Sample records for radiation shielding material

  1. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  2. Radiation Shielding Materials and Containers Incorporating Same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  3. Predictions for Radiation Shielding Materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    2002-01-01

    Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually

  4. Radiation fields from neutron generators shielded with different materials

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  5. Reusable shielding material for neutron- and gamma-radiation

    NASA Astrophysics Data System (ADS)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  6. Novel Concepts for Radiation Shielding Materials

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  7. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  8. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  9. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures.

    PubMed

    Lobascio, C; Briccarello, M; Destefanis, R; Faraud, M; Gialanella, G; Grossi, G; Guarnieri, V; Manti, L; Pugliese, M; Rusek, A; Scampoli, P; Durante, M

    2008-03-01

    Shielding is the only practical countermeasure for the exposure to cosmic radiation during space travel. It is well known that light, hydrogenated materials, such as water and polyethylene, provide the best shielding against space radiation. Kevlar and Nextel are two materials of great interest for spacecraft shielding because of their known ability to protect human space infrastructures from meteoroids and debris. We measured the response to simulated heavy-ion cosmic radiation of these shielding materials and compared it to polyethylene, Lucite (PMMA), and aluminum. As proxy to galactic nuclei we used 1 GeV n iron or titanium ions. Both physics and biology tests were performed. The results show that Kevlar, which is rich in carbon atoms (about 50% in number), is an excellent space radiation shielding material. Physics tests show that its effectiveness is close (80-90%) to that of polyethylene, and biology data suggest that it can reduce the chromosomal damage more efficiently than PMMA. Nextel is less efficient as a radiation shield, and the expected reduction on dose is roughly half that provided by the same mass of polyethylene. Both Kevlar and Nextel are more effective than aluminum in the attenuation of heavy-ion dose.

  10. Measuring space radiation shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  11. Improved Spacecraft Materials for Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.

    1999-01-01

    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.

  12. Fabrication of Lightweight Radiation Shielding Composite Materials by Field Assisted Sintering Technique (FAST)

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha; Trivedi, Sudhir; Chen, Henry; Kutcher, Susan; Zhang, Dajie; Singh, Jogender

    2017-01-01

    Advances in radiation shielding technologies are needed to protect humans and electronic components from all threats of space radiation over long durations. In this paper, we report on the use of the innovative and novel fabrication technology known as Field Assisted Sintering Technology (FAST) to fabricate lightweight material with enhanced radiation shielding strength to safeguard humans and electronics suitable for next generation space exploration missions. The base materials we investigated were aluminum (Al), the current standard material for space hardware, and Ultra-High Molecular Weight Polyethylene (UHMWPE), which has high hydrogen content and resistance to nuclear reaction from neutrons, making it a good shielding material for both gamma radiation and particles. UHMWPE also has high resistance to corrosive chemicals, extremely low moisture sensitivity, very low coefficient of friction, and high resistance to abrasion. We reinforced the base materials by adding high density (ie, high atomic weight) metallic material into the composite. These filler materials included: boron carbide (B4C), tungsten (W), tungsten carbide (WC) and gadolinium (Gd).

  13. Evaluation of Multi-Functional Materials for Deep Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Atwell, William; Wilkins, Richard; Gersey, Brad; Badavi, Francis F.

    2009-01-01

    Small scale trade study of materials for radiation shielding: a) High-hydrogen polymers; b) Z-graded materials; c) Fiber-reinforced polymer composites. Discussed multi-functionality of fiber-reinforced polymer composites. Preliminary results of ground testing data.

  14. Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings

    NASA Astrophysics Data System (ADS)

    Yesmin, Sabina; Sonker Barua, Bijoy; Uddin Khandaker, Mayeen; Tareque Chowdhury, Mohammed; Kamal, Masud; Rashid, M. A.; Miah, M. M. H.; Bradley, D. A.

    2017-11-01

    Following the rapid growing per capita income, a major portion of Bangladeshi dwellers is upgrading their non-brick houses by rod-cement-concrete materials and simultaneously curious to decorate the houses using luxurious marble stones. Present study was undertaken to investigate the gamma-ray attenuation co-efficient of decorative marble materials leading to their suitability as shielding of ionizing radiation. A number of commercial grades decorative marble stones were collected from home and abroad following their large-scale uses. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the mass attenuation coefficients of the studied materials for high energy photons. Some allied parameters such as half-value layer and radiation protection efficacy of the investigated marbles were calculated. The results showed that among the studied samples, the marble 'Carrara' imported from Italy is suitable to be used as radiation shielding material.

  15. Radiation shielding materials characterization in the MoMa-Count program and further evolutions

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare

    In the frame of the space research programme MoMa (From Molecules to Man) -Count (Coun-termeasures), funded by the Italian Space Agency, multi-functional protections for human space exploration have been investigated, paying particular attention to flexible materials, selected also for their excellent structural, thermal and ballistic performances. Flexible materials such as Kevlar R are qualified for space application, but have poorly known space radiation prop-erties, with consequent uncertainties about their shielding efficiency against the radiation en-vironment. The necessary evaluation of their shielding efficiency has been chiefly based on dedicated ground experiments in accelerators, supplemented by Monte Carlo simulations of the particle transport in the materials or multi-layers. In addition, flight experiments have been performed in Low Earth Orbit (LEO), onboard the International Space Station (ISS) and the re-entry capsule Foton, to measure the shielding behaviour in the actual operating environment of space, via dedicated detectors and dosimeters. This paper aims at presenting the results and lessons learned accrued within the MoMa-Count program, as well as the future actions planned for improving radiation shielding in long duration human exploration missions.

  16. Correlated Uncertainties in Radiation Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  17. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  18. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    2000-12-26

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  19. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    1998-01-01

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  20. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    PubMed

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  1. Radiation shielding composition

    DOEpatents

    Quapp, W.J.; Lessing, P.A.

    1998-07-28

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  2. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  3. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    PubMed

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  4. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material

    NASA Astrophysics Data System (ADS)

    Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.

    2016-12-01

    Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.

  5. Performance study of galactic cosmic ray shield materials

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-01-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  6. Potential Use of In Situ Material Composites such as Regolith/Polyethylene for Shielding Space Radiation

    NASA Technical Reports Server (NTRS)

    Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu

    2010-01-01

    NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.

  7. Radiation shielding properties of barite coated fabric by computer programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akarslan, F.; Molla, T.; Üncü, I. S.

    2015-03-30

    With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by usingmore » computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.« less

  8. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOEpatents

    Hondorp, Hugh L.

    1984-01-01

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  9. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  10. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.

  11. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}

  12. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  13. Development of Multifunctional Radiation Shielding Materials for Long Duration Human Exploration Beyond the Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.

    2007-01-01

    One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition

  14. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit

    NASA Astrophysics Data System (ADS)

    Vuolo, M.; Baiocco, G.; Barbieri, S.; Bocchini, L.; Giraudo, M.; Gheysens, T.; Lobascio, C.; Ottolenghi, A.

    2017-11-01

    We present a design study for a wearable radiation-shielding spacesuit, designed to protect astronauts' most radiosensitive organs. The suit could be used in an emergency, to perform necessary interventions outside a radiation shelter in the space habitat in case of a Solar Proton Event (SPE). A wearable shielding system of the kind we propose has the potential to prevent the onset of acute radiation effects in this scenario. In this work, selection of materials for the spacesuit elements is performed based on the results of dedicated GRAS/Geant4 1-dimensional Monte Carlo simulations, and after a trade-off analysis between shielding performance and availability of resources in the space habitat. Water is the first choice material, but also organic compounds compatible with a human space habitat are considered (such as fatty acids, gels and liquid organic wastes). Different designs and material combinations are proposed for the spacesuits. To quantify shielding performance we use GRAS/Geant4 simulations of an anthropomorphic phantom in an average SPE environment, with and without the spacesuit, and we compare results for the dose to Blood Forming Organs (BFO) in Gy-Eq, i.e. physical absorbed dose multiplied by the proton Relative Biological Effectiveness (RBE) for non-cancer effects. In case of SPE occurrence for Intra-Vehicular Activities (IVA) outside a radiation shelter, dose reductions to BFO in the range of 44-57% are demonstrated to be achievable with the spacesuit designs made only of water elements, or of multi-layer protection elements (with a thin layer of a high density material covering the water filled volume). Suit elements have a thickness in the range 2-6 cm and the total mass for the garment sums up to 35-43 kg depending on model and material combination. Dose reduction is converted into time gain, i.e. the increase of time interval between the occurrence of a SPE and the moment the dose limit to the BFO for acute effects is reached. Wearing a

  15. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  16. Multilayer radiation shield

    DOEpatents

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  17. Composition for radiation shielding

    DOEpatents

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  18. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit.

    PubMed

    Vuolo, M; Baiocco, G; Barbieri, S; Bocchini, L; Giraudo, M; Gheysens, T; Lobascio, C; Ottolenghi, A

    2017-11-01

    We present a design study for a wearable radiation-shielding spacesuit, designed to protect astronauts' most radiosensitive organs. The suit could be used in an emergency, to perform necessary interventions outside a radiation shelter in the space habitat in case of a Solar Proton Event (SPE). A wearable shielding system of the kind we propose has the potential to prevent the onset of acute radiation effects in this scenario. In this work, selection of materials for the spacesuit elements is performed based on the results of dedicated GRAS/Geant4 1-dimensional Monte Carlo simulations, and after a trade-off analysis between shielding performance and availability of resources in the space habitat. Water is the first choice material, but also organic compounds compatible with a human space habitat are considered (such as fatty acids, gels and liquid organic wastes). Different designs and material combinations are proposed for the spacesuits. To quantify shielding performance we use GRAS/Geant4 simulations of an anthropomorphic phantom in an average SPE environment, with and without the spacesuit, and we compare results for the dose to Blood Forming Organs (BFO) in Gy-Eq, i.e. physical absorbed dose multiplied by the proton Relative Biological Effectiveness (RBE) for non-cancer effects. In case of SPE occurrence for Intra-Vehicular Activities (IVA) outside a radiation shelter, dose reductions to BFO in the range of 44-57% are demonstrated to be achievable with the spacesuit designs made only of water elements, or of multi-layer protection elements (with a thin layer of a high density material covering the water filled volume). Suit elements have a thickness in the range 2-6 cm and the total mass for the garment sums up to 35-43 kg depending on model and material combination. Dose reduction is converted into time gain, i.e. the increase of time interval between the occurrence of a SPE and the moment the dose limit to the BFO for acute effects is reached. Wearing a

  19. Space Radiation and the Challenges Towards Effective Shielding Solutions

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  20. Radiation shielding for future space exploration missions

    NASA Astrophysics Data System (ADS)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  1. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of

  2. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  3. Space radiation shielding studies for astronaut and electronic component risk assessment

    NASA Astrophysics Data System (ADS)

    Fuchs, Jordan; Gersey, Brad; Wilkins, Richard

    The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual

  4. Geant4 calculations for space radiation shielding material Al2O3

    NASA Astrophysics Data System (ADS)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  5. Aircraft Radiation Shield Experiments--Preflight Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Shinn, Judy L.; Wilson, John W.; Maiden, Donald L.; Thibeault, Sheila A.; Badavi, Francis F.; Conroy, Thomas; Braby, Leslie

    1999-01-01

    In the past, measurements onboard a research Boeing 57F (RB57-F) aircraft have demonstrated that the neutron environment within the aircraft structure is greater than that in the local external environment. Recent studies onboard Boeing 737 commercial flights have demonstrated cabin variations in radiation exposure up to 30 percent. These prior results were the basis of the present study to quantify the potential effects of aircraft construction materials on the internal exposures of the crew and passengers. The present study constitutes preflight measurements using an unmoderated Cf-252 fission neutron source to quantify the effects of three current and potential aircraft materials (aluminum, titanium, and graphite-epoxy composite) on the fast neutron flux. Conclusions about the effectiveness of the three selected materials for radiation shielding must wait until testing in the atmosphere is complete; however, it is clear that for shielding low-energy neutrons, the composite material is an improved shielding material over aluminum or titanium.

  6. Radiation Shielding Properties of Some Marbles in Turkey

    NASA Astrophysics Data System (ADS)

    Günoǧlu, K.; Akkurt, I.

    2011-12-01

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazordous effect of radition into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined. In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  7. Rapid Analysis of Mass Distribution of Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  8. Preliminary Thermal Design of Cryogenic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  9. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  10. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    NASA Technical Reports Server (NTRS)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  11. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    NASA Astrophysics Data System (ADS)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  12. Multiplate Radiation Shields: Investigating Radiational Heating Errors

    NASA Astrophysics Data System (ADS)

    Richardson, Scott James

    1995-01-01

    Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy

  13. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    PubMed

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  14. Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.

    2008-01-01

    Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to

  15. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  16. Measurements on radiation shielding efficacy of Polyethylene and Kevlar in the ISS (Columbus)

    PubMed Central

    Di Fino, L.; Larosa, M.; Zaconte, V.; Casolino, M.; Picozza, P.; Narici, L.

    2014-01-01

    The study and optimization of material effectiveness as radiation shield is a mandatory step toward human space exploration. Passive radiation shielding is one of the most important element in the entire radiation countermeasures package. Crewmembers will never experience direct exposure to space radiation; they will be either inside some shelter (the spacecraft, a ‘base’) or in an EVA (Extra Vehicular Activity) suit. Understanding the radiation shielding features of materials is therefore an important step toward an optimization of shelters and suits construction in the quest for an integrated solution for radiation countermeasures. Materials are usually tested for their radiation shielding effectiveness first with Monte Carlo simulations, then on ground, using particle accelerators and a number of specific ions known to be abundant in space, and finally in space. Highly hydrogenated materials perform best as radiation shields. Polyethylene is right now seen as the material that merges a high level of hydrogenation, an easiness of handling and machining as well as an affordable cost, and it is often referred as a sort of ‘standard’ to which compare other materials' effectiveness. Kevlar has recently shown very interesting radiation shielding properties, and it is also known to have important characteristics toward debris shielding, and can be used, for example, in space suits. We have measured in the ISS the effectiveness of polyethylene and kevlar using three detectors of the ALTEA system [ 1– 3] from 8 June 2012 to 13 November 2012, in Express Rack 3 in Columbus. These active detectors are able to provide the radiation quality parameters in any orbital region; being identical, they are also suitable to be used in parallel (one for the unshielded baseline, two measuring radiation with two different amounts of the same material: 5 and 10 g/cm2). A strong similarity of the shielding behavior between polyethylene and kevlar is documented. We measured

  17. Optimal shielding design for minimum materials cost or mass

    DOE PAGES

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  18. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    NASA Astrophysics Data System (ADS)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  19. A Radiation Shielding Code for Spacecraft and Its Validation

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Cucinotta, F. A.; Singleterry, R. C.; Wilson, J. W.; Badavi, F. F.; Badhwar, G. D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R. K.

    2000-01-01

    The HZETRN code, which uses a deterministic approach pioneered at NASA Langley Research Center, has been developed over the past decade to evaluate the local radiation fields within sensitive materials (electronic devices and human tissue) on spacecraft in the space environment. The code describes the interactions of shield materials with the incident galactic cosmic rays, trapped protons, or energetic protons from solar particle events in free space and low Earth orbit. The content of incident radiations is modified by atomic and nuclear reactions with the spacecraft and radiation shield materials. High-energy heavy ions are fragmented into less massive reaction products, and reaction products are produced by direct knockout of shield constituents or from de-excitation products. An overview of the computational procedures and database which describe these interactions is given. Validation of the code with recent Monte Carlo benchmarks, and laboratory and flight measurement is also included.

  20. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    NASA Technical Reports Server (NTRS)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  1. Fabrication of Regolith-Derived Radiation Shield Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mantovani, James G.; Townsend, Ivan

    2015-01-01

    Mars and asteroids have little or no atmosphere, and do not possess a magnetosphere that can protect humans, mechanisms and electronics from damaging Galactic Cosmic Radiation (GCR) and solar particle events (SPE) as does the Earth. These types of space radiation present one of the highest risks to a human crew during interplanetary journeys and to onboard electronics. This project aims to evaluate the effectiveness of carbonaceous asteroid materials as a potential radiation shielding material.

  2. Description of Transport Codes for Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  3. Evaluation of an alternative shielding materials for F-127 transport package

    NASA Astrophysics Data System (ADS)

    Gual, Maritza R.; Mesquita, Amir Z.; Pereira, Cláubia

    2018-03-01

    Lead is used as radiation shielding material for the Nordion's F-127 source shipping container is used for transport and storage of the GammaBeam -127's cobalt-60 source of the Nuclear Technology Development Center (CDTN) located in Belo Horizonte, Brazil. As an alternative, Th, Tl and WC have been evaluated as radiation shielding material. The goal is to check their behavior regarding shielding and dosing. Monte Carlo MCNPX code is used for the simulations. In the MCNPX calculation was used one cylinder as exclusion surface instead one sphere. Validation of MCNPX gamma doses calculations was carried out through comparison with experimental measurements. The results show that tungsten carbide WC is better shielding material for γ-ray than lead shielding.

  4. Materials for Shielding Astronauts from the Hazards of Space Radiations

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    1997-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Because cancer induction rates increase behind low to rather large thickness of aluminum shielding according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Preliminary studies indicate that materials with high hydrogen content and low atomic number constituents are most efficient in protecting the astronauts. This occurs for two reasons: the hydrogen is efficient in breaking up the heavy GCR ions into smaller less damaging fragments and the light constituents produce few secondary radiations (especially few biologically damaging neutrons). An overview of the materials related issues and their impact on human space exploration will be given.

  5. Evaluation of Shielding Performance for Newly Developed Composite Materials

    NASA Astrophysics Data System (ADS)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  6. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding.

    PubMed

    Papagiannis, P; Baltas, D; Granero, D; Pérez-Calatayud, J; Gimeno, J; Ballester, F; Venselaar, J L M

    2008-11-01

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for 60Co, 137CS, 198Au, 192Ir 169Yb, 170Tm, 131Cs, 125I, and 103pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  7. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  8. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Lee, H. K.; Cho, J. H.

    2014-07-01

    Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.

  9. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell

    2006-01-01

    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  10. Shielded Heavy-Ion Environment Linear Detector (SHIELD): an experiment for the Radiation and Technology Demonstration (RTD) Mission.

    PubMed

    Shavers, M R; Cucinotta, F A; Miller, J; Zeitlin, C; Heilbronn, L; Wilson, J W; Singleterry, R C

    2001-01-01

    Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.

  11. Development of BaO-ZnO-B2O3 glasses as a radiation shielding material

    NASA Astrophysics Data System (ADS)

    Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P.

    2017-08-01

    The effects of the BaO on the optical, physical and radiation shielding properties of the xBaO: 20ZnO: (80-x)B2O3, where x=5, 10, 15, 20 and 25 mol%, were investigated. The glasses were developed by the conventional melt-quenching technique at 1400 °C with high purity chemicals of H3BO3, ZnO, and BaSO4. The optical transparency of the glasses indicated that the glasses samples were high, as observed by visual inspections. The mass attenuation coefficients (μm), the effective atomic numbers (Zeff), and the effective electron densities (Ne) were increased with the increase of BaO concentrations, and the decrease of gamma-ray energy. The developed glass samples were investigated and compared with the shielding concretes and glasses in terms of half value layer (HVL). The overall results demonstrated that the developed glasses had good shielding properties, and highly practical potentials in the environmental friendly radiation shielding materials without an additional of Pb.

  12. The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Thibeault, S. A.

    2006-01-01

    This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.

  13. Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.

  14. RADIATION SHIELDING DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-09-23

    ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.

  15. Radiation protection effectiveness of a proposed magnetic shielding concept for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Shinn, J. L.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    The effectiveness of a proposed concept for shielding a manned Mars vehicle using a confined magnetic field configuration is evaluated by computing estimated crew radiation exposures resulting from galactic cosmic rays and a large solar flare event. In the study the incident radiation spectra are transported through the spacecraft structure/magnetic shield using the deterministic space radiation transport computer codes developed at Langley Research Center. The calculated exposures unequivocally demonstrate that magnetic shielding could provide an effective barrier against solar flare protons but is virtually transparent to the more energetic galactic cosmic rays. It is then demonstrated that through proper selection of materials and shield configuration, adequate and reliable bulk material shielding can be provided for the same total mass as needed to generate and support the more risky magnetic field configuration.

  16. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  17. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  18. Microscreen radiation shield for thermoelectric generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, T.K.; Novak, R.F.; McBride, J.R.

    1990-08-14

    This patent describes a radiation shield adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield comprises woven wire mesh screen, the spacing between the wires forming the mesh screen being such that the radiation shield reflects thermal radiation while permitting the passage of alkali metal vapor therethrough.

  19. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  20. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  1. Boron filled siloxane polymers for radiation shielding

    NASA Astrophysics Data System (ADS)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton; Simmonds, Steve; Cox, Brad; Pacheco, Adam; Cady, Carl

    2018-03-01

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield, and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. Our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.

  2. Detection of shielded nuclear material in a cargo container

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Norman, Daren R.; Haskell, Kevin J.; Sterbentz, James W.; Yoon, Woo Y.; Watson, Scott M.; Johnson, James T.; Zabriskie, John M.; Bennett, Brion D.; Watson, Richard W.; Moss, Cavin E.; Frank Harmon, J.

    2006-06-01

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration.

  3. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Güngör, A.; Reyhancan, İ. A.

    2017-02-01

    In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.

  4. Magnetic radiation shielding - An idea whose time has returned?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    One solution to the problem of shielding crew from particulate radiation in space is to use active electromagnetic shielding. Practical types of shield include the magnetic shield, in which a strong magnetic field diverts charged particles from the crew region, and the magnetic/electrostatic plasma shield, in which an electrostatic field shields the crew from positively charged particles, while a magnetic field confines electrons from the space plasma to provide charge neutrality. Advances in technology include high-strength composite materials, high-temperature superconductors, numerical computational solutions to particle transport in electromagnetic fields, and a technology base for construction and operation of large superconducting magnets. These advances make electromagnetic shielding a practical alternative for near-term future missions.

  5. Optimization Shield Materials Trade Study for Lunar/Gateway Mission

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.; Anderson, B. M.; Simonsen, L. C.

    2002-01-01

    The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. It is being proposed to use Moon and the Lagrange points as the hub for deep space missions. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.

  6. Microscreen radiation shield for thermoelectric generator

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.; McBride, James R.

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  7. Detection of Shielded Nuclear Material in a Cargo Container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Jones; D. R. Norman; K. J. Haskell

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presentedmore » for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved« less

  8. Overview of active methods for shielding spacecraft from energetic space radiation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W. (Principal Investigator)

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  9. Graphite/Ultra-High Modulus Polyethylene Hybrid Fiber Composites with Epoxy and Polyethylene Matrices for Cosmic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of the most significant technical challenges in long-duration space missions is that of protecting the crew from harmful radiation. Protection against such radiation on a manned Mars mission will be of vital importance both during transit and while on the surface of the planet. The development of multifunctional materials that serve as integral structural members of the space vehicle and provide the necessary radiation shielding for the crew would be both mission enabling and cost effective. Additionally, combining shielding and structure could reduce total vehicle mass. Hybrid laminated composite materials having both ultramodulus polyethylene (PE) and graphite fibers in epoxy and PE matrices could meet such mission requirements. PE fibers have excellent physical properties, including the highest specific strength of any known fiber. Moreover, the high hydrogen (H) content of polyethylene makes the material an excellent shielding material for cosmic radiation. When such materials are incorporated into an epoxy or PE matrix a very effective shielding material is expected. Boron (B) may be added to the matrix resin or used as a coating to further increase the shielding effectiveness due to B s ability to slow thermal neutrons. These materials may also serve as micrometeorites shields due to PE s high impact energy absorption properties. It should be noted that such materials can be fabricated by existing equipment and methods. It is the objective of this work therefore to: (a) perform preliminary analysis of the radiation transport within these materials; (b) fabricate panels for mechanical property testing before and after radiation exposure. Preliminary determination on the effectiveness of the combinations of material components on both shielding and structural efficiency will be made.

  10. Boron Filled Siloxane Polymers for Radiation Shielding

    DOE PAGES

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton Otto; ...

    2017-09-01

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield,more » and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. In conclusion, our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.« less

  11. Boron Filled Siloxane Polymers for Radiation Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton Otto

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield,more » and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. In conclusion, our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.« less

  12. CHESS upgrade 1995: Improved radiation shielding (abstract)

    NASA Astrophysics Data System (ADS)

    Finkelstein, K. D.

    1996-09-01

    The Cornell Electron Storage Ring (CESR) stores electrons and positrons at 5.3 GeV for the production and study of B mesons, and, in addition, it supplies synchrotron radiation for CHESS. The machine has been upgraded for 300 mA operation. It is planned that each beam will be injected in about 5 minutes and that particle beam lifetimes will be several hours. In a cooperative effort, staff members at CHESS and LNS have studied sources in CESR that produce radiation in the user areas. The group has been responsible for the development and realization of new tunnel shielding walls that provide a level of radiation protection from 20 to ≳100 times what was previously available. Our experience has indicated that a major contribution to the environmental radiation is not from photons, but results from neutrons that are generated by particle beam loss in the ring. Neutrons are stopped by inelastic scattering and absorption in thick materials such as heavy concrete. The design for the upgraded walls, the development of a mix for our heavy concrete, and all the concrete casting was done by CHESS and LNS personnel. The concrete incorporates a new material for this application, one that has yielded a significant cost saving in the production of over 200 tons of new wall sections. The material is an artificially enriched iron oxide pellet manufactured in vast quantities from hematite ore for the steel-making industry. Its material and chemical properties (iron and impurity content, strength, size and uniformity) make it an excellent substitute for high grade Brazilian ore, which is commonly used as heavy aggregate in radiation shielding. Its cost is about a third that of the natural ore. The concrete has excellent workability, a 28 day compressive strength exceeding 6000 psi and a density of 220 lbs/cu.ft (3.5 gr/cc). The density is limited by an interesting property of the pellets that is motivated by efficiency in the steel-making application. The pellets are made to be

  13. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  14. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  15. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    NASA Astrophysics Data System (ADS)

    Zughbi, A.; Kharita, M. H.; Shehada, A. M.

    2017-07-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide.

  16. Polymeric Materials With Additives for Durability and Radiation Shielding in Space

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard

    2011-01-01

    Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.

  17. Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2007-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (<180 d), SPE s present the most significant risk, however one that is mitigated effectively by shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.

  18. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a functionmore » of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.« less

  19. A preliminary study to metaheuristic approach in multilayer radiation shielding optimization

    NASA Astrophysics Data System (ADS)

    Arif Sazali, Muhammad; Rashid, Nahrul Khair Alang Md; Hamzah, Khaidzir

    2018-01-01

    Metaheuristics are high-level algorithmic concepts that can be used to develop heuristic optimization algorithms. One of their applications is to find optimal or near optimal solutions to combinatorial optimization problems (COPs) such as scheduling, vehicle routing, and timetabling. Combinatorial optimization deals with finding optimal combinations or permutations in a given set of problem components when exhaustive search is not feasible. A radiation shield made of several layers of different materials can be regarded as a COP. The time taken to optimize the shield may be too high when several parameters are involved such as the number of materials, the thickness of layers, and the arrangement of materials. Metaheuristics can be applied to reduce the optimization time, trading guaranteed optimal solutions for near-optimal solutions in comparably short amount of time. The application of metaheuristics for radiation shield optimization is lacking. In this paper, we present a review on the suitability of using metaheuristics in multilayer shielding design, specifically the genetic algorithm and ant colony optimization algorithm (ACO). We would also like to propose an optimization model based on the ACO method.

  20. Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    NASA Technical Reports Server (NTRS)

    Atwell, William; Rojdev, Kristina; Liang, Daniel; Hill, Matthew

    2014-01-01

    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper.

  1. Materials for Low-Energy Neutron Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  2. Experimental Shielding Evaluation of the Radiation Protection Provided by Residential Structures

    NASA Astrophysics Data System (ADS)

    Dickson, Elijah D.

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment has been a public and regulatory concern since the early development of nuclear technology and researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to research and develop the technical basis for contemporary building shielding factors for the U.S. housing stock. Building shielding factors quantify the protection a certain building-type provides from ionizing radiation. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950's era suburbia and is no longer applicable to the densely populated urban environments seen today. To analyze a building's radiation shielding properties, the ideal approach would be to subject a variety of building-types to various radioactive materials and measure the radiation levels in and around the building. While this is not entirely practicable, this research uniquely analyzes the shielding effectiveness of a variety of likely U.S. residential buildings from a realistic source term in a laboratory setting. Results produced in the investigation provide a comparison between theory and experiment behind building shielding factor methodology by applying laboratory measurements to detailed computational models. These models are used to develop a series of validated building shielding factors for generic residential housing units using the computational code MCNP5. For these building shielding factors to be useful in radiologic consequence assessments and emergency response planning, two types of shielding factors have been developed for; (1) the shielding effectiveness of each structure within a semi-infinite cloud of radioactive material, and (2) the shielding effectiveness of each structure

  3. Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Barua, Bijoy Sonker; Khandaker, Mayeen Uddin; Chowdhury, Faruque-Uz-Zaman; Rashid, Md. Abdur; Bradley, David A.; Olatunji, Michael Adekunle; Kamal, Masud

    2018-06-01

    Following the rapid growing economy, the Bangladeshi dwellers are replacing their traditional (mud-, bamboo-, and wood-based) houses to modern multistoried buildings, where different types of glasses are being used as decorative as well as structural materials due to their various advantageous properties. In this study, we inquire the protective and dosimetric capability of commercial glasses for ionizing radiation. Four branded glass samples (PHP-Bangladesh, Osmania-Bangladesh, Nasir-Bangladesh, and Rider-China) of same thickness and color but different elemental weight fractions were analyzed for shielding and dosimetric properties. The chemical composition of the studied material was evaluated by EDX technique. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the attenuation coefficients of the studied materials for 59 keV, 661 keV, 1173 keV and 1332 keV photon energies. A number of shielding parameters- half value layer (HVL), radiation protection efficiency (RPE) and effective atomic number (Zeff) were also evaluated. The data were compared with the available literature (where applicable) to understand its shielding capability relative to the standard materials such as lead. Among the studied brands, Rider (China) shows relatively better indices to be used as ionizing radiation shielding material. The obtained, Zeff of the studied glass samples showed comparable values to the TLD-200 dosimeter, thus considered suitable for environmental radiation monitoring purposes.

  4. Monte carlo simulation of innovative neutron and photon shielding material composing of high density concrete, waste rubber, lead and boron carbide

    NASA Astrophysics Data System (ADS)

    Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.

    2017-06-01

    High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.

  5. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  6. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.

  7. High Tc superconductors as thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    1990-06-01

    The feasibility of using high-Tc superconductor films as IR-radiation shields for liquid-helium-temperature dewars is investigated. Calculations show that a Ba-Ca-Sr-Cu-O superconductor with Tc of 110 K, combined with a liquid-nitrogen temperature shield with an emissivity of 0.03 should produce an upper limit to the radiative heat transfer of 15 mW/sq m. The reduction of reflectivity depends on the field level and the extent of field penetration into the superconductor film, whose surface also would provide magnetic shielding for low magnetic fields. Such shields, providing both magnetic and thermal radiation shielding would be useful for spaceborne applications where exposure to the degrading effects of moist air would not be a problem.

  8. Improved Spacecraft Materials for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Clowdsley, M. S.; Shinn, J. L.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann; Kim, M.-H. Y.; Heinbockel, John H.; Badhwar, Gautam D.

    2001-01-01

    Methods by which radiation shielding is optimized need to be developed and materials of improved shielding characteristics identified and validated. The galactic cosmic rays (GCR) are very penetrating and the energy absorbed by the astronaut behind the shield is nearly independent of shield composition and even the shield thickness. However, the mix of particles in the transmitted beam changes rapidly with shield material composition and thickness. This results in part from the breakup of the high-energy heavy ions of the GCR which make contributions to biological effects out of proportion to their deposited energy. So the mixture of particles in the radiation field changes with shielding and the control of risk contributions from dominant particle types is critical to reducing the hazard to the astronaut. The risk of biological injury for a given particle type depends on the type of biological effect and is specific to cell or tissue type. Thus, one is faced with choosing materials which may protect a given tissue against a given effect but leave unchanged or even increase the risk of other effects in the same tissue or increase the risks to other adjacent tissues of a different type in the same individual. The optimization of shield composition will then be tied to a specific tissue and risk to that tissue. Such peculiarities arise from the complicated mixture of particles, the nature of their biological response, and the details of their interaction with material constituents. Aside from the understanding of the biological response to specific components, one also needs an accurate understanding of the radiation emerging from the shield material. This latter subject has been a principal element of this project. In the past ten years our understanding of space radiation interactions with materials has changed radically, with a large impact on shield design. For example, the NCRP estimated that only 2 g/sq cm. of aluminum would be required to meet the annual 500 m

  9. Optimization of radiation shielding material aiming at compactness, lightweight, and low activation for a vehicle-mounted accelerator-driven D-T neutron source.

    PubMed

    Cai, Yao; Hu, Huasi; Lu, Shuangying; Jia, Qinggang

    2018-05-01

    To minimize the size and weight of a vehicle-mounted accelerator-driven D-T neutron source and protect workers from unnecessary irradiation after the equipment shutdown, a method to optimize radiation shielding material aiming at compactness, lightweight, and low activation for the fast neutrons was developed. The method employed genetic algorithm, combining MCNP and ORIGEN codes. A series of composite shielding material samples were obtained by the method step by step. The volume and weight needed to build a shield (assumed as a coaxial tapered cylinder) were adopted to compare the performance of the materials visually and conveniently. The results showed that the optimized materials have excellent performance in comparison with the conventional materials. The "MCNP6-ACT" method and the "rigorous two steps" (R2S) method were used to verify the activation grade of the shield irradiated by D-T neutrons. The types of radionuclide, the energy spectrum of corresponding decay gamma source, and the variation in decay gamma dose rate were also computed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    PubMed

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    PubMed

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  12. Radiation Shielding Systems Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)

    2011-01-01

    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  13. Influence of structure on radiation shielding effectiveness of graphite fiber reinforced polyethylene composite

    NASA Astrophysics Data System (ADS)

    Emmanuel, A.; Raghavan, J.

    2015-10-01

    While LEO and GEO are used for most satellite missions, Highly Elliptical Orbits (HEOs) are also used for satellite missions covering Polar Regions of Earth. Satellites in HEO are exposed to a relatively harsher radiation environment than LEO and GEO. The mass of traditionally used aluminum radiation shield, required to attenuate the radiation to a level below a certain threshold that is safe for the satellite bus and payload, scales with the level of radiation. It has been shown (Emmanuel et al., 2014) that materials with low atomic number (Z) such as polyethylene (PE) can result in a lighter shield than aluminum (Al) in HEO. However, PE has to be reinforced with relatively high Z fibers such as graphite (G) to improve its mechanical properties. The effect of introduction of G and the resulting composite structure (that meets the requirements on mechanical properties, manufacturing and service) on the radiation shielding effectiveness of PE was studied through simulation using a layered PE-G composite. The Total Ionization Dose (TID), deposited in a silicon detector behind the composite shield, has been found to be function of layer volume fraction, layer thickness and stacking sequence of the PE and G layers. One composite configuration has resulted in a TID lower than that for PE, demonstrating the possibility of tailoring the mechanical properties of PE-based composite radiation shield with minimal negative impact on its radiation shielding effectiveness.

  14. Novel shielding materials for space and air travel.

    PubMed

    Vana, N; Hajek, M; Berger, T; Fugger, M; Hofmann, P

    2006-01-01

    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005.

  15. The radiation shielding potential of CI and CM chondrites

    NASA Astrophysics Data System (ADS)

    Pohl, Leos; Britt, Daniel T.

    2017-03-01

    Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) pose a serious limit on the duration of deep space human missions. A shield composed of a bulk mass of material in which the incident particles deposit their energy is the simplest way to attenuate the radiation. The cost of bringing the sufficient mass from the Earth's surface is prohibitive. The shielding properties of asteroidal material, which is readily available in space, are investigated. Solution of Bethe's equation is implemented for incident protons and the application in composite materials and the significance of various correction terms are discussed; the density correction is implemented. The solution is benchmarked and shows good agreement with the results in literature which implement more correction terms within the energy ranges considered. The shielding properties of CI and CM asteroidal taxonomy groups and major asteroidal minerals are presented in terms of stopping force. The results show that CI and CM chondrites have better stopping properties than Aluminium. Beneficiation is discussed and is shown to have a significant effect on the stopping power.

  16. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  17. SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield

    NASA Technical Reports Server (NTRS)

    Disney, R. K.; Ricks, L. O.

    1967-01-01

    SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.

  18. Radiation and shielding study for the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Baze, M.; Firminhac, R. H.; Horne, W. E.; Kennedy, R. C.; Measel, P. R.; Sivo, L. L.; Wilkinson, M. C.

    1974-01-01

    Technical advisory services to ensure integrity of parts and material exposed to energetic particle radiation for the IUE scientific instruments, spacecraft, and subsystems are provided. A significant potential for interference, degradation, or failure for unprotected or sensitive items was found. Vulnerable items were identified, and appropriate tests, changes, and shields were defined.

  19. Flexible shielding system for radiation protection

    NASA Technical Reports Server (NTRS)

    Babin, A.

    1972-01-01

    Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.

  20. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila

    2002-01-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.

  1. CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator

    PubMed Central

    Neeman, Ziv; Dromi, Sergio A.; Sarin, Shawn; Wood, Bradford J.

    2008-01-01

    PURPOSE High-radiation exposure occurs during computed tomographic (CT) fluoroscopy. Patient and operator doses during thoracic and abdominal interventional procedures were studied in the present experiment, and a novel shielding device to reduce exposure to the patient and operator was evaluated. MATERIALS AND METHODS With a 16-slice CT scanner in CT fluoroscopy mode (120 kVp, 30 mA), surface dosimetry was performed on adult and pediatric phantoms. The shielding was composed of tungsten antimony in the form of a lightweight polymer sheet. Doses to the patient were measured with and without shielding for thoracic and abdominal procedures. Doses to the operator were recorded with and without phantom, gantry, and table shielding in place. Double-layer lead-free gloves were used by the operator during the procedures. RESULTS Tungsten antimony shielding adjacent to the scan plane resulted in a maximum dose reduction of 92.3% to the patient. Maximum 85.6%, 93.3%, and 85.1% dose reductions were observed for the operator’s torso, gonads, and hands, respectively. The use of double-layer lead-free gloves resulted in a maximum radiation dose reduction of 97%. CONCLUSIONS Methods to reduce exposure during CT fluoroscopy are effective and should be searched for. Significant reduction in radiation doses to the patient and operator can be accomplished with tungsten antimony shielding. PMID:17185699

  2. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.; Sayenko, S. Yu.; Dovbnya, A. N.

    2015-07-01

    Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete’s tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiationsmore » to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosionand fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.« less

  3. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  4. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  5. Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.

  6. Meeting Radiation Protection Requirements and Reducing Spacecraft Mass - A Multifunctional Materials Approach

    NASA Technical Reports Server (NTRS)

    Atwell, William; Koontz, Steve; Reddell, Brandon; Rojdev, Kristina; Franklin, Jennifer

    2010-01-01

    Both crew and radio-sensitive systems, especially electronics must be protected from the effects of the space radiation environment. One method of mitigating this radiation exposure is to use passive-shielding materials. In previous vehicle designs such as the International Space Station (ISS), materials such as aluminum and polyethylene have been used as parasitic shielding to protect crew and electronics from exposure, but these designs add mass and decrease the amount of usable volume inside the vehicle. Thus, it is of interest to understand whether structural materials can also be designed to provide the radiation shielding capability needed for crew and electronics, while still providing weight savings and increased useable volume when compared against previous vehicle shielding designs. In this paper, we present calculations and analysis using the HZETRN (deterministic) and FLUKA (Monte Carlo) codes to investigate the radiation mitigation properties of these structural shielding materials, which includes graded-Z and composite materials. This work is also a follow-on to an earlier paper, that compared computational results for three radiation transport codes, HZETRN, HETC, and FLUKA, using the Feb. 1956 solar particle event (SPE) spectrum. In the following analysis, we consider the October 1989 Ground Level Enhanced (GLE) SPE as the input source term based on the Band function fitting method. Using HZETRN and FLUKA, parametric absorbed doses at the center of a hemispherical structure on the lunar surface are calculated for various thicknesses of graded-Z layups and an all-aluminum structure. HZETRN and FLUKA calculations are compared and are in reasonable (18% to 27%) agreement. Both codes are in agreement with respect to the predicted shielding material performance trends. The results from both HZETRN and FLUKA are analyzed and the radiation protection properties and potential weight savings of various materials and materials lay-ups are compared.

  7. Managing Lunar and Mars Mission Radiation Risks. Part 1; Cancer Risks, Uncertainties, and Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2005-01-01

    This document addresses calculations of probability distribution functions (PDFs) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPEs). PDFs are used to test the effectiveness of potential radiation shielding approaches. Monte-Carlo techniques are used to propagate uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. The cancer risk uncertainty is about four-fold for lunar and Mars mission risk projections. For short-stay lunar missins (<180 d), SPEs present the most significant risk, but one effectively mitigated by shielding. For long-duration (>180 d) lunar or Mars missions, GCR risks may exceed radiation risk limits. While shielding materials are marginally effective in reducing GCR cancer risks because of the penetrating nature of GCR and secondary radiation produced in tissue by relativisitc particles, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding. Therefore, improving our knowledge of space radiobiology to narrow uncertainties that lead to wide PDFs is the best approach to ensure radiation protection goals are met for space exploration.

  8. Radiation protection using Martian surface materials in human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.

    2001-01-01

    To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.

  9. Early Results from the Advanced Radiation Protection Thick GCR Shielding Project

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Clowdsley, Martha; Slaba, Tony; Heilbronn, Lawrence; Zeitlin, Cary; Kenny, Sean; Crespo, Luis; Giesy, Daniel; Warner, James; McGirl, Natalie; hide

    2017-01-01

    The Advanced Radiation Protection Thick Galactic Cosmic Ray (GCR) Shielding Project leverages experimental and modeling approaches to validate a predicted minimum in the radiation exposure versus shielding depth curve. Preliminary results of space radiation models indicate that a minimum in the dose equivalent versus aluminum shielding thickness may exist in the 20-30 g/cm2 region. For greater shield thickness, dose equivalent increases due to secondary neutron and light particle production. This result goes against the long held belief in the space radiation shielding community that increasing shielding thickness will decrease risk to crew health. A comprehensive modeling effort was undertaken to verify the preliminary modeling results using multiple Monte Carlo and deterministic space radiation transport codes. These results verified the preliminary findings of a minimum and helped drive the design of the experimental component of the project. In first-of-their-kind experiments performed at the NASA Space Radiation Laboratory, neutrons and light ions were measured between large thicknesses of aluminum shielding. Both an upstream and a downstream shield were incorporated into the experiment to represent the radiation environment inside a spacecraft. These measurements are used to validate the Monte Carlo codes and derive uncertainty distributions for exposure estimates behind thick shielding similar to that provided by spacecraft on a Mars mission. Preliminary results for all aspects of the project will be presented.

  10. Characterization of ZnBr2 solution as a liquid radiation shield for mobile hot cell window

    NASA Astrophysics Data System (ADS)

    Bahrin, Muhammad Hannan; Ahmad, Megat Harun Al Rashid Megat; Hasan, Hasni; Rahman, Anwar Abdul; Azman, Azraf; Hassan, Mohd Zaid; Mamat, Mohd Rizal B.; Muhamad, Shalina Sheikh; Hamzah, Mohd Arif; Jamro, Rafhayudi; Wo, Yii Mei; Hamssin, Nurliyana

    2017-01-01

    The Mobile Hot Cell (MHC) has a viewing window which is usually made of almost transparent radiation shield material for the safety of MHC operators. Mobility is the main criterion for MHC; therefore liquid solution that can act as a radiation shield is usually selected as the window for MHC due to ease of transportation instead of a solid glass. As reported, Zinc Bromide (ZnBr2) solution was successfully used in viewing window for MHCs in South Africa and China. It was chosen due to its transparent solution, excellent performance as radiation shielding for gamma radiation, ease in preparation, handling, storage and treatment. Nevertheless, data and baseline studies on ZnBr2 as radiation shield are quite few. Therefore, a study on this matter was carried out. The preparation of ZnBr2 solution was processed at laboratory scale and the radiation shielding experiments were carried out using Cs-137 as radiation source. ZnBr2 solution was prepared by mixing ZnBr2 powder with distilled water. The mixing percentage of ZnBr2 powder, (%wt.) was varied to study the effect of density on the attenuation coefficient. The findings from this study will be used as a guideline in the production and management of ZnBr2 solution for MHC applications.

  11. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  12. NPR Reactor shield calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E.G.

    1961-09-27

    At the request of IPD Personnel, calculations on neutron and gamma attenuation were made for the NPR shield. The calculations were made using a new shielding computer code developed for the IBM 7090. The calculations show the thermal neutron flux, total neutron dose rate, and gamma dose rate distribution through the entire shield assembly. The calculations show that the side and top primary shield design is adequate to reduce the radiation level below design tolerances. The radiation leakage through the front shield was higher than the design tolerances. Two alternate biological shield materials were studied for use on the frontmore » face. These two materials were iron serpentine concrete mixtures with densities of 245 lb/ft{sup 3} and 265 lb/ft{sup 3} (designated by I-S-245-P and I-S-265-P, respectively). Both of these concretes reduced the radiation below design tolerances. It is recommended that the present front face biological shield be changed from I-S-220-P to I-S-245-P. With this change the NPR shield is adequate according to these calculations. The calculations reported here do not include leakage through penetration in the shield.« less

  13. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  14. Passive radiation shielding considerations for the proposed space elevator

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  15. New Materials for EMI Shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  16. Optimization of Martian regolith and ultra-high molecular weight polyethylene composites for radiation shielding and habitat structures

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard; Gersey, Brad; Baburaj, Abhijit; Barnett, Milan; Zhou, Xianren

    2012-07-01

    In preparation for long duration missions to the moon, Mars or, even near earth asteroids, one challenge, amongst many others, that the space program faces is shielding against space radiation. It is difficult to effectively shield all sources of space radiation because of the broad range of types and high energies found in space, so the most important goal is to minimize the damaging effects that may occur to humans and electronics during long duration space flight. For a long duration planetary habitat, a shielding option is to use in situ resources such as the native regolith. A possible way to utilize regolith on a planet is to combine it with a binder to form a structural material that also exhibits desirable shielding properties. In our studies, we explore Martian regolith and ultra-high molecular weight polyethylene (UHMWPE) composites. We selected UHMWPE as the binder in our composites due to its high hydrogen content; a desirable characteristic for shielding materials in a space environment. Our initial work has focused on the process of developing the right ratio of simulated Martian regolith and UHMWPE to yield the best results in material endurance and strength, while retaining good shielding characteristics. Another factor in our optimization process is to determine the composite ratio that minimizes the amount of ex situ UHMWPE while retaining desirable structural and shielding properties. This consideration seeks to minimize mission weight and costs. Mechanical properties such as tensile strength of the Martian regolith/UHMWPE composite as a function of its grain size, processing parameters, and different temperature variations used are discussed. The radiation shielding effectiveness of loose mixtures of Martian regolith/ UHMWPE is evaluated using a 200 MeV proton beam and a tissue equivalent proportional counter. Preliminary results show that composites with an 80/20 ratio percent weight of regolith to UHMWPE can be fabricated with potentially

  17. Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1974-01-01

    The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.

  18. Preliminary Design of a Galactic Cosmic Ray Shielding Materials Testbed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.

    2012-01-01

    The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.

  19. Radiation shielding for gamma stereotactic radiosurgery units

    PubMed Central

    2007-01-01

    Shielding calculations for gamma stereotactic radiosurgery units are complicated by the fact that the radiation is highly anisotropic. Shielding design for these devices is unique. Although manufacturers will answer questions about the data that they provide for shielding evaluation, they will not perform calculations for customers. More than 237 such units are now installed in centers worldwide. Centers installing a gamma radiosurgery unit find themselves in the position of having to either invent or reinvent a method for performing shielding design. This paper introduces a rigorous and conservative method for barrier design for gamma stereotactic radiosurgery treatment rooms. This method should be useful to centers planning either to install a new unit or to replace an existing unit. The method described here is consistent with the principles outlined in Report No. 151 from the U.S. National Council on Radiation Protection and Measurements. In as little as 1 hour, a simple electronic spreadsheet can be set up, which will provide radiation levels on planes parallel to the barriers and 0.3 m outside the barriers. PACS numbers: 87.53.Ly, 87.56By, 87.52Tr

  20. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  1. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I <= Z <= 28 (H -- Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior' of an idealized spacecraft

  2. Mitigating the Effects of the Space Radiation Environment: A Novel Approach of Using Graded-Z Materials

    NASA Technical Reports Server (NTRS)

    Atwell, William; Rojdev, Kristina; Aghara, Sukesh; Sriprisan, Sirikul

    2013-01-01

    In this paper we present a novel space radiation shielding approach using various material lay-ups, called "Graded-Z" shielding, which could optimize cost, weight, and safety while mitigating the radiation exposures from the trapped radiation and solar proton environments, as well as the galactic cosmic radiation (GCR) environment, to humans and electronics. In addition, a validation and verification (V&V) was performed using two different high energy particle transport/dose codes (MCNPX & HZETRN). Inherently, we know that materials having high-hydrogen content are very good space radiation shielding materials. Graded-Z material lay-ups are very good trapped electron mitigators for medium earth orbit (MEO) and geostationary earth orbit (GEO). In addition, secondary particles, namely neutrons, are produced as the primary particles penetrate a spacecraft, which can have deleterious effects to both humans and electronics. The use of "dopants," such as beryllium, boron, and lithium, impregnated in other shielding materials provides a means of absorbing the secondary neutrons. Several examples of optimized Graded-Z shielding layups that include the use of composite materials are presented and discussed in detail. This parametric shielding study is an extension of some earlier pioneering work we (William Atwell and Kristina Rojdev) performed in 20041 and 20092.

  3. Radiation environment and shielding for early manned Mars missions

    NASA Technical Reports Server (NTRS)

    Hall, Stephen B.; Mccann, Michael E.

    1986-01-01

    The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding.

  4. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  5. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    DTIC Science & Technology

    2013-03-01

    greater degree of flexibility in design and engineering of specialized space vehicle shielding applications compared to aluminum. A new design for...photon/electron transport. Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding...of 37.8%. The reaction of interest is 64Zn(n,p)64Cu, where 64Cu has a half-life of 12.7 hours [5]. When this reaction occurs a positron

  6. Experimental study of some shielding parameters for composite shields

    NASA Astrophysics Data System (ADS)

    Mkhaiber, Ahmed F.; Dheyaa, Abdulraheem

    2018-05-01

    In this study radiation protection shields have been prepared consist of composite materials have epoxy as a basis material and different reinforcing materials C Ni PbO and Bi with various reinforcing ratios 10 20 30 40 50 % and dimensions 1 × 10 × 10 cm. For examination the suitability of using this shields to protect from gamma ray some shielding parameters were calculated like: Linear attenuation coefficient μ, effective atomic number Zeffe, heaviness and half value thickness X1/2 for energy rang 1218 – 1480 KeV. These parameters have been measured by using sodium iodide system NaITI with deferent radiation sources 152Eu 60Co and 137Cs. The results show that these parameters are effected by the reinforcing ratio and gamma ray energy, it is found that the linear attenuation coefficient and atomic effective number increases with reinforcing ratio increases and decreased with energy increasing especially with high concentrations 40 50 % and at low energies Eγ < 0662 MeV with certain energy while the values of X1/2 decrease with reinforcing ratio increases. Heaviness was calculated too for all shields, with respect to lead from its values we found that this shields lighter than lead, which make it preferable to traditional material such as lead and concrete.

  7. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies

    NASA Astrophysics Data System (ADS)

    Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar

    2016-10-01

    In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.

  8. Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Thibeault, Sheila A.; Simonsen, Lisa C.; Wilson, John W.

    1998-01-01

    Theoretical calculations of radiation attenuation due to energetic galactic cosmic rays behind Martian rock and Martian regolith material have been made to compare their utilization as shields for advanced manned missions to Mars because the detailed chemical signature of Mars is distinctly different from Earth. The modified radiation fields behind the Martian rocks and the soil model were generated by solving the Boltzmann equation using a HZETRN system with the 1977 Solar Minimum environmental model. For the comparison of the attenuation characteristics, dose and dose equivalent are calculated for the five different subgroups of Martian rocks and the Martian regolith. The results indicate that changes in composition of subgroups of Martian rocks have negligible effects on the overall shielding properties because of the similarity of their constituents. The differences for dose and dose equivalent of these materials relative to those of Martian regolith are within 0.5 and 1 percent, respectively. Therefore, the analysis of Martian habitat construction options using in situ materials according to the Martian regolith model composition is reasonably accurate. Adding an epoxy to Martian regolith, which changes the major constituents of the material, enhances shielding properties because of the added hydrogenous constituents.

  9. Radiation shielding quality assurance

    NASA Astrophysics Data System (ADS)

    Um, Dallsun

    For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.

  10. Cosmic Ray Interactions in Shielding Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less

  11. Metal-polysiloxane shields for radiation therapy of maxillo-facial tumors.

    PubMed

    Farahani, M; Eichmiller, F C; McLaughlin, W L

    1991-01-01

    In the treatment of some head and neck lesions with high-intensity radiation (teletherapy), an essential procedure is the application of an individually customized shielding appliance, which is designed, modeled, and formed into a working extra- or intraoral stent for the purpose of sparing healthy tissues. The present state of the art is slow and technique intensive, which can add to patient discomfort and inconvenience during molding and fabrication. A new formulation is described, which offers speed and ease of forming a moldable composite stent especially for intraoral use. Interleaved stacks of calibrated thin radiochromic film strips and soft-tissue-simulating plastic (polystyrene) layers gave a means of mapping one- or two-dimensional profiles of dose distributions adjacent to the high-density shielding materials using a spectrophotometer equipped with a gel scanner or a scanning laser-beam microdensitometer. Tests using collimated gamma-ray beams from a 60Co teletherapy unit were made in order to measure the dose distribution near interfaces of tissue-simulating polymer and the composite stent material with and without mixtures of metals (Ag-Cu and Sn-Sb). These results show that quickly formed composites made of a flexible resin with high concentrations of powdered spherical metal alloys provide effective custom-designed shielding, and, with a thin overlayer of the resin without metal, a diminished back-scattered radiation dose to normal tissues. An example of a successful formulation is a mixture of 90% by weight Ag-Cu alloy powder in a vinyl polysiloxane resin. This material is a moldable putty which, upon polymerization, forms a rigid elastomeric material, providing a half-value layer of approximately 2.5 to 2.8 cm for a gamma-ray beam from a 60Co source.

  12. Galactic and Solar Cosmic Ray Shielding in Deep Space

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tai, H.; Simonsen, Lisa C.; Shinn, Judy L.; Thibeault, Shelia; Kim, M. Y.

    1997-01-01

    An analysis of the radiation hazards in support of NASA deep space exploration activities is presented. The emphasis is on materials required for radiation protection shielding. Aluminum has been found to be a poor shield material when dose equivalent is used with exposure limits for low Earth orbit (LEO) as a guide for shield requirements. Because the radiation issues are cost related-the parasitic shield mass has high launch costs, the use of aluminum as a basic construction material is clearly not cost-effective and alternate materials need to be developed. In this context, polyethylene is examined as a potentially useful material and demonstrates important advantages as an alternative to aluminum construction. Although polyethylene is useful as a shield material, it may not meet other design criteria (strength, stability, thermal); other polymer materials must be examined.

  13. Method and system for determining radiation shielding thickness and gamma-ray energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klann, Raymond T.; Vilim, Richard B.; de la Barrera, Sergio

    2015-12-15

    A system and method for determining the shielding thickness of a detected radiation source. The gamma ray spectrum of a radiation detector is utilized to estimate the shielding between the detector and the radiation source. The determination of the shielding may be used to adjust the information from known source-localization techniques to provide improved performance and accuracy of locating the source of radiation.

  14. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures.

    PubMed

    Dickson, E D; Hamby, D M

    2014-03-01

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building's radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology.

  15. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  16. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  17. Female gonadal shielding with automatic exposure control increases radiation risks.

    PubMed

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei

    2018-02-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.

  18. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications

    NASA Astrophysics Data System (ADS)

    Montes, Carlos; Broussard, Kaylin; Gongre, Matthew; Simicevic, Neven; Mejia, Johanna; Tham, Jessica; Allouche, Erez; Davis, Gabrielle

    2015-09-01

    Future manned missions to the moon will require the ability to build structures using the moon's natural resources. The geopolymer binder described in this paper (Lunamer) is a construction material that consists of up to 98% lunar regolith, drastically reducing the amount of material that must be carried from Earth in the event of lunar construction. This material could be used to fabricate structural panels and interlocking blocks that have radiation shielding and thermal insulation characteristics. These panels and blocks could be used to construct living quarters and storage facilities on the lunar surface, or as shielding panels to be installed on crafts launched from the moon surface to deep-space destinations. Lunamer specimens were manufactured in the laboratory and compressive strength results of up to 16 MPa when cast with conventional methods and 37 MPa when cast using uniaxial pressing were obtained. Simulation results have shown that the mechanical and chemical properties of Lunamer allow for adequate radiation shielding for a crew inside the lunar living quarters without additional requirements.

  19. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOEpatents

    Lessing, Paul A.; Kong, Peter C.

    2000-01-01

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  20. Reliability Methods for Shield Design Process

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  1. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  2. Ground-based simulations of cosmic ray heavy ion interactions in spacecraft and planetary habitat shielding materials

    NASA Technical Reports Server (NTRS)

    Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.; hide

    1998-01-01

    This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.

  3. Determination and Fabrication of New Shield Super Alloys Materials for Nuclear Reactor Safety by Experiments and Cern-Fluka Monte Carlo Simulation Code, Geant4 and WinXCom

    NASA Astrophysics Data System (ADS)

    Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik

    2016-05-01

    Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.

  4. A space radiation shielding model of the Martian radiation environment experiment (MARIE)

    NASA Technical Reports Server (NTRS)

    Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Composite Aerogel Multifoil Protective Shielding

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.

    2013-01-01

    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  6. Analysis of a Lunar Base Electrostatic Radiation Shield Concept

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.

    2004-01-01

    Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.

  7. Bibliography, subject index, and author index of the literature examined by the Radiation Shielding Information Center (Reactor and Weapons Radiation Shielding). [1973--1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    An indexed bibliography is presented of literature selected by the Radiation Shielding Information Center since the previous volume was published in 1974 in the area of radiation transport and shielding against radiation from nuclear reactors, x-ray machines, radioisotopes, nuclear weapons (including fallout), and low-energy accelerators (e.g., neutron generators). In addition to lists of literature titles by subject categories (accessions 3501-4950), author and keyword indexes are given. Most of the literature selected for Vol. V was published in the years 1973 to 1976.

  8. Study on γ-ray exposure buildup factors and fast neutron-shielding properties of some building materials

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.; El-Khayatt, A. M.

    2014-06-01

    We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015-15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.

  9. Radiation-Shielding Polymer/Soil Composites

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu

    2007-01-01

    It has been proposed to fabricate polymer/ soil composites primarily from extraterrestrial resources, using relatively low-energy processes, with the original intended application being that habitat structures constructed from such composites would have sufficient structural integrity and also provide adequate radiation shielding for humans and sensitive electronic equipment against the radiation environment on the Moon and Mars. The proposal is a response to the fact that it would be much less expensive to fabricate such structures in situ as opposed to transporting them from Earth.

  10. Synthesis of mullite (3Al2O32SiO2) from local kaolin for radiation shielding

    NASA Astrophysics Data System (ADS)

    Ripin, Azuhar; Mohamed, Faizal; Aman, Asyraf

    2018-04-01

    Raw kaolin from Kota Tinggi, Johor was used in this study to produce ceramic mullite (3Al2O22SiO2) for radiation shielding materials. In this work, an attempt was made to study the potential of local minerals to be used as a shielding barrier for diagnostic radiology radiation facilities in hospitals and medical centers throughout Malaysia. The conventional ceramic processing route was employed in the study using different pressing strength and sintering time. The obtained samples were characterized using X-ray diffractometer (XRD) for phase identification of each of the samples. The lead equivalent (LE) test was carried out using 15.05 mCi Cobalt-57 with gamma energy of 122 keV to compute the abilities of the mullite ceramic samples to attenuate the radiation. XRD patterns of prepared ceramics revealed the presence of orthorhombic mullite, hexagonal quartz and orthorhombic sillimanite structures. Furthermore, the radiation test displayed the ability of ceramics to shield of 70 % of gamma radiation at the distance of 60 cm from the radiation source. The highest lead equivalent thickness is 1.0 mm Pb and the lowest is about 0.06 mm Pb. From the result, it is shown that the ceramic has the potential to use as a shielding barrier in diagnostic radiology facilities due to the ability of reducing the radiation dose up to 70 % from its initial value.

  11. A direct method for fabricating tongue-shielding stent.

    PubMed

    Wang, R R; Olmsted, L W

    1995-08-01

    During oral cancer radiotherapy, a tongue-shielding radiation stent guides the patient's upper and lower jaws to a repeatable position, attenuates radiation doses, and protects the tongue and structures adjacent to the irradiated field. Conventionally, a tongue-shielding radiation stent is made of heat-cured polymethyl methacrylate resin in which a low-melting Pb-Bi-Sn alloy is embedded as a shielding layer. Its use involves multiple and lengthy clinical and laboratory procedures. An improved polyvinyl siloxane-metal composite shielding system for radioprotection has recently been developed. This two-component, base and catalyst, putty material offers a shielding effect similar to that of the conventional shielding alloys. Its major advantages are that it is simple to use, requires only one clinical appointment, and affords efficient collaboration between dental and medical teams during cancer treatment. This article describes a simplified direct method of fabricating a tongue-shielding stent with the use of a new polyvinylsiloxane-metal composite in conjunction with impression putty material.

  12. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    PubMed

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.

  13. Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites

    NASA Astrophysics Data System (ADS)

    Bagheri, Kobra; Razavi, Seyed Mohammad; Ahmadi, Seyed Javad; Kosari, Mohammadreza; Abolghasemi, Hossein

    2018-05-01

    Composites of unsaturated polyester containing 5 wt% nanoclay and different amounts of lead monoxide particles (0, 10, 20, and 30 wt%) were prepared. XRD patterns showed the exfoliation of nanoclay layers in the polymer. Morphological properties of the composites were studied using SEM micrographs. The prepared composites were investigated for their thermal resistance and mechanical properties using thermogravimetric analysis and tensile testing method, respectively. Addition of lead monoxide to the polymer worsened its thermal resistance and tensile properties, whereas the observed negative effects could be moderated by the clay nanoparticle. Gamma attenuation performance of the composites was evaluated by 192Ir, 137Cs, and 60Co gamma radiation sources. Linear attenuation coefficient and mass attenuation coefficient of the composites were found to be increased with the increase of PbO content. Shielding efficiency of the prepared composites was compared with some conventional shielding materials regarding their half value layer thickness. UP/nanoclay/PbO composites were found to be suitable materials for the low-energy gamma radiation shielding applications.

  14. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  15. Multi-functional layered structure having structural and radiation shielding attributes

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor); Barghouty, Abdulnasser Fakhri (Inventor); Penn, Benjamin G. (Inventor); Hulcher, Anthony Bruce (Inventor)

    2010-01-01

    A cosmic and solar radiation shielding structure that also has structural attributes is comprised of three layers. The first layer is 30-42 percent by volume of ultra-high molecular weight (UHMW) polyethylene fibers, 18-30 percent by volume of graphite fibers, and a remaining percent by volume of an epoxy resin matrix. The second layer is approximately 68 percent by volume of UHMW polyethylene fibers and a remaining percent by volume of a polyethylene matrix. The third layer is a ceramic material.

  16. Radiation Transport Properties of Potential In Situ-Developed Regolith-Epoxy Materials for Martian Habitats

    NASA Technical Reports Server (NTRS)

    Miller, Jack; Heilbronn, Lawrence H.; Zeitlin, Cary J.; Wilson, John W.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann

    2003-01-01

    Mission crews in space outside the Earth s magnetic field will be exposed to high energy heavy charged particles in the galactic cosmic radiation (GCR). These highly ionizing particles will be a source of radiation risk to crews on extended missions to the Moon and Mars, and the biological effects of and countermeasures to the GCR have to be investigated as part of the planning of exploration-class missions. While it is impractical to shield spacecraft and planetary habitats against the entire GCR spectrum, biological and physical studies indicate that relatively modest amounts of shielding are effective at reducing the radiation dose. However, nuclear fragmentation in the shielding materials produces highly penetrating secondary particles, which complicates the problem: in some cases, some shielding is worse than none at all. Therefore the radiation transport properties of potential shielding materials need to be carefully investigated. One intriguing option for a Mars mission is the use of material from the Martian surface, in combination with chemicals carried from Earth and/or fabricated from elements found in the Martian atmosphere, to construct crew habitats. We have measured the transmission properties of epoxy-Martian regolith composites with respect to heavy charged particles characteristic of the GCR ions which bombard the Martian surface. The composites were prepared at NASA Langley Research Center using simulated Martian regolith, in the process also evaluating fabrication methods which could lead to technologies for in situ fabrication on Mars. Initial evaluation of the radiation shielding properties is made using radiation transport models developed at NASA-LaRC, and the results of these calculations are used to select the composites with the most favorable radiation transmission properties. These candidates are then evaluated at particle accelerators which produce beams of heavy charged particles representative in energy and charge of the radiation

  17. Characterization of Radiation Fields for Assessing Concrete Degradation in Biological Shields of NPPs

    NASA Astrophysics Data System (ADS)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Pape, Yann Le

    2017-09-01

    Life extensions of nuclear power plants (NPPs) to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.

  18. The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching

    2012-01-01

    The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.

  19. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Tolochek, R. V.; Ambrozova, I.; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.

    2014-01-01

    The dose reduction effects for space radiation by installation of water shielding material ("protective curtain") of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.

  20. Shielding Structures for Interplanetary Human Mission

    NASA Astrophysics Data System (ADS)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the

  1. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The

  2. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental

  3. Shielding properties of lead-free protective clothing and their impact on radiation doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich

    2007-11-15

    The shielding properties of two different lead-free materials--tin and a compound of 80% tin and 20% bismuth--for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) andmore » the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.« less

  4. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    NASA Technical Reports Server (NTRS)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  5. SU-E-T-243: Design of a Novel Testing Port for Radiation Protection and Shielding Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanny, S; Parsai, E; Harrell, D

    2015-06-15

    Purpose: The majority of radiation shielding research utilizes Monte Carlo simulation because of the difficulty in eliminating secondary radiations from measurements. We have designed a test port into a primary barrier of our newest vault to allow for shielding measurements while ensuring adequate protection to the public and staff during normal machine operation. This port allows for measurement of attenuation values of shielding materials, differential dose albedos, and radiation scatter fractions. Methods: The vault design utilized the maze as part of a compound primary barrier. The test port is contained within the maze and is centered along isocenter. The innermore » 30 cm has a 20×20 cm{sup 2} opening, while the remaining length has a 30×30 cm{sup 2} opening. The block that contains the port has a density of 200 pcf to minimize internal scatter. The 30×30 cm{sup 2} opening is occupied by removable 215 pcf concrete blocks. The innermost and outermost blocks activate an interlock wired into the beam-enable loop. This disallows beam-on in treatment mode if the interlock isn’t closed. The interlock can be overridden in service mode, or by-passed via an override switch in case of circuit failure. Results: The test port was installed in August. The beam is disabled when the interlock is tripped. Measurements taken when the primary beam is not incident on the port are indistinguishable from background. Ambient dose levels surrounding the vault with the designed shielding blocks in place are all within allowable limits for occupational workers. Conclusions: We have designed and installed a unique testing port for radiation protection and shielding measurements. This port is appropriately interlocked and designed to mitigate any risks of incidental exposure to staff or members of the public. The test port design allows measurements with “good geometry” and efficient removal of contaminating sources of radiation present in many shielding measurements. Daniel

  6. An Analysis of Radiation Penetration through the U-Shaped Cast Concrete Joints of Concrete Shielding in the Multipurpose Gamma Irradiator of BATAN

    NASA Astrophysics Data System (ADS)

    Ardiyati, Tanti; Rozali, Bang; Kasmudin

    2018-02-01

    An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.

  7. Cytogenetic effects of high-energy iron ions: dependence on shielding thickness and material.

    PubMed

    Durante, M; George, K; Gialanella, G; Grossi, G; La Tessa, C; Manti, L; Miller, J; Pugliese, M; Scampoli, P; Cucinotta, F A

    2005-10-01

    We report results for chromosomal aberrations in human peripheral blood lymphocytes after they were exposed to high-energy iron ions with or without shielding at the HIMAC, AGS and NSRL accelerators. Isolated lymphocytes were exposed to iron ions with energies between 200 and 5000 MeV/nucleon in the 0.1-1-Gy dose range. Shielding materials consisted of polyethylene, lucite (PMMA), carbon, aluminum and lead, with mass thickness ranging from 2 to 30 g/cm2. After exposure, lymphocytes were stimulated to grow in vitro, and chromosomes were prematurely condensed using a phosphatase inhibitor (calyculin A). Aberrations were scored using FISH painting. The yield of total interchromosomal exchanges (including dicentrics, translocations and complex rearrangements) increased linearly with dose or fluence in the range studied. Shielding decreased the effectiveness per unit dose of iron ions. The highest RBE value was measured with the 1 GeV/nucleon iron-ion beam at NSRL. However, the RBE for the induction of aberrations apparently is not well correlated with the mean LET. When shielding thickness was increased, the frequency of aberrations per particle incident on the shield increased for the 500 MeV/nucleon ions and decreased for the 1 GeV/nucleon ions. Maximum variation at equal mass thickness was obtained with light materials (polyethylene, carbon or PMMA). Variations in the yield of chromosomal aberrations per iron particle incident on the shield follow variations in the dose per incident particle behind the shield but can be modified by the different RBE of the mixed radiation field produced by nuclear fragmentation. The results suggest that shielding design models should be benchmarked using both physics and biological data.

  8. Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    NASA Technical Reports Server (NTRS)

    Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.

    2013-01-01

    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.

  9. New shielding material development for compact accelerator-driven neutron source

    NASA Astrophysics Data System (ADS)

    Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei

    2017-04-01

    The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  10. Space Radiation Dosimetry to Evaluate the Effect of Polyethylene Shielding in the Russian Segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Aiko; Casolino, Marco; Larsson, Oscar; Ito, Tsuyoshi; Yasuda, Nakahiro; Kitajo, Keiichi; Shimada, Ken; Takeda, Kazuo; Tsuda, Shuichi; Sato, Tatsuhiko

    As a part of the Alteino Long Term Cosmic Ray measurements on board the International Space Station (ALTCRISS) project, the shielding effect of polyethylene (PE) were evaluated in the Russian segment of the ISS, using active and passive dosimeter systems covered with or without PE shielding. For the passive dosimeter system, PADLES (Passive Dosimeter for Life-Science and Experiments in Space) was used in the project, which consists of a Thermo-Luminescent Dosimeters (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTDs) attached to a radiator. Not only CR-39 PNTD itself but also a tissue equivalent material, NAN-JAERI, were employed as the radiator in order to investigate whether CR-39 PNTD can be used as a surrogate of tissue equivalent material in space dosimetry or not. The agreements between the doses measured by PADLES with CR-39 PNTD and NAN-JAERI radiators were quite satisfactorily, indicating the tissue-equivalent dose can be measured by conventional PADLES even though CR-39 PNTD is not perfect tissue-equivalent material. It was found that the shielding effect of PE varies with location inside the spacecraft: it became less significant with an increase of the mean thickness of the wall. This tendency was also verified by Monte Carlo simulation using the PHITS code. Throughout the flight experiments, in a series of four phases in the ALTCRISS project from December 2005 to October 2007, we assessed the ability of PE to decrease radiation doses in Low Earth Orbit(LEO).

  11. Radiation shielding estimates for manned Mars space flight.

    PubMed

    Dudkin, V E; Kovalev, E E; Kolomensky, A V; Sakovich, V A; Semenov, V F; Demin, V P; Benton, E V

    1992-01-01

    In the analysis of the required radiation shielding protection of spacecraft during a Mars flight, specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low- and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons.

  12. New applications and developments in the neutron shielding

    NASA Astrophysics Data System (ADS)

    Uğur, Fatma Aysun

    2017-09-01

    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  13. A proposed performance index for galactic cosmic ray shielding materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Wood, J. S.; Shinn, Judy L.; Cucinotta, Francis A.; Nealy, John E.

    1993-01-01

    In past studies, the reductions in absorbed dose and dose equivalent due to choice of material composition have been used to indicate shield effectiveness against exposure to galactic cosmic rays. However, these quantities are highly inaccurate in assessing shield effectiveness for protection against the biological effects of long-term exposure to the galactic heavy ions. A new quantity for shield performance is defined that correlates well with cell killing and cell transformation behind various shield thicknesses and materials. In addition, a relative performance index is identified that is inversely related to biological injury for different materials at a fixed shield mass and is directly related to the ratio of the fourth- and the second-order linear energy transfer (LET) moments.

  14. Computational Design of Epoxy/ Boron Carbide Nanocomposites for Radiation Shielding Applications

    NASA Astrophysics Data System (ADS)

    Bejagam, Karteek; Galehdari, Nasim; Espinosa, Ingrid; Deshmukh, Sanket A.; Kelkar, Ajit D.

    An individual working in industries that include nuclear power plants, healthcare industry, and aerospace are knowingly or unknowingly exposed to radiations of different energies. Exposure to high-energy radiations such as α/ β particle emissions or gamma ray electromagnetic radiations enhances the health risks that can lead to carcinogenesis, cardiac problems, cataracts, and other acute radiation syndromes. The best possible solution to protect one from the exposure to radiations is shielding. In the present study, we have developed a new algorithm to generate a range of different structures of Diglycidyl Ether of Bisphenol F (EPON 862) and curing agent Diethylene Toluene Diamine (DETDA) resins with varying degrees of crosslinking. 3, 5, and 10 weight percent boron carbide was employed as filling materials to study its influence on the thermal and mechanical properties of composite. We further conduct the reactive molecular dynamics (RMD) simulations to investigate the effect of radiation exposure on the structural, physical, and mechanical properties of these Epoxy/Boron Carbide nanocomposites. Where possible the simulation results were compared with the experimental data.

  15. A space radiation shielding model of the Martian radiationenvironment experiment (MARIE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwell, William; Saganti, Premkumar; Cucinotta, Francis A.

    2004-12-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. On board the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20 500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding modelmore » and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.« less

  16. Shielding Strategies for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Wilson J. W. (Editor); Miller, J. (Editor); Konradi, A. (Editor); Cucinotta, F. A. (Editor)

    1997-01-01

    A group of twenty-nine scientists and engineers convened a 'Workshop on Shielding Strategies for Human Space Exploration' at the Lyndon B. Johnson Space Center in Houston, Texas. The provision of shielding for a Mars mission or a Lunar base from the hazards of space radiations is a critical technology since astronaut radiation safety depends on it and shielding safety factors to control risk uncertainty appear to be great. The purpose of the workshop was to define requirements for the development and evaluation of high performance shield materials and designs and to develop ideas regarding approaches to radiation shielding. The workshop was organized to review the recent experience on shielding strategies gained in studies of the 'Space Exploration Initiative (SEI),' to review the current knowledge base for making shield assessment, to examine a basis for new shielding strategies, and to recommend a strategy for developing the required technologies for a return to the moon or for Mars exploration. The uniqueness of the current workshop arises from the expected long duration of the missions without the protective cover of the geomagnetic field in which the usually small and even neglected effects of the galactic cosmic rays (GCR) can no longer be ignored. It is the peculiarity of these radiations for which the inter-action physics and biological action are yet to be fully understood.

  17. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  18. Shielding materials for highly penetrating space radiations

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-01-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers

  19. Glove box shield

    DOEpatents

    Brackenbush, L.W.; Hoenes, G.R.

    A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  20. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  1. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.

    PubMed

    Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M

    2012-01-01

    Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P < 0.0001) corresponding to a 23% total reduction. Moreover, mean radiation exposure was lower with Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.

  2. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  3. Experiences with a New Shielding Material

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Calzada, E.; Liu, S. Q.; Stöwer, W.; Kortmann, F.; Größlhuber, H.; von Gostomski, Ch. Lierse

    Recent modifications of the NECTAR facility included the set-up of a new beam dump. One of its main components is based on a reusable shielding material developed at TUM. The provided base material was characterized and its advantages and limitations were investigated by simulation studies and by measurements.

  4. Measurement of Charged Particle Interactions in Spacecraft and Planetary Habitat Shielding Materials

    NASA Technical Reports Server (NTRS)

    Zeitlin, Cary J.; Heilbronn, Lawrence H.; Miller, Jack; Wilson, John W.; Singleterry, Robert C., Jr.

    2003-01-01

    Accurate models of health risks to astronauts on long-duration missions outside the geomagnetosphere will require a full understanding of the radiation environment inside a spacecraft or planetary habitat. This in turn requires detailed knowledge of the flux of incident particles and their propagation through matter, including the nuclear interactions of heavy ions that are a part of the Galactic Cosmic Radiation (GCR). The most important ions are likely to be iron, silicon, oxygen, and carbon. Transport of heavy ions through complex shielding materials including self-shielding of tissue modifies the radiation field at points of interest (e.g., at the blood-forming organs). The incident flux is changed by two types of interactions: (1) ionization energy loss, which results in reduced particle velocity and higher LET (Linear Energy Transfer); and (2) nuclear interactions that fragment the incident nuclei into less massive ions. Ionization energy loss is well understood, nuclear interactions less so. Thus studies of nuclear fragmentation at GCR-like energies are needed to fill the large gaps that currently exist in the database. These can be done at only a few accelerator facilities where appropriate beams are available. Here we report results from experiments performed at the Brookhaven National Laboratory s Alternating Gradient Synchrotron (AGS) and the Heavy Ion Medical Accelerator in Chiba, Japan (HIMAC). Recent efforts have focused on extracting charge-changing and fragment production cross sections from silicon beams at 400, 600, and 1200 MeV/nucleon. Some energy dependence is observed in the fragment production cross sections, and as in other data sets the production of fragments with even charge numbers is enhanced relative to those with odd charge numbers. These data are compared to the NASA-LaRC model NUCFRG2. The charge-changing cross section data are compared to recent calculations using an improved model due to Tripathi, which accurately predicts the

  5. Radiation-resistant composite for biological shield of personnel

    NASA Astrophysics Data System (ADS)

    Barabash, D. E.; Barabash, A. D.; Potapov, Yu B.; Panfilov, D. V.; Perekalskiy, O. E.

    2017-10-01

    This article presents the results of theoretical and practical justification for the use of polymer concrete based on nonisocyanate polyurethanes in biological shield structures. We have identified the impact of ratio: polymer - radiation-resistant filling compound on the durability and protection properties of polymer concrete. The article expounds regression dependence of the change of basic properties of the aforementioned polymer concrete on the absorbed radiation dose rate. Synergy effect in attenuation of radioactivity release in case of conjoint use of hydrogenous polymer base and radiation-resistant powder is also addressed herein.

  6. Changes in entrance surface dose in relation to the location of shielding material in chest computed tomography

    NASA Astrophysics Data System (ADS)

    Kang, Y. M.; Cho, J. H.; Kim, S. C.

    2015-07-01

    This study examined the effects of entrance surface dose (ESD) on the abdomen and pelvis of the patient when undergoing chest computed tomography (CT) procedure, and evaluated the effects of ESD reduction depending on the location of radiation shield. For CT scanner, the 64-slice multi-detector computed tomography was used. The alderson radiation therapy phantom and optically stimulated luminescence dosimeter (OSLD), which enabled measurement from low to high dose, were also used. For measurement of radiation dose, the slice number from 9 to 21 of the phantom was set as the test range, which included apex up to both costophrenic angles. A total of 10 OSLD nanoDots were attached for measurement of the front and rear ESD. Cyclic tests were performed using the low-dose chest CT and high-resolution CT (HRCT) protocol on the following set-ups: without shielding; shielding only on the front side; shielding only on the rear side; and shielding for both front and rear sides. According to the test results, ESD for both front and rear sides was higher in HRCT than low-dose CT when radiation shielding was not used. It was also determined that, compared to the set-up that did not use the radiation shield, locating the radiation shield on the front side was effective in reducing front ESD, while locating the radiation shield on the rear side reduced rear ESD level. Shielding both the front and rear sides resulted in ESD reduction. In conclusion, it was confirmed that shielding the front and rear sides was the most effective method to reduce the ESD effect caused by scatter ray during radiography.

  7. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  8. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module crew quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M.; Zapp, N.; Barber, R.; Wilson, J.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.

    With 5 to 7-month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through an dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (Cn Hn ), is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in dose equivalent to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  10. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  11. Concepts and strategies for lunar base radiation protection - Prefabricated versus in-situ materials

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.

    1992-01-01

    The most recently accepted environment data are used as inputs for the Langley nucleon and heavy-ion transport codes, BRYNTRN and HZETRN, to examine the shield effectiveness of lunar regolith in comparison with commercially-used shield materials in nuclear facilities. Several of the fabricated materials categorized as neutron absorbers exhibit favorable characteristics for space radiation protection. In particular, polyethylene with additive boron is analyzed with regard to response to the predicted lunar galactic cosmic ray and solar proton flare environment during the course of a complete solar cycle. Although this effort is not intended to be a definitive trade study for specific shielding recommendations, attention is given to several factors that warrant consideration in such trade studies. For example, the transporting of bulk shield material to the lunar site as opposed to regolith-moving and processing equipment is assessed on the basis of recent scenario studies. The transporting of shield material from Earth may also be a viable alternative to the use of regolith from standpoints of cost-effectiveness, EVA time required, and risk factor.

  12. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Rosseel, Thomas M; Field, Kevin G

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete with a particular focus on radiation-induced effects. Based on the projected neutron fluence (E > 0.1 MeV) values in the concrete biological shields of the US PWR fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value aremore » necessary to assure reliable risk assessment for NPPs extended operation.« less

  13. E-beam-Cure Fabrication of Polymer Fiber/Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Hou, Tan-Hung; Saether, Erik; Glaessgen, Edward H.; Humes, Donald H.; Chang, Chie K.; Badavi, Francis F.; Kiefer, Rrichard L.; hide

    2004-01-01

    Aliphatic polymers were identified as optimum radiation polymeric shielding materials for building multifunctional structural elements. Conceptual damage-tolerant configurations of polyolefins have been proposed but many issues on the manufacture remain. In the present paper, we will investigate fabrication technologies with e-beam curing for inclusion of high-strength aliphatic polymer fibers into a highly cross-linked polyolefin matrix. A second stage of development is the fabrication methods for applying face sheets to aliphatic polymer closed-cell foams.

  14. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Almeida Junior, T. Airton; Nogueira, M. S.; Vivolo, V.; Potiens, M. P. A.; Campos, L. L.

    2017-11-01

    The probability of a photon interacting in a particular way with a given material, per unit path length, is usually called the linear attenuation coefficient (μ), and it is of great importance in radiation shielding. Plates of barite concrete with different thickness were fabricated in order to determining their mass attenuation coefficients at different energies. The plates were irradiated with ISO X-ray beams (N60, N80, N110 and N150), generated by Pantak HF320 X-ray equipment, at the IPEN laboratory. The mass attenuation coefficients of barite concrete have been measured using X-ray attenuation for different thicknesses of barite concrete qualities of the ISO. The attenuator material issued from different regions of Brazil. The experimental procedure in this research was validated by comparison between the experimental measurements of mass attenuation coefficients and coefficients determined by the same atomic composition, using as a tool to XCOM. The highest value of (μ/ρ) found experimentally was in the energy of 48 keV, in ISO 60 N quality, being 1.32(±0.49) for purple barite; 1.47(±0.41) for white barite and 1.75(±0.41) for cream barite. The determination of the chemical composition of the barite samples was of fundamental importance for the characterization of these materials. It can be seen that both calculated and measured data for the linear attenuation coefficients increase with the increasing materials density, as it is expected. It can be concluded that the photon attenuation coefficients depends on the photon energy and the materials density is the main contribution to the photon attenuation coefficients, which is important for radiation shielding.

  15. OLTARIS: An Efficient Web-Based Tool for Analyzing Materials Exposed to Space Radiation

    NASA Technical Reports Server (NTRS)

    Slaba, Tony; McMullen, Amelia M.; Thibeault, Sheila A.; Sandridge, Chris A.; Clowdsley, Martha S.; Blatting, Steve R.

    2011-01-01

    The near-Earth space radiation environment includes energetic galactic cosmic rays (GCR), high intensity proton and electron belts, and the potential for solar particle events (SPE). These sources may penetrate shielding materials and deposit significant energy in sensitive electronic devices on board spacecraft and satellites. Material and design optimization methods may be used to reduce the exposure and extend the operational lifetime of individual components and systems. Since laboratory experiments are expensive and may not cover the range of particles and energies relevant for space applications, such optimization may be done computationally with efficient algorithms that include the various constraints placed on the component, system, or mission. In the present work, the web-based tool OLTARIS (On-Line Tool for the Assessment of Radiation in Space) is presented, and the applicability of the tool for rapidly analyzing exposure levels within either complicated shielding geometries or user-defined material slabs exposed to space radiation is demonstrated. An example approach for material optimization is also presented. Slabs of various advanced multifunctional materials are defined and exposed to several space radiation environments. The materials and thicknesses defining each layer in the slab are then systematically adjusted to arrive at an optimal slab configuration.

  16. Glove box shield

    DOEpatents

    Brackenbush, Larry W.; Hoenes, Glenn R.

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  17. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    NASA Astrophysics Data System (ADS)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  18. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    PubMed Central

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-01-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations. PMID:27461510

  19. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays.

    PubMed

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-27

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  20. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    NASA Technical Reports Server (NTRS)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  1. Extensive Radiation Shielding Analysis for Different Spacecraft Orbits

    NASA Astrophysics Data System (ADS)

    Çay, Yiǧit; Kaymaz, Zerefsan

    2016-07-01

    Radiation environment around Earth poses a great danger for spacecraft and causes immature de-orbiting or loss of the spacecraft in near Earth space environment. In this study, a student project has been designed to build a CubeSat, PolarBeeSail (PBS), with an orbit having inclination of 80°, 4 Re in perigee and 20 Re in apogee to study the polar magnetospheric environment. An extensive radiation dose analyses were carried out for PBS orbit, and integral and differential fluxes were calculated using SPENVIS tools. A shielding analysis was performed and an optimum Aluminum thickness, 3 mm, was obtained. These results for PBS were then compared for other orbits at different altitudes both for polar and equatorial orbits. For this purpose, orbital characteristics of POES-19 and GOES-15 were used. The resulting proton flux analyses, TID analyses, and further shielding studies were conducted; comparisons and recommendations were made for future design of spacecraft that will use these environments.

  2. The use of Papuan iron sand and river sand for fine aggregate in mortar for nuclear radiation shield application

    NASA Astrophysics Data System (ADS)

    Dahlan, K.; Haryati, E.; Aninam, Y. S.

    2018-03-01

    This study explores the effect of fine aggregate on mortar properties and its application as a nuclear shield. This study was based on a hypothesis that the types of aggregate applied as radiation shield determined the level of its effectiveness on preventing nuclear radiation. There are two types and sources of fine aggregate that was used as main ingredients for mortar production in this research, namely iron sand and river sand. Both types of sand were derived from the respective regions of Sarmi and Jayapura, Papua. The results showed that the mortar materials that were produced with the iron sand provided better results in dispelling radiation than that of river sand. The compressive strength of fine aggregate from the iron sand was 21.62 MPa, while the compressive strength of the river sand was 16.8 MPa. Measuring the attenuation coefficient of material, we found that the largest aggregated value of mortar with fine iron sand reached 0.0863 / cm. On the other hand, the smallest HVT (Half Value Thickness) was obtained from the iron sand mortar, at 8.03 cm.

  3. MEANS FOR SHIELDING AND COOLING REACTORS

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  4. Omni-directional selective shielding material based on amorphous glass coated microwires.

    PubMed

    Ababei, G; Chiriac, H; David, V; Dafinescu, V; Nica, I

    2012-01-01

    The shielding effectiveness of the omni-directional selective shielding material based on CoFe-glass coated amorphous wires in 0.8 GHz-3 GHz microwave frequency range is investigated. The measurements were done in a controlled medium using a TEM cell and in the free space using horn antennas, respectively. Experimental results indicate that the composite shielding material can be developed with desired shielding effectiveness and selective absorption of the microwave frequency range by controlling the number of the layers and the length of microwires.

  5. Selective Shielding of Bone Marrow: An Approach to Protecting Humans from External Gamma Radiation.

    PubMed

    Waterman, Gideon; Kase, Kenneth; Orion, Itzhak; Broisman, Andrey; Milstein, Oren

    2017-09-01

    The current feasibility of protecting emergency responders through bone marrow selective shielding is highlighted in the recent OECD/NEA report on severe accident management. Until recently, there was no effective personal protection from externally penetrating gamma radiation. In Chernobyl, first-responders wore makeshift lead sheeting, whereas in Fukushima protective equipment from gamma radiation was not available. Older protective solutions that use thin layers of shielding over large body surfaces are ineffective for energetic gamma radiation. Acute exposures may result in Acute Radiation Syndrome where the survival-limiting factor up to 10 Gy uniform, homogeneous exposure is irreversible bone marrow damage. Protracted, lower exposures may result in malignancies of which bone marrow is especially susceptible, being compounded by leukemia's short latency time. This highlights the importance of shielding bone marrow for preventing both deterministic and stochastic effects. Due to the extraordinary regenerative potential of hematopoietic stem cells, to effectively prevent the deterministic effects of bone marrow exposure, it is sufficient to protect only a small fraction of this tissue. This biological principle allows for a new class of equipment providing unprecedented attenuation of radiation to select marrow-rich regions, deferring the hematopoietic sub-syndrome of Acute Radiation Syndrome to much higher doses. As approximately half of the body's active bone marrow resides within the pelvis region, shielding this area holds great promise for preventing the deterministic effects of bone marrow exposure and concomitantly reducing stochastic effects. The efficacy of a device that selectively shields this region and other radiosensitive organs in the abdominal area is shown here.

  6. Evaluation of Radiation Shielding Properties of the Polyvinyl Alcohol/Iron Oxide Polymer Composite

    PubMed Central

    Srinivasan, K.; Samuel, E. James Jabaseelan

    2017-01-01

    Context: Lead is the conventional shielding material against gamma/X-rays. It has some limitations such as toxic, high density, nonflexibility, and also bremsstrahlung production during electron interaction. It may affect the accuracy of radiotherapy outcome. Aims: To theoretically analyze the radiation shielding properties of flexible polyvinyl alcohol/iron oxide polymer composite with five different concentrations of magnetite over the energy range of 15 KeV–20 MeV. Subjects and Methods: Radiological properties were calculated based on the published literature. Attenuation coefficients of pure elements are generated with the help of WinXCOM database. Results: Effective atomic numbers and electron density are increased with the concentration of magnetite. On the other hand, the number of electrons per gram decreased. Mass attenuation coefficient (μ/ϼ) and linear attenuation coefficients (μ) are higher in the lower energy <100 KeV, and their values decreased when the energy increased. Computed tomography numbers (CT) show the significant variation between the concentrations in <60 KeV. Half-value layer and tenth-value layers are directly proportional to the energy and indirectly proportional to the concentration of magnetite. Transmission curve, relaxation length (ƛ), kinetic energy released in the matter, and elemental weight fraction are also calculated and the results are discussed. Conclusions: 0.5% of the magnetite gives superior shielding properties compared with other concentrations. It may be due to the presence of 0.3617% of Fe. Elemental weight fraction, atomic number, photon energy, and mass densities are the important parameters to understand the shielding behavior of any material. PMID:29296043

  7. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    PubMed Central

    Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.

    2009-01-01

    Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862

  8. Shielding requirements for mammography.

    PubMed

    Simpkin, D J

    1987-09-01

    Shielding requirements for mammography installations have been investigated. To apply the methodologies of NCRP Report No. 49, the scatter-to-incident ratio of a typical mammography beam was measured, and the broad beam transmission was calculated for several representative beam spectra. These calculations were found to compare favorably with published low kVp tungsten-targeted x-ray transmission through a variety of shielding materials. Radiation shielding tables were developed from the calculated transmissions through Pb, concrete, gypsum, steel, plate glass, and water, using a technique which eliminates the "add one HVL" rule. It is concluded that Mo-targeted x-ray beams operated at 35 kVp require half the shielding of W-targeted beams operated at 50 kVp, and that adequate, cost-effective shielding calculations will consider alternatives to Pb.

  9. Lunar Surface Reactor Shielding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate themore » mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.« less

  10. Spacesuit Radiation Shield Design Methods

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  11. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradationa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Rosseel, Thomas M; Field, Kevin G

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoffmore » value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants.« less

  12. Effects of increased shielding on gamma-radiation levels within spacecraft

    NASA Astrophysics Data System (ADS)

    Haskins, P. S.; McKisson, J. E.; Weisenberger, A. G.; Ely, D. W.; Ballard, T. A.; Dyer, C. S.; Truscott, P. R.; Piercey, R. B.; Ramayya, A. V.; Camp, D. C.

    The Shuttle Activation Monitor (SAM) experiment was flown on the Space Shuttle Columbia (STS-28) from 8 - 13 August, 1989 in a 57°, 300 km orbit. One objective of the SAM experiment was to determine the relative effect of different amounts of shielding on the gamma-ray backgrounds measured with similarly configured sodium iodide (NaI) and bismuth germante (BGO) detectors. To achieve this objective twenty-four hours of data were taken with each detector in the middeck of the Shuttle on the ceiling of the airlock (a high-shielding location) as well as on the sleep station wall (a low-shielding location). For the cosmic-ray induced background the results indicate an increased overall count rate in the 0.2 to 10 MeV energy range at the more highly shielded location, while in regions of trapped radiation the low shielding configuration gives higher rates at the low energy end of the spectrum.

  13. Exploring the Feasibility of Electrostatic Shielding for Spacecrafts

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.

    2005-01-01

    NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.

  14. SHIELDING CONSIDERATIONS FOR THE SMALL ANIMAL RADIATION RESEARCH PLATFORM (SARRP)

    PubMed Central

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron

    2014-01-01

    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m3 enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1–3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field. PMID:23532076

  15. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.

    2016-01-01

    This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated

  16. Use of Existing CAD Models for Radiation Shielding Analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  17. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  18. Generation of the additional fluorescence radiation in the elastomeric shields used in computer tomography (CT).

    PubMed

    Szajerski, P; Zaborski, M; Bem, H; Baryn, W; Kusiak, E

    Two commercially available (EP, Z) and eight new elastomeric composites (M1-M4, G1-G4, of thickness ≈1 mm) containing mixtures of differing proportions of heavy metal additives (Bi, W, Gd and Sb) have been synthesised and examined as protective shields. The intensity of the X-ray fluorescence radiation generated in the typical elastomeric shields for CT, containing Bi and other heavy metal additives influence on the practical shielding properties. A method for assessing the radiation shielding properties of elastomeric composites used in CT examination procedures via X-ray spectrometry has been proposed. To measure the radiation reduction ability of the protective shields, the dose reduction factor (DRF) has been determined. The lead equivalents for the examined composites were within the ranges of 0.046-0.128 and 0.048-0.130 mm for 122.1 and 136.5 keV photons, respectively. The proposed method, unlike to the common approach, includes a dose contribution from the induced X-ray fluorescence radiation of the heavy metal elements in the protective shields. The results clearly indicate that among the examined compositions, the highest values DRF have been achieved with preparations containing Bi+W, Bi+W+Gd and Bi+W+Sb mixtures with gradually decreasing content of heavy metal additives in the following order: Bi, W, Gd and Sb. The respective values of DRF obtained for the investigated composites were 21, 28 and 27 % dose reduction for a 1 mm thick shield and 39 and ~50 % for a 2 mm thick layer (M1-M4).

  19. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  20. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  1. Shield Optimization in Simple Geometry for the Gateway Concept

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Simonsen, L. C.; Nealy, J. E.; Troutman, P. A.; Wilson, J. W.

    2002-01-01

    The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.

  2. Optimization of NTP System Truss to Reduce Radiation Shield Mass

    NASA Technical Reports Server (NTRS)

    Scharber, Luke L.; Kharofa, Adam; Caffrey, Jarvis A.

    2016-01-01

    The benefits of nuclear thermal propulsion are numerous and relevant to the current NASA mission goals involving but not limited to the crewed missions to mars and the moon. They do however also present new and unique challenges to the design and logistics of launching/operating spacecraft. One of these challenges, relevant to this discussion, is the significant mass of the shielding which is required to ensure an acceptable radiation environment for the spacecraft and crew. Efforts to reduce shielding mass are difficult to accomplish from material and geometric design points of the shield itself, however by increasing the distance between the nuclear engines and the main body of the spacecraft the required mass of the shielding is lessened considerably. The mass can be reduced significantly per unit length, though any additional mass added by the structure to create this distance serves to offset those savings, thus the design of a lightweight structure is ideal. The challenges of designing the truss are bounded by several limiting factors including; the loading conditions, the capabilities of the launch vehicle, and achieving the ideal truss length when factoring for the overall mass reduced. Determining the overall set of mass values for a truss of varying length is difficult since to maintain an optimally designed truss the geometry of the truss or its members must change. Thus the relation between truss mass and length for these loading scenarios is not linear, and instead has relation determined by the truss design. In order to establish a mass versus length trend for various truss designs to compare with the mass saved from the shield versus length, optimization software was used to find optimal geometric properties that still met the design requirements at established lengths. By solving for optimal designs at various lengths, mass trends could be determined. The initial design findings show a clear benefit to extending the engines as far from the main

  3. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  4. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    NASA Technical Reports Server (NTRS)

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  5. Boron cage compound materials and composites for shielding and absorbing neutrons

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  6. A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding.

    PubMed

    Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da

    2015-12-01

    The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF.

  7. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar

    2017-09-01

    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  8. Engineering Nanostructures by Decorating Magnetic Nanoparticles onto Graphene Oxide Sheets to Shield Electromagnetic Radiations.

    PubMed

    Mural, Prasanna Kumar S; Pawar, Shital Patangrao; Jayanthi, Swetha; Madras, Giridhar; Sood, Ajay K; Bose, Suryasarathi

    2015-08-05

    In this study, a minimum reflection loss of -70 dB was achieved for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanoparticles (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTs (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends with MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.

  9. A deployable high temperature superconducting coil (DHTSC) - A novel concept for producing magnetic shields against both solar flare and Galactic radiation during manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Cocks, F. Hadley

    1991-01-01

    The discovery of materials which are superconducting above 100 K makes possible the use of superconducting coils deployed beyong the hull of an interplanetary spacecraft to produce a magnetic shield capable of giving protection not only against solar flare radiation, but also even against Galactic radiation. Such deployed coils can be of very large size and can thus achieve the great magnetic moments required using only relatively low currents. Deployable high-temperature-superconducting coil magnetic shields appear to offer very substantial reductions in mass and energy compared to other concepts and could readily provide the radiation protection needed for a Mars mission or space colonies.

  10. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less

  11. Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil

    DTIC Science & Technology

    2017-06-14

    ARL-MR-0954 ● Jun 2017 US Army Research Laboratory Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a...to Extend and Shield the Magnetic Field of a Coil by W Casey Uhlig Weapons and Materials Research Directorate, ARL...Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  12. Radiation shielding of the Fermilab 16 GeV proton driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolai V. Mokhov, Alexander I. Drozhdin and Oleg E. Krivosheev

    2001-07-12

    The radiation transport analysis in the proposed Fermi-lab 1.2 MWProton Driver (PD) [1] is fundamentally important because of the impact on machine performance, conventional facility design, maintenance operations, and related costs. The strategy adopted in the PD design is that the beam losses in the machine are localized and controlled as much as possible via the dedicated beam collimation system, with a high loss rate localized in that section and drastically lower uncontrolled beam loss rate in the rest of the lattice. Results of thorough Monte Carlo calculations of prompt and residual radiation in and around the PD components aremore » presented for realistic assumptions and geometry under normal operation and accidental conditions. This allowed one to conduct shielding design and analysis to meet regulatory requirements [2] for external shielding, hands-on maintenance and ground-water activation.« less

  13. Remote Recession Sensing of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Stackpoole, Margaret; Nawaz, Anuscheh; Gonzales, Gregory Lewis; Ho, Thanh

    2014-01-01

    Material recession and charring are two major processes determining the performance of ablative heat shield materials. Even in ground testing, the characterization of these two mechanisms relies on measurements of material thickness before and after testing, thus providing only information integrated over the test time. For recession measurements, optical methods such as imaging the sample surface during testing are under investigation but require high alignment and instrument effort, therefore being not established as a standard measurement method. For char depth measurements, the most common method so far consists in investigation of sectioned samples after testing or in the case of Stardust where core extractions were performed to determine char information. In flight, no reliable recession measurements are available, except total recession after recovering the heat shield on ground. Developments of mechanical recession sensors have been started but require substantial on board instrumentation adding mass and complexity. In this work, preliminary experiments to evaluate the feasibility of remote sensing of material recession and possibly char depth through optically observing the emission signatures of seeding materials in the post shock plasma is investigated. It is shown that this method can provide time resolved recession measurements without the necessity of accurate alignment procedures of the optical set-up and without any instrumentation on board of a spacecraft. Furthermore, recession data can be obtained without recovering flight hardware which would be a huge benefit for inexpensive heat shield material testing on board of small re-entry probes, e.g. on new micro-satellite re-entry probes as a possible future application of Cubesats or RBR

  14. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  16. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    NASA Astrophysics Data System (ADS)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  17. GARLIC, A SHIELDING PROGRAM FOR GAMMA RADIATION FROM LINE- AND CYLINDER- SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, M.

    1959-06-01

    GARLlC is a program for computing the gamma ray flux or dose rate at a shielded isotropic point detector, due to a line source or the line equivalent of a cylindrical source. The source strength distribution along the line must be either uniform or an arbitrary part of the positive half-cycle of a cosine function The line source can be orierted arbitrarily with respect to the main shield and the detector, except that the detector must not be located on the line source or on its extensionThe main source is a homogeneous plane slab in which scattered radiation is accountedmore » for by multiplying each point element of the line source by a point source buildup factor inside the integral over the point elements. Between the main shield and the line source additional shields can be introduced, which are either plane slabs, parallel to the main shield, or cylindrical rings, coaxial with the line source. Scattered radiation in the additional shields can only be accounted for by constant build-up factors outside the integral. GARLlC-xyz is an extended version particularly suited for the frequently met problem of shielding a room containing a large number of line sources in diHerent positions. The program computes the angles and linear dimensions of a problem for GARLIC when the positions of the detector point and the end points of the line source are given as points in an arbitrary rectangular coordinate system. As an example the isodose curves in water are presented for a monoenergetic cosine-distributed line source at several source energies and for an operating fuel element of the Swedish reactor R3, (auth)« less

  18. USE OF MODELS FOR GAMMA SHIELDING STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifford, C.E.

    1962-02-01

    The use of models for shielding studies of buildings exposed to gamma radiation was evaluated by comparing the dose distributions produced in a blockhouse with movable inside walls exposed to 0.66 Mev gamma radiation with corresponding distributions in an iron 1 to 10 scale model. The effects of air and ground scaling on the readings in the model were also investigated. Iron appeared to be a suitable model material for simple closed buildings but for more complex structures it appeared that the use of iron models would progressively overestimite the gamms shielding protection as the complexity increased. (auth)

  19. The Development of Materials for Structures and Radiation Shielding in Aerospace

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    2001-01-01

    Polymeric materials on space vehicles and high-altitude aircraft win be exposed to highly penetrating radiations. These radiations come from solar flares and galactic cosmic rays (GCR). Radiation from solar flares consists primarily of protons with energies less than 1 GeV. On the other hand, GCR consist of nuclei with energies as high as 10(exp 10) GeV. Over 90% of the nuclei in GCR are protons and alpha particles, however there is a small but significant component of particles with atomic numbers greater than ten. Particles with high atomic number (Z) and high energy interact with very high specific ionization and thus represent a serious hazard for humans and electronic equipment on a spacecraft or on high-altitude commercial aircraft (most importantly for crew members who would have long exposures). Neutrons generated by reactions with the high energy particles also represent a hazard both for humans and electronic equipment.

  20. Investigation of radiological properties of some shielding materials on charged and uncharged radiation interaction for neutron generator

    NASA Astrophysics Data System (ADS)

    Büyükyıldız, Mehmet

    2017-04-01

    Radiation interaction parameters such as total stopping power, projected range (longitudinal and lateral) straggling, mass attenuation coefficient, effective atomic number (Zeff) and electron density (Neff) of some shielding materials were investigated for photon and heavy charged particle interactions. The ranges, stragglings and mass attenuation coefficients were calculated for the high-density polyethylene(HDPE), borated polyethylene (BPE), brick (common silica), concrete (regular), wood, water, stainless steel (304), aluminum (alloy 6061-O), lead and bismuth using SRIM Monte Carlo software and WinXCom program. In addition, effective atomic numbers (Zeff) and electron densities (Neff) of HDPE, BPE, brick (common silica), concrete (regular), wood, water, stainless steel (304) and aluminum (alloy 6061-O) were calculated in the energy region 10 keV-100 MeV using mass stopping powers and mass attenuation coefficients. Two different methods namely direct and interpolation procedures were used to calculate Zeff for comparison and significant differences were determined between the methods. Variations of the ranges, longitudinal and lateral stragglings of water, concrete and stainless steel (304) were compared with each other in the continuous kinetic energy region and discussed with respect to their Zeffs. Moreover, energy absorption buildup factors (EABF) and exposure buildup factors (EBF) of the materials were determined for gamma rays as well and were compared with each other for different photon energies and different mfps in the photon energy region 0.015-15 MeV.

  1. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.

  2. Issues in Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    With shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen gas is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  3. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    PubMed

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.

  4. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    PubMed

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  5. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-15

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenthmore » value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.« less

  6. Transparent thin shield for radio frequency transmit coils.

    PubMed

    Rivera, Debra S; Schulz, Jessica; Siegert, Thomas; Zuber, Verena; Turner, Robert

    2015-02-01

    To identify a shielding material compatible with optical head-motion tracking for prospective motion correction and which minimizes radio frequency (RF) radiation losses at 7 T without sacrificing line-of-sight to an imaging target. We evaluated a polyamide mesh coated with silver. The thickness of the coating was approximated from the composition ratio provided by the material vendor and validated by an estimate derived from electrical conductivity and light transmission measurements. The performance of the shield is compared to a split-copper shield in the context of a four-channel transmit-only loop array. The mesh contains less than a skin-depth of silver coating (300 MHz) and attenuates light by 15 %. Elements of the array vary less in the presence of the mesh shield as compared to the split-copper shield indicating that the array behaves more symmetrically with the mesh shield. No degradation of transmit efficiency was observed for the mesh as compared to the split-copper shield. We present a shield compatible with future integration of camera-based motion-tracking systems. Based on transmit performance and eddy-current evaluations the mesh shield is appropriate for use at 7 T.

  7. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  8. Evaluation of a combined electrostatic and magnetostatic configuration for active space-radiation shielding

    NASA Astrophysics Data System (ADS)

    Joshi, Ravindra P.; Qiu, Hao; Tripathi, Ram K.

    2013-05-01

    Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. A recent report (Tripathi et al., 2008) had explored the feasibility of using electrostatic shielding. Here, we continue to extend the electrostatic shielding strategy and examine a hybrid configuration that utilizes both electrostatic and magnetostatic fields. The main advantages of this system are shown to be: (i) a much better shielding and repulsion of incident ions from both solar particle events (SPE) and galactic cosmic rays (GCR), (ii) reductions in the power requirement for re-charging the electrostatic sub-system, and (iii) low requirements of the magnetic fields that are well below the thresholds set for health and safety for long-term exposures. Furthermore, our results show transmission levels reduced to levels as low as 30% for energies around 1000 MeV, and near total elimination of SPE radiation by these hybrid configurations. It is also shown that the power needed to replenish the electrostatic charges due to particle hits from the GCR and SPE radiation is minimal.

  9. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    NASA Astrophysics Data System (ADS)

    Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.

    2017-08-01

    Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  10. Progress Toward Electrostatic Radiation Shielding of Interplanetary Spacecraft: Strategies, Concepts and Technical Challenges of Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    The radiation problem is a serious obstacle to solar system exploration. Electrostatic shielding was previously dismissed as unworkable. This was based on the false assumption that radial symmetry is needed to provide isotropic protection. KSC recently demonstrated the feasibility of asymmetric, multipole electrostatic shielding. Combined with passive shielding it might solve the radiation problem

  11. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017245 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  12. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017246 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  13. Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017237 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  14. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017249 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  15. Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017236 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  16. Optimized shielding for space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  17. Performances of single and two-stage pulse tube cryocoolers under different vacuum levels with and without thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, Srinivasan; Behera, Upendra; Nadig, D. S.; Krishnamoorthy, V.

    2012-06-01

    Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of ~ 29 K at its cold end, the two-stage PTC reaches ~ 2.9 K in its second stage cold end and ~ 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of ~ 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni / HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.

  18. Shield materials recommended for space power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  19. SU-F-I-72: Evaluation of the Ancillary Lead Shielding for Optimizing Radiation Protection in the Interventional Radiology Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonkopi, E; Lightfoot, C; LeBlanc, E

    Purpose: The rising complexity of interventional fluoroscopic procedures has resulted in an increase of occupational radiation exposures in the interventional radiology (IR) department. This study assessed the impact of ancillary shielding on optimizing radiation protection for the IR staff. Methods: Scattered radiation measurements were performed in two IR suites equipped with Axiom Artis systems (Siemens Healthcare, Erlangen, Germany) installed in 2006 and 2010. Both rooms had suspended ceiling-mounted lead-acrylic shields of 75×60 cm (Mavig, Munich, Germany) with lead equivalency of 0.5 mm, and under-table drapes of 70×116 cm and 65×70 cm in the newer and the older room respectively. Themore » larger skirt can be wrapped around the table’s corner and in addition the newer suite had two upper shields of 25×55 cm and 25×35 cm. The patient was simulated by 30 cm of acrylic, air kerma rate (AKR) was measured with the 180cc ionization chamber (AccuPro Radcal Corporation, Monrovia, CA, USA) at different positions. The ancillary shields, x-ray tube, image detector, and table height were adjusted by the IR radiologist to simulate various clinical setups. The same exposure parameters were used for all acquisitions. AKR measurements were made at different positions relative to the operator. Results: The AKR measurements demonstrated 91–99% x-ray attenuation by the drapes in both suites. The smaller size of the under-table skirt and absence of the side-drapes in the older room resulted in a 20–50 fold increase of scattered radiation to the operator. The mobile suspended lead-acrylic shield reduced AKR by 90–94% measured at 150–170 cm height. The recommendations were made to replace the smaller under-table skirt and to use the ceiling-mounted shields for all IR procedures. Conclusion: The ancillary shielding may significantly affect radiation exposure to the IR staff. The use of suspended ceiling-mounted shields is especially important for reduction of

  20. Optimized Shielding for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M.-H. Y.; Schimmerling, W.

    2000-01-01

    Abstract. Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  1. Design considerations for a Space Station radiation shield for protection from both man-made and natural sources

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Peddicord, K. Lee; Felsher, Harry; Smith, Simon

    1994-01-01

    This study was conducted to analyze scenarios involving the use of nuclear-power vehicles in the vicinity of a manned Space Station (SS) in low-earth-orbit (LEO) to quantify their radiological impact to the station crew. In limiting the radiant dose to crew members, mission planners may (1) shut the reactor down prior to reentry, (2) position the vehicle at a prescribed parking distance, and (3) deploy radiation shield about the shutdown reactor. The current report focuses on the third option in which point-kernel gamma-ray shielding calculations were performed for a variety of shield configurations for both nuclear electric propulsion (NEP) and nuclear thermal rocket (NTR) vehicles. For a returning NTR vehicle, calculations indicate that a 14.9 MT shield would be needed to limit the integrated crew exposure to no more than 0.05 Sv over a period of six months (25 percent of the allowable exposure to man-made radiation sources). During periods of low vehicular activity in LEO, the shield may be redeployed about the SS habitation module in order to decrease crew exposures to trapped proton radiations by approximately a factor of 10. The corresponding shield mass required for deployment at a returning NEP vehicle is 2.21 MT. Additional scenarios examined include the radioactivation of various metals as might be found in tools used in EVA activities.

  2. Radiation Shielding for Space Flight

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Norbury, John W.; Norman, Ryan B.

    2003-01-01

    A safe and efficient exploration of space requires an understanding of space radiations so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation is modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method to predict the effects of the presence of these particles on the transport of radiation through materials is presented.

  3. Nespoli works with ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017243 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  4. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  5. Design Issues for Using Magnetic Materials in Radiation Environments at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2013-01-01

    One of the challenges of designing motors and alternators for use in nuclear powered space missions is accounting for the effects of radiation. Terrestrial reactor power plants use distance and shielding to minimize radiation damage but space missions must economize volume and mass. Past studies have shown that sufficiently high radiation levels can affect the magnetic response of hard and soft magnetic materials. Theoretical models explaining the radiation-induced degradation have been proposed but not verified. This paper reviews the literature and explains the cumulative effects of temperature, magnetic-load, and radiation-level on the magnetic properties of component materials. Magnetic property degradation is very specific to alloy choice and processing history, since magnetic properties are very much entwined with specific chemistry and microstructural features. However, there is basic theoretical as well as supportive experimental evidence that the negative impact to magnetic properties will be minimal if the bulk temperature of the material is less than fifty percent of the Curie temperature, the radiation flux is low, and the demagnetization field is small. Keywords: Magnets, Permanent Magnets, Power Converters, Nuclear Electric Power Generation, Radiation Tolerance.

  6. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites

    NASA Astrophysics Data System (ADS)

    Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim

    2018-04-01

    The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.

  7. Shielding of the Hip Prosthesis During Radiation Therapy for Heterotopic Ossification is Associated with Increased Failure of Prophylaxis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Tracy A.; Gaccione, Peter; Gobezie, Reuben

    2007-04-01

    Purpose: Radiation therapy (RT) is frequently administered to prevent heterotopic ossification (HO) after total hip arthroplasty (THA). The purpose of this study was to determine if there is an increased risk of HO after RT prophylaxis with shielding of the THA components. Methods and Materials: This is a retrospective analysis of THA patients undergoing RT prophylaxis of HO at Brigham and Women's Hospital between June 1994 and February 2004. Univariate and multivariate logistic regressions were used to assess the relationships of all variables to failure of RT prophylaxis. Results: A total of 137 patients were identified and 84 were eligiblemore » for analysis (61%). The median RT dose was 750 cGy in one fraction, and the median follow-up was 24 months. Eight of 40 unshielded patients (20%) developed any progression of HO compared with 21 of 44 shielded patients (48%) (p = 0.009). Brooker Grade III-IV HO developed in 5% of unshielded and 18% of shielded patients (p 0.08). Multivariate analysis revealed shielding (p = 0.02) and THA for prosthesis infection (p = 0.03) to be significant predictors of RT failure, with a trend toward an increasing risk of HO progression with age (p = 0.07). There was no significant difference in the prosthesis failure rates between shielded and unshielded patients. Conclusions: A significantly increased risk of failure of RT prophylaxis for HO was noted in those receiving shielding of the hip prosthesis. Shielding did not appear to reduce the risk of prosthesis failure.« less

  8. Light attraction in endangered procellariiform birds: Reduction by shielding upward radiation

    USGS Publications Warehouse

    Reed, J.R.; Sincock, J.L.; Hailman, J.P.

    1985-01-01

    Autumnal attraction to man-made lighting causes heavy mortality in fledgling Hawaiian seabirds: Newell's Shearwater (Puffinus auricularis newelli), Dark-rumped Petrel (Pterodroma phaeopygia sandwichensis), and Band-rumped Storm-Petrel (Oceanodroma castro). These threatened, endangered, and rare species (respectively) approach and circle lights on their first flight from mountain nesting colonies on the island of Kauai to the sea. We shielded lights of the largest resort to prevent upward radiation on alternate nights during two fledgling seasons. Shielding decreased attraction by nearly 40%. Most attraction occurred 1-4 h after sunset. Full moon dramatically decreased attraction, a phenomenon that has both theoretical and management implications.

  9. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady; Zhou, Demin

    2016-04-01

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  10. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  11. Material Science

    NASA Image and Video Library

    2003-02-09

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  12. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  13. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  14. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  15. Heavy Metal Pad Shielding during Fluoroscopic Interventions

    PubMed Central

    Dromi, Sergio; Wood, Bradford J.; Oberoi, Jay; Neeman, Ziv

    2008-01-01

    Significant direct and scatter radiation doses to patient and physician may result from routine interventional radiology practice. A lead-free disposable tungsten antimony shielding pad was tested in phantom patients during simulated diagnostic angiography procedures. Although the exact risk of low doses of ionizing radiation is unknown, dramatic dose reductions can be seen with routine use of this simple, sterile pad made from lightweighttungsten antimony material. PMID:16868175

  16. Characterization of the Radiation Shielding Properties of US andRussian EVA Suits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-10-26

    Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measuredmore » using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.« less

  17. Vapor shielding models and the energy absorbed by divertor targets during transient events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S.; Pshenov, A. A.

    2016-02-15

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shieldingmore » is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective

  18. [Eye lens radiation exposure during ureteroscopy with and without a face protection shield: Investigations on a phantom model].

    PubMed

    Zöller, G; Figel, M; Denk, J; Schulz, K; Sabo, A

    2016-03-01

    Eye lens radiation exposure during radiologically-guided endoscopic procedures may result in radiation-induced cataracts; therefore, we investigated the ocular radiation exposure during ureteroscopy on a phantom model. Using an Alderson phantom model and eye lens dosimeters, we measured the ocular radiation exposure depending on the number of X-ray images and on the duration of fluoroscopic imaging. The measurements were done with and without using a face protection shield. We could demonstrate that a significant ocular radiation exposure can occur, depending on the number of X-ray images and on the duration time of fluoroscopy. Eye lens doses up to 0.025 mSv were recorded even using modern digital X-ray systems. Using face protection shields this ocular radiation exposure can be reduced to a minimum. The International Commission on Radiological Protection (ICRP) recommendations of a mean eye lens dosage of 20 mSv/year may be exceeded during repeated ureteroscopy by a high volume surgeon. Using a face protection shield, the eye lens dose during ureteroscopy could be reduced to a minimum in a phantom model. Further investigations will show whether these results can be transferred to real life ureteroscopic procedures.

  19. Benchmark studies of the effectiveness of structural and internal materials as radiation shielding for the international space station.

    PubMed

    Miller, J; Zeitlin, C; Cucinotta, F A; Heilbronn, L; Stephens, D; Wilson, J W

    2003-03-01

    Accelerator-based measurements and model calculations have been used to study the heavy-ion radiation transport properties of materials in use on the International Space Station (ISS). Samples of the ISS aluminum outer hull were augmented with various configurations of internal wall material and polyethylene. The materials were bombarded with high-energy iron ions characteristic of a significant part of the galactic cosmic-ray (GCR) heavy-ion spectrum. Transmitted primary ions and charged fragments produced in nuclear collisions in the materials were measured near the beam axis, and a model was used to extrapolate from the data to lower beam energies and to a lighter ion. For the materials and ions studied, at incident particle energies from 1037 MeV/nucleon down to at least 600 MeV/nucleon, nuclear fragmentation reduces the average dose and dose equivalent per incident ion. At energies below 400 MeV/nucleon, the calculation predicts that as material is added, increased ionization energy loss produces increases in some dosimetric quantities. These limited results suggest that the addition of modest amounts of polyethylene or similar material to the interior of the ISS will reduce the dose to ISS crews from space radiation; however, the radiation transport properties of ISS materials should be evaluated with a realistic space radiation field. Copyright 2003 by Radiation Research Society

  20. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  1. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less

  2. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.

  3. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  4. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond. The major objective of this project was to produce a more versatile composition of this material and find new applications. Major target applications were use for nuclear radiation shields, such as in dry storage casks; use in immobilization of most difficult waste streams, such as Hanford K-Basin waste; use for soluble and volatile fission products, such asmore » Cs, Tc, Sr, and I; and use for corrosion and fire protection applications in nuclear facilities.« less

  5. Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields.

    PubMed

    Kelaranta, Anna; Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika

    2016-01-01

    Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination.

  6. Shielding of relativistic protons.

    PubMed

    Bertucci, A; Durante, M; Gialanella, G; Grossi, G; Manti, L; Pugliese, M; Scampoli, P; Mancusi, D; Sihver, L; Rusek, A

    2007-06-01

    Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General-Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5-3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/microm), which explains the approximately unitary value measured for the relative biological effectiveness.

  7. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    NASA Astrophysics Data System (ADS)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  8. Consideration of the Protection Curtain's Shielding Ability after Identifying the Source of Scattered Radiation in the Angiography.

    PubMed

    Sato, Naoki; Fujibuchi, Toshioh; Toyoda, Takatoshi; Ishida, Takato; Ohura, Hiroki; Miyajima, Ryuichi; Orita, Shinichi; Sueyoshi, Tomonari

    2017-06-15

    To decrease radiation exposure to medical staff performing angiography, the dose distribution in the angiography was calculated in room using the particle and heavy ion transport code system (PHITS), which is based on Monte Carlo code, and the source of scattered radiation was confirmed using a tungsten sheet by considering the difference shielding performance among different sheet placements. Scattered radiation generated from a flat panel detector, X-ray tube and bed was calculated using the PHITS. In this experiment, the source of scattered radiation was identified as the phantom or acrylic window attached to the X-ray tube thus, a protection curtain was placed on the bed to shield against scattered radiation at low positions. There was an average difference of 20% between the measured and calculated values. The H*(10) value decreased after placing the sheet on the right side of the phantom. Thus, the curtain could decrease scattered radiation. © Crown copyright 2016.

  9. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    PubMed

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Radiation predictions and shielding calculations for RITS-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick

    2005-06-01

    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative

  11. First-principles prediction of solar radiation shielding performance for transparent windows of GdB{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Lihua, E-mail: xiaolihua@git.edu.cn; School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083; Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003

    2016-04-28

    The structural, electronic, magnetic, and optical properties of GdB{sub 6} are studied using the first-principles calculations. Calculated values for magnetic and optical properties and lattice constant are found to be consistent with previously reported experimental results. The calculated results show that GdB{sub 6} is a perfect near-infrared absorption/reflectance material that could serve as a solar radiation shielding material for windows with high visible light transmittance, similar to LaB{sub 6}, which is assigned to its plasma oscillation and a collective oscillation (volume plasmon) of carrier electrons. It was found that the magnetic 4f electrons of Gd are not relevant to themore » important optical properties of GdB{sub 6}. These theoretical studies serve as a reference for future studies.« less

  12. Self-Shielding Analysis of the Zap-X System

    PubMed Central

    Schneider, M. Bret; Adler, John R.

    2017-01-01

    The Zap-X is a self-contained and first-of-its-kind self-shielded therapeutic radiation device dedicated to brain as well as head and neck stereotactic radiosurgery (SRS). By utilizing an S-band linear accelerator (linac) with a 2.7 megavolt (MV) accelerating potential and incorporating radiation-shielded mechanical structures, the Zap-X does not typically require a radiation bunker, thereby saving SRS facilities considerable cost. At the same time, the self-shielded features of the Zap-X are designed for more consistency of radiation protection, reducing the risk to radiation workers and others potentially exposed from a poorly designed or constructed radiotherapy vault. The hypothesis of the present study is that a radiosurgical system can be self-shielded such that it produces radiation exposure levels deemed safe to the public while operating under a full clinical workload. This study summarizes the Zap-X system shielding and found that the overall system radiation leakage values are reduced by a factor of 50 compared to the occupational radiation limit stipulated by the Nuclear Regulatory Commission (NRC) or agreement states. The goal of self-shielding is achieved under all but the most exceptional conditions for which additional room shielding or a larger restricted area in the vicinity of the Zap-X system would be required. PMID:29441251

  13. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    NASA Astrophysics Data System (ADS)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  14. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    NASA Technical Reports Server (NTRS)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  15. Benchmark Studies of the Effectiveness of Structural and Internal Materials as Radiation Shielding for the International Space Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.; Zeitlin, C.; Cucinotta, F.A.

    2002-05-09

    Accelerator-based measurements and model calculations have been used to study the heavy ion radiation transport properties of materials in use on the International Space Station (ISS). Samples of the ISS aluminum outer hull were augmented with various configurations of internal wall material and polyethylene. The materials were bombarded with high energy Fe ions characteristic of a significant part of the Galactic Cosmic Ray (GCR) heavy ion spectrum. Transmitted primary ions and charged fragments produced in nuclear collisions in the materials were measured near the beam axis, and a model was used to extrapolate from the data to lower beam energiesmore » and to a lighter ion. For the materials and ions studied, at incident particle energies from 1037 MeV/nucleon down to at least 600 MeV/nucleon, nuclear fragmentation reduces the average dose and dose equivalent per incident ion. At energies below 400 MeV/nucleon, the calculation predicts that as material is added, increased ionization energy loss produces increases in some dosimetric quantities. These limited results suggest that the addition of modest amounts of polyethylene or similar material to the interior of the ISS will reduce the dose to ISS crews from space radiation; however the radiation transport properties of ISS materials should be evaluated with a realistic space radiation field.« less

  16. Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields

    PubMed Central

    Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika

    2016-01-01

    Objectives: Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Methods: Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. Results: The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. Conclusions: The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination. PMID:26313308

  17. [Shielding effect of clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc].

    PubMed

    Fukuda, Atsushi; Koshida, Kichiro; Yamaguchi, Ichiro; Takahashi, Masaaki; Kitabayashi, Keitarou; Matsubara, Kousuke; Noto, Kimiya; Kawabata, Chikako; Nakagawa, Hiroto

    2004-12-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of (99m)Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of (99m)Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose.

  18. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, P; Holder, J; Young, B

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the usemore » of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.« less

  19. Electrodynamic Dust Shield for Space Applications

    NASA Technical Reports Server (NTRS)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  20. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.

  2. Cloud immersion building shielding factors for US residential structures.

    PubMed

    Dickson, E D; Hamby, D M

    2014-12-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario within a semi-infinite cloud of radioactive material. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement, as well for single-wide manufactured housing-units.

  3. Unshielded and Shielded Facility Nondestructive Inspection (NDI) Radiation Protection Survey for F.S. Gabreski ANGB, NY

    DTIC Science & Technology

    2013-11-06

    safety regulations to include a review of worker radiation dosimetry and radiation safety training records was completed. c. Survey Personnel...that is based upon T.O. 33B-1-1, 10 CFR 20, and AFMAN 48-125, Personnel Ionizing Radiation Dosimetry . (1) Verify unshielded/shielded NDI safety...rope barriers marked with appropriate signage as required by T.O. 33B-1-1. (4) Verify x-ray shot and personal radiation dosimetry logs were properly

  4. Evaluation of Prototype Head Shield for Hazardous Material Tank Car

    DOT National Transportation Integrated Search

    1976-12-01

    The structural integrity of a prototype tank car head shield for hazardous material railroad tank cars was evaluated under conditions of freight car coupling at moderate to high speeds. This is one of the most severe environments encountered in norma...

  5. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  6. Detection of explosives, shielded nuclear materials and other hazardous substances in cargo containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery

    2006-05-01

    Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.

  7. Radiation Shielding Study of Advanced Data and Power Management Systems (ADPMS) Housing Using Geant4

    NASA Astrophysics Data System (ADS)

    Garcia, F.; Kurvinen, K.; Brander, T.; Orava, R.; Heino, J.; Virtanen, A.; Kettunen, H.; Tenhunen, M.

    2008-02-01

    A design goal for current space system is to reduce the mass used to enclose components of the spacecraft. One potential target is to reduce the mass of electronics and its housings. The use of composite materials, especially CFRP (Carbon Fiber Reinforced Plastic) is a well known and vastly used approach to mass reduction. A design goal, cost reduction, has increased the use of commercial (non-space qualified) electronics. These commercial circuits and other components cannot tolerate as high radiation levels as space qualified components. Therefore, the use of standard electronics components poses a challenge in terms of the radiation protection capability of the ADPMS housings. The main goal of this study is to provide insight on the radiation shielding protection produced by different configurations of CFRP tungsten laminates of epoxies and cyanate esters and then to compare them to the protection given by the commonly used aluminum. For a spacecraft operating in LEO and MEO orbits the main components of the space radiation environment are energetic electrons and protons, therefore in our study we will compare the experimental and simulation results of the radiation attenuation of different types of laminates for those particles. At the same time the experimental data has been used to validate the Geant4 model of the laminates, which can be used for future optimizations of the laminate structures.

  8. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  9. Issues In Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  10. Spacecraft Solar Particle Event (SPE) Shielding: Shielding Effectiveness as a Function of SPE model as Determined with the FLUKA Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina

    2010-01-01

    Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event

  11. [Exposition of the operator's eye lens and efficacy of radiation shielding in fluoroscopically guided interventions].

    PubMed

    Galster, M; Guhl, C; Uder, M; Adamus, R

    2013-05-01

    Efficacy of radiation protection tools for the eye lens dose of the radiologist in fluoroscopic interventions. A patient phantom was exposed using a fluoroscopic system. Dose measurements were made at the eye location of the radiologist using an ionization chamber. The setting followed typical fluoroscopic interventions. The reduction of scattered radiation by the equipment-mounted shielding (undercouch drapes and overcouch top) was evaluated. The ceiling-suspended lead acrylic glass screen was tested in scattered radiation generated by a slab phantom. The protective properties of different lead glass goggles and lead acrylic visors were evaluated by thermoluminescence measurements on a head phantom in the primary beam. The exposition of the lens of about 110 to 550 μSv during radiologic interventions is only slightly reduced by the undercouch drapes. Applying the top in addition to the drapes reduces the lens dose by a factor of 2 for PA projections. In 25°LAO the dose is reduced by a factor between 1.2 and 5. The highest doses were measured for AP angulations furthermore the efficacy of the equipment-mounted shielding is minimal. The ceiling-suspended lead screen reduced scatter by a factor of about 30. The lead glass goggles and visors reduced the lens dose up to a factor of 8 to 10. Depending on the specific design, the tested models are less effective especially for radiation from lateral with cranial angulation of the beam. Occasionally the visors even caused an increase of dose. The exposition of the eye lens can be kept below the new occupational limit recommended by the ICRP if the radiation shielding equipment is used consistently. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Electronics Shielding and Reliability Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  13. Deep Space Test Bed for Radiation Studies

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark; Watts, John; Kuznetsov, Eugene; Lin, Zi-Wei

    2006-01-01

    A key factor affecting the technical feasibility and cost of missions to Mars or the Moon is the need to protect the crew from ionizing radiation in space. Some analyses indicate that large amounts of spacecraft shielding may be necessary for crew safety. The shielding requirements are driven by the need to protect the crew from Galactic cosmic rays (GCR). Recent research activities aimed at enabling manned exploration have included shielding materials studies. A major goal of this research is to develop accurate radiation transport codes to calculate the shielding effectiveness of materials and to develop effective shielding strategies for spacecraft design. Validation of these models and calculations must be addressed in a relevant radiation environment to assure their technical readiness and accuracy. Test data obtained in the deep space radiation environment can provide definitive benchmarks and yield uncertainty estimates of the radiation transport codes. The two approaches presently used for code validation are ground based testing at particle accelerators and flight tests in high-inclination low-earth orbits provided by the shuttle, free-flyer platforms, or polar-orbiting satellites. These approaches have limitations in addressing all the radiation-shielding issues of deep space missions in both technical and practical areas. An approach based on long duration high altitude polar balloon flights provides exposure to the galactic cosmic ray composition and spectra encountered in deep space at a lower cost and with easier and more frequent access than afforded with spaceflight opportunities. This approach also results in shorter development times than spaceflight experiments, which is important for addressing changing program goals and requirements.

  14. Investigations of some building materials for γ-rays shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh; Kaur, Baljit; Sidhu, Gurdeep Singh; Kumar, Ajay

    2013-06-01

    For construction of residential and non-residential buildings bricks are used as building blocks. Bricks are made from mixtures of sand, clay, cement, fly ash, gypsum, red mud and lime. Shielding effectiveness of five soil samples and two fly ash samples have been investigated using some energy absorption parameters (Mass attenuation coefficients, mass energy absorption coefficients, KERMA (kinetic energy released per unit mass), HVL, equivalent atomic number and electron densities) firstly at 14 different energies from 81-1332 keV then extended to wide energy range 0.015-15 MeV. The soil sample with maximum shielding effectiveness has been used for making eight fly ash bricks [(Lime)0.15 (Gypsum)0.05 (Fly Ash)x (Soil)0.8-x, where values of x are from 0.4-0.7]. High Purity Germanium (HPGe) detector has been used for gamma-ray spectroscopy. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence (EDXRF) spectrometer. The agreements of theoretical and experimental values of mass attenuation coefficient have been found to be quite satisfactory. It has been verified that common brick possess the maximum shielding effectiveness for wide energy range 0.015-15 MeV. The results have been shown graphically with some useful conclusions for making radiation safe buildings.

  15. Technique for Configuring an Actively Cooled Thermal Shield in a Flight System

    NASA Technical Reports Server (NTRS)

    Barkfknecht, Peter; Mustafi, Shuvo

    2011-01-01

    Broad area cooling shields are a mass-efficient alternative to conductively cooled thermal radiation shielding. The shield would actively intercept a large portion of incident thermal radiation and transport the heat away using cryogenic helium gas. The design concept consists of a conductive and conformable surface that maximizes heat transfer and formability. Broad Area Cooled (BAC) shields could potentially provide considerable mass savings for spaceflight applications by eliminating the need for a rigid thermal radiation shield for cryogen tanks. The BAC consists of a network of capillary tubes that are thermally connected to a conductive shield material. Chilled helium gas is circulated through the network and transports unwanted heat away from the cryogen tanks. The cryogenic helium gas is pumped and chilled simultaneously using a specialized pulse-tube cryocooler, which further improves the mass efficiency of the system. By reducing the thermal environment temperature from 300 to 100 K, the radiative heat load on a cryogen tank could be reduced by an order of magnitude. For a cryogenic liquid propellant scenario of oxygen and hydrogen, the boiloff of hydrogen would be significantly reduced and completely eliminated for oxygen. A major challenge in implementing this technology on large tanks is that the BAC system must be easily scalable from lab demonstrations to full-scale missions. Also, the BAC shield must be conformable to complex shapes like spheres without losing the ability to maintain constant temperature throughout. The initial design maximizes thermal conductivity between the capillary tube and the conductive radiation shielding by using thin, corrugated aluminum foil with the tube running transverse to the folds. This configuration has the added benefit of enabling the foil to stretch and contract longitudinally. This allows the BAC to conform to the complex curvature of a cryogen tank, which is key to its success. To demonstrate a BAC shield

  16. Radiation Transmission Properties of In-Situ Materials

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Townsend, L. W.; Cucinotta, F.; Kim, M. Y.; Miller, J.; Singleterry, R.; Thibeault, S.; Wilson, J.; Zeitlin, C. J.

    2001-01-01

    The development of a permanent human presence in space is a key element of NASA's strategic plan for the Human Exploration and Development of Space (HEDS). The habitation of the International Space Station (ISS) is one near-term HEDS objective; the exploration and settlement of the moon and Mars are long-term goals of that plan. Achieving these goals requires maintaining the health and safety of personnel involved in such space operations at a high level, while at the same time reducing the cost of those operations to a reasonable level. Among the limiting factors to prolonged human space operations are the health risks from exposure to the space ionizing radiation environment. In order to keep the risk of radiation induced cancer at acceptable levels, it is necessary to provide adequate shielding from the ionizing radiation environment. The research presented here is theoretical and ground-based experimental study of the neutron production from interactions of GCR-like particles in various shielding components. An emphasis is placed here on research that will aid in the development of in-situ resource utilization. The primary goal of the program is to develop an accurate neutron-production model that is relevant to the NASA HEDS program of designing technologies that will be used in the development of effective shielding countermeasures. A secondary goal of the program is the development of an experimental data base of neutron production cross sections and thick-target yields which will aid model development.

  17. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

    Treesearch

    Zachary A. Holden; Anna E. Klene; Robert F. Keefe; Gretchen G. Moisen

    2013-01-01

    Inexpensive temperature sensors are widely used in agricultural and forestry research. This paper describes a low-cost (~3 USD) radiation shield (radshield) designed for monitoring surface air temperatures in harsh outdoor environments. We compared the performance of the radshield paired with low-cost temperature sensors at three sites in western Montana to several...

  18. ISO WD 1856. Guideline for radiation exposure of nonmetallic materials. Present status

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.

    In the framework of the International Organization for Standardization (ISO) activity we started development of international standard series for space environment simulation at on-ground tests of materials. The proposal was submitted to ISO Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). A draft of the first international standard "Space Environment Simulation for Radiation Tests of Materials" (1st version) was presented at the 7th International Symposium on Materials in Space Environment (Briskman et al, 1997). The 2nd version of the standard was limited to nonmetallic materials and presented at the 20th Space Simulation Conference (Briskman and Borson, 1998). It covers the testing of nonmetallic materials embracing also polymer composite materials including metal components (metal matrix composites) to simulated space radiation. The standard does not cover semiconductor materials. The types of simulated radiation include charged particles (electrons and protons), solar ultraviolet radiation, and soft X-radiation of solar flares. Synergistic interactions of the radiation environment are covered only for these natural and some induced environmental effects. This standard outlines the recommended methodology and practices for the simulation of space radiation on materials. Simulation methods are used to reproduce the effects of the space radiation environment on materials that are located on surfaces of space vehicles and behind shielding. It was discovered that the problem of radiation environment simulation is very complex and the approaches of different specialists and countries to the problem are sometimes quite opposite. To the present moment we developed seven versions of the standard. The last version is a compromise between these approaches. It was approved at the last ISO TC20/SC14/WG4 meeting in Houston, October 2002. At a

  19. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive

    NASA Astrophysics Data System (ADS)

    Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen

    2016-10-01

    Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.

  20. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  1. Reflector and Shield Material Properties for Project Prometheus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  2. Long-term effects of low-dose proton radiation on immunity in mice: shielded vs. unshielded

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Nelson, Gregory A.

    2003-01-01

    BACKGROUND: Outside the protection of the terrestrial environment, astronauts on any long-term missions will unavoidably be exposed to fields of charged particle radiation dominated by protons. These fields and their biological risks are modified in complex ways by the presence of protective shielding. METHODS: To examine the long-term effects of space-like proton exposures on immune status, we treated female C57BL/6 mice with 3 or 4 Gy of 250 MeV monoenergetic protons or the complex space-like radiation field produced after 250 MeV protons are transported through 15 g x cm(-2) aluminum shielding. The animals were euthanized 122 d post-irradiation and lymphocyte phenotypes, hematological parameters, and lymphocyte blastogenesis were characterized. RESULTS: There were significant dose-dependent decreases in macrophage, CD3+/CD8+ T, NK, platelet, and red blood cell populations, as well as low hematocrit and hemoglobin levels. In contrast, dose-dependent increases in spontaneous, but not mitogen-induced, blastogenesis were noted. The differences in dose composition between pristine and shielded proton fields did not lead to significant effects in most measures, but did result in significant changes in monocyte and macrophage populations and spontaneous blastogenesis in the spleen. CONCLUSIONS: The data indicate that whole body exposure to proton radiation at doses of the order of large solar particle events or clinical treatment fractions may have long-term effects on immune system status.

  3. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOEpatents

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  4. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  5. Shielding in biology and biophysics: Methodology, dosimetry, interpretation

    NASA Astrophysics Data System (ADS)

    Vladimirsky, B. M.; Temuryants, N. A.

    2016-12-01

    An interdisciplinary review of the publications on the shielding of organisms by different materials is presented. The authors show that some discrepancies between the results of different researchers might be attributed to methodological reasons, including purely biological (neglect of rhythms) and technical (specific features of the design or material of the screen) ones. In some cases, an important factor is the instability of control indices due to the variations in space weather. According to the modern concept of biological exposure to microdoses, any isolation of a biological object by any material necessarily leads to several simultaneous changes in environmental parameters, and this undermines the principle of "all other conditions being equal" in the classical differential scheme of an experiment. The shielding effects of water solution are universally recognized and their influence is to be observed for all organisms. Data on the exposure of living organisms to weak combined magnetic fields and on the influence of space weather enabled the development of theoretical models generally explaining the effect of shielding for bioorganisms. Ferromagnetic shielding results in changes of both the static magnetic field and the field of radio waves within the area protected by the screen. When screens are nonmagnetic, changes are due to the isolation from the radio waves. In both cases, some contribution to the fluctuations of measured parameters can be made by variations in the level of ionizing radiation.

  6. Shielding evaluation and acceptance testing of a prefabricated, modular, temporary radiation therapy treatment facility

    PubMed Central

    Ezzell, Gary A.

    2004-01-01

    We have recently commissioned a temporary radiation therapy facility that is novel in two aspects: it was constructed using modular components, and the LINAC was installed in one of the modular sections before it was lifted into position. Additional steel and granular fill was added to the modular sections on‐site during construction. The building will be disassembled and removed when no longer needed. This paper describes the radiation shielding specifications and survey of the facility, as well as the ramifications for acceptance testing occasioned by the novel installation procedure. The LINAC is a Varian 21EX operating at 6 MV and 18 MV. The radiation levels outside the vault satisfied the design criteria, and no anomalous leakage was detected along the joints of the modular structure. At 18 MV and 600 monitor units (MU) per minute, the radiation level outside the primary barrier walls was 8.5μSv/h of photons; there were no detectable neutrons. Outside the direct‐shielded door, the levels were 0.4μSv/h of photons and 3.0μSv/h of neutrons. The isocentricity of the accelerator met the acceptance criteria and was not affected by its preinstallation into an integrated baseframe and subsequent transport to the building site. PACS numbers: 87.52.Df, 87.52.Ga PMID:15738926

  7. Shield system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, D.R.; Chandler, J.R.; Church, J.P.

    1979-01-01

    The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.

  8. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    NASA Astrophysics Data System (ADS)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  9. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  10. A&M. Special shielding materials. Stockpile of magnetite, used for making ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Special shielding materials. Stockpile of magnetite, used for making high-density concrete, and loading conveyor near TAN-607 construction site. Date: September 25, 1953. INEEL negative no. 8710 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Kai, E-mail: kyang11@mgh.harvard.edu; Li, Xinhua; Liu, Bob

    2016-03-15

    Purpose: To measure the scattered radiation intensity around a clinical digital breast tomosynthesis (DBT) unit and to provide updated data for radiation shielding design for DBT systems with tungsten-anode x-ray tubes. Methods: The continuous distribution of scattered x-rays from a clinical DBT system (Hologic Selenia Dimensions) was measured within an angular range of 0°–180° using a linear-array x-ray detector (X-Scan 0.8f3-512, Detection Technology, Inc., Finland), which was calibrated for the x-ray spectrum range of the DBT unit. The effects of x-ray field size, phantom size, and x-ray kVp/filter combination were investigated. Following a previously developed methodology by Simpkin, scatter fractionmore » was determined for the DBT system as a function of angle around the phantom center. Detailed calculations of the scatter intensity from a DBT system were demonstrated using the measured scatter fraction data. Results: For the 30 and 35 kVp acquisition, the scatter-to-primary-ratio and scatter fraction data closely matched with data previously measured by Simpkin. However, the measured data from this study demonstrated the nonisotropic distribution of the scattered radiation around a DBT system, with two strong peaks around 25° and 160°. The majority scatter radiation (>70%) originated from the imaging detector assembly, instead of the phantom. With a workload from a previous survey performed at MGH, the scatter air kerma at 1 m from the phantom center for wall/door is 1.76 × 10{sup −2} mGy patient{sup −1}, for floor is 1.64 × 10{sup −1} mGy patient{sup −1}, and for ceiling is 3.66 × 10{sup −2} mGy patient{sup −1}. Conclusions: Comparing to previously measured data for mammographic systems, the scatter air kerma from Holgoic DBT is at least two times higher. The main reasons include the harder primary beam with higher workload (measured with total mAs/week), added tomosynthesis acquisition, and strong small angle forward scattering. Due

  12. Simulation of photon attenuation coefficients for high effective shielding material Lead-Boron Polyethyene

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.

    2017-12-01

    The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.

  13. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  14. Determination of shielding requirements for mammography.

    PubMed

    Okunade, Akintunde Akangbe; Ademoroti, Olalekan Albert

    2004-05-01

    Shielding requirements for mammography when considerations are to be given to attenuation by compression paddle, breast tissue, grid and image receptor (intervening materials) has been investigated. By matching of the attenuation and hardening properties, comparisons are made between shielding afforded by breast tissue materials (water, Lucite and 50%-50% adipose-glandular tissue) and some materials considered for shielding diagnostic x-ray beams, namely lead, steel and gypsum wallboard. Results show that significant differences exist between the thickness required to produce equal attenuation and that required to produce equal hardening of a given incident beam. While attenuation equivalent thickness produces equal exposure, it does not produce equal hardening. For shielding purposes, equivalence in exposure reduction without equivalence in penetrating power of an emerging beam does not amount to equivalence in shielding affordable by two different materials. Presented are models and results of sample calculations of additional shielding requirements apart from that provided by intervening materials. The shielding requirements for the integrated beam emerging from intervening materials are different from those for the integrated beam emerging from materials (lead/steel/gypsum wallboard) with attenuation equivalent thicknesses of these intervening materials.

  15. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  16. Thermocouple shield

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2009-11-24

    A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.

  17. Bidirectional reflectance distribution function of the Infrared Astronomical Satellite solar-shield material

    NASA Technical Reports Server (NTRS)

    Hubbs, J. E.; Nofziger, M. J.; Bartell, F. O.; Wolfe, W. L.; Brooks, L. D.

    1982-01-01

    The Infrared Astronomical Satellite (IRAS) telescope has an outer shield on it which is used to reduce the amount of thermal radiation that enters the telescope. The shield forms the first part of the baffle structure which reduces the photon incidence on the focal plane. It was, therefore, necessary to model this structure for scattering, and a required input for such modeling is the scattering characteristic of this surface. Attention is given to the measurement of the bidirectional reflectance distribution function (BRDF), the reflected radiance divided by the incident irradiance at 10.6 micrometers, 118 micrometers, and at several angles of incidence. Visual observation of the gold sample shows that there are striations which line up in a single direction. The data were, therefore, taken with the sample oriented in each of two directions.

  18. Comparison of three and four-field radiotherapy technique and the effect of laryngeal shield on vocal and spinal cord radiation dose in radiotherapy of non-laryngeal head and neck tumors

    NASA Astrophysics Data System (ADS)

    Pour, Noushin Hassan; Farajollahi, Alireza; Jamali, Masoud; Zeinali, Ahad; Jangjou, Amir Ghasemi

    2018-03-01

    Introduction: Due to the effect of radiation on both the tumor and the surrounding normal tissues, the side effects of radiation in normal tissues are expected. One of the important complications in the head and neck radiotherapy is the doses reached to the larynx and spinal cord of patients with non-laryngeal head and neck tumors. Materials and Methods: In this study, CT scan images of 25 patients with non-laryngeal tumors including; lymph nodes, tongue, oropharynx and nasopharynx were used. A three-field and a four-field treatment planning with and without laryngeal shield in 3D CRT technique were planned for each patient. Subsequently, the values of Dmin, Dmean, Dmax and Dose Volume Histogram from the treatment planning system and NTCP values of spinal cord and larynx were calculated with BIOPLAN and MATLAB software for all patients. Results: Statistical results showed that mean values of doses of larynx in both three and four-field methods were significantly different between with and without shield groups. Comparison of absorbed dose didn't show any difference between the three and four field methods (P>0.05). Using Shield, just the mean and minimum doses of spinal cord decreased in both three and four fields. The NTCP of the spinal cord and larynx by three and four-field methods with shield in the LKB and EUD models significantly are less than that of the three and four fields without shields, and in the four-field method NTCP of larynx is less than three radiation field. Conclusion: The results of this study indicate that there is no significant difference in doses reached to larynx and spinal cord between the treatments techniques, but laryngeal shield reduce dose and NTCP values in larynx considerably.

  19. Accelerator-based validation of shielding codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack

    2002-08-12

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required tomore » validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.« less

  20. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  1. Thyroid Dose During Neurointerventional Procedures: Does Lead Shielding Reduce the Dose?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shortt, C. P.; Fanning, N. F.; Malone, L.

    2007-09-15

    Purpose. To assess radiation dose to the thyroid in patients undergoing neurointerventional procedures and to evaluate dose reduction to the thyroid by lead shielding. Methods and Materials. A randomized patient study was undertaken to evaluate the dose reduction by thyroid lead shields and assess their practicality in a clinical setting. Sixty-five patients attending for endovascular treatment of arteriovenous malformations (AVMs) and aneurysms were randomized into one of 2 groups a) No Thyroid Shield and b) Thyroid Lead Shield. Two thermoluminescent dosimeters (TLDs) were placed over the thyroid gland (1 on each side) at constant positions on each patient in bothmore » groups. A thyroid lead shield (Pb eq. 0.5 mm) was placed around the neck of patients in the thyroid lead shield group after the neurointerventional radiologist had obtained satisfactory working access above the neck. The total dose-area-product (DAP) value, number and type of digital subtraction angiography (DSA) runs and fluoroscopy time were recorded for all patients. Results. Of the 72 patients who initially attended for neurointerventional procedures, 7 were excluded due to failure to consent or because of procedures involving access to the external carotid circulation. Of the remaining 65 who were randomized, a further 9 were excluded due to; procedureabandonment, unfeasible shield placement or shield interference with the procedure. Patient demographics included mean age of 47.9 yrs (15-74), F:M=1.4:1. Mean fluoroscopy time was 25.9 min. Mean DAP value was 13,134.8 cGy.cm{sup 2} and mean number of DSA runs was 13.4. The mean relative thyroid doses were significantly different (p< 0.001) between the unshielded (7.23 mSv/cGy2 x 105) and shielded groups (3.77 mSv/cGy2 x 105). A mean thyroid dose reduction of 48% was seen in the shielded group versus the unshielded group. Conclusion. Considerable doses to the thyroid are incurred during neurointerventional procedures, highlighting the need for

  2. Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Hua; Zhang, Quan-Ping; Sun, Nan; Zhao, Yang; Shi, Rui; Zhou, Yuan-Lin; Zheng, Jian

    2018-01-01

    Radiation shielding materials have attracted much attention across academia and industry because of the increasing of nuclear activities. To achieve the materials with low toxicity but good protective capability is one of the most significant goals for personal protective articles. Here, bismuth tungstate nanostructures are controllably fabricated by a versatile hydrothermal treatment under various temperatures. The crystals structure and morphology of products are detailedly characterized with X-ray diffraction, electron microscope and specific surface area. It is noteworthy that desired Bi2WO6 nanosheets treated with 190 °C show the higher specific surface area (19.5 m2g-1) than that of the other two products. Importantly, it has a close attenuating property to lead based counterpart for low energy gamma-rays. Due to the less toxicity, Bi2WO6 nanosheets are more suitable than lead based materials to fabricate personal protective articles for shielding low energy radiations and have great application prospect as well as market potential.

  3. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  4. Parametric study for use of stainless steel as a material for thermal shield in PIP2IT transferline at Fermilab

    NASA Astrophysics Data System (ADS)

    Rane, Tejas; Chakravarty, Anindya; Klebaner, Arkadiy

    2017-12-01

    Transferline thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Copper/Aluminium is widely used to fabricate thermal shields because of their higher thermal diffusivity. This causes uniformity of temperature along the surface of the shield thus reducing thermal stresses within allowable values. However, factors such as raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material for thermal shields in the PIP2IT transferline. The present paper discusses the design approach, various factors affecting the conservative selection of thermal shield design.

  5. Shielding of medical imaging X-ray facilities: a simple and practical method.

    PubMed

    Bibbo, Giovanni

    2017-12-01

    The most widely accepted method for shielding design of X-ray facilities is that contained in the National Council on Radiation Protection and Measurements Report 147 whereby the computation of the barrier thickness for primary, secondary and leakage radiations is based on the knowledge of the distances from the radiation sources, the assumptions of the clinical workload, and usage and occupancy of adjacent areas. The shielding methodology used in this report is complex. With this methodology, the shielding designers need to make assumptions regarding the use of the X-ray room and the adjoining areas. Different shielding designers may make different assumptions resulting in different shielding requirements for a particular X-ray room. A more simple and practical method is to base the shielding design on the shielding principle used to shield X-ray tube housing to limit the leakage radiation from the X-ray tube. In this case, the shielding requirements of the X-ray room would depend only on the maximum radiation output of the X-ray equipment regardless of workload, usage or occupancy of the adjacent areas of the room. This shielding methodology, which has been used in South Australia since 1985, has proven to be practical and, to my knowledge, has not led to excess shielding of X-ray installations.

  6. Radiation protection design considerations for man in geosynchronous orbits

    NASA Technical Reports Server (NTRS)

    Rossi, M. L.; Stauber, M. C.

    1977-01-01

    A description is presented of preliminary studies which have been carried out to identify design requirements and mission constraints imposed by the geosynchronous radiation environment. The radiation species of dominant impact are the trapped electrons and solar flare particles. The criterion used in the conducted shielding design analysis has been to limit the skin dose to 100 rems for 3 months. The analysis included the optimization of an electron/bremsstrahlung shield for residence within the vehicle, the minimization of the dose received in extravehicular activity, and the calculation of special shield requirements for solar flares. An investigation was conducted of the potential benefits accruing from a three-layered composite shield with part of the aluminum layer replaced with a lower atomic number material. The materials considered were polyethylene, carbon, beryllium, and lithium hydride.

  7. Added aluminum shielding to attenuate back scatter electrons from intra-oral lead shields.

    PubMed

    Weidlich, G A; Nuesch, C E; Fuery, J J

    1996-01-01

    An intra-oral lead shield was developed that consists of a lead base with an aluminum layer that is placed upstream of the lead base. Several such shields with various thicknesses of Al layers were manufactured and quantitatively evaluated in 6 MeV and 12 MeV electron radiation by Thermoluminescent dosimetry (TLD) measurements. The clinical relevance was established by using a 5 cm backscatter block down-stream of the lead shield to simulate anatomical structures of the head and a 0.5 cm superflab bolus upstream of the Al layers of the shield to simulate the patient's lip or cheek. The TLDs were placed between the Al layers of the shield and the superflab to determine the intra-oral skin dose. TLD exposure results revealed that 59.8% of the skin dose at 6 MeV and 45.1% of the skin dose at 12 MeV is due to backscattered electrons. Introduction of a 3.0 mm thick Al layer reduces the backscatter contribution to 13.5% of the back scatter dose at 6 MeV and 56.3% of the back scatter dose at 12 MeV electron radiation.

  8. Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Sawyer, C. D.; Nakashima, A.

    1972-01-01

    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.

  9. Additional adjoint Monte Carlo studies of the shielding of concrete structures against initial gamma radiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, M.; Cohen, M.O.

    1975-02-01

    The adjoint Monte Carlo method previously developed by MAGI has been applied to the calculation of initial radiation dose due to air secondary gamma rays and fission product gamma rays at detector points within buildings for a wide variety of problems. These provide an in-depth survey of structure shielding effects as well as many new benchmark problems for matching by simplified models. Specifically, elevated ring source results were obtained in the following areas: doses at on-and off-centerline detectors in four concrete blockhouse structures; doses at detector positions along the centerline of a high-rise structure without walls; dose mapping at basementmore » detector positions in the high-rise structure; doses at detector points within a complex concrete structure containing exterior windows and walls and interior partitions; modeling of the complex structure by replacing interior partitions by additional material at exterior walls; effects of elevation angle changes; effects on the dose of changes in fission product ambient spectra; and modeling of mutual shielding due to external structures. In addition, point source results yielding dose extremes about the ring source average were obtained. (auth)« less

  10. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles.

    PubMed

    Liu, Chang; Wang, Xiaoling; Huang, Xin; Liao, Xuepin; Shi, Bi

    2018-04-25

    Leather matrix (LM), a natural dielectric material, features a hierarchically suprafibrillar structure and abundant dipoles, which provides the possibility to dissipate electromagnetic waves (EW) energy via dipole relaxation combined with multiple diffuse reflections. Conventionally, metal-based materials are used as EW shielding materials due to that their high conductivity can reflect EW effectively. Herein, a lightweight and high-performance EW shielding composite with both absorption and reflection ability to EW was developed by coating metal nanoparticles (MNPs) onto LM. The as-prepared metal/LM membrane with only 4.58 wt % of coated MNPs showed excellent EW shielding effectiveness of ∼76.0 dB and specific shielding effectiveness of ∼200.0 dB cm 3 g -1 in the frequency range of 0.01-3.0 GHz, implying that more than 99.98% of EW was shielded. Further investigations indicated that the high shielding performances of the metal/LM membrane were attributed to the cooperative shielding mechanism between LM and the coating of MNPs.

  11. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  12. Approach and Issues Relating to Shield Material Design to Protect Astronauts from Space Radiation

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    2001-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.

  13. RadWorks Storm Shelter Design for Solar Particle Event Shielding

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Cerro, Jeffrey; Clowdsley, Martha

    2013-01-01

    In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASA's RadWorks Advanced Exploration Systems (AES) Project to design minimal mass SPE radiation shelter concepts leveraging available resources. Discussion items include a description of the shelter trade space, the prioritization process used to identify the four primary shelter concepts chosen for maturation, a summary of each concept's design features, a description of the radiation analysis process, and an assessment of the parasitic mass of each concept.

  14. Apparatus for characterizing conductivity of materials by measuring the effect of induced shielding currents therein

    DOEpatents

    Doss, James D.

    1991-01-01

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.

  15. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    NASA Astrophysics Data System (ADS)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  16. Depleted uranium hexafluoride: The source material for advanced shielding systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 andmore » $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.« less

  17. Shielding and activation calculations around the reactor core for the MYRRHA ADS design

    NASA Astrophysics Data System (ADS)

    Ferrari, Anna; Mueller, Stefan; Konheiser, J.; Castelliti, D.; Sarotto, M.; Stankovskiy, A.

    2017-09-01

    In the frame of the FP7 European project MAXSIMA, an extensive simulation study has been done to assess the main shielding problems in view of the construction of the MYRRHA accelerator-driven system at SCK·CEN in Mol (Belgium). An innovative method based on the combined use of the two state-of-the-art Monte Carlo codes MCNPX and FLUKA has been used, with the goal to characterize complex, realistic neutron fields around the core barrel, to be used as source terms in detailed analyses of the radiation fields due to the system in operation, and of the coupled residual radiation. The main results of the shielding analysis are presented, as well as the construction of an activation database of all the key structural materials. The results evidenced a powerful way to analyse the shielding and activation problems, with direct and clear implications on the design solutions.

  18. Solar probe shield developmental testing

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    1991-01-01

    The objectives of the Solar Probe mission and the current status of the Solar Probe thermal shield subsystem development are described. In particular, the discussion includes a brief description of the mission concepts, spacecraft configuration and shield concept, material selection criteria, and the required material testing to provide a database to support the development of the shield system.

  19. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com; Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com

    2016-05-06

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely {sup 241}Am and {sup 137}Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  20. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  1. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  2. Magnetic shielding of 3-phase current by a composite material at low frequencies

    NASA Astrophysics Data System (ADS)

    Livesey, K. L.; Camley, R. E.; Celinski, Z.; Maat, S.

    2017-05-01

    Electromagnetic shielding at microwave frequencies (MHz and GHz) can be accomplished by attenuating the waves using ferromagnetic resonance and eddy currents in conductive materials. This method is not as effective at shielding the quasi-static magnetic fields produced by low-frequency (kHz) currents. We explore theoretically the use of composite materials - magnetic nanoparticles embedded in a polymer matrix - as a shielding material surrounding a 3-phase current source. We develop several methods to estimate the permeability of a single magnetic nanoparticle at low frequencies, several hundred kHz, and find that the relative permeability can be as high as 5,000-20,000. We then use two analytic effective medium theories to find the effective permeability of a collection of nanoparticles as a function of the volume filling fraction. The analytic calculations provide upper and lower bounds on the composite permeability, and we use a numerical solution to calculate the effective permeability for specific cases. The field-pattern for the 3-phase current is calculated using a magnetic scalar potential for each of the three wires surrounded by a cylinder with the effective permeability found above. For a cylinder with an inner radius of 1 cm and an outer radius of 1.5 cm and an effective permeability of 50, one finds a reduction factor of about 8 in the field strength outside the cylinder.

  3. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  4. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  5. [Dosimetric evaluation of eye lense shieldings in computed tomography examination--measurements and Monte Carlo simulations].

    PubMed

    Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens

    2008-01-01

    The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.

  6. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, T. F.; Chen, Z. J.; Peng, X. Y.

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometermore » at EAST are studied for future data interpretation.« less

  7. Preliminary analyses of space radiation protection for lunar base surface systems

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Wilson, John W.; Townsend, Lawrence W.

    1989-01-01

    Radiation shielding analyses are performed for candidate lunar base habitation modules. The study primarily addresses potential hazards due to contributions from the galactic cosmic rays. The NASA Langley Research Center's high energy nucleon and heavy ion transport codes are used to compute propagation of radiation through conventional and regolith shield materials. Computed values of linear energy transfer are converted to biological dose-equivalent using quality factors established by the International Commision of Radiological Protection. Special fluxes of heavy charged particles and corresponding dosimetric quantities are computed for a series of thicknesses in various shield media and are used as an input data base for algorithms pertaining to specific shielded geometries. Dosimetric results are presented as isodose contour maps of shielded configuration interiors. The dose predictions indicate that shielding requirements are substantial, and an abbreviated uncertainty analysis shows that better definition of the space radiation environment as well as improvement in nuclear interaction cross-section data can greatly increase the accuracy of shield requirement predictions.

  8. Apparatus for characterizing conductivity of materials by measuring the effect of induced shielding currents therein

    DOEpatents

    Doss, J.D.

    1991-05-14

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials is disclosed. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  9. Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding.

    PubMed

    Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D

    2011-08-01

    The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative

  10. Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    Space radiation from cosmic ray particles is one of the main challenges for human space explorations such-as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  11. Particle radiation near the orbit of the Vacuum Wake Shield

    NASA Technical Reports Server (NTRS)

    Bering, Edgar A., III; Ignatiev, Alex

    1990-01-01

    The particle populations that are expected to inflict the most damage on thin film materials grown on the vacuum Wake Shield Facility (WSF) are ions and energetic neutral atoms with energies in the range of 100 eV to 20 keV. The production of films that have an order of magnitude fewer defects than are now available requires that the 1-keV particle flux be kept lower than 1000 particles/(sq cm s sr keV) (assuming a reasonable spectral shape). WSF will be flown on orbits with an inclination of 28 deg at altitudes of 300-700 km. Because of the background counting rate produced by the about 100 MeV trapped protons in the inner belt, obtaining accurate measurements of the particles of interest is very difficult. The quiet-time background fluxes of the relevant particles are not presently known. At times of magnetic activity, fluxes of 0.1-17 keV O(+) ions as great as 10 million ions/(sq cm s sr keV) have been observed flowing out of the ionosphere at these latitudes. It appears that instrumentation for detailed assessment is essential for the proof-of-concept flight(s) and that real-time monitoring of low-energy ion and energetic neutral radiation will be required for the production flights.

  12. Contaminant deposition building shielding factors for US residential structures.

    PubMed

    Dickson, Elijah; Hamby, David; Eckerman, Keith

    2017-10-10

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.

  13. Contaminant deposition building shielding factors for US residential structures.

    PubMed

    Dickson, E D; Hamby, D M; Eckerman, K F

    2015-06-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit.

  14. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.

  15. A New Light Weight Structural Material for Nuclear Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabiei, Afsaneh

    2016-01-14

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable.more » Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma

  16. Computer program optimizes design of nuclear radiation shields

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.

  17. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  18. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  19. The influence of radiation shielding on reusable nuclear shuttle design

    NASA Technical Reports Server (NTRS)

    Littman, T. M.; Garcia, D.

    1972-01-01

    Alternate reusable nuclear shuttle configurations were synthesized and evaluated. Particular attention was given to design factors which reduced tank exposure to direct and scattered radiation, increased payload-engine separation, and improved self-shielding by the LH2 propellant. The most attractive RNS concept in terms of cost effectiveness consists of a single conical aft bulkhead tank with a high fineness ratio. Launch is accomplished by the INT-21 with the tank positioned in the inverted attitude. The NERVA engine is delivered to orbit separately where final stage assembly and checkout are accomplished. This approach is consistent with NERVA definition criteria and required operating procedures to support an economically viable nuclear shuttle transportation program in the post-1980 period.

  20. Solar Probe thermal shield design and testing

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.

    1992-01-01

    This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.

  1. Materials trade study for lunar/gateway missions.

    PubMed

    Tripathi, R K; Wilson, J W; Cucinotta, F A; Anderson, B M; Simonsen, L C

    2003-01-01

    The National Aeronautics and Space Administration (NASA) administrator has identified protection from radiation hazards as one of the two biggest problems of the agency with respect to human deep space missions. The intensity and strength of cosmic radiation in deep space makes this a 'must solve' problem for space missions. The Moon and two Earth-Moon Lagrange points near Moon are being proposed as hubs for deep space missions. The focus of this study is to identify approaches to protecting astronauts and habitats from adverse effects from space radiation both for single missions and multiple missions for career astronauts to these destinations. As the great cost of added radiation shielding is a potential limiting factor in deep space missions, reduction of mass, without compromising safety, is of paramount importance. The choice of material and selection of the crew profile play major roles in design and mission operations. Material trade studies in shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space mission's to two Earth-Moon co-linear Lagrange points (L1) between Earth and the Moon and (L2) on back side of the moon as seen from Earth, and to the Moon have been studied. It is found that, for single missions, current state-of-the-art knowledge of material provides adequate shielding. On the other hand, the choice of shield material is absolutely critical for career astronauts and revolutionary materials need to be developed for these missions. This study also provides a guide to the effectiveness of multifunctional materials in preparation for more detailed geometry studies in progress. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Huang, Yu'an; Yang, Yang; Shen, Jianyi; Tang, Tao; Huang, Runsheng

    2010-10-01

    Composite materials containing electrically conductive expanded graphite (EG) and magnetic iron nano-particles for electromagnetic shielding were prepared by impregnating EG with an ethanol solution containing iron nitrate and acetic acid, followed by drying and reduction in H 2. Magnetic nano-iron particles were found to be highly dispersed on the surface of EG in the Fe/EG composites, and played the role of enhancing the electromagnetic shielding effectiveness (SE) at low frequencies (0.3-10 MHz), which seemed to depend proportionally on magnetic hysteresis loss of loaded iron nano-particles.

  3. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    PubMed

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  4. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, J. R.; Salerno, L. J.; Kashani, A.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network ofmore » narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.« less

  5. On stress/strain shielding and the material stiffness paradigm for dental implants.

    PubMed

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  6. Composite Structures Materials Testing for the Orion Crew Vehicle Heat Shield

    NASA Technical Reports Server (NTRS)

    Khemani, Farah N.

    2011-01-01

    As research is being performed for the new heat shield for the Orion capsule, National Aeronautics and Space Administration (NASA) is developing the first composite heat shield. As an intern of the Structures Branch in the Engineering Directorate (ES 2), my main task was to set up a test plan to determine the material properties of the honeycomb that will be used on the Orion Crew Module heat shield to verify that the composite is suitable for the capsule. Before conducting composite shell tests, which are performed to simulate the crush performance of the heat shield on the capsule, it is necessary to determine the compression and shear properties of the composite used on the shell. During this internship, I was responsible for developing a test plan, designing parts for the test fixtures as well as getting them fabricated for the honeycomb shear and compression testing. This involved work in Pro/Engineer as well as coordinating with Fab Express, the Building 9 Composite Shop and the Structures Test Laboratory (STL). The research and work executed for this project will be used for composite sandwich panel testing in the future as well. As a part of the Structures Branch, my main focus was to research composite structures. This involves system engineering and integration (SE&I) integration, manufacturing, and preliminary testing. The procedures for these projects that were executed during this internship included design work, conducting tests and performing analysis.

  7. Modeling Specular Exchange Between Concentric Cylinders in a Radiative Shielded Furnace

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Wessling, Francis C.

    2000-01-01

    The objective of this research is to develop and validate mathematical models to characterize the thermal performance of a radiative shielded furnace, the University of Alabama in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against experimental data obtained from testing the breadboard oven in a terrestrial laboratory environment. It is anticipated that the validation will produce math models capable of predicting the thermal performance of the furnace over a wide range of operating conditions, including those for which no experimental data is available. Of particular interest is the furnace core temperature versus heater power parametric and the transient thermal response of the furnace. Application to a microgravity environment is not considered, although it is conjectured that the removal of any gravity dependent terms from the math models developed for the terrestrial application should yield adequate results in a microgravity environment. The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that is conducive to measuring the diffusion of high temperature liquid metals. In addition to achieving the temperatures required to melt a sample placed within the furnace, reducing or eliminating convective motions within the melt is an important design consideration [1]. Both of these influences are reflected in the design of the furnace. Reducing unwanted heat losses from the furnace is achieved through the use of low conductivity materials and reflective shielding. As evidenced by the highly conductive copper core used to house the sample within the furnace, convective motions can be greatly suppressed by providing an essentially uniform thermal environment. An oven of this design could ultimately be utilized in a microgravity environment, presumably as a experiment payload. Such an application precipitates other design requirements that limit the resources available to the furnace such as power, mass

  8. TID Effects of High-Z Material Spot Shields on FPGA Using MPTB Data

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Crain, S. H.; Mazur, J. E.; Looper, M. D.

    2003-01-01

    An experiment on the Microelectronics and Photonics Test Bed (MPTB) was testing lield programmable gate arrays using spot shields to extend the life of some of the devices being tested. It was expected that the unshielded parts would fail from a total ionizing dose (TID) and yet the opposite occurred. The data show that the devices failing from the TID effects are those with the spot shields attached. This effort is to determine the mechanism by which the environment is interacting with the high-Z material to enhance the TID in these field programmable gate arrays.

  9. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  10. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  11. Geometry and mass model of ionizing radiation experiments on the LDEF satellite

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    Extensive measurements related to ionizing radiation environments and effects were made on the LDEF satellite during its mission lifetime of almost 6 years. These data, together with the opportunity they provide for evaluating predictive models and analysis methods, should allow more accurate assessments of the space radiation environment and related effects for future missions in low Earth orbit. The LDEF radiation dosimetry data is influenced to varying degrees by material shielding effects due to the dosimeter itself, nearby components and experiments, and the spacecraft structure. A geometry and mass model is generated of LDEF, incorporating sufficient detail that it can be applied in determining the influence of material shielding on ionizing radiation measurements and predictions. This model can be used as an aid in data interpretation by unfolding shielding effects from the LDEF radiation dosimeter responses. Use of the LDEF geometry/mass model, in conjunction with predictions and comparisons with LDEF dosimetry data currently underway, will also allow more definitive evaluations of current radiation models for future mission applications.

  12. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  13. OLTARIS: On-Line Tool for the Assessment of Radiation in Space

    NASA Technical Reports Server (NTRS)

    Sandridge, Chris A.; Blattnig, Steve R.; Clowdsley, Martha S.; Norbury, John; Qualis, Garry D.; Simonsen, Lisa C.; Singleterry, Robert C.; Slaba, Tony C.; Walker, Steven A.; Badavi, Francis F.; hide

    2009-01-01

    The effects of ionizing radiation on humans in space is a major technical challenge for exploration to the moon and beyond. The radiation shielding team at NASA Langley Research Center has been working for over 30 years to develop techniques that can efficiently assist the engineer throughout the entire design process. OLTARIS: On-Line Tool for the Assessment of Radiation in Space is a new NASA website (http://oltaris.larc.nasa.gov) that allows engineers and physicists to access a variety of tools and models to study the effects of ionizing space radiation on humans and shielding materials. The site is intended to be an analysis and design tool for those working radiation issues for current and future manned missions, as well as a research tool for developing advanced material and shielding concepts. The site, along with the analysis tools and models within, have been developed using strict software practices to ensure reliable and reproducible results in a production environment. They have also been developed as a modular system so that models and algorithms can be easily added or updated.

  14. Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.

    2015-12-01

    High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.

  15. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    PubMed

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  16. Radiation health for a Mars mission

    NASA Technical Reports Server (NTRS)

    Robbins, Donald E.

    1992-01-01

    Uncertainties in risk assessments for exposure of a Mars mission crew to space radiation place limitations on mission design and operation. Large shielding penalties are imposed in order to obtain acceptable safety margins. Galactic cosmic rays (GCR) and solar particle events (SPE) are the major concern. A warning system and 'safe-haven' are needed to protect the crew from large SPE which produce lethal doses. A model developed at NASA Johnson Space Center (JSC) to describe solar modulation of GCR intensities reduces that uncertainty to less than 10 percent. Radiation transport models used to design spacecraft shielding have large uncertainties in nuclear fragmentation cross sections for GCR which interact with spacecraft materials. Planned space measurements of linear energy transfer (LET) spectra behind various shielding thicknesses will reduce uncertainties in dose-versus-shielding thickness relationships to 5-10 percent. The largest remaining uncertainty is in biological effects of space radiation. Data on effects of energetic ions in human are nonexistent. Experimental research on effects in animals and cell is needed to allow extrapolation to the risk of carcinogenesis in humans.

  17. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    DOE PAGES

    Cherkashyna, Nataliia; Di Julio, Douglas D.; Panzner, Tobias; ...

    2015-08-09

    The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolithmore » wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code Geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates Geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS.« less

  18. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps

    PubMed Central

    Pratt, Brenda E.; Chittenden, Sarah J.; Murray, Iain S.; Causer, Louise; Grey, Matthew J.; Gear, Jonathan I.; Du, Yong; Flux, Glenn D.

    2017-01-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an 131I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration. PMID:28187040

  19. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    NASA Technical Reports Server (NTRS)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  20. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    NASA Technical Reports Server (NTRS)

    Lee, Steve; Le, Hung; Leimkuehler, Thomas O.; Stephan, Ryan A.

    2009-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PCM) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  1. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  2. Can active proton interrogation find shielded nuclear threats at human-safe radiation levels?

    NASA Astrophysics Data System (ADS)

    Liew, Seth Van

    2017-05-01

    A new method of low-dose proton radiography is presented. The system is composed of an 800 MeV proton source, bending magnets, and compact detectors, and is designed for drive-through cargo scanning. The system has been simulated using GEANT4. Material identification algorithms and pixel sorting methods are presented that allow the system to perform imaging at doses low enough to scan passenger vehicles and people. Results are presented on imaging efficacy of various materials and cluttered cargoes. The identification of shielded nuclear materials at human-safe doses has been demonstrated.

  3. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  4. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  5. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  6. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites

    NASA Astrophysics Data System (ADS)

    İrim, Ş. Gözde; Wis, Abdulmounem Alchekh; Keskin, M. Aker; Baykara, Oktay; Ozkoc, Guralp; Avcı, Ahmet; Doğru, Mahmut; Karakoç, Mesut

    2018-03-01

    In order to prepare an effective neutron shielding material, not only neutron but also gamma absorption must be taken into account. In this research, a polymer nanocomposite based novel type of multifunctional neutron shielding material is designed and fabricated. For this purpose, high density polyethylene (HDPE) was compounded with different amounts of hexagonal boron nitride (h-BN) and Gd2O3 nanoparticles having average particle size of 100 nm using melt-compounding technique. The mechanical, thermal and morphological properties of nanocomposites were investigated. As filler content increased, the absorption of both neutron and gamma fluxes increased despite fluctuating neutron absorption curves. Adding h-BN and Gd2O3 nano particles had a significant influence on both neutron and gamma attenuation properties (Σ, cm-1 and μ/ρ, cm-2/g) of ternary shields and they show an enhancement of 200-280%, 14-52% for neutron and gamma radiations, respectively, in shielding performance.

  7. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  8. Method of enhancing radiation response of radiation detection materials

    DOEpatents

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  9. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    NASA Astrophysics Data System (ADS)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-05-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  10. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    NASA Astrophysics Data System (ADS)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-04-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  11. Nuclear Technology Series. Course 19: Radiation Shielding.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. SU-E-T-273: Radiation Shielding for a Fixed Horizontal-Beam Linac in a Shipping Container and a Conventional Treatment Vault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M; Balter, P; Beadle, B

    Purpose: A fixed horizontal-beam linac, where the patient is treated in a seated position, could lower the overall costs of the treatment unit and room shielding substantially. This design also allows the treatment room and control area to be contained within a reduced space, such as a shipping container. The main application is the introduction of low-cost, high-quality radiation therapy to low- and middle-income regions. Here we consider shielding for upright treatments with a fixed-6MV-beam linac in a shipping container and a conventional treatment vault. Methods: Shielding calculations were done for two treatment room layouts using calculation methods in NCRPmore » Report 151: (1) a shipping container (6m × 2.4m with the remaining space occupied by the console area), and (2) the treatment vault in NCRP 151 (7.8m by 5.4m by 3.4m). The shipping container has a fixed gantry that points in one direction at all times. For the treatment vault, various beam directions were evaluated. Results: The shipping container requires a primary barrier of 168cm concrete (4.5 TVL), surrounded by a secondary barrier of 3.6 TVL. The other walls require between 2.8–3.3 TVL. Multiple shielding calculations were done along the side wall. The results show that patient scatter increases in the forward direction and decreases dramatically in the backward direction. Leakage scatter also varies along the wall, depending largely on the distance between the gantry and the wall. For the treatment room, fixed-beam requires a slightly thicker primary barrier than the conventional linac (0.6 TVL), although this barrier is only needed in the center of one wall. The secondary barrier is different only by 0–0.2 TVL. Conclusion: This work shows that (1) the shipping container option is achievable, using indigenous materials for shielding and (2) upright treatments can be performed in a conventional treatment room with minimal additional shielding. Varian Medical Systems.« less

  13. Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded with Electropolymers

    NASA Technical Reports Server (NTRS)

    McKay, Chris; Chen, Bin

    2012-01-01

    Single-wall carbon nanotubes (SWCNTs) coated with a hydrogen-rich, electrically conducting polymer such as polyethylene, receive and dissipate a portion of incoming radiation pulse energy to electrical signals that are transmitted along the CNT axes, and are received at energy-dissipating terminals. In this innovation, an array of highly aligned nanowires is grown using a strong electric field or another suitable orientation procedure. Polyethylene (PE), polymethymlethacrylate (PMMA), or other electrically conducting polymer is spin-coated onto the SWCNTs with an average thickness of a few hundred nanometers to a few tenths of micrometers to form a PE/SWCNT composite. Alternatively, the polymer is spin-coated onto the nanowire array or an anodized alumina membrane (AAM) to form a PE/metal core shell structure, or PE can be electropolymerized using the SWCNTs or the metal nanowires as an electrode to form a PE/SWCNT core shell structure. The core shell structures can be extruded as anisotropic fibers. A monomer can be polymerized in the presence of SWCNTs to form highly cross-linked PE/SWCNT films. Alternatively, Pb colloid solution can be impregnated into a three-dimensional PE/SWCNT nanostructure to form a PW/SWCNT/Pb composite structure. A face-centered cubic (FCC) arrangement provides up to 12 interconnection channels connected to each core, with transverse channel dimensions up to 20 nm, with adequate mechanical compressive strength, and with an associated electrical conductivity of around 3 Seimens/cm for currents ranging from 0.01 to 10 mA. This threedimensional nanostructure is used as a host material to house appropriate radiation shielding material such as hydrogen- rich polymer/CNT structures, metal nanoparticles, and nanowires. Thicknesses of this material required to attenuate 10 percent, 50 percent, and 90 percent of an incident beam (gamma, X-ray, ultraviolet, neutron, proton, and electron) at energies in the range of 0 440 MeV are being determined

  14. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  15. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  16. Second Symposium on Protection Against Radiations in Space

    NASA Technical Reports Server (NTRS)

    Reetz, Arthur, Jr. (Editor)

    1965-01-01

    All space vehicles will be exposed to natural charged particle radiation fields. The effects and possible problems imposed by such radiations are of great concern to those actively engaged in the exploration of space. Materials and components, which may be damaged by the radiation, frequently can be replaced by more radiation resistant items; however, replacement systems are not always possible or practical and, hence, protective measures in the form of shielding must be employed. (One of the more radiation-sensitive systems to be flown in space is man himself.) Many groups are engaged in research on the attenuation and penetration of high-energy space radiation and on the development of methods for the design of shielding which affords protection against the radiation. The purpose of the Second Symposium on Protection Against Radiations in Space, like that of the First, was to bring these groups together to exchange information and share ideas. The First Symposium on the Protection Against Radiation Hazards in Space was held in Gatlinburg, Tenn., on November 5-7, 1962, and was sponsored by the NASA Manned Spacecraft Center, the Oak Ridge National Laboratory, and the American Nuclear Society. The proceedings of that symposium were published by the U.S. Atomic Energy Commission in a two volume report numbered TID-7652. Early in 1964, it became apparent that sufficient new information worthy of presentation in another symposium had been gathered. Because of its interest and role in space and related research, the U.S. Air Force joined NASA and AEC in the sponsorship of the Second Symposium at Gatlinburg in October 1964. The host, as before, was the Oak Ridge National Laboratory. These proceedings are the written record of the Second Symposium. Invited papers covering the space radiation environment, radiobiological effects, and radiation effects on materials and components comprised the first three sessions. By defining the radiation problems in space and providing

  17. Space Station MMOD Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2006-01-01

    This paper describes International Space Station (ISS) shielding for micrometeoroid orbital debris (MMOD) protection, requirements for protection, and the technical approach to meeting requirements. Current activities in MMOD protection for ISS will be described, including efforts to augment MMOD protection by adding shields on-orbit. Observed MMOD impacts on ISS elements such as radiators, modules and returned hardware will be described. Comparisons of the observed damage with predicted damage using risk assessment software will be made.

  18. Effective radiation reduction in Space Station and missions beyond the magnetosphere

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas M.; Stassinopoulos, E. G.

    1989-01-01

    This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).

  19. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  20. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  1. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    NASA Astrophysics Data System (ADS)

    Abulfaraj, Waleed H.; Kamal, Salah M.

    1994-07-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.

  2. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom

    PubMed Central

    Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC

    2013-01-01

    Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460

  3. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  4. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  5. Orion Heat Shield Move

    NASA Image and Video Library

    2017-10-23

    Technicians move the Orion heat shield for Exploration Mission-1 toward the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Protective pads are being attached to the heat shield surface. The heat shield will undergo a thermal cycle test to verify acceptable workmanship and material quality. The test also serves to verify the heat shield's thermal protection systems have been manufactured and assembled correctly. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  6. Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.

    2000-01-01

    Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.

  7. Shielded, Automated Umbilical Mechanism

    NASA Technical Reports Server (NTRS)

    Barron, Daniel R.; Morrill, Brion F.; Jasulaitis, Vytas

    1995-01-01

    Umbilical mechanism automatically connects and disconnects various fluid couplings and/or electrical contacts while shielding mating parts from debris. Reacts mating and demating loads internally, without additional supporting structures. All functions - extension of plug, mating, and movement of debris shields - actuated by single motor. If mechanism jams or fails at any point in sequence, override feature in drive train allows manual operation. Designed for service in outer space, where its shields protect against micrometeoroids, debris, ultraviolet radiation, and atomic oxygen. Used on Earth to connect or disconnect fluid or electrical utilities in harsh environments like those of nuclear powerplants or undersea construction sites, or in presence of radioactive, chemical, or biological hazards, for example.

  8. Terrestrial Background Reduction in RPM Systems by Direct Internal Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sean M.; Ashbaker, Eric D.; Schweppe, John E.

    2008-11-19

    Gamma-ray detection systems that are close to the earth or other sources of background radiation often require shielding, especially when trying to detect a relatively weak source. One particular case of interest that we address in this paper is that encountered by the Radiation Portal Monitors (RPMs) systems placed at border-crossing Ports of Entry (POE). These RPM systems are used to screen for illicit radiological materials, and they are often placed in situations where terrestrial background is large. In such environments, it is desirable to consider simple physical modifications that could be implemented to reduce the effects from background radiationmore » without affecting the flow of traffic and the normal operation of the portal. Simple modifications include adding additional shielding to the environment, either inside or outside the apparatus. Previous work [2] has shown the utility of some of these shielding configurations for increasing the Signal to Noise Ratio (SNR) of gross-counting RPMs. Because the total cost for purchasing and installing RPM systems can be quite expensive, in the range of hundreds of thousands of dollars for each cargo-screening installation, these shielding variations may offer increases in detection capability for relatively small cost. Several modifications are considered here in regard to their real-world applicability, and are meant to give a general idea of the effectiveness of the schemes used to reduce background for both gross-counting and spectroscopic detectors. These scenarios are modeled via the Monte-Carlo N-Particle (MCNP) code package [1] for ease of altering shielding configurations, as well as enacting unusual scenarios prior to prototyping in the field. The objective of this paper is to provide results representative of real modifications that could enhance the sensitivity of this, as well as the next generation of radiation detectors. The models used in this work were designed to provide the most general

  9. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions

    PubMed Central

    Ambroglini, Filippo; Battiston, Roberto; Burger, William J.

    2016-01-01

    A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth’s dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European’s Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented. PMID:27376023

  10. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions.

    PubMed

    Ambroglini, Filippo; Battiston, Roberto; Burger, William J

    2016-01-01

    A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth's dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European's Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.

  11. Space radiation transport properties of polyethylene-based composites.

    PubMed

    Kaul, R K; Barghouty, A F; Dahche, H M

    2004-11-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  12. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  13. Parasitic heat loss reduction in AMTEC cells by heat shield optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Svedberg, R.C.; Hendricks, T.J.

    1997-12-31

    Alkali metal thermal to electric conversion (AMTEC) cell performance can be increased by the proper design of thermal radiative shielding internal to the AMTEC cell. These heat shields essentially lower the radiative heat transfer between the heat input zone of the cell and the heat rejection zone of the cell. In addition to lowering the radiative heat transfer between the heat input and heat rejection surfaces of the cell, the shields raise the AMTEC cell performance by increasing the temperature of the beta alumina solid electrolyte (BASE). This increase in temperature of the BASE tube allows the evaporator temperature tomore » be increased without sodium condensing within the BASE tubes. Experimental testing and theoretical analysis have been performed to compare the relative merits of two candidate heat shield packages: (1) chevron, and (2) cylindrical heat shields. These two heat shield packages were compared to each other and a baseline cell which had no heat shields installed. For the two heat shield packages, the reduction in total heat transfer is between 17--27% for the heat input surface temperature varying from 700 C, 750 C, and 800 C with the heat rejection surface temperature kept at 300 C.« less

  14. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  15. Radiative properties of advanced spacecraft heat shield materials

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  16. Self-generated clouds of micron-sized particles as a promising way of a Solar Probe shielding from intense thermal radiation of the Sun

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu

    2017-10-01

    An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.

  17. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    PubMed

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  18. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  19. Shield Design for Lunar Surface Applications

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory A.

    2006-01-01

    A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.

  20. Optimized thin film coatings for passive radiative cooling applications

    NASA Astrophysics Data System (ADS)

    Naghshine, Babak B.; Saboonchi, Ahmad

    2018-03-01

    Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.

  1. The 3D Radiation Dose Analysis For Satellite

    NASA Astrophysics Data System (ADS)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  2. Design of Two RadWorks Storm Shelters for Solar Particle Event Shielding

    NASA Technical Reports Server (NTRS)

    Simon, Matthew; Cerro, Jeffery; Latorella, Kara; Clowdsley, Martha; Watson, Judith; Albertson, Cindy; Norman, Ryan; Le Boffe, Vincent; Walker, Steven

    2014-01-01

    In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASA's RadWorks Advanced Exploration Systems (AES) Project to design two minimal mass SPE radiation shelter concepts leveraging available resources: one based upon reconfiguring habitat interiors to create a centralized protection area and one based upon augmenting individual crew quarters with waterwalls and logistics. Discussion items include the design features of the concepts, a radiation analysis of their implementations, an assessment of the parasitic mass of each concept, and the result of a human in the loop evaluation performed to drive out design and operational issues.

  3. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  4. Electrodynamic Dust Shield for Space Applications

    NASA Technical Reports Server (NTRS)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Calle, Carlos I.; Pollard, Jacob R. S.

    2016-01-01

    The International Space Exploration Coordination Group (ISECG) has chosen dust mitigation technology as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. NASA has also included Particulate Contamination Prevention and Mitigation as a cross-cutting technology to be developed for contamination prevention, cleaning and protection. This technology has been highlighted due to the detrimental effect of dust on both human and robotic missions. During manned Apollo missions, dust caused issues with both equipment and crew. Contamination of equipment caused many issues including incorrect instrument readings and increased temperatures due to masking of thermal radiators. The astronauts were directly affected by dust that covered space suits, obscured face shields and later propagated to the cabin and into the crew's eyes and lungs. Robotic missions on Mars were affected when solar panels were obscured by dust thereby reducing the effectiveness of the solar panels. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has been developing an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. This technology has been tested in lab environments and has evolved over several years. Tests of the technology include reduced gravity flights (6g) in which Apollo Lunar dust samples were successfully removed from glass shields while under vacuum (1 millipascal). Further development of the technology is underway to reduce the size of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment X (MISSE-X). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the moon

  5. Summary of Surface Swipe Sampling for Beryllium on Lead Bricks and Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, S Y; Barron, D A

    2011-08-03

    Approximately 25,000 lbs of lead bricks at Site 300 were assessed by the Site 300 Industrial Hygienis tand Health Physicist for potential contamination of beryllium and radiation for reuse. These lead bricks and shielding had been used as shielding material during explosives tests that included beryllium and depleted uranium. Based on surface swipe sampling that was performed between July 26 and October 11, 2010, specifically for beryllium, the use of a spray encapsulant was found to be an effective means to limit removable surface contamination to levels below the DOE release limit for beryllium, which is 0.2 mcg/100 cm{sup 2}.more » All the surface swipe sampling data for beryllium and a timeline of when the samples were collected (and a brief description) are presented in this report. On December 15, 2010, the lead bricks and shielding were surveyed with an ion chamber and indicated dose rates less than 0.05 mrem per hour on contact. This represents a dose rate consistent with natural background. An additional suevey was performed on February 8, 2011, using a GM survey instrument to estimate total activity on the lead bricks and shielding, confirming safe levels of radioactivity. The vendor is licensed to possess and work with radioactive material.« less

  6. Radiation area monitor device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated aboutmore » the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  7. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  8. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-,more » medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.« less

  9. Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields

    NASA Astrophysics Data System (ADS)

    Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K.

    2017-01-01

    Bi2O3 filled Isophthalic resin based polymer composites of different weight % (0, 5, 10, 20, 30, 40, 50 & 60) were fabricated by open mould cast technique. Gamma attenuation study was carried out using NaI (Tl) gamma ray spectrometer for Cs-137. The shielding parameters such as attenuation coefficient, HVL & λ were investigated. The distribution of the filler within the matrix was studied using Scanning Electron Microscopy. X ray diffractometer and Fourier Transform Infrared Spectroscopy were employed to study the structural changes if any. The thermal stability and mechanical strength of the composites were investigated using TGA & UTM respectively. Dielectric properties and AC conductivity were also studied using LCR meter. The composites are found to be thermally stable upto 200 °C. There were no such structural changes observed and all the composites show very low conductivity. The mechanical strength of the composites was found to increase upon adding the bismuth oxide with a slight decrease when the concentration of the filler exceeds 40 wt%. Attenuation results reveal that, the shielding efficiency increases with the increase of the filler wt% and are comparable to those of the conventional shielding materials. Hence, Bi2O3 filled composites can be used for gamma shielding applications.

  10. Methods of Making Z-Shielding

    NASA Technical Reports Server (NTRS)

    Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)

    2014-01-01

    Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.

  11. Identification of best particle radiation shielded region through Energetic Neutral Atoms mapping

    NASA Astrophysics Data System (ADS)

    Milillo, A.; De Angelis, E.; Mura, A.; Orsini, S.; Mangano, V.; Massetti, S.; Rispoli, R.; Lazzarotto, F.; Vertolli, N.; Lavagna, M.; Ferrari, F.; Lunghi, P.; Attinà, P.; Parissenti, G.

    2017-09-01

    The lunar surface is directly exposed either to direct solar wind, or to Earth's magnetospheric plasma due to the Moon's lack of a magnetosphere or a dense atmosphere. This exposure could create inhospitable conditions for a possible human presence on the Moon, so it is crucial to investigate the close-to-surface environment for establishing the best reliable locations for future human bases. Although it lacks a global magnetic field, the Moon possesses magnetic anomalies that create mini-magnetospheres, where the solar wind is partly deflected. The local protection of the surface from the solar wind radiation inside the mini-magnetospheres could make these sites preferred for future lunar colonization. It is crucial a detailed characterization of these sites. In this paper, an investigation based on the detection of Energetic Neutral Atoms (ENA) from the surface for identifying the best particle radiation shielded region is proposed. A high spatial resolution mapping via ENA is a feasible and it is powerful way for reaching this goal.

  12. Passive Superconducting Shielding: Experimental Results and Computer Models

    NASA Technical Reports Server (NTRS)

    Warner, B. A.; Kamiya, K.

    2003-01-01

    Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.

  13. Modeling gamma radiation dose in dwellings due to building materials.

    PubMed

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  14. Self-Shielding of Thermal Radiation by Chicxulub Ejecta: Firestorm or Fizzle?

    NASA Astrophysics Data System (ADS)

    Goldin, T. J.; Melosh, H. J.

    2008-12-01

    The discovery of soot within the Chicxulub ejecta sequence and the observed survival patterns of terrestrial organisms across the K/Pg boundary led to the hypothesis that thermal radiation from the atmospheric reentry of hypervelocity impact ejecta was sufficient to ignite global wildfires and cause biological catastrophe. Using a two-dimensional, two-phase fluid flow code, KFIX-LPL, we model the atmospheric reentry of distal Chicxulub ejecta and calculate the fluxes of thermal radiation throughout the atmosphere. The model treatment includes optical opacity, allowing us to examine the effects that greenhouse gases and the spherules themselves have on the transfer of thermal radiation to the ground. We model a simple Chicxulub scenario where 250-µm spherules reenter the atmosphere for an hour with maximum inflow after 10 minutes. Our models predict a pulse of thermal radiation at the ground peaking at ~6 kW/m2, analogous to an oven set on 'broil'. Previous calculations, which did not consider spherule opacity, yielded >10 kW/ m2 sustained over an hour or more and such an extended pulse of high fluxes is thought to be required for wildfire ignition. However, our model suggests a half-hour in which fluxes exceed the solar norm and only a few minutes >5 kW/m2. Large fluxes are not sustained in our models due to the increasingly opaque cloud of settling spherules, which increasingly blocks the transmission of thermal radiation from the decelerating spherules above. Hence, the spherules themselves limit the magnitude and duration of thermal radiation at the ground. Such self-shielding may have prevented the ignition of global wildfires following Chicxulub and limited other environmental effects. Keeping the impact wildfire hypothesis will require a mechanism to override this effect. A nonuniform distribution of spherule reentry may produce gaps in the opaque spherule layer through which the downward thermal radiation may be concentrated. Additionally, an opaque cloud

  15. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    NASA Astrophysics Data System (ADS)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  16. Experimental demonstration of radiation effects on the performance of a stirling-alternator convertor and candidate materials evaluation

    NASA Astrophysics Data System (ADS)

    Mireles, Omar R.

    Free-piston Stirling power convertors are under consideration by NASA for service in the Advanced Stirling Radioisotope Generator (ASRG) and Fission Surface Power (FSP) systems to enable aggressive exploration missions by providing a reliable and constant power supply. The ASRG must withstand environmental radiation conditions, while the FSP system must tolerate a mixed neutron and gamma-ray environment resulting from self-irradiation. Stirling-alternators utilize rare earth magnets and a variety of organic materials whose radiation limits dominate service life estimates and shielding requirements. The project objective was to demonstrate the performance of the alternator, identify materials that exhibit excessive radiation sensitivity, identify radiation tolerant substitutes, establish empirical dose limits, and demonstrate the feasibility of cost effective nuclear and radiation tests by selection of the appropriate personnel and test facilities as a function of hardware maturity. The Stirling Alternator Radiation Test Article (SARTA) was constructed from linear alternator components of a Stirling convertor and underwent significant pre-exposure characterization. The SARTA was operated at the Sandia National Laboratories Gamma Irradiation Facility to a dose of over 40 Mrad. Operating performance was within nominal variation, although modestly decreasing trends occurred in later runs as well as the detection of an electrical fault after the final exposure. Post-irradiation disassembly and internal inspection revealed minimal degradation of the majority of the organic components. Radiation testing of organic material coupons was conducted since the majority of the literature was inconsistent. These inconsistencies can be attributed to testing at environmental conditions vastly different than those Stirling-alternator organics will experience during operation. Samples were irradiated at the Texas A&M TRIGA reactor to above expected FSP neutron fluence. A thorough

  17. Shielding small-field high-energy electron beams in cancer treatment

    NASA Astrophysics Data System (ADS)

    Farahani, M.; Eichmiller, F. C.; McLaughlin, W. L.

    1994-04-01

    The purpose of this study was to find an effective material that can be prepared quickly and easily prior to small-field electron-beam treatments so that lesions of the head and neck can be treated with minimal irradiation of the surrounding healthy tissue. Conventional preparation of custom anatomical prosthetic radiation shields, which are usually metal alloy masks, has been time-consuming and uncomfortable for the patients. New materials, made from light-body Reprosil TM (L. L. Caulk) filled with fine metal powder consisting of 70% Ag-30% Cu alloy, can be made by blending 90% (w/w) metal powder with 10% polysiloxane base and adding the polymerization catalyst separately. These combinations were mixed to form comfortably fitted shielding composites of different thicknesses. The electron-beam attenuation properties of slabs of this material were studied by irradiating calibrated radiochromic film (GafChromic TM) dosimeters behind different thicknesses of composite samples with small-field 13-, 15- and 18-MeV electron beams from a therapeutic linear accelerator. The results showed that this material can suitably attenuate high-energy electron beams when used in reasonable thicknesses.

  18. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    PubMed

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Sanjay

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge canmore » be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.« less

  20. Occupational dose reduction in cardiac catheterisation laboratory: a randomised trial using a shield drape placed on the patient.

    PubMed

    Ordiales, J M; Nogales, J M; Vano, E; López-Mínguez, J R; Alvarez, F J; Ramos, J; Martínez, G; Sánchez, R M

    2017-04-25

    The aim of this study was to evaluate the occupational radiation dose in interventional cardiology by using a shielding drape on the patient. A random study with and without the protective material was conducted. The following control parameters were registered: demographic data, number of stents, contrast media volume, fluoroscopy time, number of cine images, kerma-area product and cumulative air kerma. Occupational dose data were obtained by electronic active dosemeters. No statistically significant differences in the analysed control parameters were registered. The median dose value received by the interventional cardiologist was 50% lower in the group with a shielding drape with a statistically significant p-value <0.001. In addition, the median value of the maximum scatter radiation dose was 31% lower in this group with a statistically significant p-value <0.001. This study showed that a shielding drape is a useful tool for reducing the occupational radiation dose in a cardiac catheterisation laboratory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  2. A New Microwave Shield Preparation for Super High Frequency Range: Occupational Approach to Radiation Protection.

    PubMed

    Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher

    2016-01-01

    Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects.  According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.

  3. Experimental characterization of magnetic materials for the magnetic shielding of cryomodules in particle accelerators

    DOE PAGES

    Sah, Sanjay; Myneni, Ganapati; Atulasimha, Jayasimha

    2015-10-26

    The magnetic properties of two important passive magnetic shielding materials (A4K and Amumetal) for accelerator applications, subjected to various processing and heat treatment conditions are studied comprehensively over a wide range of temperatures: from cryogenic to room temperature. Furthermore, we analyze the effect of processing on the extent of degradation of the magnetic properties of both materials and investigate the possibility of restoring these properties by re-annealing.

  4. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  5. Space Radiation Analysis for the Mark III Spacesuit

    NASA Technical Reports Server (NTRS)

    Atwell, Bill; Boeder, Paul; Ross, Amy

    2013-01-01

    NASA has continued the development of space systems by applying and integrating improved technologies that include safety issues, lightweight materials, and electronics. One such area is extravehicular (EVA) spacesuit development with the most recent Mark III spacesuit. In this paper the Mark III spacesuit is discussed in detail that includes the various components that comprise the spacesuit, materials and their chemical composition that make up the spacesuit, and a discussion of the 3-D CAD model of the Mark III spacesuit. In addition, the male (CAM) and female (CAF) computerized anatomical models are also discussed in detail. We combined the spacesuit and the human models, that is, we developed a method of incorporating the human models in the Mark III spacesuit and performed a ray-tracing technique to determine the space radiation shielding distributions for all of the critical body organs. These body organ shielding distributions include the BFO (Blood-Forming Organs), skin, eye, lungs, stomach, and colon, to name a few, for both the male and female. Using models of the trapped (Van Allen) proton and electron environments, radiation exposures were computed for a typical low earth orbit (LEO) EVA mission scenario including the geostationary (GEO) high electron environment. A radiation exposure assessment of these mission scenarios is made to determine whether or not the crew radiation exposure limits are satisfied, and if not, the additional shielding material that would be required to satisfy the crew limits.

  6. Parametric study for use of stainless steel as a material for thermal shield in PIP2IT transferline at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rane, Tejas

    Proton Improvement Plant – II (PIP-II) has been planned at Fermilab for providing high-intensity proton beams to the laboratory’s experiments. Fermilab has undertaken the PIP-II Injector Test (PIP2IT) for integrated systems testing of critical components comprising the PIP-II front end. PIP2IT includes two cryomodules, to be tested using a pre-existing Supercritical helium refrigerator and distribution box. The PIP2IT transferline connects the Distribution box to the cryomodules of PI2IT. It contains 5 process lines as follows - supercritical 5K He supply and return lines, thermal shield supply(40K) and return(80K) lines and a sub-atmospheric 2K return line. Such cryogenic transferlines are generallymore » provided with cylindrical thermal shields at 80K, enclosing multiple process lines. The thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Higher thermal diffusivity provides faster cooling and uniformity o f temperature along the shield surface. Hence, Copper/Aluminium is widely used to fabricate thermal shields. However, raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material in thermal shields for the PIP2IT transferline. To this effect, a parametric study has been undertaken to evaluate the suitability of replacing Copper/Aluminium with stainless steel in thermal shields. The low thermal conductivity of steel results in bowing of the shield due to differential temperature distribution along the circumferential direction. The resulting suitable design has limiting parameters in terms of maximum allowable length of a shield section and the maximum allowable heat transfer coefficient for cooling flow. Starting with the design specific to PIP2IT transferline, an at tempt

  7. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, S; Vanderhoek, M

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beammore » entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.« less

  8. TOPEX orbital radiation study

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

  9. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  10. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1973-01-01

    The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.

  11. Outgassing of solid material into vacuum thermal insulation spaces

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  12. Space radiation protection: Destination Mars.

    PubMed

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  13. Shielding analyses for repetitive high energy pulsed power accelerators

    NASA Astrophysics Data System (ADS)

    Jow, H. N.; Rao, D. V.

    Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.

  14. Design of Reflective, Photonic Shields for Atmospheric Reentry

    NASA Technical Reports Server (NTRS)

    Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Fabrichnaya, Olga; White, Susan; Lawson, John

    2010-01-01

    We present the design of one-dimensional photonic crystal structures, which can be used as omnidirectional reflecting shields against radiative heating of space vehicles entering the Earth's atmosphere. This radiation is approximated by two broad bands centered at visible and near-infrared energies. We applied two approaches to find structures with the best omnidirectional reflecting performance. The first approach is based on a band gap analysis and leads to structures composed of stacked Bragg mirrors. In the second approach, we optimize the structure using an evolutionary strategy. The suggested structures are compared with a simple design of two stacked Bragg mirrors. Choice of the constituent materials for the layers as well as the influence of interlayer diffusion at high temperatures are discussed.

  15. Investigation of Woven Characteristics on Electromagnetic Shielding Behaviour

    NASA Astrophysics Data System (ADS)

    Javadi Toghchi, M.; Loghin, C.; Cristian, I.; Campagne, C.; Bruniaux, P.; Cayla, A.

    2018-06-01

    Textiles have been highly applied for electromagnetic shielding purposes due to the increasing concern about health issues caused by human exposure to radiation. Properties of conductive yarn, fabric structure, and garment design have extreme effects on the electromagnetic behaviour and comfort of the final product. Lots of electromagnetic shielding textiles are made of metallic yarns regarding their high electrical conductivity. Therefore, some researchers have worked on electromagnetic shielding textiles made of metals. For example; the shielding effectiveness of woven fabrics made of hybrid yarns containing stainless steel wire was investigated. As discussed earlier, the fabric structure has significant effects on electromagnetic protection. Consequently, woven samples were produced using two different commercial electroconductive yarns (PA12 coated with Ag and Inox) to investigate the effects of the fabric structure. The main purpose was to define the best pattern among three basic woven patterns leads to the highest electromagnetic shielding. Moreover, the different weft yarn densities were applied to examine the effects of yarn density on the level of electromagnetic shielding. The electromagnetic shielding effectiveness of all the 2-layer samples was evaluated in the frequency range from 0.8 to10 GHz in an anechoic chamber. The woven sample with higher yarn density of PA12 coated with Ag yarns shows higher protection against radiation. To conclude, the results show that the yarn properties play the main role in shielding as well as yarn density and fabric pattern.

  16. Electrodynamic Dust Shield for Lunar/ISS Experiment Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Calle, Carlos; Hogue, Michael; Johansen, Michael; Mackey, Paul

    2015-01-01

    The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the International Space Station (ISS). The Electrodynamic Dust Shield (EDS) clears dust off surfaces and prevents accumulation by using a pattern of electrodes to generate a non-uniform electric field over the surface being protected. The EDS experiment will repel dust off materials such as painted Kapton and glass to demonstrate applications for thermal radiators, camera lenses, solar panels, and other hardware and equipment.

  17. Radiation Detection Material Discovery Initiative at PNNL

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2006-05-01

    Today's security threats are being met with 30-year old radiation technology. Discovery of new radiation detection materials is currently a slow and Edisonian process. With heightened concerns over nuclear proliferation, terrorism and unconventional warfare, an alternative strategy for identification and development of potential radiation detection materials must be adopted. Through the Radiation Detection Materials Discovery Initiative, PNNL focuses on the science-based discovery of next generation materials for radiation detection by addressing three ``grand challenges'': fundamental understanding of radiation detection, identification of new materials, and accelerating the discovery process. The new initiative has eight projects addressing these challenges, which will be described, including early work, paths forward and the opportunities for collaboration.

  18. New method for shielding electron beams used for head and neck cancer treatment.

    PubMed

    Farahani, M; Eichmiller, F C; McLaughlin, W L

    1993-01-01

    Shields and stents of metals with high atomic number, which are custom cast in molds from the melt, are the materials most widely used to protect surrounding tissues during treatment of skin or oral lesions with therapeutic electron beams. An improved fabrication method is to mix a polysiloxane-metal composite, which is readily cast at room temperature by combining a metal-powder/polysiloxane resin mixture with a hardening catalyst. The purpose of the present study is to compare the shielding effectiveness of two different metal-polysiloxane composites with that of conventional cast Lipowitz metal (50.1% Bi, 26.6% Pb, 13.3% Sn, 10% Cd). Also, a 2(3) factorial experiment was run to investigate the effects and interactions of metal particle size (20-microns vs 100-microns diameter), the atomic weight of the metal (304 stainless steel vs 70% Ag, 30% Cu alloy), and the presence or absence of a layer of unfilled polymer added to the forward-scatter side of the shield. The composites of different thicknesses were made by blending 90% (w/w) metal powder separately with 10% polysiloxane base and catalyst. A thin GafChromic dosimeter film was placed between the shielding material and a polystyrene base to measure the radiation shielding effect of composite disc samples irradiated with a 6-MeV electron beam normal to the flat surface of the disc. The results show that composite shields with the metal of higher atomic weight and density (Ag-Cu) combined with an additional unfilled layer are more effective than the stainless-steel composite with a similar additional unfilled layer, in terms of diminishing the dose at the surface of the polystyrene backing material.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response

    NASA Astrophysics Data System (ADS)

    Saini, Parveen; Arora, Manju; Gupta, Govind; Gupta, Bipin Kumar; Singh, Vidya Nand; Choudhary, Veena

    2013-05-01

    Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional

  20. Refractory metal shielding /insulation/ increases operating range of induction furnace

    NASA Technical Reports Server (NTRS)

    Ebihara, B. T.

    1965-01-01

    Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels.