Science.gov

Sample records for radiation resistance gene

  1. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    SciTech Connect

    Makarova, Kira S.; Omelchenko, Marina; Gaidamakova, Elena; Matrosova, Vera; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla L.; Copeland, A; Kim, Edwin; Land, Miriam L; Mavromatis, K; Pitluck, Samual; Richardson, P M; Detter, J. Chris; Brettin, Tom; Saunders, Elizabeth H; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M; Wolf, Yuri; Sorokin, Alexei; Gerasimova, Anna; Gelfand, Mikhail; Fredrickson, James K; Koonin, Eugene; Daly, Michael

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  2. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    SciTech Connect

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  3. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    PubMed Central

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavromatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  4. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors.

    PubMed

    Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M

    2015-01-01

    Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC. PMID:25961636

  5. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors

    PubMed Central

    Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M

    2015-01-01

    Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC. PMID:25961636

  6. Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression.

    PubMed

    Rajpurohit, Yogendra Singh; Desai, Shruti Sumeet; Misra, Hari Sharan

    2013-06-01

    Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage.

  7. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  8. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  9. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    SciTech Connect

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-05-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor {beta} mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor {beta}{sub 1} and {beta}{sub 3}. Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor {beta}mRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs.

  10. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  11. Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation.

    PubMed

    Morales, Luis O; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I; Wargent, Jason J; Sipari, Nina; Strid, Åke; Lindfors, Anders V; Tegelberg, Riitta; Aphalo, Pedro J

    2013-02-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280-315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315-400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.

  12. Head Resistance Due to Radiators

    NASA Technical Reports Server (NTRS)

    Kleinschmidt, R V; Parsons, S R

    1920-01-01

    Part 1 deals with the head resistance of a number of common types of radiator cores at different speeds in free air, as measured in the wind tunnel at the bureau of standards. This work was undertaken to determine the characteristics of various types of radiator cores, and in particular to develop the best type of radiator for airplanes. Some 25 specimens of core were tested, including practically all the general types now in use, except the flat plate type. Part 2 gives the results of wind tunnel tests of resistance on a model fuselage with a nose radiator. Part 3 presents the results of preliminary tests of head resistance of a radiator enclosed in a streamlined casing. Special attention is given to the value of wing radiator and of the radiator located in the open, especially when it is provided with a properly designed streamlined casing.

  13. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  14. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  15. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  16. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    SciTech Connect

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  17. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    PubMed Central

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  18. Gene amplification and insecticide resistance.

    PubMed

    Bass, Chris; Field, Linda M

    2011-08-01

    Pesticide resistance in arthropods has been shown to evolve by two main mechanisms, the enhanced production of metabolic enzymes, which bind to and/or detoxify the pesticide, and mutation of the target protein, which makes it less sensitive to the pesticide. One route that leads to enhanced metabolism is the duplication or amplification of the structural gene(s) encoding the detoxifying enzyme, and this has now been described for the three main families (esterases, glutathione S-transferases and cytochrome P450 monooxygenases) implicated in resistance. More recently, a direct or indirect role for gene duplication or amplification has been described for target-site resistance in several arthropod species. This mini-review summarises the involvement of gene duplication/amplification in the insecticide/acaricide resistance of insect and mite pests and highlights recent developments in this area in relation to P450-mediated and target-site resistance.

  19. Human Genetic Marker for Resistance to Radiation and Chemicals

    SciTech Connect

    DR. Howard B. Lieberman

    2001-05-11

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage.

  20. Gene expression and fractionation resistance

    PubMed Central

    2014-01-01

    Background Previous work on whole genome doubling in plants established the importance of gene functional category in provoking or suppressing duplicate gene loss, or fractionation. Other studies, particularly in Paramecium have correlated levels of gene expression with vulnerability or resistance to duplicate loss. Results Here we analyze the simultaneous effect of function category and expression in two plant data sets, rosids and asterids. Conclusion We demonstrate function category and expression level have independent effects, though expression does not play the dominant role it does in Paramecium. PMID:25573431

  1. Human Genetic Marker for Resistance to Radiations and Chemicals

    SciTech Connect

    Lieberman, Howard B.

    2000-06-01

    The major objective of this project is to understand the genetic basis for resistance of humans to radiations and chemicals. In the fission yeast S. pombe, a gene called rad9 plays a key role in promoting resistance to DNA damaging agents and controlling cell cycle progression after radiation or chemical exposure. This investigation focuses on the characterization of a human homologue of this yeast gene, called HRAD9, with the longterm goal of developing the gene as a genetic marker to predict inherent susceptibility to the deleterious health effects caused by DNA damage. The aims concern a molecular characterization of HRAD9 and determination of its role in mediating the cellular response to radiations and chemicals, as well as its potential role in carcinogenesis.

  2. Reservoirs of antibiotic resistance genes.

    PubMed

    Salyers, Abigail; Shoemaker, Nadja B

    2006-01-01

    A potential concern about the use of antibiotics in animal husbundary is that, as antibiotic resistant bacteria move from the farm into the human diet, they may pass antibiotic resistance genes to bacteria that normally reside in a the human intestinal tract and from there to bacteria that cause human disease (reservoir hypothesis). In this article various approaches to evaluating the risk of agricultural use of antibiotics are assessed critically. In addition, the potential benefits of applying new technology and using new insights from the field of microbial ecology are explained.

  3. Restoration of Chinese hamster cell radiation resistance by the human repair gene ERCC-5 and progress in molecular cloning of this gene

    SciTech Connect

    Strniste, G.F.; Chen, D.J.; deBruin, D.; McCoy, L.S.; Luke, J.A.; Mudgett, J.S.; Nickols, J.W.; Okinaka, R.T.; Tesmer, J.G.; MacInnes, M.A.

    1988-01-01

    The uv-sensitive Chinese hamster cell uv-135 is being used to identify and isolate the human gene, ERCC-5, which corrects nucleotide excision repair in this incision-defective mutant. A cosmid library, constructed from a 3/sup 0/ transformant of uv-135, has been screened for transfected gpt and human Alu family sequences. An ordered physical map of overlapping positives cosmids has been determined. Molecular evidence suggests a region of this map of <40 Kbp contains the ERCC-5 gene. 10 refs., 2 figs.

  4. Obesity genes and insulin resistance

    PubMed Central

    Belkina, Anna C.; Denis, Gerald V.

    2011-01-01

    Purpose of review The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of ‘metabolically healthy but obese’ (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. Recent findings The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Summary Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients. PMID:20585247

  5. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  6. Directed Evolution of Ionizing Radiation Resistance in Escherichia coli▿ †

    PubMed Central

    Harris, Dennis R.; Pollock, Steve V.; Wood, Elizabeth A.; Goiffon, Reece J.; Klingele, Audrey J.; Cabot, Eric L.; Schackwitz, Wendy; Martin, Joel; Eggington, Julie; Durfee, Timothy J.; Middle, Christina M.; Norton, Jason E.; Popelars, Michael C.; Li, Hao; Klugman, Sarit A.; Hamilton, Lindsay L.; Bane, Lukas B.; Pennacchio, Len A.; Albert, Thomas J.; Perna, Nicole T.; Cox, Michael M.; Battista, John R.

    2009-01-01

    We have generated extreme ionizing radiation resistance in a relatively sensitive bacterial species, Escherichia coli, by directed evolution. Four populations of Escherichia coli K-12 were derived independently from strain MG1655, with each specifically adapted to survive exposure to high doses of ionizing radiation. D37 values for strains isolated from two of the populations approached that exhibited by Deinococcus radiodurans. Complete genomic sequencing was carried out on nine purified strains derived from these populations. Clear mutational patterns were observed that both pointed to key underlying mechanisms and guided further characterization of the strains. In these evolved populations, passive genomic protection is not in evidence. Instead, enhanced recombinational DNA repair makes a prominent but probably not exclusive contribution to genome reconstitution. Multiple genes, multiple alleles of some genes, multiple mechanisms, and multiple evolutionary pathways all play a role in the evolutionary acquisition of extreme radiation resistance. Several mutations in the recA gene and a deletion of the e14 prophage both demonstrably contribute to and partially explain the new phenotype. Mutations in additional components of the bacterial recombinational repair system and the replication restart primosome are also prominent, as are mutations in genes involved in cell division, protein turnover, and glutamate transport. At least some evolutionary pathways to extreme radiation resistance are constrained by the temporally ordered appearance of specific alleles. PMID:19502398

  7. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  8. p53 mutations increase resistance to ionizing radiation

    SciTech Connect

    Lee, J.M. ); Bernstein, A. Univ. of Toronto, Ontario )

    1993-06-15

    Mouse and human tumors of diverse origin frequently have somatically acquired mutations or rearrangements of the p53 gene, or they have lost one or both copies of the gene. Although wild-type p53 protein is believed to function as a tumor-suppressor gene, it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by [gamma] radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. The authors have used transgenic mice expressing one of two mutant alleles of p53 to test this prediction. Their results show that expression of both mutant variants of the mouse p53 gene significantly increases the cellular resistance of a variety of hematopoietic cell lineages to [gamma] radiation. These observations provide direct evidence that p53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests possible mechanisms through which alterations in the p53 gene might lead to oncogenic transformation. 53 refs., 5 figs.

  9. Metal Oxide CICC for Radiation Resistant Magnets

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.; DeKamp, J. C.; DeLauter, J.; Ghosh, A.

    2006-03-01

    The proposed Rare Isotope Accelerator and other high beam current machines have requirements that superconducting magnets operate in a high radiation environment. One solution to both the continuous heat deposition and susceptibility of the insulation to radiation damage are solved with a radiation resistant CICC. Several metal oxide insulated CICC designs have been fabricated and tested. Engineering current densities of 55 A/mm2 at 7 T and 80 A/mm2 at 2 T have been achieved using Nb3Sn. Different insulation systems and conduit material allow many choices in coil design.

  10. Resistance and Cooling Power of Various Radiators

    NASA Technical Reports Server (NTRS)

    Smith, R H

    1928-01-01

    This reports combines the wind tunnel results of radiator tests made at the Navy Aerodynamical Laboratory in Washington during the summers of 1921, 1925, and 1926. In all, 13 radiators of various types and capacities were given complete tests for figure of merit. Twelve of these were tested for resistance to water flow and a fourteenth radiator was tested for air resistance alone, its heat dissipating capacity being known. All the tests were conducted in the 8 by 8 foot tunnel, or in its 4 by 8 foot restriction, by the writer and under conditions as nearly the same as possible. That is to say, as far as possible, the general arrangement and condition of the apparatus, the observation intervals, the ratio of water flow per unit of cooling surface, the differential temperatures, and the air speeds were the same for all.

  11. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  12. Enhancing Plant Disease Resistance without R Genes.

    PubMed

    Sarma, Birinchi Kumar; Singh, Harikesh Bahadur; Fernando, Dilantha; Silva, Roberto Nascimento; Gupta, Vijai Kumar

    2016-07-01

    Crop plants encounter constant biotic challenges, and these challenges have historically been best managed with resistance (R) genes. However, the rapid evolution of new pathogenic strains along with the nonavailability or nonidentification of R genes in cultivated crop species against a large number of plant pathogens have led researchers to think beyond R genes. Biotechnological tools have shown promise in dealing with such challenges. Technologies such as transgenerational plant immunity, interspecies transfer of pattern recognition receptors (PRRs), pathogen-derived resistance (PDR), gene regulation, and expression of antimicrobial peptides (AMPs) in host plants from other plant species have led to enhanced disease resistance and increased food security. PMID:27113633

  13. Radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  14. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  15. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing microorganisms. Eradification techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation- based sterilization processes. Due to their resistance to a variety of perturbations, the non-spore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-spore-forming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/sq m), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  16. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  17. Disease Resistance Gene Analogs (RGAs) in Plants

    PubMed Central

    Sekhwal, Manoj Kumar; Li, Pingchuan; Lam, Irene; Wang, Xiue; Cloutier, Sylvie; You, Frank M.

    2015-01-01

    Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens’ resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed. PMID:26287177

  18. Disease Resistance Gene Analogs (RGAs) in Plants.

    PubMed

    Sekhwal, Manoj Kumar; Li, Pingchuan; Lam, Irene; Wang, Xiue; Cloutier, Sylvie; You, Frank M

    2015-01-01

    Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.

  19. Acquired Antibiotic Resistance Genes: An Overview

    PubMed Central

    van Hoek, Angela H. A. M.; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria. PMID:22046172

  20. Discoloration resistant, flexible, radiation curable coating compositions

    SciTech Connect

    Cassatta, J.C.; Garrett, D.L. Jr.; Van Oene, H.

    1984-10-16

    A low dosage radiation polymerizable protective and decorative coating composition or paint, coated articles bearing such a protective coating and processess for preparing such articles. The radiation polymerizable coating composition comprises an organic resin/monomer mixture of: (A) between about 97 and about 3 weight percent alphabeta olefinically unsaturated organic resin containing between about 0.5 and about 5 vinyl unsaturation units per 1000 molecular weight of said resin, and (B) between about 3 and about 97 weight percent vinyl monomers polymerizable with said resin upon exposure to radiation, characterized in that said vinyl monomers include N-vinyl-2-pyrrolidone in an amount of from about 3 and up to about 10 weight percent based on the total weight of (A) and (B). The flexible coating exhibits excellent physical qualtities and good adhesion to a variety of substrates being particularly suitable for use on vinyl chloride fabric, wherein it is discoloration resistant after heat aging. Preferred articles bearing such a coating, which may comprise large amounts of pigment, are preferably cured by exposure to electron beam radiation.

  1. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  2. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  3. Thermal and radiation resistance of stabilized LDPE

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Jipa, S.; Henderson, D.; Kappel, W.; Mariş, D. A.; Mariş, M.

    2010-03-01

    The effect of capsaicin on the radiation stability of low density polyethylene was accomplished by applying the chemiluminescence procedure. The neat and modified polymer with 0.25% and 0.50% (w/w) capsaicin were exposed to γ-irradiation in air receiving 10, 20 and 30 kGy. The synergistic effect due to the presence of metallic selenium was demonstrated. The significant improvement in oxidation induction time was obtained demonstrating the efficient antioxidant activity of capsaicin in LDPE. The simultaneous protection action of metallic selenium in LDPE/capsaicin systems brought about a supplementary enhancement in the oxidation resistance of irradiated samples.

  4. The Essential Role of the Deinococcus radiodurans ssb Gene in Cell Survival and Radiation Tolerance

    PubMed Central

    Lockhart, J. Scott; DeVeaux, Linda C.

    2013-01-01

    Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans. PMID:23951213

  5. Antibiotic resistance genes & susceptibility patterns in staphylococci

    PubMed Central

    Duran, Nizami; Ozer, Burcin; Duran, Gulay Gulbol; Onlen, Yusuf; Demir, Cemil

    2012-01-01

    Background & objectives: This study was carried out to evaluate the association between the antibiotic susceptibility patterns and the antibiotic resistance genes in staphylococcal isolates obtained from various clinical samples of patients attending a teaching hospital in Hatay, Turkey. Methods: A total of 298 staphylococci clinical isolates were subjected to antimicrobial susceptibility testing. The genes implicated in resistance to oxacillin (mecA), gentamicin (aac(6’)/aph(2”), aph(3’-IIIa, ant(4’)-Ia), erythromycin (ermA, ermB, ermC, and msrA), tetracyclin (tetK, tetM), and penicillin (blaZ) were amplified using multiplex PCR method. Results: Methicillin resistance rate among 139 Staphlococcus aureus isolates was 16.5 and 25.9 per cent of S. aureus carried mecA gene. Of the 159 CoNS isolates, methicillin resistance rate was 18.9 and 29.6 per cent carried mecA gene. Ninety four isolates identified as gentamicin resistant phenotypically, contained at least one of the gentamicin resistance genes [aac(6’)/aph(2”), aph(3’)-IIIa, ant(4’)-Ia], 17 gentamicin-susceptible isolates were found as positive in terms of one or more resistance genes [aac(6’)/aph(2”), aph(3’)-IIIa, ant(4’)-Ia] by multiplex PCR. A total of 165 isolates were resistant to erythromycin, and contained at least one of the erythromycin resistance genes (ermA, ermB, ermC and msrA). Phenotypically, 106 staphylococcal isolates were resistant to tetracycline, 121 isolates carried either tetK or tetM or both resistance genes. The majority of staphylococci tested possessed the blaZ gene (89.9%). Interpretation & conclusions: The present results showed that the phenotypic antibiotic susceptibility patterns were not similar to those obtained by genotyping done by multiplex PCR. Rapid and reliable methods for antibiotic susceptibility are important to determine the appropriate therapy decisions. Multiplex PCR can be used for confirmation of the results obtained by conventional

  6. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1990-01-01

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu, Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population of null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The role of SOD levels in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. During the first seven months of funding we have completed a number of experiments and are proceeding with many others. We have made progress along all the research lines anticipated for the first year of this grant, as summarized in the following pages.

  7. Targeting Notch to overcome radiation resistance

    PubMed Central

    Yahyanejad, Sanaz; Theys, Jan; Vooijs, Marc

    2016-01-01

    Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies. PMID:26713603

  8. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    PubMed

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  9. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    PubMed Central

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  10. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  11. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1991-06-24

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

  12. Archway for Radiation and Micrometeorite Occurrence Resistance

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.

    2012-01-01

    The environmental conditions of the Moon require mitigation if a long-term human presence is to be achieved for extended periods of time. Radiation, micrometeoroid impacts, high-velocity debris, and thermal cycling represent threats to crew, equipment, and facilities. For decades, local regolith has been suggested as a candidate material to use in the construction of protective barriers. A thickness of roughly 3m is sufficient protection from both direct and secondary radiation from cosmic rays and solar protons; this thickness is sufficient to reduce radiation exposure even during solar flares. NASA has previously identified a need for innovations that will support lunar habitats using lightweight structures because the reduction of structural mass translates directly into additional up and down mass capability that would facilitate additional logistics capacity and increased science return for all mission phases. The development of non-pressurized primary structures that have synergy with the development of pressurized structures is also of interest. The use of indigenous or in situ materials is also a well-known and active area of research that could drastically improve the practicality of human exploration beyond low-Earth orbit. The Archway for Radiation and Micrometeorite Occurrence Resistance (ARMOR) concept is a new, multifunctional structure that acts as radiation shielding and micrometeorite impact shielding for long-duration lunar surface protection of humans and equipment. ARMOR uses a combination of native regolith and a deployed membrane jacket to yield a multifunctional structure. ARMOR is a robust and modular system that can be autonomously assembled on-site prior to the first human surface arrival. The system provides protection by holding a sufficiently thick (3 m) archshaped shell of local regolith around a central cavity. The regolith is held in shape by an arch-shaped jacket made of strong but deployable material. No regolith processing is

  13. Development of radiation-resistant materials

    SciTech Connect

    Bloom, E.E.; Rowcliffe, A.F. )

    1993-01-01

    Fusion reactors, advanced fission reactors, and accelerator-based concepts for nuclear waste conversion will challenge the limits of materials performance from the viewpoint of mechanical and physical properties and chemical compatibility at elevated temperatures for lifetimes of years to a few decades. These systems, however, have still another component of the operating environment, energetic neutrons, the effects of which must be understood and quantified for successful design, operation, and economy of nuclear systems. Radiation-induced segregation may profoundly alter the properties of interfaces and lead to the formation of completely unexpected phases. The microstructural and microchemical evolution that occurs during irradiation can result in profound changes in the mechanical, chemical, and physical properties of any material subjected to the irradiation. In the best of circumstances, the resultant changes in properties must be quantified and considered when selecting materials for specific applications. In many instances, materials that have been developed for other nonnuclear applications have unacceptable performance characteristics in the nuclear environment. Commercially available AISI Type 316 austenitic stainless steel had acceptable mechanical properties and chemical compatibility characteristics that made this material the first choice for cladding and ducts for sodium-cooled fast breeder reactors. However, radiation-induced void swelling precluded the design of a reactor with an acceptable breeding ratio and economics. In both of these examples, international materials programs were highly successful in generating sufficient understanding of the mechanisms involved and the influence of alloy composition to allow the development of materials with greater resistance to radiation damage and greatly extend the lifetime of major components.

  14. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes.

  15. ATCG nucleotide fluctuation of Deinococcus radiodurans radiation genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Subramaniam, R.; Sullivan, R.; Cheung, E.; Schneider, C.; Tremberger, G., Jr.; Flamholz, A.; Lieberman, D. H.; Cheung, T. D.

    2007-09-01

    The radiation resistance-repair genes in Deinococcus radiodurans (DR) and E-coli were analyzed in terms of the A, T, C, G nucleotide fluctuations. The studied genes were Rec-A, Rec-Q, and the unique DR PprA gene. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis. Fractal analysis using the Higuchi method gave a fractal dimension increase of the Deinococcus radiodurans genes as compared to E-coli, which is comparable to the enhancement observed in the human HAR1 region (HAR1F gene) over that of the chimpanzee. Near neighbor fluctuation was also studied via the Black-Scholes model where the increment sequence was treated as a random walk series. The Deinococcus radiodurans radiation gene standard deviations were consistently higher than that of the E-coli deviations, and agree with the fractal analysis results. The sequence stacking interaction was studied using the published nucleotide-pair melting free energy values and Deinococcus radiodurans radiation genes were shown to possess larger negative free energies. The high sensitivity of the fractal dimension as a biomarker was tested with correlation analysis of the gamma ray dose versus fractal dimension, and the R square values were found to be above 0.9 (N=5). When compared with other nucleotide sequences such as the rRNA sequences, HAR1 and its chimpanzee counterpart, the higher fluctuation (correlated randomness) and larger negative free energy of a DR radiation gene suggested that a radiation resistance-repair sequence exhibited higher complexity. As the HAR1 nucleotide sequence complexity and its transcription activity of co-expressing cortex protein reelin supported a positive selection event in humans, a similar inference of positive selection of coding genes could be drawn for Deinococcus radiodurans when compared to E-coli. The origin of such a positive selection would be consistent with that of a

  16. Experiments on the resistance of airplane wheels and radiators

    NASA Technical Reports Server (NTRS)

    1924-01-01

    Experiments were made on the resistance of four airplane wheels of different sizes and coverings and two Lamblin radiators. The results show the important influence of the wheel coverings. The closing of a shutter, which was fitted to one of the radiators, considerably lessened the resistance.

  17. Radiation resistance of endohedral metallofullerenols under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Szhogina, A. A.; Shilin, V. A.; Sedov, V. P.; Lebedev, V. T.

    2016-07-01

    The endohedral metallofullerenols Me@C2 n (OH)38-40 + C2 n (OH)38-40 ( Me = Tb, Sc, Gd, Fe, Pr, Mo) have been obtained and their radiation resistance under irradiation by a neutron flux of 8 × 1013 cm-2 s-1 has been studied. The factors affecting the radiation resistance of endohedral metallofullerenols are discussed.

  18. Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert.

    PubMed

    Yu, Li Zhi-Han; Luo, Xue-Song; Liu, Ming; Huang, Qiaoyun

    2015-01-01

    So far, little is known about the diversity of the radiation-resistant microbes of the hyperarid Taklimakan Desert. In this study, ionizing radiation (IR)-resistant bacteria from two sites in Xinjiang were investigated. After exposing the arid (water content of 0.8 ± 0.3%) and non-arid (water content of 21.3 ± 0.9%) sediment samples to IR of 3000 Gy using a (60)Co source, a total of 52 γ-radiation-resistant bacteria were isolated from the desert sample. The 16S rRNA genes of all isolates were sequenced. The phylogenetic tree places these isolates into five groups: Cytophaga-Flavobacterium-Bacteroides, Proteobacteria, Deinococcus-Thermus, Firmicutes, and Actinobacteria. Interestingly, this is the first report of radiation-resistant bacteria belonging to the genera Knoellia, Lysobacter, Nocardioides, Paracoccus, Pontibacter, Rufibacter and Microvirga. The 16s rRNA genes of four isolates showed low sequence similarities to those of the published species. Phenotypic analysis showed that all bacteria in this study are able to produce catalase, suggesting that these bacteria possess reactive oxygen species (ROS)-scavenging enzymes. These radiation-resistant bacteria also displayed diverse metabolic properties. Moreover, their radiation resistances were found to differ. The diversity of the radiation-resistant bacteria in the desert provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of ROS-scavenging systems that protect cells against oxidative damage caused by desiccation.

  19. Transposon tagging of disease resistance genes

    SciTech Connect

    Michelmore, R.W. . Dept. of Physics)

    1989-01-01

    We are developing a transposon mutagenesis system for lettuce to clone genes for resistance to the fungal pathogen, Bremia lactucae. Activity of heterologous transposons is being studied in transgenic plants. Southern analysis of T{sub 1} and T{sub 2} plants containing Tam3 from Antirrhinum provided ambiguous results. Multiple endonuclease digests indicated that transposition had occurred; however, in no plant were all endonuclease digests consistent with a simple excision event. Southern or PCR analysis of over 50 plans containing Ac from maize have also failed to reveal clear evidence of transposition; this is contrast to experiments by others with the same constructs who have observed high rates of Ac excision in other plant species. Nearly all of 65 T{sub 2} families containing Ac interrupting a chimeric streptomycin resistance gene (Courtesy J. Jones, Sainsbury Lab., UK) clearly segregated for streptomycin resistance. Southern analyses, however, showed no evidence of transposition, indicating restoration of a functional message by other mechanisms, possibly mRNA processing. Transgenic plants have also been generated containing CaMV 35S or hsp70 promoters fused to transposase coding sequences or a Ds element interrupting a chimeric GUS gene (Courtesy M. Lassner, UC Davis). F{sub 1} plants containing both constructs were analyzed for transposition. Only two plants containing both constructs were obtained from 48 progeny, far fewer than expected, and neither showed evidence of transposition in Southerns and GUS assays. We are currently constructing further chimeric transposase fusions. To test for the stability of the targeted disease resistance genes, 50,000 F{sub 1} plants heterozygous for three resistance genes were generated; no mutants have been identified in the 5000 so far screened.

  20. Evolution of radiation resistance in a complex microenvironment

    NASA Astrophysics Data System (ADS)

    Kim, So Hyun; Austin, Robert; Mehta, Monal; Kahn, Atif

    2013-03-01

    Radiation treatment responses in brain cancers are typically associated with short progression-free intervals in highly lethal malignancies such as glioblastomas. Even as patients routinely progress through second and third line salvage therapies, which are usually empirically selected, surprisingly little information exists on how cancer cells evolve resistance. We will present experimental results showing how in the presence of complex radiation gradients evolution of resistance to radiation occurs. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  1. Functional Genomics Screening Utilizing Mutant Mouse Embryonic Stem Cells Identifies Novel Radiation-Response Genes

    PubMed Central

    Loesch, Kimberly; Galaviz, Stacy; Hamoui, Zaher; Clanton, Ryan; Akabani, Gamal; Deveau, Michael; DeJesus, Michael; Ioerger, Thomas; Sacchettini, James C.; Wallis, Deeann

    2015-01-01

    Elucidating the genetic determinants of radiation response is crucial to optimizing and individualizing radiotherapy for cancer patients. In order to identify genes that are involved in enhanced sensitivity or resistance to radiation, a library of stable mutant murine embryonic stem cells (ESCs), each with a defined mutation, was screened for cell viability and gene expression in response to radiation exposure. We focused on a cancer-relevant subset of over 500 mutant ESC lines. We identified 13 genes; 7 genes that have been previously implicated in radiation response and 6 other genes that have never been implicated in radiation response. After screening, proteomic analysis showed enrichment for genes involved in cellular component disassembly (e.g. Dstn and Pex14) and regulation of growth (e.g. Adnp2, Epc1, and Ing4). Overall, the best targets with the highest potential for sensitizing cancer cells to radiation were Dstn and Map2k6, and the best targets for enhancing resistance to radiation were Iqgap and Vcan. Hence, we provide compelling evidence that screening mutant ESCs is a powerful approach to identify genes that alter radiation response. Ultimately, this knowledge can be used to define genetic variants or therapeutic targets that will enhance clinical therapy. PMID:25853515

  2. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Shilin, V. A.; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A.

    2016-07-01

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C60 and C70 fullerenes and C60(OH)30 and C70(OH)30 fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C2 n endometallofullerenes is lower than that of the corresponding Gd@C2 n (OH)38 fullerenols. The radiation resistance of mixtures of Me@C2 n (OH)38 ( Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C60(OH)30 is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  3. Increased radiation resistance in lithium-counterdoped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  4. [Role of constitutive and inducible repair in radiation resistance of Escherichia coli].

    PubMed

    Gulevich, E P; Kuznetsova, V N; Verbenko, V N

    2011-07-01

    Radiation resistance of Escherichia coil cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recE, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB 1157 and highly radiation-resistant isogenic strain Gam(r)444. An optimal balance ensuring a high gamma resistance of the Gam(r)444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II. PMID:21938951

  5. Biology of Extreme Radiation Resistance: The Way of Deinococcus radiodurans

    PubMed Central

    Krisko, Anita; Radman, Miroslav

    2013-01-01

    The bacterium Deinococcus radiodurans is a champion of extreme radiation resistance that is accounted for by a highly efficient protection against proteome, but not genome, damage. A well-protected functional proteome ensures cell recovery from extensive radiation damage to other cellular constituents by molecular repair and turnover processes, including an efficient repair of disintegrated DNA. Therefore, cell death correlates with radiation-induced protein damage, rather than DNA damage, in both robust and standard species. From the reviewed biology of resistance to radiation and other sources of oxidative damage, we conclude that the impact of protein damage on the maintenance of life has been largely underestimated in biology and medicine. PMID:23818498

  6. Elevating crop disease resistance with cloned genes.

    PubMed

    Jones, Jonathan D G; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon

    2014-04-01

    Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO₂ emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396

  7. Elevating crop disease resistance with cloned genes

    PubMed Central

    Jones, Jonathan D. G.; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon

    2014-01-01

    Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396

  8. Escherichia coli Genes and Pathways Involved in Surviving Extreme Exposure to Ionizing Radiation

    PubMed Central

    Byrne, Rose T.; Chen, Stefanie H.; Wood, Elizabeth A.; Cabot, Eric L.

    2014-01-01

    To further an improved understanding of the mechanisms used by bacterial cells to survive extreme exposure to ionizing radiation (IR), we broadly screened nonessential Escherichia coli genes for those involved in IR resistance by using transposon-directed insertion sequencing (TraDIS). Forty-six genes were identified, most of which become essential upon heavy IR exposure. Most of these were subjected to direct validation. The results reinforced the notion that survival after high doses of ionizing radiation does not depend on a single mechanism or process, but instead is multifaceted. Many identified genes affect either DNA repair or the cellular response to oxidative damage. However, contributions by genes involved in cell wall structure/function, cell division, and intermediary metabolism were also evident. About half of the identified genes have not previously been associated with IR resistance or recovery from IR exposure, including eight genes of unknown function. PMID:25049088

  9. Antibiotic resistance genes in water environment.

    PubMed

    Zhang, Xu-Xiang; Zhang, Tong; Fang, Herbert H P

    2009-03-01

    The use of antibiotics may accelerate the development of antibiotic resistance genes (ARGs) and bacteria which shade health risks to humans and animals. The emerging of ARGs in the water environment is becoming an increasing worldwide concern. Hundreds of various ARGs encoding resistance to a broad range of antibiotics have been found in microorganisms distributed not only in hospital wastewaters and animal production wastewaters, but also in sewage, wastewater treatment plants, surface water, groundwater, and even in drinking water. This review summarizes recently published information on the types, distributions, and horizontal transfer of ARGs in various aquatic environments, as well as the molecular methods used to detect environmental ARGs, including specific and multiplex PCR (polymerase chain reaction), real-time PCR, DNA sequencing, and hybridization based techniques. PMID:19130050

  10. Radiation Effects of Commercial Resistive Random Access Memories

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; LaBel, Kenneth A.; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas

    2014-01-01

    We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.

  11. Radiation resistance of a hemolytic micrococcus isolated from chicken meat

    SciTech Connect

    Tan, S.T.

    1982-01-01

    The effects of environmental factors on a highly radiation-resistant hemolytic micrococcus isolated from chicken meat were studied. NaCl tolerance and gamma radiation resistance of the cells were growth phase-related. The cells were resistant to injury from drying or freezing/thawing. Under certain conditions, cells in the frozen state required approximately 5 Mrad to inactivate 90% of the population; 0.2 Mrad injured an equivalent proportion. Survival curve of the cells heated at 60/sup 0/C showed a unique pattern which was in three distinct phases. Heat-stressed cells were much more sensitive to radiation inactivation than unheated cells. When suspended in fresh m-Plate Count Broth (PCB), the injured cells repaired without multiplication during incubation at 32/sup 0/C. The repair process in this bacterium, however, was slower compared to thermally injured organisms studied by other workers. An improved replica-plating technique, was devised for isolation of radiation-sensitive mutants of pigmented bacteria. A simple method to demonstrate radiation-inducible radiation resistance in microbial cells was developed. The new method required neither washing/centrifugation nor procedures for cell enumeration. Mutagenesis treatment of radiation-resistant micrococcal bacterium with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) followed by FPR and screening steps resulted in isolation of two radiation-sensitive mutants. The more sensitive mutant strain, designated as 702, was seven times as sensitive to gamma or UC radiation as the wild type. No apparent difference was observed between 702 and the wild type in (1) cell morphology, colonial morphology, and pigment production or (2) tolerance to NaCl, drying/storage, freezing/thawing, and heating. Sodium dodecyl sulfate treatment (for curing) of wild type did not result in isolation of a radiation-sensitive mutant.

  12. DNA microarray detection of antimicrobial resistance genes in Detection and Characterization of Antibiotic Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of antimicrobial resistance genes is essential for research and an important tool for clinical diagnostics. Most techniques used to identify resistance genes can only detect one or a few genes per assay, whereas DNA microarray technology can detect thousands of genes in a single assay. Sev...

  13. Development of radiation resistant electrical cable insulations

    NASA Technical Reports Server (NTRS)

    Lee, B. S.; Soo, P.; Mackenzie, D. R.

    1994-01-01

    Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.

  14. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp.

    PubMed

    Chunhui, Chen; Xiaogang, Xu

    2015-05-01

    Vancomycin resistant enterococci has become an important nosocomial pathogen since it is discovered in late 1980s. The products, encoded by vancomycin resistant gene cluster in enterococci, catalyze the synthesis of peptidoglycan precursors with low affinity with glycopeptide antibiotics including vancomycin and teicoplanin and lead to resistance. These vancomycin resistant gene clusters are classified into nine types according to their gene sequences and organization, or D-Ala:D-Lac (VanA, VanB, VanD and VanM) and D-Ala:D-Ser (VanC, VanE, VanG, VanL and VanN) ligase gene clusters based on the differences of their encoded ligases. Moreover, these gene clusters are characterized by their different resistance levels and infection models. In this review, we summarize the classification, gene organization and infection model of vancomycin resistant gene cluster in Enterococcus spp.

  15. Mechanisms of radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  16. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  17. Major gene for field stem rust resistance co-locates with resistance gene Sr12 in "Thatcher" wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effecting stem rust resistance genes. "Thatcher" wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was ...

  18. Space radiation resistant transparent polymeric materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1977-01-01

    A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.

  19. Antibiotic resistance gene discovery in food-producing animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in ...

  20. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    SciTech Connect

    Aravindan, Natarajan; Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen; Natarajan, Mohan

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  1. Dominant gene for rust resistance in pearl millet

    SciTech Connect

    Hanna, W.W.; Wells, H.D.; Burton, G.W.

    1985-01-01

    Rust (Puccinia substriata var. indica) resistance was discovered in three Pennisetum americanum (L.) Leeke subspecies monodii (Maire) Brunken accessions from Senegal. Resistant plant were free of rust, although the bottom one or two leaves of some plants did develop a brown discoloration without pustules. Resistance was controlled by a dominant gene assigned the gene symbol Rr1. Backcrossing has been effective in transferring resistance from the wild grassy, monodii to cultivated pearl millet. The Rr1 gene should be useful in the production of rust resistant pearl millet hybrids and cultivars. 6 references, 1 table.

  2. Metal-nanotube composites as radiation resistant materials

    NASA Astrophysics Data System (ADS)

    González, Rafael I.; Valencia, Felipe; Mella, José; van Duin, Adri C. T.; So, Kang Pyo; Li, Ju; Kiwi, Miguel; Bringa, Eduardo M.

    2016-07-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  3. [Identification of Sorghum genes responsible for resistance to Green bug].

    PubMed

    Radchenko, E E

    2000-04-01

    Genes responsible for resistance to greenbug (Schizaphis graminum Rond.) were identified in sorghum. The dominant (Sgr1) and recessive (Sgr2) genes for resistance were revealed in sample k-457 (PI264453, United States). The samples i-589430 (PI264453, Spain) and k-3852 (Sarvasi, Hungary) carry gene Sgr1. These accessions are assumed to also have gene Sgr2. The samples k-9921 (Shallu, United States) and k-9922 (KS-30, United States) have incompletely dominant resistance gene Sgr3. A symbol Sgr4 was assigned to the dominant gene from sample k-6694 (Deer, United States). The dominant Sgr5 and recessive Sgr6 genes were revealed in the samples k-1362 (Durra Belaya, Syria) and k-1240 (Dzhugara Belaya, China). The cultivar Sorgogradskoe (k-9436, Rostovskaya oblast) has gene Sgr5. The samples k-10092 (Odesskii 360, Ukraine) and k-5091 (Cherhata, Marocco) are assumed to have genes Sgr5 and Sgr6. Sample k-924 (Dzhugara Belaya, China) is protected by the dominant gene Srg7 and recessive gene Sgr8. Sample k-923 (Dzhugara Belaya, China) has at least one of these genes. Two dominant complementary genes for resistance (Sgr9 and Sgr10) were revealed in sample k-930 (Dzhugara Belaya, China). One of two dominant genes of sample k-1237 (Dzhugara Belaya, China) was assigned the symbol Sgr11. Genes Sgr5-Sgr11 responsible for resistance to greenbug are new and were not previously used in breeding. PMID:10822813

  4. Genetic variation in resistance to ionizing radiation

    SciTech Connect

    Ayala, F.J.

    1989-01-01

    The very reactive superoxide anion O[sub 2] is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20[sub 2][sup [minus

  5. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005

    PubMed Central

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The aim of this work was to characterize in detail the response of Arthrospira to ionizing radiation, to better understand its radiation resistance capacity. Live cells of Arthrospira sp. PCC 8005 were irradiated with 60Co gamma rays. This study is the first, showing that Arthrospira is highly tolerant to gamma rays, and can survive at least 6400 Gy (dose rate of 527 Gy h−1), which identified Arthrospira sp. PCC 8005 as a radiation resistant bacterium. Biochemical, including proteomic and transcriptomic, analysis after irradiation with 3200 or 5000 Gy showed a decline in photosystem II quantum yield, reduced carbon fixation, and reduced pigment, lipid, and secondary metabolite synthesis. Transcription of photo-sensing and signaling pathways, and thiol-based antioxidant systems was induced. Transcriptomics did show significant activation of ssDNA repair systems and mobile genetic elements (MGEs) at the RNA level. Surprisingly, the cells did not induce the classical antioxidant or DNA repair systems, such superoxide dismutase (SOD) enzyme and the RecA protein. Arthrospira cells lack the catalase gene and the LexA repressor. Irradiated Arthrospira cells did induce strongly a group of conserved proteins, of which the function in radiation resistance remains to be elucidated, but which are a promising novel routes to be explored. This study revealed the radiation resistance of Arthrospira, and the molecular systems involved, paving the way for its further and better exploitation. PMID:25678338

  6. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  7. Antibiotic resistance gene discovery in food-producing animals.

    PubMed

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  8. Erythromycin resistance genes in group A streptococci in Finland. The Finnish Study Group for Antimicrobial Resistance.

    PubMed

    Kataja, J; Huovinen, P; Skurnik, M; Seppälä, H

    1999-01-01

    Streptococcus pyogenes isolates (group A streptococcus) of different erythromycin resistance phenotypes were collected from all over Finland in 1994 and 1995 and studied; they were evaluated for their susceptibilities to 14 antimicrobial agents (396 isolates) and the presence of different erythromycin resistance genes (45 isolates). The erythromycin-resistant isolates with the macrolide-resistant but lincosamide- and streptogramin B-susceptible phenotype (M phenotype) were further studied for their plasmid contents and the transferability of resistance genes. Resistance to antimicrobial agents other than macrolides, clindamycin, tetracycline, and chloramphenicol was not found. When compared to our previous study performed in 1990, the rate of resistance to tetracycline increased from 10 to 93% among isolates with the inducible resistance (IR) phenotype of macrolide, lincosamide, and streptogramin B (MLSB) resistance. Tetracycline resistance was also found among 75% of the MLSB-resistant isolates with the constitutive resistance (CR) phenotype. Resistance to chloramphenicol was found for the first time in S. pyogenes in Finland; 3% of the isolates with the IR phenotype were resistant. All the chloramphenicol-resistant isolates were also resistant to tetracycline. Detection of erythromycin resistance genes by PCR indicated that, with the exception of one isolate with the CR phenotype, all M-phenotype isolates had the macrolide efflux (mefA) gene and all the MLSB-resistant isolates had the erythromycin resistance methylase (ermTR) gene; the isolate with the CR phenotype contained the ermB gene. No plasmid DNA could be isolated from the M-phenotype isolates, but the mefA gene was transferred by conjugation.

  9. Changes in gene expression associated with radiation exposure

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.; Chang-Liu, C.M.; Grdina, D.J.

    1995-12-31

    Current research from our group has demonstrated differences in gene induction patterns for high- and low-linear energy transfer radiations; some genes are induced selectively following neutron exposure, others selectively following {gamma}-ray exposure, and others induced following exposure to either. These genes are associated with a broad array of different functions including apoptosis, cytoskeletal function, and gene regulation (dd-RT-PCR) technology to identify genes induced following exposure to different qualities of radiation and following exposure to radiation in the presence of radioprotectors.

  10. What is a resistance gene? Ranking risk in resistomes.

    PubMed

    Martínez, José L; Coque, Teresa M; Baquero, Fernando

    2015-02-01

    Metagenomic studies have shown that antibiotic resistance genes are ubiquitous in the environment, which has led to the suggestion that there is a high risk that these genes will spread to bacteria that cause human infections. If this is true, estimating the real risk of dissemination of resistance genes from environmental reservoirs to human pathogens is therefore very difficult. In this Opinion article, we analyse the current definitions of antibiotic resistance and antibiotic resistance genes, and we describe the bottlenecks that affect the transfer of antibiotic resistance genes to human pathogens. We propose rules for estimating the risks associated with genes that are present in environmental resistomes by evaluating the likelihood of their introduction into human pathogens, and the consequences of such events for the treatment of infections.

  11. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  12. Radiation Resistant Vanadium-Graphene Nanolayered Composite

    PubMed Central

    Kim, Youbin; Baek, Jinwook; Kim, Sunghwan; Kim, Sangmin; Ryu, Seunghwa; Jeon, Seokwoo; Han, Seung Min

    2016-01-01

    Ultra high strength V-graphene nanolayers were developed for the first time that was demonstrated to have an excellent radiation tolerance as revealed by the He+ irradiation study. Radiation induced hardening, evaluated via nanopillar compressions before and after He+ irradiation, is significantly reduced with the inclusion of graphene layers; the flow stresses of V-graphene nanolayers with 110 nm repeat layer spacing showed an increase of 25% while pure V showed an increase of 88% after He+ dosage of 13.5 dpa. The molecular dynamics simulations confirmed that the graphene interface can spontaneously absorb the nearby crystalline defects that are produced from a collision cascade, thereby enhancing the lifetime of the V-graphene nanolayers via this self-healing effect. In addition, the impermeability of He gas through the graphene resulted in suppression of He bubble agglomerations that in turn reduced embrittlement. In-situ SEM compression also showed the ability of graphene to hinder crack propagation that suppressed the failure. PMID:27098407

  13. Radiation Resistant Vanadium-Graphene Nanolayered Composite.

    PubMed

    Kim, Youbin; Baek, Jinwook; Kim, Sunghwan; Kim, Sangmin; Ryu, Seunghwa; Jeon, Seokwoo; Han, Seung Min

    2016-01-01

    Ultra high strength V-graphene nanolayers were developed for the first time that was demonstrated to have an excellent radiation tolerance as revealed by the He(+) irradiation study. Radiation induced hardening, evaluated via nanopillar compressions before and after He(+) irradiation, is significantly reduced with the inclusion of graphene layers; the flow stresses of V-graphene nanolayers with 110 nm repeat layer spacing showed an increase of 25% while pure V showed an increase of 88% after He(+) dosage of 13.5 dpa. The molecular dynamics simulations confirmed that the graphene interface can spontaneously absorb the nearby crystalline defects that are produced from a collision cascade, thereby enhancing the lifetime of the V-graphene nanolayers via this self-healing effect. In addition, the impermeability of He gas through the graphene resulted in suppression of He bubble agglomerations that in turn reduced embrittlement. In-situ SEM compression also showed the ability of graphene to hinder crack propagation that suppressed the failure. PMID:27098407

  14. Radiation Resistant Vanadium-Graphene Nanolayered Composite

    NASA Astrophysics Data System (ADS)

    Kim, Youbin; Baek, Jinwook; Kim, Sunghwan; Kim, Sangmin; Ryu, Seunghwa; Jeon, Seokwoo; Han, Seung Min

    2016-04-01

    Ultra high strength V-graphene nanolayers were developed for the first time that was demonstrated to have an excellent radiation tolerance as revealed by the He+ irradiation study. Radiation induced hardening, evaluated via nanopillar compressions before and after He+ irradiation, is significantly reduced with the inclusion of graphene layers; the flow stresses of V-graphene nanolayers with 110 nm repeat layer spacing showed an increase of 25% while pure V showed an increase of 88% after He+ dosage of 13.5 dpa. The molecular dynamics simulations confirmed that the graphene interface can spontaneously absorb the nearby crystalline defects that are produced from a collision cascade, thereby enhancing the lifetime of the V-graphene nanolayers via this self-healing effect. In addition, the impermeability of He gas through the graphene resulted in suppression of He bubble agglomerations that in turn reduced embrittlement. In-situ SEM compression also showed the ability of graphene to hinder crack propagation that suppressed the failure.

  15. The Ocean as a Global Reservoir of Antibiotic Resistance Genes

    PubMed Central

    Hatosy, Stephen M.

    2015-01-01

    Recent studies of natural environments have revealed vast genetic reservoirs of antibiotic resistance (AR) genes. Soil bacteria and human pathogens share AR genes, and AR genes have been discovered in a variety of habitats. However, there is little knowledge about the presence and diversity of AR genes in marine environments and which organisms host AR genes. To address this, we identified the diversity of genes conferring resistance to ampicillin, tetracycline, nitrofurantoin, and sulfadimethoxine in diverse marine environments using functional metagenomics (the cloning and screening of random DNA fragments). Marine environments were host to a diversity of AR-conferring genes. Antibiotic-resistant clones were found at all sites, with 28% of the genes identified as known AR genes (encoding beta-lactamases, bicyclomycin resistance pumps, etc.). However, the majority of AR genes were not previously classified as such but had products similar to proteins such as transport pumps, oxidoreductases, and hydrolases. Furthermore, 44% of the genes conferring antibiotic resistance were found in abundant marine taxa (e.g., Pelagibacter, Prochlorococcus, and Vibrio). Therefore, we uncovered a previously unknown diversity of genes that conferred an AR phenotype among marine environments, which makes the ocean a global reservoir of both clinically relevant and potentially novel AR genes. PMID:26296734

  16. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease.

    PubMed

    Catanzariti, Ann-Maree; Lim, Ginny T T; Jones, David A

    2015-07-01

    Plant resistance proteins provide race-specific immunity through the recognition of pathogen effectors. The resistance genes I, I-2 and I-3 have been incorporated into cultivated tomato (Solanum lycopersicum) from wild tomato species to confer resistance against Fusarium oxysporum f. sp. lycopersici (Fol) races 1, 2 and 3, respectively. Although the Fol effectors corresponding to these resistance genes have all been identified, only the I-2 resistance gene has been isolated from tomato. To isolate the I-3 resistance gene, we employed a map-based cloning approach and used transgenic complementation to test candidate genes for resistance to Fol race 3. Here, we describe the fine mapping and sequencing of genes at the I-3 locus, which revealed a family of S-receptor-like kinase (SRLK) genes. Transgenic tomato lines were generated with three of these SRLK genes and one was found to confer Avr3-dependent resistance to Fol race 3, confirming it to be I-3. The finding that I-3 encodes an SRLK reveals a new pathway for Fol resistance and a new class of resistance genes, of which Pi-d2 from rice is also a member. The identification of I-3 also allows the investigation of the complex effector-resistance protein interaction involving Avr1-mediated suppression of I-2- and I-3-dependent resistance in tomato.

  17. Antimicrobial resistance gene distribution: a socioeconomic and sociocultural perspective

    PubMed Central

    Ojo, Kayode K.; Sapkota, Amy R.; Ojo, Tokunbo B.; Pottinger, Paul S.

    2008-01-01

    The appearance of resistance to many first-line antimicrobial agents presents a critical challenge to the successful treatment of bacterial infections. Antimicrobial resistant bacteria and resistance genes are globally distributed, but significant variations in prevalence have been observed in different geographical regions. This article discusses possible relationships between socioeconomic and sociocultural factors and regional differences in the prevalence of antibiotic-resistant bacteria and their associated resistance genes. Findings indicate that the few studies that have been conducted to understand relationships between socioeconomic and sociocultural factors and antimicrobial resistance have focused on patterns of phenotypic antibiotic resistance. Yet, a critical need exists for molecular studies of human influences on bacterial resistance and adaptation. We propose that the results of these studies, coupled with well-coordinated culturally appropriate interventions that address specific socioeconomic and sociocultural needs may be necessary to reduce the scourge of antimicrobial resistance in both developing and developed countries. PMID:20204098

  18. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  19. Ancient hot and cold genes and chemotherapy resistance emergence

    PubMed Central

    Wu, Amy; Zhang, Qiucen; Lambert, Guillaume; Khin, Zayar; Gatenby, Robert A.; Kim, Hyunsung John; Pourmand, Nader; Bussey, Kimberly; Davies, Paul C. W.; Sturm, James C.; Austin, Robert H.

    2015-01-01

    We use a microfabricated ecology with a doxorubicin gradient and population fragmentation to produce a strong Darwinian selective pressure that drives forward the rapid emergence of doxorubicin resistance in multiple myeloma (MM) cancer cells. RNA sequencing of the resistant cells was used to examine (i) emergence of genes with high de novo substitution densities (i.e., hot genes) and (ii) genes never substituted (i.e., cold genes). The set of cold genes, which were 21% of the genes sequenced, were further winnowed down by examining excess expression levels. Both the most highly substituted genes and the most highly expressed never-substituted genes were biased in age toward the most ancient of genes. This would support the model that cancer represents a revision back to ancient forms of life adapted to high fitness under extreme stress, and suggests that these ancient genes may be targets for cancer therapy. PMID:26240372

  20. Gene expression as a biomarker for human radiation exposure.

    PubMed

    Omaruddin, Romaica A; Roland, Thomas A; Wallace, H James; Chaudhry, M Ahmad

    2013-03-01

    Accidental exposure to ionizing radiation can be unforeseen, rapid, and devastating. The detonation of a radiological device leading to such an exposure can be detrimental to the exposed population. The radiation-induced damage may manifest as acute effects that can be detected clinically or may be more subtle effects that can lead to long-term radiation-induced abnormalities. Accurate identification of the individuals exposed to radiation is challenging. The availability of a rapid and effective screening test that could be used as a biomarker of radiation exposure detection is mandatory. We tested the suitability of alterations in gene expression to serve as a biomarker of human radiation exposure. To develop a useful gene expression biomonitor, however, gene expression changes occurring in response to irradiation in vivo must be measured directly. Patients undergoing radiation therapy provide a suitable test population for this purpose. We examined the expression of CC3, MADH7, and SEC PRO in blood samples of these patients before and after radiotherapy to measure the in vivo response. The gene expression after ionizing radiation treatment varied among different patients, suggesting the complexity of the response. The expression of the SEC PRO gene was repressed in most of the patients. The MADH7 gene was found to be upregulated in most of the subjects and could serve as a molecular marker of radiation exposure. PMID:23446844

  1. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  2. Engineering disease resistance with pectate lyase-like genes

    DOEpatents

    Vogel, John; Somerville, Shauna

    2005-03-08

    A mutant gene coding for pectate lyase and homologs thereof is provided, which when incorporated in transgenic plants effect an increased level disease resistance in such plants. Also is provided the polypeptide sequence for the pectate lyase of the present invention. Methods of obtaining the mutant gene, producing transgenic plants which include the nucleotide sequence for the mutant gene and producing improved disease resistance in a crop of such transgenic plants are also provided.

  3. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    PubMed

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-01-01

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance. PMID:27383577

  4. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    PubMed

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-07-07

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  5. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  6. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    SciTech Connect

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  7. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria

    PubMed Central

    Bennett, P M

    2008-01-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes). The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  8. Development of resistant materials to beam impact and radiation damage

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Kokawa, Hiroyuki; Okamura, Hiroshi; Kawasaki, Akira; Yamamura, Tsutomu; Hara, Nobuyoshi; Akao, Noboru; Futakawa, Masatoshi; Kikuchi, Kenji

    2006-09-01

    Materials that have strong resistance to both beam impact (or shock-wave) and radiation damage are required for the beam target of an intense accelerator and space applications. Recently, Futakawa et al. found in their experiments that Kolsterising specimens have a stronger resistance to pitting than SS316 CW. A similar effect can be expected for other hardening treatments, and new material development is hopeful. Accordingly, we have started the development of high-performance materials by organizing the project team from KEK, JAEA and universities. In this paper, the scope of the project is introduced. Recent topics involve the development of intergranular crack (IGC)-resistant austenitic stainless-steel, AlN-TiN ceramics and cladding techniques of thin tantalum or CrN film on a tungsten target by means of a molten-salt method and ion-beam-enhanced deposition. New observations on corrosion resistance are presented.

  9. Extreme resistance of bdelloid rotifers to ionizing radiation

    PubMed Central

    Gladyshev, Eugene; Meselson, Matthew

    2008-01-01

    Rotifers of class Bdelloidea are common invertebrate animals with highly unusual characteristics, including apparently obligate asexuality, the ability to resume reproduction after desiccation at any life stage, and a paucity of transposable genetic elements of types not prone to horizontal transmission. We find that bdelloids are also extraordinarily resistant to ionizing radiation (IR). Reproduction of the bdelloids Adineta vaga and Philodina roseola is much more resistant to IR than that of Euchlanis dilatata, a rotifer belonging to the desiccation-intolerant and facultatively sexual class Monogononta, and all other animals for which we have found relevant data. By analogy with the desiccation- and radiation-resistant bacterium Deinococcus radiodurans, we suggest that the extraordinary radiation resistance of bdelloid rotifers is a consequence of their evolutionary adaptation to survive episodes of desiccation encountered in their characteristic habitats and that the damage incurred in such episodes includes DNA breakage that is repaired upon rehydration. Such breakage and repair may have maintained bdelloid chromosomes as colinear pairs and kept the load of transposable genetic elements low and may also have contributed to the success of bdelloid rotifers in avoiding the early extinction suffered by most asexuals. PMID:18362355

  10. Inactivation of the Radiation-Resistant Spoilage Bacterium Micrococcus radiodurans

    PubMed Central

    Duggan, D. E.; Anderson, A. W.; Elliker, P. R.

    1963-01-01

    A simplified technique permitting the pipetting of raw puréed meats for quantitative bacteriological study is described for use in determining survival of these non-sporing bacteria, which are exceptionally resistant to radiation. Survival curves, using gamma radiation as the sterilizing agent, were determined in raw beef with four strains of Micrococcus radiodurans. Survival curves of the R1 strain in other meat substrates showed that survival was significantly greater in raw beef and raw chicken than in raw fish or in cooked beef. Resistance was lowest in the buffer. Cells grown in broth (an artificial growth medium) and resuspended in beef did not differ in resistance from cells that had been grown and irradiated in beef. Survival rate was statistically independent of the initial cell concentration, even though there appeared to be a correlation between lower death rate and lower initial cell concentrations. The initial viable count of this culture of the domesticated R1 strain in beef was reduced by a factor of about 10-5 by 3.0 megarad, and 4.0 megarad reduced the initial count by a factor of more than 10-9. Data suggest that M. radiodurans R1 is more resistant to radiation than spore-forming spoilage bacteria for which inactivation rates have been published. PMID:14063780

  11. Radiation resistance of quartz glass for VUV discharge lamps

    NASA Astrophysics Data System (ADS)

    Schreiber, A.; Kühn, B.; Arnold, E.; Schilling, F.-J.; Witzke, H.-D.

    2005-09-01

    Electrically-fused quartz glass, flame-fused quartz glass and plasma-fused quartz glass as well as synthetic fused silica samples were irradiated stepwise with a high energy Xe barrier discharge excimer lamp at 172 nm. VUV spectra were measured before and after every irradiation step. The results show that the VUV transmittance and the resistance against high energy radiation strongly depend on the quartz glass type, as well as on the thermal pretreatment of the quartz glass samples. In electrically-fused and plasma-fused quartz glass the VUV transmission decreases by the formation of oxygen deficiency and E' centres with absorption bands at 163 nm and 215 nm. Best irradiation resistance is found in synthetic fused silica and in thermally treated flame-fused quartz glass. Photoluminescence spectra measured under excitation with a KrF excimer laser before and after irradiation indicate fundamental differences in the SiO2 network structure of the different quartz glass types. Whereas a poor radiation resistance correlates with a blue photoluminescence band at 390 nm, the photoluminescence of flame-fused quartz glass changes from blue to green by a thermal treatment which is correlated with a significant improvement of radiation resistance. A simplified model is presented referring to hydride and oxygen deficiency centres as precursors to colour centre formation in different types of quartz glass.

  12. Standardized Plant Disease Evaluations will Enhance Resistance Gene Discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene discovery and marker development using DNA based tools require plant populations with well-documented phenotypes. Related crops such as apples and pears may share a number of genes, for example resistance to common diseases, and data mining in one crop may reveal genes for the other. However, u...

  13. Low-Temperature Ionizing Radiation Resistance of Deinococcus radiodurans and Antarctic Dry Valley Bacteria

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Hunter, Stephanie J.; Lovell, Keith V.; Coates, Andrew J.; Ward, John M.

    2010-09-01

    The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.

  14. Inactivation of antibiotics and the dissemination of resistance genes.

    PubMed

    Davies, J

    1994-04-15

    The emergence of multidrug-resistant bacteria is a phenomenon of concern to the clinician and the pharmaceutical industry, as it is the major cause of failure in the treatment of infectious diseases. The most common mechanism of resistance in pathogenic bacteria to antibiotics of the aminoglycoside, beta-lactam (penicillins and cephalosporins), and chloramphenicol types involves the enzymic inactivation of the antibiotic by hydrolysis or by formation of inactive derivatives. Such resistance determinants most probably were acquired by pathogenic bacteria from a pool of resistance genes in other microbial genera, including antibiotic-producing organisms. The resistance gene sequences were subsequently integrated by site-specific recombination into several classes of naturally occurring gene expression cassettes (typically "integrons") and disseminated within the microbial population by a variety of gene transfer mechanisms. Although bacterial conjugation once was believed to be restricted in host range, it now appears that this mechanism of transfer permits genetic exchange between many different bacterial genera in nature.

  15. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  16. Fate of Antibiotic Resistant Bacteria and Genes during Wastewater Chlorination: Implication for Antibiotic Resistance Control

    PubMed Central

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination. PMID:25738838

  17. Antibiotic resistance genes in freshwater biofilms along a whole river.

    PubMed

    Winkworth, Cynthia L

    2013-06-01

    A key problem challenging public health officials' efforts to stem the spread of antibiotic resistance is the potential increase of resistance in the environment. Yet, despite recent and significant changes to agricultural land in New Zealand, as well as the sector's high antibiotic use, the influence on antibiotic resistance in the environment remained uncharacterised. Spatial and temporal dynamics of antibiotic resistance genes in freshwater biofilms from NZ's fourth longest river as it transitioned between low and high intensity farming were examined for 1 year. Polymerase chain reaction was employed to gauge the level of resistance present. Biofilms were screened for 10 genes conferring resistance to antibiotics used in humans only and both humans and agricultural animals. Three genes were detected, one which conferred resistance to the important human-only use antibiotic vancomycin. Detected at the two downstream sites only, and those subject to the highest combined land-use stressors, the three genes indicated an elevated presence of antibiotic resistance in relation to surrounding land use; 7.7% versus 2% across the whole river system. The detection of a gene conferring resistance to an important human-only use antibiotic was particularly concerning and highlighted human-based contamination sources along the river, in addition to those of agricultural origin.

  18. Draft Genome Sequence of Kocuria rhizophila RF, a Radiation-Resistant Soil Isolate

    PubMed Central

    Mehrabadi, Jalil Fallah; Mirzaie, Amir; Ahangar, Nahid; Rahimi, Arian

    2016-01-01

    Kocuria rhizophila RF, a soil isolate from Iran, is a radiation-resistant bacterium. Only a limited amount of genomic information for radiation-resistant bacteria is currently available. Here, we report the draft genome sequence of this bacterium, providing knowledge to aid in the discovery of the genomic basis of its resistance to radiation. PMID:26966202

  19. Characterization of antibiotic-resistance genes in antibiotic resistance Escherichia coli isolates from a lake.

    PubMed

    Wang, Chao; Gu, Xiucong; Zhang, Songhe; Wang, Peifang; Guo, Chuan; Gu, Ju; Hou, Jun

    2013-11-01

    The spread of antibiotic-resistance bacteria and antibiotic-resistance genes (ARGs) has been of concern worldwide. In this study, 114 Escherichia coli isolates were isolated from surface water samples of a lake to identify their susceptibility to antibiotics, including tetracycline (TC), gentamicin (GN), ampicillin (AMP), streptomycin (ST), oxytetracycline (OC), levofloxacin (LEV), nalidixic acid (NA), and sulfamethoxazole/trimethoprim (SFT). Isolates showing resistance to TC, GN, AMP, ST, OC, LEV, NA, and SFT occurred in 50, 76, 68, 71, 55, 32, 82, and 85 % of the total isolates, respectively. Thirty-seven different resistance patterns were identified, and the most abundant resistance profile (28 of 104) was TC/GN/AMP/ST/OC/LEV/NA/SFT. The occurrence of 29 ARGs were detected in their corresponding resistance clones, and 88 % of TC-resistance, 94 % of SFT-resistance, 90 % of AMP-resistance, 78 % of ST-resistance, and 72 % of quinolone-resistance clones can be described by their corresponding ARGs. It should be noted that most of these antibiotic-resistance clones harbored at least two corresponding ARGs, indicating that high frequencies of combined ARGs occurred in these isolates. In addition, 9 new types of DNA sequence of qnr(B) gene were obtained and were clustered into the same group as showed by phylogenetic trees analysis. These results suggest that the development of antibiotic resistance can be ascribed to the high frequency in the recombination of ARGs through horizontal gene transfer.

  20. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  1. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  2. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  3. Basic Mechanisms of Therapeutic Resistance to Radiation and Chemotherapy in Lung Cancer

    PubMed Central

    Willers, Henning; Azzoli, Christopher G.; Santivasi, Wil L.; Xia, Fen

    2013-01-01

    In recent years, there have been multiple breakthroughs in our understanding of lung cancer biology. Despite significant advances in molecular targeted therapies DNA-damaging cytotoxic therapies will remain the mainstay of lung cancer management for the foreseeable future. Similar to the concept of personalized targeted therapies there is mounting evidence that perturbations in DNA repair pathways are common in lung cancers, altering the resistance of the affected tumors to many chemotherapeutics as well as radiation. Defects in DNA repair may be due to a multitude of mechanisms including gene mutations, epigenetic events, and alterations in signal transduction pathways such as EGFR and PI3K/AKT. Functional biomarkers that assess the subcellular localization of central repair proteins in response to DNA damage may prove useful for individualization of cytotoxic therapies including PARP inhibitors. A better mechanistic understanding of cellular sensitivity and resistance to DNA damaging agents should facilitate the development of novel, individualized treatment approaches. Absolute resistance to radiation therapy, however, does not exist. To some extent, radiation therapy will always have to remain unselective and indiscriminant to eradicate persistent, drug-resistant tumor stem cell pools. PMID:23708066

  4. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy.

    PubMed

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-11-10

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  5. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    PubMed Central

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-01-01

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR. PMID:26569225

  6. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  7. Detection of integron-associated gene cassettes and other antimicrobial resistance genes in enterotoxigenic Bacteroides fragilis.

    PubMed

    Sarkar, Anirban; Pazhani, Gururaja P; Dharanidharan, Ramamurthy; Ghosh, Amit; Ramamurthy, Thandavarayan

    2015-06-01

    Twenty seven Enterotoxigenic Bacteroides fragilis (ETBF) strains isolated from children in Kolkata, India, were tested for their antimicrobial resistance, presence of integrons and resistance encoding genes. Almost all the strains (>90%) were resistant to two or more antimicrobials. About 59-92% of the strains were resistant to ampicillin, amoxicillin, streptomycin, tetracycline, ciprofloxacin and norfloxacin. Most of these antimicrobial agents have been used in the treatment of diarrhea and other infectious diseases. In addition, about half a number of strains (48-55%) were resistant to clindamycin, cefotaxime, ceftazidime, ampicillin/sulbactam and trimethoprim/sulfamethoxazole. Moxifloxacin and metronidazole resistance ranged from 30 to 40%. All strains however, were found to be susceptible to chloramphenicol and imipenem. Class 1 integrase (intI1) was detected in seven and class 2 integrase (intI2) in one of the twenty seven ETBF strains. Resistance gene cassettes carried by these integrons had different alleles of dfr or aad genes. Beside these integron-borne genes, other genes encoding different antimicrobial resistance were also detected. Resistance genes such as cep(A) and tet(Q) were detected in most of the ETBF strains. To the best of our knowledge, this work constituted the first extensive report from India on the detection of integrons and antimicrobial resistance genes in ETBF. PMID:25634362

  8. Genes for resistance to zucchini yellow mosaic in tropical pumpkin.

    PubMed

    Pachner, Martin; Paris, Harry S; Lelley, Tamas

    2011-01-01

    Four cultigens of Cucurbita moschata resistant to zucchini yellow mosaic virus were crossed with the susceptible 'Waltham Butternut' and with each other in order to clarify the mode of inheritance of resistance and relationships among the genes involved. Five loci were segregating, with genes for resistance Zym-0 and Zym-4 carried by 'Nigerian Local' and one of them also carried by 'Nicklow's Delight,' Zym-1 carried by 'Menina,' and zym-6 carried by 'Soler.' A recessive gene carried by 'Waltham Butternut,' zym-5, is complementary with the dominant Zym-4 of 'Nigerian Local,' that is, the resistance conferred by Zym-4 is only expressed in zym-5/zym-5 individuals. Gene zym-6 appears to be linked to either Zym-0 or Zym-4, and it is also possible that Zym-1 is linked to one of them as well.

  9. Human Genetic Marker for Resistance to Radiations and Chemicals

    SciTech Connect

    Lieberman, Howard B.

    1999-06-01

    The major goal of the research project is to define the role of HRAD9 in the response of cells to radiation or chemical exposure, and to establish this gene as a genetic marker to predict predisposition to the deleterious health effects that may result after exposure to these agents. HRAD9 is a human homologue of fission yeast S. pombe rad9, a gene known to promote radioresistance and chemoresistance, and to regulate cell cycle progression after DNA is damaged or DNA replication is incomplete -i.e., it mediates cell cycle checkpoint control. Therefore, HRAD9 likely plays an important role in humans to determine the biological consequences of DNA damage.

  10. Natural selection mapping of the warfarin-resistance gene

    PubMed Central

    Kohn, Michael H.; Pelz, Hans-Joachim; Wayne, Robert K.

    2000-01-01

    In theory, genes under natural selection can be revealed by unique patterns of linkage disequilibrium (LD) and polymorphism at physically linked loci. However, given the effects of recombination and mutation, the physical extent and persistence of LD patterns in natural populations is uncertain. To assess the LD signature of selection, we survey variation in 26 microsatellite loci spanning an ≈32-cM region that includes the warfarin-resistance gene (Rw) in five wild rat populations having resistance levels between 0 and 95%. We find a high frequency of heterozygote deficiency at microsatellite loci in resistant populations, and a negative association between gene diversity (H) and resistance. Contrary to previous studies, these data suggest that directional rather than overdominant selection may predominate during periods of intense anticoagulant treatment. In highly resistant populations, extensive LD was observed over a chromosome segment spanning ≈14% of rat chromosome 1. In contrast, LD in a moderately resistant population was more localized and, in conjunction with likelihood ratios, allowed assignment of Rw to a 2.2-cM interval. Within this genomic window, a diagnostic marker, D1Rat219, assigned 91% of rats to the correct resistance category. These results further demonstrate that “natural selection mapping” in field populations can detect and map major fitness-related genes, and question overdominance as the predominant mode of selection in anticoagulant-resistant rat populations. PMID:10884423

  11. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    PubMed

    Moore, Aimée M; Patel, Sanket; Forsberg, Kevin J; Wang, Bin; Bentley, Gayle; Razia, Yasmin; Qin, Xuan; Tarr, Phillip I; Dantas, Gautam

    2013-01-01

    Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome), yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure), and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000), and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301). We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway). This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective antibiotic

  12. Phenotypic characterization of potato late blight resistance mediated by the broad-spectrum resistance gene RB.

    PubMed

    Chen, Yu; Halterman, Dennis A

    2011-02-01

    The potato gene RB, cloned from the wild potato species Solanum bulbocastanum, confers partial resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. In order to better characterize this partial resistance phenotype, we have compared host resistance responses mediated by RB with those mediated by the S. demissum-derived R gene R9, which confers immunity to P. infestans carrying the corresponding avirulence gene avrR9. We found that both RB and R9 genes were capable of eliciting a hypersensitive cell death response (HR). However, in RB plants, the pathogen escaped HR lesions and continued to grow beyond the inoculation sites. We also found that callose deposition was negatively correlated with resistance levels in tested plants. Transcription patterns of pathogenesis-related (PR) genes PR-1 basic, PR-2 acidic, and PR-5 indicated that P. infestans inoculation induced transcription of these defense-related genes regardless of the host genotype; however, transcription was reduced in both the susceptible and partially resistant plants later in the infection process but remained elevated in the immune host. Most interestingly, transcription of the HR-associated gene Hin1 was suppressed in both Katahdin and RB-transgenic Katahdin but not in R9 4 days after inoculation. Together, this suggests that suppression of certain defense-related genes may allow P. infestans to spread beyond the site of infection in the partially resistant host despite elicitation of hypersensitive cell death.

  13. Hypothetical proteins present during recovery phase of radiation resistant bacterium Deinococcus radiodurans are under purifying selection.

    PubMed

    Das, Anubrata D; Misra, Hari S

    2013-08-01

    Deinococcus radiodurans has an unusual capacity to recover from intense doses of ionizing radiation. The DNA repair proteins of this organism play an important role in repairing the heavily damaged DNA by employing a novel mechanism of DNA double-strand break repair. An earlier report stated that genes of many of these repair proteins are under positive selection implying that these genes have a tendency to mutate, which in turn provides selective advantage to this bacterium. Several "hypothetical proteins" are also present during the recovery phase and some of them have also been shown for their roles in radiation resistance. Therefore, we tested the selection pressure on the genes encoding these poorly characterized proteins. Our results show that a number of "hypothetical proteins" present during the repair phase have structural adaptations compared to their orthologs and the genes encoding them as well as those for the DNA repair proteins present during this phase are under purifying selection. Evidence of purifying selection in these hypothetical proteins suggests that certain novel characteristics among these proteins are conserved and seem to be under functional constraints to perform important functions during recovery process after gamma radiation damage.

  14. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    PubMed Central

    Huddleston, Jennifer R

    2014-01-01

    Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed. PMID:25018641

  15. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  16. Identification of major blast resistance genes in the southern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) genes in rice play important roles in preventing infections of rice blast fungus, Magnaporthe oryzae. In order to identify more R genes for different rice growing areas in the Southern US, an extensive field survey of the blast fungus was performed from 2012 to 2013. A total of 500 is...

  17. Radiation-resistant Macrococcus caseolyticus (A) isolated from radiation-processed semidried prawns.

    PubMed

    Karani, Manisha; Shashidhar, Ravindranath; Kakatkar, Aarti; Gautam, Raj Kamal; Sukhi, Shibani; Pansare-Godambe, Lipika; Bandekar, Jayant

    2015-01-01

    A radiation-resistant bacterial isolate from gamma-radiation-processed (5 kGy) semidried prawns was identified as a new strain of Macrococcus caseolyticus and was designated as M. caseolyticus (A) on the basis of morphological and biochemical characterization and 16S rRNA sequencing. DNA-DNA hybridization studies with M. caseolyticus DSM 20597(T) further confirmed the isolate as M. caseolyticus. Major fatty acids present in M. caseolyticus (A) were C14:0, C16:1ω11c, and C18:1ω9c, whereas C15:0anteiso, C16:0iso, and C18:0iso were absent. The closest match for the isolate, as per fatty acid methyl ester analysis, was M. caseolyticus DSM 20597(T). However, the similarity index was significantly low (0.112), which indicates that the isolate could be a new strain of M. caseolyticus. The decimal reduction dose (D10) for M. caseolyticus (A), M. caseolyticus JCSC5402, and Staphylococcus aureus MTCC96 was 1.18, 0.607, and 0.19 kGy, respectively. This is the first report on radiation resistance of M. caseolyticus. Macrococcus caseolyticus (A) is more resistant to gamma and UV radiation stress than are M. caseolyticus JCSC5402 and S. aureus MTCC96; however, it is sensitive to heat as well as desiccation stress.

  18. Prediction of antibiotic resistance by gene expression profiles

    PubMed Central

    Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara

    2014-01-01

    Although many mutations contributing to antibiotic resistance have been identified, the relationship between the mutations and the related phenotypic changes responsible for the resistance has yet to be fully elucidated. To better characterize phenotype–genotype mapping for drug resistance, here we analyse phenotypic and genotypic changes of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution. We demonstrate that the resistances can be quantitatively predicted by the expression changes of a small number of genes. Several candidate mutations contributing to the resistances are identified, while phenotype–genotype mapping is suggested to be complex and includes various mutations that cause similar phenotypic changes. The integration of transcriptome and genome data enables us to extract essential phenotypic changes for drug resistances. PMID:25517437

  19. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2013-11-01

    Antibiotic resistance in wastewater is becoming a major public health concern, but poorly understood about impact of disinfection on antibiotic resistant bacteria and antibiotic resistance genes. The UV disinfection of antibiotic resistant heterotrophic bacteria and their relevant genes in the wastewater of a municipal wastewater treatment plant has been evaluated. Two commonly used antibiotics, erythromycin and tetracycline were selected because of their wide occurrences in regard to the antibiotic resistance problem. After UV treatment at a fluence of 5mJcm(-2), the log reductions of heterotrophic bacteria resistant to erythromycin and tetracycline in the wastewater were found to be 1.4±0.1 and 1.1±0.1, respectively. The proportion of tetracycline-resistant bacteria (5%) was nearly double of that before UV disinfection (3%). Tetracycline-resistant bacteria exhibited more tolerance to UV irradiation compared to the erythromycin-resistant bacteria (p<0.05). Gene copy numbers were quantified via qPCR and normalized to the volume of original sample. The total concentrations of erythromycin- and tetracycline-resistance genes were (3.6±0.2)×10(5) and (2.5±0.1)×10(5) copies L(-1), respectively. UV treatment at a fluence of 5mJcm(-2) removed the total erythromycin- and tetracycline-resistance genes by 3.0±0.1 log and 1.9±0.1 log, respectively. UV treatment was effective in reducing antibiotic resistance in the wastewater.

  20. Hygromycin-resistance vectors for gene expression in Pichia pastoris.

    PubMed

    Yang, Junjie; Nie, Lei; Chen, Biao; Liu, Yingmiao; Kong, Yimeng; Wang, Haibin; Diao, Liuyang

    2014-04-01

    Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin-, G418-, nourseothricin- and blasticidin-resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post-transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic-resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S-adenosyl-L-methionine at levels approximately twice those of the parent strain. The new hygromycin-resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. PMID:24822243

  1. Combined effects of ionizing radiation and cycloheximide on gene expression

    SciTech Connect

    Woloschak, G.E.; Felcher, P.; Chang-Liu, Chin-Mei

    1993-11-01

    Experiments were done to determine the effects of ionizing radiation exposure on expression of genes following exposure of Syrian hamster embryo (SHE) cells to the protein synthesis inhibitor cycloheximide (including such genes as {beta}-actin, c-fos, H4-histone, c-myc, c-jun, Rb, and p53). Results revealed that when ionizing radiations (either fission-spectrum neutrons or {gamma}-rays) were administered 15 min following the cycloheximide treatment of SHE cells, the radiation exposure reduced cycloheximide-mediated gene induction for most of the induced genes studied (c-fos, H4-histone, c-jun) In addition, dose-rate differences were found when radiation exposure most significantly inhibited the cycloheximide response. Our results suggest (1) that ionizing radiation does not act as a general protein synthesis inhibitor and (2) that the presence of a labile (metastable) protein is required for the maintenance of transcription and mRNA accumulation following radiation exposure, especially for radiation administered at high dose-rates.

  2. Consolidating and Exploring Antibiotic Resistance Gene Data Resources.

    PubMed

    Xavier, Basil Britto; Das, Anupam J; Cochrane, Guy; De Ganck, Sandra; Kumar-Singh, Samir; Aarestrup, Frank Møller; Goossens, Herman; Malhotra-Kumar, Surbhi

    2016-04-01

    The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become imperative to unify AR gene data resources for easy accessibility for researchers. However, due to the absence of a centralized platform for AR gene resources, availability, consistency, and accuracy of information vary considerably across different databases. In this article, we explore existing AR gene data resources in order to make them more visible to the clinical microbiology community, to identify their limitations, and to propose potential solutions.

  3. Consolidating and Exploring Antibiotic Resistance Gene Data Resources

    PubMed Central

    Xavier, Basil Britto; Das, Anupam J.; Cochrane, Guy; De Ganck, Sandra; Kumar-Singh, Samir; Aarestrup, Frank Møller; Goossens, Herman

    2016-01-01

    The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become imperative to unify AR gene data resources for easy accessibility for researchers. However, due to the absence of a centralized platform for AR gene resources, availability, consistency, and accuracy of information vary considerably across different databases. In this article, we explore existing AR gene data resources in order to make them more visible to the clinical microbiology community, to identify their limitations, and to propose potential solutions. PMID:26818666

  4. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids.

    PubMed

    Dobiasova, Hana; Kutilova, Iva; Piackova, Veronika; Vesely, Tomas; Cizek, Alois; Dolejska, Monika

    2014-07-16

    Growing ornamental fish industry is associated with public health concerns including extensive antibiotic use accompanied by increasing antibiotic resistance. The aim of this study was to analyze Aeromonas isolates from imported tropical ornamental fish and coldwater koi carps bred in the Czech Republic to assess the potential risk of ornamental fish as a source of plasmid-mediated quinolone resistance genes (PMQR) and antibiotic resistance plasmids. A collection of Aeromonas spp. with reduced susceptibility to ciprofloxacin (MIC ≥ 0.05 mg/L) was selected for the detection of PMQR genes. Isolates harbouring PMQR genes were further analyzed for the additional antibiotic resistance, integron content, clonality, biofilm production and transferability of PMQR genes by conjugation and transformation. Comparative analysis of plasmids carrying PMQR genes was performed. Fifteen (19%, n=80) isolates from koi carps and 18 (24%, n=76) isolates from imported ornamental fish were positive for qnrS2, aac(6')-Ib-cr or qnrB17 genes. PMQR-positive isolates from imported ornamental fish showed higher MIC levels to quinolones, multiresistance and diverse content of antibiotic resistance genes and integrons compared to the isolates from the carps. Related IncU plasmids harbouring qnrS2 and aac(6')-Ib-cr genes were found in Aeromonas spp. from imported ornamental fish and koi carps from various geographical areas. Ornamental fish may represent a potential source of multiresistant bacteria and mobile genetic elements for the environment and for humans.

  5. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance.

    PubMed

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara; Benfield, Thomas; Miller, Robert; Rabodonirina, Meja; Helweg-Larsen, Jannik

    2004-10-01

    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about development of resistant organisms. The inability to culture human Pneumocystis, Pneumocystis jirovecii, in a standardized culture system prevents routine susceptibility testing and detection of drug resistance. In other microorganisms, sulfa drug resistance has resulted from specific point mutations in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone.

  6. Cycloheximide resistance in yeast: the gene and its protein.

    PubMed Central

    Käufer, N F; Fried, H M; Schwindinger, W F; Jasin, M; Warner, J R

    1983-01-01

    Mutations in the yeast gene CYH2 can lead to resistance to cycloheximide, an inhibitor of eukaryotic protein synthesis. The gene product of CYH2 is ribosomal protein L29, a component of the 60S ribosomal subunit. We have cloned the wild-type and resistance alleles of CYH2 and determined their nucleotide sequence. Transcription of CYH2 appears to initiate and terminate at multiple sites, as judged by S1 nuclease analysis. The gene is transcribed into an RNA molecule of about 1082 nucleotides, containing an intervening sequence of 510 nucleotides. The splice junction of the intron resides within a codon near the 5' end of the gene. In confirmation of peptide analysis by Stocklein et al. (1) we find that resistance to cycloheximide is due to a transversion mutation resulting in the replacement of a glutamine by glutamic acid in position 37 of L29. Images PMID:6304624

  7. Antibiotic preparations contain DNA: a source of drug resistance genes?

    PubMed Central

    Webb, V; Davies, J

    1993-01-01

    Fluorescence measurements and polymerase chain reaction amplification of streptomycete 16S ribosomal DNA sequences were used to show that a number of antibiotic preparations employed for human and animal use are contaminated with chromosomal DNA of the antibiotic-producing organism. The DNA contains identifiable antibiotic resistance gene sequences; the uptake of this DNA by bacteria and its functional incorporation into bacterial replicons would lead to the generation of antibiotic resistance determinants. We propose that the presence of DNA encoding drug resistance in antibiotic preparations has been a factor in the rapid development of multiple antibiotic resistance in bacteria. Images PMID:8285621

  8. Extremophiles: radiation resistance microbial reserves and therapeutic implications.

    PubMed

    Singh, O V; Gabani, P

    2011-04-01

    Micro-organisms with the ability to survive in extreme environmental conditions are known as 'extremophiles'. Currently, extremophiles have caused a sensation in the biotechnology/pharmaceutical industries with their novel compounds, known as 'extremolytes'. The potential applications of extremolytes are being investigated for human therapeutics including anticancer drugs, antioxidants, cell cycle-blocking agents, anticholesteric drugs, etc. It is hypothesized that the majority of ultraviolet radiation (UVR)-resistant micro-organisms can be used to develop anticancer drugs to prevent skin damage from UVR. The metabolites from UVR-resistant microbes are a great source of potential therapeutic applications in humans. This article aims to discuss the potentials of extremolytes along with their therapeutic implications of UVR extremophiles. The major challenges of therapeutic development using extremophiles are also discussed.

  9. Complete genome sequence of Hymenobacter swuensis, an ionizing-radiation resistant bacterium isolated from mountain soil.

    PubMed

    Jung, Jong-Hyun; Yang, Ho-Yeon; Jeong, Sunwook; Joe, Min-Ho; Cho, Yong-Joon; Kim, Myung-Kyum; Lim, Sangyong

    2014-05-20

    Hymenobacter swuensis is a gamma-radiation resistant bacterium isolated from mountain soil in South Korea (N 35°51'38″, E 127°44'47″; altitude 1500m). The complete genome of H. swuensis consists of one chromosome (4,904,241bp) with three plasmids. The genomic sequence indicated that H. swuensis includes a series of genes involved in 2'-hydroxy-carotenoid biosynthesis. This is the first report describing the Hymenobacter genome and key enzymes in the 2'-hydroxy-carotenoid biosynthesis pathway. These data may provide opportunities for genetic engineering and antioxidant 2'-hydroxy-carotenoid production. PMID:24637374

  10. Evaluation of the radiation resistance of electrical insulation materials

    NASA Astrophysics Data System (ADS)

    Perrin, Sh.; Schönbacher, H.; Tavlet, M.; Widler, R.

    2002-12-01

    The qualification of insulating materials for electrical cables is often accomplished according to the IEC 60544 standard of the International Electrotechnical Commission. The mechanical properties of the polymeric insulators are tested prior and after irradiation at relatively high dose rates. To assess the ageing of selected materials under realistic service conditions, usually at lower dose rate, an IEC Working Group has proposed extrapolation methods (IEC 61244-2), one of which is applied here for a cable sheathing material from Huber+Suhner. The method is found to be suitable to compare radiation resistance data of different materials irradiated under different conditions.

  11. Radiation resistance of electro-optic polymer-based modulators

    SciTech Connect

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-05-16

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation.

  12. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment.

    PubMed

    Gao, Panpan; Mao, Daqing; Luo, Yi; Wang, Limei; Xu, Bingjie; Xu, Lin

    2012-05-01

    The occurrence of sulfonamide and tetracycline resistance and their pollution profile in the aquaculture environment of Tianjin, northern China, were investigated. The presence of antibiotic-resistant bacteria was identified and the corresponding antibiotic resistance genes (ARGs) were quantified at 6 aquaculture farms in Tianjin. Sulfonamide-resistance genes were prevalent and their concentrations were the highest detected (3.0 × 10(-5) to 3.3 × 10(-4) for sul1/16S rDNA, 2.0 × 10(-4) to 1.8 × 10(-3) for sul2/16S rDNA) among the various ARGs, most likely because the use of sulfonamides is more prevalent than tetracyclines in this area. Bacillus was the most dominant bacterial genus in both sulfamethoxazole resistant bacteria (63.27% of the total resistant bacteria) and tetracycline-resistant bacteria (57.14% of the total resistant bacteria). At least two of those genes (tetM, tetO, tetT, tetW, sul1 and sul2) were detected in the isolates of Bacillus cereus, Bacillus subtilis, Bacillus megaterium and Acinetobacter lwofii, and all of the above genes were detected in B. cereus, suggesting the occurrence of multi-resistance in the studied area. The genetic transfer of sul1 between intestinal bacteria (e.g., Enterococcus spp.) and indigenous bacteria (e.g., Bacillus spp.) was implied by phylogenetic analysis. Several strains of resistant opportunistic pathogens (e.g., Acinetobacter spp.) were found in indigenous bacteria, which increase the risk of ARGs to public health. Overall, this is the first study to comprehensively investigate the antibiotic resistance profile by analyzing the species of antibiotic-resistant bacteria and adopting qualitative and quantitative methods to investigate ARGs at a typical aquaculture area in northern China.

  13. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.

    PubMed

    Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy

    2015-03-01

    In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species. PMID:25562594

  14. Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes.

    PubMed

    Lehembre, Frédéric; Doillon, Didier; David, Elise; Perrotto, Sandrine; Baude, Jessica; Foulon, Julie; Harfouche, Lamia; Vallon, Laurent; Poulain, Julie; Da Silva, Corinne; Wincker, Patrick; Oger-Desfeux, Christine; Richaud, Pierre; Colpaert, Jan V; Chalot, Michel; Fraissinet-Tachet, Laurence; Blaudez, Damien; Marmeisse, Roland

    2013-10-01

    Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms.

  15. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  16. Diversity of plasmids and antimicrobial resistance genes in multidrug-resistant Escherichia coli isolated from healthy companion animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of gene...

  17. Genomes, diversity and resistance gene analogues in Musa species.

    PubMed

    Azhar, M; Heslop-Harrison, J S

    2008-01-01

    Resistance genes (R genes) in plants are abundant and may represent more than 1% of all the genes. Their diversity is critical to the recognition and response to attack from diverse pathogens. Like many other crops, banana and plantain face attacks from potentially devastating fungal and bacterial diseases, increased by a combination of worldwide spread of pathogens, exploitation of a small number of varieties, new pathogen mutations, and the lack of effective, benign and cheap chemical control. The challenge for plant breeders is to identify and exploit genetic resistances to diseases, which is particularly difficult in banana and plantain where the valuable cultivars are sterile, parthenocarpic and mostly triploid so conventional genetic analysis and breeding is impossible. In this paper, we review the nature of R genes and the key motifs, particularly in the Nucleotide Binding Sites (NBS), Leucine Rich Repeat (LRR) gene class. We present data about identity, nature and evolutionary diversity of the NBS domains of Musa R genes in diploid wild species with the Musa acuminata (A), M. balbisiana (B), M. schizocarpa (S), M. textilis (T), M. velutina and M. ornata genomes, and from various cultivated hybrid and triploid accessions, using PCR primers to isolate the domains from genomic DNA. Of 135 new sequences, 75% of the sequenced clones had uninterrupted open reading frames (ORFs), and phylogenetic UPGMA tree construction showed four clusters, one from Musa ornata, one largely from the B and T genomes, one from A and M. velutina, and the largest with A, B, T and S genomes. Only genes of the coiled-coil (non-TIR) class were found, typical of the grasses and presumably monocotyledons. The analysis of R genes in cultivated banana and plantain, and their wild relatives, has implications for identification and selection of resistance genes within the genus which may be useful for plant selection and breeding and also for defining relationships and genome evolution

  18. Genomes, diversity and resistance gene analogues in Musa species.

    PubMed

    Azhar, M; Heslop-Harrison, J S

    2008-01-01

    Resistance genes (R genes) in plants are abundant and may represent more than 1% of all the genes. Their diversity is critical to the recognition and response to attack from diverse pathogens. Like many other crops, banana and plantain face attacks from potentially devastating fungal and bacterial diseases, increased by a combination of worldwide spread of pathogens, exploitation of a small number of varieties, new pathogen mutations, and the lack of effective, benign and cheap chemical control. The challenge for plant breeders is to identify and exploit genetic resistances to diseases, which is particularly difficult in banana and plantain where the valuable cultivars are sterile, parthenocarpic and mostly triploid so conventional genetic analysis and breeding is impossible. In this paper, we review the nature of R genes and the key motifs, particularly in the Nucleotide Binding Sites (NBS), Leucine Rich Repeat (LRR) gene class. We present data about identity, nature and evolutionary diversity of the NBS domains of Musa R genes in diploid wild species with the Musa acuminata (A), M. balbisiana (B), M. schizocarpa (S), M. textilis (T), M. velutina and M. ornata genomes, and from various cultivated hybrid and triploid accessions, using PCR primers to isolate the domains from genomic DNA. Of 135 new sequences, 75% of the sequenced clones had uninterrupted open reading frames (ORFs), and phylogenetic UPGMA tree construction showed four clusters, one from Musa ornata, one largely from the B and T genomes, one from A and M. velutina, and the largest with A, B, T and S genomes. Only genes of the coiled-coil (non-TIR) class were found, typical of the grasses and presumably monocotyledons. The analysis of R genes in cultivated banana and plantain, and their wild relatives, has implications for identification and selection of resistance genes within the genus which may be useful for plant selection and breeding and also for defining relationships and genome evolution

  19. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  20. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    NASA Astrophysics Data System (ADS)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  1. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  2. Horizontal gene transfer of stress resistance genes through plasmid transport.

    PubMed

    Shoeb, Erum; Badar, Uzma; Akhter, Jameela; Shams, Hina; Sultana, Maria; Ansari, Maqsood A

    2012-03-01

    The horizontal gene transfer of plasmid-determined stress tolerance was achieved under lab conditions. Bacterial isolates, Enterobacter cloacae (DGE50) and Escherichia coli (DGE57) were used throughout the study. Samples were collected from contaminated marine water and soil to isolate bacterial strains having tolerance against heavy metals and antimicrobial agents. We have demonstrated plasmid transfer, from Amp(+)Cu(+)Zn(-) strain (DGE50) to Amp(-)Cu(-)Zn(+) strain (DGE57), producing Amp(+)Cu(+)Zn(+) transconjugants (DGE(TC50→57)) and Amp(+)Cu(-)Zn(+) transformants (DGE(TF50→57)). DGE57 did not carry any plasmid, therefore, it can be speculated that zinc tolerance gene in DGE57 is located on chromosome. DGE50 was found to carry three plasmids, out of which two were transferred through conjugation into DGE57, and only one was transferred through transformation. Plasmid transferred through transformation was one out of the two transferred through conjugation. Through the results of transformation it was revealed that the genes of copper and ampicillin tolerance in DGE50 were located on separate plasmids, since only ampicillin tolerance genes were transferred through transformation as a result of one plasmid transfer. By showing transfer of plasmids under lab conditions and monitoring retention of respective phenotype via conjugation and transformation, it is very well demonstrated how multiple stress tolerant strains are generated in nature. PMID:22805823

  3. Spread of tetracycline resistance genes at a conventional dairy farm

    PubMed Central

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r) genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository) is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1–2 weeks), likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W), tet(Q), and tet(M) in fresh excrements of calves was about 1–2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O), tet(Q), and tet(W) representing a “core TC-resistome” of the farm, and tet(A), tet(M), tet(Y), and tet(X) occurring occasionally. The genes tet(A), tet(M), tet(Y), and tet(X) were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes. PMID

  4. Spread of tetracycline resistance genes at a conventional dairy farm.

    PubMed

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r) genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository) is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks), likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W), tet(Q), and tet(M) in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O), tet(Q), and tet(W) representing a "core TC-resistome" of the farm, and tet(A), tet(M), tet(Y), and tet(X) occurring occasionally. The genes tet(A), tet(M), tet(Y), and tet(X) were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes. PMID:26074912

  5. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    PubMed Central

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  6. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    PubMed

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  7. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    PubMed

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  8. Breaking restricted taxonomic functionality by dual resistance genes.

    PubMed

    Narusaka, Mari; Kubo, Yasuyuki; Hatakeyama, Katsunori; Imamura, Jun; Ezura, Hiroshi; Nanasato, Yoshihiko; Tabei, Yutaka; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro

    2013-06-01

    NB-LRR-type disease resistance (R) genes have been used in traditional breeding programs for crop protection. However, functional transfer of NB-LRR-type R genes to plants in taxonomically distinct families to establish pathogen resistance has not been successful. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and B. napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Thus the successful transfer of two R genes at the family level overcomes restricted taxonomic functionality. This implies that the downstream components of R genes must be highly conserved and interfamily utilization of R genes can be a powerful strategy to combat pathogens.

  9. Quantification of vancomycin-resistant enterococci and corresponding resistance genes in a sewage treatment plant.

    PubMed

    Furukawa, Takashi; Hashimoto, Reina; Mekata, Tohru

    2015-01-01

    This study aimed to analyze vancomycin-resistant enterococci (VRE) and their resistance genes, vanA and vanB, to examine their presence in sewage treatment systems. Water samples were collected from primary sedimentation tank inlet, aeration tank, final sedimentation tank overflow outlet, and disinfection tank. Enterococcal strains were determined their vancomycin susceptibility by the minimum inhibitory concentration (MIC) test. Vancomycin-resistance genes (vanA and vanB) were quantified by real-time PCR. The sewage treatment process indeed decreased the number of most enterococci contained in the entering sewage, with a removal rate of ≥ 5 log. The MIC test showed that two enterococcal strains resistant to a high concentration of vancomycin (>128 μg mL(-1)). However, most of the enterococcal strains exhibited sensitivity to vancomycin, indicating that VRE were virtually absent in the sewage treatment systems. On the other hand, vancomycin-resistance genes were detected in all the sewage samples, including those collected from the chlorination disinfection tank. The highest copy numbers of vanA (1.5 × 10(3) copies mL(-1)) and vanB (1.0 × 10(3) copies mL(-1)) were detected from the water sample of effluent water and chlorinated water, respectively. Therefore, antibiotic resistance genes remain in the sewage treatment plant and might discharged into water environments such as rivers and coastal areas. PMID:26121014

  10. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes.

    PubMed

    Mahmood, Khalid; Mathiassen, Solvejg K; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  11. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    PubMed Central

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  12. Fine Genetic Mapping Localizes Cucumber Scab Resistance Gene Ccu into an R Gene Cluster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The scab caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombination inbreeding lines (RILs) and 1,944 F2 plants derived from the resistant cucum...

  13. Paleo-evolutionary plasticity of plant disease resistance genes

    PubMed Central

    2014-01-01

    Background The recent access to a large set of genome sequences, combined with a robust evolutionary scenario of modern monocot (i.e. grasses) and eudicot (i.e. rosids) species from their founder ancestors, offered the opportunity to gain insights into disease resistance genes (R-genes) evolutionary plasticity. Results We unravel in the current article (i) a R-genes repertoire consisting in 7883 for monocots and 15758 for eudicots, (ii) a contrasted R-genes conservation with 23.8% for monocots and 6.6% for dicots, (iii) a minimal ancestral founder pool of 384 R-genes for the monocots and 150 R-genes for the eudicots, (iv) a general pattern of organization in clusters accounting for more than 60% of mapped R-genes, (v) a biased deletion of ancestral duplicated R-genes between paralogous blocks possibly compensated by clusterization, (vi) a bias in R-genes clusterization where Leucine-Rich Repeats act as a ‘glue’ for domain association, (vii) a R-genes/miRNAs interome enriched toward duplicated R-genes. Conclusions Together, our data may suggest that R-genes family plasticity operated during plant evolution (i) at the structural level through massive duplicates loss counterbalanced by massive clusterization following polyploidization; as well as at (ii) the regulation level through microRNA/R-gene interactions acting as a possible source of functional diploidization of structurally retained R-genes duplicates. Such evolutionary shuffling events leaded to CNVs (i.e. Copy Number Variation) and PAVs (i.e. Presence Absence Variation) between related species operating in the decay of R-genes colinearity between plant species. PMID:24617999

  14. Candidate Genes That May Be Responsible for the Unusual Resistances Exhibited by Bacillus pumilus SAFR-032 Spores

    PubMed Central

    Tirumalai, Madhan R.; Rastogi, Rajat; Zamani, Nader; O’Bryant Williams, Elisha; Allen, Shamail; Diouf, Fatma; Kwende, Sharon; Weinstock, George M.; Venkateswaran, Kasthuri J.; Fox, George E.

    2013-01-01

    The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061T. This cluster of five genes is considered to be an especially promising target for future experimental work. PMID:23799069

  15. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  16. Evaluating antibiotic resistance genes in soils with applied manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  17. Multidrug resistance protein gene expression in Trichoplusia ni caterpillars.

    PubMed

    Simmons, Jason; D'Souza, Olivia; Rheault, Mark; Donly, Cam

    2013-02-01

    Many insect species exhibit pesticide-resistant phenotypes. One of the mechanisms capable of contributing to resistance is the overexpression of multidrug resistance (MDR) transporter proteins. Here we describe the cloning of three genes encoding MDR proteins from Trichoplusia ni: trnMDR1, trnMDR2 and trnMDR3. Real-time quantitative PCR (qPCR) detected trnMDR mRNA in the whole nervous system, midgut and Malpighian tubules of final instar T. ni caterpillars. To test whether these genes are upregulated in response to chemical challenge in this insect, qPCR was used to compare trnMDR mRNA levels in unchallenged insects with those of insects fed the synthetic pyrethroid, deltamethrin. Only limited increases were detected in a single gene, trnMDR2, which is the most weakly expressed of the three MDR genes, suggesting that increased multidrug resistance of this type is not a significant part of the response to deltamethrin exposure.

  18. Identification of blast resistance genes for managing rice blast disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  19. Retargeted adenoviruses for radiation-guided gene delivery

    PubMed Central

    Kaliberov, S A; Kaliberova, L N; Yan, H; Kapoor, V; Hallahan, D E

    2016-01-01

    The combination of radiation with radiosensitizing gene delivery or oncolytic viruses promises to provide an advantage that could improve the therapeutic results for glioblastoma. X-rays can induce significant molecular changes in cancer cells. We isolated the GIRLRG peptide that binds to radiation-inducible 78 kDa glucose-regulated protein (GRP78), which is overexpressed on the plasma membranes of irradiated cancer cells and tumor-associated microvascular endothelial cells. The goal of our study was to improve tumor-specific adenovirus-mediated gene delivery by selectively targeting the adenovirus binding to this radiation-inducible protein. We employed an adenoviral fiber replacement approach to conduct a study of the targeting utility of GRP78-binding peptide. We have developed fiber-modified adenoviruses encoding the GRP78-binding peptide inserted into the fiber-fibritin. We have evaluated the reporter gene expression of fiber-modified adenoviruses in vitro using a panel of glioma cells and a human D54MG tumor xenograft model. The obtained results demonstrated that employment of the GRP78-binding peptide resulted in increased gene expression in irradiated tumors following infection with fiber-modified adenoviruses, compared with untreated tumor cells. These studies demonstrate the feasibility of adenoviral retargeting using the GRP78-binding peptide that selectively recognizes tumor cells responding to radiation treatment. PMID:27492853

  20. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  1. Investigation of possibility of creation of radiation resistance sensors for physical information based on fiber materials

    NASA Astrophysics Data System (ADS)

    Baskov, P. B.; Chebyshov, S. B.; Kadilin, V. V.; Sakharov, V. V.; Mosyagina, I. V.

    2016-02-01

    The results of physical and material science and technological development of new materials of radiation photonics - nano- and microstructure of radiation-sensitive and radiation- resistant optical glass and fibers based on quartz are presented in the report. The possibility of their application in neutron diagnostics devices of nuclear power objects are considered. Component and construction options for the radiation-sensitive fiber and glass materials (with isotopes 10B, 6Li, Gd, ions of Nd3+, Ce3+ etc.), in which radiation resistance is achieved through the organization of areas of "drain" and annihilation of radiation-induced defects are considered.

  2. Positional cloning of the murine flavivirus resistance gene.

    PubMed

    Perelygin, Andrey A; Scherbik, Svetlana V; Zhulin, Igor B; Stockman, Bronislava M; Li, Yan; Brinton, Margo A

    2002-07-01

    Inbred mouse strains exhibit significant differences in their susceptibility to viruses in the genus Flavivirus, which includes human pathogens such as yellow fever, Dengue, and West Nile virus. A single gene, designated Flv, confers this differential susceptibility and was mapped previously to a region of mouse chromosome 5. A positional cloning strategy was used to identify 22 genes from the Flv gene interval including 10 members of the 2'-5'-oligoadenylate synthetase gene family. One 2'-5'-oligoadenylate synthetase gene, Oas1b, was identified as Flv by correlation between genotype and phenotype in nine mouse strains. Susceptible mouse strains produce a protein lacking 30% of the C-terminal sequence as compared with the resistant counterpart because of the presence of a premature stop codon. The Oas1b gene differs from all the other murine Oas genes by a unique four-amino acid deletion in the P-loop located within the conserved RNA binding domain. Expression of the resistant allele of Oas1b in susceptible embryo fibroblasts resulted in partial inhibition of the replication of a flavivirus but not of an alpha togavirus.

  3. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene.

    PubMed

    Shang, Yanfang; Duan, Zhibing; Huang, Wei; Gao, Qiang; Wang, Chengshu

    2012-01-01

    Insect pathogenic fungi like Beauveria bassiana have been developed as environmentally friendly biocontrol agents against arthropod pests. However, restrictive environmental factors, including solar ultraviolet (UV) radiation frequently lead to inconsistent field performance. To improve resistance to UV damage, we used Agrobacterium-mediated transformation to engineer B. bassiana with an exogenous tyrosinase gene. The results showed that the mitotically stable transformants produced larger amounts of yellowish pigments than the wild-type strain, and these imparted significantly increased UV-resistance. The virulence of the transgenic isolate was also significantly increased against the silkworm Bombyx mori and the mealworm Tenebrio molitor. This study demonstrated that genetic engineering of B. bassiana with a tyrosinase gene is an effective way to improve fungal tolerance against UV damage. PMID:22024554

  4. NF-κB-mediated adaptive resistance to ionizing radiation

    PubMed Central

    Ahmed, Kazi Mokim; Li, Jian Jian

    2008-01-01

    Ionizing radiation (IR) began to be a powerful medical modality soon after Wilhelm Röntgen’s discovery of X-rays in 1895. Today, more than 50% of cancer patients receive radiotherapy at some time during the course of their disease. Recent technical developments have significantly increased the precision of dose delivery to the target tumor, making radiotherapy more efficient in cancer treatment. However, tumor cells have been shown to acquire a radioresistance that has been linked to increased recurrence and failure in many patients. The exact mechanisms by which tumor cells develop an adaptive resistance to therapeutic fractional irradiation are unknown, although low-dose IR has been well defined for radioadaptive protection of normal cells. This review will address the radioadaptive response, emphasizing recent studies of molecular-level reactions. A prosurvival signaling network initiated by the transcription factor NF-κB, DNA-damage sensor ATM, oncoprotein HER-2, cell cyclin elements (cyclin B1), and mitochondrial functions in radioadaptive resistance is discussed. Further elucidation of the key elements in this prosurvival network may generate novel targets for resensitizing the radioresistant tumor cells. PMID:17967430

  5. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper.

    PubMed

    Romero, A M; Ritchie, D F

    2004-12-01

    ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.

  6. Gene expression patterns in near isogenic lines for wheat rust resistance gene lr34/yr18.

    PubMed

    Hulbert, S H; Bai, J; Fellers, J P; Pacheco, M G; Bowden, R L

    2007-09-01

    ABSTRACT The Lr34/Yr18 resistance gene provides durable, adult-plant, slow rusting resistance to leaf rust, yellow rust, and several other diseases of wheat. Flag leaves may exhibit spontaneous leaf tip necrosis and tips are more resistant than leaf bases. Despite the importance of this gene, the mechanism of resistance is unknown. Patterns of expression for 55,052 transcripts were examined by microarray analysis in mock-inoculated flag leaves of two pairs of wheat near isogenic lines for Lr34/Yr18 (Jupateco 73S/Jupateco 73R and Thatcher/Thatcher-Lr34). The Thatcher isolines were also examined for patterns of expression after inoculation with leaf rust. Mock-inoculated leaf tips of resistant plants showed up-regulation of 57 transcripts generally associated with ABA inducibility, osmotic stress, cold stress, and/or seed maturation. Several transcripts may be useful as expression markers for Lr34/Yr18. Five transcripts were also up-regulated in resistant leaf bases. The possible role of these transcripts in resistance is discussed. In mock-inoculated plants, pathogenesis-related (PR) proteins were not up-regulated in resistant flag leaves compared with that in susceptible flag leaves. In inoculated plants, the same set of PR proteins was up-regulated in both resistant and susceptible flag leaves. However, expression was often higher in resistant plants, suggesting a possible role for Lr34/Yr18 in priming of defense responses.

  7. Invasive oral cancer stem cells display resistance to ionising radiation.

    PubMed

    Gemenetzidis, Emilios; Gammon, Luke; Biddle, Adrian; Emich, Helena; Mackenzie, Ian C

    2015-12-22

    There is a significant amount of evidence to suggest that human tumors are driven and maintained by a sub-population of cells, known as cancer stem cells (CSC). In the case of head and neck cancer, such cells have been characterised by high expression levels of CD44 cell surface glycoprotein, while we have previously shown the presence of two diverse oral CSC populations in vitro, with different capacities for cell migration and proliferation. Here, we examined the response of oral CSC populations to ionising radiation (IR), a front-line measure for the treatment of head and neck tumors. We show that oral CSC initially display resistance to IR-induced growth arrest as well as relative apoptotic resistance. We propose that this is a result of preferential activation of the DNA damagerepair pathway in oral CSC with increased activation of ATM and BRCA1, elevated levels of DNA repair proteins RAD52, XLF, and a significantly faster rate of DNA double-strand-breaks clearance 24 hours following IR. By visually identifying CSC sub-populations undergoing EMT, we show that EMT-CSC represent the majority of invasive cells, and are more radio-resistant than any other population in re-constructed 3D tissues. We provide evidence that IR is not sufficient to eliminate CSC in vitro, and that sensitization of CD44hi/ESAlow cells to IR, followed by secondary EMT blockade, could be critical in order to reduce primary tumor recurrence, but more importantly to be able to eradicate cells capable of invasion and distant metastasis.

  8. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    PubMed Central

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  9. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates.

    PubMed

    Argudín, M Angeles; Lauzat, Birgit; Kraushaar, Britta; Alba, Patricia; Agerso, Yvonne; Cavaco, Lina; Butaye, Patrick; Porrero, M Concepción; Battisti, Antonio; Tenhagen, Bernd-Alois; Fetsch, Alexandra; Guerra, Beatriz

    2016-08-15

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has emerged in animal production worldwide. Most LA-MRSA in Europe belong to the clonal complex (CC) 398. The reason for the LA-MRSA emergence is not fully understood. Besides antimicrobial agents used for therapy, other substances with antimicrobial activity applied in animal feed, including metal-containing compounds might contribute to their selection. Some of these genes have been found in various novel SCCmec cassettes. The aim of this study was to assess the occurrence of metal-resistance genes among a LA-S. aureus collection [n=554, including 542 MRSA and 12 methicillin-susceptible S. aureus (MSSA)] isolated from livestock and food thereof. Most LA-MRSA isolates (76%) carried at least one metal-resistance gene. Among the LA-MRSA CC398 isolates (n=456), 4.8%, 0.2%, 24.3% and 71.5% were positive for arsA (arsenic compounds), cadD (cadmium), copB (copper) and czrC (zinc/cadmium) resistance genes, respectively. In contrast, among the LA-MRSA non-CC398 isolates (n=86), 1.2%, 18.6% and 16.3% were positive for the cadD, copB and czrC genes, respectively, and none were positive for arsA. Of the LA-MRSA CC398 isolates, 72% carried one metal-resistance gene, and the remaining harboured two or more in different combinations. Differences between LA-MRSA CC398 and non-CC398 were statistically significant for arsA and czrC. The czrC gene was almost exclusively found (98%) in the presence of SCCmec V in both CC398 and non-CC398 LA-MRSA isolates from different sources. Regarding the LA-MSSA isolates (n=12), some (n=4) were also positive for metal-resistance genes. This study shows that genes potentially conferring metal-resistance are frequently present in LA-MRSA.

  10. Suitability of commonly used housekeeping genes in gene expression studies for space radiation research

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Stojicic, N.; Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.

    Research on the effects of ionizing radiation exposure involves the use of real-time reverse transcription polymerase chain reaction (qRT-PCR) for measuring changes in gene expression. Several variables need to be controlled for gene expression analysis, such as different amounts of starting material between the samples, variations in enzymatic efficiencies of the reverse transcription step, and differences in RNA integrity. Normalization of the obtained data to an invariant endogenous control gene (reference gene) is the elementary step in relative quantification strategy. There is a strong correlation between the quality of the normalized data and the stability of the reference gene itself. This is especially relevant when the samples have been obtained after exposure to radiation qualities inducing different amounts and kinds of damage, leading to effects on cell cycle delays or even on cell cycle blocks. In order to determine suitable reference genes as internal controls in qRT-PCR assays after exposure to ionizing radiation, we studied the gene expression levels of nine commonly used reference genes which are constitutively expressed in A549 lung cancer cells. Expression levels obtained for ACTB, B2M, GAPDH, PBGD, 18S rRNA, G6PDH, HPRT, UBC, TFRC and SDHA were determined after exposure to 2 and 6 Gy X-radiation. Gene expression data for Growth arrest and damage-inducible gene 45 (GADD45α) and Cyclin-dependent kinase inhibitor 1A (CDKN1A/p21CIP1) were selected to elucidate the influence of normalization by using appropriate and inappropriate internal control genes. According to these results, we strongly recommend the use of a panel of reference genes instead of only one.

  11. Identification of wheat chromosomal regions containing expressed resistance genes.

    PubMed Central

    Dilbirligi, Muharrem; Erayman, Mustafa; Sandhu, Devinder; Sidhu, Deepak; Gill, Kulvinder S

    2004-01-01

    The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA fingerprinting and data mining, we identified 184 putative expressed R genes of wheat. These include 87 NB/LRR types, 16 receptor-like kinases, and 13 Pto-like kinases. The remaining were seven Hm1 and two Hs1(pro-1) homologs, 17 pathogenicity related, and 42 unique NB/kinases. About 76% of the expressed R-gene candidates were rare transcripts, including 42 novel sequences. Physical mapping of 121 candidate R-gene sequences using 339 deletion lines localized 310 loci to 26 chromosomal regions encompassing approximately 16% of the wheat genome. Five major R-gene clusters that spanned only approximately 3% of the wheat genome but contained approximately 47% of the candidate R genes were observed. Comparative mapping localized 91% (82 of 90) of the phenotypically characterized R genes to 18 regions where 118 of the R-gene sequences mapped. PMID:15020436

  12. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  13. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer.

    PubMed

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy.

  14. Tagging and mapping of rice sheath blight resistant gene.

    PubMed

    Che, K P; Zhan, Q C; Xing, Q H; Wang, Z P; Jin, D M; He, D J; Wang, B

    2003-01-01

    Sheath blight (Rhizoctonia solani Kühn) is one of the severe rice diseases worldwide. In this study, an F(2) population from a cross between "4011" and "Xiangzaoxian19" is used to identify molecular markers linked with the resistant trait. "4011" was a transgenic rice cultivar carrying a resistant gene to sheath blight, while "Xiangzaoxian19" is a highly susceptible one. As a result, five molecular markers, including three RFLP markers converted from RAPD and AFLP markers, and two SSR markers were identified to link with the sheath blight resistant gene. This dominant resistant gene was named as R sb 1 and mapped on rice chromosome 5. The linkage distance between the markers (E-AT:M-CAC(120), E-AT:M-CTA(230), OPN-16(2000), RM164(320) and RM39(300)) and R sb 1 was 1.6 cM, 9.9 cM, 1.6 cM, 15.2 cM and 1.6 cM, respectively.

  15. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    PubMed

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  16. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

    PubMed Central

    Serra, Heïdi; Ziolkowski, Piotr A.; Yelina, Nataliya E.; Jackson, Matthew; Mézard, Christine; McVean, Gil; Henderson, Ian R.

    2016-01-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity. PMID:27415776

  17. Inhibition of TGF-β signaling in normal lung epithelial cells confers resistance to ionizing radiation

    PubMed Central

    Reeves, Anna; Zagurovskaya, Marianna; Gupta, Seema; Shareef, Mohammed M.; Mohiuddin, Mohammed; Ahmed, Mansoor M.

    2007-01-01

    Purpose To address the functional role of radiation-induced TGF-β signaling in normal epithelial background, we selected spontaneously immortalized lung epithelial cell line derived from the normal lung tissue of dominant-negative mutant of TGF-β RII (ΔRII) transgenic mouse that expressed conditionally ΔRII under the control of metallothionein promoter (MT-1) and assessed it's impact on radio-sensitivity. Method and Materials Spontaneously immortalized lung epithelial cell culture (SILECC) was established and all analyses were performed within 50 passages. Colony-forming and TUNEL assays were used to assess the clonogenic inhibition and apoptosis respectively. Western blot analysis was performed to assess the kinetics of p21, bax and RII proteins. TGF-β responsive promoter activity was measured using dual-luciferase reporter assay. Results Exposure to ZnSO4 inhibited TGF-β signaling induced either by recombinant TGF-β1 or ionizing radiation. SILECC treated either with ZnSO4 or neutralizing antibody against TGF-β showed a significant increase in radio-resistance when compared to untreated cells. Furthermore, the expression of the ΔRII inhibited the radiation-induced up-regulation of the TGF-β effector gene p21waf1/cip1.. Conclusions Our findings imply that inhibition of radiation-induced TGF-β signaling via abrogation of RII function enhances radio-resistance of the normal lung epithelial cells, and this can be directly attributed to the loss of TGF-β signaling function. PMID:17448872

  18. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes.

    PubMed

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  19. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    PubMed Central

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  20. Identification of Gene Expression Biomarkers for Predicting Radiation Exposure

    PubMed Central

    Lu, Tzu-Pin; Hsu, Yi-Yao; Lai, Liang-Chuan; Tsai, Mong-Hsun; Chuang, Eric Y.

    2014-01-01

    A need for more accurate and reliable radiation dosimetry has become increasingly important due to the possibility of a large-scale radiation emergency resulting from terrorism or nuclear accidents. Although traditional approaches provide accurate measurements, such methods usually require tedious effort and at least two days to complete. Therefore, we provide a new method for rapid prediction of radiation exposure. Eleven microarray datasets were classified into two groups based on their radiation doses and utilized as the training samples. For the two groups, Student's t-tests and resampling tests were used to identify biomarkers, and their gene expression ratios were used to develop a prediction model. The performance of the model was evaluated in four independent datasets, and Ingenuity pathway analysis was performed to characterize the associated biological functions. Our meta-analysis identified 29 biomarkers, showing approximately 90% and 80% accuracy in the training and validation samples. Furthermore, the 29 genes significantly participated in the regulation of cell cycle, and 19 of them are regulated by three well-known radiation-modulated transcription factors: TP53, FOXM1 and ERBB2. In conclusion, this study demonstrates a reliable method for identifying biomarkers across independent studies and high and reproducible prediction accuracy was demonstrated in both internal and external datasets. PMID:25189756

  1. Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics

    PubMed Central

    Pärnänen, Katariina; Karkman, Antti; Tamminen, Manu; Lyra, Christina; Hultman, Jenni; Paulin, Lars; Virta, Marko

    2016-01-01

    Antibiotic resistance genes are ubiquitous in the environment. However, only a fraction of them are mobile and able to spread to pathogenic bacteria. Until now, studying the mobility of antibiotic resistance genes in environmental resistomes has been challenging due to inadequate sensitivity and difficulties in contig assembly of metagenome based methods. We developed a new cost and labor efficient method based on Inverse PCR and long read sequencing for studying mobility potential of environmental resistance genes. We applied Inverse PCR on sediment samples and identified 79 different MGE clusters associated with the studied resistance genes, including novel mobile genetic elements, co-selected resistance genes and a new putative antibiotic resistance gene. The results show that the method can be used in antibiotic resistance early warning systems. In comparison to metagenomics, Inverse PCR was markedly more sensitive and provided more data on resistance gene mobility and co-selected resistances. PMID:27767072

  2. Genetics of resistance to the African trypanosomes. IV. Resistance of radiation chimeras to Trypanosoma rhodesiense infection

    SciTech Connect

    DeGee, A.L.; Mansfield, J.M.

    1984-08-01

    The cellular bases of resistance to the African trypanosomes were examined in inbred mice. As part of these studies, reciprocal bone marrow cell transplants were performed between H-2 compatible mice which differ in relative resistance to Trypanosoma brucei rhodesiense infection. Relatively resistant C57BL/10 mice, intermediate A.By mice, and least resistant C3H.SW mice that were reconstituted after lethal irradiation with syngeneic bone marrow cells displayed resistance and immunity characteristic of the homologous donor strain. When C57BL/10 mice were reconstituted with C3H.SW mouse bone marrow cells they retained the ability to produce antibodies to trypanosome surface antigen but the antibody titers were significantly reduced. Control of parasitemia and mean survival time were reduced in these chimeras, but differed significantly from C3H.SW mice. A. By mice that received cells from C57BL/10 donors exhibited antibody responses and survival times similar to the C57BL/10 mice. Survival times of A.By mice given syngeneic cells or C3H.SW cells were the same, but the antibody responses of A.By mice given C3H.SW cells were lower than those of A.By mice given syngeneic cells. C3H.SW mice reconstituted with C57BL/10 bone marrow cells were capable of making antibodies and controlling parasitemia, in marked contrast to the absence of such responses in C3H.SW mice reconstituted with syngeneic cells. Survival times, however, were indistinguishable from those of C3H.SW mice given syngeneic cells. Thus, resistance to T.B. rhodesiense was shown for the first time to depend on donor bone marrow derived cells as well as upon radiation-resistant cells/factors associated with host genetic background. Also, parasite-specific IgM antibody responses seem to be regulated by a mechanism which does not depend on bone marrow derived cells alone, and the presence of such immune responses is not linked to survival time.

  3. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    DOE PAGESBeta

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; et al

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size ofmore » ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.« less

  4. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    PubMed Central

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments. PMID:25588326

  5. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    SciTech Connect

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  6. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments.

    PubMed

    Sun, C; Zheng, S; Wei, C C; Wu, Y; Shao, L; Yang, Y; Hartwig, K T; Maloy, S A; Zinkle, S J; Allen, T R; Wang, H; Zhang, X

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304 L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500 °C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M(23)C(6) precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  7. Suitability of Commonly Used Housekeeping Genes in Gene Expression Studies for Space Radiation Research

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Hellweg, C. E.; Bogner, S.; Lau, P.; Baumstark-Khan, C.

    Research on the effects of ionizing radiation exposure involves the use of real-time reverse transcription polymerase chain reaction qRT-PCR for measuring changes in gene expression Several variables needs to be controlled for gene expression analysis -- different amounts of starting material between the samples variations in enzymatic efficiencies of the reverse transcription step and differences in RNA integrity Normalization of the obtained data to an invariant endogenous control gene reference gene is the elementary step in relative quantification strategy There is a strong correlation between the quality of the normalized data and the stability of the reference gene itself This is especially relevant when the samples have been obtained after exposure to radiation qualities inducing different amounts and kinds of damage leading to a cell cycle delay or even to a cell cycle block In order to determine suitable reference genes as internal controls in qRT-PCR assays after exposure to ionizing radiation we studied the gene expression levels of commonly used reference genes in A549 lung cancer cells Expression levels obtained for human beta actin ACTB human beta-2-microglobulin B2M human glyceraldehyde-3-phosphate dehydrogenase GAPDH human porphobilinogen deaminase PBGD human 18S ribosomal RNA 18S rRNA human glucose-6-phosphate dehydrogenase G6PDH human hypoxanthine phosphoribosyl transferase HPRT human ubiquitin C UBC human transferrin TFRC

  8. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  9. Negative differential resistance devices for generation of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Eisele, H.

    2015-08-01

    This paper discusses the principles of operation, state of the art, and future potential of active two-terminal devices for generation of low-noise, continuous-wave terahertz radiation. These devices use transit-time, transferred-electron, and quantum-mechanical effects (or a combination of them) to create a negative differential resistance (NDR) at the frequency of interest. Many different types of NDR devices have been proposed since the earliest days of semiconductor devices and studied in detailed simulations for their power generation potential, but have yet to be demonstrated experimentally. The paper focuses on NDR devices that not only yielded significant output powers at millimeter waves frequencies and higher, but also have the strong potential of generating radiation at terahertz frequencies. Examples of such NDR devices are resonant tunneling diodes (RTDs), superlattice electronic devices (SLEDs), and InP Gunn devices. Examples of their state-of-the-art results are output powers of 0.2 mW at 443 GHz and 5 μW at 1.53 THz from InGaAs/AlAs double barrier RTDs on InP substrate; 5.0 mW at 123.3 GHz, 1.1 mW at 155.1 GHz, and 0.52 mW at 252.8 GHz from GaAs/AlAs superlattice electronic devices on GaAs substrate; and 330 μW at 412 GHz, 86 μW at 479 GHz, and 18 μW at 502 GHz from InP Gunn devices.

  10. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    USGS Publications Warehouse

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  11. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations.

    PubMed

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Navarrete, Jesica Urbina; Galante, Douglas; Rodrigues, Fabio; Azua-Bustos, Armando; Rothschild, Lynn Justine

    2016-10-01

    Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments. PMID:27614243

  12. A Novel Tryptophanyl-tRNA Synthetase Gene Confers High-Level Resistance to Indolmycin▿ †

    PubMed Central

    Vecchione, James J.; Sello, Jason K.

    2009-01-01

    Indolmycin, a potential antibacterial drug, competitively inhibits bacterial tryptophanyl-tRNA synthetases. An effort to identify indolmycin resistance genes led to the discovery of a gene encoding an indolmycin-resistant isoform of tryptophanyl-tRNA synthetase. Overexpression of this gene in an indolmycin-sensitive strain increased the indolmycin MIC 60-fold. Its transcription and distribution in various bacterial genera were assessed. The level of resistance conferred by this gene was compared to that of a known indolmycin resistance gene and to those of genes with resistance-conferring point mutations. PMID:19546369

  13. Beta-lactamase gene expression in a penicillin-resistant Bacillus anthracis strain.

    PubMed

    Chen, Yahua; Tenover, Fred C; Koehler, Theresa M

    2004-12-01

    Expression of the bla1 and bla2 genes in an archetypal Bacillus anthracis strain is insufficient for penicillin resistance. In a penicillin-resistant clinical isolate, both genes are highly transcribed, but bla1 is the major contributor to high-level resistance to ampicillin. Differential expression of the bla genes is dependent upon strain background. PMID:15561870

  14. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  15. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to P. pachyrhizi, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression i...

  16. Resistance of the nucleosomal organization of eucaryotic chromatin to ionizing radiation. [/sup 60/Co

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1982-09-01

    The structural organization and radiation sensitivity of Tetrahymena chromatin under several conditions of modified transcriptional activity were investigated using the structure-specific nucleases, micrococcal nuclease and DNase I. Digestion of unirradiated nuclei by those nucleases proceeded with very similar kinetics and to a similar extent irrespective of the stages of growth of the cultures, except for the cultures in stationary phase, which became more resistant to DNase I digestion. Neither for suppression of total cellular RNA synthesis by actinomycin D nor the transient inhibition of only rRNA synthesis by 40 krad of ..gamma.. radiation affected the sensitivity of the chromatin of the nucleases. These results confirm that activity transcribing chromatin remains in an active conformation even when its function is temporarily inhibited, while more permanent repression of some genes during stationary phase appears to alter the chromatin and hence its susceptibility to DNase I. Actively transcribing ribosomal chromatin was found to be very sensitive to DNase I degradation compared to bulk chromatin; its sensitivity to DNase I was also not altered by 40 krad of ..gamma.. radiation, but was reduced in stationary phase. It is concluded that damage to DNA and/or chromatin resulting from ..gamma.. irradiation does not produce alterations in the nucleosome-level organization of chromatin which can be measured by micrococcal nuclease and DNase I.

  17. Human genetic marker for resistance to radiations and chemicals. 1998 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1998-06-01

    'The broad objective of the project is to understand the molecular basis for the response of cells to radiations and chemicals, with the pragmatic goal of being able to identify human subpopulations that are exceptionally sensitive to DNA damaging agents. The project focuses on HRAD9, a human orthologue of the fission yeast Schizosaccharomyces pombe gene rad9. S. pombe rad9::ura4+ mutant cells are highly sensitive to ionizing radiation, UV and many chemicals, such as the DNA synthesis inhibitor hydroxyurea. They also lack the ability to delay cycling transiently in S phase or in G2 following a block in DNA replication or after incurring DNA damage, respectively -i.e., they lack checkpoint controls. The attempt by mutant cells to progress through mitosis in the absence of fully intact DNA accounts at least in part for their sensitivity to DNA damaging agents. Cells bearing rad9::ura4+ also aberrantly regulate UVDE, an enzyme that participates in a secondary DNA excision repair pathway. The key role played by S. pombe rad9 in promoting resistance to chemicals and radiations suggests that the evolutionarily conserved human cognate also has important functions in mammals. The first set of aims in this proposal centers on characterizing the structure and expression of HRAD9, to assess structure/function relationships and potentially link protein activity to a specific tissue. The next set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer.'

  18. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  19. Analog of microwave-induced resistance oscillations induced in GaAs heterostructures by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Herrmann, T.; Dmitriev, I. A.; Kozlov, D. A.; Schneider, M.; Jentzsch, B.; Kvon, Z. D.; Olbrich, P.; Bel'kov, V. V.; Bayer, A.; Schuh, D.; Bougeard, D.; Kuczmik, T.; Oltscher, M.; Weiss, D.; Ganichev, S. D.

    2016-08-01

    We report on the study of terahertz radiation-induced MIRO-like oscillations of magnetoresistivity in GaAs heterostructures. Our experiments provide an answer on two most intriguing questions—effect of radiation helicity and the role of the edges—yielding crucial information for an understanding of the MIRO (microwave-induced resistance oscillations) origin. Moreover, we demonstrate that the range of materials exhibiting radiation-induced magneto-oscillations can be largely extended by using high-frequency radiation.

  20. IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes.

    PubMed

    Harmer, Christopher J; Hall, Ruth M

    2016-01-01

    The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel

  1. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    PubMed

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-01

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored. PMID:27409235

  2. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    PubMed

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-01

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.

  3. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    PubMed

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  4. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    PubMed

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice. PMID:26471973

  5. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    PubMed

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice.

  6. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    PubMed

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance.

  7. Novel Genes Related to Ceftriaxone Resistance Found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In Vitro

    PubMed Central

    Gong, Zijian; Liu, Min; Hua, Zhengshuang; Sun, Yayin; Xu, Qingfang; Xia, Yue; Zhao, Yue; Xie, Xiaoyuan

    2016-01-01

    The emergence of ceftriaxone-resistant Neisseria gonorrhoeae is currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance in Neisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation in penA (A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutated penA gene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutated ftsX increased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, while pilM, pilN, and pilQ were downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance of Neisseria gonorrhoeae to ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry. PMID:26787702

  8. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies. PMID:27052863

  9. Monitoring and Comparison of Antibiotic Resistant Bacteria and Their Resistance Genes in Municipal and Hospital Wastewaters

    PubMed Central

    Aali, Rahim; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2014-01-01

    Background: Human exposure to antibiotic resistant bacteria (ARB) is a public health concern which could occur in a number of ways. Wastewaters seem to play an important role in the dissemination of bacteria and antibiotic resistant genes (ARGs) in our environment. The aim of this study was to evaluate the occurrence of three groups of ARB and their resistance genes in hospital and municipal wastewaters (MWs) as possible sources. Methods: A total of 66 samples were collected from raw MWs and hospital wastewaters (HWs) and final effluents of related wastewater treatment plants (WWTPs). Samples were analyzed for the detection of three groups of ARB including gentamicin (GM), chloramphenicol (CHL) and ceftazidime resistant bacteria and their ARGs (aac (3)-1, cmlA1 and ctx-m-32, respectively). Results: The mean concentration of GM, CHL and ceftazidime resistant bacteria in raw wastewater samples was 1.24 × 107, 3.29 × 107 and 5.54 × 107 colony forming unit/100 ml, respectively. There is a variation in prevalence of different groups of ARB in MWs and HWs. All WWTPs decreased the concentration of ARB. However, high concentration of ARB was found in the final effluent of WWTPs. Similar to ARB, different groups of ARGs were found frequently in both MWs and HWs. All genes also detected with a relative high frequency in effluent samples of MWs WWTPs. Conclusions: Discharge of final effluent from conventional WWTPs is a potential route for dissemination of ARB and ARGs into the natural environment and poses a hazard to environmental and public health. PMID:25105001

  10. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    PubMed

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs.

  11. Characterization of Stripe Rust Resistance in Wheat Lines with Resistance Gene Yr17 and Implications for Evaluating Resistance and Virulence.

    PubMed

    Milus, Eugene A; Lee, Kevin D; Brown-Guedira, Gina

    2015-08-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, has been the most important foliar wheat disease in south central United States since 2000 when a new strain of the pathogen emerged. The resistance gene Yr17 was used by many breeding programs to develop resistant cultivars. Although Yr17 was classified as a seedling (all-stage) resistance gene conferring a low infection type, seedlings with Yr17 frequently had intermediate to high infection types when inoculated with isolates that caused little or no disease on adult plants of the same wheat lines. The objectives of this study were to determine how to best evaluate Yr17 resistance in wheat lines and to determine which factors made seedling tests involving Yr17 so variable. Stripe rust reactions on wheat seedlings with Yr17 were influenced by temperature, wheat genotype, pathogen isolate, and the leaf (first or second) used to assess the seedling reaction. The most critical factors for accurately evaluating Yr17 reactions at the seedling stage were to avoid night temperatures below 12°C, to use the first leaf to assess the seedling reaction, to use multiple differentials with Yr17 and known avirulent, partially virulent and virulent isolates as controls, and to recognize that intermediate infection types likely represent a level of partial virulence in the pathogen that is insufficient to cause disease on adult plants in the field.

  12. Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome.

    PubMed

    Zhou, Wei; Wang, Ying; Lin, Jun

    2012-04-01

    Culture-independent sampling in conjunction with a functional cloning approach identified diverse antibiotic resistance genes for different classes of antibiotics in gut microbiomes from both conventionally raised and free-range chickens. Many of the genes are phylogenetically distant from known resistance genes. Two unique genes that conferred ampicillin and spectinomycin resistance were also functional in Campylobacter, a distant relative of the Escherichia coli host used to generate the genomic libraries.

  13. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability

    PubMed Central

    2014-01-01

    Background Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. Results The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. Conclusions This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens. PMID:24559060

  14. Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance

    SciTech Connect

    Daly, Michael J.; Gaidamakova, E; Matrosova, V; Vasilenko, A; Zhai, M; Venkateswaran, Amudhan; Hess, M; Omelchenko, M V.; Kostandarithes, Heather M.; Makarova, S; Wackett, L. P.; Fredrickson, Jim K.; Ghosal, D

    2004-11-05

    Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

  15. Fertilizing with Animal Manure Disseminates Antibiotic Resistance Genes to the Farm Environment.

    PubMed

    Ruuskanen, Matti; Muurinen, Johanna; Meierjohan, Axel; Pärnänen, Katariina; Tamminen, Manu; Lyra, Christina; Kronberg, Leif; Virta, Marko

    2016-03-01

    The dissemination of antibiotic resistance genes to the environment is an important factor causing increased prevalence of resistant pathogens. Manure is an important fertilizer, but it contains diverse resistance genes. Therefore, its application to fields may lead to increased abundance of resistance genes in the environment. Farming environments exposed to animal manure have not been studied extensively in countries with comparably low antibiotic use, such as Finland. The effects of manure storage and application to fields on the abundance of resistance genes were studied on two dairy cattle farms and two swine farms in southern Finland. Samples were taken from farms during the 2013 cropping season. Copy numbers of carbapenem (), sulfonamide (), and tetracycline () resistance genes were measured with quantitative polymerase chain reaction, and the data were analyzed using linear mixed models. The relative abundance of antibiotic resistance genes increased about fourfold in soil after manure application. Carbapenemase encoding was detected on all of the studied farms, which indicated that the gene is dispersed in the farm environment. The relative abundance of antibiotic resistance genes increased in stored manure compared with fresh manure roughly fivefold. This study shows that antibiotic resistance genes are disseminated on Finnish production animal farms. The spreading of resistance genes in farm-associated environments could possibly be limited by experimenting with new manure handling methods that could reduce the abundance of the genes in manure used for land application. PMID:27065395

  16. Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves.

    PubMed

    Argudín, M Angeles; Vanderhaeghen, Wannes; Butaye, Patrick

    2015-04-01

    In this study we determined whether methicillin-resistant non-Staphylococcus aureus (MRNAS) from veal calves may be a potential reservoir of antimicrobial-resistance and virulence genes. Fifty-eight MRNAS were studied by means of DNA-microarray and PCR for detection of antimicrobial resistance and virulence genes. The isolates carried a variety of antimicrobial-resistance genes [aacA-aphD, aadD, aph3, aadE, sat, spc, ampA, erm(A), erm(B), erm(C), erm(F), erm(T), lnu(A), msr(A)-msr(B), vga(A), mph(C), tet(K), tet(M), tet(L), cat, fexA, dfrA, dfrD, dfrG, dfrK, cfr, fusB, fosB, qacA, qacC, merA-merB]. Some isolates carried resistance genes without showing the corresponding resistance phenotype. Most MRNAS carried typical S. aureus virulence factors like proteases (sspP) and enterotoxins (seg) genes. Most Staphylococcus epidermidis isolates carried the arginine catabolic element, and nearly 40% of the Staphylococcus sciuri isolates carried leukocidins, and/or fibronectin-binding protein genes. MRNAS were highly multi-resistant and represent an important reservoir of antimicrobial resistance and virulence genes.

  17. Novel Genes Related to Ceftriaxone Resistance Found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In Vitro.

    PubMed

    Gong, Zijian; Lai, Wei; Liu, Min; Hua, Zhengshuang; Sun, Yayin; Xu, Qingfang; Xia, Yue; Zhao, Yue; Xie, Xiaoyuan

    2016-04-01

    The emergence of ceftriaxone-resistantNeisseria gonorrhoeaeis currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance inNeisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation inpenA(A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutatedpenAgene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutatedftsXincreased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, whilepilM,pilN, andpilQwere downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance ofNeisseria gonorrhoeaeto ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry.

  18. Novel Genes Related to Ceftriaxone Resistance Found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In Vitro.

    PubMed

    Gong, Zijian; Lai, Wei; Liu, Min; Hua, Zhengshuang; Sun, Yayin; Xu, Qingfang; Xia, Yue; Zhao, Yue; Xie, Xiaoyuan

    2016-04-01

    The emergence of ceftriaxone-resistantNeisseria gonorrhoeaeis currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance inNeisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation inpenA(A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutatedpenAgene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutatedftsXincreased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, whilepilM,pilN, andpilQwere downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance ofNeisseria gonorrhoeaeto ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry. PMID:26787702

  19. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    PubMed Central

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  20. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    PubMed

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  1. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes.

    PubMed

    Durso, Lisa M; Miller, Daniel N; Wienhold, Brian J

    2012-01-01

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.

  2. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil.

    PubMed

    Srinivasan, Sathiyaraj; Lee, Jae-Jin; Lim, Sang-Yong; Joe, Min-Ho; Im, Seong-Hun; Kim, Myung Kyum

    2015-02-01

    Two Gram-negative, non-motile, short rod-shaped bacterial strains, designated as 8A(T) and 28A, were isolated from Mount Deogyusan, Jeonbuk Province, South Korea. The isolates were analyzed by a polyphasic approach, revealing variations in their phenotypic characters but high DNA-DNA hybridisation values reciprocally, confirming that they belong to the same species. Both the isolates also showed a high resistance to UV compared with Deinococcus radiodurans, and a gamma-radiation resistance similar to other members of the genus Deinococcus. Phylogenetic analysis with the 16S rRNA gene sequences of closely related species indicated their similarities were below 97 %. Chemotaxonomic data showed the most abundant fatty acids to be C16:1ω7c and C16:0. The strains can be distinguished from closely related species by the production of esterase (C4) and α-galactosidase, and by their ability to assimilate L-alanine, L-histidine and N-acetyl-D-glucosamine. Based on the phenotypic, phylogenetic, and chemotaxonomic data, the isolates represent a novel species of the genus Deinococcus, for which the name Deinococcus radioresistens sp. nov. is proposed. The type strain is 8A(T) (KEMB 9004-109(T) = JCM 19777(T)), and a second strain is 28A (KEMB 9004-113 = JCM 19778).

  3. Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways

    PubMed Central

    Morgan, Meredith A.; Lawrence, Theodore S.

    2015-01-01

    DNA double-strand breaks are the critical lesions responsible for the majority of ionizing radiation-induced cell killing. Thus, the ability of tumor cells to elicit a DNA damage response following radiation, via activation of DNA repair and cell cycle checkpoints, promotes radiation resistance and tumor cell survival. Consequently, agents which target these DNA damage response pathways are being developed to overcome radiation resistance. Overall, these agents are effective radiosensitizers; however, their mechanisms of tumor cell selectivity are not fully elucidated. In this review, we will focus on the crucial radiation-induced DNA damage responses as well as clinical and translational advances with agents designed to inhibit these responses. Importantly, we describe how synthetic lethality can provide tumor cell selective radiosensitization by these agents and expand the therapeutic window for DNA damage response-targeted agents used in combination with radiation therapy. PMID:26133775

  4. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    SciTech Connect

    Takahashi, Hiroyuki R.; Ohsuga, Ken

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.

  5. Apramycin resistance as a selective marker for gene transfer in mycobacteria.

    PubMed Central

    Paget, E; Davies, J

    1996-01-01

    We have explored the potential of using the apramycin resistance gene as a marker in mycobacterial gene transfer studies. Shuttle plasmids available for both electroporation and conjugation studies have been constructed, and we have successfully validated the use of the apramycin resistance gene as a component of cloning vectors for Mycobacterium smegmatis, M. bovis BCG, and M. tuberculosis. PMID:8892841

  6. Divergence with gene flow within the recent chipmunk radiation (Tamias).

    PubMed

    Sullivan, J; Demboski, J R; Bell, K C; Hird, S; Sarver, B; Reid, N; Good, J M

    2014-09-01

    Increasing data have supported the importance of divergence with gene flow (DGF) in the generation of biological diversity. In such cases, lineage divergence occurs on a shorter timescale than does the completion of reproductive isolation. Although it is critical to explore the mechanisms driving divergence and preventing homogenization by hybridization, it is equally important to document cases of DGF in nature. Here we synthesize data that have accumulated over the last dozen or so years on DGF in the chipmunk (Tamias) radiation with new data that quantify very high rates of mitochondrial DNA (mtDNA) introgression among para- and sympatric species in the T. quadrivittatus group in the central and southern Rocky Mountains. These new data (188 cytochrome b sequences) bring the total number of sequences up to 1871; roughly 16% (298) of the chipmunks we have sequenced exhibit introgressed mtDNA. This includes ongoing introgression between subspecies and between both closely related and distantly related taxa. In addition, we have identified several taxa that are apparently fixed for ancient introgressions and in which there is no evidence of ongoing introgression. A recurrent observation is that these introgressions occur between ecologically and morphologically diverged, sometimes non-sister taxa that engage in well-documented niche partitioning. Thus, the chipmunk radiation in western North America represents an excellent mammalian example of speciation in the face of recurrent gene flow among lineages and where biogeography, habitat differentiation and mating systems suggest important roles for both ecological and sexual selection.

  7. Gene expression patterns of wheat rust resistance gene Lr34/Yr18 indicate novel mode of action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lr34/Yr18 resistance gene provides durable, adult-plant, slow-rusting resistance to leaf rust and yellow rust of wheat. Patterns of gene expression were examined by microarray analysis in inoculated and mock-inoculated flag leaves of two pairs of near isogenic lines for Lr34/Yr18 (Thatcher/Thatc...

  8. Can chlorination co-select antibiotic-resistance genes?

    PubMed

    Lin, Wenfang; Zhang, Menglu; Zhang, Shenghua; Yu, Xin

    2016-08-01

    Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them.

  9. Can chlorination co-select antibiotic-resistance genes?

    PubMed

    Lin, Wenfang; Zhang, Menglu; Zhang, Shenghua; Yu, Xin

    2016-08-01

    Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. PMID:27192478

  10. A study on measurement of radiation resistance of Pyronema domesticum sclerotia

    NASA Astrophysics Data System (ADS)

    Aoshuang, Y. Y.; Ailian, W. W.; Ying, Z. Z.

    2000-03-01

    Measurements of radiation resistance have been carried out using two strains of Pyronema domesticum which were isolated from Chinese cotton swab gauze. A "sand-washing" technique was developed to overcome the difficulties when harvesting sclerotia spores from cultured plates and preparing spore suspensions for further use. Three types of microbial preparations, spore suspension, inoculated cotton and spore dot, were exposed to gamma radiation. A dose-survival curve method and a fraction positive method were employed to determine radiation resistance. D 10 values derived from this study are within the range of 2.0-3.0 kGy. Concerns associated with the current study indicate that further work is needed.

  11. Functional Metagenome Mining of Soil for a Novel Gentamicin Resistance Gene.

    PubMed

    Im, Hyunjoo; Kim, Kyung Mo; Lee, Sang-Heon; Ryu, Choong-Min

    2016-03-01

    Extensive use of antibiotics over recent decades has led to bacterial resistance against antibiotics, including gentamicin, one of the most effective aminoglycosides. The emergence of resistance is problematic for hospitals, since gentamicin is an important broad-spectrum antibiotic for the control of bacterial pathogens in the clinic. Previous study to identify gentamicin resistance genes from environmental samples have been conducted using culture-dependent screening methods. To overcome these limitations, we employed a metagenome-based culture-independent protocol to identify gentamicin resistance genes. Through functional screening of metagenome libraries derived from soil samples, a fosmid clone was selected as it conferred strong gentamicin resistance. To identify a specific functioning gene conferring gentamicin resistance from a selected fosmid clone (35-40 kb), a shot-gun library was constructed and four shot-gun clones (2-3 kb) were selected. Further characterization of these clones revealed that they contained sequences similar to that of the RNA ligase, T4 rnlA that is known as a toxin gene. The overexpression of the rnlA-like gene in Escherichia coli increased gentamicin resistance, indicating that this toxin gene modulates this trait. The results of our metagenome library analysis suggest that the rnlA-like gene may represent a new class of gentamicin resistance genes in pathogenic bacteria. In addition, we demonstrate that the soil metagenome can provide an important resource for the identification of antibiotic resistance genes, which are valuable molecular targets in efforts to overcome antibiotic resistance. PMID:26699755

  12. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    DOE PAGESBeta

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong -Guan; Tiedje, James M.

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance

  13. Present status and prospects of R&D of radiation-resistant semiconductor devices at JAEA

    NASA Astrophysics Data System (ADS)

    Itoh, H.

    2013-05-01

    Research and development of radiation resistant semiconductor devices have been performed at Japan Atomic Energy Agency (JAEA) for their application to electronic system used in harsh environments like space, accelerator and nuclear facilities. Such devices are also indispensable for robots and equipment necessary for decommissioning of the damaged reactors at Fukushima Daiichi Nuclear Power Plants. For this purpose, we have fabricated transistors based on a wide band-gap semiconductor SiC and examined their radiation degradation. As a result, SiC-based transistors exhibited no significant degradation up to 1MGy, indicating their excellent radiation resistance. Recent our R&Ds of radiation resistant devices based on SiC are summarized and reviewed.

  14. Increased expression of pAKT is associated with radiation resistance in cervical cancer

    PubMed Central

    Kim, T-J; Lee, J-W; Song, S Y; Choi, J-J; Choi, C H; Kim, B-G; Lee, J-H; Bae, D-S

    2006-01-01

    Phosphorylated AKT (pAKT) is a major contributor to radioresistance in human cancers. The aim of this study was to investigate the association of pAKT expression and radiation resistance in cervical cancer. A retrospective review was made of the records of 27 women who received primary radiation therapy due to locally advanced cervical cancer (LACC) with FIGO stage IIB–IVA. Nine patients regarded as radiation resistant developed local recurrences with a median progression free interval of 9 months. Eighteen patients did not show local recurrences, and were regarded as a radiation-sensitive group. Using pretreatment paraffin-embedded tissues, we evaluated pAKT expression by immunohistochemistry. A significant association was found between the level of pAKT expression and local recurrence. Immunohistochemical staining for pAKT was significantly more frequent in the radiation-resistant than in the radiation-sensitive group (P=0.004). The mean progression-free survival was 86 months for patients with pAKT-negative staining (19 cases) and 44 months for patients with pAKT-positive expression (eight cases) (P=0.008). These results suggest that signalling from phosphatidylinositide 3-kinase/pAKT can lead to radiation resistance, and that evaluation of pAKT may be a prognostic marker for response to radiotherapy in LACC. PMID:16721365

  15. Close linkage of a blast resistance gene, Pias(t), with a bacterial leaf blight resistance gene, Xa1-as(t), in a rice cultivar 'Asominori'.

    PubMed

    Endo, Takashi; Yamaguchi, Masayuki; Kaji, Ryota; Nakagomi, Koji; Kataoka, Tomomori; Yokogami, Narifumi; Nakamura, Toshiki; Ishikawa, Goro; Yonemaru, Jun-Ichi; Nishio, Takeshi

    2012-12-01

    It has long been known that a bacterial leaf blight-resistant line in rice obtained from a crossing using 'Asominori' as a resistant parent also has resistance to blast, but a blast resistance gene in 'Asominori' has not been investigated in detail. In the present study, a blast resistance gene in 'Asominori', tentatively named Pias(t), was revealed to be located within 162-kb region between DNA markers YX4-3 and NX4-1 on chromosome 4 and to be linked with an 'Asominori' allele of the bacterial leaf blight resistance gene Xa1, tentatively named Xa1-as(t). An 'Asominori' allele of Pias(t) was found to be dominant and difference of disease severity between lines having the 'Asominori' allele of Pias(t) and those without it was 1.2 in disease index from 0 to 10. Pias(t) was also closely linked with the Ph gene controlling phenol reaction, suggesting the possibility of successful selection of blast resistance using the phenol reaction. Since blast-resistant commercial cultivars have been developed using 'Asominori' as a parent, Pias(t) is considered to be a useful gene in rice breeding for blast resistance. PMID:23341747

  16. Abundance and dynamics of antibiotic resistance genes and integrons in lake sediment microcosms.

    PubMed

    Berglund, Björn; Khan, Ghazanfar Ali; Lindberg, Richard; Fick, Jerker; Lindgren, Per-Eric

    2014-01-01

    Antibiotic resistance in bacteria causing disease is an ever growing threat to the world. Recently, environmental bacteria have become established as important both as sources of antibiotic resistance genes and in disseminating resistance genes. Low levels of antibiotics and other pharmaceuticals are regularly released into water environments via wastewater, and the concern is that such environmental contamination may serve to create hotspots for antibiotic resistance gene selection and dissemination. In this study, microcosms were created from water and sediments gathered from a lake in Sweden only lightly affected by human activities. The microcosms were exposed to a mixture of antibiotics of varying environmentally relevant concentrations (i.e., concentrations commonly encountered in wastewaters) in order to investigate the effect of low levels of antibiotics on antibiotic resistance gene abundances and dynamics in a previously uncontaminated environment. Antibiotic concentrations were measured using liquid chromatography-tandem mass spectrometry. Abundances of seven antibiotic resistance genes and the class 1 integron integrase gene, intI1, were quantified using real-time PCR. Resistance genes sulI and ermB were quantified in the microcosm sediments with mean abundances 5 and 15 gene copies/10(6) 16S rRNA gene copies, respectively. Class 1 integrons were determined in the sediments with a mean concentration of 3.8 × 10(4) copies/106 16S rRNA gene copies. The antibiotic treatment had no observable effect on antibiotic resistance gene or integron abundances. PMID:25247418

  17. Usefulness of gene pg10 as a source of stem rust resistance in oat breeding.

    PubMed

    Harder, D E

    1999-12-01

    ABSTRACT Infection types produced by Puccinia graminis f. sp. avenae on plants of Avena sativa with the stem rust resistance gene Pg10 are characterized by moderate-sized uredinia surrounded by an area of chlorosis and a larger variable zone of dark brown necrosis. This study was undertaken to assess the effectiveness of gene Pg10 as a source of resistance to stem rust and to determine the interactions of this gene with other common Pg genes. A derived Pg10 line was tested with 58 distinct pathotypes of P. graminis f. sp. avenae and was crossed to substituted single-gene lines carrying the resistance gene Pg1, Pg2, Pg3, Pg4, Pg8, Pg9, Pg13, Pg15, Pg16, or Pga. The Pg10 line showed moderate resistance to all 58 patho-types, and there was no indication of specificity in virulence by any isolate. Gene Pg10 was inherited independently of the other Pg genes and had a complementary effect on the expression of resistance by these genes. An effective level of resistance conferred by Pg10 was demonstrated in a field nursery artificially inoculated with P. graminis f. sp. avenae. It was concluded that Pg10 is a potentially useful source of stem rust resistance in oat breeding, with its main attributes being an apparent broad base of resistance, ease of combining with other Pg genes, and complementary effects on the expression of other Pg genes.

  18. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    PubMed

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences

  19. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    PubMed

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences

  20. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste

    PubMed Central

    Durso, Lisa M.; Harhay, Dayna M.; Schmidt, John W.

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two “low impact” environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  1. Out of band radiation effects on resist patterning

    SciTech Connect

    George, Simi A .; Naulleau, Patrick P.

    2011-03-11

    Our previous work estimated the expected out-of-band (OOB) flare contribution at the wafer level assuming that there is a given amount of OOB at the collector focus. We found that the OOB effects are wavelength, resist, and pattern dependent. In this paper, results from rigorous patterning evaluation of multiple OOB-exposed resists using the SEMATECH Berkeley 0.3-NA MET are presented. A controlled amount of OOB is applied to the resist films before patterning is completed with the MET. LER and process performance above the resolution limit and at the resolution limits are evaluated and presented. The results typically show a negative impact on LER and process performance after the OOB exposures except in the case of single resist formulation, where resolution and performance improvement was observed.

  2. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    PubMed

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. PMID:25862227

  3. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    PubMed

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut.

  4. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius

    PubMed Central

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie

    2015-01-01

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. PMID:25862227

  5. Transcriptomic analysis of colistin-susceptible and colistin-resistant isolates identifies genes associated with colistin resistance in Acinetobacter baumannii.

    PubMed

    Park, Y K; Lee, J-Y; Ko, K S

    2015-08-01

    The emergence of colistin-resistant Acinetobacter baumannii is concerning, as colistin is often regarded as the last option for treating multidrug-resistant (MDR) A. baumannii infections. Using mRNA sequencing, we compared whole transcriptomes of colistin-susceptible and colistin-resistant A. baumannii strains, with the aim of identifying genes involved in colistin resistance. A clinical colistin-susceptible strain (06AC-179) and a colistin-resistant strain (07AC-052) were analysed in this study. In addition, a colistin-resistant mutant (06AC-179-R1) derived from 06AC-179 was also included in this study. High throughput mRNA sequencing was performed with an Illumina HiSeq TM 2000. In total, six genes were identified as associated with colistin resistance in A. baumannii. These six genes encode PmrAB two-component regulatory enzymes, PmrC (a lipid A phosphoethanolamine transferase), a glycosyltransferase, a poly-β-1,6-N-acetylglucosamine deacetylase, and a putative membrane protein. Matrix-assisted laser desorption/ionization time of flight mass spectrometry revealed that all three colistin-resistant strains used in this study had modified lipid A structure by addition of phosphoethanolamine. As genes found in our results are all associated with either lipopolysaccharide biosynthesis or electrostatic changes in the bacterial cell membrane, lipopolysaccharide modification might be one of the principal modes of acquisition of colistin resistance in some A. baumannii strains.

  6. Molecular Screening of Blast Resistance Genes in Rice using SSR Markers

    PubMed Central

    Singh, A. K.; Singh, P. K.; Arya, Madhuri; Singh, N. K.; Singh, U. S.

    2015-01-01

    Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1–24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes. PMID:25774106

  7. Radiation resistance of primary clonogenic blasts from children with acute lymphoblastic leukemia

    SciTech Connect

    Uckun, F.M. Childrens Cancer Group, Arcadia, CA ); Aeppli, D.; Song, C.W. )

    1993-11-15

    Detailed comparative analyses of the radiation sensitivity of primary clonogenic blasts from children with acute lymphoblastic leukemia (ALL) were performed to achieve a better understanding of clinical radiation resistance in ALL. The radiation sensitivity of primary clonogenic blasts from 74 children with newly diagnosed ALL was analyzed using leukemic progenitor cell (LPC) assays. Primary bone marrow blasts from all 74 patients were exposed to ionizing radiation and subsequently assayed for LPC-derived blast colony formation. Radiation survival curves of LPC were constructed for each of the newly diagnosed patients using computer programs for the single-hit multitarget as well as the linear quadratic models of cell survival. A marked interpatient variation in intrinsic radiation sensitivity was observed between LPC populations. The SF[sub 2] values ranged from 0.01 to 1.00. Patients were divided into groups according to their sex, age, WBC at diagnosis, cell cycle distribution of leukemic blasts, and immunophenotype. Only immunophenotype provided a significant correlation with the intrinsic radiation sensitivity of LPC. Patients with B-lineage ALL had higher SF[sub 2] and smaller [alpha] values than T-lineage ALL patients, consistent with greater intrinsic radiation resistance at the level of LPC. Notably, 43% of B-lineage ALL cases, but only 27% of T-lineage ALL cases had LPC with SF[sub 2] [ge] 0.5. Similarly, 66% of B-lineage ALL cases, but only 37% of T-lineage ALL cases had LPC with [alpha] values [le] 0.4 Gy[sup [minus]1]. Combining the two indicators of radiation resistance, they found that only 34% of the B-lineage ALL patients had none of the two parameters in the respective critical regions, while 63% of the T-lineage patients had none. In multivariate analyses, the immunophenotypic B-lineage affiliation was the only significant predictor of radiation resistance at the level of LPC. 42 refs., 1 fig., 2 tabs.

  8. Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics

    PubMed Central

    Makarova, Kira S.; Aravind, L.; Wolf, Yuri I.; Tatusov, Roman L.; Minton, Kenneth W.; Koonin, Eugene V.; Daly, Michael J.

    2001-01-01

    The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are

  9. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    SciTech Connect

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C. )

    1989-09-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals.

  10. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    PubMed Central

    Versluis, Dennis; D’Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W.J. van

    2015-01-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance. PMID:26153129

  11. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    NASA Astrophysics Data System (ADS)

    Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem Van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W. J. Van

    2015-07-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.

  12. Functional variability of the Lr34 durable resistance gene in transgenic wheat.

    PubMed

    Risk, Joanna M; Selter, Liselotte L; Krattinger, Simon G; Viccars, Libby A; Richardson, Terese M; Buesing, Gabriele; Herren, Gerhard; Lagudah, Evans S; Keller, Beat

    2012-05-01

    Breeding for durable disease resistance is challenging, yet essential to improve crops for sustainable agriculture. The wheat Lr34 gene is one of the few cloned, durable resistance genes in plants. It encodes an ATP binding cassette transporter and has been a source of resistance against biotrophic pathogens, such as leaf rust (Puccinina triticina), for over 100 years. As endogenous Lr34 confers quantitative resistance, we wanted to determine the effects of transgenic Lr34 with specific reference to how expression levels affect resistance. Transgenic Lr34 wheat lines were made in two different, susceptible genetic backgrounds. We found that the introduction of the Lr34 resistance allele was sufficient to provide comparable levels of leaf rust resistance as the endogenous Lr34 gene. As with the endogenous gene, we observed resistance in seedlings after cold treatment and in flag leaves of adult plants, as well as Lr34-associated leaf tip necrosis. The transgene-based Lr34 resistance did not involve a hypersensitive response, altered callose deposition or up-regulation of PR genes. Higher expression levels compared to endogenous Lr34 were observed in the transgenic lines both at seedling as well as adult stage and some improvement of resistance was seen in the flag leaf. Interestingly, in one genetic background the transgenic Lr34-based resistance resulted in improved seedling resistance without cold treatment. These data indicate that functional variability in Lr34-based resistance can be created using a transgenic approach.

  13. Identification of aminoglycoside resistance genes by Triplex PCR in Enterococcus spp. isolated from ICUs.

    PubMed

    Mirnejad, Reza; Sajjadi, Nikta; Masoumi Zavaryani, Sara; Piranfar, Vahhab; Hajihosseini, Maryam; Roshanfekr, Maliheh

    2016-09-01

    Early detection of antibiotic-resistant enterococci is an important part of patient treatment. Therefore, the aim of the present study was to evaluate the resistance patterns and simultaneously identify and characterise the resistance genes in Enterococcus spp. using a triplex polymerase chain reaction (PCR) method. In all, 150 consecutive Enterococcus spp were collected from several hospitals in Tehran (Iran) from January to December 2015. The Enterococcus species were identified by standard phenotypic/biochemical tests and PCR. The antimicrobial resistance patterns were determined using a disk diffusion method. The triplex PCR method was designed to identify gentamicin and other aminoglycoside resistance genes. Among the 150 Enterococcus specimens, 87 cases (58%) were Enterococcus faecalis, and 63 cases (42%) were Enterococcus faecium. The highest frequency of resistance was observed for tetracycline while the lowest was found for vancomycin. Among the identified samples, 56.9% contained the aac(6')-Ie-aph(2'')-Ia gene, 22.2% contained the aph(3')-IIIa gene, and 38.8% contained the ant(4')-?a gene. Eight percent of the isolates contained the three aminoglycoside resistance genes. Data analysis showed that there was a significant correlation between the phenotypic gentamicin resistance and the presence of the aminoglycoside resistance genes (18.9%, p <0.05), while the correlation between the phenotypic streptomycin resistance and the corresponding genes was not significant (2.8%, p ≥0.5). Nearly half of the identified Enterococcus strains had increased aminoglycoside resistance. The direct correlation between resistance genes, such as the aminoglycoside resistance factor, and phenotypic resistance was not significant (p > 0.05). PMID:27668903

  14. Identification of aminoglycoside resistance genes by Triplex PCR in Enterococcus spp. isolated from ICUs.

    PubMed

    Mirnejad, Reza; Sajjadi, Nikta; Masoumi Zavaryani, Sara; Piranfar, Vahhab; Hajihosseini, Maryam; Roshanfekr, Maliheh

    2016-09-01

    Early detection of antibiotic-resistant enterococci is an important part of patient treatment. Therefore, the aim of the present study was to evaluate the resistance patterns and simultaneously identify and characterise the resistance genes in Enterococcus spp. using a triplex polymerase chain reaction (PCR) method. In all, 150 consecutive Enterococcus spp were collected from several hospitals in Tehran (Iran) from January to December 2015. The Enterococcus species were identified by standard phenotypic/biochemical tests and PCR. The antimicrobial resistance patterns were determined using a disk diffusion method. The triplex PCR method was designed to identify gentamicin and other aminoglycoside resistance genes. Among the 150 Enterococcus specimens, 87 cases (58%) were Enterococcus faecalis, and 63 cases (42%) were Enterococcus faecium. The highest frequency of resistance was observed for tetracycline while the lowest was found for vancomycin. Among the identified samples, 56.9% contained the aac(6')-Ie-aph(2'')-Ia gene, 22.2% contained the aph(3')-IIIa gene, and 38.8% contained the ant(4')-?a gene. Eight percent of the isolates contained the three aminoglycoside resistance genes. Data analysis showed that there was a significant correlation between the phenotypic gentamicin resistance and the presence of the aminoglycoside resistance genes (18.9%, p <0.05), while the correlation between the phenotypic streptomycin resistance and the corresponding genes was not significant (2.8%, p ≥0.5). Nearly half of the identified Enterococcus strains had increased aminoglycoside resistance. The direct correlation between resistance genes, such as the aminoglycoside resistance factor, and phenotypic resistance was not significant (p > 0.05).

  15. Down-regulation of PERK enhances resistance to ionizing radiation

    SciTech Connect

    Oommen, Deepu Prise, Kevin M.

    2013-11-08

    Highlights: •PERK enhances the sensitivity of cancer cells to ionizing radiation. •Down-regulation of PERK results in enhanced DNA repair. •Ionizing radiation-induced apoptosis is inhibited in PERK-down regulated cancer cells. -- Abstract: Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR.

  16. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    PubMed Central

    Webb, Kimberly M.; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell. PMID:23209374

  17. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    PubMed

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  18. Association of radiation-induced genes with noncancer chronic diseases in Mayak workers occupationally exposed to prolonged radiation.

    PubMed

    Abend, Michael; Azizova, Tamara; Müller, Kerstin; Dörr, Harald; Doucha-Senf, Sven; Kreppel, Helmut; Rusinova, Galina; Glazkova, Irina; Vyazovskaya, Natalia; Unger, Kristian; Braselmann, Herbert; Meineke, Viktor

    2015-03-01

    We examined the association of gene expression with noncancer chronic disease outcomes in Mayak nuclear weapons plant workers who were exposed to radiation due to their occupation. We conducted a cross-sectional study with selection based on radiation exposure status of Mayak plant workers living in Ozyorsk who were alive in 2011 and either exposed to: combined incorporated Plutonium-239 ((239)Pu) and external gamma-ray exposure (n = 82); external gamma-ray exposure alone (n = 18); or were unexposed (n = 50) of Ozyorsk residents who provided community-based professional support for plant personnel and who were alive in 2011. Peripheral blood was taken and RNA was isolated and then converted into cDNA and stored at -20°C. In a previous analysis we screened the whole genome for radiation-associated candidate genes, and validated 15 mRNAs and 15 microRNAs using qRT-PCR. In the current analysis we examined the association of these genes with 15 different chronic diseases on 92 samples (47 males, 45 females). We examined the radiation-to-gene and gene-to-disease associations in statistical models stratified by gender and separately for each disease and exposure. We modeled radiation exposure as gamma or (239)Pu on both the continuous and categorical scales. Unconditional logistic regression was used to calculate odds ratios (OR), 95% confidence intervals (CI), and the concordance for genes that were significantly associated with radiation exposure and a specific disease outcome were identified. Altogether 12 mRNAs and 9 microRNAs appeared to be significantly associated with 6 diseases, including thyroid diseases (3 genes, OR: 1.2-5.1, concordance: 71-78%), atherosclerotic diseases (4 genes, OR: 2.5-10, concordance: 70-75%), kidney diseases (6 genes, OR: 1.3-8.6, concordance: 69-85%), cholelithiasis (3 genes, OR: 0.2-0.3, concordance: 74-75%), benign tumors [1 gene (AGAP4), OR: 3.7, concordance: 81%] and chronic radiation syndrome (4 genes, OR: 2.5-4.3, concordance: 70

  19. Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley?

    PubMed Central

    Marzin, Stephan; Hanemann, Anja; Sharma, Shailendra; Hensel, Götz; Kumlehn, Jochen; Schweizer, Günther; Röder, Marion S.

    2016-01-01

    A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar ‘Morex’. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar ‘Morex’ or the full resistance reaction requires the presence of several PEI genes. PMID:26937960

  20. Serotonin transporter gene polymorphisms and treatment-resistant depression.

    PubMed

    Bonvicini, Cristian; Minelli, Alessandra; Scassellati, Catia; Bortolomasi, Marco; Segala, Matilde; Sartori, Riccardo; Giacopuzzi, Mario; Gennarelli, Massimo

    2010-08-16

    Major Depression Disorder (MDD) is a serious mental illness that is one of the most disabling diseases worldwide. In addition, approximately 15% of depression patients are defined treatment-resistant (TRD). Preclinical and genetic studies show that serotonin modulation dysfunction exists in patients with TRD. Some polymorphisms in the promoter region of the serotonin transporter gene (SLC6A4) are likely to be involved in the pathogenesis/treatment of MDD; however, no data are available concerning TRD. Therefore, in order to investigate the possible influence of SLC6A4 polymorphisms on the risk of TRD, we genotyped 310 DSM-IV MDD treatment-resistant patients and 284 healthy volunteers. We analysed the most studied polymorphism 5-HTTLPR (L/S) and a single nucleotide substitution, rs25531 (A/G), in relation to different functional haplotype combinations. However the correct mapping of rs25531 is still debated whether it is within or outside the insertion. Our sequencing analysis showed that rs25531 is immediately outside of the 5-HTTLPR segment. Differences in 5-HTTLPR allele (p=0.04) and in L allele carriers (p<0.05) were observed between the two groups. Concerning the estimated haplotype analyses, L(A)L(A) homozygote haplotype was more represented among the control subjects (p=0.01, OR=0.64 95%CI: 0.45-0.91). In conclusion, this study reports a protective effect of the L(A)L(A) haplotype on TRD, supporting the hypothesis that lower serotonin transporter transcription alleles are correlated to a common resistant depression mechanism.

  1. Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies.

    PubMed

    Guo, Baozhu; Fedorova, Natalie D; Chen, Xiaoping; Wan, Chun-Hua; Wang, Wei; Nierman, William C; Bhatnagar, Deepak; Yu, Jiujiang

    2011-07-01

    Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are resistant to fungal infection and/or aflatoxin production. To identify peanut Aspergillus-interactive and peanut Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST) project which we used to construct a peanut glass slide oligonucleotide microarray. The fabricated microarray represents over 40% of the protein coding genes in the peanut genome. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillusflavus and parasiticus spores. The subsequent microarray analysis identified 62 genes in resistant cultivars that were up-expressed in response to Aspergillus infection. In addition, we identified 22 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes that were previously shown to confer resistance to fungal infection. This study is a first step towards a comprehensive genome-scale platform for developing Aspergillus-resistant peanut cultivars through targeted marker-assisted breeding and genetic engineering. PMID:22069737

  2. Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis.

    PubMed

    Shimizu, Motoki; Fujimoto, Ryo; Ying, Hua; Pu, Zi-jing; Ebe, Yusuke; Kawanabe, Takahiro; Saeki, Natsumi; Taylor, Jennifer M; Kaji, Makoto; Dennis, Elizabeth S; Okazaki, Keiichi

    2014-06-01

    Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.

  3. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater.

    PubMed

    McKinney, Chad W; Pruden, Amy

    2012-12-18

    Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (∼1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm² for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm² for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r < -0.9; p < 0.0001). ARBs surviving UV treatment were negatively correlated with total genome size (Pearson r < -0.9; p < 0.0001) and adjacent cytosines (Pearson r < -0.88; p < 0.0001) but positively correlated with adjacent thymines (Pearson r

  4. Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal waste water treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact...

  5. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes.

    PubMed

    Gonzalez-Cendales, Yvonne; Catanzariti, Ann-Maree; Baker, Barbara; Mcgrath, Des J; Jones, David A

    2016-04-01

    The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.

  6. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.

    PubMed

    Amos, G C A; Zhang, L; Hawkey, P M; Gaze, W H; Wellington, E M

    2014-07-16

    The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes.

  7. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    PubMed

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  8. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  9. Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate.

    PubMed

    Baker, Michelle; Hobman, Jon L; Dodd, Christine E R; Ramsden, Stephen J; Stekel, Dov J

    2016-04-01

    Antimicrobial resistance is of global concern. Most antimicrobial use is in agriculture; manures and slurry are especially important because they contain a mix of bacteria, including potential pathogens, antimicrobial resistance genes and antimicrobials. In many countries, manures and slurry are stored, especially over winter, before spreading onto fields as organic fertilizer. Thus, these are a potential location for gene exchange and selection for resistance. We develop and analyse a mathematical model to quantify the spread of antimicrobial resistance in stored agricultural waste. We use parameters from a slurry tank on a UK dairy farm as an exemplar. We show that the spread of resistance depends in a subtle way on the rates of gene transfer and antibiotic inflow. If the gene transfer rate is high, then its reduction controls resistance, while cutting antibiotic inflow has little impact. If the gene transfer rate is low, then reducing antibiotic inflow controls resistance. Reducing length of storage can also control spread of resistance. Bacterial growth rate, fitness costs of carrying antimicrobial resistance and proportion of resistant bacteria in animal faeces have little impact on spread of resistance. Therefore, effective treatment strategies depend critically on knowledge of gene transfer rates. PMID:26906100

  10. No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri.

    PubMed

    Vila-Aiub, Martin M; Goh, Sou S; Gaines, Todd A; Han, Heping; Busi, Roberto; Yu, Qin; Powles, Stephen B

    2014-04-01

    Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.

  11. Identification and Characterization of Two Novel blaKLUC Resistance Genes through Large-Scale Resistance Plasmids Sequencing

    PubMed Central

    Yao, Xiaoding; Song, Yulong; Ma, Ping; Bao, Bokan; Jiang, Weiyan; Wu, Xinmei; Tou, Huifen; Li, Peizhen; Ren, Ping; Fei, Jingxian; Yang, Lei; Liu, Qi; Xu, Zuyuan; Zhou, Tieli; Ni, Liyan; Bao, Qiyu

    2012-01-01

    Plasmids are important antibiotic resistance determinant carriers that can disseminate various drug resistance genes among species or genera. By using a high throughput sequencing approach, two groups of plasmids of Escherichia coli (named E1 and E2, each consisting of 160 clinical E. coli strains isolated from different periods of time) were sequenced and analyzed. A total of 20 million reads were obtained and mapped onto the known resistance gene sequences. As a result, a total of 9 classes, including 36 types of antibiotic resistant genes, were identified. Among these genes, 25 and 27 single nucleotide polymorphisms (SNPs) appeared, of which 9 and 12 SNPs are nonsynonymous substitutions in the E1 and E2 samples. It is interesting to find that a novel genotype of blaKLUC, whose close relatives, blaKLUC-1 and blaKLUC-2, have been previously reported as carried on the Kluyvera cryocrescens chromosome and Enterobacter cloacae plasmid, was identified. It shares 99% and 98% amino acid identities with Kluc-1 and Kluc-2, respectively. Further PCR screening of 608 Enterobacteriaceae family isolates yielded a second variant (named blaKLUC-4). It was interesting to find that Kluc-3 showed resistance to several cephalosporins including cefotaxime, whereas blaKLUC-4 did not show any resistance to the antibiotics tested. This may be due to a positively charged residue, Arg, replaced by a neutral residue, Leu, at position 167, which is located within an omega-loop. This work represents large-scale studies on resistance gene distribution, diversification and genetic variation in pooled multi-drug resistance plasmids, and provides insight into the use of high throughput sequencing technology for microbial resistance gene detection. PMID:23056610

  12. Multi-drug resistance in Salmonella enterica: efflux mechanisms and their relationships with the development of chromosomal resistance gene clusters.

    PubMed

    Quinn, Teresa; O'Mahony, Rebecca; Baird, Alan W; Drudy, Denise; Whyte, Paul; Fanning, Séamus

    2006-07-01

    Bacterial drug resistance represents one of the most crucial problems in present day antibacterial chemotherapy. Of particular concern to public health is the continuing worldwide epidemic spread of Salmonella enterica serovar Typhimurium phage type DT104 harbouring a genomic island called Salmonella genomic island I (SGI-1). This island contains an antibiotic gene cluster conferring resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides and tetracyclines. These resistance genes are assembled in a mosaic pattern, indicative of several independent recombinational events. The mobility of SGI-1 coupled with the ability of various antibiotic resistance genes to be integrated and lost from the chromosomal resistance locus allows for the transfer of stable antibiotic resistance to most of the commonly used antibiotics and adaptation to new antibiotic challenges. This, coupled with the incidence of increasing fluoroquinolone resistance in these strains increases the risk of therapeutic failure in cases of life-threatening salmonellosis. Fluoroquinolone resistance has largely been attributed to mutations occurring in the genes coding for intracellular targets of these drugs. However, efflux by the AcrAB-TolC multi-drug efflux pump has recently been shown to directly contribute to fluoroquinolone resistance. Furthermore, the resistance to chloramphenicol-florfenicol and tetracyclines in DT104 isolates, is due to interaction between specific transporters for these antibiotics encoded by genes mapping to the SGI-1 and the AcrAB-TolC tripartite efflux pump. The potential for the use of efflux pump inhibitors to restore therapeutic efficacy to fluoroquinolones and other antibiotics offers an exciting developmental area for drug discovery. PMID:16842216

  13. The Biopesticide Paenibacillus popilliae Has a Vancomycin Resistance Gene Cluster Homologous to the Enterococcal VanA Vancomycin Resistance Gene Cluster

    PubMed Central

    Patel, Robin; Piper, Kerryl; Cockerill, Franklin R.; Steckelberg, James M.; Yousten, Allan A.

    2000-01-01

    We have previously identified, in Paenibacillus popilliae, a 708-bp sequence which has homology to the sequence of the enterococcal vanA gene. We have performed further studies revealing five genes encoding homologues of VanY, VanZ, VanH, VanA, and VanX in P. popilliae. The predicted amino acid sequences are similar to those in VanA vancomycin-resistant enterococci: 61% identity for VanY, 21% for VanZ, 74% for VanH, 77% for VanA, and 79% for VanX. The genes in P. popilliae may have been a precursor to or have had ancestral genes in common with vancomycin resistance genes in enterococci. The use of P. popilliae biopesticidal preparations in agricultural practice may have an impact on bacterial resistance in human pathogens. PMID:10681342

  14. Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Brodrick, J.; Hepburn, D. J.; Ackland, G. J.

    2014-02-01

    ODS steels based on yttrium oxide have been suggested as potential fusion reactor wall materials due to their observed radiation resistance properties. Presumably this radiation resistance can be related to the interaction of the particle with vacancies, self-interstitial atoms (SIAs) and other radiation damage debris. Density functional theory has been used to investigate this at the atomic scale. Four distinct interfaces, some based on HRTEM observations, between iron and yttrium oxide were investigated. It is been shown that the Y2O3-Fe interface acts as a strong trap with long-range attraction for both interstitial and vacancy defects, allowing recombination without altering the interface structure. The catalytic elimination of defects without change to the microstructure explains the improved behaviour of ODS steels with respect to radiation creep and swelling.

  15. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    NASA Technical Reports Server (NTRS)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  16. Diversity of tet resistance genes in tetracycline-resistant bacteria isolated from a swine lagoon with low antibiotic impact.

    PubMed

    Macauley, John J; Adams, Craig D; Mormile, Melanie R

    2007-12-01

    Tetracycline resistance has been extensively studied and shown to be widespread. A number of previous studies have clearly demonstrated that a variety of tetracycline resistance genes are present in swine fecal material, treatment lagoons, and the environments surrounding concentrated animal feeding operations (CAFOs). The diversity of tetracycline resistance within a swine lagoon located at a CAFO that used only bacitricin methylene disalicylate as an antibiotic was evaluated by screening 85 tetracycline-resistant isolates for the presence of 18 different genes by performing PCR with primers that target tetracycline efflux genes of Gram-negative bacteria and ribosomal protection proteins. In addition, partial 16S rRNA sequences from each of these isolates were sequenced to determine the identity of these isolates. Of the 85 isolates examined, 17 may represent potential novel species based on BLAST results. Greater than 50% of the isolates (48 out of 85) were found to not contain targeted tet efflux genes. Though minimum inhibitory concentrations ranged widely (16 - >256 mg/L), these values did not give an indication of the tet genes present. Ten new genera were identified that contain at least one tet efflux gene. Five other genera possessed tet efflux genes that were not found in these organisms previously. Interestingly, none of the isolates possessed any of the selected ribosomal protection protein genes. Though tetracycline resistance was found in bacteria isolated from a swine CAFO lagoon, it appears that the limited antibiotic use at this CAFO might have impacted the presence and diversity of tetracycline resistance genes. PMID:18059563

  17. Computational Design of Novel, Radiation Resistant Fusion Materials

    SciTech Connect

    Kubota, A; Caturla, M J; Wirth, B D; Latkowski, J

    2003-02-01

    The promise of fusion as a viable 21st century energy source requires the development of advanced structural (MFE and IFE) and optical (IFE) materials that are capable of withstanding the harsh radiation environment that leads to the degradation of physical and mechanical properties. Materials in fusion environments must be able to handle 14 MeV neutrons produced from Deuterium-Tritium nuclear reactions, as well as the insoluble He and reactive H gases that lead to swelling and embrittlement. Additionally, with the requirement of very high thermal loads makes the development of new advanced materials a formidable challenge. The scope of this study was to determine the feasibility of using atomistic simulations to predict the radiation response of novel materials engineered with potentially self-healing properties to survive in radiation environments over very long time-scales. The class of materials that shows promise is what is called a nanocrystalline material. Nanocrystalline materials are defined as those having very fine grains on the order of several to tens of nanometers in size, and consequently very high grain-boundary to volume ratio. Experimental observations [1] suggests that these grain-boundary networks can act as sinks for defects and hence promote self-repair.

  18. Deinococcus soli sp. nov., a gamma-radiation-resistant bacterium isolated from rice field soil.

    PubMed

    Cha, Seho; Srinivasan, Sathiyaraj; Seo, Taegun; Kim, Myung Kyum

    2014-06-01

    A Gram-negative, non-motile, short rod-shaped bacterial strain, designated N5(T), was isolated from a rice field soil in South Korea. Phylogenetic analysis based on the 16S rRNA gene sequence of the new isolate showed that strain N5(T) belongs to the genus Deinococcus, family Deinococcaceae, showing the highest sequence similarity to Deinococcus grandis KACC 11979(T) (98.4 %) and Deinococcus daejeonensis KCTC 13751(T) (97.5 %). Strain N5(T) exhibits resistance to gamma-radiation similar to that of other members of the genus Deinococcus, with a D10 value in excess of 4 kGy. Chemotaxonomic data showed that the most abundant fatty acids are C16:1ω7c (25.25 %), C15:1ω6c (19.77 %), C17:1ω6c (11.87 %), and C17:0 (9.41 %), and the major polar lipid is an unknown phosphoglycolipid. The predominant respiratory quinone is menaquinone MK-8. The DNA G+C content is 71.4 mol%. Phenotypic, phylogenetic, and chemotaxonomic data support designation of strain N5(T) as a novel species of the genus Deinococcus, for which the name Deinococcus soli sp. nov. is proposed. The type strain is N5(T) (=KCTC 33153(T) = JCM 19176(T)).

  19. Effect of Ni content on thermal and radiation resistance of VVER RPV steel

    NASA Astrophysics Data System (ADS)

    Shtrombakh, Ya. I.; Gurovich, B. A.; Kuleshova, E. A.; Frolov, A. S.; Fedotova, S. V.; Zhurko, D. A.; Krikun, E. V.

    2015-06-01

    In this paper thermal stability and radiation resistance of VVER-type RPV steels for pressure vessels of advanced reactors with different nickel content were studied. A complex of microstructural studies and mechanical tests of the steels in different states (after long thermal exposures, provoking embrittling heat treatment and accelerated neutron irradiation) was carried out. It is shown that nickel content (other things being equal) determines the extent of materials degradation under influence of operational factors: steels with a lower nickel concentration demonstrate a higher thermal stability and radiation resistance.

  20. On the radiation resistance of planar Gunn diodes with δ-doped layers

    SciTech Connect

    Obolenskaya, E. S. Churin, A. Yu.; Obolensky, S. V.; Murel, A. V.; Shashkin, V. I.

    2015-11-15

    The radiation resistance of planar Gunn diodes is investigated. Based on the results of measurements of the pulsed current–voltage characteristics and computer simulations it is shown that the use of δ layers of doping impurities contributes to the higher radiation resistance of planar diodes by an order of magnitude compared to conventional Gunn diodes. The results of this study make it possible to formulate methodical guidelines to reduce the amount of computational and experimental studies without a considerable decrease in their informativity.

  1. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  2. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    NASA Astrophysics Data System (ADS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  3. Proton radiation damage in P-channel CCDs fabricated on high-resistivity silicon

    SciTech Connect

    Bebek, C.; Groom, D.; Holland, S.; Karcher, A.; Kolbe, W.; Lee, J.; Levi, M.; Palaio, N.; Turko, B.; Uslenghi, M.; Wagner, M.; Wang, G.

    2002-07-28

    P-channel, backside illuminated silicon CCDs were developed and fabricated on high-resistivity n-type silicon. Devices have been exposed up to 1x1011 protons/cm2 at 12 MeV. The charge transfer efficiency and dark current were measured as a function of radiation dose. These CCDs were found to be significantly more radiation tolerant than conventional n-channel devices. This could prove to be a major benefit for long duration space missions.

  4. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat.

    PubMed Central

    Görlach, J; Volrath, S; Knauf-Beiter, G; Hengy, G; Beckhove, U; Kogel, K H; Oostendorp, M; Staub, T; Ward, E; Kessmann, H; Ryals, J

    1996-01-01

    Systemic acquired resistance is an important component of the disease resistance repertoire of plants. In this study, a novel synthetic chemical, benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), was shown to induce acquired resistance in wheat. BTH protected wheat systemically against powdery mildew infection by affecting multiple steps in the life cycle of the pathogen. The onset of resistance was accompanied by the induction of a number of newly described wheat chemically induced (WCI) genes, including genes encoding a lipoxygenase and a sulfur-rich protein. With respect to both timing and effectiveness, a tight correlation existed between the onset of resistance and the induction of the WCI genes. Compared with other plant activators, such as 2,6-dichloroisonicotinic acid and salicylic acid, BTH was the most potent inducer of both resistance and gene induction. BTH is being developed commercially as a novel type of plant protection compound that works by inducing the plant's inherent disease resistance mechanisms. PMID:8624439

  5. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    PubMed

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  6. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn.

    PubMed

    Edwards, Kristine T; Caprio, Michael A; Allen, K Clint; Musser, Fred R

    2013-02-01

    Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.

  7. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    NASA Astrophysics Data System (ADS)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  8. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    PubMed

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  9. Identification and mapping of nucleotide binding site-leucine rich repeat resistance gene analogs in bermudagrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-one bermudagrass (Cynodon spp.) disease resistance gene homologs (BRGH) were cloned and sequenced from diploid, triploid, and hexaploid bermudagrass using degenerate primers to target the nucleotide binding site (NBS) of the NBS- leucine rich repeat (LRR) resistance gene family. Alignment of ...

  10. Isolation of an Yr5 candidate gene for resistance to wheat stripe rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Yr5 gene from the Triticum spelta album wheat confers resistance to all races of the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified so far in the US. To cloneYr5, a sequence tagged site (STS) marker developed from resistance gene analog polymorphism (RGAP) markers co...

  11. Identification of disease resistance genes for enhancement of existing potato cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A plant’s ability to defend itself against host-specific microbes is specified by disease resistance (R) genes. Upon recognition of an invading pathogen, R proteins are responsible for the activation of a multitude of responses ultimately leading to resistance. The majority of R genes are dominant a...

  12. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    PubMed

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674

  13. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    PubMed

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  14. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl

    PubMed Central

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674

  15. High-Throughput Screening of Tyrosine Kinase Inhibitor Resistant Genes in CML.

    PubMed

    Ma, Leyuan; Roderick, Justine; Kelliher, Michelle A; Green, Michael R

    2016-01-01

    Genome-wide RNA interference (RNAi) screening in mammalian cells has proven to be a powerful tool for identifying new genes and molecular pathways relevant to many cellular processes and diseases. For example, screening for genes that, when inactivated, lead to resistance to cancer therapeutic drugs can reveal new mechanisms for how resistance develops and identify potential targetable strategies to overcome drug resistance. Here, we describe a detailed procedure for performing a high-throughput RNAi screen using a genome-wide human short hairpin RNA (shRNA) library for identifying tyrosine kinase inhibitor (TKI)-resistance genes in a human CML cell line model. PMID:27581147

  16. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  17. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 mRad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  18. Identification and mapping of resistance gene analogs and a white rust resistance locus in Brassica rapa ssp. oleifera.

    PubMed

    Tanhuanpää, P

    2004-04-01

    The objective of this investigation was to tag a locus for white rust resistance in a Brassica rapa ssp. oleifera F(2) population segregating for this trait, using bulked segregant analysis with random amplified polymorphic DNA (RAPD) markers, linkage mapping and a candidate gene approach based on resistance gene analogs (RGAs). The resistance source was the Finnish line Bor4109. The reaction against white rust races 7a and 7v was scored in 20 seedlings from each self-pollinated F(2 )individual. The proportion of resistant plants among these F(3) families varied from 0 to 67%. Bulked segregant analysis did not reveal any markers linked with resistance and, therefore, a linkage map with 81 markers was created. A locus that accounted for 18.4% of the variation in resistance to white rust was mapped to linkage group (LG) 2 near the RAPD marker Z19a. During the study, a bacterial resistance gene homologous to Arabidopsis RPS2 and six different RGAs were sequenced. RPS2 and five of the RGAs were mapped to linkage groups LG1, LG4 and LG9. Unfortunately, none of the RGAs could be shown to be associated with white rust resistance.

  19. Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols.

    PubMed

    Ling, Alison L; Pace, Norman R; Hernandez, Mark T; LaPara, Timothy M

    2013-05-01

    Genes encoding tetracycline resistance and the integrase of Class 1 integrons were enumerated using quantitative PCR from aerosols collected from indoor and outdoor environments. Concentrated animal feeding operations (CAFOs) and human-occupied indoor environments (two clinics and a homeless shelter) were found to be a source of airborne tet(X) and tet(W) genes. The CAFOs had 10- to 100-times higher concentrations of airborne 16S rRNA, tet(X), and tet(W) genes than other environments sampled, and increased concentrations of aerosolized bacteria correlated with increased concentrations of airborne resistance genes. The two CAFOs studied had statistically similar concentrations of resistance genes in their aerosol samples, even though antibiotic use was markedly different between the two operations. Additionally, tet(W) genes were recovered in outdoor air within 2 km of livestock operations, which suggests that antibiotic resistance genes may be transported via aerosols on local scales. The integrase gene (intI1) from Class 1 integrons, which has been associated with multidrug resistance, was detected in CAFOs but not in human-occupied indoor environments, suggesting that CAFO aerosols could serve as a reservoir of multidrug resistance. In conclusion, our results show that CAFOs and clinics are sources of aerosolized antibiotic resistance genes that can potentially be transported via air movement. PMID:23517146

  20. Detection of sulfonamide resistance genes via in situ PCR-FISH.

    PubMed

    Gnida, Anna; Kunda, Katarzyna; Ziembińska, Aleksandra; Luczkiewicz, Aneta; Felis, Ewa; Surmacz-Górska, Joanna

    2014-01-01

    Due to the rising use of antibiotics and as a consequence of their concentration in the environment an increasing number of antibiotic resistant bacteria is observed. The phenomenon has a hazardous impact on human and animal life. Sulfamethoxazole is one of the sulfonamides commonly detected in surface waters and soil. The aim of the study was to detect sulfamethoxazole resistance genes in activated sludge biocenosis by use of in situ PCR and/or hybridization. So far no FISH probes for the detection of SMX resistance genes have been described in the literature. We have tested common PCR primers used for SMX resistance genes detection as FISH probes as well as a combination of in situ PCR and FISH. Despite the presence of SMX resistance genes in activated sludge confirmed via traditional PCR, the detection of the genes via microscopic visualization failed. PMID:25115110

  1. Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast.

    PubMed

    Laport, Marinella Silva; Pontes, Paula Veronesi Marinho; Dos Santos, Daniela Silva; Santos-Gandelman, Juliana de Fátima; Muricy, Guilherme; Bauwens, Mathieu; Giambiagi-deMarval, Marcia; George, Isabelle

    2016-01-01

    Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. PMID:27287338

  2. A possible radiation-resistant solar cell geometry using superlattices

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Clark, R.; Brinker, D.

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  3. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA.

    PubMed

    Naquin, Anthony; Shrestha, Arsen; Sherpa, Mingma; Nathaniel, Rajkumar; Boopathy, Raj

    2015-01-01

    Increasing uses and disposals of antibiotics to the environment have increased emergence of various antibiotic resistance. One of the sources for the spread of antibiotic resistance is wastewater treatment plant, where bacteria and antibiotics can come in contact and can acquire antibiotics resistance. There are very few studies on this subject from a small town sewage treatment plant. Therefore, this study was conducted using raw sewage as well as treated sewage from a sewage treatment plant in Thibodaux in rural southeast Louisiana in USA. Samples were collected monthly from the Thibodaux sewage treatment plant and the presence of antibiotic resistance genes was monitored. The study showed the presence of antibiotic resistance genes in both raw and treated sewage in every month of the study period. The genetic transformation assay showed the successful transformation of methicillin resistant gene, mecA to an antibiotic sensitive Staphylococcus aureus, which became antibiotic resistant within 24h. PMID:25662190

  4. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA.

    PubMed

    Naquin, Anthony; Shrestha, Arsen; Sherpa, Mingma; Nathaniel, Rajkumar; Boopathy, Raj

    2015-01-01

    Increasing uses and disposals of antibiotics to the environment have increased emergence of various antibiotic resistance. One of the sources for the spread of antibiotic resistance is wastewater treatment plant, where bacteria and antibiotics can come in contact and can acquire antibiotics resistance. There are very few studies on this subject from a small town sewage treatment plant. Therefore, this study was conducted using raw sewage as well as treated sewage from a sewage treatment plant in Thibodaux in rural southeast Louisiana in USA. Samples were collected monthly from the Thibodaux sewage treatment plant and the presence of antibiotic resistance genes was monitored. The study showed the presence of antibiotic resistance genes in both raw and treated sewage in every month of the study period. The genetic transformation assay showed the successful transformation of methicillin resistant gene, mecA to an antibiotic sensitive Staphylococcus aureus, which became antibiotic resistant within 24h.

  5. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    PubMed

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  6. Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis

    SciTech Connect

    Sung, Hoon Ki; Morisada, Tohru; Cho, Chung-Hyun; Oike, Yuichi; Lee, Jayhun; Sung, Eon Ki; Chung, Jae Hoon; Suda, Toshio; Koh, Gou Young . E-mail: gykoh@kaist.ac.kr

    2006-06-30

    Radiation therapy is a widely used cancer treatment, but it is unable to completely block cancer metastasis. The lymphatic vasculature serves as the primary route for metastatic spread, but little is known about how lymphatic endothelial cells respond to radiation. Here, we show that lymphatic endothelial cells in the small intestine and peri-tumor areas are highly resistant to radiation injury, while blood vessel endothelial cells in the small intestine are relatively sensitive. Our results suggest the need for alternative therapeutic modalities that can block lymphatic endothelial cell survival, and thus disrupt the integrity of lymphatic vessels in peri-tumor areas.

  7. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    PubMed

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying. PMID:27530840

  8. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    PubMed

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying.

  9. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster.

    PubMed

    Gellatly, Kyle J; Yoon, Kyong Sup; Doherty, Jeffery J; Sun, Weilin; Pittendrigh, Barry R; Clark, J Marshall

    2015-06-01

    4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms in the 91-R strain. Their interactions, however, remain unclear. Use of UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has validated the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in DDT resistance. Further, increased sensitivity to DDT in the 91-R strain after intra-abdominal dsRNA injection for Mdr50, Mdr65, and Mrp1 was determined by a DDT contact bioassay, directly implicating these genes in DDT efflux and resistance. PMID:26047118

  10. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster.

    PubMed

    Gellatly, Kyle J; Yoon, Kyong Sup; Doherty, Jeffery J; Sun, Weilin; Pittendrigh, Barry R; Clark, J Marshall

    2015-06-01

    4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms in the 91-R strain. Their interactions, however, remain unclear. Use of UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has validated the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in DDT resistance. Further, increased sensitivity to DDT in the 91-R strain after intra-abdominal dsRNA injection for Mdr50, Mdr65, and Mrp1 was determined by a DDT contact bioassay, directly implicating these genes in DDT efflux and resistance.

  11. Luminescence and radiation resistance of undoped NaI crystals

    SciTech Connect

    Shiran, N. Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found that defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.

  12. High-Copy Overexpression Screening Reveals PDR5 as the Main Doxorubicin Resistance Gene in Yeast

    PubMed Central

    Demir, Ayse Banu; Koc, Ahmet

    2015-01-01

    Doxorubicin is one of the most potent anticancer drugs used in the treatment of various cancer types. The efficacy of doxorubicin is influenced by the drug resistance mechanisms and its cytotoxicity. In this study, we performed a high-copy screening analysis to find genes that play a role in doxorubicin resistance and found several genes (CUE5, AKL1, CAN1, YHR177W and PDR5) that provide resistance. Among these genes, overexpression of PDR5 provided a remarkable resistance, and deletion of it significantly rendered the tolerance level for the drug. Q-PCR analyses suggested that transcriptional regulation of these genes was not dependent on doxorubicin treatment. Additionally, we profiled the global expression pattern of cells in response to doxorubicin treatment and highlighted the genes and pathways that are important in doxorubicin tolerance/toxicity. Our results suggest that many efflux pumps and DNA metabolism genes are upregulated by the drug and required for doxorubicin tolerance. PMID:26690737

  13. Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants.

    PubMed

    Chen, Ming-Shun; Liu, Sanzhen; Wang, Haiyan; Cheng, Xiaoyan; El Bouhssini, Mustapha; Whitworth, R Jeff

    2016-01-01

    The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. In this study, we investigated the genes that were expressed differentially between larvae in resistant plants and those in susceptible plants through RNA sequencing on the Illumina platform. Informative genes were 11,832, 14,861, 15,708, and 15,071 for the comparisons between larvae in resistant versus susceptible plants for 0.5, 1, 3, and 5 days, respectively, after larvae had reached the feeding site. The transcript abundance corresponding to 5401, 6902, 8457, and 5202 of the informative genes exhibited significant differences (p ≤ 0.05) in the respective paired comparisons. Overall, genes involved in nutrient metabolism, RNA and protein synthesis exhibited lower transcript abundance in larvae from resistant plants, indicating that resistant plants inhibited nutrient metabolism and protein production in larvae. Interestingly, the numbers of cytochrome P450 genes with higher transcript abundance in larvae from resistant plants were comparable to, or higher than those with lower transcript abundance, indicating that toxic chemicals from resistant plants may have played important roles in Hessian fly larval death. Our study also identified several families of genes encoding secreted salivary gland proteins (SSGPs) that were expressed at early stage of 1(st) instar larvae and with more genes with higher transcript abundance in larvae from resistant plants. Those SSGPs are candidate effectors with important roles in plant manipulation. PMID:27529231

  14. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  15. Identification of an integron containing the quinolone resistance gene qnrA1 in Shewanella xiamenensis.

    PubMed

    Zhao, Jing-yi; Mu, Xiao-dong; Zhu, Yuan-qi; Xi, Lijun; Xiao, Zijun

    2015-09-01

    This study investigated multidrug resistance in Shewanella xiamenensis isolated from an estuarine water sample in China during 2014. This strain displayed resistance or decreased susceptibility to ampicillin, aztreonam, cefepime, cefotaxime, chloramphenicol, ciprofloxacin, erythromycin, kanamycin and trimethoprim-sulfamethoxazole. The antimicrobial resistance genes aacA3, blaOXA-199, qnrA1 and sul1 were identified by PCR amplification and by sequencing. Pulsed-field gel electrophoresis and DNA hybridization experiments showed that the quinolone resistance gene qnrA1 was chromosomally located. qnrA1 was located in a complex class 1 integron, downstream from an ISCR1, and bracketed by two copies of qacEΔ1-sul1 genes. This integron is similar to In825 with four gene cassettes aacA3, catB11c, dfrA1z and aadA2az. An IS26-mel-mph2-IS26 structure was also detected in the flanking sequences, conferring resistance to macrolides. This is the first identification of the class 1 integron in S. xiamenensis. This is also the first identification of the qnrA1 gene and IS26-mediated macrolide resistance genes in S. xiamenensis. Presence of a variety of resistance genetic determinants in environmental S. xiamenensis suggests the possibility that this species may serve as a potential vehicle of antimicrobial resistance genes in aquatic environments.

  16. Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants

    PubMed Central

    Chen, Ming-Shun; Liu, Sanzhen; Wang, Haiyan; Cheng, Xiaoyan; El Bouhssini, Mustapha; Whitworth, R. Jeff

    2016-01-01

    The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. In this study, we investigated the genes that were expressed differentially between larvae in resistant plants and those in susceptible plants through RNA sequencing on the Illumina platform. Informative genes were 11,832, 14,861, 15,708, and 15,071 for the comparisons between larvae in resistant versus susceptible plants for 0.5, 1, 3, and 5 days, respectively, after larvae had reached the feeding site. The transcript abundance corresponding to 5401, 6902, 8457, and 5202 of the informative genes exhibited significant differences (p ≤ 0.05) in the respective paired comparisons. Overall, genes involved in nutrient metabolism, RNA and protein synthesis exhibited lower transcript abundance in larvae from resistant plants, indicating that resistant plants inhibited nutrient metabolism and protein production in larvae. Interestingly, the numbers of cytochrome P450 genes with higher transcript abundance in larvae from resistant plants were comparable to, or higher than those with lower transcript abundance, indicating that toxic chemicals from resistant plants may have played important roles in Hessian fly larval death. Our study also identified several families of genes encoding secreted salivary gland proteins (SSGPs) that were expressed at early stage of 1st instar larvae and with more genes with higher transcript abundance in larvae from resistant plants. Those SSGPs are candidate effectors with important roles in plant manipulation. PMID:27529231

  17. Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses.

    PubMed

    Belén Flórez, Ana; Alegría, Ángel; Rossi, Franca; Delgado, Susana; Felis, Giovanna E; Torriani, Sandra; Mayo, Baltasar

    2014-01-01

    Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W), and two with respect to erythromycin, that is, erm(B) and erm(F). The most common resistance genes in the analysed cheeses were tet(S), tet(W), tet(M), and erm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W)-carrying cheeses, though the similarity of the sequences suggests this tet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants. PMID:25302306

  18. Molecular Identification and Quantification of Tetracycline and Erythromycin Resistance Genes in Spanish and Italian Retail Cheeses

    PubMed Central

    Flórez, Ana Belén; Alegría, Ángel; Delgado, Susana

    2014-01-01

    Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W), and two with respect to erythromycin, that is, erm(B) and erm(F). The most common resistance genes in the analysed cheeses were tet(S), tet(W), tet(M), and erm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log⁡10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W)-carrying cheeses, though the similarity of the sequences suggests this tet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants. PMID:25302306

  19. Comparative analysis of Phytophthora infestans induced gene expression in potato cultivars with different levels of resistance.

    PubMed

    Ros, B; Thümmler, F; Wenzel, G

    2005-11-01

    Differential gene expression was analyzed after infection with Phytophthora infestans in six potato cultivars with different levels of resistance to late blight. To verify the infection of the potato leaflets, the amount of phytopathogen mRNA within the plant material was quantified by real-time quantitative PCR. The expression of 182 genes selected from two subtracted cDNA libraries was studied with cDNA array hybridization using RNA from non-infected and infected potato leaflets. Gene up- and down-regulation were clearly detectable in all cultivars 72 h post inoculation. Gene expression patterns in susceptible cultivars differed from those in potato varieties with a higher level of resistance. In general, a stronger gene induction was observed in the susceptible cultivars compared to the moderately to highly resistant potato varieties. Five genes with the highest homology to stress and/or defence-related genes were induced specifically in the susceptible cultivars. Four genes responded to pathogen attack independently of the level of resistance of the cultivar used, and three genes were repressed in infected tissue of most cultivars. Even in the absence of P. infestans infection, six genes showed higher expression levels in the somewhat resistant cultivars Bettina and Matilda. Possible reasons for the different levels of gene expression are discussed.

  20. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture

    PubMed Central

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong-Guan

    2016-01-01

    ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. PMID:27073098

  1. Integration and bioinformatics analysis of DNA-methylated genes associated with drug resistance in ovarian cancer

    PubMed Central

    YAN, BINGBING; YIN, FUQIANG; WANG, QI; ZHANG, WEI; LI, LI

    2016-01-01

    The main obstacle to the successful treatment of ovarian cancer is the development of drug resistance to combined chemotherapy. Among all the factors associated with drug resistance, DNA methylation apparently plays a critical role. In this study, we performed an integrative analysis of the 26 DNA-methylated genes associated with drug resistance in ovarian cancer, and the genes were further evaluated by comprehensive bioinformatics analysis including gene/protein interaction, biological process enrichment and annotation. The results from the protein interaction analyses revealed that at least 20 of these 26 methylated genes are present in the protein interaction network, indicating that they interact with each other, have a correlation in function, and may participate as a whole in the regulation of ovarian cancer drug resistance. There is a direct interaction between the phosphatase and tensin homolog (PTEN) gene and at least half of the other genes, indicating that PTEN may possess core regulatory functions among these genes. Biological process enrichment and annotation demonstrated that most of these methylated genes were significantly associated with apoptosis, which is possibly an essential way for these genes to be involved in the regulation of multidrug resistance in ovarian cancer. In addition, a comprehensive analysis of clinical factors revealed that the methylation level of genes that are associated with the regulation of drug resistance in ovarian cancer was significantly correlated with the prognosis of ovarian cancer. Overall, this study preliminarily explains the potential correlation between the genes with DNA methylation and drug resistance in ovarian cancer. This finding has significance for our understanding of the regulation of resistant ovarian cancer by methylated genes, the treatment of ovarian cancer, and improvement of the prognosis of ovarian cancer. PMID:27347118

  2. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight.

    PubMed

    Essenberg, Margaret; Bayles, Melanie B; Pierce, Margaret L; Verhalen, Laval M

    2014-10-01

    Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control. PMID:24655289

  3. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens

    PubMed Central

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-01-01

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. PMID:24870048

  4. Identification of resistance gene analogs in Korean wild apple germplasm collections.

    PubMed

    Baek, D E; Choi, C

    2013-02-27

    Several plant disease resistance gene (R-gene) classes have been identified on the basis of specific conserved functional domains. Cloning of disease-resistance apple genes would be useful for breeding programs and for studying resistance mechanisms. We used a PCR approach with degenerate primers designed from conserved NBS-LRR (nucleotide binding site-leucine-rich repeat) regions of known R-genes to amplify and clone homologous sequences from six Korean wild apple germplasm collections and an individual plant of the Siberian wild apple, Malus baccata. One hundred and twenty-four sequenced clones showed high similarity at multiple NBS motifs with the R-genes of other plants. The clones OLE 2-9, BP 6-11, OLE 1-22, and OLE 5-13 shared 45% identity with the R-gene of other plants. The conserved sequence, which plays an important role in resistance, was found in our isolated resistance gene analogs (RGAs). The sequences of isolated apple RGAs showed more similarity to Toll/interleukin-1 receptor (TIR)-NBS-LRR than non-TIR-NBS-LRR. We suggest using a marker for this resistance gene region as well as for identifying potential material for disease-resistant breeding among Korea wild apple germplasms. This is the first step in preparing a comprehensive analysis of the RGAs in Korean wild apple germplasm.

  5. A pigeonpea gene confers resistance to Asian soybean rust in soybean.

    PubMed

    Kawashima, Cintia G; Guimarães, Gustavo Augusto; Nogueira, Sônia Regina; MacLean, Dan; Cook, Doug R; Steuernagel, Burkhard; Baek, Jongmin; Bouyioukos, Costas; Melo, Bernardo do V A; Tristão, Gustavo; de Oliveira, Jamile Camargos; Rauscher, Gilda; Mittal, Shipra; Panichelli, Lisa; Bacot, Karen; Johnson, Ebony; Iyer, Geeta; Tabor, Girma; Wulff, Brande B H; Ward, Eric; Rairdan, Gregory J; Broglie, Karen E; Wu, Gusui; van Esse, H Peter; Jones, Jonathan D G; Brommonschenkel, Sérgio H

    2016-06-01

    Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement. PMID:27111723

  6. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Toshi; Shimamoto, Tadashi

    2014-10-17

    Foodborne pathogens are a leading cause of illness and death, especially in developing countries. The problem is exacerbated if bacteria attain multidrug resistance. Little is currently known about the extent of antibiotic resistance in foodborne pathogens and the molecular mechanisms underlying this resistance in Africa. Therefore, the current study was carried out to characterize, at the molecular level, the mechanism of multidrug resistance in Salmonella enterica isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets and slaughterhouses in Egypt. Forty-seven out of 69 isolates (68.1%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The incidence of multidrug-resistant isolates was higher in meat products (37, 69.8%) than in dairy products (10, 62.5%). The multidrug-resistant serovars included, S. enterica serovar Typhimurium (24 isolates, 34.8%), S. enterica serovar Enteritidis, (15 isolates, 21.8%), S. enterica serovar Infantis (7 isolates, 10.1%) and S. enterica non-typable serovar (1 isolate, 1.4%). The highest resistance was to ampicillin (95.7%), then to kanamycin (93.6%), spectinomycin (93.6%), streptomycin (91.5%) and sulfamethoxazole/trimethoprim (91.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes and 39.1% and 8.7% of isolates were positive for class 1 and class 2 integrons, respectively. β-lactamase-encoding genes were identified in 75.4% of isolates and plasmid-mediated quinolone resistance genes were identified in 27.5% of isolates. Finally, the florphenicol resistance gene, floR, was identified in 18.8% of isolates. PCR screening identified S. enterica serovar Typhimurium DT104 in both meat and dairy products. This is the first study to report many of these resistance genes in dairy products. This study highlights the high incidence of multidrug-resistant S. enterica in

  7. Detection and Characterizations of Genes Resistant to Tetracycline and Sulfa among the Bacteria in Mariculture Water

    NASA Astrophysics Data System (ADS)

    Qu, L.; Li, Y.; Zhu, P.

    2013-12-01

    One hundred and thirty-five bacteria from maricultural environments were tested for sensitivity to tetracycline and sulfa. Result show that 72% of the bacteria were sulfa-resistant, 36% of the bacteria were tetracycline-resistant, and 16.5% of bacteria showed resistance to both tetracyclines and sulfa ,indicating that the proportion of sulfa and tetracycline resistance bacteria isvery large in the maricultural environments. PCR methods were used to detect if these resistant bacteria carry tetracycline and sulfa resistance genes. Out of the 33 tetracycline-resistant bacteria screened, 3 were positive for tetA, 6 were positive for tetB and no isolate wasboth positive for tetA and tetB. Of the 97 sulfa-resistant bacteria screened, 9 were positive for sul2, 6 were positive for sul1, 1 isolate was positive for bothsul1 and sul2. The minimum inhibitory concentration (MIC) of tetracycline for tetA-carrying isolates were higher than those tetB-carrying isolates.while The MIC of sulfa for sul2-carrying isolates were higher than those sul1-carrying isolates. Indicating that tetA and sul2 gene may play ubknown roles in resisting tetracycline and sulfa than tetB and sul1 genes. The results showed the 4 kinds of genes (tetA,tetB,sul1,sul2) has no host specificity. All these 16S sequence are from the isolates which are positive for the above genes, it indicated the above antibiotic resistance genes are widespread in the environment regardless of the host. While the DNA sequence of these four genes showed tetA, sul1, sul2 genes are conservative in different bacteria , etB gene conserved poorly. The research aim is to get a preliminary understanding of resistance mechanism related to the resistant bacteria and the resistance genes in marine aquaculture environment through the analysis of resistant genes, providing research base for the prevention and treatment of drug-resistant bacteria so as to reduce the threat to the ecological environment, aquaculture and human health.

  8. Application of Genomic and Quantitative Genetic Tools to Identify Candidate Resistance Genes for Brown Rot Resistance in Peach

    PubMed Central

    Martínez-García, Pedro J.; Parfitt, Dan E.; Bostock, Richard M.; Fresnedo-Ramírez, Jonathan; Vazquez-Lobo, Alejandra; Ogundiwin, Ebenezer A.; Gradziel, Thomas M.; Crisosto, Carlos H.

    2013-01-01

    The availability of a complete peach genome assembly and three different peach genome sequences created by our group provide new opportunities for application of genomic data and can improve the power of the classical Quantitative Trait Loci (QTL) approaches to identify candidate genes for peach disease resistance. Brown rot caused by Monilinia spp., is the most important fungal disease of stone fruits worldwide. Improved levels of peach fruit rot resistance have been identified in some cultivars and advanced selections developed in the UC Davis and USDA breeding programs. Whole genome sequencing of the Pop-DF parents lead to discovery of high-quality SNP markers for QTL genome scanning in this experimental population. Pop-DF created by crossing a brown rot moderately resistant cultivar ‘Dr. Davis’ and a brown rot resistant introgression line, ‘F8,1–42’, derived from an initial almond × peach interspecific hybrid, was evaluated for brown rot resistance in fruit of harvest maturity over three seasons. Using the SNP linkage map of Pop-DF and phenotypic data collected with inoculated fruit, a genome scan for QTL identified several SNP markers associated with brown rot resistance. Two of these QTLs were placed on linkage group 1, covering a large (physical) region on chromosome 1. The genome scan for QTL and SNP effects predicted several candidate genes associated with disease resistance responses in other host-pathogen systems. Two potential candidate genes, ppa011763m and ppa026453m, may be the genes primarily responsible for M. fructicola recognition in peach, activating both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. Our results provide a foundation for further genetic dissection, marker assisted breeding for brown rot resistance, and development of peach cultivars resistant to brown rot. PMID:24244329

  9. Radiation resistance of the insulating materials used in the magnetic systems of accelerators

    NASA Astrophysics Data System (ADS)

    Petrov, V. V.; Pupkov, Yu. A.

    2016-07-01

    The radiation resistance of glass-cloth laminate, impregnating epoxy and silicone compounds, lavsan, and other materials used in particle accelerators is measured. Irradiation is performed on an ILU-6 electron accelerator to a dose of 30-100 MGy. Recommendations on the application of the insulating materials are made.

  10. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    SciTech Connect

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  11. RADIATION-RESISTANT FIBER OPTIC STRAIN SENSORS FOR SNS TARGET INSTRUMENTATION

    SciTech Connect

    Blokland, Willem; Bryan, Jeff; Riemer, Bernie; Sangrey, Robert L; Wendel, Mark W; Liu, Yun

    2016-01-01

    Measurement of stresses and strains in the mercury tar-get vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. This work reports the development of radiation-resistant fiber optic strain sensors for the SNS target in-strumentation.

  12. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    PubMed Central

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  13. chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400.

    PubMed

    Reyes-Gallegos, Rosa I; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2016-03-01

    The chromate ion transporter (CHR) superfamily includes proteins that confer chromate resistance by extruding toxic chromate ions from cytoplasm. Burkholderia xenovorans strain LB400 encodes six CHR homologues in its multireplicon genome and has been reported as highly chromate-resistant. The objective of this work was to analyze the involvement of chr redundant genes in chromate resistance by LB400. It was found that B. xenovorans plant rhizosphere strains lacking the megaplasmid are chromate-sensitive, suggesting that the chr gene present in this replicon is responsible for the chromate-resistance phenotype of the LB400 strain. Transformation of a chromate-sensitive B. xenovorans strain with each of the six cloned LB400 chr genes showed that genes from 'adaptive replicons' (chrA1b and chr1NCb from chromosome 2 and chrA2 from the megaplasmid) conferred higher chromate resistance levels than chr genes from 'central' chromosome 1 (chrA1a, chrA6, and chr1NCa). An LB400 insertion mutant affected in the chrA2 gene displayed a chromate-sensitive phenotype, which was fully reverted by transferring the chrA2 wild-type gene, and partially reverted by chrA1b or chr1NCb genes. These data indicate that chr genes from adaptive replicons, mainly chrA2 from the megaplasmid, are responsible for the B. xenovorans LB400 chromate-resistance phenotype.

  14. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance.

    PubMed

    Hawkins, Leigh K; Mylroie, J Erik; Oliveira, Dafne A; Smith, J Spencer; Ozkan, Seval; Windham, Gary L; Williams, W Paul; Warburton, Marilyn L

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  15. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans.

    PubMed

    Roberts, Marilyn C; Schwarz, Stefan

    2016-03-01

    Recent reports have speculated on the future impact that antibiotic-resistant bacteria will have on food production, human health, and global economics. This review examines microbial resistance to tetracyclines and phenicols, antibiotics that are widely used in global food production. The mechanisms of resistance, mode of spread between agriculturally and human-impacted environments and ecosystems, distribution among bacteria, and the genes most likely to be associated with agricultural and environmental settings are included. Forty-six different tetracycline resistance () genes have been identified in 126 genera, with (M) having the broadest taxonomic distribution among all bacteria and (B) having the broadest coverage among the Gram-negative genera. Phenicol resistance genes are organized into 37 groups and have been identified in 70 bacterial genera. The review provides the latest information on tetracycline and phenicol resistance genes, including their association with mobile genetic elements in bacteria of environmental, medical, and veterinary relevance. Knowing what specific antibiotic-resistance genes (ARGs) are found in specific bacterial species and/or genera is critical when using a selective suite of ARGs for detection or surveillance studies. As detection methods move to molecular techniques, our knowledge about which type of bacteria carry which resistance gene(s) will become more important to ensure that the whole spectrum of bacteria are included in future surveillance studies. This review provides information needed to integrate the biology, taxonomy, and ecology of tetracycline- and phenicol-resistant bacteria and their resistance genes so that informative surveillance strategies can be developed and the correct genes selected.

  16. Detection of drug-resistance genes using single bronchoscopy biopsy specimens.

    PubMed

    Trussardi-Regnier, Aurelie; Millot, Jean-Marc; Gorisse, Marie-Claude; Delvincourt, Chantal; Prevost, Alain

    2007-09-01

    Expression of three major resistance genes MDR1, MRP1 and LRP was investigated in small cell lung cancer, non-small cell lung cancer and metastasis. Single biopsies of bronchoscopy from 73 patients were performed to investigate expression of these three resistance genes by reverse transcriptase-polymerase chain reaction. Relations between gene expression and patient age, smoking status, histology, and chemotherapy were evaluated. A more frequent expression of MDR1 (77 versus 66%), MRP1 (91 versus 72%) and LRP (77 versus 63%) genes was detected in the malignant biopsies than in the non-malignant, respectively. In the metastasis biopsies, expression of these genes was markedly increased. No significant difference was observed between specimens before and after chemotherapy. Biopsies from progressing cancer showed higher MDR1, MRP1 and LRP gene expression. In conclusion, these data reveal a major role of MRP1 in intrinsic resistance and the high gene expression of MDR1 and MRP1 in relapsed diseases.

  17. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    SciTech Connect

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-11-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni.

  18. Ras Labs.-CASIS-ISS NL experiment for synthetic muscle: resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Sandberg, Eric; Albers, Leila N.; Rodriguez, Simone; Gentile, Charles A.; Meixler, Lewis D.; Ascione, George; Hitchner, Robert; Taylor, James; Hoffman, Dan; Cylinder, David; Moy, Leon; Mark, Patrick S.; Prillaman, Daniel L.; Nordarse, Robert; Menegus, Michael J.; Ratto, Jo Ann; Thellen, Christopher; Froio, Danielle; Furlong, Cosme; Razavi, Payam; Valenza, Logan; Hablani, Surbhi; Fuerst, Tyler; Gallucci, Sergio; Blocher, Whitney; Liffland, Stephanie

    2016-04-01

    In anticipation of deep space travel, new materials are being explored to assist and relieve humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Ras Labs Synthetic Muscle - electroactive polymers (EAPs) that contract and expand at low voltages - which mimic the unique gentle-yet-strong nature of human tissue, is a potential asset to manned space travel through protective gear and human assist robotics and for unmanned space exploration through deep space. Generation 3 Synthetic Muscle was proven to be resistant to extreme temperatures, and there were indications that these materials may also be radiation resistant. The purpose of the Ras Labs-CASIS-ISS Experiment is to test the radiation resistivity of the third and fourth generation of these EAPs, as well as to make them even more radiation resistant or radiation hardened. On Earth, exposure of the Generation 3 and Generation 4 EAPs to a Cs-137 radiation source for 47.8 hours with a total dose of 305.931 kRad of gamma radiation was performed at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University, followed by pH, peroxide, Shore Hardness Durometry, and electroactivity testing to determine the inherent radiation resistivity of these contractile EAPs and to determine whether the EAPs could be made even more radiation resistant through the application of appropriate additives and coatings. The on Earth preliminary tests determined that selected Ras Labs EAPs were not only inherently radiation resistant, but with the appropriate coatings and additives, could be made even more radiation resistant. Gforce testing to over 10 G's was performed at US Army's ARDEC Labs, with excellent results, in preparation for space flight to the International Space Station National Laboratory (ISS-NL). Selected samples of Generation 3 and Generation 4 Synthetic Muscle™, with various additives and coatings, were launched to the ISS-NL on April

  19. Radiation damage in front and back illuminated high resistivity silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Goradia, C. P.; Swartz, C. K.; Brandhorst, H. W., Jr.

    1982-01-01

    Radiation induced degradation, in front and back illuminated 84 and 1250 ohm-cm n+pp+ silicon solar cells, was determined and cell performance interpreted using calculated optically injected charge distributions and cell voltage components. The 84 ohm-cm cell degraded less when illuminated from the front or n+ side compared to that when illuminated from the back or p+ side. On the other hand, the 1250 ohm-cm cell degraded less when back illuminated. It is concluded that, in addition to the usual mechanisms leading to decreased collection efficiencies, loss of conductivity modulation is a major cause of radiation damage in high resistivity silicon solar cells. These results suggest that radiation damage to high resistivity n+pp+ cells can be decreased by increasing cell collection efficiency and illuminating the cells from the p+ side.

  20. Assessment of Resistance of Bacillus Horneckiae Endospores to UV Radiation and Function of Their Extraneous Layer in Resistance

    NASA Technical Reports Server (NTRS)

    Zachariah, Malcolm M.; Vaishampayan, Parag

    2011-01-01

    Spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. The spore's resistance might be due to their metabolically dormant state, and/or by the presence of a series of protective structures that encase the interior-most compartment, the core, which houses the spore chromosome. These spores have multiple layers surrounding the cell that are not found in vegetative cells, and some species have an outer layer of proteins and glycoproteins termed the "exosporium" or a fibrous "extraneous layer" (EL). Bacillus horneckiae is an EL-producing novel sporeformer isolated from a Phoenix spacecraft assembly clean room, and it has previously demonstrated resistance to UV radiation up to 1000 J/m(sup 2). The EL appears to bind B. horneckiae spores into large aggregations, or biofilms, and may confer some UV resistance to the spores. Multiple culturing and purification schemes were tried to achieve high purity spores because vegetative cells would skew UV resistance results. An ethanol-based purification scheme produced high purity spores. Selective removal of the EL from spores was attempted with two schemes: a chemical extraction method and physical extraction (sonication). Results from survival rates in the presence and absence of the external layer will provide a new understanding of the role of biofilms and passive resistance that may favor survival of biological systems in aggressive extra-terrestrial environments. The chemical extraction method decreased viable counts of spores and lead to an inconclusive change UV resistance relative to non-extracted spores. The physical extraction method lead to non-aggregated spores and did not alter viability; however, it produced UV resistance profiles similar to non-extracted spores. In addition to the EL-removal study, samples of B. horneckiae spores dried on

  1. Structure, Function, Interaction, Co-evolution of Rice Blast Resistance Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive rice diseases worldwide. Resistance (R) genes to blast encode proteins that detect pathogen signaling molecules encoded by M. oryzae avirulence (AVR) genes. R genes can be a single or a member of clu...

  2. Natural variation of rice blast resistant gene Pi-ta in Oryza species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice is a putative NBS type cytoplasmic receptor conferring resistance to races of Magnaporthe oryzae in a gene-for-gene manner. A Functional Nucleotide Polymorphism (FNP) change resulting in an amino acid substitution of Alanine to Serine at position 918 (nucleotide G to T at posi...

  3. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent changes in EPA regulations have prompted concern in some experts that transgenic corn expressing two lepidopteran-active genes from the soil bacterium Bacillus thuringiensis (Bt) (dual-gene) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than corn expressing a s...

  4. An aphid-resistance locus is tightly linked to the nematode-resistance gene, Mi, in tomato.

    PubMed Central

    Kaloshian, I; Lange, W H; Williamson, V M

    1995-01-01

    Tomato lines from diverse breeding programs were evaluated in the field for resistance to a natural infestation of the potato aphid, Macrosiphum euphorbiae, in Davis, CA. It was noted that all lines that carried the nematode-resistance gene, Mi, displayed aphid resistance. A greenhouse assay for aphid resistance was developed to investigate this relationship. Association of nematode and aphid resistances in near-isogenic lines suggested that these traits are tightly linked. Analysis of an F2 population segregating for nematode resistance indicated that aphid resistance segregated as a single major locus genetically linked to Mi. The name Meu1 is proposed for this locus. It is likely that Meu1 was introduced into tomato along with Mi from the wild species Lycopersicon peruvianum. The presence of aphid resistance in the line Motelle, which contains a very small region of introgressed DNA, and the lack of recombinants suggest that Meu1 is tightly linked to Mi or possibly is the same gene. The map-based strategy currently being used to clone Mi should be applicable to cloning Meu1. Images Fig. 1 PMID:11607509

  5. Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection.

    PubMed

    Patterson, Andrea J; Colangeli, Roberto; Spigaglia, Patrizia; Scott, Karen P

    2007-03-01

    A macroarray system was developed to screen environmental samples for the presence of specific tetracycline (Tc(R)) and erythromycin (erm(R)) resistance genes. The macroarray was loaded with polymerase chain reaction (PCR) amplicons of 23 Tc(R) genes and 10 erm(R) genes. Total bacterial genomic DNA was extracted from soil and animal faecal samples collected from different European countries. Macroarray hybridization was performed under stringent conditions and the results were analysed by fluorescence scanning. Pig herds in Norway, reared without antibiotic use, had a significantly lower incidence of antibiotic resistant bacteria than those reared in other European countries, and organic herds contained lower numbers of resistant bacteria than intensively farmed animals. The relative proportions of the different genes were constant across the different countries. Ribosome protection type Tc(R) genes were the most common resistance genes in animal faecal samples, with the tet(W) gene the most abundant, followed by tet(O) and tet(Q). Different resistance genes were present in soil samples, where erm(V) and erm(E) were the most prevalent followed by the efflux type Tc(R) genes. The macroarray proved a powerful tool to screen DNA extracted from environmental samples to identify the most abundant Tc(R) and erm(R) genes within those tested, avoiding the need for culturing and biased PCR amplification steps.

  6. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    SciTech Connect

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  7. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  8. Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease

    PubMed Central

    Taler, Dvir; Galperin, Marjana; Benjamin, Ido; Cohen, Yigal; Kenigsbuch, David

    2004-01-01

    Downy mildew caused by the oomycete pathogen Pseudoperonospora cubensis is a devastating foliar disease of cucurbits worldwide. We previously demonstrated that the wild melon line PI 124111F (PI) is highly resistant to all pathotypes of P. cubensis. That resistance was controlled genetically by two partially dominant, complementary loci. Here, we show that unlike other plant disease resistance genes, which confer an ability to resist infection by pathogens expressing corresponding avirulence genes, the resistance of PI to P. cubensis is controlled by enhanced expression of the enzymatic resistance (eR) genes At1 and At2. These constitutively expressed genes encode the photorespiratory peroxisomal enzyme proteins glyoxylate aminotransferases. The low expression of At1 and At2 in susceptible melon lines is regulated mainly at the transcriptional level. This regulation is independent of infection with the pathogen. Transgenic melon plants overexpressing either of these eR genes displayed enhanced activity of glyoxylate aminotransferases and remarkable resistance against P. cubensis. The cloned eR genes provide a new resource for developing downy mildew–resistant melon varieties. PMID:14688292

  9. sugE: A gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27.

    PubMed

    Cruz, Andreia; Micaelo, Nuno; Félix, Vitor; Song, Jun-Young; Kitamura, Shin-Ichi; Suzuki, Satoru; Mendo, Sónia

    2013-01-01

    The mechanism of bacterial resistance to tributyltin (TBT) is still unclear. The results herein presented contribute to clarify that mechanism in the TBT-resistant bacterium Aeromonas molluscorum Av27. We have identified and cloned a new gene that is involved in TBT resistance in this strain. The gene is highly homologous (84%) to the Aeromonas hydrophila-sugE gene belonging to the small multidrug resistance gene family (SMR), which includes genes involved in the transport of lipophilic drugs. In Av27, expression of the Av27-sugE was observed at the early logarithmic growth phase in the presence of a high TBT concentration (500 μM), thus suggesting the contribution of this gene for TBT resistance. E. coli cells transformed with Av27-sugE become resistant to ethidium bromide (EtBr), chloramphenicol (CP) and tetracycline (TE), besides TBT. According to the Moriguchi logP (miLogP) values, EtBr, CP and TE have similar properties and are substrates for the sugE-efflux system. Despite the different miLogP of TBT, E. coli cells transformed with Av27-sugE become resistant to this compound. So it seems that TBT is also a substrate for the SugE protein. The modelling studies performed also support this hypothesis. The data herein presented clearly indicate that sugE is involved in TBT resistance of this bacterium.

  10. A functional variomics tool for discovering drug resistance genes and drug targets

    PubMed Central

    Huang, Zhiwei; Chen, Kaifu; Zhang, Jianhuai; Li, Yongxiang; Wang, Hui; Cui, Dandan; Tang, Jiangwu; Liu, Yong; Shi, Xiaomin; Li, Wei; Liu, Dan; Chen, Rui; Sucgang, Richard S.; Pan, Xuewen

    2013-01-01

    Comprehensive discovery of genetic mechanisms of drug resistance and identification of in vivo drug targets represent significant challenges. Here we present a functional variomics technology in the model organism Saccharomyces cerevisiae. This tool analyzes numerous genetic variants and effectively tackles both problems simultaneously. Using this tool, we discovered almost all genes that, due to mutations or modest overexpression, confer resistance to rapamycin, cycloheximide, and amphotericin B. Most significant among the resistance genes were drug targets, including multiple targets of a given drug. With amphotericin B, we discovered the highly conserved membrane protein Pmp3 as a potent resistance factor and a possible novel target. Widespread application of this tool should allow rapid identification of conserved resistance mechanisms and targets of many more compounds. New genes and alleles that confer resistance to other stresses can also be discovered. Similar tools in other systems such as human cell lines will also be useful. PMID:23416056

  11. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    NASA Astrophysics Data System (ADS)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  12. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India

    PubMed Central

    Bengtsson-Palme, Johan; Boulund, Fredrik; Fick, Jerker; Kristiansson, Erik; Larsson, D. G. Joakim

    2014-01-01

    There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. PMID:25520706

  13. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans.

    PubMed

    Agapov, A A; Kulbachinskiy, A V

    2015-10-01

    The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.

  14. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  15. Radiation resistance of biological reagents for in situ life detection.

    PubMed

    Carr, Christopher E; Rowedder, Holli; Vafadari, Cyrus; Lui, Clarissa S; Cascio, Ethan; Zuber, Maria T; Ruvkun, Gary

    2013-01-01

    Life on Mars, if it exists, may share a common ancestry with life on Earth derived from meteoritic transfer of microbes between the planets. One means to test this hypothesis is to isolate, detect, and sequence nucleic acids in situ on Mars, then search for similarities to known common features of life on Earth. Such an instrument would require biological and chemical components, such as polymerase and fluorescent dye molecules. We show that reagents necessary for detection and sequencing of DNA survive several analogues of the radiation expected during a 2-year mission to Mars, including proton (H-1), heavy ion (Fe-56, O-18), and neutron bombardment. Some reagents have reduced performance or fail at higher doses. Overall, our findings suggest it is feasible to utilize space instruments with biological components, particularly for mission durations of up to several years in environments without large accumulations of charged particles, such as the surface of Mars, and have implications for the meteoritic transfer of microbes between planets. PMID:23330963

  16. Radiation resistance of sequencing chips for in situ life detection.

    PubMed

    Carr, Christopher E; Rowedder, Holli; Lui, Clarissa S; Zlatkovsky, Ilya; Papalias, Chris W; Bolander, Jarie; Myers, Jason W; Bustillo, James; Rothberg, Jonathan M; Zuber, Maria T; Ruvkun, Gary

    2013-06-01

    Life beyond Earth may be based on RNA or DNA if such life is related to life on Earth through shared ancestry due to meteoritic exchange, such as may be the case for Mars, or if delivery of similar building blocks to habitable environments has biased the evolution of life toward utilizing nucleic acids. In this case, in situ sequencing is a powerful approach to identify and characterize such life without the limitations or expense of returning samples to Earth, and can monitor forward contamination. A new semiconductor sequencing technology based on sensing hydrogen ions released during nucleotide incorporation can enable massively parallel sequencing in a small, robust, optics-free CMOS chip format. We demonstrate that these sequencing chips survive several analogues of space radiation at doses consistent with a 2-year Mars mission, including protons with solar particle event-distributed energy levels and 1 GeV oxygen and iron ions. We find no measurable impact of irradiation at 1 and 5 Gy doses on sequencing quality nor on low-level hardware characteristics. Further testing is required to study the impacts of soft errors as well as to characterize performance under neutron and gamma irradiation and at higher doses, which would be expected during operation in environments with significant trapped energetic particles such as during a mission to Europa. Our results support future efforts to use in situ sequencing to test theories of panspermia and/or whether life has a common chemical basis.

  17. Radiation resistance of sequencing chips for in situ life detection.

    PubMed

    Carr, Christopher E; Rowedder, Holli; Lui, Clarissa S; Zlatkovsky, Ilya; Papalias, Chris W; Bolander, Jarie; Myers, Jason W; Bustillo, James; Rothberg, Jonathan M; Zuber, Maria T; Ruvkun, Gary

    2013-06-01

    Life beyond Earth may be based on RNA or DNA if such life is related to life on Earth through shared ancestry due to meteoritic exchange, such as may be the case for Mars, or if delivery of similar building blocks to habitable environments has biased the evolution of life toward utilizing nucleic acids. In this case, in situ sequencing is a powerful approach to identify and characterize such life without the limitations or expense of returning samples to Earth, and can monitor forward contamination. A new semiconductor sequencing technology based on sensing hydrogen ions released during nucleotide incorporation can enable massively parallel sequencing in a small, robust, optics-free CMOS chip format. We demonstrate that these sequencing chips survive several analogues of space radiation at doses consistent with a 2-year Mars mission, including protons with solar particle event-distributed energy levels and 1 GeV oxygen and iron ions. We find no measurable impact of irradiation at 1 and 5 Gy doses on sequencing quality nor on low-level hardware characteristics. Further testing is required to study the impacts of soft errors as well as to characterize performance under neutron and gamma irradiation and at higher doses, which would be expected during operation in environments with significant trapped energetic particles such as during a mission to Europa. Our results support future efforts to use in situ sequencing to test theories of panspermia and/or whether life has a common chemical basis. PMID:23734755

  18. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  19. Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression

    SciTech Connect

    Choi, Seungho; Ku, Ja-Lok

    2011-08-26

    Highlights: {yields} MELK expression significantly increased when the cells are exposed to radiation or 5-FU. {yields} Suppression of MELK caused cell cycle changes and decrease in proliferation. {yields} Radiation or 5-FU treatment after MELK suppression by siRNA induced growth inhibition. -- Abstract: It was reported that the local recurrence would be caused by cancer stem cells acquiring chemo- and radio-resistance. Recently, one of the potential therapeutic targets for colorectal and other cancers has been identified, which is maternal embryonic leucine zipper kinase (MELK). MELK is known as an embryonic and neural stem cell marker, and associated with the cell survival, cell proliferation, and apoptosis. In this study, SNU-503, which is a rectal cancer cell line, was treated with radiation or 5-fluorouracil (5-FU), and elevation of the MELK expression level was observed. Furthermore, the cell line was pre-treated with small interfering RNA (siRNA) against MELK mRNA before treatment of radiation or 5-FU and its effects on cell cycle and proliferation were observed. We demonstrated that knockdown of MELK reduced the proliferation of cells with radiation or 5-FU treatment. In addition, MELK suppression caused changes in cell cycle. In conclusion, MELK could be associated with increased resistance of colorectal cancer cells against radiation and 5-FU.

  20. SSTAR, a Stand-Alone Easy-To-Use Antimicrobial Resistance Gene Predictor.

    PubMed

    de Man, Tom J B; Limbago, Brandi M

    2016-01-01

    We present the easy-to-use Sequence Search Tool for Antimicrobial Resistance, SSTAR. It combines a locally executed BLASTN search against a customizable database with an intuitive graphical user interface for identifying antimicrobial resistance (AR) genes from genomic data. Although the database is initially populated from a public repository of acquired resistance determinants (i.e., ARG-ANNOT), it can be customized for particular pathogen groups and resistance mechanisms. For instance, outer membrane porin sequences associated with carbapenem resistance phenotypes can be added, and known intrinsic mechanisms can be included. Unique about this tool is the ability to easily detect putative new alleles and truncated versions of existing AR genes. Variants and potential new alleles are brought to the attention of the user for further investigation. For instance, SSTAR is able to identify modified or truncated versions of porins, which may be of great importance in carbapenemase-negative carbapenem-resistant Enterobacteriaceae. SSTAR is written in Java and is therefore platform independent and compatible with both Windows and Unix operating systems. SSTAR and its manual, which includes a simple installation guide, are freely available from https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-. IMPORTANCE Whole-genome sequencing (WGS) is quickly becoming a routine method for identifying genes associated with antimicrobial resistance (AR). However, for many microbiologists, the use and analysis of WGS data present a substantial challenge. We developed SSTAR, software with a graphical user interface that enables the identification of known AR genes from WGS and has the unique capacity to easily detect new variants of known AR genes, including truncated protein variants. Current software solutions do not notify the user when genes are truncated and, therefore, likely nonfunctional, which makes phenotype predictions less accurate. SSTAR

  1. Identification of gene-based responses in human blood cells exposed to alpha particle radiation

    PubMed Central

    2014-01-01

    Background The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving α-particles. Methods Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of α-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Results Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either α-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the α-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no α-particle specific transcripts were identified. Conclusion Current gene panels for photon radiation may also be applicable for use in α-particle radiation biodosimetry. PMID:25017500

  2. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    PubMed

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence.

  3. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    PubMed

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence. PMID:27525940

  4. RNA-Seq Analysis Reveals Candidate Genes for Ontogenic Resistance in Malus-Venturia Pathosystem

    PubMed Central

    Gusberti, Michele; Gessler, Cesare; Broggini, Giovanni A. L.

    2013-01-01

    Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible) and old (ontogenic resistant) leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not) should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen) shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. In this work, five candidate genes putatively involved in the ontogenic resistance of apple were identified: a gene encoding an “enhanced disease susceptibility 1 protein” was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3) were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result of the

  5. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production.

    PubMed

    Dowd, Patrick F; Johnson, Eric T

    2015-05-01

    Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease resistance-associated genes in milk stage kernels from commercial popcorn fields over 3 years. Relatively lower expression of resistance gene types was noted in years with higher temperatures and lower rainfall, which was consistent with prior results for many previously identified resistance response-associated genes. The lower rates of expression occurred for genes such as chitinases, protease inhibitors, and peroxidases; enzymes involved in the synthesis of cell wall barriers and secondary metabolites; and regulatory proteins. However, expression of several specific resistance genes previously associated with mycotoxins, such as aflatoxin in dent maize, was not affected. Insect damage altered the spectrum of resistance gene expression differences compared to undamaged ears. Correlation analyses showed expression differences of some previously reported resistance genes that were highly associated with mycotoxin levels and included glucanases, protease inhibitors, peroxidases, and thionins. PMID:25512225

  6. Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007.

    PubMed

    Choudhary, Sangeeta; Sar, Pinaki

    2016-07-01

    A uranium (U)-resistant and -accumulating Pseudomonas aeruginosa strain was characterized to assess the response of toxic metals toward its growth and expression of metal resistance determinants. The bacterium showed MIC (minimum inhibitory concentration) values of 6, 3, and 2 mM for Zn, Cu, and Cd, respectively; with resistance phenotype conferred by periplasmic Cu sequestering copA and RND type heavy metal efflux czcA genes. Real-time PCR-based expression analysis revealed significant upregulation of both these genes upon exposure to low concentrations of metals for short duration, whereas the global stress response gene sodA encoding superoxide dismutase enzyme was upregulated only at higher metal concentrations or longer exposure time. It could also be inferred that copA and czcA are involved in providing resistance only at low metal concentrations, whereas involvement of "global stress response" phenomenon (expression of sodA) at higher metal concentration or increased exposure was evident. This study provides significant understanding of the adaptive response of bacteria surviving in metal and radionuclide contaminated environments along with the development of real-time PCR-based quantification method of using metal resistance genes as biomarker for monitoring relevant bacteria in such habitats. PMID:26662317

  7. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.

    PubMed

    Dodds, Peter N; Lawrence, Gregory J; Catanzariti, Ann-Maree; Teh, Trazel; Wang, Ching-I A; Ayliffe, Michael A; Kobe, Bostjan; Ellis, Jeffrey G

    2006-06-01

    Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.

  8. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).

    PubMed

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.

  9. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.)

    PubMed Central

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, “Rojo Pasión” and “Z506-7”, resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance. PMID:26658051

  10. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).

    PubMed

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance. PMID:26658051

  11. Emergence of macrolide resistance gene mph(B) in Streptococcus uberis and cooperative effects with rdmC-like gene.

    PubMed

    Achard, Adeline; Guérin-Faublée, Véronique; Pichereau, Vianney; Villers, Corinne; Leclercq, Roland

    2008-08-01

    Streptococcus uberis UCN60 was resistant to spiramycin (MIC = 8 microg/ml) but susceptible to erythromycin (MIC = 0.06 microg/ml), azithromycin (MIC = 0.12 microg/ml), josamycin (MIC = 0.25 microg/ml), and tylosin (MIC = 0.5 microg/ml). A 2.5-kb HindIII fragment was cloned from S. uberis UCN60 DNA on plasmid pUC18 and introduced into Escherichia coli AG100A, where it conferred resistance to spiramycin by inactivation. The sequence analysis of the fragment showed the presence of an rdmC-like gene that putatively encoded a protein belonging to the alpha/beta hydrolase family and of the first 196 nucleotides of the mph(B) gene putatively encoding a phosphotransferase known to inactivate 14-, 15-, and 16-membered macrolides in E. coli. The entire mph(B) gene was then identified in S. uberis UCN60. The two genes were expressed alone or in combination in E. coli, Staphylococcus aureus, and Enterococcus faecalis. Analysis of MICs revealed that rdmC-like alone did not confer resistance to erythromycin, tylosin, and josamycin in those three hosts. It conferred resistance to spiramycin in E. coli and E. faecalis but not in S. aureus. mph(B) conferred resistance in E. coli to erythromycin, tylosin, josamycin, and spiramycin but only low levels of resistance in E. faecalis and S. aureus to spiramycin (MIC = 8 microg/ml). The combination of mph(B) and rdmC-like genes resulted in a resistance to spiramycin and tylosin in the three hosts that significantly exceeded the mere addition of the resistance levels conferred by each resistance mechanism alone. PMID:18519724

  12. Deinococcus phoenicis sp. nov., an extreme ionizing-radiation-resistant bacterium isolated from the Phoenix Lander assembly facility.

    PubMed

    Vaishampayan, Parag; Roberts, Anne Hayden; Augustus, Angela; Pukall, Rüdiger; Schumann, Peter; Schwendner, Petra; Mayilraj, Shanmugam; Salmassi, Tina; Venkateswaran, Kasthuri

    2014-10-01

    A bacterial strain, designated 1P10ME(T), which was resistant to extreme doses of ionizing radiation, pale-pink, non-motile, and a tetrad-forming coccoid was isolated from a cleanroom at the Kennedy Space Center, where the Phoenix spacecraft was assembled. Strain 1P10ME(T) showed optimum growth at 30 °C, with a pH range for growth of 6.5-9.0 and was highly sensitive to sodium chloride, growing only in medium with no added NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1P10ME(T) represents a novel member of the genus Deinococcus, with low sequence similarities (<93.5%) to recognized species of the genus Deinococcus. The predominant cellular fatty acid was C15:1ω6c. This novel strain exhibits extreme resistance to gamma radiation (D10 >8 kGy) and UV (D10 >1000 Jm(-2)). The results of our polyphasic taxonomic analyses suggest that strain 1P10ME(T) represents a novel species of the genus Deinococcus, for which the name Deinococcus phoenicis sp. nov. is proposed. The type strain is 1P10ME(T) ( = NRRL B-59546(T) = DSM 27173(T)).

  13. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals.

    PubMed

    Jackson, C R; Davis, J A; Frye, J G; Barrett, J B; Hiott, L M

    2015-09-01

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the

  14. Transfer of antibiotic-resistance genes via phage-related mobile elements.

    PubMed

    Brown-Jaque, Maryury; Calero-Cáceres, William; Muniesa, Maite

    2015-05-01

    Antibiotic resistance is a major concern for society because it threatens the effective prevention of infectious diseases. While some bacterial strains display intrinsic resistance, others achieve antibiotic resistance by mutation, by the recombination of foreign DNA into the chromosome or by horizontal gene acquisition. In many cases, these three mechanisms operate together. Several mobile genetic elements (MGEs) have been reported to mobilize different types of resistance genes and despite sharing common features, they are often considered and studied separately. Bacteriophages and phage-related particles have recently been highlighted as MGEs that transfer antibiotic resistance. This review focuses on phages, phage-related elements and on composite MGEs (phages-MGEs) involved in antibiotic resistance mobility. We review common features of these elements, rather than differences, and provide a broad overview of the antibiotic resistance transfer mechanisms observed in nature, which is a necessary first step to controlling them.

  15. Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown.

    PubMed

    Quenouille, Julie; Montarry, Josselin; Palloix, Alain; Moury, Benoit

    2013-02-01

    Genetic resistance provides efficient control of crop diseases, but is limited by pathogen evolution capacities which often result in resistance breakdown. It has been demonstrated recently, in three different pathosystems, that polygenic resistances combining a major-effect gene and quantitative resistance controlled by the genetic background are more durable than monogenic resistances (with the same major gene in a susceptible genetic background), but the underlying mechanisms are unknown. Using the pepper-Potato virus Y system, we examined three mechanisms that could account for the greater durability of the polygenic resistances: (i) the additional quantitative resistance conferred by the genetic background; (ii) the increase in the number of mutations required for resistance breakdown; and (iii) the slower selection of adapted resistance-breaking mutants within the viral population. The three mechanisms were experimentally validated. The first explained a large part of the variation in resistance breakdown frequency and is therefore expected to be a major determinant of resistance durability. Quantitative resistance factors also had an influence on the second mechanism by modifying the virus mutational pathways towards resistance breakdown and could also have an influence on the third mechanism by increasing genetic drift effects on the viral population. The relevance of these results for other plant-pathogen systems and their importance in plant breeding are discussed.

  16. Mechanisms of linear energy transfer-dependent radiation resistance in myeloid leukemia cells

    NASA Astrophysics Data System (ADS)

    Haro, Kurtis John

    Ionizing radiations (IRs) of high linear energy transfer (LET), such as alpha particles, produce fundamentally different forms of DNA damage in cells than conventional low LET radiation, such as gamma rays. Alpha particle therapies have recently emerged as important potential treatments of cancer, particularly for relatively easily-accessible malignancies of the hematopoietic system. Therefore, we created stable radioresistant myeloid leukemia HL60 cell clones derived after irradiation from either gamma rays (RG) or alpha particles (RA) in order to understand whether resistance to high LET (IR) was possible and the potential differences in radioresistance that could arise from radiations of different LET. Repeated irradiations yielded radioresistant HL60 clones and, regardless of derivation, displayed similar levels of resistance to IR of either type of radiation. The resistant phenotype in each type of radioresistant clone was driven by similar, multifactorial changes that included significant reductions in apoptosis, a decreased late G2/M checkpoint accumulation that was indicative of increased genomic instability, as well as more robust repair of specific types of DNA lesions that included DNA double-strand breaks (DSBs). The relative changes in resistance to alpha particles, however, were substantially lower than the increase in resistance to gamma rays. The data suggest that these processes were interdependent, as inhibition of homology directed repair in the resistant clones sensitized them to gamma IR to a larger extent than naive HL60 cells. Finally, we identified the downregulation of iron regulatory protein 1 (IRP1) in gamma-resistant cells but not in alpha-resistant cells. Short-hairpin RNA-mediated reductions in expression of IRP1 in radiation-naive HL60 cells led to significant radioresistance to gamma rays, but not alpha particles. The IRP1-mediated radioresistance was associated with changes in iron-mediated oxidative stress that led to significant

  17. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    PubMed

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike

    2015-07-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.

  18. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    PubMed Central

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  19. Modulation of mgrB gene expression as a source of colistin resistance in Klebsiella oxytoca.

    PubMed

    Jayol, Aurélie; Poirel, Laurent; Villegas, Maria-Virginia; Nordmann, Patrice

    2015-07-01

    Gene modifications in the PmrAB and PhoPQ two-component regulatory systems, as well as inactivation of the mgrB gene, are known to be causes of colistin resistance in Klebsiella pneumoniae. The objective of this study was to characterise the mechanism involved in colistin resistance in a Klebsiella oxytoca isolate. A K. oxytoca clinical isolate showing resistance to colistin was recovered in Cali, Colombia. The pmrA, pmrB, phoP, phoQ and mgrB genes were amplified and sequenced. Wild-type mgrB genes from K. pneumoniae and K. oxytoca were cloned, and corresponding recombinant plasmids were used for complementation assays. By analysing the mgrB gene of the K. oxytoca isolate and its flanking sequences, an insertion sequence (IS) of 1196bp was identified in its promoter region. The insertion was located between nucleotides -39 and -38 when referring to the start codon of the mgrB gene, thus negatively interfering with expression of the mgrB gene by modifying its promoter structure. This IS was very similar to ISKpn26 (99% nucleotide identity) belonging to the IS5 family. Complementation assays with mgrB genes from wild-type K. pneumoniae or K. oxytoca restored full susceptibility to colistin. In conclusion, here we identified the mechanism involved in colistin resistance in a K. oxytoca isolate. Modulation of mgrB gene expression was the key factor for this acquired resistance to colistin. PMID:25982250

  20. Modulation of mgrB gene expression as a source of colistin resistance in Klebsiella oxytoca.

    PubMed

    Jayol, Aurélie; Poirel, Laurent; Villegas, Maria-Virginia; Nordmann, Patrice

    2015-07-01

    Gene modifications in the PmrAB and PhoPQ two-component regulatory systems, as well as inactivation of the mgrB gene, are known to be causes of colistin resistance in Klebsiella pneumoniae. The objective of this study was to characterise the mechanism involved in colistin resistance in a Klebsiella oxytoca isolate. A K. oxytoca clinical isolate showing resistance to colistin was recovered in Cali, Colombia. The pmrA, pmrB, phoP, phoQ and mgrB genes were amplified and sequenced. Wild-type mgrB genes from K. pneumoniae and K. oxytoca were cloned, and corresponding recombinant plasmids were used for complementation assays. By analysing the mgrB gene of the K. oxytoca isolate and its flanking sequences, an insertion sequence (IS) of 1196bp was identified in its promoter region. The insertion was located between nucleotides -39 and -38 when referring to the start codon of the mgrB gene, thus negatively interfering with expression of the mgrB gene by modifying its promoter structure. This IS was very similar to ISKpn26 (99% nucleotide identity) belonging to the IS5 family. Complementation assays with mgrB genes from wild-type K. pneumoniae or K. oxytoca restored full susceptibility to colistin. In conclusion, here we identified the mechanism involved in colistin resistance in a K. oxytoca isolate. Modulation of mgrB gene expression was the key factor for this acquired resistance to colistin.

  1. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens.

    PubMed

    Lorito, M; Woo, S L; Garcia, I; Colucci, G; Harman, G E; Pintor-Toro, J A; Filippone, E; Muccifora, S; Lawrence, C B; Zoina, A; Tuzun, S; Scala, F; Fernandez, I G

    1998-07-01

    Disease resistance in transgenic plants has been improved, for the first time, by the insertion of a gene from a biocontrol fungus. The gene encoding a strongly antifungal endochitinase from the mycoparasitic fungus Trichoderma harzianum was transferred to tobacco and potato. High expression levels of the fungal gene were obtained in different plant tissues, which had no visible effect on plant growth and development. Substantial differences in endochitinase activity were detected among transformants. Selected transgenic lines were highly tolerant or completely resistant to the foliar pathogens Alternaria alternata, A. solani, Botrytis cinerea, and the soilborne pathogen Rhizoctonia solani. The high level and the broad spectrum of resistance obtained with a single chitinase gene from Trichoderma overcome the limited efficacy of transgenic expression in plants of chitinase genes from plants and bacteria. These results demonstrate a rich source of genes from biocontrol fungi that can be used to control diseases in plants.

  2. Acquisition of a natural resistance gene renders a clinical strain of methicilin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid

    PubMed Central

    Toh, Seok-Ming; Xiong, Liqun; Arias, Cesar A.; Villegas, Maria V.; Lolans, Karen; Quinn, John; Mankin, Alexander S.

    2009-01-01

    Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug-binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Co-expression of these two genes confers resistance to all the clinically-relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicate its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains. PMID:17555436

  3. Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum.

    PubMed

    Webb, Kimberly M; Yu, Jerry; Robinson, Courtney K; Noboru, Tomiya; Lee, Yuan C; DiRuggiero, Jocelyne

    2013-05-01

    Ionizing radiation (IR) is of particular interest in biology because its exposure results in severe oxidative stress to the cell's macromolecules. Our recent work with extremophiles supports the idea that IR resistance is most likely achieved by a metabolic route, effected by manganese (Mn) antioxidants. Biochemical analysis of "super-IR resistant" mutants of H. salinarum, evolved over multiple cycles of exposure to high doses of IR, confirmed the key role for Mn antioxidants in the IR resistance of this organism. Analysis of the proteome of H. salinarum "super-IR resistant" mutants revealed increased expression for proteins involved in energy metabolism, replenishing the cell with reducing equivalents depleted by the oxidative stress inflicted by IR. Maintenance of redox homeostasis was also activated by the over-expression of coenzyme biosynthesis pathways involved in redox reactions. We propose that in H. salinarum, increased tolerance to IR is a combination of metabolic regulatory adjustments and the accumulation of Mn-antioxidant complexes.

  4. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome

    PubMed Central

    2016-01-01

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust. PMID:27599587

  5. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    PubMed

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.

  6. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    PubMed

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust. PMID:27599587

  7. Diversity of Integron- and Culture-Associated Antibiotic Resistance Genes in Freshwater Floc

    PubMed Central

    Drudge, Christopher N.; Elliott, Amy V. C.; Plach, Janina M.; Ejim, Linda J.; Wright, Gerard D.; Droppo, Ian G.

    2012-01-01

    Clinically important antibiotic resistance genes were detected in culturable bacteria and class 1 integron gene cassettes recovered from suspended floc, a significant aquatic repository for microorganisms and trace elements, across freshwater systems variably impacted by anthropogenic activities. Antibiotic resistance gene cassettes in floc total community DNA differed appreciably in number and type from genes detected in bacteria cultured from floc. The number of floc antibiotic resistance gene cassette types detected across sites was positively correlated with total (the sum of Ag, As, Cu, and Pb) trace element concentrations in aqueous solution and in a component of floc readily accessible to bacteria. In particular, concentrations of Cu and Pb in the floc component were positively correlated with floc resistance gene cassette diversity. Collectively, these results identify suspended floc as an important reservoir, distinct from bulk water and bed sediment, for antibiotic resistance in aquatic environments ranging from heavily impacted urban sites to remote areas of nature reserves and indicate that trace elements, particularly Cu and Pb, are geochemical markers of resistance diversity in this environmental reservoir. The increase in contamination of global water supplies suggests that aquatic environments will become an even more important reservoir of clinically important antibiotic resistance in the future. PMID:22467502

  8. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis

    PubMed Central

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  9. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis.

    PubMed

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  10. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil.

    PubMed

    Lee, Jae-Jin; Lee, Hyun Ji; Jang, Gi Seon; Yu, Ja Myoung; Cha, Ji Yoon; Kim, Su Jeong; Lee, Eun Bit; Kim, Myung Kyum

    2013-06-01

    Strain DY59(T), a Gram-positive non-motile bacterium, was isolated from soil in South Korea, and was characterized to determine its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence of strain DY59(T) revealed that the strain DY59(T) belonged to the family Deinococcaceae in the class Deinococci. The highest degree of sequence similarities of strain DY59(T) were found with Deinococcus radiopugnans KACC 11999(T) (99.0%), Deinococcus marmoris KACC 12218(T) (97.9%), Deinococcus saxicola KACC 12240(T) (97.0%), Deinococcus aerolatus KACC 12745(T) (96.2%), and Deinococcus frigens KACC 12220(T) (96.1%). Chemotaxonomic data revealed that the predominant fatty acids were iso-C15:0 (19.0%), C16:1 ω7c (17.7%), C15:1 ω6c (12.6%), iso-C17:0 (10.3%), and iso-C17:1 ω9c (10.3%). A complex polar lipid profile consisted of a major unknown phosphoglycolipid. The predominant respiratory quinone is MK-8. The cell wall peptidoglycan contained D-alanine, L-glutamic acid, glycine, and L-ornithine (di-amino acid). The novel strain showed resistance to gamma radiation, with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. Based on the phylogenetic, chemotaxonomic, and phenotypic data, strain DY59(T) (=KCTC 33033(T) =JCM 18581(T)) should be classified as a type strain of a novel species, for which the name Deinococcus swuensis sp. nov. is proposed.

  11. High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India.

    PubMed

    Padmasini, Elango; Padmaraj, R; Ramesh, S Srivani

    2014-01-01

    Enterococci are nosocomial pathogen with multiple-drug resistance by intrinsic and extrinsic mechanisms. Aminoglycosides along with cell wall inhibitors are given clinically for treating enterococcal infections. 178 enterococcal isolates were analyzed in this study. E. faecalis is identified to be the predominant Enterococcus species, along with E. faecium, E. avium, E. hirae, E. durans, E. dispar and E. gallinarum. High level aminoglycoside resistance (HLAR) by MIC for gentamicin (GM), streptomycin (SM) and both (GM + SM) antibiotics was found to be 42.7%, 29.8%, and 21.9%, respectively. Detection of aminoglycoside modifying enzyme encoding genes (AME) in enterococci was identified by multiplex PCR for aac(6')-Ie-aph(2'')-Ia; aph(2'')-Ib; aph(2'')-Ic; aph(2'')-Id and aph(3')-IIIa genes. 38.2% isolates carried aac(6')-Ie-aph(2'')-Ia gene and 40.4% isolates carried aph(3')-IIIa gene. aph(2'')-Ib; aph(2'')-Ic; aph(2'')-Id were not detected among our study isolates. aac(6')-Ie-aph(2'')-Ia and aph(3')-IIIa genes were also observed in HLAR E. durans, E. avium, E. hirae, and E. gallinarum isolates. This indicates that high level aminoglycoside resistance genes are widely disseminated among isolates of enterococci from Chennai.

  12. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  13. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  14. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria.

    PubMed

    Alexander, Johannes; Bollmann, Anna; Seitz, Wolfram; Schwartz, Thomas

    2015-04-15

    The dissemination of medically relevant antibiotic resistance genes (ARGs) (blaVIM-1, vanA, ampC, ermB, and mecA) and opportunistic bacteria (Enterococcus faecium/faecalis, Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus aureus, and CNS) was determined in different anthropogenically influenced aquatic habitats in a selected region of Germany. Over a period of two years, four differently sized wastewater treatment plants (WWTPs) with and without clinical influence, three surface waters, four rain overflow basins, and three groundwater sites were analyzed by quantitative Polymerase Chain Reaction (qPCR). Results were calculated in cell equivalents per 100 ng of total DNA extracted from water samples and per 100 mL sample volume, which seems to underestimate the abundance of antibiotic resistance and opportunistic bacteria. High abundances of opportunistic bacteria and ARG were quantified in clinical wastewaters and influents of the adjacent WWTP. The removal capacities of WWTP were up to 99% for some, but not all investigated bacteria. The abundances of most ARG targets were found to be increased in the bacterial population after conventional wastewater treatment. As a consequence, downstream surface water and also some groundwater compartments displayed high abundances of all four ARGs. It became obvious that the dynamics of the ARG differed from the fate of the opportunistic bacteria. This underlines the necessity of an advanced microbial characterization of anthropogenically influenced environments.

  15. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer.

    PubMed

    Thewes, Verena; Simon, Ronald; Schroeter, Petra; Schlotter, Magdalena; Anzeneder, Tobias; Büttner, Reinhard; Benes, Vladimir; Sauter, Guido; Burwinkel, Barbara; Nicholson, Robert I; Sinn, Hans-Peter; Schneeweiss, Andreas; Deuschle, Ulrich; Zapatka, Marc; Heck, Stefanie; Lichter, Peter

    2015-02-15

    Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer.

  16. Differential expression of putative drug resistance genes in Mycobacterium tuberculosis clinical isolates.

    PubMed

    González-Escalante, Laura; Peñuelas-Urquides, Katia; Said-Fernández, Salvador; Silva-Ramírez, Beatriz; Bermúdez de León, Mario

    2015-12-01

    Understanding drug resistance in Mycobacterium tuberculosis requires an integrated analysis of strain lineages, mutations and gene expression. Previously, we reported the differential expression of esxG, esxH, infA, groES, rpmI, rpsA and lipF genes in a sensitive M. tuberculosis strain and in a multidrug-resistant clinical isolate. Here, we have evaluated the expression of these genes in 24 clinical isolates that belong to different lineages and have different drug resistance profiles. In vitro, growth kinetics analysis showed no difference in the growth of the clinical isolates, and thus drug resistance occurred without a fitness cost. However, a quantitative reverse transcription PCR analysis of gene expression revealed high variability among the clinical isolates, including those with similar drug resistance profiles. Due to the complexity of gene regulation pathways and the wide diversity of M. tuberculosis lineages, the use of gene expression as a molecular signature for drug resistance is not straightforward. Therefore, we recommend that the expression of M. tuberculosis genes be performed individually, and baseline expression levels should be verified among several different clinical isolates, before any further applications of these findings.

  17. A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum.

    PubMed

    Tejera Nevado, Paloma; Bifeld, Eugenia; Höhn, Katharina; Clos, Joachim

    2016-09-01

    The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu(2+) challenge but not under sodium arsenite, Cd(2+), or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance. PMID:27324767

  18. Prevalence of antibiotic resistance genes in staphylococci isolated from ready-to-eat meat products.

    PubMed

    Podkowik, M; Bystroń, J; Bania, J

    2012-01-01

    Prevalence of mecA, blaZ, tetO/K/M, ermA/B/C, aph, and vanA/B/C/D genes conferring resistance to oxacillin, penicillin, tetracycline, erythromycin, gentamicin, and vancomycin was investigated in 65 staphylococcal isolates belonging to twelve species obtained from ready-to-eat porcine, bovine, and chicken products. All coagulase negative staphylococci (CNS) and S. aureus isolates harbored at least one antibiotic resistance gene. None of the S. aureus possessed more than three genes, while 25% of the CNS isolates harbored at least four genes encoding resistance to clinically used antibiotics. In 15 CNS isolates the mecA gene was detected, while all S. aureus isolates were mecA-negative. We demonstrate that in ready-to-eat food the frequency of CNS harboring multiple antibiotic resistance genes is higher than that of multiple resistant S. aureus, meaning that food can be considered a reservoir of bacteria containing genes potentially contributing to the evolution of antibiotic resistance in staphylococci.

  19. Identification of nuclear genes affecting 2-Deoxyglucose resistance in Schizosaccharomyces pombe.

    PubMed

    Vishwanatha, Akshay; Rallis, Charalampos; Bevkal Subramanyaswamy, Shubha; D'Souza, Cletus Joseph Michael; Bähler, Jürg; Schweingruber, Martin Ernst

    2016-09-01

    2-Deoxyglucose (2-DG) is a toxic glucose analog. To identify genes involved in 2-DG toxicity in Schizosaccharomyces pombe, we screened a wild-type overexpression library for genes which render cells 2-DG resistant. A gene we termed odr1, encoding an uncharacterized hydrolase, led to strong resistance and altered invertase expression when overexpressed. We speculate that Odr1 neutralizes the toxic form of 2-DG, similar to the Saccharomyces cerevisiae Dog1 and Dog2 phosphatases which dephosphorylate 2-DG-6-phosphate synthesized by hexokinase. In a complementary approach, we screened a haploid deletion library to identify 2-DG-resistant mutants. This screen identified the genes snf5, ypa1, pas1 and pho7 In liquid medium, deletions of these genes conferred 2-DG resistance preferentially under glucose-repressed conditions. The deletion mutants expressed invertase activity more constitutively than the control strain, indicating defects in the control of glucose repression. No S. cerevisiae orthologs of the pho7 gene is known, and no 2-DG resistance has been reported for any of the deletion mutants of the other genes identified here. Moreover, 2-DG leads to derepressed invertase activity in S. pombe, while in S. cerevisiae it becomes repressed. Taken together, these findings suggest that mechanisms involved in 2-DG resistance differ between budding and fission yeasts.

  20. Candidate Resistant Genes of Sand Pear (Pyrus pyrifolia Nakai) to Alternaria alternata Revealed by Transcriptome Sequencing.

    PubMed

    Yang, Xiaoping; Hu, Hongju; Yu, Dazhao; Sun, Zhonghai; He, Xiujuan; Zhang, Jingguo; Chen, Qiliang; Tian, Rui; Fan, Jing

    2015-01-01

    Pear black spot (PBS) disease, which is caused by Alternaria alternata (Aa), is one of the most serious diseases affecting sand pear (Pyrus pyrifolia Nakai) cultivation worldwide. To investigate the defense mechanisms of sand pear in response to Aa, the transcriptome of a sand pear germplasm with differential resistance to Aa was analyzed using Illumina paired-end sequencing. Four libraries derived from PBS-resistant and PBS-susceptible sand pear leaves were characterized through inoculation or mock-inoculation. In total, 20.5 Gbp of sequence data and 101,632,565 reads were generated, representing 44717 genes. Approximately 66% of the genes or sequenced reads could be aligned to the pear reference genome. A large number (5213) of differentially expressed genes related to PBS resistance were obtained; 34 microsatellites were detected in these genes, and 28 genes were found to be closely related to PBS resistance. Using a transcriptome analysis in response to PBS inoculation and comparison analysis to the PHI database, 4 genes (Pbr039001, Pbr001627, Pbr025080 and Pbr023112) were considered to be promising candidates for sand pear resistance to PBS. This study provides insight into changes in the transcriptome of sand pear in response to PBS infection, and the findings have improved our understanding of the resistance mechanism of sand pear to PBS and will facilitate future gene discovery and functional genome studies of sand pear.

  1. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water.

    PubMed

    Makowska, Nicoletta; Koczura, Ryszard; Mokracka, Joanna

    2016-02-01

    Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent. PMID:26519797

  2. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water.

    PubMed

    Makowska, Nicoletta; Koczura, Ryszard; Mokracka, Joanna

    2016-02-01

    Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent.

  3. Candidate Resistant Genes of Sand Pear (Pyrus pyrifolia Nakai) to Alternaria alternata Revealed by Transcriptome Sequencing

    PubMed Central

    Yang, Xiaoping; Hu, Hongju; Yu, Dazhao; Sun, Zhonghai; He, Xiujuan; Zhang, Jingguo; Chen, Qiliang; Tian, Rui; Fan, Jing

    2015-01-01

    Pear black spot (PBS) disease, which is caused by Alternaria alternata (Aa), is one of the most serious diseases affecting sand pear (Pyrus pyrifolia Nakai) cultivation worldwide. To investigate the defense mechanisms of sand pear in response to Aa, the transcriptome of a sand pear germplasm with differential resistance to Aa was analyzed using Illumina paired-end sequencing. Four libraries derived from PBS-resistant and PBS-susceptible sand pear leaves were characterized through inoculation or mock-inoculation. In total, 20.5 Gbp of sequence data and 101,632,565 reads were generated, representing 44717 genes. Approximately 66% of the genes or sequenced reads could be aligned to the pear reference genome. A large number (5213) of differentially expressed genes related to PBS resistance were obtained; 34 microsatellites were detected in these genes, and 28 genes were found to be closely related to PBS resistance. Using a transcriptome analysis in response to PBS inoculation and comparison analysis to the PHI database, 4 genes (Pbr039001, Pbr001627, Pbr025080 and Pbr023112) were considered to be promising candidates for sand pear resistance to PBS. This study provides insight into changes in the transcriptome of sand pear in response to PBS infection, and the findings have improved our understanding of the resistance mechanism of sand pear to PBS and will facilitate future gene discovery and functional genome studies of sand pear. PMID:26292286

  4. Identification of nuclear genes affecting 2-Deoxyglucose resistance in Schizosaccharomyces pombe.

    PubMed

    Vishwanatha, Akshay; Rallis, Charalampos; Bevkal Subramanyaswamy, Shubha; D'Souza, Cletus Joseph Michael; Bähler, Jürg; Schweingruber, Martin Ernst

    2016-09-01

    2-Deoxyglucose (2-DG) is a toxic glucose analog. To identify genes involved in 2-DG toxicity in Schizosaccharomyces pombe, we screened a wild-type overexpression library for genes which render cells 2-DG resistant. A gene we termed odr1, encoding an uncharacterized hydrolase, led to strong resistance and altered invertase expression when overexpressed. We speculate that Odr1 neutralizes the toxic form of 2-DG, similar to the Saccharomyces cerevisiae Dog1 and Dog2 phosphatases which dephosphorylate 2-DG-6-phosphate synthesized by hexokinase. In a complementary approach, we screened a haploid deletion library to identify 2-DG-resistant mutants. This screen identified the genes snf5, ypa1, pas1 and pho7 In liquid medium, deletions of these genes conferred 2-DG resistance preferentially under glucose-repressed conditions. The deletion mutants expressed invertase activity more constitutively than the control strain, indicating defects in the control of glucose repression. No S. cerevisiae orthologs of the pho7 gene is known, and no 2-DG resistance has been reported for any of the deletion mutants of the other genes identified here. Moreover, 2-DG leads to derepressed invertase activity in S. pombe, while in S. cerevisiae it becomes repressed. Taken together, these findings suggest that mechanisms involved in 2-DG resistance differ between budding and fission yeasts. PMID:27481777

  5. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    PubMed

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue.

  6. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya.

    PubMed

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya. PMID:27379138

  7. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya

    PubMed Central

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya. PMID:27379138

  8. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics.

    PubMed

    Gabani, Prashant; Singh, Om V

    2013-02-01

    Extremophiles are organisms able to thrive in extreme environmental conditions. Microorganisms with the ability to survive high doses of radiation are known as radioresistant or radiation-resistant extremophiles. Excessive or intense exposure to radiation (i.e., gamma rays, X-rays, and particularly UV radiation) can induce a variety of mutagenic and cytotoxic DNA lesions, which can lead to different forms of cancer. However, some populations of microorganisms thrive under different types of radiation due to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes and extremozymes. Extremolytes (including scytonemin, mycosporine-like amino acids, shinorine, porphyra-334, palythine, biopterin, and phlorotannin, among others) are able to absorb a wide spectrum of radiation while protecting the organism's DNA from being damaged. The possible commercial applications of extremolytes include anticancer drugs, antioxidants, cell-cycle-blocking agents, and sunscreens, among others. This article aims to review the strategies by which microorganisms thrive in extreme radiation environments and discuss their potential uses in biotechnology and the therapeutic industry. The major challenges that lie ahead are also discussed.

  9. A genome-wide survey reveals abundant rice blast R-genes in resistant cultivars

    PubMed Central

    Tan, Shengjun; Zhong, Yan; Wang, Ling; Gu, Longjiang; Chen, Jian-Qun; Pan, Qinghua; Bergelson, Joy; Tian, Dacheng

    2015-01-01

    Summary Plant resistance genes (R-genes) harbor tremendous allelic diversity, constituting a robust immune system effective against microbial pathogens. Nevertheless, few functional R-genes have been identified for even the best-studied pathosystems. Does this limited repertoire reflect specificity, with most R-genes having been defeated by former pests, or do plants harbor a rich diversity of functional R-genes whose composite behavior is yet to be characterized? Here, we survey 332 NBS-LRR genes cloned from 5 resistant rice cultivars for their ability to confer recognition of 12 rice blast isolates when transformed into susceptible cultivars. Our survey reveals that 48.5% of the 132 NBS-LRR loci tested contain functional rice blast R-genes, with most R-genes deriving from multi-copy clades containing especially diversified loci. Each R-gene recognized, on average, 2.42 of the 12 isolates screened. The abundant R-genes identified in resistant genomes provide extraordinary redundancy in the ability of host genotypes to recognize particular isolates. If the same is true for other pathogens, many extant NBS-LRR genes retain functionality. Our success at identifying rice blast R-genes also validates a highly efficient cloning and screening strategy. PMID:26248689

  10. Radiation resistance of methanogenic archaea from Siberian permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Moeller, Ralf; Rettberg, Petra; Wagner, Dirk

    2007-08-01

    Methanogenic archaea from the Siberian permafrost-affected soils and from nonpermafrost habitats were exposed to solar UV- and ionizing radiation in order to assess their limits of survival. Metabolic activity and viability of methanogenic archaea in environmental samples remained unaffected by exposure to monochromatic and polychromatic UV radiation caused by the shielding of the soil layers. Pure methanogenic cultures isolated from the permafrost's active layer exhibit an increase in radioresistance to UV (20-fold) and ionizing radiation (32-fold) compared to the non-permafrost isolates. The F37 (UV radiation) and D37 (X-rays) values of the permafrost strain Methanosarcina sp. SMA-21 were 700 J m-2 and 6-12 kGy, respectively. This resistance is comparable to values for Deinococcus radiodurans (F37 640 Jm-2, D37 6-7 kGy). Due to the increased radiation-resistance of permafrost isolates, their long-term survival, and their anaerobic lithoautotrophic metabolism, methanogenic archaea from permafrost can be considered as suitable candidates in the search for microbial life in the Martian subsurface. The ESA mission Mars Express confirmed the existence of water on Mars, which is a fundamental requirement for life, as well as CH4 in the Martian atmosphere, which could only originate from active volcanism or from biological sources; both these results suggest that microbial life could still exist on Mars, for example in the form of subsurface lithoautotrophic ecosystems, which also exist in permafrost regions on Earth.

  11. DNA repair and resistance to UV-B radiation in western spotted frogs

    USGS Publications Warehouse

    Blaustein, A.R.; Hays, J.B.; Hoffman, P.D.; Chivers, D.P.; Kiesecker, J.M.; Leonard, W.P.; Marco, A.; Olson, D.H.; Reaser, J.K.; Anthony, R.G.

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of UV-damaged DNA. Using field experiments, we also compared the hatching success of spotted frog embryos at natural oviposition sites at three elevations, where some embryos were subjected to ambient levels of UV-B radiation and others were shielded from UV-B radiation. Compared with other amphibians, photolyase activities in spotted frogs were relatively high. At all sites, hatching success was unaffected by UV-B. Our data support the interpretation that amphibian embryos with relatively high levels of photolyase are more resistant to UV-B radiation than those with lower levels of photolyase. At the embryonic stage, UV-B radiation does not presently seem to be contributing to the population declines of spotted frogs.

  12. Analysis of antimicrobial resistance genes in Aeromonas spp. isolated from cultured freshwater animals in China.

    PubMed

    Deng, Yu-Ting; Wu, Ya-Li; Tan, Al-Ping; Huang, Yu-Ping; Jiang, Lan; Xue, Hui-Juan; Wang, Wei-Li; Luo, Li; Zhao, Fei

    2014-08-01

    The development of resistance to antimicrobials used in aquatic animals is an increasing concern for aquaculture and public health. To monitor the occurrence of antimicrobial resistance and resistance genes in Aeromonas, a total of 106 isolates were collected from cultured freshwater animals in China from 1995 to 2012. Antimicrobial susceptibilities were determined by the disk diffusion method. The highest resistance percentage occurred with ampicillin, rifampin, streptomycin, and nalidixic acid. Most strains were sensitive to fluoroquinolones, doxycycline, cefotaxime, chloramphenicol, and amikacin. The isolates from turtle samples had the highest levels of resistance to 11 of the 12 tested antimicrobials when compared with those from fish or shrimp. Polymerase chain reaction and DNA sequence results showed that all trimethoprim/sulfamethoxazole-resistant strains contained sul1, and 37.0% were positive for tetA in tetracycline-resistant strains. ant(3″)-Ia was identified in 13 (24.5%) streptomycin-resistant strains. Plasmid-borne quinolone resistance genes were detected in five Aeromonas hydrophila (4.7%), two of which carried qnrS2, while the other three strains harbored aac(6')-Ib-cr. Two cefotaxime-resistant A. hydrophila were positive for bla(TEM-1) and bla(CTX-M-3). To our knowledge, this is the first report characterizing antimicrobial resistance in Aeromonas isolated from cultured freshwater animals in China, and providing resistance information of pathogen in Chinese aquaculture.

  13. Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates.

    PubMed

    Kather, Elizabeth J; Marks, Stanley L; Foley, Janet E

    2006-03-10

    Clostridium perfringens is a well documented cause of a mild self-limiting diarrhea and a potentially fatal acute hemorrhagic diarrheal syndrome in the dog. A recent study documented that 21% of canine C. perfringens isolates had MIC's indicative of resistance to tetracycline, an antimicrobial commonly recommended for treatment of C. perfringens-associated diarrhea. The objective of the present study was to further evaluate the antimicrobial susceptibility profiles of these isolates by determining the prevalence of specific resistance genes, their expression, and ability for transference between bacteria. One hundred and twenty-four canine C. perfringens isolates from 124 dogs were evaluated. Minimum inhibitory concentrations of tetracycline, erythromycin, tylosin, and metronidazole were determined using the CLSI Reference Agar Dilution Method. All isolates were screened for three tetracycline resistance genes: tetA(P), tetB(P) and tetM, and two macrolide resistance genes: ermB and ermQ, via PCR using primer sequences previously described. Ninety-six percent (119/124) of the isolates were positive for the tetA(P) gene, and 41% (51/124) were positive for both the tetA(P) and tetB(P) genes. No isolates were positive for the tetB(P) gene alone. Highly susceptible isolates (MIC< or = 4 microg/ml) were significantly more likely to lack the tetB(P) gene. One isolate (0.8%) was positive for the ermB gene, and one isolate was positive for the ermQ gene. The tetM gene was not found in any of the isolates tested. Two out of 15 tested isolates (13%) demonstrated transfer of tetracycline resistance via bacterial conjugation. Tetracycline should be avoided for the treatment of C. perfringens-associated diarrhea in dogs because of the relatively high prevalence of in vitro resistance, and the potential for conjugative transfer of antimicrobial resistance. PMID:16330169

  14. Prevalence of Antimicrobial Resistance and Transfer of Tetracycline Resistance Genes in Escherichia coli Isolates from Beef Cattle

    PubMed Central

    Shin, Seung Won; Shin, Min Kyoung; Jung, Myunghwan; Belaynehe, Kuastros Mekonnen

    2015-01-01

    The aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistant Escherichia coli isolates recovered from beef cattle in South Korea. A total of 155 E. coli isolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance gene tet(A) (46.5%) was the most prevalent, followed by tet(B) (45.1%) and tet(C) (5.8%). Strains carrying tet(A) plus tet(B) and tet(B) plus tet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carrying tet(B) had higher MIC values than isolates carrying tet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistant E. coli isolates in beef cattle is due to the transferability of tetracycline resistance genes between E. coli populations which have survived the selective pressure caused by the use of antimicrobial agents. PMID:26048929

  15. Prevalence of Antimicrobial Resistance and Transfer of Tetracycline Resistance Genes in Escherichia coli Isolates from Beef Cattle.

    PubMed

    Shin, Seung Won; Shin, Min Kyoung; Jung, Myunghwan; Belaynehe, Kuastros Mekonnen; Yoo, Han Sang

    2015-08-15

    The aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistant Escherichia coli isolates recovered from beef cattle in South Korea. A total of 155 E. coli isolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance gene tet(A) (46.5%) was the most prevalent, followed by tet(B) (45.1%) and tet(C) (5.8%). Strains carrying tet(A) plus tet(B) and tet(B) plus tet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carrying tet(B) had higher MIC values than isolates carrying tet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistant E. coli isolates in beef cattle is due to the transferability of tetracycline resistance genes between E. coli populations which have survived the selective pressure caused by the use of antimicrobial agents.

  16. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.)

    PubMed Central

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296

  17. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.).

    PubMed

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-05-11

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar 'EP6392' which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns.

  18. Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment.

    PubMed

    Rowe, Will; Verner-Jeffreys, David W; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan J; Pearce, Gareth P

    2016-01-01

    The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.

  19. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications

    PubMed Central

    2005-01-01

    Background Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. Results We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Conclusion Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested. PMID:16188032

  20. Radiation Resistance of Cancer Stem Cells: The 4 R’s of Radiobiology Revisited

    PubMed Central

    Pajonk, Frank; Vlashi, Erina; McBride, William H.

    2010-01-01

    There is compelling evidence that many solid cancers are organized hierarchically and contain a small population of cancer stem cells (CSCs). It seems reasonable to suggest that a cancer cure can be achieved only if this population is eliminated. Unfortunately, there is growing evidence that CSCs are inherently resistant to radiation, and perhaps other cancer therapies. In general, success or failure of standard clinical radiation treatment is determined by the 4 R’s of radiobiology: repair of DNA damage, redistribution of cells in the cell cycle, repopulation, and reoxygenation of hypoxic tumor areas. We relate recent findings on CSCs to these four phenomena and discuss possible consequences. PMID:20135685

  1. Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust.

    PubMed

    Martínez, F; Niks, R E; Singh, R P; Rubiales, D

    2001-01-01

    Components of resistance conferred by the Lr46 gene, reported as causing "slow rusting" resistance to leaf rust in wheat, were studied and compared with the effects of Lr34 and genes for quantitative resistance in cv. Akabozu. Lr34 is a gene that confers non-hypersensitive type of resistance. The effect of Lr46 resembles that of Lr34 and other wheats reported with partial resistance. At macroscopic level, Lr46 produced a longer latency period than observed on the susceptible recurrent parent Lalbahadur, and a reduction of the infection frequency not associated with hypersensitivity. Microscopically, Lr46 increased the percentage of early aborted infection units not associated with host cell necrosis and decreased the colony size. The effect of Lr46 is comparable to that of Lr34 in adult plant stage, but in seedling stage its effect is weaker than that of Lr34.

  2. Lon protease inactivation, or translocation of the lon gene, potentiate bacterial evolution to antibiotic resistance.

    PubMed

    Nicoloff, Hervé; Andersson, Dan I

    2013-12-01

    Previous work demonstrated that selection for Escherichia coli mutants with low antibiotic resistance frequently resulted in co-selection of lon mutations and that lon(-) mutants evolved higher-level resistance faster than a lon(+) strain. Here we show that lon mutation causes a very low multidrug resistance by inducing the AcrAB-TolC pump via stabilization of the acrAB transcriptional activators MarA and SoxS, which are substrates of the Lon protease. Fast evolution of lon(-) mutants towards higher resistance involves selection of frequent next-step mutations consisting of large duplications including acrAB and the mutated lon gene. Resistance results from the combined effects of acrAB duplication and lon mutation increasing dosage of efflux pump. In contrast, when acrAB duplication occurs as the first step mutation, increased Lon activity caused by lon(+) co-duplication mitigates the effect of acrAB duplication on resistance, and faster evolution towards higher resistance is not observed. As predicted, when the functional lon gene is relocated far from acrAB to prevent their co-duplication, first-step acrAB duplication confers higher resistance, which then allows selection of frequent next-step mutations and results in faster evolution towards higher resistance. Our results demonstrate how order of appearance of mutations and gene location can influence the rate of resistance evolution.

  3. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    PubMed Central

    Berglund, Björn

    2015-01-01

    Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. PMID:26356096

  4. Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen.

    PubMed

    Oh, Tae-Jin; Han, So-Ra; Ahn, Do-Hwan; Park, Hyun; Kim, Augustine Yonghwi

    2016-06-10

    A Gram-negative, rod-shaped, red-pink in color, and UV radiation-resistant bacterium Hymenobacter sp. strain PAMC26554 was isolated from Usnea sp., an Antarctic lichen, and belongs to the class of Cytophagia and the phylum of Bacteroidetes. The complete genome of Hymenobacter sp. PAMC26554 consists of one chromosome (5,244,843bp) with two plasmids (199,990bp and 6421bp). The genomic sequence indicates that Hymenobacter sp. strain PAMC26554 possesses several genes involved in the nucleotide excision repair pathway that protects damaged DNA. This complete genome information will help us to understand its adaptation and novel survival strategy in the Antarctic extreme cold environment.

  5. Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture.

    PubMed

    Luprano, Maria Laura; De Sanctis, Marco; Del Moro, Guido; Di Iaconi, Claudio; Lopez, Antonio; Levantesi, Caterina

    2016-11-15

    In order to mitigate the potential effects on the human health which are associated to the use of treated wastewater in agriculture, antibiotic resistance genes (ARGs) are required to be carefully monitored in wastewater reuse processes and their spread should be prevented by the development of efficient treatment technologies. Objective of this study was the assessment of ARGs reduction efficiencies of a novel technological treatment solution for agricultural reuse of municipal wastewaters. The proposed solution comprises an advanced biological treatment (Sequencing Batch Biofilter Granular Reactor, SBBGR), analysed both al laboratory and pilot scale, followed by sand filtration and two different disinfection final stages: ultraviolet light (UV) radiation and peracetic acid (PAA) treatments. By Polymerase Chain Reaction (PCR), the presence of 9 ARGs (ampC, mecA, ermB, sul1, sul2, tetA, tetO, tetW, vanA) were analysed and by quantitative PCR (qPCR) their removal was determined. The obtained results were compared to the reduction of total bacteria (16S rDNA gene) and of a faecal contamination indicator (Escherichia coli uidA gene). Only four of the analysed genes (ermB, sul1, sul2, tetA) were detected in raw wastewater and their abundance was estimated to be 3.4±0.7 x10(4) - 9.6±0.5 x10(9) and 1.0±0.3 x10(3) to 3.0±0.1 x10(7) gene copies/mL in raw and treated wastewaters, respectively. The results show that SBBGR technology is promising for the reduction of ARGs, achieving stable removal performance ranging from 1.0±0.4 to 2.8±0.7 log units, which is comparable to or higher than that reported for conventional activated sludge treatments. No reduction of the ARGs amount normalized to the total bacteria content (16S rDNA), was instead obtained, indicating that these genes are removed together with total bacteria and not specifically eliminated. Enhanced ARGs removal was obtained by sand filtration, while no reduction was achieved by both UV and PAA disinfection

  6. COMPARATIVE MICROARRAY EXPRESSION ANALYSIS OF SELECTED CANCER RELEVANT GENES IN HYPERTENSIVE RESISTANT VERSUS SUSCEPTIBLE RODENT STRAINS

    EPA Science Inventory

    Hypertension and cancer are prevalent diseases. Epidemiological studies suggest that hypertension may increase the long term risk of cancer. Identification of resistance and/or susceptibility genes using rodent models could provide important insights into the management and treat...

  7. De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes.

    PubMed

    He, Bin; Gu, Yinghong; Tao, Xiang; Cheng, Xiaojie; Wei, Changhe; Fu, Jian; Cheng, Zaiquan; Zhang, Yizheng

    2015-12-10

    Oryza officinalis Wall ex Watt is one of the most important wild relatives of cultivated rice and exhibits high resistance to many diseases. It has been used as a source of genes for introgression into cultivated rice. However, there are limited genomic resources and little genetic information publicly reported for this species. To better understand the pathways and factors involved in disease resistance and accelerating the process of rice breeding, we carried out a de novo transcriptome sequencing of O. officinalis. In this research, 137,229 contigs were obtained ranging from 200 to 19,214 bp with an N50 of 2331 bp through de novo assembly of leaves, stems and roots in O. officinalis using an Illumina HiSeq 2000 platform. Based on sequence similarity searches against a non-redundant protein database, a total of 88,249 contigs were annotated with gene descriptions and 75,589 transcripts were further assigned to GO terms. Candidate genes for plant-pathogen interaction and plant hormones regulation pathways involved in disease-resistance were identified. Further analyses of gene expression profiles showed that the majority of genes related to disease resistance were all expressed in the three tissues. In addition, there are two kinds of rice bacterial blight-resistant genes in O. officinalis, including two Xa1 genes and three Xa26 genes. All 2 Xa1 genes showed the highest expression level in stem, whereas one of Xa26 was expressed dominantly in leaf and other 2 Xa26 genes displayed low expression level in all three tissues. This transcriptomic database provides an opportunity for identifying the genes involved in disease-resistance and will provide a basis for studying functional genomics of O. officinalis and genetic improvement of cultivated rice in the future.

  8. De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes

    PubMed Central

    He, Bin; Gu, Yinghong; Tao, Xiang; Cheng, Xiaojie; Wei, Changhe; Fu, Jian; Cheng, Zaiquan; Zhang, Yizheng

    2015-01-01

    Oryza officinalis Wall ex Watt is one of the most important wild relatives of cultivated rice and exhibits high resistance to many diseases. It has been used as a source of genes for introgression into cultivated rice. However, there are limited genomic resources and little genetic information publicly reported for this species. To better understand the pathways and factors involved in disease resistance and accelerating the process of rice breeding, we carried out a de novo transcriptome sequencing of O. officinalis. In this research, 137,229 contigs were obtained ranging from 200 to 19,214 bp with an N50 of 2331 bp through de novo assembly of leaves, stems and roots in O. officinalis using an Illumina HiSeq 2000 platform. Based on sequence similarity searches against a non-redundant protein database, a total of 88,249 contigs were annotated with gene descriptions and 75,589 transcripts were further assigned to GO terms. Candidate genes for plant–pathogen interaction and plant hormones regulation pathways involved in disease-resistance were identified. Further analyses of gene expression profiles showed that the majority of genes related to disease resistance were all expressed in the three tissues. In addition, there are two kinds of rice bacterial blight-resistant genes in O. officinalis, including two Xa1 genes and three Xa26 genes. All 2 Xa1 genes showed the highest expression level in stem, whereas one of Xa26 was expressed dominantly in leaf and other 2 Xa26 genes displayed low expression level in all three tissues. This transcriptomic database provides an opportunity for identifying the genes involved in disease-resistance and will provide a basis for studying functional genomics of O. officinalis and genetic improvement of cultivated rice in the future. PMID:26690414

  9. Genome-wide identification of NBS resistance genes in Populus trichocarpa.

    PubMed

    Kohler, Annegret; Rinaldi, Cécile; Duplessis, Sébastien; Baucher, Marie; Geelen, Danny; Duchaussoy, Frédéric; Meyers, Blake C; Boerjan, Wout; Martin, Francis

    2008-04-01

    As the largest class of disease resistance R genes, the genes encoding nucleotide binding site and leucine-rich repeat proteins ("NBS-LRR genes") play a critical role in defending plants from a multitude of pathogens and pests. The diversity of NBS-LRR genes was examined in the Populus trichocarpa draft genome sequence. The NBS class of genes in this perennial tree is large and diverse, comprised of approximately 400 genes, at least twice the complement of Arabidopsis. The NBS family can be divided into multiple subfamilies with distinct domain organizations. It includes 119 Coiled-Coil-NBS-LRR genes, 64 TIR-NBS-LRR genes, 34 BED-finger-NBS-LRR, and both truncated and unusual NBS- and NBS-LRR-containing genes. The transcripts of only 34 NBS-LRR genes were detected in rust-infected and non-infected leaves using a whole-genome oligoarray. None showed an altered expression two days post inoculation. PMID:18247136

  10. Screening for Resistance to Brown Rust of Sugarcane: Use of Bru1 resistance gene prospects and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown rust of sugarcane caused by, Puccinia melanocephala, is a serious problem in the US sugarcane industry. A major resistance gene, Bru1 was identified and methodology for detecting it was developed by French scientists at CIRAD. The majority of the research resulting in the discovery of Bru1 res...

  11. Identification of a New Locus, Ptr(t), Required for Rice Blast Resistance Gene Pi-ta-Mediated Resistance

    SciTech Connect

    Jia, Yulin; Martin, Rodger Carl

    2008-01-01

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a NBS type resistance gene Pi-ta to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here we report the identification of a new locus Ptr(t) that is required for Pi-ta-mediated signal recognition. A Pi-ta expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) does not alter recognition specificity to another resistance gene Pi-ks in the Pi-ta homozygote indicate that Ptr(t) is more likely specific to Pi-ta-mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregate at single dominant nuclear gene. A ratio of 1 resistant: 1 susceptible of a BC1 using Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and co-segregated. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers spanning 9 megabase of Pi-ta determines that Pi-ta and Ptr(t) are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta-mediated signal recognition and transduction.

  12. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing.

    PubMed

    Huang, Kailong; Tang, Junying; Zhang, Xu-Xiang; Xu, Ke; Ren, Hongqiang

    2014-01-01

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L) was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP) sludge. PMID:24905407

  13. Important step in radiation carcinogenesis may be inactivation of cellular genes

    SciTech Connect

    Weichselbaum, R.R.; Beckett, M.A.; Diamond, A.A.

    1989-01-01

    The loss of genetic material may result in a predisposition to malignant disease. The best studied example is retinoblastoma where deletion or transcriptional inactivation of a specific gene is associated with the development of the tumor. When hereditary retinoblastoma patients are treated with radiation, the incidence of osteosarcoma within the treatment field is extremely high compared to other cancer patients treated with radiotherapy. These data, together with cytogenetic and molecular data on the development of acute non-lymphocytic leukemia secondary to radiotherapy and chemotherapy treatment suggest that radiation-induced deletions of critical DNA sequences may be an important event in radiation carcinogenesis. Therefore, we propose that radiation-induced tumors may result from deletion of tissue specific regulatory genes. Base alterations caused by radiation in dominantly transforming oncogenes may also contribute to radiation carcinogenesis.62 references.

  14. Co-occurrence of antibiotic drugs, resistant bacteria and resistance genes in runoff from cattle feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural uses of antibiotics raises concerns about the development of antibiotic resistance in food animals, and the potential to transmit resistance to human clinical settings via fecal contamination of surface and ground water. Although there is broad agreement that agricultural resistance can...

  15. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes1.

    PubMed

    Olonitola, Olayeni Stephen; Fahrenfeld, Nicole; Pruden, Amy

    2015-05-01

    The effect of global antibiotic use practices in livestock on the emergence of antibiotic resistant pathogens is poorly understood. There is a paucity of data among African nations, which suffer from high rates of antibiotic resistant infections among the human population. Escherichia (29.5%), Staphylococcus (15.8%), and Proteus (15.79%) were the dominant bacterial genera isolated from chicken litter from four different farms in Zaria, Nigeria, all of which contain human pathogenic members. Escherichia isolates were uniformly susceptible to augmentin and cefuroxime, but resistant to sulfamethoxazole (54.5%), ampicillin (22.7%), ciprofloxacin (18.2%), cephalothin (13.6%) and gentamicin (13.6%). Staphylococcus isolates were susceptible to ciprofloxacin, gentamicin, and sulfamethoxazole, but resistant to tetracycline (86.7%), erythromycin (80%), clindamycin (60%), and penicillin (33.3%). Many of the isolates (65.4%) were resistant to multiple antibiotics, with a multiple antibiotic resistance index (MARI) ≥ 0.2. sul1, sul2, and vanA were the most commonly detected antibiotic resistance genes among the isolates. Chicken litter associated with antibiotic use and farming practices in Nigeria could be a public health concern given that the antibiotic resistant patterns among genera containing pathogens indicate the potential for antibiotic treatment failure. However, the MARI values were generally lower than reported for Escherichia coli from intensive poultry operations in industrial nations.

  16. Development of Resistance during Antimicrobial Therapy Caused by Insertion Sequence Interruption of Porin Genes

    PubMed Central

    Hernández-Allés, Santiago; Benedí, Vicente J.; Martínez-Martínez, Luis; Pascual, Álvaro; Aguilar, Alicia; Tomás, Juan M.; Albertí, Sebastián

    1999-01-01

    We have demonstrated by using an in vitro approach that interruption of the OmpK36 porin gene by insertion sequences (ISs) is a common type of mutation that causes loss of porin expression and increased resistance to cefoxitin in Klebsiella pneumoniae. This mechanism also operates in vivo: of 13 porin-deficient cefoxitin-resistant clinical isolates of K. pneumoniae, 4 presented ISs in their ompK36 gene. PMID:10103203

  17. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells

    PubMed Central

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J.; Bhatia, Mick

    2015-01-01

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs. PMID:26082437

  18. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells.

    PubMed