and cancer.« less
NASA earth science and applications division: The program and plans for FY 1988-1989-1990
NASA Technical Reports Server (NTRS)
1988-01-01
Described here are the Division's research goals, priorities and emphases for the next several years and an outline of longer term plans. Included are highlights of recent accomplishments, current activities in FY 1988, research emphases in FY 1989, and longer term future plans. Data and information systems, the Geodynamics Program, the Land Processes Program, the Oceanic Processes Program, the Atmospheric Dynamics and Radiation Program, the Atmospheric Chemistry Program, and space flight programs are among the topic covered.
Technical developments at the NASA Space Radiation Laboratory.
Lowenstein, D I; Rusek, A
2007-06-01
The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.
Radiation protection and instrumentation
NASA Technical Reports Server (NTRS)
Bailey, J. V.
1975-01-01
Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.
The U.S.-Russian radiation health effects research program in the Southern Urals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seligman, P.J.
2000-07-01
The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral US-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), the Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Associationmore » (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.« less
Ground-Based Measurement of Solar Ultraviolet Radiation
The National Exposure Research Laboratory (NERL) of the U.S. Environmental Protection Agency implemented a research program between 1996 and 2004 to measure UV at 21 unique locations through out the U.S. The program conducted long-term monitoring of UV to detect trends due to ch...
NASA Astrophysics Data System (ADS)
Dorman, L. I.
2005-11-01
We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".
Radiation Protection in Canada
Brown, John R.; Jarvis, Anita A.
1964-01-01
A recent survey was carried out with respect to radiobiological and radiological health projects in Canada. Letters of inquiry, followed by two questionnaires, were sent out to every institution where radiation research was likely to have been undertaken. Approximately 75% of those contacted replied. Of the total of 200 studies, 84% were classified as biological and medical studies, the remaining 16% as environmental radiation studies. Responses to the inquiry stressed the inadequacy of the present governmental budget for radiation research, the need for higher salaries for research workers, and the necessity of a more intensive teaching program for technicians and professional personnel. The granting of longer-term grants, rather than annually renewable grants, is urged. PMID:14226104
An Operational Safety and Health Program.
ERIC Educational Resources Information Center
Uhorchak, Robert E.
1983-01-01
Describes safety/health program activities at Research Triangle Institute (North Carolina). These include: radioisotope/radiation and hazardous chemical/carcinogen use, training, monitoring, disposal; chemical waste management; air monitoring and analysis; medical program; fire safety/training, including emergency planning; Occupational Safety and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wein, G.; Rosier, B.
1998-12-31
This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wein, G.; Rosier, B.
1997-12-31
This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.
An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure
NASA Technical Reports Server (NTRS)
Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.
2015-01-01
The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, C.R.N.; Hewson, E.W.
The primary facility which is to be a benchmark site for the acquisition of research quality solar radiation and solar energy related meteorological data has been set up and will be fully operational in the near future. The training program has been established with the introduction of two, two-quarter courses on solar radiation and meteorological measurements and on atmospheric radiative processes. Also, as part of the training program, a week-long workshop on solar energy measurement and instrumentation was conducted during the summer of '78 and a series of seminars on solar energy related topics, catering to both professionals and non-professionals,more » was arranged during the 1977-78 academic year. A meeting of solar radiation scientists from the five states of the region was held in Corvallis (August '78) to explore the feasibility of setting up a regional network of stations to acquire research quality solar radiation and meteorological data. Useful global irradiance measurements have been made at the five sites, making up the general quality network in Oregon, over the greater part of the year.« less
Solid State Division annual progress report for period ending December 31, 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, M.K.; Young, F.W. Jr.
1976-05-01
Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)
Overview of the NASA space radiation laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung
The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.
Overview of the NASA space radiation laboratory
La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; ...
2016-11-11
The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.
Space Radiation and Risks to Human Health
NASA Technical Reports Server (NTRS)
Huff, Janice L.
2014-01-01
The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.
Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
1992-09-01
This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdridge, D. J., ed
The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.
Nuclear, biological, and chemical combined injuries and countermeasures on the battlefield.
Knudson, Gregory B; Elliott, Thomas B; Brook, Itzhak; Shoemaker, Michael O; Pastel, Ross H; Lowy, Robert J; King, Gregory L; Herzig, Thomas C; Landauer, Michael R; Wilson, Scott A; Peacock, Susan J; Bouhaouala, S Samy; Jackson, William E; Ledney, G David
2002-02-01
The Armed Forces Radiobiological Research Institute (AFRRI) has developed a research program to determine the major health risks from exposure to ionizing radiation in combination with biological and chemical warfare agents and to assess the extent to which exposure to ionizing radiation compromises the effectiveness of protective drugs, vaccines, and other biological and chemical warfare prophylactic and treatment strategies. AFRRI's Defense Technology Objective MD22 supports the development of treatment modalities and studies to assess the mortality rates for combined injuries from exposure to ionizing radiation and Bacillus anthracis, and research to provide data for casualty prediction models that assess the health consequences of combined exposures. In conjunction with the Defense Threat Reduction Agency, our research data are contributing to the development of casualty prediction models that estimate mortality and incapacitation in an environment of radiation exposure plus other weapons of mass destruction. Specifically, the AFFRI research program assesses the effects of ionizing radiation exposure in combination with B. anthracis, Venezuelan equine encephalomyelitis virus, Shigella sonnei, nerve agents, and mustard as well as their associated treatments and vaccines. In addition, the long-term psychological effects of radiation combined with nuclear, biological, and chemical (NBC) injuries are being evaluated. We are also assessing the effectiveness of gamma photons and high-speed neutrons and electrons for neutralizing biological and chemical warfare agents. New protocols based on our NBC bioeffects experiments will enable U.S. armed forces to accomplish military operations in NBC environments while optimizing both survival and military performance. Preserving combatants' health in an NBC environment will improve warfighting operations and mission capabilities.
Preliminary design for Arctic atmospheric radiative transfer experiments
NASA Technical Reports Server (NTRS)
Zak, B. D.; Church, H. W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z.; Ellingson, R. G.; Tsay, S. C.
1995-01-01
If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.
Optical depth measurements by shadow-band radiometers and their uncertainties.
Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A
2007-11-20
Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesse, R.J.; Callaway, J.M.; Englin, J.E.
1987-09-01
This research was undertaken to estimate the societal benefits and costs of selected past research performed for the Office of Health and Environmental Research (OHER) of the US Department of Energy (DOE). Three case studies of representative OHER and DOE research were performed. One of these, the acid rain case study, includes research conducted elsewhere in DOE. The other two cases were the OHER marine research program and the development of high-purity germanium that is used in radiation detectors. The acid rain case study looked at the research benefits and costs of furnace sorbent injection and duct injection, technologies thatmore » might reduce acid deposition precursors. Both appear to show benefits in excess of costs. We examined in detail one of the OHER marine research program's accomplishments - the increase in environmental information used by the Outer Continental Shelf leasing program to manage bidding for off-shore oil drilling. The results of an econometric model show that environmental information of the type supported by OHER is unequivocally linked to government and industry leasing decisions. The germanium case study indicated that the benefits of germanium radiation detectors were significant.« less
Health, Safety, and Environment Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C
1992-01-01
The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from thesemore » applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.« less
Krug, David; Baumann, Rene; Rieckmann, Thorsten; Fokas, Emmanouil; Gauer, Tobias; Niyazi, Maximilian
2016-08-01
The working group "Young DEGRO" (yDEGRO) was established in 2014 by the German Society of Radiation Oncology (DEGRO). We aimed to assess the current situation of young radiation oncologists, medical physicists and radiation biologists. An online survey that included 52 questions or statements was designed to evaluate topics related to training, clinical duties and research opportunities. Using the electronic mailing list of the DEGRO and contact persons at university hospitals in Germany as well as at four hospitals in Switzerland and Austria, young professionals employed in the field of radiation oncology were invited to participate in the survey. A total of 260 responses were eligible for analysis. Of the respondents 69 % had a professional background in medicine, 23 % in medical physics and 9 % in radiation biology. Median age was 33 years. There was a strong interest in research among the participants; however a clear separation between research, teaching and routine clinical duties was rarely present for radiation oncologists and medical physicists. Likewise, allocated time for research and teaching during regular working hours was often not available. For radiation biologists, a lack of training in clinical and translational research was stated. This survey details the current state of education and research opportunities in young radiation oncologists, medical physicists and radiation biologists. These results will form the basis for the future working program of the yDEGRO.
Brodin, N. Patrik; Guha, Chandan; Tomé, Wolfgang A.
2015-01-01
Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first six months experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (± 3 %) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis. PMID:26425981
Brodin, N Patrik; Guha, Chandan; Tomé, Wolfgang A
2015-11-01
Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first 6-mo experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (±3%) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis.
NASA Astrophysics Data System (ADS)
Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.
2015-12-01
Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.
NASA Astrophysics Data System (ADS)
Sheik-Bahae, Mansoor
2017-02-01
An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.
Genesis of the NASA Space Radiation Laboratory.
Schimmerling, Walter
2016-06-01
A personal recollection of events leading up to the construction and commissioning of NSRL, including reference to precursor facilities and the development of the NASA Space Radiation Program. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Key Performance Indicators in the Evaluation of the Quality of Radiation Safety Programs.
Schultz, Cheryl Culver; Shaffer, Sheila; Fink-Bennett, Darlene; Winokur, Kay
2016-08-01
Beaumont is a multiple hospital health care system with a centralized radiation safety department. The health system operates under a broad scope Nuclear Regulatory Commission license but also maintains several other limited use NRC licenses in off-site facilities and clinics. The hospital-based program is expansive including diagnostic radiology and nuclear medicine (molecular imaging), interventional radiology, a comprehensive cardiovascular program, multiple forms of radiation therapy (low dose rate brachytherapy, high dose rate brachytherapy, external beam radiotherapy, and gamma knife), and the Research Institute (including basic bench top, human and animal). Each year, in the annual report, data is analyzed and then tracked and trended. While any summary report will, by nature, include items such as the number of pieces of equipment, inspections performed, staff monitored and educated and other similar parameters, not all include an objective review of the quality and effectiveness of the program. Through objective numerical data Beaumont adopted seven key performance indicators. The assertion made is that key performance indicators can be used to establish benchmarks for evaluation and comparison of the effectiveness and quality of radiation safety programs. Based on over a decade of data collection, and adoption of key performance indicators, this paper demonstrates one way to establish objective benchmarking for radiation safety programs in the health care environment.
Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics
1987-10-01
This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed
Annual environmental monitoring report of the Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schleimer, G.E.
1989-06-01
The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.
Mississippi CaP HBCU Undergraduate Research Training Program
2016-09-01
activities. This activity, occurred once a week (between weeks 4-6) and included touring to Urology, Hematology- Oncology , and Radiation Oncology facilities...Director of UMMC-Cancer Institute, Professor and Chairman, Department of Radiation Oncology University of Mississippi Medical Center, "Precision...Jackson, MS,4Vanderbilt University, Nashville, TN, 5Department of Pathology and Radiation Oncology , Mississippi Medical Center, Jackson, MS Tumor hypoxia
Atmospheric Ionizing Radiation (AIR) Project Review
NASA Technical Reports Server (NTRS)
Singleterry, R. C., Jr.; Wilson, J. W.; Whitehead, A. H.; Goldhagen, P. E.
1999-01-01
The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.
French space program: report to Cospar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
Programs and results obtained are reviewed for all French laboratories working in areas of research related to space. Main topics include lunar specimen studies; spectroscopic planetology; space radiation; ionospheric and magnetospherics; aeronomy; meteorology, comprising the Meteosat program and the Eole experiment and earth resources investigations; geodesy; and geodynamics-research covering space biology and exobiology is also discussed. French satellites and sounding rockets are listed, as well as French experiments onboard foreign spacecraft. (GRA)
NASA Astrophysics Data System (ADS)
Hartmann Siantar, Christine L.; Moses, Edward I.
1998-11-01
When using radiation to treat cancer, doctors rely on physics and computer technology to predict where the radiation dose will be deposited in the patient. The accuracy of computerized treatment planning plays a critical role in the ultimate success or failure of the radiation treatment. Inaccurate dose calculations can result in either insufficient radiation for cure, or excessive radiation to nearby healthy tissue, which can reduce the patient's quality of life. This paper describes how advanced physics, computer, and engineering techniques originally developed for nuclear weapons and high-energy physics research are being used to predict radiation dose in cancer patients. Results for radiation therapy planning, achieved in the Lawrence Livermore National Laboratory (LLNL) 0143-0807/19/6/005/img2 program show that these tools can give doctors new insights into their patients' treatments by providing substantially more accurate dose distributions than have been available in the past. It is believed that greater accuracy in radiation therapy treatment planning will save lives by improving doctors' ability to target radiation to the tumour and reduce suffering by reducing the incidence of radiation-induced complications.
NASA Technical Reports Server (NTRS)
Deering, D. W.
1985-01-01
The Scene Radiation and Atmospheric Effects Characterization (SRAEC) Project was established within the NASA Fundamental Remote Sensing Science Research Program to improve our understanding of the fundamental relationships of energy interactions between the sensor and the surface target, including the effect of the atmosphere. The current studies are generalized into the following five subject areas: optical scene modeling, Earth-space radiative transfer, electromagnetic properties of surface materials, microwave scene modeling, and scatterometry studies. This report has been prepared to provide a brief overview of the SRAEC Project history and objectives and to report on the scientific findings and project accomplishments made by the nineteen principal investigators since the project's initiation just over three years ago. This annual summary report derives from the most recent annual principal investigators meeting held January 29 to 31, 1985.
Optics at langley research center.
Crumbly, K H
1970-02-01
The specialized tools of optics have played an important part in Langley's history of aeronautical and space research. Schlieren systems for photographing aeronautics and space models in wind-tunnel investigations have contributed to the available knowledge of aerodynamics. Optics continues to be an important part of Langley's research program, including new techniques for measuring the sensitivity of photomultiplier tubes, spectrographic techniques for radiation measurements of wind-tunnel models, research into large orbiting telescopes, horizon definition by ir radiation measurements, spectra of natural and artificial meteors, measurement of clear air turbulence utilizing lasers, and many others.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-14
... section 4 of TSCA was to support ATSDR's Substance Specific Applied Research Program, a program [email protected] . SUPPLEMENTARY INFORMATION: I. Does this Action Apply to Me? This action is directed to the... Office of Air and Radiation (OAR), along with EPA's Office of Research and Development (ORD), referred...
Health, Safety, and Environment Division annual report 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C.
1992-01-01
The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting the responsibilities involves many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in the HSE Division often stem from these appliedmore » needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The result of these programs is to help develop better practices in occupational health and safety, radiation protection, and environmental sciences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu; Chadha, Manjeet; Rengan, Ramesh
Purpose: To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. Methods and Materials: A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. Results: We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education inmore » intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Conclusion: Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo–US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives.« less
Grover, Surbhi; Chadha, Manjeet; Rengan, Ramesh; Williams, Tim R; Morris, Zachary S; Morgan, David A L; Tripuraneni, Prabhakar; Hu, Kenneth; Viswanathan, Akila N
2015-12-01
To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo-US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives. Copyright © 2015 Elsevier Inc. All rights reserved.
"Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"
NASA Astrophysics Data System (ADS)
Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.
2017-12-01
Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.
RHOBOT: Radiation hardened robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, P.C.; Posey, L.D.
1997-10-01
A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.
Pacific Northwest Laboratory Annual Report for 1992 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreml, S.A.; Park, J.F.
1993-06-01
This report summarizes progress in OHER biological research and general life sciences research programs conducted at PNL in FY 1992. The research develops the knowledge and fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from energy-related technologies through an increase understanding of the ways in which radiation and chemicals cause biological damage. Descriptors of individual research projects as detailed in this report one separately abstracted and indexed for the database.
Health and Environmental Research [OHER], the program that supported most Biology in the Department. The origins of DOE's biology program traced to the Manhattan Project, the World War II program that produced Technical Report; 1964 Impact of Radiation Biology on Fundamental Insights in Biology; DOE Technical Report
Radiation Detection Center on the Front Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
2005-09-20
Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R&D) programs. These effortsmore » involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''« less
Dividends from Technology Applied.
ERIC Educational Resources Information Center
Aviation/Space, 1982
1982-01-01
National Aeronautics and Space Administration's (NASA) Applications Program employs aerospace science/technology to provide direct public benefit. Topics related to this program discussed include: Landsat, earth crustal study (plate tectonics), search and rescue systems, radiation measurement, upper atmosphere research, space materials processing,…
1985-03-01
comparison of samples would be difficult. (5) A restrictive random sample allows the sample to be irregularly spaced throughout the auxiliary variable space ...looking or downward-looking probes and the very low background radiation from space contribute to high signal-to-noise ratio and allow the...sunshine and earthshine, chemiluminescent processes, and radiation to space , in addition to collisional processes, determine the vibrational
Review of advanced radiator technologies for spacecraft power systems and space thermal control
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Peterson, George P.
1994-01-01
A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.
NASA Astrophysics Data System (ADS)
Strikhanov, Mikhail N.; Pivovarov, Yury L.
2010-04-01
This volume contains the papers presented at 8th International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS'09), which was held in Zvenigorod, Moscow Region, Russia, from 7 to 11 September 2009, organized jointly by National Research Nuclear University MEPhI (Moscow) and Tomsk Polytechnic University (Tomsk), Russia. University MEPhI (Moscow) and Tomsk Polytechnic University (Tomsk), Russia. RREPS was founded in September 1993 by an initiative of the Nuclear Physics Institute at Tomsk Polytechnic University, Russia, with the intention of strengthening basic and applied research focused on radiation from relativistic particles in natural and artificial periodic structures. Since then, the symposium has developed into a forum attracting scientists from different fields and from many countries all over the world. RREPS'09 followed previous successful series of biennial RREPS symposia at Tomsk (1993, 1995, 1997, 2003), Baikal Lake (1999), Aya Lake (Altai, Russia, 2001) and Czech Technical University in Prague (Czech Republic, 2007). Five NIMB topical issues (V 145 No 1-2, October 1998; V 173 No 1-2, January 2001; V 201(1) January 2003; V 227, Issues 1-2, January 2005; V 266, Issue 17, September 2008) have been published as outgrowth of these symposia. Traditionally, the RREPS program includes following topics: General Properties of Electromagnetic Radiation from Relativistic Particles Transition Radiation Parametric X- Radiation Diffraction Radiation and Smith-Purcell Effect Coherent Bremsstrahlung and Channeling Radiation Crystal- Assisted Processes Applications of Monochromatic X- and Gamma- Beams Produced at Electron Accelerators The present RREPS'09 Symposium was dedicated to the modern problems in radiation from relativistic electrons in crystals and other periodic structures, as well as to new applications of photon and electron beams. During the last few decades, electromagnetic radiation from relativistic particles, both in external fields and in matter, has always been an interesting field for investigation. Every kind of radiation reflects specific processes of fundamental atomic physics, classical or quantum electrodynamics and might have specific applications in accelerator physics (beam diagnostics), nuclear physics (hard photon sources), material science and medicine (X-Ray sources). Nowadays, electromagnetic radiation studies cover electron energies from a few MeV up to hundreds of GeV in many laboratories throughout the world. The goal is to study the physics of generation of various kinds of radiation and their interplay or combined effects and to find successful applications for them. New photon sources, which use new types of radiation at new accelerators (e.g. tabletop synchrotrons), may be considered complementary to conventional photon sources based on synchrotron radiation, undulator radiation and free electron lasers. We express our thanks to the members of the International Program Committee for their suggestions during the preparation of the scientific program of the workshop. We warmly thank the National Research Nuclear University MEPhI (Moscow) and the Tomsk Polytechnic University (Tomsk) for the financial and administrative support. We also acknowledge the valuable financial contributions by Russian Fund for Basic Research and "Dynasty" Foundation. Editors Mikhail N. Strikhanov National Research Nuclear University MEPhI, Moscow, Russia Yury L. Pivovarov Tomsk Polytechnic University, Tomsk, Russia
Basis of Ionospheric Modification by High-Frequency Waves
2007-06-01
for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office
A Test Suite for 3D Radiative Hydrodynamics Simulations of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, R. H.; Nordlund, A.; Lord, J.
2006-12-01
Radiative hydrodynamics simulations of protoplanetary disks with different treatments for radiative cooling demonstrate disparate evolutions (see Durisen et al. 2006, PPV chapter). Some of these differences include the effects of convection and metallicity on disk cooling and the susceptibility of the disk to fragmentation. Because a principal reason for these differences may be the treatment of radiative cooling, the accuracy of cooling algorithms must be evaluated. In this paper we describe a radiative transport test suite, and we challenge all researchers who use radiative hydrodynamics to study protoplanetary disk evolution to evaluate their algorithms with these tests. The test suite can be used to demonstrate an algorithm's accuracy in transporting the correct flux through an atmosphere and in reaching the correct temperature structure, to test the algorithm's dependence on resolution, and to determine whether the algorithm permits of inhibits convection when expected. In addition, we use this test suite to demonstrate the accuracy of a newly developed radiative cooling algorithm that combines vertical rays with flux-limited diffusion. This research was supported in part by a Graduate Student Researchers Program fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiologicalmore » studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler, J.O.
1986-06-01
The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)
Quality of Subjective Experience in a Summer Science Program for Academically Talented Adolescents.
ERIC Educational Resources Information Center
Tuss, Paul
This study utilized the flow theory of intrinsic motivation to evaluate the subjective experience of 78 academically talented high school sophomores participating in an 8-day summer research apprenticeship program in materials and nuclear science. The program involved morning lectures on such topics as physics of electromagnetic radiation, energy…
Locke, Paul A
2009-11-01
The U.S. Department of Energy (U.S. DOE) sponsors a research program aimed at gaining a better understanding of how low-dose radiation affects cellular functioning and progression toward disease. There have been calls to incorporate into regulatory decision-making the scientific information that this program has produced. After a discussion of the evolution of radiation protection law and the weight-of-evidence approach that agencies employ, this paper offers some preliminary thoughts about how to approach this complex and important policy question. Three implementation challenges are identified and discussed. The first implementation challenge involves explaining low-dose effects in a systems biology model. The second challenge arises when issues of population susceptibility are juxtaposed against molecular and mechanistic studies, such as those that make up much of the U.S. DOE low-dose program. The third challenge concerns integrating the results of radiation epidemiology, especially epidemiologic studies among cohorts that are exposed to low dose and low-dose rate radiation, with the results of U.S. DOE low-dose studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelmann, A. M.
OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.
Space radiation health research, 1991-1992
NASA Technical Reports Server (NTRS)
Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)
1993-01-01
The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.
Anderson, Roberta; Armour, Elwood; Beeckler, Courtney; Briner, Valerie; Choflet, Amanda; Cox, Andrea; Fader, Amanda N; Hannah, Marie N; Hobbs, Robert; Huang, Ellen; Kiely, Marilyn; Lee, Junghoon; Morcos, Marc; McMillan, Paige E; Miller, Dave; Ng, Sook Kien; Prasad, Rashmi; Souranis, Annette; Thomsen, Robert; DeWeese, Theodore L; Viswanathan, Akila N
As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
III International Conference on Laser and Plasma Researches and Technologies
NASA Astrophysics Data System (ADS)
2017-12-01
A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.
AMF3 ARM's Research Facility and MAOS at Oliktok Point Alaska
NASA Astrophysics Data System (ADS)
Helsel, F.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Roesler, E. L.
2016-12-01
Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data to determine the impact that clouds and aerosols have on solar radiation. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. A Mobile Aerosol Observing System (MAOS) has been added to AMF3 in 2016 more details of the instrumentation at www.arm.gov/sites/amf/mobile-aos. Data from these instruments are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at the ARM Program's AMF3 and highlight the newest addition to AMF3, the Mobile Aerosol Observing System (MAOS).
Multidisciplinary Russian biomedical research in space
NASA Astrophysics Data System (ADS)
Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.
2014-08-01
Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.
Radiation risk and human space exploration.
Schimmerling, W; Cucinotta, F A; Wilson, J W
2003-01-01
Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.
Radiation risk and human space exploration
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Cucinotta, F. A.; Wilson, J. W.
2003-01-01
Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.
Hanford Laboratories Operation monthly activities report, September 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1961-10-16
This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.
Space solar cell research: Problems and potential
NASA Technical Reports Server (NTRS)
Flood, D. J.
1986-01-01
The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.
Acoustic Source Bearing Estimation (ASBE) computer program development
NASA Technical Reports Server (NTRS)
Wiese, Michael R.
1987-01-01
A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.
Comparison of optimization algorithms in intensity-modulated radiation therapy planning
NASA Astrophysics Data System (ADS)
Kendrick, Rachel
Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.
2015-01-30
mesenchymal stem cells . Cytokine Growth Factor Rev. 2009;20:419–27. 8. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al. MCP...Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Mesenchymal stem cell therapy for acute radiation syndrome: innovative medical...Independent Research Program 14. ABSTRACT See reprint. 15. SUBJECT TERMS Acute radiation syndrome, Mesenchymal stem cell , cell therapy,
NASA Astrophysics Data System (ADS)
Dunn, Michael
2008-10-01
For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.
The Health Effects Research Laboratory, Research Triangle Park, conducts a coordinaged environmental health research program in toxicology, epidemiology, and clinical studies using human volunteer subjects. These studies address problems in air pollution, non-ionizing radiation, ...
Catalog of databases and reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtis, M.D.
1996-04-01
This document provides information about the many reports and other materials made available by the US Department of Energy`s (DOE`s) Global Change Research Program (GCRP). It is divided into nine sections plus author and title indexes: Section A -- US Department of Energy Global Change Research Program research plans and summaries; Section B -- US Department of Energy Global Change Research Program technical reports; Section C -- US Department of energy Atmospheric Radiation Measurement (ARM) program reports; Section D -- Other US Department of Energy reports; Section E -- CDIAC reports; Section F -- CDIAC numeric data and computer modelmore » distribution; Section G -- other data sets distributed by CDIAC; Section H -- USDA reports on response of vegetation to carbon dioxide; Section I -- other publications.« less
WCRP surface radiation budget shortwave data product description, version 1.1
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Dipasquale, R. C.; Ritchey, N. A.
1993-01-01
Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures.
Radiative Augmented Combustion
1988-03-01
PbLFICE SY 7a NAME OF MONITORING ORGANIZATION M.L. ENERGIA , Inc. AFOSR/NA 6r. ADDRESS (City. State. anW ZIP Code) 7b. ADDRESS (City State, and ZIPCode...27 -00 N ’fPECTED 0 6I FOREWORD This is the Final Report on research on Radiative Augmented Combustion conducted at M. L. ENERGIA , Inc. It was a...the first two annual reports prior to this one. The entire research program was performed at ENERGIA , Inc., Princeton, New Jersey, with Dr. Moshe Lavid
Laser safety research and modeling for high-energy laser systems
NASA Astrophysics Data System (ADS)
Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.
2002-06-01
The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, John A.
A new, all ceramic magnet insulation system has been developed that can withstand the high radiation doses without significant damage. The insulation can be applied directly onto a Nb3Sn or copper cable as a ceramic based prepreg system using the same equipment and procedures used for the traditional epoxy systems. Excessive porosity was eliminated and compressions strength increased. Thermal expansion nearly matches the expansion of niobium tin conductor wire. A radiation test program has been defined and magnet fabrication issues have been identified. This report covers the results of the Phase I research program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James S. Tulenko; Carl D. Crane
The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.
Advancements in medicine from aerospace research
NASA Technical Reports Server (NTRS)
Wooten, F. T.
1972-01-01
A program designed to find second applications for space technology in the medical field is described. Illustrative examples and clinical test results are included for prosthetic urethral devices, ear oximeter for monitoring leukemia patients, devices for measuring low level CO effects on automobile drivers, radiation dosimeter probe for detecting radiation levels in cancerous areas, and electromyographic muscle trainer.
2013-01-01
The addition of chemotherapeutic agents to ionizing radiation has improved survival in many malignancies. Cure rates may be further improved by adding novel targeted agents to current radiotherapy or radiochemotherapy regimens. Despite promising laboratory data, progress in the clinical development of new drugs with radiation has been limited. To define and address the problems involved, a collaborative effort between individuals within the translational research program of the Radiation Oncology Therapy Group and the National Cancer Institute was established. We discerned challenges to drug development with radiation including: 1) the limited relevance of preclinical work, 2) the pharmaceutical industry’s diminished interest, and 3) the important individual skills and institutional commitments required to ensure a successful program. The differences between early-phase trial designs with and without radiation are noted as substantial. The traditional endpoints for early-phase clinical trials—acute toxicity and maximum-tolerated dose—are of limited value when combining targeted agents with radiation. Furthermore, response rate is not a useful surrogate marker of activity in radiation combination trials.Consequently, a risk-stratified model for drug-dose escalation with radiation is proposed, based upon the known and estimated adverse effects. The guidelines discuss new clinical trial designs, such as the time-to-event continual reassessment method design for phase I trials, randomized phase II “screening” trials, and the use of surrogate endpoints, such as pathological response. It is hoped that by providing a clear pathway, this article will accelerate the rate of drug development with radiation. PMID:23231975
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.
2000-01-01
Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.
Radiation exposure and lung disease in today's nuclear world.
Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew
2017-03-01
Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.
1990-04-01
MISSION REQUIREMENTS. THE MATRIX MATERIALS PROPOSED FOR THIS PHASE I INVESTIGATION ARE POLYETHER ETHER KETON (PEEK) AND POLYBUTELENE TERAPHTHALATE (PBT...NOISE AND RADIATION HARD, PARTICULARLY RADIATION HARD AGAINST NEUTRON IRRADIATION. A PROPOSAL IS MADE FOR THE DEVELOPMENT OF AN INNOVATIVE TECHNOLOGY...AND RADIATION -HARD APPLICATIONS. THE SOI WAFER WILL ELIMINATE LATCH-UP EFFECTS, REDUCE NEUTRON -CAPTURE VOLUME AND PROVIDE ELECTRICAL ISOLATION FOR
Liquid droplet radiator program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Presler, A. F.; Coles, C. E.; Diem-Kirsop, P. S.; White, K. A., III
1985-01-01
The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts.
Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turteltaub, K W; Hartman-Siantar, C; Easterly, C
2005-10-03
A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus ofmore » gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.« less
Turning the Ship: The Transformation of DESY, 1993-2009
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Hallonsten, Olof; Heinecke, Steffi
2017-12-01
This article chronicles the most recent history of the Deutsches Elektronen-Synchrotron (DESY) located in Hamburg, Germany, with particular emphasis on how this national laboratory founded for accelerator-based particle physics shifted its research program toward multi-disciplinary photon science. Synchrotron radiation became DESY's central experimental research program through a series of changes in its organizational, scientific, and infrastructural setup and the science policy context. Furthermore, the turn toward photon science is part of a broader transformation in the late twentieth century in which nuclear and particle physics, once the dominating fields in national and international science budgets, gave way to increasing investment in the materials sciences and life sciences. Synchrotron radiation research took a lead position on the experimental side of these growing fields and became a new form of big science, generously funded by governments and with user communities expanding across both academia and industry.
Astrophysical Connections to Collapsing Radiative Shock Experiments
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.
2005-10-01
Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
Office of Research and Development Program Guide, Fiscal Year 1976.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Research and Development.
The United States Environmental Protection Agency was created by Presidential order in December of 1970. This order brought together 15 programs scattered among several Federal Government agencies to mount a coordinated attack on environmental problems. These problems include air and water pollution, solid waste management, pesticides, radiation,…
NASA Technical Reports Server (NTRS)
1962-01-01
The realization in recent years that outer space is traversed by high-energy radiations has caused man to reevaluate the feasibility of manned or even instrumented exploration outside our atmosphere. Fortunately, it is possible to determine the nature and intensities of these radiations and to produce similar radiations on earth by means of accelerators. Thus we can learn how to attenuate them and to design capsules which afford protection against them. Of course this protection carries a weight penalty so that there is a premium on optimizing the shield design. Many groups in the United states are engaged in research to this end,and it was the purpose of this symposium to bring these groups together so that they could exchange information. To make the meeting more comprehensive, sessions on the nature of the radiations and their effects on people and things were included. However, the major part of the meeting was devoted to discussions on shielding research, comprising theoretical calculations and experiments carried out mainly with high-energy accelerators. The symposium committee feels that the aims of the symposium were met and that progress in space research program was greatly accelerated thereby.
Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.
Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H
2003-10-01
The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.
Investigation of Infra-red and Nonequilibrium Air Radiation
NASA Technical Reports Server (NTRS)
Kruger, Charles H.; Laux, Christophe O.
1994-01-01
This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.
The Atomic Bomb Casualty Commission in retrospect
Putnam, Frank W.
1998-01-01
For 50 years, the Atomic Bomb Casualty Commission (ABCC) and its successor, the Radiation Effects Research Foundation (RERF), have conducted epidemiological and genetic studies of the survivors of the atomic bombs and of their children. This research program has provided the primary basis for radiation health standards. Both ABCC (1947–1975) and RERF (1975 to date) have been a joint enterprise of the United States (through the National Academy of Sciences) and of Japan. ABCC began in devastated, occupied Japan. Its mission had to be defined and refined. Early research revealed the urgent need for long term study. In 1946, a Directive of President Truman enjoined the National Research Council of the National Academy of Sciences to develop the program. By 1950, ABCC staff exceeded 1,000, and clinical and genetic studies were underway. Budgetary difficulties and other problems almost forced closure in 1953. In 1955, the Francis Report led to a unified epidemiological study. Much progress was made in the next decade, but changing times required founding of a binational nonprofit organization (RERF) with equal participation by Japan and the United States. New programs have been developed and existing ones have been extended in what is the longest continuing health survey ever undertaken. PMID:9576898
Operational Philosophy for the Advanced Test Reactor National Scientific User Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Benson; J. Cole; J. Jackson
2013-02-01
In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less
Morgenlander, Keith H; Heron, Dwight E; Schenken, Larry L
2009-01-01
Many cancer treatment and prevention trials as well as surveillance programs suffer from a disproportionately low rate of accrual and a high rate of noncompliance or dropouts of racial minorities and the poor. One suggested strategy to help remediate this trend is to directly involve those targeted populations within the development, implementation, and evaluation of these services. The Radiation Oncology Community Outreach Group (ROCOG) and Neighborhood Cancer Care Cooperative (NCCC) are designed based upon this type of highly collaborative organizational structure, consistent with the general principles of community-based participatory research. Funded by the National Cancer Institute Cancer Disparities Research Partnership program, ROCOG/NCCC provide oncology-focused, community hospital-based initiatives intended to help close the cancer disparities gap. This article presents a descriptive case study of the organizational and political process that preceded our grant proposal submission, the potential benefits and difficulties associated with our extensive collaborative model, and an example of how highly competitive health care organizations can become partners in narrowly focused initiatives aimed at a greater social good.
Hypersonic research at Stanford University
NASA Technical Reports Server (NTRS)
Candler, Graham; Maccormack, Robert
1988-01-01
The status of the hypersonic research program at Stanford University is discussed and recent results are highlighted. The main areas of interest in the program are the numerical simulation of radiating, reacting and thermally excited flows, the investigation and numerical solution of hypersonic shock wave physics, the extension of the continuum fluid dynamic equations to the transition regime between continuum and free-molecule flow, and the development of novel numerical algorithms for efficient particulate simulations of flowfields.
Catalog of databases and reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtis, M.D.
1997-04-01
This catalog provides information about the many reports and materials made available by the US Department of Energy`s (DOE`s) Global Change Research Program (GCRP) and the Carbon Dioxide Information Analysis Center (CDIAC). The catalog is divided into nine sections plus the author and title indexes: Section A--US Department of Energy Global Change Research Program Research Plans and Summaries; Section B--US Department of Energy Global Change Research Program Technical Reports; Section C--US Department of Energy Atmospheric Radiation Measurement (ARM) Program Reports; Section D--Other US Department of Energy Reports; Section E--CDIAC Reports; Section F--CDIAC Numeric Data and Computer Model Distribution; Section G--Othermore » Databases Distributed by CDIAC; Section H--US Department of Agriculture Reports on Response of Vegetation to Carbon Dioxide; and Section I--Other Publications.« less
NASA Technical Reports Server (NTRS)
Mcdougal, David S. (Editor); Wagner, H. Scott (Editor)
1990-01-01
FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation program that seeks to address the issues of a basic understanding and parameterizations of cirrus and marine stratocumulus cloud systems and ISCCP data products. The papers describe research analysis of data collected at the 1986 Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, and the Extended Time Observations. The papers are grouped into sessions on satellite studies, lidar/radiative properties/microphysical studies, radiative properties, thermodynamic and dynamic properties, case studies, and large scale environment and modeling studies.
Radiation Damage In Reactor Cavity Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G; Le Pape, Yann; Naus, Dan J
License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out tomore » 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.« less
Space Radiation Program Element Tissue Sharing Forum
NASA Technical Reports Server (NTRS)
Wu, H.; Mayeaux, B M.; Huff, J. L.; Simonsen, L. C.
2016-01-01
Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, the SRPE has recently released the Space Radiation Tissue Sharing Forum. The Forum provides access to an inventory of investigator-stored tissue samples and enables both NASA SRPE members and NASA-funded investigators to exchange information regarding stored and future radiobiological tissues available for sharing. Registered users may review online data of available tissues, inquire about tissues posted, or request tissues for an upcoming study using an online form. Investigators who have upcoming sacrifices are also encouraged to post the availability of samples using the discussion forum. A brief demo of the forum will be given during the presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampley, C.M.
1979-01-01
An updated version of the SKYSHINE Monte Carlo procedure has been developed. The new computer code, SKYSHINE-II, provides a substantial increase in versatility in that the program possesses the ability to address three types of point-isotropic radiation sources: (1) primary gamma rays, (2) neutrons, and (3) secondary gamma rays. In addition, the emitted radiation may now be characterized by an energy emission spectrum product of a new energy-dependent atmospheric transmission data base developed by Radiation Research Associates, Inc. for each of the three source types described above. Most of the computational options present in the original program have been retainedmore » in the new version. Hence, the SKYSHINE-II computer code provides a versatile and viable tool for the analysis of the radiation environment in the vicinity of a building structure containing radiation sources, situated within the confines of a nuclear power plant. This report describes many of the calculational methods employed within the SKYSHINE-II program. A brief description of the new data base is included. Utilization instructions for the program are provided for operation of the SKYSHINE-II code on the Brookhaven National Laboratory Central Scientific Computing Facility. A listing of the source decks, block data routines, and the new atmospheric transmission data base are provided in the appendices of the report.« less
Ground-Based Research within NASA's Materials Science Program
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Curreri, Peter (Technical Monitor)
2002-01-01
Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-01-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-11-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
NASA's Space Environments and Effects (SEE) Program
NASA Technical Reports Server (NTRS)
Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken
2003-01-01
This viewgraph presentation gives a broad overview of NASA's Space Enivronments and Effects (SEE) Program. The purpose of the program is to protect spacecraft and their systems from damage by radiation, spacecraft charging, micrometeoroids, contamination, and other hazards posed by aerospace environments. The presentation profiles SEE activities to address each of these hazards. SEE is responsible for overseeing research and product development with a variety of partners.
1982-12-01
parts of the weapon development and ef fects studies each had particular features that led to the possibility of radiation exposure. RADIOLOGICAL...exposures of DOD personnel for interested former partici- pants and for use In public health research and Federal policy studies . Information from...StriActu( ard Equipment 128 Program 4 Bif(,4#crical Studies 133 Program 5 -- Aircrdft Structures 133 Program 6 Test of Service fqipmont and Materials 137
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1979-01-01
Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.
CNRS interdisciplinary research program for solar energy development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The contributions of CNRS to the French national solar energy R and D program are reviewed. The three principal processes in which solar radiation is converted into other, directly usable energy forms are discussed in detail. These include thermodynamic conversion, photovoltaic conversion, and bioconversion to produce a substitute fuel. Related research on insolation and the weather is mentioned and relations with the industrial sector are considered. French collaboration with other countries in solar energy is discussed.
The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991
NASA Technical Reports Server (NTRS)
Vette, James I.
1991-01-01
The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7.
Accomplishments of the Oak Ridge National Laboratory Seed Money program
DOE R&D Accomplishments Database
1986-09-01
In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)
Potential high efficiency solar cells: Applications from space photovoltaic research
NASA Technical Reports Server (NTRS)
Flood, D. J.
1986-01-01
NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.
Summaries of FY 1980 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-09-01
Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)
Research at the Institute of Forest Genetics, Rhinelander, Wisconsin.
Richard M. Jeffers
1971-01-01
Reports research at the Forest Genetics Institute in Rhinelander, Wisconsin, since its beginning in 1957. Describes the physical plant, study objectives, and work program. The latter includes studies of seed source, inheritance in white spruce, disease and insect resistance, interspecific hybridization, radiation genetics and radiobiology, vegetative propagation,...
Elucidation of Heterogeneous Processes Controlling Boost Phase Signatures
1990-09-12
three year research program to develop efficient theoretical methods to study collisional processes involved in radiative signature modeling . The...Marlboro, MD 20772 I. Statement of Problem For strategic defense, it is important to be able to effectively model radiative signaturesl arising from...Thus our computational work was on problems or models for which exact results for making comparisons were available. Our key validations were
NASA Self-Assessment of Space Radiation Research
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2010-01-01
Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue teams will highlight progress and important new knowledge gained. Red teams will challenge the Blue teams on proposed highlights and point to Gaps not considered. We will review the current space radiation Risks and Gaps under investigation at NASA, critical data sets and research highlights anticipated, and possible goals for future research at NSRL.
Radiation Transmission Properties of In-Situ Materials
NASA Technical Reports Server (NTRS)
Heilbronn, L.; Townsend, L. W.; Cucinotta, F.; Kim, M. Y.; Miller, J.; Singleterry, R.; Thibeault, S.; Wilson, J.; Zeitlin, C. J.
2001-01-01
The development of a permanent human presence in space is a key element of NASA's strategic plan for the Human Exploration and Development of Space (HEDS). The habitation of the International Space Station (ISS) is one near-term HEDS objective; the exploration and settlement of the moon and Mars are long-term goals of that plan. Achieving these goals requires maintaining the health and safety of personnel involved in such space operations at a high level, while at the same time reducing the cost of those operations to a reasonable level. Among the limiting factors to prolonged human space operations are the health risks from exposure to the space ionizing radiation environment. In order to keep the risk of radiation induced cancer at acceptable levels, it is necessary to provide adequate shielding from the ionizing radiation environment. The research presented here is theoretical and ground-based experimental study of the neutron production from interactions of GCR-like particles in various shielding components. An emphasis is placed here on research that will aid in the development of in-situ resource utilization. The primary goal of the program is to develop an accurate neutron-production model that is relevant to the NASA HEDS program of designing technologies that will be used in the development of effective shielding countermeasures. A secondary goal of the program is the development of an experimental data base of neutron production cross sections and thick-target yields which will aid model development.
Radiation Control on Uzbekistan Borders - Results and Perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrenko, Vitaliy; Yuldashev, Bekhzod; Ismailov, Ulughbek
2009-12-02
The measures and actions on prevention, detection and response to criminal or unauthorized acts involving radioactive materials in Uzbekistan are presented. In frames of program of radiation monitoring to prevent illicit trafficking of nuclear and radioactive materials main customs border checkpoints were equipped with commercial radiation portal monitors. Special radiation monitors elaborated and manufactured in INP AS RU are installed in INP(main gates, research reactor and laboratory building) to provide nuclear security of Institute facilities. The experience of Uzbekistan in establishing radiation monitoring systems on its borders, their operation and maintenance would be useful for realization of proposed plan ofmore » strengthening measures to prevent illicit trafficking in Republics of Central Asia region.« less
NASA Technical Reports Server (NTRS)
Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.
1990-01-01
The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.
Free-electron laser wavelength-selective materials alteration and photoexcitation spectroscopy
NASA Astrophysics Data System (ADS)
Tolk, N. H.; Albridge, R. G.; Barnes, A. V.; Barnes, B. M.; Davidson, J. L.; Gordon, V. D.; Margaritondo, G.; McKinley, J. T.; Mensing, G. A.; Sturmann, J.
1996-10-01
The free-electron laser (FEL) has become an important tool for producing high-intensity photon beams, especially in the infrared. Synchrotron radiation's primary spectral domains are in the ultraviolet and X-ray region. FEL's are therefore excellent complimentary facilities to synchrotron radiation sources. While FEL's have seen only limited use in experimentation, recently developed programs at Vanderbilt University in Nashville, TN, are swiftly rectifying this situation. This review paper examines practical experience obtained through pioneering programs using the Vanderbilt FEL, which currently hosts one of the largest FEL materials research programs. Results will be discussed in three areas: two-photon absorption in germanium, FEL-assisted internal photoemission measurements of interface energy barriers (FELIPE), and wavelength-specific laser diamond ablation.
10 CFR 35.24 - Authority and responsibilities for the radiation protection program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of this...) Radiation protection program changes that do not require a license amendment and are permitted under § 35.26... responsible for implementing the radiation protection program. The licensee, through the Radiation Safety...
10 CFR 35.24 - Authority and responsibilities for the radiation protection program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of this...) Radiation protection program changes that do not require a license amendment and are permitted under § 35.26... responsible for implementing the radiation protection program. The licensee, through the Radiation Safety...
10 CFR 35.24 - Authority and responsibilities for the radiation protection program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of this...) Radiation protection program changes that do not require a license amendment and are permitted under § 35.26... responsible for implementing the radiation protection program. The licensee, through the Radiation Safety...
10 CFR 35.24 - Authority and responsibilities for the radiation protection program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of this...) Radiation protection program changes that do not require a license amendment and are permitted under § 35.26... responsible for implementing the radiation protection program. The licensee, through the Radiation Safety...
10 CFR 35.24 - Authority and responsibilities for the radiation protection program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of this...) Radiation protection program changes that do not require a license amendment and are permitted under § 35.26... responsible for implementing the radiation protection program. The licensee, through the Radiation Safety...
Science Goals in Radiation Protection for Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francs A.
2008-01-01
Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory (NSRL) located at DoE s Brookhaven National Laboratory in Upton, NY. We describe recent NSRL results that are closing the knowledge gap in HZE radiobiology and improving exploration risk estimates. Linking probabilistic risk assessment to research goals makes it possible to express risk management objectives in terms of quantitative metrics, which include the number of days in space without exceeding a given risk level within well defined confidence limits, and probabilistic assessments of the effectiveness of design trade spaces such as material type, mass, solar cycle, crew selection criteria, and biological countermeasures. New research in SPE alert and risk assessment, individual radiation sensitivity, and biological countermeasure development are described.
Human Research Program Space Radiation Standing Review Panel (SRP)
NASA Technical Reports Server (NTRS)
Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina
2010-01-01
The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be frowned upon. We understand the desire of management to ensure that research stay focused on mission objectives, but the terms used are code words fraught with different meaning for scientists. Such expressions, taken at face value, convey a profoundly flawed view of science, can easily lead down counterproductive paths, and have the potential to irretrievably corrupt NASA requirements. The SRP understands and endorses the mandate to keep research efforts focused on the mission needs. However, thoughtful application of knowledge gained by understanding the mechanisms and pathways of biological effects cannot be replaced.
Development of new on-line statistical program for the Korean Society for Radiation Oncology
Song, Si Yeol; Ahn, Seung Do; Chung, Weon Kuu; Choi, Eun Kyung; Cho, Kwan Ho
2015-01-01
Purpose To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. Materials and Methods The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Results Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. Conclusion The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology. PMID:26157684
Development of new on-line statistical program for the Korean Society for Radiation Oncology.
Song, Si Yeol; Ahn, Seung Do; Chung, Weon Kuu; Shin, Kyung Hwan; Choi, Eun Kyung; Cho, Kwan Ho
2015-06-01
To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology.
... burn pit registry, research findings, joint VA and Department of Defense programs, and more. Learn more » 4 Ways to Find Exposures Related Health Concerns Agent Orange Related Diseases Gulf War Veterans' Illnesses Radiation Related Diseases Vaccinations & Medications More ...
10 CFR 20.1101 - Radiation protection programs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...
10 CFR 20.1101 - Radiation protection programs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...
10 CFR 20.1101 - Radiation protection programs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...
10 CFR 20.1101 - Radiation protection programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...
10 CFR 20.1101 - Radiation protection programs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...
Agarwal, Ankit; DeNunzio, Nicholas J; Ahuja, Divya; Hirsch, Ariel E
2014-01-01
To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
1992-01-09
necrosis and thus maintain viability during acute condi- tions of ischemia and compartmental syndrome . It is not known. how- ever, if HBO will continue...adds considerable incentive for flexible database design. Adding to the complexity of the database are emitter sector coverage, radiating power, and...rather, it supplements the time-weighted average(TWA) limit where there are recognized acute effects from a substance whose toxic effects are
1992-01-09
community and should form an impetus for future work in this rapidly developing field. SUMMARY A powerful experimental technique, that of X-ray...appropriate solar radiation absorption properties must be mixed with the hydrogen. Studies have been made which show the alkali metals to be powerful ...deposition of carbon. The treated substrates were placed in a tube furnace through which an acetylene-hydrogen or propane-hydrogen mixture flowed
AMF3 ARM's Research Facility at Oliktok Point Alaska
NASA Astrophysics Data System (ADS)
Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.
2015-12-01
Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.
Research in cosmic and gamma ray astrophysics: Cosmic physics portion
NASA Technical Reports Server (NTRS)
Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen
1993-01-01
Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.
WE-G-BRB-01: The Importance of NIH Funding in Innovation in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deye, J.
Over the past 20 years the NIH has funded individual grants, program projects grants, and clinical trials which have been instrumental in advancing patient care. The ways that each grant mechanism lends itself to the different phases of translating research into clinical practice will be described. Major technological innovations, such as IMRT and proton therapy, have been advanced with R01-type and P01-type funding and will be discussed. Similarly, the role of program project grants in identifying and addressing key hypotheses on the potential of 3D conformal therapy, normal tissue-guided dose escalation and motion management will be described. An overview willmore » be provided regarding how these technological innovations have been applied to multi-institutional NIH-sponsored trials. Finally, the panel will discuss regarding which research questions should be funded by the NIH to inspire the next advances in radiation therapy. Learning Objectives: Understand the different funding mechanisms of the NIH Learn about research advances that have led to innovation in delivery Review achievements due to NIH-funded program project grants in radiotherapy over the past 20 years Understand example advances achieved with multi-institutional clinical trials NIH.« less
WE-G-BRB-03: Innovating the Delivery of Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortfeld, T.
2015-06-15
Over the past 20 years the NIH has funded individual grants, program projects grants, and clinical trials which have been instrumental in advancing patient care. The ways that each grant mechanism lends itself to the different phases of translating research into clinical practice will be described. Major technological innovations, such as IMRT and proton therapy, have been advanced with R01-type and P01-type funding and will be discussed. Similarly, the role of program project grants in identifying and addressing key hypotheses on the potential of 3D conformal therapy, normal tissue-guided dose escalation and motion management will be described. An overview willmore » be provided regarding how these technological innovations have been applied to multi-institutional NIH-sponsored trials. Finally, the panel will discuss regarding which research questions should be funded by the NIH to inspire the next advances in radiation therapy. Learning Objectives: Understand the different funding mechanisms of the NIH Learn about research advances that have led to innovation in delivery Review achievements due to NIH-funded program project grants in radiotherapy over the past 20 years Understand example advances achieved with multi-institutional clinical trials NIH.« less
NASA Astrophysics Data System (ADS)
Emanuel, K.
2015-12-01
Since the revolutionary work of Vilhelm Bjerknes, Jule Charney, and Eric Eady, geophysical fluid dynamics has dominated weather research and continues to play an important in climate dynamics. Although the physics of radiative transfer is central to understanding climate, it has played a far smaller role in weather research and is given only rudimentary attention in most educational programs in meteorology. Yet key contemporary problems in atmospheric science, such as the Madden-Julian Oscillation and the self-aggregation of moist convection, do not appear to have been solved by approaches based strictly on fluid dynamics and moist adiabatic thermodynamics. Here I will argue that many outstanding problems in meteorology and climate science involve a nontrivial coupling of circulation and radiation physics. In particular, the phenomenon of self-aggregation of moist convection depends on the interaction of radiation with time-varying water vapor and clouds, with strong implications for such diverse problems as the Madden-Julian Oscillation, tropical cyclones, and the relative insensitivity of tropical climate to radiative forcing. This argues for an augmentation of radiative transfer physics in graduate curricula in atmospheric sciences.
32 CFR Appendix B to Part 286 - Addressing FOIA Requests
Code of Federal Regulations, 2010 CFR
2010-07-01
... (International & Commercial Programs) Deputy Under Secretary of Defense (Industrial Affairs & Installations... Research & Engineering Director, Small & Disadvantaged Business Utilization Director, Defense Procurement Director, Test Systems Engineering & Evaluation Director, Strategic & Tactical Systems DoD Radiation...
NASA Astrophysics Data System (ADS)
Migdal, W.; Owczarczyk, B.; Kedzia, B.; Holderna-Kedzia, E.; Segiet-Kujawa, E.
1998-06-01
Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.
NASA Astrophysics Data System (ADS)
Margolin, B. Z.; Yurchenko, E. V.; Morozov, A. M.; Pirogova, N. E.; Brumovsky, M.
2013-03-01
The effect of neutron flux on embrittlement of WWER RPV materials is analyzed for cases when different radiation defects prevail. Data bases on the ductile-brittle transition temperature shifts obtained in the surveillance specimens programs and the research programs are used. The material embrittlement mechanisms for which the flux effect is practically absent and for which the flux effect is remarkable are determined. For case when the phosphorus segregation mechanism dominates the theoretical justification of the absence of the flux effect is performed on the basis of the theory of radiation-enhanced diffusion.
Results of Research on Overcoming Pulse Shortening of GW Class HPM Sources
1997-05-29
The RPM sources basic research program of the Air Force has a major emphasis on the pulse shortening problem. This includes collaborative work in...universities and the Phillips Laboratory . We have demonstrated two fundamentally different RPM sources which radiate rf power in excess of 1 GW and are
Department of Defense In-House RDT&E Activities
1983-10-30
CONDUCT.RESEARCH IN MICROBIOLOGY , CHEM- ISTRY, BIOCHEMISTRY, IMMUNOLOGY, RADIATION EFFECTS, PHlA1fACOLOGY, PHYSI- OLOf;Y, HISTOLOGY & PATHOLOGY AS THEY...IMPORTANT PROGRAMS BURN INFECTION, TREATMENT & PREVENTION. METABOLISM & NUTRITIONAL EFFECTS OF BURN INJURY IN SOLDIERS. INFECTION & MICROBIOLOGIC ...RESEARCH CAPABILITIES IN THE FIELDS OF PATHOLOGY, MICROBIOLOGY , EXPERIMENTAL SURGERY, & BIOCHEMISTRY. MAINTAINS AN ANIMAL COLONY, ELECTRONIC SHOP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark Alan
This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommendingmore » instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.« less
Kerkmeijer, Linda G W; Fuller, Clifton D; Verkooijen, Helena M; Verheij, Marcel; Choudhury, Ananya; Harrington, Kevin J; Schultz, Chris; Sahgal, Arjun; Frank, Steven J; Goldwein, Joel; Brown, Kevin J; Minsky, Bruce D; van Vulpen, Marco
2016-01-01
An international research consortium has been formed to facilitate evidence-based introduction of MR-guided radiotherapy (MR-linac) and to address how the MR-linac could be used to achieve an optimized radiation treatment approach to improve patients' survival, local, and regional tumor control and quality of life. The present paper describes the organizational structure of the clinical part of the MR-linac consortium. Furthermore, it elucidates why collaboration on this large project is necessary, and how a central data registry program will be implemented.
Satellite Data Support for the ARM Climate Research Facility, 8/01/2009 - 7/31/2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnis, Patrick; Khaiyer, Mandana M
This report summarizes the support provided by NASA Langley Research for the DOE ARM Program in the form of cloud and radiation products derived from satellite imager data for the period between 8/01/09 through 7/31/15. Cloud properties such as cloud amount, height, and optical depth as well as outgoing longwave and shortwave broadband radiative fluxes were derived from geostationary and low-earth orbiting satellite imager radiance measurements for domains encompassing ARM permanent sites and field campaigns during the performance period. Datasets provided and documents produced are listed.
Cyclotron Provides Neutron Therapy for Cancer Patients
1978-01-21
A cancer patient undergoes treatment in the Neutron Therapy Treatment Facility, or Cylotron, at the National Aeronautics and Space Administration (NASA) Lewis Research Center. After World War II Lewis researchers became interested in nuclear energy for propulsion. The focused their efforts on thermodynamics and strength of materials after radiation. In 1950 an 80-person Nuclear Reactor Division was created, and a cyclotron was built behind the Materials and Structures Laboratory. An in-house nuclear school was established to train these researchers in their new field. NASA cancelled its entire nuclear program in January 1973, just as the cyclotron was about to resume operations after a major upgrade. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron for a new type of radiation treatment for cancer patients. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. The facility had a dual-beam system that could target the tumor both vertically and horizontally. Over the course of five years, the cyclotron was used to treat 1200 patients. It was found to be particularly effective on salivary gland, prostrate, and other tumors. It was not as successful with tumors of the central nervous system. The program was terminated in 1980 as the Clinic began concentrating on non-radiation treatments.
Space and radiation protection: scientific requirements for space research
NASA Technical Reports Server (NTRS)
Schimmerling, W.
1995-01-01
Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.
Request for Travel Funds for Systems Radiation Biology Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcellos-Hoff, Mary Helen
The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expensesmore » of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, K.; Hurh, P.
The Radiation Damage In Accelerator Target Environments (RaDIATE) collaboration was founded in 2012 and currently consists of over 50 participants and 11 institutions globally. Due to the increasing power of future proton accelerator sources in target facilities, there is a critical need to further understand the physical and thermo-mechanical radiation response of target facility materials. Thus, the primary objective of the RaDIATE collaboration is to draw on existing expertise in the nuclear materials and accelerator targets fields to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current research activities of the collaboration include postmore » irradiation examination (PIE) of decommissioned components from existing beamlines such as the NuMI beryllium beam window and graphite NT-02 target material. PIE of these components includes advanced microstructural analyses (SEM/TEM, EBSD, EDS) and micro-mechanics technique such as nano-indentation, to help characterize any microstructural radiation damage incurred during operation. New irradiation campaigns of various candidate materials at both low and high energy beam facilities are also being pursued. Beryllium helium implantation studies at the University of Surrey as well as high energy proton irradiation of various materials at Brookhaven National Laboratory’s BLIP facility have been initiated. The program also extends to beam-induced thermal shock experiments using high intensity beam pulses at CERN’s HiRadMat facility, followed by advanced PIE activities to evaluate thermal shock resistance of the materials. Preliminary results from ongoing research activities, as well as the future plans of the RaDIATE collaboration R&D program will be discussed.« less
1991-06-04
Rhodes CO-INVESTIGATORS: Ting Shan Luk Armon McPherson Keith Boyer PROGRAM MANAGER: Dr. Howard Schlossberg Air Force Office of Scientific Research /NP...Scientific Research Boiling Air Force Base Washington, D. C. 20332-6448 e92-19919 Pr ,’ted on O % ,ecyc~ed pe TABLE OF CONTENTS ABSTRACT...1 1. INTRODUCTION .......... ........................... 2 II. GENERAL DISCUSSION OF RESEARCH ....... ................ 2 A
Fundamentals of health physics for the radiation-protection officer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.
1983-03-01
The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)
Hanford Laboratories monthly activities report, February 1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-03-16
This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2015-10-01
The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that providemore » ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya
Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Societymore » for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students.« less
NASA Technical Reports Server (NTRS)
Simpson, John A.; Garcia-Munoz, Moises
1995-01-01
Research was continued on the origins, acceleration mechanisms, and the propagation modes of the hierarchy of energetic charged particles found in a wide range of astrophysical settings, extending from the cosmic rays arriving from the depth of the galaxy to the energetic particles in the heliosphere and in the near earth environment. In particular this grant has been a vital support in the investigation of the particle radiations in the earth's magnetosphere. The ONR-604 instrument was launched in July 1990 aboard the CRRES spacecraft. The CRRES mission has been a joint program of NASA and the U.S. Air Force Space Test Program which has provided launch support and telemetry coverage. The spacecraft was placed into a low-inclination eccentric orbit with a period of approximately 10 hours, and thus measured charged particle fluxes in both interplanetary space and in the earth's trapped radiation. ONR-604 performed extremely well, both in interplanetary space and in the intense radiation belt environment. We were able to make detailed measurements of interplanetary fluxes and composition into L=4, or for more than 50% of the orbital period. Thus the experiment produced two valuable datasets, one set outside of L=4 for interplanetary studies, and one set inside of L=4 for radiation belt studies. The data returned by the University of Chicago ONR-604 instrument has been the base for 10 papers on magnetospheric and galactic energetic-particle research.
Minimizing the Health Effects of the Nuclear Accident in Fukushima on Thyroids.
Nagataki, Shigenobu
2016-12-01
Because of the March 2011 nuclear accident in Fukushima, Japan, the Fukushima Prefecture initiated a thyroid ultrasound examination program. The first cycle of examinations on all children (more than 300,000) of the Fukushima Prefecture identified 116 patients as having malignant or suspected malignant thyroid nodules, and in the second cycle 59 new cases were identified. According to the available data, the thyroid cancers found by the screening are unlikely to be due to radiation, but the possibility cannot be excluded. The current thyroid ultrasound examination program has been detecting thyroid cancers, regardless of the cause, in all children in the Fukushima Prefecture. Fukushima Prefecture is already taking measures against thyroid cancer, even if an increase occurs in radiation-induced thyroid cancer in Fukushima Prefecture. Therefore, the urgent challenge is how to treat children with thyroid cancer found by the screening. At the end of each cycle, the findings must be carefully discussed with experts around the world and among stakeholders in Fukushima, and a consensus must be reached regarding whether the current program will be continued or needs improvement. In addition, the survey should be improved as an epidemiological follow-up research program. Before starting this, a consensus must be reached with the inhabitants with regard to carrying out epidemiological research for several decades. Dialogue absolutely must continue among all stakeholders to determine how best to formulate a program to deal with urgent matters and to determine the next stage of any epidemiological research.
SlicerRT: radiation therapy research toolkit for 3D Slicer.
Pinter, Csaba; Lasso, Andras; Wang, An; Jaffray, David; Fichtinger, Gabor
2012-10-01
Interest in adaptive radiation therapy research is constantly growing, but software tools available for researchers are mostly either expensive, closed proprietary applications, or free open-source packages with limited scope, extensibility, reliability, or user support. To address these limitations, we propose SlicerRT, a customizable, free, and open-source radiation therapy research toolkit. SlicerRT aspires to be an open-source toolkit for RT research, providing fast computations, convenient workflows for researchers, and a general image-guided therapy infrastructure to assist clinical translation of experimental therapeutic approaches. It is a medium into which RT researchers can integrate their methods and algorithms, and conduct comparative testing. SlicerRT was implemented as an extension for the widely used 3D Slicer medical image visualization and analysis application platform. SlicerRT provides functionality specifically designed for radiation therapy research, in addition to the powerful tools that 3D Slicer offers for visualization, registration, segmentation, and data management. The feature set of SlicerRT was defined through consensus discussions with a large pool of RT researchers, including both radiation oncologists and medical physicists. The development processes used were similar to those of 3D Slicer to ensure software quality. Standardized mechanisms of 3D Slicer were applied for documentation, distribution, and user support. The testing and validation environment was configured to automatically launch a regression test upon each software change and to perform comparison with ground truth results provided by other RT applications. Modules have been created for importing and loading DICOM-RT data, computing and displaying dose volume histograms, creating accumulated dose volumes, comparing dose volumes, and visualizing isodose lines and surfaces. The effectiveness of using 3D Slicer with the proposed SlicerRT extension for radiation therapy research was demonstrated on multiple use cases. A new open-source software toolkit has been developed for radiation therapy research. SlicerRT can import treatment plans from various sources into 3D Slicer for visualization, analysis, comparison, and processing. The provided algorithms are extensively tested and they are accessible through a convenient graphical user interface as well as a flexible application programming interface.
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Human Research Program Integrated Research Plan: December 20, 2007, Interim Baseline
NASA Technical Reports Server (NTRS)
2008-01-01
The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. This Integrated Research Plan (IRP) describes the program s research activities that are intended to address the needs of human space exploration and serve HRP customers. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration. The document serves several purposes for the Human Research Program: The IRP provides a means to assure that the most significant risks to human space explorers are being adequately mitigated and/or addressed, The IRP shows the relationship of research activities to expected outcomes and need dates, The IRP shows the interrelationships among research activities that may interact to produce products that are integrative or cross defined research disciplines, The IRP illustrates the non-deterministic nature of research and technology activities by showing expected decision points and potential follow-on activities, The IRP shows the assignments of responsibility within the program organization and, as practical, the intended solicitation approach, The IRP shows the intended use of research platforms such as the International Space Station, NASA Space Radiation Laboratory, and various space flight analogs. The IRP does not show all budgeted activities of the Human research program, as some of these are enabling functions, such as management, facilities and infrastructure
NASA Astrophysics Data System (ADS)
2015-04-01
The International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 14-38-10210 and No. 14-02-20376.
NASA Astrophysics Data System (ADS)
2016-02-01
The International Scientific Conference "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held fourfold in Tomsk, Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), the island of Cyprus. The XI conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was also held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 15-02-20616.
Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Stoffel, T.; Reda, I.
2014-03-01
Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.
2009-03-01
18 December 2007). 19. HAARP , The Hgh Frequency Actve Auroral Research Program. Glossary of Solar and Geophysical Terms. Avalable at...www.haarp.alaska.edu/ haarp /glos.html (accessed: 4 September 2007). 13 20. IZMIRAN. Pushkov Insttute of Terrestral Mag- netsm, Ionosphere and Radowave
TU-CD-303-05: Unveiling Tumor Heterogeneity by Molecular Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeraj, R.
2015-06-15
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
Martin-Brennan, Cindy; Joshi, Jitendra
2003-12-01
Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.
Prasanna, Pataje G. S.; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J.; Ahmed, Mansoor M.; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C. Norman
2015-01-01
Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering preclinical and clinical evidence to obtain regulatory approval and provide a basis for broader venture capital needs and support from pharmaceutical companies to fully capitalize on the advances made thus far in this field. PMID:26284423
Prasanna, Pataje G S; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J; Ahmed, Mansoor M; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C Norman
2015-09-01
Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering preclinical and clinical evidence to obtain regulatory approval and provide a basis for broader venture capital needs and support from pharmaceutical companies to fully capitalize on the advances made thus far in this field.
Research in particle and gamma-ray astrophysics
NASA Technical Reports Server (NTRS)
Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.
1988-01-01
Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. Each activity is described, followed by a bibliography. The research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the earth and other planets. These investigations were performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.
Atmospheric Radiation Measurement Program facilities newsletter, January 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D.L.
2000-02-16
The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sitsmore » in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.« less
AFRRI Annual Research Reports, Fiscal Year 1992
1993-01-01
ghwaySt. Suite t204 Arlington. VA 22202 4302. and to the Office of Management and Budget. Pperwwork Rteductionlikofect ,0704-01") Washington DC 20503...VA 22161; telephone (703)487-4650. Contents M essage from the Director ..... . 1 F oreword ............... . . 3 p erformance Management Program...22 Casualty Management Program . . 29 Reconstitution of hemopoiesis and resistance to sepsis and septic shock in preclinical models of radiation
10 CFR 35.26 - Radiation protection program changes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4) The...
10 CFR 35.26 - Radiation protection program changes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4) The...
10 CFR 35.26 - Radiation protection program changes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4) The...
10 CFR 35.26 - Radiation protection program changes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4) The...
10 CFR 35.26 - Radiation protection program changes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Radiation protection program changes. 35.26 Section 35.26... Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection... been reviewed and approved by the Radiation Safety Officer and licensee management; and (4) The...
Ionospheric Modification from Under-Dense Heating by High-Power HF Transmitter
2011-03-03
Auroral Research Program ( HAARP ) is a HF transmitter, which delivers 0.36 to 3.6 GW effective isotropic radiated powers (F.IRP) for the radiation...dense heating, the EIRP of the HAARP heater can be increased significantly by increasing the heater frequency. With higher heater frequency, the loss...1304 local time) and on 13 April from 0812 to 0844 UTC (0012 to 0044 local time), using the HAARP transmitter facility at Gakona, AK, at full power
RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Orlando
The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centersmore » and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.« less
Spraker, Matthew B; Nyflot, Matthew; Hendrickson, Kristi; Ford, Eric; Kane, Gabrielle; Zeng, Jing
The safety and quality of radiation therapy have recently garnered increased attention in radiation oncology (RO). Although patient safety guidelines expect physicians and physicists to lead clinical safety and quality improvement (QI) programs, trainees' level of exposure to patient safety concepts during training is unknown. We surveyed active medical and physics RO residents in North America in February 2016. Survey questions involved demographics and program characteristics, exposure to patient safety topics, and residents' attitude regarding their safety education. Responses were collected from 139 of 690 (20%) medical and 56 of 248 (23%) physics RO residents. More than 60% of residents had no exposure or only informal exposure to incident learning systems (ILS), root cause analysis, failure mode and effects analysis (FMEA), and the concepts of human factors engineering. Medical residents had less exposure to FMEA than physics residents, and fewer medical than physics residents felt confident in leading FMEA in clinic. Only 27% of residents felt that patient safety training was adequate in their program. Experiential learning through practical workshops was the most desired educational modality, preferred over web-based learning. Residents training in departments with ILS had greater exposure to patient safety concepts and felt more confident leading clinical patient safety and QI programs than residents training in departments without an ILS. The survey results show that most residents have no or only informal exposure to important patient safety and QI concepts and do not feel confident leading clinical safety programs. This represents a gaping need in RO resident education. Educational programs such as these can be naturally developed as part of an incident learning program that focuses on near-miss events. Future research should assess the needs of RO program directors to develop effective RO patient safety and QI training programs. Copyright © 2016 American Society of Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Policy Statements and Position Papers.
ERIC Educational Resources Information Center
Journal of Dental Education, 1983
1983-01-01
Policy statements and position papers are presented that are intended as recommendations and guidelines for member institutions. They cover education, research, delivery of care, peer review, freedoms and responsibilities of individuals and institutions, national health programs, interdisciplinary education, radiation, and due process. (MLW)
Beneficial uses program. Progress report ending December 31, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-06-01
Progress is reported in research on uses of irradiated sewage sludge, particularly as a cattle feed supplement and commercial fertilizer additive, on potential sites for irradiator demonstration plants, and on the inactivation of enteric bacteria by radiation treatment. (LCL)
James A. Van Allen: The Trip to Jupiter
ERIC Educational Resources Information Center
Jacobsen, Sally
1973-01-01
Discusses the research purposes and activities of the Pioneer mission, including the instruments used, data on Jupiter's radiation belt, and information about cosmic ray intensity. Included is a description of the scientist's view about the value of the space program. (CC)
Emery, Robert J; Gutiérrez, Janet M
2017-08-01
Organizations possessing sources of ionizing radiation are required to develop, document, and implement a "radiation protection program" that is commensurate with the scope and extent of permitted activities and sufficient to ensure compliance with basic radiation safety regulations. The radiation protection program must also be reviewed at least annually, assessing program content and implementation. A convenience sample assessment of web-accessible and voluntarily-submitted radiation protection program annual review reports revealed that while the reports consistently documented compliance with necessary regulatory elements, very few included any critical contextual information describing how important the ability to possess radiation sources was to the central mission of the organization. Information regarding how much radioactive material was currently possessed as compared to license limits was also missing. Summarized here are suggested contextual elements that can be considered for possible inclusion in annual radiation protection program reviews to enhance stakeholder understanding and appreciation of the importance of the ability to possess radiation sources and the importance of maintaining compliance with associated regulatory requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, E.
2015-06-15
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
Semi-Autonomous Rodent Habitat for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.
2018-01-01
NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups of mice exposed to simulated Galactic Cosmic Radiation (at the NASA Space Radiation Lab). Results can then be compared to identical experiments conducted on the ISS. Together results from Gateway, ground-based, and ISS rodent experiments will provide novel insight into the effects of space radiation.
Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology
NASA Astrophysics Data System (ADS)
Azhar, M.; Ahsanulkhaliqin, A. W.
2014-02-01
Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, 60Co and 137Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for 60Co and 30.1 years for 137Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma greenhouse mainly cover Research and Development, Research Collaboration, Exchange of Information, Irradiation Services, Training Programs, Education, Exchange of Scientists and Seminars/ Conferences.
Science & Technology Review November 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budil, K
This months issue of Science and Technology Review has the following articles: (1) High-Tech Help for Fighting Wildfires--Commentary by Leland W. Younker; (2) This Model Can Take the Heat--A physics-based simulation program to combat wildfires combines the capabilities and resources of Lawrence Livermore and Los Alamos national laboratories. (3) The Best and the Brightest Come to Livermore--The Lawrence Fellowship Program attracts the most sought-after postdoctoral researchers to the Laboratory. (4) A view to Kill--Livermore sensors are aimed at the ''kill'' vehicle when it intercepts an incoming ballistic missile. (5) 50th Anniversary Highlight--Biological Research Evolves at Livermore--Livermore's biological research program keepsmore » pace with emerging national issues, from studying the effects of ionizing radiation to detecting agents of biological warfare.« less
Image based Monte Carlo Modeling for Computational Phantom
NASA Astrophysics Data System (ADS)
Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican
2014-06-01
The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.
INEL BNCT Research Program Annual Report 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1994-08-01
This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from all the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, boron drug analysis), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented. Results of 21 spontaneous-tumor-bearing dogsmore » that have been treated with boron neutron capture therapy at the Brookhaven National Laboratory are updated. Boron-containing drug purity verification is discussed in some detail. Advances in magnetic resonance imaging of boron in vivo are discussed. Several boron-carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Measurement of the epithermal-neutron flux of the Petten (The Netherlands) High Flux Reactor beam (HFB11B), and comparison to predictions are shown.« less
NCRP Program Area Committee 2: Operational Radiation Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Kathryn H.; Goldin, Eric M.
2016-02-29
Program Area Committee 2 of the National Council on Radiation Protection and Measurements provides guidance for radiation safety in occupational settings in a variety of industries and activities. The committee completed three reports in recent years covering recommendations for the development and administration of radiation safety programs for smaller educational institutions, requirements for self-assessment programs that improve radiation safety and identify and correct deficiencies, and a comprehensive process for effective investigation of radiological incidents. Ongoing work includes a report on sealed radioactive source controls and oversight of a report on radioactive nanomaterials focusing on gaps within current radiation safety programs.more » Future efforts may deal with operational radiation safety programs in fields such as the safe use of handheld and portable X-Ray fluorescence analyzers, occupational airborne radioactive contamination, unsealed radioactive sources, or industrial accelerators.« less
Solar influences on global change
NASA Technical Reports Server (NTRS)
1994-01-01
Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.
Postdoctoral Opportunities in Medical Physics
NASA Astrophysics Data System (ADS)
Hogstrom, Kenneth
2006-04-01
The medical physicist is a professional who specializes in the application of the concepts and methods of physics to the diagnosis and treatment of human disease. Medical physicists identify their primary discipline to be radiation therapy (78%), medical imaging (16%), nuclear medicine (3%), or radiation safety (2%). They state their primary responsibility to be clinical (78%), academic (9%), research (4%), etc. Correspondingly, medical physicists reveal their primarily employment to be a private hospital (42%), university hospital (32%), physicist's service group (9%), physician's service group (9%), industry (5%), and government (3%). The most frequent job of medical physicists is clinical radiation therapy physicist, whose clinical duties include: equipment acquisition, facility design, commissioning, machine maintenance, calibration and quality assurance, patient treatment planning, patient dose calculation, management of patient procedures, development of new technology, radiation safety, and regulatory compliance. The number of medical physicists in the United States can be estimated by the number of members of the American Association of Physicists in Medicine (AAPM), which has increased 5.5% annually since 1969, currently being 5,000. New positions plus retirements create a current need >300 new medical physicists per year, which exceeds supply. This is supported by the steady growth in average salaries, being 100,000 for PhDs entering the field and reaching 180,000. Graduate programs alone cannot meet demand, and physicists entering the field through postdoctoral training in medical physics remain important. Details of postdoctoral research programs and medical physics residency programs will provide direction to physics PhD graduates interested in medical physics. [The AAPM, its annual Professional Information Report, and its Public Education Committee are acknowledged for information contributing to this presentation.
NASA Astrophysics Data System (ADS)
Melanson, Mark; Bosley, William; Santiago, Jodi; Hamilton, Daniel
2010-02-01
Tracing their distinguished history back to the Manhattan Project that developed the world's first atomic bomb, the Nuclear Medical Science Officers are the Army's experts on radiation and its health effects. Serving around the globe, these commissioned Army officers serve as military health physicists that ensure the protection of Soldiers and those they defend against all sources of radiation, military and civilian. This poster will highlight the various roles and responsibilities that Nuclear Medical Science Officers fill in defense of the Nation. Areas where these officers serve include medical health physics, deployment health physics, homeland defense, emergency response, radiation dosimetry, radiation research and training, along with support to the Army's corporate radiation safety program and international collaborations. The poster will also share some of the unique military sources of radiation such as depleted uranium, which is used as an anti-armor munition and in armor plating because of its unique metallurgic properties. )
10 CFR 35.2026 - Records of radiation protection program changes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of radiation protection program changes. 35.2026... Records of radiation protection program changes. A licensee shall retain a record of each radiation protection program change made in accordance with § 35.26(a) for 5 years. The record must include a copy of...
10 CFR 35.2026 - Records of radiation protection program changes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of radiation protection program changes. 35.2026... Records of radiation protection program changes. A licensee shall retain a record of each radiation protection program change made in accordance with § 35.26(a) for 5 years. The record must include a copy of...
10 CFR 35.2026 - Records of radiation protection program changes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection program changes. 35.2026... Records of radiation protection program changes. A licensee shall retain a record of each radiation protection program change made in accordance with § 35.26(a) for 5 years. The record must include a copy of...
10 CFR 35.2026 - Records of radiation protection program changes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of radiation protection program changes. 35.2026... Records of radiation protection program changes. A licensee shall retain a record of each radiation protection program change made in accordance with § 35.26(a) for 5 years. The record must include a copy of...
10 CFR 35.2026 - Records of radiation protection program changes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of radiation protection program changes. 35.2026... Records of radiation protection program changes. A licensee shall retain a record of each radiation protection program change made in accordance with § 35.26(a) for 5 years. The record must include a copy of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
Comparison of Stopping Power and Range Databases for Radiation Transport Study
NASA Technical Reports Server (NTRS)
Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.
1997-01-01
The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.
NASA Technical Reports Server (NTRS)
Baily, N. A.
1973-01-01
The radiological implications of statistical variations in energy deposition by ionizing radiation were investigated in the conduct of the following experiments: (1) study of the production of secondary particles generated by the passage of the primary radiation through bone and muscle; (2) the study of the ratio of nonreparable to reparable damage in DNA as a function of different energy deposition patterns generated by X rays versus heavy fast charged particles; (3) the use of electronic radiography systems for direct fluoroscopic tomography and for the synthesis of multiple planes and; (4) the determination of the characteristics of systems response to split fields having different contrast levels, and of minimum detectable contrast levels between the halves under realistic clinical situations.
NASA Technical Reports Server (NTRS)
Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Connor J.; Turner, David D.; Spinhirne, James D.; Scott, V. Stanley, III; Hwang, I. H.; Einaudi, Franco (Technical Monitor)
2001-01-01
Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involves a knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through I the Atmospheric Radiation Measurement (ARM) program has constructed four long- term atmospheric observing sites in strategic climate regimes (north central Oklahoma, In Barrow. Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing Pulse energy through a shared, coaxial transmit/receive telescope. ARM NIPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. A multiple cloud boundary detection algorithm is also described. These techniques in tandem represent an operational value added processing package used to produce normalized data products for Cloud and aerosol research and the historical ARM data archive.
Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooraghi, Michael
2015-09-01
The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise asmore » part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.« less
Analysis of outcomes in radiation oncology: An integrated computational platform
Liu, Dezhi; Ajlouni, Munther; Jin, Jian-Yue; Ryu, Samuel; Siddiqui, Farzan; Patel, Anushka; Movsas, Benjamin; Chetty, Indrin J.
2009-01-01
Radiotherapy research and outcome analyses are essential for evaluating new methods of radiation delivery and for assessing the benefits of a given technology on locoregional control and overall survival. In this article, a computational platform is presented to facilitate radiotherapy research and outcome studies in radiation oncology. This computational platform consists of (1) an infrastructural database that stores patient diagnosis, IMRT treatment details, and follow-up information, (2) an interface tool that is used to import and export IMRT plans in DICOM RT and AAPM/RTOG formats from a wide range of planning systems to facilitate reproducible research, (3) a graphical data analysis and programming tool that visualizes all aspects of an IMRT plan including dose, contour, and image data to aid the analysis of treatment plans, and (4) a software package that calculates radiobiological models to evaluate IMRT treatment plans. Given the limited number of general-purpose computational environments for radiotherapy research and outcome studies, this computational platform represents a powerful and convenient tool that is well suited for analyzing dose distributions biologically and correlating them with the delivered radiation dose distributions and other patient-related clinical factors. In addition the database is web-based and accessible by multiple users, facilitating its convenient application and use. PMID:19544785
Status of Cardiovascular Issues Related to Space Flight: implications for Future Research Directions
2009-01-01
identified in the 2007 NASA Human Integrated Research Program. An evidence-based approach to identify the research priorities needed to resolve those...radiation needs to be defined. In contrast, data from the literature support the notion that the highest probability of occurrence and operational impact...identify and prioritize the most important ques- tions or problems needed to be resolved in order to assure the successful completion of extended
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal researchmore » community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.« less
Research Associate | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.
Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.
Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
NASA Astrophysics Data System (ADS)
Gao, Sha; Mao, Yiwei; Liu, Jiehui; Liu, Xiaozhou
2018-01-01
Not Available Project supported by the National Key R & D Program, China (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201609), and AQSIQ Technology R & D Program, China (Grant No. 2017QK125).
Human Research Program Integrated Research Plan. Revision A January 2009
NASA Technical Reports Server (NTRS)
2009-01-01
The Integrated Research Plan (IRP) describes the portfolio of Human Research Program (HRP) research and technology tasks. The IRP is the HRP strategic and tactical plan for research necessary to meet HRP requirements. The need to produce an IRP is established in HRP-47052, Human Research Program - Program Plan, and is under configuration management control of the Human Research Program Control Board (HRPCB). Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological and behavioral effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes HRP s approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and how they are integrated to provide a risk mitigation tool. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
10 CFR 835.101 - Radiation protection programs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a...
NCRP Vision for the Future and Program Area Committee Activities.
Boice, John D
2017-02-01
The National Council on Radiation Protection and Measurements (NCRP) believes that the most critical need for the nation in radiation protection is to train, engage, and retain radiation professionals for the future. Not only is the pipeline shrinking, but for some areas there is no longer a pipe! When the call comes to respond, there may be no one to answer the phone! The NCRP "Where are the Radiation Professionals?" initiative, Council Committee (CC) 2, and this year's annual meeting are to focus our efforts to find solutions and not just reiterate the problems. Our next major initiative is CC 1, where the NCRP is making recommendations for the United States on all things dealing with radiation protection. Our last publication was NCRP Report No. 116, Limitation of Exposure to Ionizing Radiation, in 1993-time for an update. NCRP has seven active Program Area Committees on biology and epidemiology, operational concerns, emergency response and preparedness, medicine, environmental issues and waste management, dosimetry, and communications. A major scientific research initiative is the Million Person Study of Low Dose Radiation Health Effects. It includes workers from the Manhattan Project, nuclear weapons test participants (atomic veterans), industrial radiographers, and early medical workers such as radiologists and technologists. This research will answer the one major gap in radiation risk evaluation: what are the health effects when the exposure occurs gradually over time? Other cutting edge initiatives include a re-evaluation of science behind recommendations for lens of the eye dose limits, recommendations for emergency responders on dosimetry after a major radiological incident, guidance to the National Aeronautics and Space Administration with regard to possible central nervous system effects from galactic cosmic rays (the high energy, high mass particles bounding through space), re-evaluating the population exposure to medical radiation (NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, is over 10 y old, and computed tomography exams have increased substantially since then), and concerning whether the linear no-, threshold model is still the best available for purposes of radiation protection (not for risk assessment). We believe evaluation of heart disease and cerebral vascular disease following low-dose and dose-rate exposure is important for assessments of possible detriment from such exposures. We continue to seek the necessary resources to follow our quest to improve radiation protection for the public!
NATIONAL ENVIRONMENTAL/ENERGY WORKFORCE ASSESSMENT. RADIATION PROGRAMS
The report describes radiation education/training programs which are currently being conducted in 23 states and one territory. In total there are 39 program entries included in this volume. Although the report attempts to concentrate mainly on radiation protection programs, aspec...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seuntjens, J; Collins, L; Devic, S
Purpose: Over the past century, physicists have played a major role in transforming scientific discovery into everyday clinical applications. However, with the increasingly stringent requirements to regulate medical physics as a health profession, the role of physicists as scientists and innovators has become at serious risk of erosion. These challenges trigger the need for a new, revolutionized training program at the graduate level that respects scientific rigor, attention for medical physics-relevant developments in basic sciences, innovation and entrepreneurship. Methods: A grant proposal was funded by the Collaborative REsearch and Training Experience program (CREATE) of the Natural Sciences and Engineering Researchmore » Council (NSERC) of Canada. This enabled the creation of the Medical Physics Research Training Network (MPRTN) around two CAMPEP-accredited medical physics programs. Members of the network consist of medical device companies, government (research and regulatory) and academia. The MPRTN/CREATE program proposes a curriculum with three main themes: (1) radiation physics, (2) imaging & image processing and (3) radiation response, outcomes and modeling. Results: The MPRTN was created mid 2013 (mprtn.com) and features (1) four new basic Ph.D. courses; (2) industry participation in research projects; (3) formal job-readiness training with involvement of guest faculty from academia, government and industry. MPRTN activities since 2013 include 22 conferences; 7 workshops and 4 exchange travels. Three patents were filed or issued, nine awards/best papers were won. Fifteen journal publications were accepted/published, 102 conference abstracts. There are now 13 industry partners. Conclusion: A medical physics research training network has been set up with the goal to harness graduate student’s job-readiness for industry, government and academia in addition to the conventional clinical role. Two years after inception, significant successes have been booked, but the true challenge will be to demonstrate that with this training philosophy CREATE scholars gain access to a much broader job market. Supported by the Natural Sciences and Engineering Research Council (NSERC) Canada.« less
Woodhouse, Kristina D; Volz, Edna; Bellerive, Marc; Bergendahl, Howard W; Gabriel, Peter E; Maity, Amit; Hahn, Stephen M; Vapiwala, Neha
2016-01-01
In 2010, the American Society for Radiation Oncology launched a national campaign to improve patient safety in radiation therapy. One recommendation included the expansion of educational programs dedicated to quality and safety. We subsequently implemented a quality and safety culture education program (Q-SCEP) in our large radiation oncology department. The purpose of this study is to describe the design, implementation, and impact of this Q-SCEP. In 2010, we instituted a comprehensive Q-SCEP, consisting of a longitudinal series of lectures, meetings, and interactive workshops. Participation was mandatory for all department members across all network locations. Electronic surveys were administered to assess employee engagement, knowledge retention, preferred learning styles, and the program's overall impact. The Agency for Healthcare Research and Quality (AHRQ) Survey on Patient Safety Culture was administered. Analysis of variance was used for statistical analysis. Between 2010 and 2015, 100% of targeted staff participated in Q-SCEP. Thirty-three percent (132 of 400) and 30% (136 of 450) responded to surveys in 2012 and 2014, respectively. Mean scores improved from 73% to 89% (P < .001), with the largest improvement seen among therapists (+21.7%). The majority strongly agreed that safety culture education was critical to performing their jobs well. Full course compliance was achieved despite the sizable number of personnel and treatment centers. Periodic assessments demonstrated high knowledge retention, which significantly improved over time in nearly all department divisions. Additionally, our AHRQ patient safety grade remains high and continues to improve. These results will be used to further enhance ongoing internal safety initiatives and to inform future innovative efforts. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.
2009-09-30
The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less
Space shuttle main engine plume radiation model
NASA Technical Reports Server (NTRS)
Reardon, J. E.; Lee, Y. C.
1978-01-01
The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.
10 CFR 20.2102 - Records of radiation protection programs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...
10 CFR 20.2102 - Records of radiation protection programs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...
10 CFR 20.2102 - Records of radiation protection programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...
10 CFR 20.2102 - Records of radiation protection programs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...
10 CFR 20.2102 - Records of radiation protection programs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Leonard, Keith J.; Tan, Lizhen
Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less
LifeSat - A satellite for space biological research
NASA Technical Reports Server (NTRS)
Halstead, Thora W.; Morey-Holton, Emily R.
1990-01-01
The LifeSat Program addresses the need for continuing access by biological scientists to space experimentation by accommodating a wide range of experiments involving animals and plants for durations up to 60 days in an unmanned satellite. The program will encourage interdisciplinary and international cooperation at both the agency and scientist levels, and will provide a recoverable, reusable facility for low-cost missions addressing key scientific issues that can only be answered by space experimentation. It will provide opportunities for research in gravitational biology and on the effects of cosmic radiation on life systems. The scientific aspects of LifeSat are addressed here.
Sustainability and integration of radioecology-position paper.
Muikku, M; Beresford, N A; Garnier-Laplace, J; Real, A; Sirkka, L; Thorne, M; Vandenhove, H; Willrodt, C
2018-03-01
This position paper gives an overview of how the COMET project (COordination and iMplementation of a pan-European instrumenT for radioecology, a combined Collaborative Project and Coordination and Support Action under the EC/Euratom 7th Framework Programme) contributed to the integration and sustainability of radioecology in Europe via its support to and interaction with the European Radioecology ALLIANCE. COMET built upon the foundations laid by the FP7 project STAR (Strategic Network for Integrating Radioecology) Network of Excellence in radioecology. In close association with the ALLIANCE, and based on the Strategic Research Agenda (SRA), COMET developed innovative mechanisms for joint programming and implementation of radioecological research. To facilitate and foster future integration under a common federating structure, research activities developed within COMET were targeted at radioecological research needs identified in the SRA. Furthermore, COMET maintained and developed strong mechanisms for knowledge exchange, dissemination and training to enhance and maintain European capacity, competence and skills in radioecology. In the short term the work to promote radioecology will continue under the H2020 project EJP-CONCERT (European Joint Programme for the Integration of Radiation Protection Research). The EJP-CONCERT project (2015-2020) aims to develop a sustainable structure for promoting and administering joint programming and open research calls in the field of radiation protection research for Europe. In the longer term, radioecological research will be facilitated by the ALLIANCE. External funding is, however, required in order to be able to answer emerging research needs.
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2010 CFR
2010-01-01
... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...
Appendix A: Policy Statements and Position Papers.
ERIC Educational Resources Information Center
Journal of Dental Education, 1988
1988-01-01
Policy statements and position papers adopted by the American Association of Dental Schools, intended as recommendations and guidelines for member institutions, are presented. They cover education, research, delivery of care, health concerns, peer review, national health programs, interdisciplinary education, use of radiation, and due process.…
Middle Atmosphere Program. Handbook for MAP, volume 8
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1983-01-01
Various investigations relative to middle atmosphere research are discussed. Atmospheric warming periods in 1982-83, atmospheric composition, the comparison of irradiance measurement calibration, and molecular absorption processes related to the penetration of ultraviolet solar radiation into the middle atmosphere, are among the topics discussed.
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.
2001-01-01
This report summarizes work conducted from January 1996 through April 1999 on a program of research to investigate the physical mechanisms that underlie the transport of trace constituents in the stratosphere-troposphere system. The primary scientific goal of the research has been to identify the processes which transport air masses within the lower stratosphere, particularly between the tropics and middle latitudes. This research was conducted in collaboration with the Subsonic Assessment (SASS) of the NASA Atmospheric Effects of Radiation Program (AEAP) and the Upper Atmospheric Research Program (UARP). The SASS program sought to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The present investigation contributed to the goals of each of these by diagnosing the history of air parcels intercepted by NASA research aircraft in UARP and AEAP campaigns. This was done by means of a blend of trajectory analyses and tracer correlation techniques.
Collapsing Radiative Shocks in Xenon Gas on the Omega Laser
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.
2005-10-01
A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
Sustained performance of 8 MeV Microtron
NASA Astrophysics Data System (ADS)
Sanjeev, Ganesh
2012-11-01
Energetic electrons and intense bremsstrahlung radiation from 8 MeV Microtron are being utilized in variety of collaborative research programs in radiation physics and allied sciences involving premier institutions of the country and sister universities of the region. The first of its kind electron accelerator in the country, set up at Mangalore University in collaboration with RRCAT Indore and BARC Mumbai, has been facilitating researchers since its inception with its inherent simplicity, ease of construction, low cost and excellent beam quality. A bird's eye view on the reliable aspects of the machine, efforts behind the continuous operation of the accelerator and important applications of the accelerator in physical and biological sciences are presented in this paper.
Indium phosphide solar cell research in the US: Comparison with nonphotovoltaic sources
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.
1989-01-01
Highlights of the InP solar cell research program are presented. Homojunction cells with AMO efficiences approaching 19 percent were demonstrated while 17 percent was achieved for indium tin oxide (ITO)/InP cells. The superior radiation resistance of these latter two cell configurations over both Si and GaAs were demonstrated. InP cells on board the LIPS III satellite show no degradation after more than a year in orbit. Computer modeling calculations were directed toward radiation damage predictions and the specification of concentrator cell parameters. Computed array specific powers, for a specific orbit, are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.
Wei, Randy L; Colbert, Lauren E; Jones, Joshua; Racsa, Margarita; Kane, Gabrielle; Lutz, Steve; Vapiwala, Neha; Dharmarajan, Kavita V
The purpose of this study was to assess the state of palliative and supportive care (PSC) and palliative radiation therapy (RT) educational curricula in radiation oncology residency programs in the United States. We surveyed 87 program directors of radiation oncology residency programs in the United States between September 2015 and November 2015. An electronic survey on PSC and palliative RT education during residency was sent to all program directors. The survey consisted of questions on (1) perceived relevance of PSC and palliative RT to radiation oncology training, (2) formal didactic sessions on domains of PSC and palliative RT, (3) effective teaching formats for PSC and palliative RT education, and (4) perceived barriers for integrating PSC and palliative RT into the residency curriculum. A total of 57 responses (63%) was received. Most program directors agreed or strongly agreed that PSC (93%) and palliative radiation therapy (99%) are important competencies for radiation oncology residents and fellows; however, only 67% of residency programs had formal educational activities in principles and practice of PSC. Most programs had 1 or more hours of formal didactics on management of pain (67%), management of neuropathic pain (65%), and management of nausea and vomiting (63%); however, only 35%, 33%, and 30% had dedicated lectures on initial management of fatigue, assessing role of spirituality, and discussing advance care directives, respectively. Last, 85% of programs reported having a formal curriculum on palliative RT. Programs were most likely to have education on palliative radiation to brain, bone, and spine, but less likely on visceral, or skin, metastasis. Residency program directors believe that PSC and palliative RT are important competencies for their trainees and support increasing education in these 2 educational domains. Many residency programs have structured curricula on PSC and palliative radiation education, but room for improvement exists in management of fatigue, assessing role of spirituality, and discussion regarding advance care planning. Copyright © 2016 American Society of Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Advanced research to qualify man for long term weightlessness.
NASA Technical Reports Server (NTRS)
Jones, W. L.
1972-01-01
NASA is in the process of conducting a broad program of research and development of technology to qualify, support, and permit the successful use of man in long-term space flight. The technological tasks include human engineering, extravehicular engineering, life support, and human research to assess the effect of space stresses on human physiology and psychology. Various testing techniques that are being used may have future relevance to world health. These include a biocybernetic approach to the study of cardiovascular stresses, measurement of blood flow by means of the Doppler effect, and a device for simulating radiation dosages similar to those produced in solar flares. The planned program includes a study of both humans and animals.
Research in particle and gamma-ray astrophysics
NASA Technical Reports Server (NTRS)
Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.
1988-01-01
This research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. The emphasis was on precice measurements with high resolution in charge, mass and energy. These investigations were carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons.
Spectroscopic and radiation-resistant properties of Er,Pr:GYSGG laser crystal operated at 2.79 μm
NASA Astrophysics Data System (ADS)
Zhao, Xu-Yao; Sun, Dun-Lu; Luo, Jian-Qiao; Zhang, Hui-Li; Fang, Zhong-Qing; Quan, Cong; Li, Xiu-Li; Cheng, Mao-Jie; Zhang, Qing-Li; Yin, Shao-Tang
2017-06-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB1102301), the National Natural Science Foundation of China (Grant Nos. 51272254, 61405206, and 51502292), and the Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, China (Grant No. SKL2015KF01).
Managing Radiation Degradation of CCDs on the Chandra X-Ray Observatory--III
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Aldcroft, Thomas L.; Blackwell, William C.; Bucher, Sabina L.; Chappell, Jon H.; DePasquale, Joseph M.; Grant, Catherine E.; Juda, Michael; Martin, Eric R.; Minow, Joseph I.;
2007-01-01
The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers.
Microgravity Materials Research and Code U ISRU
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Sibille, Laurent
2004-01-01
The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.
Naval Research Laboratory's programs in advanced indium phosphide solar cell development
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.
1995-01-01
The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AM0, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials. Over the last few years, NRL and Steve Wojtczuk at Spire have been developing a single junction InP on Si cell, in an ONR-sponsored SBIR program. Both cell polarities were investigated and the best efficiencies to date (approximately 13% on a 2 x 4 sq cm cell) were achieved with n/p cells. Earlier this year NRL began a program with ASEC to develop a two terminal InP-InGaAs tandem cell on a Ge substrate. RTI and NREL are subcontractors on this program. The results of an ONR-sponsored study of the potential market for InP/Si cells will be discussed. Also the technical status of both the InP/Si and the InP-InGaAs/Ge programs will be given. The technical challenges still remaining will be briefly described.
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
Biology Division progress report for period of October 1, 1988--September 30, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-02-01
The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessmentmore » of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents. This Progress Report is intended to provide both broad perspectives of the Division's research programs and synopses of recent achievements. Readers are invited to contact individual principal investigators for more detailed information, including reprints of publications. 120 refs.« less
NASA Technical Reports Server (NTRS)
Leopold, Daniel J.
2002-01-01
The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamnes, K.; Ellingson, R.G.; Curry, J.A.
1999-01-01
Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change. The Arctic warming predicted by the models to result from the expected doubling of atmospheric carbon dioxide is two to three times the predicted mean global warming, and considerably greater than the warming predicted for the Antarctic. The North Slope of Alaska-Adjacent Arctic Ocean (NSA-AAO) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program is designed to collect data on temperature-ice-albedo and water vapor-cloud-radiation feedbacks, which are believed to be important to the predicted enhanced warming inmore » the Arctic. The most important scientific issues of Arctic, as well as global, significance to be addressed at the NSA-AAO CART site are discussed, and a brief overview of the current approach toward, and status of, site development is provided. ARM radiometric and remote sensing instrumentation is already deployed and taking data in the perennial Arctic ice pack as part of the SHEBA (Surface Heat Budget of the Arctic ocean) experiment. In parallel with ARM`s participation in SHEBA, the NSA-AAO facility near Barrow was formally dedicated on 1 July 1997 and began routine data collection early in 1998. This schedule permits the US Department of Energy`s ARM Program, NASA`s Arctic Cloud program, and the SHEBA program (funded primarily by the National Science Foundation and the Office of Naval Research) to be mutually supportive. In addition, location of the NSA-AAO Barrow facility on National Oceanic and Atmospheric Administration land immediately adjacent to its Climate Monitoring and Diagnostic Laboratory Barrow Observatory includes NOAA in this major interagency Arctic collaboration.« less
Charged particle and magnetic field research in space
NASA Technical Reports Server (NTRS)
1972-01-01
Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.
Max '91: Flare research at the next solar maximum
NASA Technical Reports Server (NTRS)
Dennis, Brian; Canfield, Richard; Bruner, Marilyn; Emslie, Gordon; Hildner, Ernest; Hudson, Hugh; Hurford, Gordon; Lin, Robert; Novick, Robert; Tarbell, Ted
1988-01-01
To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided.
NASA Technical Reports Server (NTRS)
1995-01-01
This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.
Space Radiation Program Element
NASA Technical Reports Server (NTRS)
Krenek, Sam
2008-01-01
This poster presentation shows the various elements of the Space Radiation Program. It reviews the program requirements: develop and validate standards, quantify space radiation human health risks, mitigate risks through countermeasures and technologies, and treat and monitor unmitigated risks.
Role of fuel chemical properties on combustor radiative heat load
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1984-01-01
In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.
Editorial Conference Comments by the General Chair
NASA Astrophysics Data System (ADS)
Reed, Robert A.
2017-01-01
The 53rd IEEE Nuclear and Space Radiation Effects Conference (NSREC) was held July 11-15, 2016, at the Oregon Convention Center in Portland; the conference hotel was the Portland Doubletree. The NSREC is recognized as one of the premier international conferences on radiation effects in electronic materials, devices, and systems. The 2016 conference continued this tradition with a strong technical program, a one-day tutorial short course, radiation effects data workshop, industrial exhibit, and meetings for the IEEE Women in Engineering and Young Professionals organizations. The conference was sponsored by the Radiation Effects Committee of the IEEE Nuclear and Plasma Sciences Society (NPSS), and supported by Atmel, BAE Systems, Boeing, Cobham Semiconductor Solutions, Freebird Semiconductor, Honeywell, International Rectifier, Intersil Corporation, Jet Propulsion Laboratory, Northrop Grumman, Southwest Research Institute, and VPT Rad.
First global WCRP shortwave surface radiation budget dataset
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; Dipasquale, R. C.; Moats, C. D.
1995-01-01
Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
First global WCRP shortwave surface radiation budget dataset
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; DiPasquale, R. C.; Moats, C. D.
1995-01-01
Shortwave radiative fluxes that reach the Earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and rms values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
Nonlinear dose response model with repair and repair suppression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, B.E.
1996-12-31
In March 1996, the Health Physics Society issued a position statement supporting a nonlinear threshold (NLT) concept for radiation risk at low-dose/low-dose-rate (LD/LDR) levels. This action was after receipt of an overwhelming consensus from world-renown radiobiologists and is contrary to the opinions of the United Nations Scientific Committee on Effects of Atomic Radiation, the National Research Council Committee on the Biological Effects of Ionizing Radiations, and U.S. Environmental Protection Agency. Alvarez and others have called for a new NLT model for radiation risk. Two mathematical models have historically been used to describe cell survival experimental results. Each provides the abilitymore » to account for the shoulder observed in cell survival curves, predominantly for low-linear energy transfer (LET) radiation, and the wide variation in radio sensitivity of cell species and particular phase of the mitotic cycle. Only Kellerer and Rossi, Elkind and Whitmore, and Green and Burki have proposed modified models explicitly incorporating radiobiological repair and departing from LNT. None of these were subsequently used with any extent of success in cell survival analysis. The author reports initial work on a program to reexamine radiobiology research exhibiting repair processes at LD/LDR levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Susan R.; Goldenberg, Nancy
The BREN (Bare Reactor Experiment, Nevada) Tower Complex is significant for its role in the history of nuclear testing, radiation dosimetry studies, and early field testing of the Strategic Missile Defense System designs. At the time it was built in 1962, the 1,527 ft (465 m) BREN Tower was the tallest structure west of the Mississippi River and exceeded the height of the Empire State Building by 55 ft (17 m). It remains the tallest ever erected specifically for scientific purposes and was designed and built to facilitate the experimental dosimetry studies necessary for the development of accurate radiation dosemore » rates for the survivors of Hiroshima and Nagasaki. The tower was a key component of the Atomic Bomb Casualty Commission’s (ABCC) mission to predict the health effects of radiation exposure. Moved to its current location in 1966, the crucial dosimetry studies continued with Operation HENRE (High Energy Neutron Reactions Experiment). These experiments and the data they generated became the basis for a dosimetry system called the Tentative 1965 Dose or more commonly the T65D model. Used to estimate radiation doses received by individuals, the T65D model was applied until the mid-1980s when it was replaced by a new dosimetry system known as DS86 based on the Monte Carlo method of dose rate calculation. However, the BREN Tower data are still used for verification of the validity of the DS86 model. In addition to its importance in radiation heath effects research, the BREN Tower Complex is also significant for its role in the Brilliant Pebbles research project, a major component of the Strategic Defense Initiative popularly known as the “Star Wars” Initiative. Instigated under the Reagan Administration, the program’s purpose was to develop a system to shield the United States and allies from a ballistic missile attack. The centerpiece of the Strategic Defense System was space-based, kinetic-kill vehicles. In 1991, BREN Tower was used for the tether tests of the Brilliant Pebbles prototype vehicle at the earth’s surface prior to the more costly space testing program. The success of these tests established the Brilliant Pebbles program as an essential component of America’s space-based missile defense system even after the dismantling of the Soviet Union. Data from the Brilliant Pebbles research program continues to inspire current missile defense system research (Independent Working Group 2009).« less
Space solar cell research - Problems and potential
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1986-01-01
The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.
NASA Technical Reports Server (NTRS)
Wilkins, Richard
2010-01-01
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
NASA Astrophysics Data System (ADS)
Wilkins, Richard
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
Overview of atmospheric ionizing radiation (AIR) research: SST-present
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.
2003-01-01
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.
Summary of Atmospheric Ionizing AIR Research: SST-Present
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; deAngelis, G.; Friedberg, W.; Clem, J. M.
2003-01-01
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of the radiation exposure limits by the International Commission on Radiological Protection with the classification of aircrew as radiation workers renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.
Overview of Atmospheric Ionizing Radiation (AIR) Research: SST - Present
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; DeAngelis, G.; Friedberg, W.
2002-01-01
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent (1990) lowering of recommended exposure limits by the International Commission on Radiological Protection with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.
Overview of atmospheric ionizing radiation (AIR) research: SST-present.
Wilson, J W; Goldhagen, P; Rafnsson, V; Clem, J M; De Angelis, G; Friedberg, W
2003-01-01
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.
Spitzer - Hot & Colorful Student Activities
NASA Astrophysics Data System (ADS)
McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.
2009-01-01
In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.
NASA Astrophysics Data System (ADS)
Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei
2017-09-01
The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.
User's manual for University of Arizona APART program (Analysis Program - Arizona Radiation Trace)
NASA Technical Reports Server (NTRS)
Breault, R. P.
1975-01-01
A description and operating instructions for the Analysis Program Arizona Radiation Trace (APART) are given. This is a computer program that is able to efficiently and accurately predict the off-axis rejection characteristics of unwanted stray radiation for complex rotationally symmetric optical systems. The program first determines the critical objects or areas that scatter radiation to the image plane either directly or through imaging elements: this provides the opportunity to modify, if necessary, the design so that the number of critical areas seen by the image plane is reduced or the radiation to these critical areas is minimized. Next, the power distribution reaching the image plane and a sectional power map of all internal surfaces are computed. Angular information is also provided that relates the angle by which the radiation came into a surface to the angle by which the radiation is scattered out of the surface.
Improving Quality and Access to Radiation Therapy-An IAEA Perspective.
Abdel-Wahab, May; Zubizarreta, Eduardo; Polo, Alfredo; Meghzifene, Ahmed
2017-04-01
The International Atomic Energy Agency (IAEA) has been involved in radiation therapy since soon after its creation in 1957. In response to the demands of Member States, the IAEA׳s activities relating to radiation therapy have focused on supporting low- and middle-income countries to set up radiation therapy facilities, expand the scope of treatments, or gradually transition to new technologies. In addition, the IAEA has been very active in providing internationally harmonized guidelines on clinical, dosimetry, medical physics, and safety aspects of radiation therapy. IAEA clinical research has provided evidence for treatment improvement as well as highly effective resource-sparing interventions. In the process, training of researchers occurs through this program. To provide this support, the IAEA works with its Member States and multiple partners worldwide through several mechanisms. In this article, we review the main activities conducted by the IAEA in support to radiation therapy. IAEA support has been crucial for achieving tangible results in many low- and middle-income countries. However, long-term sustainability of projects can present a challenge, especially when considering health budget constraints and the brain drain of skilled professionals. The need for support remains, with more than 90% of patients in low-income countries lacking access to radiotherapy. Thus, the IAEA is expected to continue its support and strengthen quality radiation therapy treatment of patients with cancer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Space Radiation Heart Disease Risk Estimates for Lunar and Mars Missions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Chappell, Lori; Kim, Myung-Hee
2010-01-01
The NASA Space Radiation Program performs research on the risks of late effects from space radiation for cancer, neurological disorders, cataracts, and heart disease. For mortality risks, an aggregate over all risks should be considered as well as projection of the life loss per radiation induced death. We report on a triple detriment life-table approach to combine cancer and heart disease risks. Epidemiology results show extensive heterogeneity between populations for distinct components of the overall heart disease risks including hypertension, ischaemic heart disease, stroke, and cerebrovascular diseases. We report on an update to our previous heart disease estimates for Heart disease (ICD9 390-429) and Stroke (ICD9 430-438), and other sub-groups using recent meta-analysis results for various exposed radiation cohorts to low LET radiation. Results for multiplicative and additive risk transfer models are considered using baseline rates for US males and female. Uncertainty analysis indicated heart mortality risks as low as zero, assuming a threshold dose for deterministic effects, and projections approaching one-third of the overall cancer risk. Medan life-loss per death estimates were significantly less than that of solid cancer and leukemias. Critical research questions to improve risks estimates for heart disease are distinctions in mechanisms at high doses (>2 Gy) and low to moderate doses (<2 Gy), and data and basic understanding of radiation doserate and quality effects, and individual sensitivity.
WE-B-BRD-00: MRI for Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less
NASA Astrophysics Data System (ADS)
Potylitsyn, Alexander; Karataev, Pavel
2012-05-01
This volume contains papers presented at the IX International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS'11) which was held at Royal Holloway, University of London on September 12-16, Egham, United Kingdom. The symposium was organized jointly by Royal Holloway, University of London and Tomsk Polytechnic University, Tomsk, Russia. RREPS is a biennial series of symposia founded in September 1993 as an initiative of the Nuclear Physics Institute at Tomsk Polytechnic University. The intention was to strengthen the basic and applied research focused on radiation from relativistic electrons in condensed media, particularly from natural and artificial periodic structures, and to review the research activity in this area. Since then, the symposium has developed into a forum attracting young scientists from different areas of research and from many countries. Previous successful symposia were held at Tomsk, Russia (1993, 1995, 1997, 2003), Lake Baikal, Russia (1999), Lake Aiya, Altai, Russia (2001), Czech Technical University in Prague, Czech Republic (2007) and Zvenigorod, Moscow region, Russia (2009). As an outcome of the symposia the conference proceedings have been published in Nuclear Instruments and Methods in Physics Research, Section B (Vol. 145 No 1-2, October 1998; Vol. 173 No 1-2, January 2001; Vol. 201 No 1 January 2003; Vol. 227 No 1-2, January 2005; Vol. 266 No 17, September 2008) and Journal of Physics: Conference Series (Vol. 236, June 2010). The purpose of the present RREPS'11 symposium was to review the up-to-date situation in the area of electromagnetic radiation generated by relativistic charged particles in condensed media, and to discuss the research strategy for the near future. Nowadays, electromagnetic radiation studies cover electron energies from a few MeV up to hundreds of GeV in many laboratories throughout the world. The goal is to study the physics of the generation of various kinds of radiation and their interplay or combined effects, and to find successful applications for them. Every kind of radiation reflects specific processes of fundamental atomic physics, classical and quantum electrodynamics with a broad range of applications in accelerator physics, nuclear physics, material science and medicine. During the symposium the general properties of electromagnetic radiation were discussed. A few reports were devoted to Cherenkov radiation. Such a renewed interest in this problem is related to possible applications in wakefield accelerators and beam diagnostics. Transition radiation appeared as a well-known subject but wide use of it requires a detailed investigation of its characteristics. New prospective schemes for generating intense radiation beams were proposed. During the last few years electromagnetic radiation has been intensively studied as a potential tool for non-invasive charged particle beam diagnostics. In the symposium a few presentations were devoted to both transverse beam size measurements, using optical diffraction radiation and longitudinal beam dynamics monitoring the use of coherent diffraction and synchrotron radiation techniques. The generation of intense THz and soft x-ray beams was a very popular topic. A few presentations were devoted to the development of compact x-ray sources which might be used as an alternative to large central facilities such as third or fourth generation light sources. An application of crystal targets for radiation generation attracted the attention of all RREPS'11 participants. Parametric x-rays may be used for low-emittance beam diagnostics, and channeling radiation and coherent bremsstrahlung are being studied as a possible mechanism for an intense gamma source for positron production. Traditionally the RREPS symposium includes the following topics: General Properties of Radiation from Relativistic Particles; Cherenkov Radiation Transition Radiation Parametric X-ray Radiation Diffraction Radiation and the Smith-Purcell Effect Coherent Bremsstrahlung and Channeling Radiation Crystal Assisted Processes Applications of Monochromatic X-ray and Gamma Beams Produced at Electron Accelerators We would like to acknowledge the International Program Committee for their suggestions during the preparation of the scientific program. We acknowledge John Adams Institute for Accelerator Science for their financial support of the students, and Royal Holloway, University of London (UK) and Tomsk Polytechnic University (Russia) for their administrative and financial support. Editors Prof Alexander Potylitsyn Tomsk Polytechnic University, Tomsk, Russia Dr Pavel Karataev Royal Holloway, University of London, Egham, United Kingdom Royal Holloway
Program for the Increased Participation of Minorities in NASA-Related Research
NASA Technical Reports Server (NTRS)
2003-01-01
The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications
Imaging and Data Acquisition in Clinical Trials for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu; Bishop-Jodoin, Maryann; Followill, David S.
2016-02-01
Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy qualitymore » assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.« less
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent; Gersey, Brad; Wilkins, Richard; Mertens, Chris; Atwell, William; Bailey, Justin
2014-05-01
The premise of this comment perpetuates an unfortunate trend among some radiation researchers to minimize potential risks to human tissue from low-radiation sources. In fact, this discussion on the risk uncertainties of low-dose radiation further illustrates the need for more measurements and a program of active monitoring, especially when solar eruptive events can substantially elevate the radiation environment. This debate also highlights the context of a bigger problem; i.e., how do we as professionals act with due diligence to take the immense body of knowledge of space weather radiation effects on human tissue and distil it into ideas that regulatory agencies can use to maximize the safety of a population at risk. The focus of our article on radiation risks due to solar energetic particle events starts with our best assessment of risks and is based on the body of scientific knowledge while, at the same time, erring on the side of public safety. The uncertainty inherent in our assessment is accepted and described with this same philosophy in mind.
A modular radiative transfer program for gas filter correlation radiometry
NASA Technical Reports Server (NTRS)
Casas, J. C.; Campbell, S. A.
1977-01-01
The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.
FY97 Geophysics Technology Area Plan.
1997-03-01
example, Seeker and Missile Simulations technology will be developed to make theater (DISAMS). This plan has been reviewed by all Air Force laboratory ...INDUSTRIAL RESEARCH AND Geophysics is a pervasive technology that directly DEVELOPMENT (IRAD): A comparison of the interacts with all of the other Air Force ...radiation belt models roadmaps that contain research programs underway has been halted. and planned by the Air Force and National Aeronau- 0 The design of
An Overview of Power, Energy Storage, and Conversion Efforts for 2014 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 15 of the innovative SBIR 2014 Phase I and II projects that focus on one of NASA Glenn Research Center's six core competencies-Power, Energy Storage and Conversion. The technologies cover a wide spectrum of applications such as high-radiation-tolerant ceramic voltage isolators, development of hermetic sealing glasses for solid oxide fuel cells, rechargeable lithium metal cells, high-efficiency direct methane solid oxide fuel cell systems, Li metal protection for high-energy space batteries, isolated bidirectional direct current converters for distributed battery energy applications, and high-efficiency rad-hard ultrathin Si photovoltaic cell technology for space. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation
NASA Astrophysics Data System (ADS)
Kennedy, Ann; Cengel, Keith
2012-07-01
A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute Radiation Research (CARR) grant; NSBRI is funded through NASA NCC 9-58. Recent Publications: [1]Cengel K. A. et al. (2010) Radiat Environ Biophys 49(4): 715-21. [2] Ware J. H. et al. (2010) Radiation Res 174: 325-330. [3] Davis J. G. et al. (2010) Radiation Res 173(3):353-61. [4] Sanzari J.K. et al. (2011) Radiation Res 175(5):650-6. [5] Ni H. et al. (2011) Radiation Res 175(4): 485-92. [6] Mao X. W. et al. (2011) Radiation Res 176: 187-197. [7] Maks C. J. et al. (2011) Radiation Res 176: 170-6. [8] Kennedy A. R. et al. (2011) Radiation Res 176: 62-70. [9] Sanzari J. K. et al. (2011) Int J Radiat Biol 87: 1033-8. [10] Wilson J. M. et al. (2011) Radiation Res 176(5):649-59. [11] Kennedy A. R. and Wan X. S. (2011) Advances in Space Res 48: 1460-1479. [12] Gridley D. S. et al. (2011) Int J Radiat Biol 2011 87(12): 1173-81, [13] York J. M., et al. (2012) Brain Behav Immun 26(2): 218-27,[14] Wilson J. M. et al. (2012) Advances in Space Res 49: 237-248. [15] Krigsfeld, G.S. et al. Int J Radiat Biol 2012 Feb 6 [Epub ahead of print
Determination of cloud parameters from infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H.-Y. M.
1984-01-01
The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.
Thirteenth Annual Warren K. Sinclair Keynote Address: Where Are the Radiation Professionals (WARP)?
Toohey, Richard E
2017-02-01
In July 2013, the National Council on Radiation Protection and Measurements convened a workshop for representatives from government, professional organizations, academia, and the private sector to discuss a potential shortage of radiation protection professionals in the not-too-distant future. This shortage manifests itself in declining membership of professional societies, decreasing enrollment in university programs in the radiological sciences, and perhaps most importantly, the imminent retirement of the largest birth cohort in American history, the so-called "baby boomer" generation. Consensus emerged that shortages already are, or soon will be, felt in government agencies (including state radiation control programs); membership in professional societies is declining precipitously; and student enrollments and university support for radiological disciplines are decreasing with no reversals expected. The supply of medical physicists appears to be adequate at least in the near term, although a shortage of available slots in accredited clinical training programs looms large. In general, the private sector appears stable, due in part to retirees joining the consultant ranks. However, it is clear that a severe problem exists with the lack of an adequate surge capacity to respond to a large-scale reactor accident or radiological terrorism attack in the United States. The workshop produced a number of recommendations, including increased funding of both fellowships and research in the radiological sciences, as well as creation of internships, practicums, and post-doctoral positions. A federal joint program support office that would more efficiently manage the careers of radiological professionals in the civil service would enhance recruiting and development, and increase the flexibility of the various agencies to manage their staffing needs.
Data systems for science integration within the Atmospheric Radiation Measurement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracio, D.K.; Hatfield, L.D.; Yates, K.R.
The Atmospheric Radiation Measurement (ARM) Program was developed by the US Department of Energy to support the goals and mission of the US Global Change Research Program. The purpose of the ARM program is to improve the predictive capabilities of General Circulation Models (GCMs) in their treatment of clouds and radiative transfer effects. Three experimental testbeds were designed for the deployment of instruments to collect atmospheric data used to drive the GCMs. Each site, known as a Cloud and Radiation Testbed (CART), consists of a highly available, redundant data system for the collection of data from a variety of instrumentation.more » The first CART site was deployed in April 1992 in the Southern Great Plains (SGP), Lamont, Oklahoma, with the other two sites to follow in early 1996 in the Tropical Western Pacific (TWP) and in 1997 on the North Slope of Alaska (NSA). Approximately 1.5 GB of data are transferred per day via the Internet from the CART sites, and external data sources to the ARM Experiment Center (EC) at Pacific Northwest Laboratory in Richland, Washington. The Experimental Center is central to the ARM data path and provides for the collection, processing, analysis and delivery of ARM data. Data from the CART sites from a variety of instrumentation, observational systems and from external data sources are transferred to the Experiment Center. The EC processes these data streams on a continuous basis to provide derived data products to the ARM Science Team in near real-time while maintaining a three-month running archive of data.« less
NASA Electronic Parts and Packaging (NEPP) Program - Radiation Activities
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2008-01-01
The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs.
The NASA Space Solar Cell Advanced Research Program
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1989-01-01
Two major requirements for space solar cells are high efficiency and survivability in the naturally occurring charged particle space radiation environment. Performance limits for silicon space cells are well understood. Advanced cells using GaAs and InP are under development to provide significantly improved capability for the future.
NASA Technical Reports Server (NTRS)
Mitchell, C. A.; Knight, S. L.; Ford, T. L.
1986-01-01
A research project in the food production group of the Closed Ecological Life Support System (CELSS) program sought to define optimum conditions for photosynthetic productivity of a higher plant food crop. The effects of radiation and various atmospheric compositions were studied.
Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Lynn D.; Flynn, Daniel F.; Haffty, Bruce G.
2005-06-01
Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated andmore » analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an academic career path. The following variables were ranked significantly differently in hierarchy (p < 0.05) by those seeking an academic versus private practice path with respect to having influence on the career decision: lifestyle, income, case-mix, autonomy, ability to sub-specialize, basic research, clinical research, teaching, patient care, board structure, practice environment, and mentoring. Conclusion: These data offer descriptive information regarding variables that lead to radiation oncology trainee career path decisions. Such information may be of use in modification of training programs to meet future personnel and programmatic needs within the specialty.« less
Research in particles and fields
NASA Technical Reports Server (NTRS)
Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.
1987-01-01
Discussed are the research activities in Cosmic Rays, Gamma Rays, and Astrophysical Plasmas supported under NASA Grant NGR 05-002-160. The report is divided into sections which describe the activities, followed by a bibliography. This research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. These investigations are carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons.
Behavioral Health Program Element
NASA Technical Reports Server (NTRS)
Leveton, Lauren B.
2006-01-01
The project goal is to develop behavioral health prevention and maintenance system for continued crew health, safety, and performance for exploration missions. The basic scope includes a) Operationally-relevant research related to clinical cognitive and behavioral health of crewmembers; b) Ground-based studies using analog environments (Antarctic, NEEMO, simulations, and other testbeds; c) ISS studies (ISSMP) focusing on operational issues related to behavioral health outcomes and standards; d) Technology development activities for monitoring and diagnostic tools; and e) Cross-disciplinary research (e.g., human factors and habitability research, skeletal muscle, radiation).
Research in particles and fields
NASA Technical Reports Server (NTRS)
Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.
1985-01-01
Research activities in Cosmic Rays, Gamma Rays, and Astrophysical Plasmas supported under NASA Grant NGR 05-002-160 are discussed. The report is divided into sections which describe the activities, followed by a bibliography. This group's research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. These investigations are carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons.
1987-01-01
tinguished predecessors--have made a very real and signif - icant contribution to this nation’s defense. The U.S. armed services created the forerunner of...rate, with the hope that a permanent agency would take over support of this research after that date. The nature of the work of the Radiation...of Electronics. Quite naturally the administration and most of the personnel of the Electronics Laboratory were members of the wartime Radiation
76 FR 127 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... control and oversight over health and safety programs concerning worker exposure to ionizing radiation... of its Occupational Radiation Protection Program, OMB Control Number 1910-5105. This information...: Occupational Radiation Protection Program; (3) Purpose: Needs and Uses: The information that 10 CFR 835...
Program for fundamental and applied research of fuel cells in VNIIEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.
1996-04-01
According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.
Radiation shielding materials characterization in the MoMa-Count program and further evolutions
NASA Astrophysics Data System (ADS)
Lobascio, Cesare
In the frame of the space research programme MoMa (From Molecules to Man) -Count (Coun-termeasures), funded by the Italian Space Agency, multi-functional protections for human space exploration have been investigated, paying particular attention to flexible materials, selected also for their excellent structural, thermal and ballistic performances. Flexible materials such as Kevlar R are qualified for space application, but have poorly known space radiation prop-erties, with consequent uncertainties about their shielding efficiency against the radiation en-vironment. The necessary evaluation of their shielding efficiency has been chiefly based on dedicated ground experiments in accelerators, supplemented by Monte Carlo simulations of the particle transport in the materials or multi-layers. In addition, flight experiments have been performed in Low Earth Orbit (LEO), onboard the International Space Station (ISS) and the re-entry capsule Foton, to measure the shielding behaviour in the actual operating environment of space, via dedicated detectors and dosimeters. This paper aims at presenting the results and lessons learned accrued within the MoMa-Count program, as well as the future actions planned for improving radiation shielding in long duration human exploration missions.
An Overview of SBIR Phase 2 Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
A Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam
2006-01-01
The goal of the National Aeronautics and Space Agency and the Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. The term safely means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences (for example, excess lifetime fatal cancer risk) can be defined. The Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the understanding of health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus the fourth element develops computer codes to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller-Clemente, R; Universidad de Oriente, Santiago De Cuba, Santiago de Cuba; Mendez-Perez, L
Purpose: To contribute to the professional profile of future medical physicists, technologists and physicians, and implement an adaptable educational strategy at both undergraduate and postgraduate levels. Methods: The Medical Physics Block of Electives (MPBE) designed was adapted to the Program of B.S. in Physics. The conferences and practical activities were developed with participatory methods, with interdisciplinary collaboration from research institutions and hospitals engaged on projects of Research, Development and Innovation (RDI). The scientific education was implemented by means of critical analysis of scientific papers and seminars where students debated on solutions for real research problems faced by medical physicists. Thismore » approach included courses for graduates not associated to educational programs of Medical Physics (MP). Results: The implementation of the MPBE began in September 2014, with the electives of Radiation MP and Introduction to Nuclear Magnetic Resonance. The students of second year received an Introduction to MP. This initiative was validated by the departmental Methodological Workshop, which promoted the full implementation of the MPBE. Both postgraduated and undergraduate trainees participated in practices with our DICOM viewer system, a local prototype for photoplethysmography and a home-made interface for ROC analysis, built with MATLAB. All these tools were designed and constructed in previous RDI projects. The collaborative supervision of University’s researchers with clinical medical physicists will allow to overcome the limitations of residency in hospitals, to reduce the workload for clinical supervisors and develop appropriate educational activities. Conclusion: We demonstrated the feasibility of adaptable educational strategies, considering available resources. This provides an innovative way for prospective medical physicists, technologists and radiation oncologists. This strategy can be implemented in several regions without formal programs of MP, like most of developing countries. Starting with undergraduate students would allow to reach appropriate certification faster than most of traditional or alternative approaches for education on MP. The authors acknowledge Radiation Consulting Group, LLC, an Arizona Corporation which promotes the use of ionizing radiation in the healing arts, for the “Oscar Luis Caballero” travel grant. The authors thanks to professors Meisbel Daudinot, David Adame and Alexander Pascau for the practices through imagis, imageROC and ANGIODIN PD3000 respectively.« less
United States Air Force Summer Faculty Research Program 1989. Program Technical Report. Volume 2
1989-12-01
of an Osmotically Dr. Juin Yu Driven Thermal Transfer Cycle 114 The Influence of Viscoelastically Dr. Lawrence Zavodney Damped Members on the Dynamic...Hormones Effect Upon Dr. Rex Moyer Chlamydomonas Phototaxis 166 Influence of Radio Frequency Dr. Raymond Quock Radiation on Psychotropic Drug Effects 167...systems do not cover. Therefore, the use of SHG for creating coherent light at twice the frequency of an- other laser is one way to extend the range
Probabilistic lifetime strength of aerospace materials via computational simulation
NASA Technical Reports Server (NTRS)
Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.
1991-01-01
The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.
Accelerator Facilities for Radiation Research
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
1999-01-01
HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).
Integrated research training program of excellence in radiochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapi, Suzanne
2015-09-18
The overall goal of this “Integrated Research Training Program of Excellence in Radiochemistry” is to provide a rich and deep research experience in state-of-the-art radiochemistry and in the fundamentals of radioisotopic labeling and tracer methodology to develop researchers who are capable of meeting the challenges of designing and preparing radiotracers of broad applicability for monitoring and imaging diverse biological systems and environmental processes. This program was based in the Departments of Radiology and Radiation Oncology at Washington University Medical School and the Department of Chemistry at the University of Illinois at Urbana Champaign, and it was initially directed by Professormore » Michael J. Welch as Principal Investigator. After his passing in 2012, the program was led by Professor Suzanne E. Lapi. Programmatic content and participant progress was overseen by an Internal Advisory Committee of senior investigators consisting of the PIs, Professor Mach from the Department of Radiology at Washington University and Professor John A. Katzenellenbogen of the Department of Chemistry at the University of Illinois. A small External Advisory Committee to give overall program guidance was also constituted of experts in radiolabeled compounds and in their applications in environmental and plant science.« less
Steiner, Joseph; Leinwander, Penny
2017-04-01
The Health Physics Society (HPS) Medical Health Physics Section (MHPS) received a request to research data on radiation safety guidance related to the death of patients who have recently received therapeutic doses of sealed or unsealed therapy sources. The MHPS elected to use student volunteers to perform this research. The purpose of this manuscript is to describe and provide a template for the process used by the MHPS to develop a student volunteer program. To implement the student volunteer program, the MHPS collaborated with the HPS Student Support Committee to develop a research proposal and a student volunteer selection process. The research proposal was sent to HPS student members in a call for volunteers. Two student volunteers were chosen based on predetermined qualifications to complete the work effort outlined in the research proposal. This project progressed with the use of milestones and culminated with the students presenting their findings at the annual HPS meeting. The students received HPS student travel awards to present at the conference. This work effort proved to be extremely beneficial to all parties involved.
The University of Stuttgart IKE/University of Arizona student research program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seale, R.L.
1988-01-01
The University of Stuttgart's Institut fuer Kernenergetik und Energiesysteme (IKE) and the University of Arizona have had a joint program in which graduate students from the IKE spend 1 yr on the University of Arizona campus. This program started in 1982 largely as the result of an initiative begun by K.H. Hoecker, then director of IKE. Since 1985, Alfred Voss has been director and the program has continued without interruption. Under the program, the Deutscher Akademisher Austauschdienst, a government agency of the Federal Republic of Germany has funded scholarships for students from IKE, which provide support for 1 yr duringmore » which they attend the University of Arizona as visiting student scholars and engage in a research project under the direction of one of our faculty, which satisfies a part of the requirements for the Ingenieur-Diplom Fachrichtung Maschinenbau. The students get credit for their research from the University of Stuttgart. The topics have a broad range and include software development, artificial intelligence, radiation transport, and energy management studies.« less
Division of Biological and Medical Research annual report 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, M.W.
1978-01-01
The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level /sup 60/Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and /sup 60/Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projectionmore » models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications.« less
Space radiator simulation manual for computer code
NASA Technical Reports Server (NTRS)
Black, W. Z.; Wulff, W.
1972-01-01
A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.
NASA Astrophysics Data System (ADS)
Reynolds, J. C.; Schroeder, J. A.
1993-03-01
The FORTRAN library that the NOAA Wave Propagation Laboratory (WPL) developed to perform radiative transfer calculations for an upward-looking microwave radiometer is described. Although the theory and algorithms have been used for many years in WPL radiometer research, the Radiative Transfer Equation (RTE) software has combined them into a toolbox that is portable, readable, application independent, and easy to update. RTE has been optimized for the UNIX environment. However, the FORTRAN source code can be compiled on any platform that provides a Standard FORTRAN 77 compiler. RTE allows a user to do cloud modeling, calibrate radiometers, simulate hypothetical radiometer systems, develop retrieval techniques, and compute weighting functions. The radiative transfer model used is valid for channel frequencies below 1000 GHz in clear conditions and for frequencies below 100 GHz when clouds are present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This report is a transcript of an interview with Dr. Helen Vodopick by representatives of the US DOE Office of Human Radiation Experiments. Dr. Vodopick was chosen for this interview because of her involvement with the Oak Ridge Institute of Nuclear Studies (ORINS) and Oak Ridge Associated Universities (ORAU) experimental cancer-therapy program involving total-body irradiation. After a short biographical sketch Dr. Vodopick relates her remembrances of the Medium-Exposure-Rate Total Body Irradiator (METBI), ORINS radioisotope tracer studies, treatment of cancer patients with the METBI, radiation treatment for leukemia patients, bone marrow treatment of leukemia, the Low-Exposure-Rate Total Body Irradiation (LETBI), treatmentmore » of radiation accident victims at ORAU, research with radioactive phosphorus and sulfur, and public opinion issues.« less
Research activities at the Loma Linda University and Proton Treatment Facility--an overview
NASA Technical Reports Server (NTRS)
Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.
2001-01-01
The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.
Human Research Program Integrated Research Plan. Revision C
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2011-01-01
Crew health and performance are critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes (1) HRP's approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and (2) the method of integration for risk mitigation. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.
NASA Technical Reports Server (NTRS)
Wilson, J. W. (Editor); Jones, I. W. (Editor); Maiden, D. L. (Editor); Goldhagen, P. (Editor)
2003-01-01
The United States initiated a program to assess the technology required for an environmentally safe and operationally efficient High Speed Civil Transport (HSCT) for entrance on the world market after the turn of the century. Due to the changing regulations on radiation exposures and the growing concerns over uncertainty in our knowledge of atmospheric radiations, the NASA High Speed Research Project Office (HSRPO) commissioned a review of "Radiation Exposure and High-Altitude Flight" by the National Council on Radiation Protection and Measurements (NCRP). On the basis of the NCRP recommendations, the HSRPO funded a flight experiment to resolve the environmental uncertainty in the atmospheric ionizing radiation levels as a step in developing an approach to minimize the radiation impact on HSCT operations. To minimize costs in this project, an international investigator approach was taken to assure coverage with instrument sensitivity across the range of particle types and energies to allow unique characterization of the diverse radiation components. The present workshop is a result of the flight measurements made at the maximum intensity of the solar cycle modulated background radiation levels during the month of June 1997.
The Value of Biomedical Simulation Environments to Future Human Space Flight Missions
NASA Technical Reports Server (NTRS)
Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.
2011-01-01
Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.
Space medicine research publications: 1984-1986
NASA Technical Reports Server (NTRS)
Wallace, Janice S.
1988-01-01
A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.
Design of early warning system for nuclear preparedness case study at Serpong
NASA Astrophysics Data System (ADS)
Farid, M. M.; Prawito, Susila, I. P.; Yuniarto, A.
2017-07-01
One effort to protect the environment from the increasing of potentially environmental radiation hazards as an impact of radiation discharge around nuclear facilities is by a continuous monitoring of the environmental radiation in real time It is important to disclose the dose rate information to public or authorities for radiological protection. In this research, we have designed a nuclear preparedness early warning system around the Serpong nuclear facility. The design is based on Arduino program, general packet radio service (GPRS) shield, and radio frequencies technology to transmit environmental radiation result of the measurement and meteorological data. Data was collected at a certain location at The Center for Informatics and Nuclear Strategic Zone Utilization BATAN Serpong. The system consistency models are defined by the quality of data and the level of radiation exposure in the deployed environment. Online users can access the website which displays the radiation dose on the environment marked on Google Map. This system is capable to issue an early warning emergency when the dose reaches three times of the background radiation exposure value, 250 nSv/hour.
NASA Technical Reports Server (NTRS)
Denkins, Pamela; Badhwar, Gautam; Obot, Victor
2000-01-01
NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.
Determination of the gamma-ray skyshine dose contribution in a Loss Of Shielding accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, M.L.; Weiner, R.F.; Osborn, D.M.
2007-07-01
The goal of this research is to determine the gamma-ray dose contribution from skyshine. In a transportation accident involving the loss of lead gamma shielding, first responders to the accident will be exposed to both direct gamma radiation streaming from the exposed spent nuclear fuel and atmospherically reflected gamma radiation. The reflected radiation is referred to as skyshine and should contribute minimally to the overall dose; however, when there is minimal shielding above the exposed source, skyshine at large distances from the source must be considered. The program SKYDOSE developed by Shultis and Faw evaluates the gamma-ray skyshine dose frommore » a point, isotropic, polyenergetic, gamma-photon source. Assuming an infinite black wall shielding all direct radiation, the model assumes a first responder is located at varying distances from the wall. Skyshine doses are calculated both through SKYDOSE's integral line-beam method and an approximate approach prescribed by the National Council of Radiation Protection and Measurements. Initial results from SKYDOSE indicate nearly equivalent dose rates from either direct or skyshine radiation at nine meters from the wall, which seemed unusual and not readily explained. NCRP methodology, however, yields skyshine dose rates which are drastically smaller than direct dose rates at the same distance. Further investigation using the program MicroSkyshine{sup R}, which allows a variety of source configurations, suggests skyshine contributes minimally to dose in a loss-of-shielding accident. (authors)« less
Fusion energy division annual progress report, period ending December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less
Radiation Detection for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Ely, James
2008-05-01
In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will be reviewed. Opportunities for further research and development to improve the current equipment and methodologies for radiation detection for the important task of homeland security will be the final topic to be discussed.
Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility
NASA Technical Reports Server (NTRS)
McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.
2012-01-01
The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.
Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Oswald, Fred B.; Townsend, Dennis P.; Coy, John J.
1990-01-01
The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near term research plans in the gear noise, vibration, and diagnostics area.
Small Business Grants at the National Cancer Institute and National Institutes of Health
NASA Astrophysics Data System (ADS)
Baker, Houston
2002-10-01
Ten Federal Agencies set aside 2.5% of their external research budget for US small businesses—mainly for technology research and development, including radiation sensor system developments. Five agencies also set aside another 0.15% for the Small Business Technology Transfer Program, which is intended to facilitate technology transfers from research laboratories to public use through small businesses. The second largest of these agencies is the Department of Health and Human Services, and almost all of its extramural research funds flow through the 28 Institutes and Centers of the National Institutes of Health. For information, instructions, and application forms, visit the NIH website's Omnibus Solicitation for SBIR and STTR applications. The National Cancer Institute is the largest NIH research unit and SBIR/STTR participant. NCI also issues SBIR and STTR Program Announcements of its own that feature details modified to better support its initiatives and objectives in cancer prevention, detection, diagnosis, treatment, and monitoring.
NASA Electronic Parts and Packaging (NEPP) Program
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2008-01-01
This viewgraph presentation reviews NASA's Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission needs. The NEPP Program focuses on the reliability aspects of electronic devices. Three principal aspects to this reliability: (1) lifetime, (2) effects of space radiation and the space environment, and (3) creation and maintenance of the assurance support infrastructure required for success.
Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
NASA Astrophysics Data System (ADS)
Tan, Rongri; Liu, Huixuan; Xun, Damao; Zong, Wenjun
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11564015 and 61404062), the Research Fund for the Doctoral Program of China (Grant No. 3000990110), and the Fund for Distinguished Young Scholars of Jiangxi Science & Technology Normal University (Grant Nos. 2015QNBJRC002 and 2016QNBJRC006).
SOLAR EFFECTS ON BUILDING DESIGN.
ERIC Educational Resources Information Center
Building Research Inst., Inc., Washington, DC.
A REPORT OF A PROGRAM HELD AS PART OF THE BUILDING RESEARCH INSTITUTE 1962 SPRING CONFERENCE ON THE SOLAR EFFECTS ON BUILDING DESIGN. TOPICS DISCUSSED ARE--(1) SOLAR ENERGY DATA APPLICABLE TO BUILDING DESIGN, (2) THERMAL EFFECTS OF SOLAR RADIATION ON MAN, (3) SOLAR EFFECTS ON ARCHITECTURE, (4) SOLAR EFFECTS ON BUILDING COSTS, (5) SELECTION OF…
National College Radio Study: Audience Research and National Programming.
ERIC Educational Resources Information Center
Sauls, Samuel J.
A study profiled college radio stations and explored the feasibility of a college radio network. A mail survey was sent in April 1995 to 1,469 college radio stations (including broadcast stations, carrier current stations, closed-circuit campus stations, radiating cable FM, and cable television access stations). A total of 228 surveys were…
1992-01-01
tactical computers. The module must correct for optical irregularities in illumination, pixel gain, offset nonuniformities due to dark currents and...large search FOR, for IR FPA. DESCRIPTION: Large area staring IR lPAs in both Medium Wavelength Infrared (MWIR) and Long Wavelength Infrared ( LWIR ) are a...of HTS materials to BLIP limited detection of radiation in the optical, IR, MWIR, and LWIR bands as well as for signal processing applications is also
United States Air Force Summer Faculty Research Program 1989. Program Technical Report. Volume 3
1989-12-01
doppler broadened transitions by Holstein12 . We have used the functional form of Holstein and incorporated the 30 % increase 13 suggested by Phelps g...impact excitation of the 4 D level",J.Phys.B.,7,pp.2003-2020,1974. 12. T. Holstein ,"Imprisonment of Resonance Radiation in Gases. II",Physical Rev.,83...Backward Propagation Network FUNCTIONAL LINK NETWORKS Output Layer Devce ovice’lt one mNtdtq Camer Cowe . Oopng Corlc Functional MBE Input Characteristics
NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits
NASA Technical Reports Server (NTRS)
Huff, J. L.; Patel, Z. S.; Simonsen, L. C.
2017-01-01
Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.
Space Environmental Effects on Coated Tether Materials
NASA Technical Reports Server (NTRS)
Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed
2005-01-01
The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.
Atomic Oxygen Effects on Coated Tether Materials
NASA Technical Reports Server (NTRS)
Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed
2005-01-01
The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for (AO) exposure in MSFC's Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as Photosil or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center's Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.
Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators
NASA Technical Reports Server (NTRS)
Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.
2000-01-01
The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.
The European initiative on low-dose risk research: from the HLEG to MELODI.
Belli, Mauro; Tabocchini, Maria Antonella; Jourdain, Jean-René; Salomaa, Sisko; Repussard, Jacques
2015-09-01
The importance of low-dose risk research for radiation protection is now widely recognised. The European Commission (EC) and five European Union (EU) Member States involved in the Euratom Programme set up in 2008 a 'High Level and Expert Group on European Low Dose Risk Research' (HLEG) aimed at identifying research needs and proposing a better integration of European efforts in the field. The HLEG revised the research challenges and proposed a European research strategy based on a 'Multidisciplinary European LOw Dose Initiative' (MELODI). In April 2009, five national organisations, with the support of the EC, created the initial core of MELODI (http://www.melodi-online.eu) with a view to integrate the EU institutions with significant programmes in the field, while being open to other scientific organisations and stakeholders, and to develop an agreed strategic research agenda (SRA) and roadmap. Since then, open workshops have been organised yearly, exploring ideas for SRA implementation. As of October 2014, 31 institutions have been included as members of MELODI. HLEG recommendations and MELODI SRA have become important reference points in the radiation protection part of the Euratom Research Programme. MELODI has established close interactions through Memorandum of Understanding with other European platforms involved in radiation protection (Alliance, NERIS and EURADOS) and, together with EURADOS, with the relevant medical European Associations. The role of Joint Programming in priority setting, foreseen in the forthcoming EU Horizon 2020, calls for keeping MELODI an open, inclusive and transparent initiative, able to avoid redundancies and possible conflicts of interest, while promoting common initiatives in radiation protection research. An important issue is the establishment of a proper methodology for managing these initiatives, and this includes the set-up of an independent MELODI Scientific Committee recently extended to Alliance, NERIS and EURADOS, with the aim of identifying research priorities to suggest for the forthcoming Euratom research calls. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sato, Tatsuhiko
2015-01-01
By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.
Sato, Tatsuhiko
2015-01-01
By extending our previously established model, here we present a new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0,” which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth’s atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R 2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research. PMID:26674183
Cyclotron in the Materials and Stresses Building
1976-11-21
Researchers check the cyclotron in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Materials and Stresses Building, built in 1949, contained a number of laboratories to test the strength, diffusion, and other facets of materials. The materials could be subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The cyclotron was built in the early 1950s to test the effects of radiation on different materials so that the proper materials could be used to construct a nuclear aircraft engine and other components. By the late 1950s, the focus had shifted to similar studies for rockets. NASA cancelled its entire nuclear program in January 1973, and the cyclotron was mothballed. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron to treat cancer patients with a new type of radiation therapy. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. Over the course of five years, the cyclotron was used to treat 1200 patients. The program was terminated in 1980 as the Clinic shifted its efforts to concentrate on non-radiation treatments. The Lewis cyclotron was mothballed for a number of years before being demolished.
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1986-01-01
Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.
NASA Technical Reports Server (NTRS)
Deepak, Adarsh; Wang, Pi-Huan
1985-01-01
The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anscher, Mitchell S., E-mail: manscher@mcvh-vcu.ed; Anscher, Barbara M.; Bradley, Cathy J.
2010-04-15
Purpose: To survey radiation oncology training programs to determine the impact of ownership of radiation oncology facilities by non-radiation oncologists on these training programs and to place these findings in a health policy context based on data from the literature. Methods and Materials: A survey was designed and e-mailed to directors of all 81 U.S. radiation oncology training programs in this country. Also, the medical and health economic literature was reviewed to determine the impact that ownership of radiation oncology facilities by non-radiation oncologists may have on patient care and health care costs. Prostate cancer treatment is used to illustratemore » the primary findings. Results: Seventy-three percent of the surveyed programs responded. Ownership of radiation oncology facilities by non-radiation oncologists is a widespread phenomenon. More than 50% of survey respondents reported the existence of these arrangements in their communities, with a resultant reduction in patient volumes 87% of the time. Twenty-seven percent of programs in communities with these business arrangements reported a negative impact on residency training as a result of decreased referrals to their centers. Furthermore, the literature suggests that ownership of radiation oncology facilities by non-radiation oncologists is associated with both increased utilization and increased costs but is not associated with increased access to services in traditionally underserved areas. Conclusions: Ownership of radiation oncology facilities by non-radiation oncologists appears to have a negative impact on residency training by shifting patients away from training programs and into community practices. In addition, the literature supports the conclusion that self-referral results in overutilization of expensive services without benefit to patients. As a result of these findings, recommendations are made to study further how physician ownership of radiation oncology facilities influence graduate medical education, treatment patterns and utilization, and health care costs. Patients also need to be aware of financial arrangements that may influence their physician's treatment recommendations.« less
NASA Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wu, Honglu; Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam
2007-01-01
In space, astronauts are constantly bombarded with energetic particles. The goal of the National Aeronautics and Space Agency and the NASA Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. Among the identified radiation risks are cancer, acute and late CNS damage, chronic and degenerative tissue decease, and acute radiation syndrome. The term "safely" means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences can be defined. The NASA Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting the identified radiation risks. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus, the fourth element develops computer algorithms to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.
The impact of radiation belts region on top side ionosphere condition during last solar minimum.
NASA Astrophysics Data System (ADS)
Rothkaehl, Hanna; Przepiórka, Dororta; Matyjasiak, Barbara
2014-05-01
The wave particle interactions in radiation belts region are one of the key parameters in understanding the global physical processes which govern the near Earth environment. The populations of outer radiation belts electrons increasing in response to changes in the solar wind and the interplanetary magnetic field, and decreasing as a result of scattering into the loss cone and subsequent absorption by the atmosphere. The most important question in relation to understanding the physical processes in radiation belts region relates to estimate the ratio between acceleration and loss processes. This can be also very useful for construct adequate models adopted in Space Weather program. Moreover the wave particle interaction in inner radiation zone and in outer radiation zone have significant influence on the space plasma property at ionospheric altitude. The aim of this presentation is to show the manifestation of radiation belts region at the top side ionosphere during the last long solar minimum. The presentation of longitude and seasonal changes of plasma parameters affected by process occurred in radiation belts region has been performed on the base of the DEMETER and COSMIC 3 satellite registration. This research is partly supported by grant O N517 418440
10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a...
10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a...
10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a...
10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a...
10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a...
Evolutionary Models of Cold, Magnetized, Interstellar Clouds
NASA Technical Reports Server (NTRS)
Gammie, Charles F.; Ostriker, Eve; Stone, James M.
2004-01-01
We modeled the long-term and small-scale evolution of molecular clouds using direct 2D and 3D magnetohydrodynamic (MHD) simulations. This work followed up on previous research by our group under auspices of the ATP in which we studied the energetics of turbulent, magnetized clouds and their internal structure on intermediate scales. Our new work focused on both global and smallscale aspects of the evolution of turbulent, magnetized clouds, and in particular studied the response of turbulent proto-cloud material to passage through the Galactic spiral potential, and the dynamical collapse of turbulent, magnetized (supercritical) clouds into fragments to initiate the formation of a stellar cluster. Technical advances under this program include developing an adaptive-mesh MHD code as a successor to ZEUS (ATHENA) in order to follow cloud fragmentation, developing a shearing-sheet MHD code which includes self-gravity and externally-imposed gravity to follow the evolution of clouds in the Galactic potential, and developing radiative transfer models to evaluate the internal ionization of clumpy clouds exposed to external photoionizing UV and CR radiation. Gammie's work at UIUC focused on the radiative transfer aspects of this program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gussev, Maxim N.; Field, Kevin G.; Yamamoto, Yukinori
2016-06-03
The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the bestmore » candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.« less
Space medicine research publications: 1987-1988
NASA Technical Reports Server (NTRS)
1991-01-01
A list of publications of investigators supported by the Biomedical Research and Clinical Programs of the Life Sciences Division, Office of Space Science and Applications is given. Included are publications entered into the Life Sciences Bibliographic Database by the George Washington University as of 31 December 1988. Principal Investigators whose research tasks resulted in publication are identified by asterisk. Publications are organized into the following subject areas: space physiology and countermeasures (cardiopulmonary, musculoskeletal, neuroscience, and regulatory physiology), space human factors, environmental health, radiation health, clinical medicine, and general space medicine.
Radiation applications research and facilities in AECL research company
NASA Astrophysics Data System (ADS)
Iverson, S. L.
In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norin, L.; Leyser, T. B.; Nordblad, E.
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
Radiation of sound from unflanged cylindrical ducts
NASA Technical Reports Server (NTRS)
Hartharan, S. L.; Bayliss, A.
1983-01-01
Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.
Transport methods and interactions for space radiations
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Schimmerling, Walter S.; Khandelwal, Govind S.; Khan, Ferdous S.; Nealy, John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn, Judy L.; Norbury, John W.
1991-01-01
A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.
Computer program for pulsed thermocouples with corrections for radiation effects
NASA Technical Reports Server (NTRS)
Will, H. A.
1981-01-01
A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.
The aeroacoustics of supersonic jets
NASA Technical Reports Server (NTRS)
Morris, Philip J.; McLaughlin, Dennis K.
1995-01-01
This research project was a joint experimental/computational study of noise in supersonic jets. The experiments were performed in a low to moderate Reynolds number anechoic supersonic jet facility. Computations have focused on the modeling of the effect of an external shroud on the generation and radiation of jet noise. This report summarizes the results of the research program in the form of the Masters and Doctoral theses of those students who obtained their degrees with the assistance of this research grant. In addition, the presentations and publications made by the principal investigators and the research students is appended.
Searching for extraterrestrial intelligence - The ultimate exploration
NASA Technical Reports Server (NTRS)
Black, D.; Tarter, J.; Cuzzi, J. N.; Conners, M.; Clark, T. A.
1977-01-01
A survey highlighting the central issues of the SETI program (Search for Extraterrestrial Intelligence), including its rationale, scope, search problems, and goals is presented. Electromagnetic radiation is suggested as the most likely means via which knowledge of extraterrestrial intelligence will be obtained, and the variables governing these signals are discussed, including: signal frequency and polarization, state, possible coordinates, and signal duration. The modern history of SETI and NASA's involvement is briefly reviewed, and the search strategies used by the Jet Propulsion Laboratory and the Ames Research Center are discussed and compared. Some of the potential scientific and cultural impacts of the SETI program are mentioned, noting advancements in technological, biological, and chemical research.
Summary of Workshop on InP: Status and Prospects
NASA Technical Reports Server (NTRS)
Walters, R. J.; Weinberg, I.
1994-01-01
The primary objective of most of the programs in InP solar cells is the development of the most radiation hard solar cell technology. In the workshop, it was generally agreed that the goal is a cell which displays high radiation tolerance in a radiation environment equivalent to a 1 MeV electron fluence of about 10(exp 16)/sq cm. Furthermore, it is desired that the radiation response of the cell be essentially flat out to this fluence - i.e. that the power output of the cell not decrease from its beginning of life (BOL) value in this radiation environment. It was also agreed in the workshop that the manufacturability of InP solar cells needs to be improved. In particular, since InP wafers are relatively dense and brittle, alternative substrates need to be developed. Research on hetero-epitaxial InP cells grown on Si, Ge, and GaAs substrates is currently underway. The ultimate goal is to develop hetero-epitaxial InP solar cells using a cheap, strong, and lightweight substrate.
NASA Technical Reports Server (NTRS)
Huff, H.; You, Z.; Williams, T.; Nichols, T.; Attia, J.; Fogarty, T. N.; Kirby, K.; Wilkins, R.; Lawton, R.
1998-01-01
As integrated circuits become more sensitive to charged particles and neutrons, anomalous performance due to single event effects (SEE) is a concern and requires experimental verification and quantification. The Center for Applied Radiation Research (CARR) at Prairie View A&M University has developed experiments as a participant in the NASA ER-2 Flight Program, the APEX balloon flight program and the Student Launch Program. Other high altitude and ground level experiments of interest to DoD and commercial applications are being developed. The experiment characterizes the SEE behavior of high speed and high density SRAM's. The system includes a PC-104 computer unit, an optical drive for storage, a test board with the components under test, and a latchup detection and reset unit. The test program will continuously monitor the stored checkerboard data pattern in the SW and record errors. Since both the computer and the optical drive contain integrated circuits, they are also vulnerable to radiation effects. A latchup detection unit with discrete components will monitor the test program and reset the system when necessary. The first results will be obtained from the NASA ER-2 flights, which are now planned to take place in early 1998 from Dryden Research Center in California. The series of flights, at altitudes up to 70,000 feet, and a variety of flight profiles should yield a distribution of conditions for correlating SEES. SEE measurements will be performed from the time of aircraft power-up on the ground throughout the flight regime until systems power-off after landing.
Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts
NASA Technical Reports Server (NTRS)
Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.
2011-01-01
To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute Radiation Assessment Detector. Also, the University of Florida hybrid phantoms, which are flexible in morphometry and positioning, are being explored as alternatives to the current NASA computational phantoms.
Contemporary Trends in Radiation Oncology Resident Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vivek; Burt, Lindsay; Gimotty, Phyllis A.
Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int Jmore » Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These contemporary figures may be useful to medical students considering radiation oncology, current residents, training programs, and prospective employers.« less
Contemporary Trends in Radiation Oncology Resident Research.
Verma, Vivek; Burt, Lindsay; Gimotty, Phyllis A; Ojerholm, Eric
2016-11-15
To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals-most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These contemporary figures may be useful to medical students considering radiation oncology, current residents, training programs, and prospective employers. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copland, John Robin; Cochran, John Russell
2013-07-01
The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifiesmore » a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.« less
Mind the Gap: Exploring the Underground of the NASA Space Cancer Risk Model
NASA Technical Reports Server (NTRS)
Chappell, L. J.; Elgart, S. R.; Milder, C. M.; Shavers, M. R.; Semones, E. J.; Huff, J. L.
2017-01-01
The REID quantifies the lifetime risk of death from radiation-induced cancer in an exposed astronaut. The NASA Space Cancer Risk (NSCR) 2012 mode incorporates elements from physics, biology, epidemiology, and statistics to generate the REID distribution. The current model quantifies the space radiation environment, radiation quality, and dose-rate effects to estimate a NASA-weighted dose. This weighted dose is mapped to the excess risk of radiation-induced cancer mortality from acute exposures to gamma rays and then transferred to an astronaut population. Finally, the REID is determined by integrating this risk over the individual's lifetime. The calculated upper 95% confidence limit of the REID is used to restrict an astronaut's permissible mission duration (PMD) for a proposed mission. As a statistical quantity characterized by broad, subjective uncertainties, REID estimates for space missions result in wide distributions. Currently, the upper 95% confidence level is over 350% larger than the mean REID value, which can severely limit an astronaut's PMD. The model incorporates inputs from multiple scientific disciplines in the risk estimation process. Physics and particle transport models calculate how radiation moves through space, penetrates spacecraft, and makes its way to the human beings onboard. Epidemiological studies of exposures from atomic bombings, medical treatments, and power plants are used to quantify health risks from acute and chronic low linear energy transfer (LET) ionizing radiation. Biological studies in cellular and animal models using radiation at various LETs and energies inform quality metrics for ions present in space radiation. Statistical methodologies unite these elements, controlling for mathematical and scientific uncertainty and variability. Despite current progress, these research platforms contain knowledge gaps contributing to the large uncertainties still present in the model. The NASA Space Radiation Program Element (SRPE) defines the knowledge gaps that impact our understanding of the cancer risks. These gaps are outlined in NASA's Human Research Roadmap [4], which identifies the research questions and actions recommended for reducing the uncertainty in the current NSCR model and for formulation of future models. The greatest contributors to uncertainty in the current model include radiation quality, dose rate effects, and the transfer of exposure-based risk from other populations to an astronaut population. Future formulations of the risk model may benefit from including other potential sources of uncertainty such as space dosimetry, errors in human epidemiology data, and the impact of microgravity and other spaceflight stressors. Here, we discuss the current capabilities of the NSCR-2012 model and several immediate research needs, highlighting areas expected to have an operational impact on the current model schema. The following subway-style route map outlines the NSCR-2012 model (Green Line), emphasizing the research gaps in the Human Research Roadmap for risk of radiation-induced carcinogenesis (Stops on Dashed Lines). The map diagrams how these research gaps feed specific portions of the model.
Radiation Protection in Canada
Williams, N.
1965-01-01
The main emphasis of a provincial radiation protection program is on ionizing radiation produced by machines, although assistance is given to the Federal Radiation Protection Division in its program relating to radioactive substances. The basis for the Saskatchewan program of radiation protection is the Radiological Health Act 1961. An important provision of the Act is annual registration of radiation equipment. The design of the registration form encourages a “do-it-yourself” radiation and electrical safety inspection. Installations are inspected every two years by a radiation health officer. Two hundred and twenty-one deficiencies were found during inspection of 224 items of radiation equipment, the commonest being failure to use personal film badges. Insufficient filtration of the beam, inadequate limitation of the beam, and unnecessary exposure of operators were other common faults. Physicians have a responsibility to weigh the potential advantages against the hazards when requesting radiographic or fluoroscopic procedures. PMID:14282164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenstein, Barry S., E-mail: barry.rosenstein@mssm.ed; Department of Radiation Oncology, New York University School of Medicine, New York, NY; Held, Kathryn D.
2009-11-01
Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educatorsmore » whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.« less
Karvinen, Kristina H; Raedeke, Thomas D; Arastu, Hyder; Allison, Ron R
2011-09-01
To explore exercise programming and counseling preferences and exercise-related beliefs in breast cancer survivors during and after radiation therapy, and to compare differences based on treatment and insurance status. Cross-sectional survey. Ambulatory cancer center in a rural community in eastern North Carolina. 91 breast cancer survivors during or after radiation therapy. The researchers administered the questionnaire to participants. Exercise programming and counseling preferences and exercise beliefs moderated by treatment status (on-treatment, early, and late survivors) and insurance status (Medicaid, non-Medicaid). Chi-square analyses indicated that fewer Medicaid users were physically active and reported health benefits as an advantage of exercise compared to non-Medicaid users (p < 0.05). In addition, more Medicaid users preferred exercise programming at their cancer center compared to non-Medicaid users (p < 0.05). More on-treatment and early survivors listed health benefits as advantages to exercise, but fewer indicated weight control as an advantage compared to late survivors (p < 0.05). Early survivors were more likely than on-treatment survivors to indicate that accessible facilities would make exercising easier for them (p < 0.05). Medicaid users are less active, less likely to identify health benefits as an advantage for exercising, and more likely to prefer cancer center-based exercise programming compared to non-Medicaid users. In addition, on-treatment and early survivors are more likely to list health benefits and less likely to indicate weight control as advantages of exercising compared to late survivors. The low activity levels of Medicaid users may be best targeted by providing cancer center-based exercise programming. Exercise interventions may be most effective if tailored to the unique needs of treatment status.
The impacts of land use, radiative forcing, and biological changes on regional climate in Japan
NASA Astrophysics Data System (ADS)
Dairaku, K.; Pielke, R. A., Sr.
2013-12-01
Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to develop assessment tools for regional scale adaptation to climate. We developed a dynamical downscaling method using the regional climate model (NIED-RAMS) over Japan. The NIED-RAMS model includes a plant model that considers biological processes, the General Energy and Mass Transfer Model (GEMTM) which adds spatial resolution to accurately assess critical interactions within the regional climate system for vulnerability assessments to climate change. We digitalized a potential vegetation map that formerly existed only on paper into Geographic Information System data. It quantified information on the reduction of green spaces and the expansion of urban and agricultural areas in Japan. We conducted regional climate sensitivity experiments of land use and land cover (LULC) change, radiative forcing, and biological effects by using the NIED-RAMS with horizontal grid spacing of 20 km. We investigated regional climate responses in Japan for three experimental scenarios: 1. land use and land cover is changed from current to potential vegetation; 2. radiative forcing is changed from 1 x CO2 to 2 x CO2; and 3. biological CO2 partial pressures in plants are doubled. The experiments show good accuracy in reproducing the surface air temperature and precipitation. The experiments indicate the distinct change of hydrological cycles in various aspects due to anthropogenic LULC change, radiative forcing, and biological effects. The relative impacts of those changes are discussed and compared. Acknowledgments This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA), and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.
Engaging College Students at Two-year Campuses in Aerospace Research
NASA Astrophysics Data System (ADS)
Dirienzo, William
2018-01-01
College students at two-year campuses have unique challenges to their learning and are often "nontraditional" students, including first-generation and/or returning adult students. They have little or no exposure to research, related to science and aerospace or otherwise, and so they do not think of these fields as possible careers or understand how the disciplines operate. Exposing these students to real research projects, especially ones that include rocket payloads, have a dramatic effect on the interests and academic success of students. Projects such as these can be quite large and expensive, perhaps prohibitively so for small institutions. We engaged a group of these students through the RockOn and RockSat programs lead by the Colorado Space Grant Consortium, which are programs for postsecondary students to access space with relatively easy access and low cost. The student team designed, built, and flew a scientific payload on a suborbital sounding rocket launched at NASA's Wallops Flight Facility in Virginia. The experiment sent E. coli DNA samples into space to assess the damage and measured the radiation exposure with and without radiation shielding, and assessed the samples for DNA damage upon their return. We report on the process and the effects on the students as part of their experience.
INEL BNCT Research Program annual report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1993-05-01
This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potentialmore » toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.« less
Miller, Kenneth L
2005-06-01
A review of the operational health physics papers published in Health Physics and Operational Radiation Safety over the past fifteen years indicated seventeen general categories or areas into which the topics could be readily separated. These areas include academic research programs, use of computers in operational health physics, decontamination and decommissioning, dosimetry, emergency response, environmental health physics, industrial operations, medical health physics, new procedure development, non-ionizing radiation, radiation measurements, radioactive waste disposal, radon measurement and control, risk communication, shielding evaluation and specification, staffing levels for health physics programs, and unwanted or orphan sources. That is not to say that there are no operational papers dealing with specific areas of health physics, such as power reactor health physics, accelerator health physics, or governmental health physics. On the contrary, there have been a number of excellent operational papers from individuals in these specialty areas and they are included in the broader topics listed above. A listing and review of all the operational papers that have been published is beyond the scope of this discussion. However, a sampling of the excellent operational papers that have appeared in Health Physics and Operational Radiation Safety is presented to give the reader the flavor of the wide variety of concerns to the operational health physicist and the current areas of interest where procedures are being refined and solutions to problems are being developed.
Miller, Kenneth L
2005-01-01
A review of the operational health physics papers published in Health Physics and Operational Radiation Safety over the past fifteen years indicated seventeen general categories or areas into which the topics could be readily separated. These areas include academic research programs, use of computers in operational health physics, decontamination and decommissioning, dosimetry, emergency response, environmental health physics, industrial operations, medical health physics, new procedure development, non-ionizing radiation, radiation measurements, radioactive waste disposal, radon measurement and control, risk communication, shielding evaluation and specification, staffing levels for health physics programs, and unwanted or orphan sources. That is not to say that there are no operational papers dealing with specific areas of health physics, such as power reactor health physics, accelerator health physics, or governmental health physics. On the contrary, there have been a number of excellent operational papers from individuals in these specialty areas and they are included in the broader topics listed above. A listing and review of all the operational papers that have been published is beyond the scope of this discussion. However, a sampling of the excellent operational papers that have appeared in Health Physics and Operational Radiation Safety is presented to give the reader the flavor of the wide variety of concerns to the operational health physicist and the current areas of interest where procedures are being refined and solutions to problems are being developed.
Sequim Marine Research Laboratory routine environmental measurements during CY-1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, J.J.; Blumer, P.J.
1977-05-01
Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. A summary of the analytical methods used is included. The present document includes datamore » obtained during CY 1976, the first year of the program. Radionuclides present in samples are attributed to fallout. Data are included on content of oil and Cu in seawater samples.« less
How do we get from cell and animal data to risks for humans from space radiations?
NASA Technical Reports Server (NTRS)
Dicello, J. F.
2002-01-01
After four decades of human exploration in space, many scientists consider the medical consequences from radiation exposures to be the major biological risk associated with long-term missions. This conclusion is based upon results from a research program that has evolved over the past thirty years. Despite the diversity in both opinions and approaches that necessarily arise in research endeavors such as this, a commonality has emerged from our community. We need epidemiological data for humans, animal data in areas where no human data exist, and data on mechanisms to get from animal to humans. We need a programmatic infrastructure that addresses specific goals as well as basic research. These concepts might be deemed overly simplistic and even tautologous were it not for the fact that they are frequently underutilized and even ignored. This article examines the goals, premises, and infrastructures proposed by expert panels and agencies to address radiation risks in space. It is proposed that the required level of effort and the resources available demand a unified, focused international effort that is, at the same time, subjected to rigorous peer review if it is to be successful. There is a plan; let us implement it.
Strategic Research Directions In Microgravity Materials Science
NASA Technical Reports Server (NTRS)
Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth
2004-01-01
The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.
Spectroradiometric considerations for advanced land observing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1986-01-01
Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.
NASA Technical Reports Server (NTRS)
Wise, J.
1979-01-01
Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.
Wallops and its role in depressed metabolism
NASA Technical Reports Server (NTRS)
Holton, E. M.
1973-01-01
Facilities and organization at the Wallops station are reviewed and some current research work is described that pertains to noise abatement studies as well as some testing phases on V/STOL aircraft. Radiation biology results of various space flights are reviewed and some efforts for the Regulatory Biology Program, involving depressed metabolism aspects of space travel are detailed.
Climate and atmospheric modeling studies
NASA Technical Reports Server (NTRS)
1992-01-01
The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.
Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program
NASA Technical Reports Server (NTRS)
Beckemeyer, R. J.; Sawdy, D. T.
1971-01-01
An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.
Confidence limits for Neyman type A-distributed events.
Morand, Josselin; Deperas-Standylo, Joanna; Urbanik, Witold; Moss, Raymond; Hachem, Sabet; Sauerwein, Wolfgang; Wojcik, Andrzej
2008-01-01
The Neyman type A distribution, a generalised, 'contagious' Poisson distribution, finds application in a number of disciplines such as biology, physics and economy. In radiation biology, it best describes the distribution of chromosomal aberrations in cells that were exposed to neutrons, alpha radiations or heavy ions. Intriguingly, no method has been developed for the calculation of confidence limits (CLs) of Neyman type A-distributed events. Here, an algorithm to calculate the 95% CL of Neyman type A-distributed events is presented. Although it has been developed in response to the requirements of radiation biology, it can find application in other fields of research. The algorithm has been implemented in a PC-based computer program that can be downloaded, free of charge, from www.pu.kielce.pl/ibiol/neta.
Multidisciplinary Research Program in Atmospheric Science. [remote sensing
NASA Technical Reports Server (NTRS)
Thompson, O. E.
1982-01-01
A theoretical analysis of the vertical resolving power of the High resolution Infrared Radiation Sounder (HIRS) and the Advanced Meteorological Temperature Sounder (AMTS) is carried out. The infrared transmittance weighting functions and associated radiative transfer kernels are analyzed through singular value decomposition. The AMTS was found to contain several more pieces of independent information than HIRS when the transmittances were considered, but the two instruments appeared to be much more similar when the temperature sensitive radiative transfer kernels were analyzed. The HIRS and AMTS instruments were also subjected to a thorough analysis. It was found that the two instruments should have very similar vertical resolving power below 500 mb but that AMTS should have superior resolving power above 200 mb. In the layer 200 to 500 mb the AMTS showed badly degraded spread function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
INSTRUMENTATION DIVISION STAFF
To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientistsmore » from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.« less
Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poellot, Michael
The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellitemore » program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.« less
ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua
2010-01-01
Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).
Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce
2017-03-17
Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce
Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less
Deep Space Test Bed for Radiation Studies
NASA Technical Reports Server (NTRS)
Adams, James H.; Christl, Mark; Watts, John; Kuznetsov, Eugene; Lin, Zi-Wei
2006-01-01
A key factor affecting the technical feasibility and cost of missions to Mars or the Moon is the need to protect the crew from ionizing radiation in space. Some analyses indicate that large amounts of spacecraft shielding may be necessary for crew safety. The shielding requirements are driven by the need to protect the crew from Galactic cosmic rays (GCR). Recent research activities aimed at enabling manned exploration have included shielding materials studies. A major goal of this research is to develop accurate radiation transport codes to calculate the shielding effectiveness of materials and to develop effective shielding strategies for spacecraft design. Validation of these models and calculations must be addressed in a relevant radiation environment to assure their technical readiness and accuracy. Test data obtained in the deep space radiation environment can provide definitive benchmarks and yield uncertainty estimates of the radiation transport codes. The two approaches presently used for code validation are ground based testing at particle accelerators and flight tests in high-inclination low-earth orbits provided by the shuttle, free-flyer platforms, or polar-orbiting satellites. These approaches have limitations in addressing all the radiation-shielding issues of deep space missions in both technical and practical areas. An approach based on long duration high altitude polar balloon flights provides exposure to the galactic cosmic ray composition and spectra encountered in deep space at a lower cost and with easier and more frequent access than afforded with spaceflight opportunities. This approach also results in shorter development times than spaceflight experiments, which is important for addressing changing program goals and requirements.
NASA Astrophysics Data System (ADS)
Loidl, M.; Beyer, J.; Bockhorn, L.; Enss, C.; Györi, D.; Kempf, S.; Kossert, K.; Mariam, R.; Nähle, O.; Paulsen, M.; Rodrigues, M.; Schmidt, M.
2018-05-01
MetroBeta is a European project aiming at the improvement of the knowledge of the shapes of beta spectra, both in terms of theoretical calculations and measurements. It is part of a common European program of ionizing radiation metrology. Metallic magnetic calorimeters (MMCs) with the beta emitter embedded in the absorber have in the past proven to be among the best beta spectrometers, in particular for low-energy beta transitions. Within this project, new designs of MMCs optimized for five different beta energy ranges were developed. A new detector module with thermal decoupling of MMC and SQUID chips was designed. An important aspect of the research and development concerns the source/absorber preparation techniques. Four beta spectra with maximum energies ranging from 76 to 709 keV will be measured. Improved theoretical calculation methods and complementary measurement techniques complete the project.
2007-05-22
HAARP ) HF transmitter in Gakona, Alaska, and detected after propagating more than 4400 km in the Earth-ionosphere waveguide to Midway Atoll. The...conductivity variation (created by modulated HF heating) and radiating 4–32 W. The HF-ELF conversion efficiency at HAARP is thus estimated to be...Program ( HAARP ) research station in Gakona, Alaska. The HAARP HF transmitter (or heater), which JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, A05309, doi
Biological effectiveness of neutrons: Research needs
NASA Astrophysics Data System (ADS)
Casarett, G. W.; Braby, L. A.; Broerse, J. J.; Elkind, M. M.; Goodhead, D. T.; Oleinick, N. L.
1994-02-01
The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Emma B.; Jagsi, Reshma; Thomas, Charles R.
Purpose: To analyze survey information regarding mentorship practices and cross-correlate the results with objective metrics of academic productivity among academic radiation oncologists at US Accreditation Council for Graduate Medical Education (ACGME)-accredited residency training programs. Methods and Materials: An institutional review board-approved survey for the Radiation Oncology Academic Development and Mentorship Assessment Project (ROADMAP) was sent to 1031 radiation oncologists employed at an ACGME-accredited residency training program and administered using an international secure web application designed exclusively to support data capture for research studies. Data collected included demographics, presence of mentorship, and the nature of specific mentoring activities. Productivity metrics, includingmore » number of publications, number of citations, h-index, and date of first publication, were collected for each survey respondent from a commercially available online database, and m-index was calculated. Results: A total of 158 academic radiation oncologists completed the survey, 96 of whom reported having an academic/scientific mentor. Faculty with a mentor had higher numbers of publications, citations, and h- and m-indices. Differences in gender and race/ethnicity were not associated with significant differences in mentorship rates, but those with a mentor were more likely to have a PhD degree and were more likely to have more time protected for research. Bivariate fit regression modeling showed a positive correlation between a mentor's h-index and their mentee's h-index (R{sup 2} = 0.16; P<.001). Linear regression also showed significant correlates of higher h-index, in addition to having a mentor (P=.001), included a longer career duration (P<.001) and fewer patients in treatment (P=.02). Conclusions: Mentorship is widely believed to be important to career development and academic productivity. These results emphasize the importance of identifying and striving to overcome potential barriers to effective mentorship.« less
Management of radioactive material safety programs at medical facilities. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camper, L.W.; Schlueter, J.; Woods, S.
A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized usersmore » and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.« less
Bayram, Tuncay; Sönmez, Bircan
2012-04-01
In this study, we aimed to make a computer program that calculates approximate radiation dose received by embryo/fetus in nuclear medicine applications. Radiation dose values per MBq-1 received by embryo/fetus in nuclear medicine applications were gathered from literature for various stages of pregnancy. These values were embedded in the computer code, which was written in Fortran 90 program language. The computer program called nmfdose covers almost all radiopharmaceuticals used in nuclear medicine applications. Approximate radiation dose received by embryo/fetus can be calculated easily at a few steps using this computer program. Although there are some constraints on using the program for some special cases, nmfdose is useful and it provides practical solution for calculation of approximate dose to embryo/fetus in nuclear medicine applications. None declared.
The Lewis heat pipe code with application to SP-100 GES heat pipes
NASA Astrophysics Data System (ADS)
Baker, Karl W.; Tower, Leonard K.
The NASA Lewis Research Center has a thermal management program supporting SP-100 goals, which includes heat pipe radiator development. As a part of the program Lewis has elected to prepare an in-house heat pipe code tailored to the needs of its SP-100 staff to supplement codes from other sources. The latter, designed to meet the needs of the originating organizations, were deemed not entirely appropriate for use at Lewis. However, a review of their features proved most beneficial in the design of the Lewis code.
GEWEX - The Global Energy and Water Cycle Experiment
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1992-01-01
GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.
The Living With a Star Space Environment Testbed Experiments
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.
2014-01-01
The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.
OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poellot, Michael
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic Mountain Experiment (OLYMPEX). The field campaign took place from November 12 through December 19, 2015, over the Olympic Mountains and coastal waters of Washington State as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) validation campaign. The CSI was added to the Citation instrument suite to support the NASA Aerosol-Cloud Ecosystem (ACE) satellite program and flights ofmore » the NASA Lockheed Earth Resources (ER-2) aircraft. ACE funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the DOE Atmospheric System Research (ASR) program.« less
NASA Technical Reports Server (NTRS)
Gupta, Kajal (Technical Monitor); Kirby, Kelvin
2004-01-01
The NASA Cooperative Agreement NAG4-210 was granted under the FY2000 Faculty Awards for Research (FAR) Program. The project was proposed to examine the effects of charged particles and neutrons on selected random access memory (RAM) technologies. The concept of the project was to add to the current knowledge of Single Event Effects (SEE) concerning RAM and explore the impact of selected forms of radiation on Error Detection and Correction Systems. The project was established as an extension of a previous FAR awarded to Prairie View A&M University (PVAMU), under the direction of Dr. Richard Wilkins as principal investigator. The NASA sponsored Center for Applied Radiation Research (CARR) at PVAMU developed an electronic test-bed to explore and quantify SEE on RAM from charged particles and neutrons. The test-bed was developed using 486DX microprocessor technology (PC-104) and a custom test board to mount RAM integrated circuits or other electronic devices. The test-bed had two configurations - a bench test version for laboratory experiments and a 400 Hz powered rack version for flight experiments. The objectives of this project were to: 1) Upgrade the Electronic Test-bed (ETB) to a Pentium configuration; 2) Accommodate more than only 8 Mbytes of RAM; 3) Explore Error Detection and Correction Systems for radiation effects; 4) Test modern RAM technologies in radiation environments.
Relationship between student selection criteria and learner success for medical dosimetry students
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Jamie, E-mail: jabaker@mdanderson.org; Tucker, Debra; Raynes, Edilberto
Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees)more » and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.« less
Relationship between student selection criteria and learner success for medical dosimetry students.
Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela
2016-01-01
Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Atmospheric Radiation Measurement Program facilities newsletter, March 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2000-04-03
The Atmospheric Radiation Measurement Program (ARM Program) is sending a copy of the ARM Video, an education overview of their program. In the video you will see and hear ARM scientists describe the importance of studying climate and climate change. It also contains a tour of some ARM sites and a look at state-of-the-art meteorological instrumentation, along with background information about the radiation budget and the complexity of climate modeling. The video was produced by the US Department of Energy.
Cell Science and Cell Biology Research at MSFC: Summary
NASA Technical Reports Server (NTRS)
2003-01-01
The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.
Naval Research Laboratory's programs in advanced indium phosphide solar cell development
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.
1996-01-01
The Naval Research Laboratory (NRL) has been involved in the development of solar cells for space applications since the 1960s. It quickly became apparent in this work that radiation damage caused to solar cells by electrons and protons trapped by the earth's magnetic field would seriously degrade the power output of photovoltaic arrays in extended missions. Techniques were therefore developed to harden the cells by shielding them with coverglass, etc. Ultimately, however, there is a limit to such approaches, which is determined by the radiation response of the semiconductor material employed. A desire for high efficiency and radiation resistance led to the development of alternative cell technologies such as GaAs, which has since become the technology of choice for many applications. InP cells are currently the most radiation resistant, high efficiency, planar cells known. NRL first sponsored InP solar cell technology in 1986, when Arizona State University was contracted to grow p/n cells by liquid phase epitaxy. NRL's interest in InP cells was generated by the results presented by Yamaguchi and his co-workers in the early 1980s on the remarkable radiation resistance of cells grown by diffusion of S into Zn doped p-type InP substrates. These cells also had beginning of life (BOL) efficiencies approximately 16%(AM0). Related to the radiation resistance of the cells was the fact that radiation-induced damage could be optically annealed by sunlight. Relatively large quantities of 1 x 2 cm(exp 2) diffused junction cells were made and were used on the MUSES-A and the EXOS-D satellites. These cells were also available in the U.S. through NIMCO, and were studied at NRL and elsewhere. Workers at NASA Lewis became involved in research in InP cells about the same time as NRL.
Balancing radiation benefits and risks: The needs of an informed public
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
The American public`s perceptions regarding ionizing radiation do not always conform to or correlate with scientific evidence. The ultimate purpose of this coordinated Federal effort and report is to increase the public`s knowledge of the benefits and risks associated with ionizing radiation. This report is divided into five sections. The first section, Introduction, discusses the public`s knowledge of radiation, their perceptions of benefits versus risks, and the Federal government`s role in public education. The section also outlines the charge to the Subpanel. Radiation Issues and Public Reactions discusses several radiation issues important to Federal agencies for which public education programsmore » need to be established or enhanced. Federal Programs describes Federal agencies with public education programs on radiation and the nature of the programs they support. Education Issues and Federal Strategies explores the elements identified by the Subpanel as critical to the development and implementation of an effective Federal program in the area of public education on radiation issues and nuclear technologies. An important issue repeatedly brought up during the public sector presentations to the Subpanel was the perceived lack of Federal credibility on radiation issues in the eyes of the public. To some degree, this concern was factored into all of the recommendations developed by the subpanel. The issues discussed in this section include the fragmented nature of Federal radiation programs and the need to improve credibility, promote agency responsiveness, and support the enhancement of scientific literacy. Finally, under Recommendations, the Subpanel discusses its overall findings and conclusions.« less
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tooman, T.P.
1997-01-01
This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns weremore » undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.« less
NASA Technical Reports Server (NTRS)
Miller, Sharon K.
2001-01-01
The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.
NASA photovoltaic research and technology
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.
Space Station medical sciences concepts
NASA Technical Reports Server (NTRS)
Mason, J. A.; Johnson, P. C., Jr.
1984-01-01
Current life sciences concepts relating to Space Station are presented including the following: research, extravehicular activity, biobehavioral considerations, medical care, maintenance of dental health, maintaining health through physical conditioning and countermeasures, protection from radiation, atmospheric contamination control, atmospheric composition, noise pollution, food supply and service, clothing and furnishings, and educational program possibilities. Information on the current status of Soviet Space Stations is contained.
NUCFRG2: An evaluation of the semiempirical nuclear fragmentation database
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Cucinotta, F. A.; Shinn, J. L.; Badavi, F. F.; Chun, S. Y.; Norbury, J. W.; Zeitlin, C. J.; Heilbronn, L.; Miller, J.
1995-01-01
A semiempirical abrasion-ablation model has been successful in generating a large nuclear database for the study of high charge and energy (HZE) ion beams, radiation physics, and galactic cosmic ray shielding. The cross sections that are generated are compared with measured HZE fragmentation data from various experimental groups. A research program for improvement of the database generator is also discussed.
Space station thermal control surfaces. [space radiators
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.
1979-01-01
Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.
Variation in radiographic protocols in paediatric interventional cardiology.
McFadden, S L; Hughes, C M; Winder, R J
2013-06-01
The aim of this work is to determine current radiographic protocols in paediatric interventional cardiology (IC) in the UK and Ireland. To do this we investigated which imaging parameters/protocols are commonly used in IC in different hospitals, to identify if a standard technique is used and illustrate any variation in practice. A questionnaire was sent to all hospitals in the UK and Ireland which perform paediatric IC to obtain information on techniques used in each clinical department and on the range of clinical examinations performed. Ethical and research governance approval was sought from the Office for Research Ethics Committees Northern Ireland and the individual trusts. A response rate of 79% was achieved, and a wide variation in technique was found between hospitals. The main differences in technique involved variations in the use of an anti-scatter grid and the use of additional filtration to the radiation beam, frame rates for digital acquisition and pre-programmed projections/paediatric specific programming in the equipment. We conclude that there is no standard protocol for carrying out paediatric IC in the UK or Ireland. Each hospital carries out the IC procedure according to its own local protocols resulting in a wide variation in radiation dose.
Number of Radiation Oncologists in Korea, Adequate or Surplus?
2006-01-01
Purpose The purpose of this research is to discern and address the issues related to the radiation oncology manpower supply and its distribution. Materials and Methods The statistical data of the Annual Report of the Korea Central Cancer Registry (KCCR) from 1997 to 2002 and the Annual Report of the Korean Society of Radiation Oncology (KOSTRO) from 1997 to 2004 were used to predict the status of the human resources in 2015. The estimated demand and supply were calculated with the Microsoft Excel® program (Microsoft, Redmond, WA). Results The demand for radiation oncologists is estimated to be 161 in 2015 and about 4.9 radiation oncologists will be in demand annually. In contrast, an average of 15 new radiation oncologists will be supplied annually so that the accumulated surplus of radiation oncologists until 2015 is estimated to be 74.1. The main reason for the surplus comes from the discrepancy between the increased number of radiation therapy patients and the need for radiation oncologists. When there is an increase of 1,000 radiation therapy patients, the demand for radiation oncologists increases only by 2.4. This phenomenon is especially evident in the top 10 hospitals where the average number of radiation therapy patients per radiation oncologist is 341, which is 58% higher than the average number (215) of other 46 hospitals. Conclusion To prevent a surplus and to maintain the quality of management, the number of radiation therapy patients per radiation oncologist should be limited. Furthermore, coordinate control of the number of residency positions should be seriously considered. PMID:19771261
History of nutrition in space flight: overview
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Feeback, Daniel L.
2002-01-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
History of nutrition in space flight: overview.
Lane, Helen W; Feeback, Daniel L
2002-10-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
Conceptual planning for Space Station life sciences human research project
NASA Technical Reports Server (NTRS)
Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.
1986-01-01
The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.
Integrating Multimodal Radiation Therapy Data into i2b2.
Zapletal, Eric; Bibault, Jean-Emmanuel; Giraud, Philippe; Burgun, Anita
2018-04-01
Clinical data warehouses are now widely used to foster clinical and translational research and the Informatics for Integrating Biology and the Bedside (i2b2) platform has become a de facto standard for storing clinical data in many projects. However, to design predictive models and assist in personalized treatment planning in cancer or radiation oncology, all available patient data need to be integrated into i2b2, including radiation therapy data that are currently not addressed in many existing i2b2 sites. To use radiation therapy data in projects related to rectal cancer patients, we assessed the feasibility of integrating radiation oncology data into the i2b2 platform. The Georges Pompidou European Hospital, a hospital from the Assistance Publique - Hôpitaux de Paris group, has developed an i2b2-based clinical data warehouse of various structured and unstructured clinical data for research since 2008. To store and reuse various radiation therapy data-dose details, activities scheduling, and dose-volume histogram (DVH) curves-in this repository, we first extracted raw data by using some reverse engineering techniques and a vendor's application programming interface. Then, we implemented a hybrid storage approach by combining the standard i2b2 "Entity-Attribute-Value" storage mechanism with a "JavaScript Object Notation (JSON) document-based" storage mechanism without modifying the i2b2 core tables. Validation was performed using (1) the Business Objects framework for replicating vendor's application screens showing dose details and activities scheduling data and (2) the R software for displaying the DVH curves. We developed a pipeline to integrate the radiation therapy data into the Georges Pompidou European Hospital i2b2 instance and evaluated it on a cohort of 262 patients. We were able to use the radiation therapy data on a preliminary use case by fetching the DVH curve data from the clinical data warehouse and displaying them in a R chart. By adding radiation therapy data into the clinical data warehouse, we were able to analyze radiation therapy response in cancer patients and we have leveraged the i2b2 platform to store radiation therapy data, including detailed information such as the DVH to create new ontology-based modules that provides research investigators with a wider spectrum of clinical data. Schattauer GmbH Stuttgart.
10 CFR 835.901 - Radiation safety training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...
10 CFR 835.901 - Radiation safety training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...
10 CFR 835.901 - Radiation safety training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radiation Safety Training § 835.901 Radiation safety... radiation exposure; (2) Basic radiological fundamentals and radiation protection concepts; (3) Physical... comply with the documented radiation protection program. (e) Radiation safety training shall be provided...
Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2008-01-01
Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less
Infrared Signature Masking by Air Plasma Radiation
NASA Technical Reports Server (NTRS)
Kruger, Charles H.; Laux, C. O.
2001-01-01
This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).
NASA Astrophysics Data System (ADS)
Szabó, J.; Pálfalvi, J. K.
2012-12-01
The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.
Relationship between Admission Criteria and Program Completion in a Radiation Therapy Program
ERIC Educational Resources Information Center
Dougherty, Adrienne M.
2017-01-01
Poor completion rates in the radiation therapy associate's degree program offered through a community college did not meet the standards set by the college and damaged the program's reputation. The relationship between admission criteria and program completion was not known. The purpose of this study was to determine if there were any…