Science.gov

Sample records for radiation signatures progress

  1. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  2. A Methodology for Calculating Radiation Signatures

    SciTech Connect

    Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  3. NF-κB gene signature predicts prostate cancer progression

    PubMed Central

    Jin, Renjie; Yi, Yajun; Yull, Fiona E.; Blackwell, Timothy S.; Clark, Peter E.; Koyama, Tatsuki; Smith, Joseph A.; Matusik, Robert J.

    2014-01-01

    In many prostate cancer (PCa) patients, the cancer will be recurrent and eventually progress to lethal metastatic disease after primary treatment, such as surgery or radiation therapy. Therefore, it would be beneficial to better predict which patients with early-stage PCa would progress or recur after primary definitive treatment. In addition, many studies indicate that activation of NF-κB signaling correlates with PCa progression; however, the precise underlying mechanism is not fully understood. Our studies show that activation of NF-κB signaling via deletion of one allele of its inhibitor, IκBα, did not induce prostatic tumorigenesis in our mouse model. However, activation of NF-κB signaling did increase the rate of tumor progression in the Hi-Myc mouse PCa model when compared to Hi-Myc alone. Using the non-malignant NF-κB activated androgen depleted mouse prostate, a NF-κB Activated Recurrence Predictor 21 (NARP21) gene signature was generated. The NARP21 signature successfully predicted disease-specific survival and distant metastases-free survival in patients with PCa. This transgenic mouse model derived gene signature provides a useful and unique molecular profile for human PCa prognosis, which could be used on a prostatic biopsy to predict indolent versus aggressive behavior of the cancer after surgery. PMID:24686169

  4. Does radiation cause molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1997-03-01

    Several classes of genes are mutated during the progression to cancer. The oncogenes include ras, myc and c-erbB-2; suppressor genes include p53, Rb, p16, and APC; and cancer susceptibility genes include hMSH2. Germline mutations in many of these genes produce cancer syndromes such as retinoblastoma, Li-Fraumeni Sydrome, familial adenomatous polyposis, or HNPCC (hereditary non-polyposis colon cancer). Sporadic tumors frequently contain somatic mutations in the same genes. Analysis of the mutational spectrum of sporadic and inherited tumors can provide clues to etiology and insight into molecular pathogenesis. The character and distribution of mutations comprise a mutational spectrum. Mutations of the p53 tumor suppressor gene occur commonly in human cancer, and nearly 5000 have been reported to date. The p53 mutational spectrum is dominated by missense point mutations (84%) and complemented by insertions/deletions (10%) and non-sense mutations (7%). Most mutations occur within evolutionarily conserved residues within the DNA-binding domain, and the pattern of mutational hotspots provided the first clue to p53 function: it is a transcription factor that binds to a DNA consensus sequence. Elucidation of the crystal structure of the central DNA-binding domain has uncovered the significance of the mutational hotspots. These insights suggest strategies for rational drug design, for example, constructing `restoring` compounds that complete the wild type hydrogen bonds missing in the mutant p53 protein. Mutational spectrum analysis is a new tool for probing cancer etiology and pathogensis. Using current technology, the p53 tumor suppressor gene is the most informative target sequence, but the next generation of rapid sequencing technologies will expand the range of testable cancer genes and fill new mutational databases.

  5. Mutational signatures of ionizing radiation in second malignancies

    PubMed Central

    Behjati, Sam; Gundem, Gunes; Wedge, David C.; Roberts, Nicola D.; Tarpey, Patrick S.; Cooke, Susanna L.; Van Loo, Peter; Alexandrov, Ludmil B.; Ramakrishna, Manasa; Davies, Helen; Nik-Zainal, Serena; Hardy, Claire; Latimer, Calli; Raine, Keiran M.; Stebbings, Lucy; Menzies, Andy; Jones, David; Shepherd, Rebecca; Butler, Adam P.; Teague, Jon W.; Jorgensen, Mette; Khatri, Bhavisha; Pillay, Nischalan; Shlien, Adam; Futreal, P. Andrew; Badie, Christophe; Cooper, Colin S.; Eeles, Rosalind A.; Easton, Douglas; Foster, Christopher; Neal, David E.; Brewer, Daniel S.; Hamdy, Freddie; Lu, Yong-Jie; Lynch, Andrew G.; Massi, Charlie E.; Ng, Anthony; Whitaker, Hayley C.; Yu, Yongwei; Zhang, Hongwei; Bancroft, Elizabeth; Berney, Dan; Camacho, Niedzica; Corbishley, Cathy; Dadaev, Tokhir; Dennis, Nening; Dudderidge, Tim; Edwards, Sandra; Fisher, Cyril; Ghori, Jilur; Gnanapragasam, Vincent J.; Greenman, Christopher; Hawkins, Steve; Hazell, Steven; Howat, Will; Karaszi, Katalin; Kay, Jonathan; Kote-Jarai, Zsofia; Kremeyer, Barbara; Kumar, Pardeep; Lambert, Adam; Leongamornlert, Daniel; Livni, Naomi; Luxton, Hayley; Matthews, Lucy; Mayer, Erik; Merson, Susan; Nicol, David; Ogden, Christopher; O'Meara, Sarah; Pelvender, Gill; Shah, Nimish C.; Tavare, Simon; Thomas, Sarah; Thompson, Alan; Verrill, Claire; Warren, Anne; Zamora, Jorge; McDermott, Ultan; Bova, G. Steven; Richardson, Andrea L.; Flanagan, Adrienne M.; Stratton, Michael R.; Campbell, Peter J.

    2016-01-01

    Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1–100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential. PMID:27615322

  6. Integrative Metabolic Signatures for Hepatic Radiation Injury

    PubMed Central

    Su, Gang; Meng, Fan; Liu, Laibin; Mohney, Robert; Kulkarni, Shilpa; Guha, Chandan

    2015-01-01

    Background Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice. Methods Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. Results Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine). Conclusions We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney. PMID:26046990

  7. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  8. [Nanometer scale exciton spectroscopy and photochemistry: Dynamic imaging of DNA structure-activity relations and radiation signatures]. Progress report, July 25, 1991--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    Our aim is to investigate, on the molecular level at a spatially resolved mode of operation, structure-activity relations of DNA and their sensitivity to ionizing radiation. This entails in-vitro (and later in-vivo) ultra-resolved microscopy, spectroscopy and chemical sensing, with non-destructive probing.

  9. [Nanometer scale exciton spectroscopy and photochemistry: Dynamic imaging of DNA structure-activity relations and radiation signatures]. Progress report, September 24, 1990--July 24, 1991

    SciTech Connect

    Kopelman, R.

    1991-12-31

    We have constructed a scanning near-field optical microscope. For this we developed subwavelength micropipette light sources containing photostable crystal tips. We have also developed a technique for pulling and metal coating for single mode optical fibers to give nanometer silica tips emitting polarized laser light. Clear images have been obtained of polymeric porous membranes with nanometer pore sizes of comparable quality to that of scanning electron microscopy, but without the need for a vacuum. This method is aimed at both transmission and fluorescence nanoscopy. We believe that at least one of these will be operational in the coming year. We have also made significant progress on the next stage: Scanning, Tunneling, Exciton Microscopy. This is based on direct energy transfer between the tip and the particular molecule or fluorophore in the sample. We expect this stage to be operational in the third year of the project. Preliminary near-field optical scans indicate our resolution is already in the nanometer range. 3 figs. (MHB)

  10. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    Detailed measurements and modeling of the spectral emission of an atmospheric pressure air plasma at temperatures up to -3400 K have been made. The cold gas injected in the plasma torch contained an estimated mole fraction of water vapor of approximately 4.5 x 10(exp -3) and an estimated carbon dioxide mole fraction of approximately 3.3 x 10(exp -4). Under these conditions, the minimum level of air plasma emission is found to be between 3.9 and 4.15 microns. Outside this narrow region, significant spectral emission is detected that can be attributed to the fundamental and overtone bands of NO and OH, and to the v(sub 3) and the (v(sub 1)+v(sub 3)) bands Of CO2. Special attention was paid to the effects of ambient air absorption in the optical path between the plasma and the detector. Excellent quantitative agreement is obtained between the measured and simulated spectra, which are both on absolute intensity scales, thus lending confidence in the radiation models incorporated into NEQAIR2-IR over the course of this research program.

  11. The signature of auroral kilometric radiation on Isis 1 ionograms

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    Auroral kilometric radiation (AKR) appears on the Isis 1 topside sounder ionograms as intense noise bands between the electron cyclotron frequency and 700 kHz. A variable gap occurs between the cyclotron frequency and the lowest AKR frequency. As Isis 1 traverses the source region, the gap narrows, and the AKR signals at higher frequencies weaken. This signature suggests that the AKR waves are generated directly in the extraordinary mode at frequencies just above the local cutoff frequency and that the radiation is initially perpendicular to the magnetic field.

  12. The signature of auroral kilometric radiation on Isis 1 ionograms

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    Auroral kilometric radiation (AKR) appears on the Isis 1 topside sounder ionograms as intense noise bands between the electron cyclotron frequency and 700 kHz. A variable gap occurs between the cyclotron frequency and the lowest AKR frequency. As Isis 1 traverses the source region, the gap narrows, and the AKR signals at higher frequencies weaken. This signature suggests that the AKR waves are generated directly in the extraordinary mode at frequencies just above the local cutoff frequency and that the radiation is initially perpendicular to the magnetic field.

  13. The Spectral Signature of Cloud Spatial Structure in Shortwave Radiation

    NASA Astrophysics Data System (ADS)

    Song, Shi

    In this thesis, we aim to systematically understand the relationship between cloud spatial structure and its radiation imprints, i.e., three-dimensional (3D) cloud effects, with the ultimate goal of deriving accurate radiative energy budget estimates from space, aircraft, or ground-based observations under spatially inhomogeneous conditions. By studying the full spectral information in the measured and modeled shortwave radiation fields of heterogeneous cloud scenes sampled during aircraft field experiments, we find evidence that cloud spatial structure reveals itself through spectral signatures in the associated irradiance and radiance fields in the near-ultraviolet and visible spectral range. The spectral signature of 3D cloud effects in irradiances is apparent as a domain- wide, consistent correlation between the magnitude and spectral dependence of net horizontal photon transport. The physical mechanism of this phenomenon is molecular scattering in conjunction with cloud heterogeneity. A simple parameterization with a single parameter epsilon is developed, which holds for individual pixels and the domain as a whole. We then investigate the impact of scene parameters on the discovered correlation and find that it is upheld for a wide range of scene conditions, although the value of epsilon varies from scene to scene. The spectral signature of 3D cloud effects in radiances manifests itself as a distinct relationship between the magnitude and spectral dependence of reflectance, which cannot be reproduced in the one-dimensional (1D) radiative transfer framework. Using the spectral signature in radiances and irradiances, it is possible to infer information on net horizontal photon transport from spectral radiance perturbations on the basis of pixel populations in sub-domains of a cloud scene. We show that two different biases need to be considered when attempting radiative closure between measured and modeled irradiance fields below inhomogeneous cloud fields: the

  14. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    PubMed

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  15. Radiation Signatures of Sub-Larmor Scale Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.; Frederiksen, Jacob Trier; Haugbølle, Troels; Nordlund, Åke

    2011-08-01

    Spontaneous rapid growth of strong magnetic fields is rather ubiquitous in high-energy density environments ranging from astrophysical sources (e.g., gamma-ray bursts and relativistic shocks), to reconnection, to laser-plasma interaction laboratory experiments, where they are produced by kinetic streaming instabilities of the Weibel type. Relativistic electrons propagating through these sub-Larmor-scale magnetic fields radiate in the jitter regime, in which the anisotropy of the magnetic fields and the particle distribution have a strong effect on the produced radiation. Here we develop the general theory of jitter radiation, which (1) includes anisotropic magnetic fields and electron velocity distributions, (2) accounts for the effects of trapped electrons, and (3) extends the description to large deflection angles of radiating particles thus establishing a cross-over between the classical jitter and synchrotron regimes. Our results are in remarkable agreement with the radiation spectra obtained from particle-in-cell simulations of the classical Weibel instability. Particularly interesting is the onset of the field growth, when the transient hard synchrotron-violating spectra are common as a result of the dominant role of the trapped population. This effect can serve as a distinct observational signature of the violent field growth in astrophysical sources and lab experiments. It is also interesting that a system with small-scale fields tends to evolve toward the small-angle jitter regime, which can, under certain conditions, dominate the overall emission of a source.

  16. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis.

    PubMed

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-02-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers.

  17. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: Possible roles of radiation in carcinogenesis

    PubMed Central

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-01-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. PMID:25483826

  18. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  19. Radiative Cooling: Principles, Progress, and Potentials.

    PubMed

    Hossain, Md Muntasir; Gu, Min

    2016-07-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state-of-the-art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated.

  20. Progressive cerebral occlusive disease after radiation therapy.

    PubMed

    Bitzer, M; Topka, H

    1995-01-01

    A case of progressive irradiation-induced cerebral vasculopathy with abnormal netlike vessels and transdural anastomoses (moyamoya syndrome) is presented. Radiological findings in an additional 40 cases reported in the literature are analyzed, and their clinical relevance is discussed. A 19-year-old woman presented with recurrent ischemic brain lesions after radiation therapy for treatment of a craniopharyngioma during childhood. Cerebral angiography 6 and 12 years after completion of radiation therapy revealed progressive cerebral arterial occlusive disease involving the internal carotid artery on either side of the circle of Willis, with abnormal netlike vessels and transdural anastomoses (moyamoya syndrome). Extensive similarities between irradiation-induced cerebral vasculopathy and primary moyamoya syndrome (Nishimoto's disease) support the notion that both disorders share common pathophysiological mechanisms. The occurrence of moyamoya-like vascular changes may not depend on specific trigger mechanisms but may rather represent a nonspecific response of the developing vascular system to a number of various noxious events.

  1. Recent Progress in Search for Dark Sector Signatures

    NASA Astrophysics Data System (ADS)

    Deliyergiyev, Maksym

    2016-01-01

    Many difficulties are encountered when attempting to pinpoint a common origin for several observed astrophysical anomalies, and when assessing their tension with existing exclusion limits. These include systematic uncertainties affecting the operation of the detectors, our knowledge of their response, astrophysical uncertainties, and the broad range of particle couplings that can mediate interaction with a detector target. Particularly interesting astrophysical evidence has motivated a search for dark-photon, and focused our attention on a Hidden Valleys model with a GeV-scale dark sector that produces exciting signatures. Results from recent underground experiments are also considered. There is a `light' hidden sector (dark sector), present in many models of new physics beyond the Standard Model, which contains a colorful spectrum of new particles. Recently, it has been shown that this spectrum can give rise to unique signatures at colliders when the mass scale in the hidden sector is well below a TeV; as in Hidden Valleys, Stueckelberg extensions, and Unparticle models. These physics models produce unique signatures of collimated leptons at high energies. By studying these ephemeral particles we hope to trace the history of the Universe. Our present theories lead us to believe that there is something new just around the corner, which should be accessible at the energies made available by modern colliders.

  2. Commercial Sensory Survey Radiation Testing Progress Report

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Dolphic, Michael D.; Thorbourn, Dennis O.; Alexander, James W.; Salomon, Phil M.

    2008-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program Sensor Technology Commercial Sensor Survey task is geared toward benefiting future NASA space missions with low-cost, short-duty-cycle, visible imaging needs. Such applications could include imaging for educational outreach purposes or short surveys of spacecraft, planetary, or lunar surfaces. Under the task, inexpensive commercial grade CMOS sensors were surveyed in fiscal year 2007 (FY07) and three sensors were selected for total ionizing dose (TID) and displacement damage dose (DDD) tolerance testing. The selected sensors had to meet selection criteria chosen to support small, low-mass cameras that produce good resolution color images. These criteria are discussed in detail in [1]. This document discusses the progress of radiation testing on the Micron and OmniVision sensors selected in FY07 for radiation tolerance testing.

  3. Commercial Sensory Survey Radiation Testing Progress Report

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Dolphic, Michael D.; Thorbourn, Dennis O.; Alexander, James W.; Salomon, Phil M.

    2008-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program Sensor Technology Commercial Sensor Survey task is geared toward benefiting future NASA space missions with low-cost, short-duty-cycle, visible imaging needs. Such applications could include imaging for educational outreach purposes or short surveys of spacecraft, planetary, or lunar surfaces. Under the task, inexpensive commercial grade CMOS sensors were surveyed in fiscal year 2007 (FY07) and three sensors were selected for total ionizing dose (TID) and displacement damage dose (DDD) tolerance testing. The selected sensors had to meet selection criteria chosen to support small, low-mass cameras that produce good resolution color images. These criteria are discussed in detail in [1]. This document discusses the progress of radiation testing on the Micron and OmniVision sensors selected in FY07 for radiation tolerance testing.

  4. The energetic charged particle absorption signature of Mimas. Progress report

    SciTech Connect

    Van Allen, J.A.; Thomsen, M.F.; Randall, B.A.

    1980-07-19

    Data are presented for a one-minute dip in electron intensity that was observed coherently by four different detectors at 1546:51 ERT on DOY 244/1979 as Pioneer 11 crossed the orbit of Mimas inbound during its encounter with the Saturn system. By a detailed analysis, we show that this absorption microsignature in electron intensity is plausibly attributable to the particle sweeping effect of Mimas; the radial width of the signature is caused primarily by energy dispersion in the longitudinal drift rate of electrons and not by radial diffusion; the spectrum of trapped electrons at Mimas is nearly monoenergetic, centered at kinetic energy E = 1.59 MeV with a spread delta E approx. 0.1 MeV; this narrow spectrum, which is unique in magnetospheric physics, is caused by the band-pass filtering action of the successive inner satellites, most importantly Enceladus, on an inward diffusing population of electrons; and the radial diffusion coefficient D of electrons E = 1.0 MeV is 1.0 x 10 to the -10 power R(subs)-squared at L = 4 and and probably in the range 37 to 8.3 10 to the -12 power R(subs)-squared at L = 3.

  5. Signatures of quantum radiation reaction in laser-electron-beam collisions

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-09-15

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations.

  6. Immunological network signatures of cancer progression and survival

    PubMed Central

    2011-01-01

    Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in

  7. A micro-RNA expression signature for human NAFLD progression.

    PubMed

    Guo, Yan; Xiong, Yanhua; Sheng, Quanghu; Zhao, Shilin; Wattacheril, Julia; Flynn, Charles Robb

    2016-10-01

    The spectrum of nonalcoholic fatty liver disease (NAFLD) describes disease conditions deteriorating from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis (CIR) to hepatocellular carcinoma (HCC). From a molecular and biochemical perspective, our understanding of the etiology of this disease is limited by the broad spectrum of disease presentations, the lack of a thorough understanding of the factors contributing to disease susceptibility, and ethical concerns related to repeat sampling of the liver. To better understand the factors associated with disease progression, we investigated by next-generation RNA sequencing the altered expression of microRNAs (miRNAs) in liver biopsies of class III obese subjects (body mass index ≥40 kg/m(2)) biopsied at the time of elective bariatric surgery. Clinical characteristics and unbiased RNA expression profiles for 233 miRs, 313 transfer RNAs (tRNAs), and 392 miscellaneous small RNAs (snoRNAs, snRNAs, rRNAs) were compared among 36 liver biopsy specimens stratified by disease severity. The abundances of 3 miRNAs that were found to be differentially regulated (miR-301a-3p and miR-34a-5p increased and miR-375 decreased) with disease progression were validated by RT-PCR. No tRNAs or miscellaneous RNAs were found to be associated with disease severity. Similar patterns of increased miR-301a and decreased miR-375 expression were observed in 134 hepatocellular carcinoma (HCC) samples deposited in The Cancer Genome Atlas (TCGA). Our analytical results suggest that NAFLD severity is associated with a specific pattern of altered hepatic microRNA expression that may drive the hallmark of this disorder: altered lipid and carbohydrate metabolism. The three identified miRNAs can potentially be used as biomarkers to access the severity of NAFLD. The persistence of this miRNA expression pattern in an external validation cohort of HCC samples suggests that specific microRNA expression patterns may permit and

  8. Saliva/Pathogen Biomarker Signatures and Periodontal Disease Progression

    PubMed Central

    Kinney, J.S.; Morelli, T.; Braun, T.; Ramseier, C.A.; Herr, A.E.; Sugai, J.V.; Shelburne, C.E.; Rayburn, L.A.; Singh, A.K.; Giannobile, W.V.

    2011-01-01

    The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 44 exhibiting PDP, while 39 demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 82% of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 78% of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0002). The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745). PMID:21406610

  9. Saliva/pathogen biomarker signatures and periodontal disease progression.

    PubMed

    Kinney, J S; Morelli, T; Braun, T; Ramseier, C A; Herr, A E; Sugai, J V; Shelburne, C E; Rayburn, L A; Singh, A K; Giannobile, W V

    2011-06-01

    The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 39 [corrected] exhibiting PDP, while 44 [corrected] demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 71% [corrected] of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 76% [corrected] of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0007). [corrected] The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745).

  10. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  11. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  12. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  13. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  14. A transcriptome signature of endothelial lymphatic cells coexists with the chronic oxidative stress signature in radiation-induced post-radiotherapy breast angiosarcomas.

    PubMed

    Hadj-Hamou, Nabila-Sandra; Laé, Marick; Almeida, Anna; de la Grange, Pierre; Kirova, Youlia; Sastre-Garau, Xavier; Malfoy, Bernard

    2012-07-01

    Radiation-induced breast angiosarcomas are rare but recognized complication of breast cancer radiotherapy and are of poor prognosis. Little is known about the genetic abnormalities present in these secondary tumors. Herein, we investigated the differences in the genome and in the transcriptome that discriminate these tumors as a function of their etiology. Seven primary breast angiosarcomas and 18 secondary breast angiosarcomas arising in the irradiation field of a radiotherapy were analyzed. Copy number alterations and gene expression were analyzed using Affymetrix SNP 6.0 Array and Affymetrix Exon Arrays, respectively. We showed that two transcriptome signatures of the radiation tumorigenesis coexisted in these tumors. One was histology specific and correctly discriminated 100% of the primary tumors from the radiation-induced tumors. The deregulation of marker genes, including podoplanin (PDPN), prospero homeobox 1 (PROX-1), vascular endothelial growth factor 3 (VEGFR3) and endothelin receptor A (EDNRA), suggests that the radiation-induced breast angiosarcomas developed from radiation-stimulated lymphatic endothelial cells. None of the genes of the histology-specific signature were present in our previously published signature of the radiation tumorigenesis which shows the presence of a chronic oxidative stress in radiation-induced sarcomas of various histologies. Nevertheless, this oxidative stress signature classified correctly 88% of the breast angiosarcomas as a function of the etiology. In contrast, MYC amplification, which is observed in all radiation-induced tumors but also at a low rate in primary tumors, was not a marker of the radiation tumorigenesis.

  15. Viewing Radiation Signatures of Solar Energetic Particles in Interplanetary Space

    DTIC Science & Technology

    2009-01-01

    events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged...events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with...vol. CP858. AIP. New York, pp. 241-250, 2006. Morgan. II., Fineschi, S.. Habbal. S.R., Li. B. In situ spectroscopy of the solar corona . Astron

  16. Radiation signature on exposed cells: Relevance in dose estimation

    PubMed Central

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon FD

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  17. Radiation signature on exposed cells: Relevance in dose estimation.

    PubMed

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon Fd

    2015-09-28

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.

  18. Solving Inverse Detection Problems Using Passive Radiation Signatures

    SciTech Connect

    Favorite, Jeffrey A.; Armstrong, Jerawan C.; Vaquer, Pablo A.

    2012-08-15

    The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.

  19. Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.

    2017-10-01

    California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.

  20. Using Radiative Signatures to Diagnose the Cause of Warming Associated with the Californian Drought

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Yin, D.; Roderick, M. L.

    2016-12-01

    California recently experienced among the worst droughts of the last century, with unprecedented precipitation deficits and record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US, particularly in the Central Valley. It has been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that these drought conditions are a consequence of warmer temperatures from the enhanced greenhouse effect. Process studies suggest, however, that increased temperatures during droughts are mostly a consequence of reduced evaporative cooling resulting from the reduction in precipitation. Here we use surface radiation components from NASA's Clouds and Earth's Radiant Energy Systems (CERES), climatic data and direct flux tower measurements to investigate the cause of warming associated with the recent Californian Drought. Based on radiative signatures and surface energy balance we show that the warmer temperatures were not associated with an enhanced greenhouse effect by anthropogenic warming. The radiative signature showed decreased longwave downward radiation during the water years 2013-2014 compared to the decadal mean of 2001-2012. Instead, increased solar downward radiation in combination with reduced evaporative cooling from water deficits enhanced surface temperatures and sensible heat transfer to the atmosphere. We conclude that the drought was not directly associated with warming by increased longwave downward radiation, and that there is no simple relation between warmer surface temperatures and drought.

  1. Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.

    1992-01-01

    Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.

  2. Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.

    1992-01-01

    Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.

  3. Subsurface Signature of the Internal Wave Field Radiation by Submerged High Reynolds Number Stratified Wakes

    DTIC Science & Technology

    2014-05-26

    Peter Diamessis Associate Professor Environmental Fluid Mechanics and Hydrology 105 Hollister Hall Ithaca, NY 14853 Tel: 1-607-255-1719 Fax: 1...secondary instabilities therein. • Determine the remote signature of the wake-radiated waves, as modeled by a 2-D internal wave beam, by examining their...internal wave packets. (ii) Interaction of an internal wave beam with a model oceanic pycnocline. (iii) Wake-emitted internal waves. (iv) Proper

  4. A Statistical Model for Generating a Population of Unclassified Objects and Radiation Signatures Spanning Nuclear Threats

    SciTech Connect

    Nelson, K; Sokkappa, P

    2008-10-29

    This report describes an approach for generating a simulated population of plausible nuclear threat radiation signatures spanning a range of variability that could be encountered by radiation detection systems. In this approach, we develop a statistical model for generating random instances of smuggled nuclear material. The model is based on physics principles and bounding cases rather than on intelligence information or actual threat device designs. For this initial stage of work, we focus on random models using fissile material and do not address scenarios using non-fissile materials. The model has several uses. It may be used as a component in a radiation detection system performance simulation to generate threat samples for injection studies. It may also be used to generate a threat population to be used for training classification algorithms. In addition, we intend to use this model to generate an unclassified 'benchmark' threat population that can be openly shared with other organizations, including vendors, for use in radiation detection systems performance studies and algorithm development and evaluation activities. We assume that a quantity of fissile material is being smuggled into the country for final assembly and that shielding may have been placed around the fissile material. In terms of radiation signature, a nuclear weapon is basically a quantity of fissile material surrounded by various layers of shielding. Thus, our model of smuggled material is expected to span the space of potential nuclear weapon signatures as well. For computational efficiency, we use a generic 1-dimensional spherical model consisting of a fissile material core surrounded by various layers of shielding. The shielding layers and their configuration are defined such that the model can represent the potential range of attenuation and scattering that might occur. The materials in each layer and the associated parameters are selected from probability distributions that span the

  5. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K. Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B.M.J.

    2015-10-01

    Doppler Lidar and Multi-Filter Rotating Shadowband Radiometer (MFRSR) observations are utilized to show wave like signatures in aerosol optical depth (AOD) during daytime boundary layer evolution over the Himalayan region. Fourier analysis depicted 60–80 min periods dominant during afternoon hours, implying that observed modulations could be plausible reason for the AOD forenoon–afternoon asymmetry which was previously reported. Inclusion of wave amplitude in diurnal variation of aerosol radiative forcing estimates showed ~40% additional warming in the atmosphere relative to mean AOD. The present observations emphasize the importance of wave induced variations in AOD and radiation budget over the site.

  6. Progress in radiation processing of polymers

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  7. Radiation transport. Progress report, October 1, 1982-March 31, 1983

    SciTech Connect

    O'Dell, R.D.

    1984-05-01

    Research and development progress in radiation transport by the Los Alamos National Laboratory's Group X-6 for the first half of FY 83 is reported. Included are tasks in the areas of Fission Reactor Neutronics, Deterministic Transport Methods, and Monte Carlo Radiation Transport.

  8. RADIATIVE DAMPING AND EMISSION SIGNATURES OF STRONG SUPERLUMINAL WAVES IN PULSAR WINDS

    SciTech Connect

    Mochol, Iwona; Kirk, John G. E-mail: john.kirk@mpi-hd.mpg.de

    2013-10-10

    We analyze the damping of strong, superluminal electromagnetic waves by radiation reaction and Compton drag in the context of pulsar winds. The associated radiation signature is found by estimating the efficiency and the characteristic radiation frequencies. Applying these estimates to the gamma-ray binary containing PSR B1259–63, we show that the GeV flare observed by the Fermi Large Area Telescope can be understood as inverse-Compton emission by particles scattering photons from the companion star, if the pulsar wind termination shock acquires a precursor of superluminal waves roughly 30 days after periastron. This requirement constrains the mass-loading factor of the wind μ=L/ N-dot mc{sup 2}, where L is the luminosity and N-dot is the rate of loss of electrons and positrons, to be roughly 6 × 10{sup 4}.

  9. Modeling Observable Signatures of Protoplanetary Disks: Combining Hydrodynamic Simulations with Radiative Transfer Methods

    NASA Astrophysics Data System (ADS)

    Kloster, Dylan; Jang-Condell, Hannah; Kasper, David

    2016-01-01

    New high resolution images of protoplanetary disks from facilities like ALMA are revealing complex disk structures, possibly due to interactions between the disk and newly forming planets within that disk. Analysis of what the structures in these images reveal about the evolution of protoplanetary disks requires detailed models of disk/planet interaction combined with radiative transfer techniques to calculate observable signatures of these disks. We model this disk-planet interaction as hydrodynamic and magnetohydrodynamic numerical simulations using the PLUTO code. We then apply a modified version of the radiative transfer code PaRTY (Parallel Radiative Transfer in YSOs) to these HD/MHD simulations to calculate the observed intensity of these disks via thermal emission and scattering from the host star. Using a wide variety of stellar properties, disk structures, and planet masses, our goal is to produce a robust set of models that will be essential in analyzing the images taken with this new generation of telescopes.

  10. Immunophenotypic signature of primary glioblastoma multiforme: A case of extended progression free survival.

    PubMed

    Gandhi, Puneet; Khare, Richa; Garg, Nitin; Sorte, Sandeep

    2017-06-16

    Glioblastoma-multiforme (GBM), the most aggressive glial tumor, has a worldwide age-adjusted incidence ranging from 0.59-3.69/100000 persons. Despite current multimodal-treatment approach, median-survival time and progression-free survival (PFS) remains short. Glioblastomas display a variety of molecular alterations, which necessitates determining which of these have a prognostic significance. This is a case of a 45-year-old patient who presented with progressive slurring of speech and features of raised intracranial pressure. Computed tomography (CT) scan revealed a large heterogeneously enhancing lesion in the left front-temporal-perisylvian region with solid, cystic areas, suggestive of malignant glioma. Partial tumor-excision was followed by concurrent chemo-radiotherapy. Histopathologically, the tumor was astrocytoma grade-IV. Patient had an extended PFS of 12 mo, with an overall survival of 26 mo. Primary-GBM was confirmed using molecular markers and the immunophenotypic signature was defined by evaluating systemic expression of human telomerase reverse transcriptase, interleukin-6, neutrophil-lymphocyte ratio, tissue inhibitor of metalloproteinases-1, human chitinase-3-like-protein-1 (YKL-40) and high mobility group-A1. Current findings suggest that this signature can identify worst outcomes, independent of clinical criteria.

  11. MicroRNA Expression Signatures During Malignant Progression From Barrett's Esophagus.

    PubMed

    Bansal, Ajay; Gupta, Vijayalaxmi; Wang, Kenneth

    2016-06-01

    The rapid increase and poor survival of esophageal adenocarcinoma (EAC) have led to significant efforts to promote early detection. Given that the premalignant lesion of Barrett's esophagus (BE) is the major known risk factor for EAC, multiple investigators have studied biomarker signatures that can predict malignant progression of BE to EAC. MicroRNAs, a novel class of gene regulators, are small non-coding RNAs and have been associated with carcinogenesis. MicroRNAs are ideal biomarkers because of their remarkable stability in fixed tissues, a common method for collection of clinical specimens, and in blood either within exosomes or as microRNA-protein complexes. Multiple studies show potential of microRNAs as tissue and blood biomarkers for diagnosis and prognosis of EAC but the results need confirmation in prospective studies. Although head-to-head comparisons are lacking, microRNA panels require less genes than messenger RNA panels for diagnosis of EAC in BE. MicroRNA diagnostic panels will need to be compared for accuracy against global measures of genome instability that were recently shown to be good predictors of progression but require sophisticated analytic techniques. Early studies on blood microRNA panels are promising but have found microRNA markers to be inconsistent among studies. MicroRNA expression in blood is different between various microRNA sub-compartments such as exosomes and microRNA-protein complexes and could affect blood microRNA measurements. Further standardization is needed to yield consistent results. We have summarized the current understanding of the tissue and blood microRNA signatures that may predict the development and progression of EAC.

  12. Multielectron signatures in the polarization of high-order harmonic radiation

    SciTech Connect

    Zhao Zengxiu; Yuan Jianmin; Brabec, Thomas

    2007-09-15

    The polarization of high-order harmonic radiation emitted from N{sub 2} molecules interacting with a linearly polarized laser pulse is investigated theoretically. We find that the exchange effect between the recombining electron and the bound core electrons imprints a clear signature onto the high-order harmonic polarization and its dependence on the alignment angle between the molecular axis and driving laser electric field. Our analysis reveals an observable for the experimental investigation of many-electron dynamics in intense laser fields.

  13. Spectral signatures in shortwave radiation measurements to derive cloud and aerosol properties

    NASA Astrophysics Data System (ADS)

    LeBlanc, Samuel Elie

    The amplitude and spectral shape of shortwave radiation are used to retrieve aerosol and cloud properties from airborne and ground based measurements. By interacting with clouds and aerosols in the Earth's atmosphere, the wavelength-dependent radiation emitted by the sun is modified. This thesis presents the change in radiation due to absorption and scattering by clouds and aerosols, which result in distinct spectral signatures in shortwave radiation spectra. The spectral signature in shortwave radiation due to aerosols is quantified by airborne measurements of irradiance above and below aerosol layers. This radiative effect is quantified by the relative forcing efficiency, which is used to compare the impact of aerosols from different air masses, locations, and time of day. The relative forcing efficiency is the net irradiance change due to the presence of aerosols normalized by aerosol optical thickness and incident irradiance. It is shown to vary by less than 20% per unit of midvisible aerosol optical thickness for aerosols sampled during 4 different experiments, except for highly absorbing aerosols near Mexico City. The similarity in relative forcing efficiency for these experiments, not expected a priori, suggests that this quantity is constrained for various types of aerosols with differing scattering and absorption characteristics even when surface albedo differs. To estimate the radiative effect of aerosols sampled in the Los Angeles basin during one of the experiments, where no concurrent measurements of optical thickness with spectral irradiance were available, a new iterative technique was devised to use aerosol optical thickness measurements from another airborne platform. Cloud-transmitted zenith radiance spectra were measured from the ground in Boulder, Colorado. In these measurements, spectral signatures of cloud optical and microphysical properties were uncovered. The spectral signatures are the result of radiation that is transmitted through clouds

  14. Progress in radiation immune thermionic integrated circuits

    SciTech Connect

    Lynn, D.K.; McCormick, J.B.

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs.

  15. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    SciTech Connect

    Zhu, T; Chapman, C; Lawrence, T; Cao, Y; Tsien, C

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines

  16. Signature mutations from B. subtilis spores exposed to radiations and simulated space environments

    NASA Astrophysics Data System (ADS)

    Munakata, , Nobuo; Natsume, Toshiyuki; Konishi, Teruaki; Hieda, Kotaro; Panitz, Corinna; Horneck, Gerda

    Rifampicin-resistant mutants were collected from the spores of three B. subtilis strains, HA101 (HA, repair proficient), TKJ6312 (US, UV-repair defective) and TKJ6412 (RF, recombination deficient) grown after exposure to various radiations and simulated space environments. All of 563 mutations analyzed carried sequence changes in the N-terminal region of the rpoB gene cod-ing for the subunit β of RNA polymerase II and belonged to 56 alleles. (1) Most of spontaneous mutants from the three strains belonged to 13 single-base substitution (SBS) alleles, exceptions (<2%) being one 3 bp insertion and one tandem double substitution (TDS). (2) About 6 % and 16 % of the mutations from the HA and RF spores, respectively, exposed to ionizing radiations were complex mutations including multiple-base substitutions, insertions and deletions. Several TDS and non-tandem double substitutions (NTDS), and 3, 6, 9 and one 30 bp deletions seem to provide signatures of the exposure to ionizing radiations. (3) Except one TDS from US and one NTDS from HA spores, UV or solar exposure seemed not to leave unique footprints. (4) In space simulation experiments, the only conditions involving high vacuum consistently increased the mutation frequency, and exhibited high occurrences (>50%) of TDS. In HA spores, the al-lele r201 (CA to TT at 1460) was the most frequent, while in US spores, another allele r210 (TC to AA at 1404) was the most frequent. In conclusion, some of the conditions encountered in space environments, such as space vacuum and ionizing radiations, could produce unique mutational signatures in the rpoB gene of B. subtilis spores.

  17. Discriminating Gene Expression Signature of Radiation-Induced Thyroid Tumors after Either External Exposure or Internal Contamination

    PubMed Central

    Ory, Catherine; Ugolin, Nicolas; Schlumberger, Martin; Hofman, Paul; Chevillard, Sylvie

    2011-01-01

    Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation. PMID:24704841

  18. Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression

    PubMed Central

    Gröger, Christian J.; Grubinger, Markus; Waldhör, Thomas; Vierlinger, Klemens; Mikulits, Wolfgang

    2012-01-01

    The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES) have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression. PMID:23251436

  19. Proton radiation-induced miRNA signatures in mouse blood: Characterization and comparison with 56Fe-ion and gamma radiation

    PubMed Central

    Templin, Thomas; Young, Erik F.; Smilenov, Lubomir B.

    2013-01-01

    Purpose Previously, we showed that microRNA (miRNA) signatures derived from the peripheral blood of mice are highly specific for both radiation energy (γ-rays or high linear energy transfer [LET] 56Fe ions) and radiation dose. Here, we investigate to what extent miRNA expression signatures derived from mouse blood can be used as biomarkers for exposure to 600 MeV proton radiation. Materials and methods We exposed mice to 600 MeV protons, using doses of 0.5 or 1.0 Gy, isolated total RNA at 6 h or 24 h after irradiation, and used quantitative real-time polymerase chain reaction (PCR) to determine the changes in miRNA expression. Results A total of 26 miRNA were differentially expressed after proton irradiation, in either one (77%) or multiple conditions (23%). Statistical classifiers based on proton, γ, and 56Fe-ion miRNA expression signatures predicted radiation type and proton dose with accuracies of 81% and 88%, respectively. Importantly, gene ontology analysis for proton-irradiated cells shows that genes targeted by radiation-induced miRNA are involved in biological processes and molecular functions similar to those controlled by miRNA in γ ray- and 56Fe-irradiated cells. Conclusions Mouse blood miRNA signatures induced by proton, γ, or 56Fe irradiation are radiation type- and dose-specific. These findings underline the complexity of the miRNA-mediated radiation response. PMID:22551419

  20. A gene-signature progression approach to identifying candidate small-molecule cancer therapeutics with connectivity mapping.

    PubMed

    Wen, Qing; Kim, Chang-Sik; Hamilton, Peter W; Zhang, Shu-Dong

    2016-05-11

    Gene expression connectivity mapping has gained much popularity recently with a number of successful applications in biomedical research testifying its utility and promise. Previously methodological research in connectivity mapping mainly focused on two of the key components in the framework, namely, the reference gene expression profiles and the connectivity mapping algorithms. The other key component in this framework, the query gene signature, has been left to users to construct without much consensus on how this should be done, albeit it has been an issue most relevant to end users. As a key input to the connectivity mapping process, gene signature is crucially important in returning biologically meaningful and relevant results. This paper intends to formulate a standardized procedure for constructing high quality gene signatures from a user's perspective. We describe a two-stage process for making quality gene signatures using gene expression data as initial inputs. First, a differential gene expression analysis comparing two distinct biological states; only the genes that have passed stringent statistical criteria are considered in the second stage of the process, which involves ranking genes based on statistical as well as biological significance. We introduce a "gene signature progression" method as a standard procedure in connectivity mapping. Starting from the highest ranked gene, we progressively determine the minimum length of the gene signature that allows connections to the reference profiles (drugs) being established with a preset target false discovery rate. We use a lung cancer dataset and a breast cancer dataset as two case studies to demonstrate how this standardized procedure works, and we show that highly relevant and interesting biological connections are returned. Of particular note is gefitinib, identified as among the candidate therapeutics in our lung cancer case study. Our gene signature was based on gene expression data from Taiwan

  1. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  2. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression

    PubMed Central

    2012-01-01

    Introduction Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. Methods Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. Results 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome

  3. Development of a Metabolomic Radiation Signature in Urine from Patients Undergoing Total Body Irradiation

    PubMed Central

    Laiakis, Evagelia C.; Mak, Tytus D.; Anizan, Sebastien; Amundson, Sally A.; Barker, Christopher A.; Wolden, Suzanne L.; Brenner, David J.; Fornace, Albert J.

    2014-01-01

    The emergence of the threat of radiological terrorism and other radiological incidents has led to the need for development of fast, accurate and noninvasive methods for detection of radiation exposure. The purpose of this study was to extend radiation metabolomic biomarker discovery to humans, as previous studies have focused on mice. Urine was collected from patients undergoing total body irradiation at Memorial Sloan-Kettering Cancer Center prior to hematopoietic stem cell transplantation at 4–6 h postirradiation (a single dose of 1.25 Gy) and 24 h (three fractions of 1.25 Gy each). Global metabolomic profiling was obtained through analysis with ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (TOFMS). Prior to further analyses, each sample was normalized to its respective creatinine level. Statistical analysis was conducted by the nonparametric Kolmogorov-Smirnov test and the Fisher’s exact test and markers were validated against pure standards. Seven markers showed distinct differences between pre- and post-exposure samples. Of those, trimethyl-l-lysine and the carnitine conjugates acetylcarnitine, decanoylcarnitine and octanoylcarnitine play an important role in the transportation of fatty acids across mitochondria for subsequent fatty acid β-oxidation. The remaining metabolites, hypoxanthine, xanthine and uric acid are the final products of the purine catabolism pathway, and high levels of excretion have been associated with increased oxidative stress and radiation induced DNA damage. Further analysis revealed sex differences in the patterns of excretion of the markers, demonstrating that generation of a sex-specific metabolomic signature will be informative and can provide a quick and reliable assessment of individuals in a radiological scenario. This is the first radiation metabolomics study in human urine laying the foundation for the use of metabolomics in biodosimetry and providing confidence in biomarker

  4. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer

    PubMed Central

    Weichselbaum, Ralph R.; Ishwaran, Hemant; Yoon, Taewon; Nuyten, Dimitry S. A.; Baker, Samuel W.; Khodarev, Nikolai; Su, Andy W.; Shaikh, Arif Y.; Roach, Paul; Kreike, Bas; Roizman, Bernard; Bergh, Jonas; Pawitan, Yudi; van de Vijver, Marc J.; Minn, Andy J.

    2008-01-01

    Individualization of cancer management requires prognostic markers and therapy-predictive markers. Prognostic markers assess risk of disease progression independent of therapy, whereas therapy-predictive markers identify patients whose disease is sensitive or resistant to treatment. We show that an experimentally derived IFN-related DNA damage resistance signature (IRDS) is associated with resistance to chemotherapy and/or radiation across different cancer cell lines. The IRDS genes STAT1, ISG15, and IFIT1 all mediate experimental resistance. Clinical analyses reveal that IRDS(+) and IRDS(−) states exist among common human cancers. In breast cancer, a seven–gene-pair classifier predicts for efficacy of adjuvant chemotherapy and for local-regional control after radiation. By providing information on treatment sensitivity or resistance, the IRDS improves outcome prediction when combined with standard markers, risk groups, or other genomic classifiers. PMID:19001271

  5. Progress Toward an Updated National Solar Radiation Data Base

    SciTech Connect

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-01-01

    Progress is reported on an updated National Solar Radiation Database (NSRDB). Focus on this year's work was on preparing a test-year database for evaluating several solar radiation models that could be used to replace the METSTAT model used in the original 1961-1990 NSRDB. That model is no longer compatible with cloud observations reported by the National Weather Service. We have also included a satellite-based model that will increase the spatial resolution of solar radiation for GIS or mapping applications. Work also included development of improved estimates for aerosols, water vapor, and ozone. High-quality solar measurements were obtained for 33 sites near National Weather Service stations, and model runs were completed for test years 1999 and 2000.

  6. Past Exposure to Densely Ionizing Radiation Leaves a Unique Permanent Signature in the Genome

    PubMed Central

    Hande, M. Prakash; Azizova, Tamara V.; Geard, Charles R.; Burak, Ludmilla E.; Mitchell, Catherine R.; Khokhryakov, Valentin F.; Vasilenko, Evgeny K.; Brenner, David J.

    2003-01-01

    Speculation has long surrounded the question of whether past exposure to ionizing radiation leaves a unique permanent signature in the genome. Intrachromosomal rearrangements or deletions are produced much more efficiently by densely ionizing radiation than by chemical mutagens, x-rays, or endogenous aging processes. Until recently, such stable intrachromosomal aberrations have been very hard to detect, but a new chromosome band painting technique has made their detection practical. We report the detection and quantification of stable intrachromosomal aberrations in lymphocytes of healthy former nuclear-weapons workers who were exposed to plutonium many years ago. Even many years after occupational exposure, more than half the blood cells of the healthy plutonium workers contain large (>6 Mb) intrachromosomal rearrangements. The yield of these aberrations was highly correlated with plutonium dose to the bone marrow. The control groups contained very few such intrachromosomal aberrations. Quantification of this large-scale chromosomal damage in human populations exposed many years earlier will lead to new insights into the mechanisms and risks of cytogenetic damage. PMID:12679897

  7. Polarization in Monte Carlo radiative transfer and dust scattering polarization signatures of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Peest, C.; Camps, P.; Stalevski, M.; Baes, M.; Siebenmorgen, R.

    2017-05-01

    Polarization is an important tool to further the understanding of interstellar dust and the sources behind it. In this paper we describe our implementation of polarization that is due to scattering of light by spherical grains and electrons in the dust Monte Carlo radiative transfer code SKIRT. In contrast to the implementations of other Monte Carlo radiative transfer codes, ours uses co-moving reference frames that rely solely on the scattering processes. It fully supports the peel-off mechanism that is crucial for the efficient calculation of images in 3D Monte Carlo codes. We develop reproducible test cases that push the limits of our code. The results of our program are validated by comparison with analytically calculated solutions. Additionally, we compare results of our code to previously published results. We apply our method to models of dusty spiral galaxies at near-infrared and optical wavelengths. We calculate polarization degree maps and show them to contain signatures that trace characteristics of the dust arms independent of the inclination or rotation of the galaxy.

  8. Characterization of Ablation Product Radiation Signatures of PICA and FiberForm

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Butler, Bradley D.; Diao, Zhaojin; Panerai, Francesco; Martin, Alexandre; Bailey, Sean C. C.; Danehy, Paul M.; Splinter, Scott

    2016-01-01

    Emission spectroscopy measurements in the post-shock layer in front of low density ablative material samples of different shapes were obtained in the NASA Langley HYMETS arcjet facility. A horizontal line of measurement positions was imaged on the entrance slit of the spectrometer allowing detection of the entire stagnation line in front of the samples. The stagnation line measurements were used to compare the post-shock layer emission signatures in front of PICA and FiberForm. The emission signatures of H, NH, and OH are characteristic for pyrolysis gases and consequently were only observed in front of the PICA samples. CN and C were found in front of both materials and are mainly due to interactions of the carbon fibers with the plasma. In all tests with instrumented samples, the emission of Mn, Cr, and Ni was observed when the thermocouple temperatures reached or exceeded 1,500 K, strongly indicating erosion of the molten thermocouple tips. Temperatures in the post-shock layer were estimated from comparing the CN band emission to spectral simulation. The resulting rotational and vibrational temperatures were on the order of 7,000 to 9,000 K and close to each other indicating a plasma condition close to equilibrium. In addition to the stagnation line configurations, off-axis lines of observation were investigated to gather information about spalled particles in the flow. From a comparison of measured continuum emission with simulated Planck radiation, average particle temperatures along the measured line of observation were determined for two cases. Particle temperatures between 3,500 and 2,000 K were found. A comprehensive investigation of the entire amount of data set is ongoing.

  9. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ``biological fingerprint`` of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  10. Radiation-enhanced lung cancer progression in a transgenic mouse model of lung cancer is predictive of outcomes in human lung and breast cancer.

    PubMed

    Delgado, Oliver; Batten, Kimberly G; Richardson, James A; Xie, Xian-Jin; Gazdar, Adi F; Kaisani, Aadil A; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E; Story, Michael D; Wistuba, Ignacio I; Minna, John D; Shay, Jerry W

    2014-03-15

    Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment, including the modification of inflammatory responses from antitumorigenic to protumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. K-ras(LA1) mice were irradiated with various doses and dose regimens and then monitored until death. Microarray analyses were performed using Illumina BeadChips on whole lung tissue 70 days after irradiation with a fractionated or acute dose of radiation and compared with age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Radiation exposure accelerates lung cancer progression in the K-ras(LA1) lung cancer mouse model with dose fractionation being more permissive for cancer progression. A nonrandom inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by affecting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. ©2014 AACR.

  11. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression.

    PubMed

    Catto, James W F; Abbod, Maysam F; Wild, Peter J; Linkens, Derek A; Pilarsky, Christian; Rehman, Ishtiaq; Rosario, Derek J; Denzinger, Stefan; Burger, Maximilian; Stoehr, Robert; Knuechel, Ruth; Hartmann, Arndt; Hamdy, Freddie C

    2010-03-01

    New methods for identifying bladder cancer (BCa) progression are required. Gene expression microarrays can reveal insights into disease biology and identify novel biomarkers. However, these experiments produce large datasets that are difficult to interpret. To develop a novel method of microarray analysis combining two forms of artificial intelligence (AI): neurofuzzy modelling (NFM) and artificial neural networks (ANN) and validate it in a BCa cohort. We used AI and statistical analyses to identify progression-related genes in a microarray dataset (n=66 tumours, n=2800 genes). The AI-selected genes were then investigated in a second cohort (n=262 tumours) using immunohistochemistry. We compared the accuracy of AI and statistical approaches to identify tumour progression. AI identified 11 progression-associated genes (odds ratio [OR]: 0.70; 95% confidence interval [CI], 0.56-0.87; p=0.0004), and these were more discriminate than genes chosen using statistical analyses (OR: 1.24; 95% CI, 0.96-1.60; p=0.09). The expression of six AI-selected genes (LIG3, FAS, KRT18, ICAM1, DSG2, and BRCA2) was determined using commercial antibodies and successfully identified tumour progression (concordance index: 0.66; log-rank test: p=0.01). AI-selected genes were more discriminate than pathologic criteria at determining progression (Cox multivariate analysis: p=0.01). Limitations include the use of statistical correlation to identify 200 genes for AI analysis and that we did not compare regression identified genes with immunohistochemistry. AI and statistical analyses use different techniques of inference to determine gene-phenotype associations and identify distinct prognostic gene signatures that are equally valid. We have identified a prognostic gene signature whose members reflect a variety of carcinogenic pathways that could identify progression in non-muscle-invasive BCa. 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  12. Microwave Signatures of Melting/Refreezing Snow: Observations and Modeling Using Dense Medium Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; England, Anthony; deRoo, Roger; Hardy, Janet

    2005-01-01

    Microwave brightness temperatures of snow covered terrains can be modeled by means of the Dense Radiative Transfer Medium Theory (DMRT). In a dense medium, such as snow, the assumption of independent scattering is no longer valid and the scattering of correlated scatterers must be considered. In the DMRT, this is done considering a pair distribution function of the particles position. In the electromagnetic model, the snowpack is simulated as a homogeneous layer having effective permittivity and albedo calculated through the DMRT. In order to account for clustering of snow crystals, a model of cohesive particles can be applied, where the cohesion between the particles is described by means of a dimensionless parameters called stickiness (z), representing a measure of the inversion of the attraction of the particles. The lower the z the higher the stickiness. In this study, microwave signatures of melting and refreezing cycles of seasonal snowpacks at high altitudes are studied by means of both experimental and modeling tools. Radiometric data were collected 24 hours per day by the University of Michigan Tower Mounted Radiometer System (TMRS). The brightness temperatures collected by means of the TMRS are simulated by means of a multi-layer electromagnetic model based on the dense medium theory with the inputs to the model derived from the data collected at the snow pits and from the meteorological station. The paper is structured as follows: in the first Section the temperature profiles recorded by the meteorological station and the snow pit data are presented and analyzed; in the second Section, the characteristics of the radiometric system used to collect the brightness temperatures are reported together with the temporal behavior of the recorded brightness temperatures; in the successive Section the multi-layer DMRT-based electromagnetic model is described; in the fourth Section the comparison between modeled and measured brightness temperatures is discussed. We

  13. Methods for optimization of the signature-based radiation scanning approach for detection of nitrogen-rich explosives

    NASA Astrophysics Data System (ADS)

    Callender, Kennard

    The signature-based radiation scanning (SBRS) technique can be used to rapidly detect nitrogen-rich explosives at standoff distances. This technique uses a template-matching procedure that produces a figure-of-merit (FOM) whose value is used to distinguish between inert and explosive materials. The present study develops a tiered-filter implementation of the signature-based radiation scanning technique, which reduces the number of templates needed. This approach starts by calculating a normalized FOM between signatures from an unknown target and an explosive template through stages or tiers (nitrogen first, then oxygen, then carbon, and finally hydrogen). If the normalized FOM is greater than a specified cut-off value for any of the tiers, the target signatures are considered not to match that specific template and the process is repeated for the next explosive template until all of the relevant templates have been considered. If a target's signatures match all the tiers of a single template, then the target is assumed to contain an explosive. The tiered filter approach uses eight elements to construct artificial explosive-templates that have the function of representing explosives cluttered with real materials. The feasibility of the artificial template approach to systematically build a library of templates that successfully differentiates explosive targets from inert ones in the presence of clutter and under different geometric configurations was explored. In total, 10 different geometric configurations were simulated and analyzed using the MCNP5 code. For each configuration, 51 different inert materials were used as inert samples and as clutter in front of the explosive cyclonite (RDX). The geometric configurations consisted of different explosive volumes, clutter thicknesses, and distances of the clutter from the neutron source. Additionally, an objective function was developed to optimize the parameters that maximize the sensitivity and specificity of the

  14. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  15. Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas.

    PubMed

    Coppola, Domenico; Balducci, Lodovico; Chen, Dung-Tsa; Loboda, Andrey; Nebozhyn, Michael; Staller, Aileen; Fulp, William J; Dalton, William; Yeatman, Timothy; Brem, Steven

    2014-10-01

    Senescence-associated genes (SAGs) are responsible for the senescence-associated secretory phenotype, linked in turn to cellular aging, the aging brain, and the pathogenesis of cancer. We hypothesized that senescence-associated genes are overexpressed in older patients, in higher grades of glioma, and portend a poor prognosis. Forty-seven gliomas were arrayed on a custom version of the Affymetrix HG-U133+2.0 GeneChip, for expression of fourteen senescence-associated genes: CCL2, CCL7, CDKN1A, COPG, CSF2RB, CXCL1, ICAM-1, IGFBP-3, IL-6, IL-8, SAA4, TNFRSF-11B, TNFSF-11 and TP53. A combined "senescence score" was generated using principal component analysis to measure the combined effect of the senescence-associated gene signature. An elevated senescence score correlated with older age (r=0.37; P=.01) as well as a higher degree of malignancy, as determined by WHO, histological grade (r=0.49; P<.001). There was a mild association with poor prognosis (P=.06). Gliosarcomas showed the highest scores. Six genes independently correlated with either age (IL-6, TNFRSF-11B, IGFBP-3, SAA4, and COPG), prognosis (IL-6, SAA4), or the grade of the glioma (IL-6, IL-8, ICAM-1, IGFBP-3, and COPG). We report: 1) a novel molecular signature in human gliomas, based on cellular senescence, translating the concept of SAG to human cancer; 2) the senescence signature is composed of genes central to the pathogenesis of gliomas, defining a novel, aggressive subtype of glioma; and 3) these genes provide prognostic biomarkers, as well as targets, for drug discovery and immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Advanced Cancer Genomics Institute: Genetic Signatures and Therapeutic Targets in Cancer Progression

    DTIC Science & Technology

    2015-04-01

    Carcinog.2012;11:21. doi: 10.4103/1477- 3163.105341. Epub 2012 Dec 31. PubMed PMID:23346014. 2. Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya...silencing of repeats and noncoding RNAs. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):E89-98. doi:10.1073/pnas.1216922110. Epub 2012 Dec 10. PubMed PMID...23236145; PubMed Central PMCID: PMC3538199. 3. Heller ER, Gor A, Wang D, Hu Q, Lucchese A, Kanduc D, Katdare M, Liu S, Sinha AA. Molecular signatures

  17. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients.

    PubMed

    Banerjee, Arup; Shukla, Shweta; Pandey, Abhay Deep; Goswami, Saptamita; Bandyopadhyay, Bhaswati; Ramachandran, Vishnampettai; Das, Shukla; Malhotra, Arjun; Agarwal, Amitesh; Adhikari, Srima; Rahman, Mehebubar; Chatterjee, Shatakshee; Bhattacharya, Nemai; Basu, Nandita; Pandey, Priyanka; Sood, Vikas; Vrati, Sudhanshu

    2017-08-01

    Patients infected with Dengue virus usually present a mild, self-limiting febrile dengue infection (DI) that occasionally leads to a potentially lethal complication, called the severe dengue (DS). The ability to identify the prognostic markers of DS could allow an improved disease intervention and management. To identify the transcriptional signatures associated with the dengue disease progression, we carried out the high-throughput sequencing of the RNA isolated from the peripheral blood mononuclear cells (PBMCs) of the dengue patients of varying severity and compared with that in the patients with other febrile illnesses (OFIs) or the healthy controls. The transcriptional signatures that discriminated the DS patients from OFI and DI patients were broadly related to the pathways involving glycine, serine, and threonine metabolisms, extracellular matrix organization, ubiquitination, and cytokines and inflammatory response. Several upregulated genes in the inflammatory process (MPO, DEFA4, ELANE, AUZ1, CTSG, OLFM4, SLC16A14, and CRISP3) that were associated with the dengue disease progression are known to facilitate leukocyte-mediated migration, and neutrophil activation and degranulation process. High activity of MPO and ELANE in the plasma samples of the follow-up and recovered dengue patients, as well as and the presence of a larger amount of cell-free dsDNA in the DS patients, suggested an association of neutrophil-mediated immunity with dengue disease progression. Careful monitoring of some of these gene transcripts, and control of the activity of proteins encoded by them, may have a great translational significance for the prognosis and management of the dengue patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Differential gene signatures in rat mammary tumors induced by DMBA and those induced by fractionated gamma radiation.

    PubMed

    Lee, Hae-June; Lee, Yoon-Jin; Kang, Chang-Mo; Bae, Sangwoo; Jeoung, Dooil; Jang, Ja-June; Lee, Seung-Sook; Cho, Chul-Koo; Lee, Yun-Sil

    2008-11-01

    The aim of this work was to identify specific genes involved in rat mammary tumors induced by dimethylbenz(a)anthracene (DMBA) or radiation. More TUNEL- and PCNA-positive cells were present in mammary tumors induced by radiation than in tumors induced by DMBA, whereas DNA damage responses like p53 accumulation and histone H2AX phosphorylation were higher in DMBA-induced tumors, even though the pathology was similar in both types of tumors. cDNA microarray and real-time RT-PCR analysis of radiation- or DMBA-induced tumor tissues, revealed that stanniocalcin 2 (Stc2), interferon regulatory factor 1 (Irf1), interleukin 18 binding protein (Il18bp), and chloride channel calcium activated 3 (Clca3) were expressed in both, and that arachidonate 5-lipoxygenase activating protein 1 (Alox5ap) and cathepsin S (Ctss) were expressed only in radiation-induced tumors. No DMBA-specific gene signatures were found. Soft agar growth assays were carried out to identify the carcinogenic features of these specific genes. Cells stably transfected with Alox5ap, Ctss, Stc2, Irf1, Il18bp and Clca3 showed morphological changes compared to controls. These findings indicate different gene alterations in carcinogen- or radiation-induced mammary tumors with similar pathological stages.

  19. MicroRNA signatures associate with pathogenesis and progression of osteosarcoma

    PubMed Central

    Jones, Kevin B.; Salah, Zaidoun; Sara, Del Mare; Galasso, Marco; Gaudio, Eugenio; Nuovo, Gerard J.; Lovat, Francesca; LeBlanc, Kimberly; Palatini, Jeff; Randall, R. Lor; Volinia, Stefano; Stein, Gary S.; Croce, Carlo M.; Lian, Jane B.; Aqeilan, Rami I.

    2012-01-01

    Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a, miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy. PMID:22350417

  20. miRNA signatures associate with pathogenesis and progression of osteosarcoma.

    PubMed

    Jones, Kevin B; Salah, Zaidoun; Del Mare, Sara; Galasso, Marco; Gaudio, Eugenio; Nuovo, Gerard J; Lovat, Francesca; LeBlanc, Kimberly; Palatini, Jeff; Randall, R Lor; Volinia, Stefano; Stein, Gary S; Croce, Carlo M; Lian, Jane B; Aqeilan, Rami I

    2012-04-01

    Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a,miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy.

  1. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  2. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  3. Radiation-enhanced Lung Cancer Progression in a Transgenic Mouse Model of Lung Cancer is Predictive of Outcomes in Human Lung and Breast Cancer

    PubMed Central

    Delgado, Oliver; Batten, Kimberly G.; Richardson, James A.; Xie, Xian-Jin; Gazdar, Adi F.; Kaisani, Aadil A.; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E.; Story, Michael D.; Wistuba, Ignacio I.; Minna, John D.; Shay, Jerry W.

    2014-01-01

    Purpose Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment including the modification of inflammatory responses from anti-tumorigenic to pro-tumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. Experimental Design K-rasLA1 mice were irradiated with various doses and dose regimens and then monitored till death. Microarray analyses were performed using Illumina® BeadChips on whole lung tissue 70 days post-irradiation with a fractionated or acute dose of radiation and compared to age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Results Radiation exposure accelerates lung cancer progression in the K-rasLA1 lung cancer mouse model with dose fractionation being more permissive for cancer progression. A non-random inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. Conclusions These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by impacting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. PMID:24486591

  4. The effect of radiation dose on the onset and progression of radiation-induced brain necrosis in the rat model.

    PubMed

    Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura

    2017-07-01

    To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.

  5. Epithelial cells captured from ductal carcinoma in situ reveal a gene expression signature associated with progression to invasive breast cancer

    PubMed Central

    Abuázar, Carolina Sens; de Toledo Osorio, Cynthia Aparecida Bueno; Pinilla, Mabel Gigliola; da Silva, Sabrina Daniela; Camargo, Anamaria Aranha; Silva, Wilson Araujo; e Ferreira, Elisa Napolitano; Brentani, Helena Paula; Carraro, Dirce Maria

    2016-01-01

    Breast cancer biomarkers that can precisely predict the risk of progression of non-invasive ductal carcinoma in situ (DCIS) lesions to invasive disease are lacking. The identification of molecular alterations that occur during the invasion process is crucial for the discovery of drivers of transition to invasive disease and, consequently, biomarkers with clinical utility. In this study, we explored differences in gene expression in mammary epithelial cells before and after the morphological manifestation of invasion, i.e., early and late stages, respectively. In the early stage, epithelial cells were captured from both pre-invasive lesions with distinct malignant potential [pure DCIS as well as the in situ component that co-exists with invasive breast carcinoma lesions (DCIS-IBC)]; in the late stage, epithelial cells were captured from the two distinct morphological components of the same sample (in situ and invasive components). Candidate genes were identified using cDNA microarray and rapid subtractive hybridization (RaSH) cDNA libraries and validated by RT-qPCR assay using new samples from each group. These analyses revealed 26 genes, including 20 from the early and 6 from the late stage. The expression profile based on the 20 genes, marked by a preferential decrease in expression level towards invasive phenotype, discriminated the majority of DCIS samples. Thus, this study revealed a gene expression signature with the potential to predict DCIS progression and, consequently, provides opportunities to tailor treatments for DCIS patients. PMID:27708222

  6. Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression.

    PubMed

    Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E; Joshi, Virendra; Salomon, Carlos

    2017-03-07

    Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.

  7. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    PubMed Central

    Iizuka, Shinji; Ishimaru, Naozumi; Kudo, Yasusei

    2014-01-01

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis. PMID:24531055

  8. Urinary metabolic signatures and early triage of acute radiation exposure in rat model.

    PubMed

    Zhao, Mingxiao; Lau, Kim Kt; Zhou, Xian; Wu, Jianfang; Yang, Jun; Wang, Chang

    2017-03-28

    After a large-scale radiological accident, early-response biomarkers to assess radiation exposure over a broad dose range are not only the basis of rapid radiation triage, but are also the key to the rational use of limited medical resources and to the improvement of treatment efficiency. Because of its high throughput, rapid assays and minimally invasive sample collection, metabolomics has been applied to research into radiation exposure biomarkers in recent years. Due to the complexity of radiobiological effects, most of the potential biomarkers are both dose-dependent and time-dependent. In reality, it is very difficult to find a single biomarker that is both sensitive and specific in a given radiation exposure scenario. Therefore, a multi-parameters approach for radiation exposure assessment is more realistic in real nuclear accidents. In this study, untargeted metabolomic profiling based on gas chromatography-mass spectrometry (GC-MS) and targeted amino acid profiling based on LC-MS/MS were combined to investigate early urinary metabolite responses within 48 h post-exposure in a rat model. A few of the key early-response metabolites for radiation exposure were identified, which revealed the most relevant metabolic pathways. Furthermore, a panel of potential urinary biomarkers was selected through a multi-criteria approach and applied to early triage following irradiation. Our study suggests that it is feasible to use a multi-parameters approach to triage radiation damage, and the urinary excretion levels of the relevant metabolites provide insights into radiation damage and repair.

  9. Spectral Signature of Column Solar Radiation Absorption During the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). Revision

    SciTech Connect

    O'Hirok, William; Gautier, Catherine; Ricchiazzi, Paul

    1999-11-01

    Spectral and broadband shortwave radiative flux data obtained from the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) are compared with 3-D radiative transfer computations for the cloud field of October 30, 1995. Because the absorption of broadband solar radiation in the cloudy atmosphere deduced from observations and modeled differ by 135 Wm{sup -2}, we performed a consistency analysis using spectral observations and the model to integrate for wavelengths between the spectral observations. To match spectral measurements, aerosols need a reduction in both single scattering albedo (from 0.938 to 0.82) and asymmetry factor (from 0.67 to 0.61), and cloud droplets require a three-fold increase in co-albedo. Even after modifying the model inputs and microphysics the difference in total broadband absorption is still of the order of 75Wm{sup -2}. Finally, an unexplained absorber centered around 1.06 {micro}m appears in the comparison that is much too large to be explained by dimers.

  10. Recent progress in the development of transition radiation detectors

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  11. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies.

    PubMed

    Crisp, Michael D; Cook, Lyn G

    2009-09-01

    How biodiversity is generated and maintained underlies many major questions in evolutionary biology, particularly relating to the tempo and pattern of diversification through time. Molecular phylogenies and new analytical methods provide additional tools to help interpret evolutionary processes. Evolutionary rates in lineages sometimes appear punctuated, and such "explosive" radiations are commonly interpreted as adaptive, leading to causative key innovations being sought. Here we argue that an alternative process might explain apparently rapid radiations ("broom-and-handle" or "stemmy" patterns seen in many phylogenies) with no need to invoke dramatic increase in the rate of diversification. We use simulations to show that mass extinction events can produce the same phylogenetic pattern as that currently being interpreted as due to an adaptive radiation. By comparing simulated and empirical phylogenies of Australian and southern African legumes, we find evidence for coincident mass extinctions in multiple lineages that could have resulted from global climate change at the end of the Eocene.

  12. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Matthews, Q.; Jirasek, A.; Lum, J. J.; Brolo, A. G.

    2011-11-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF2 > 0.6) and the R3 cell lines are radiosensitive (SF2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated

  13. Best-estimate LOCA radiation signature for equipment qualification. [PWR; BWR

    SciTech Connect

    Lurie, N.A.; Bonzon, L.L.

    1980-01-01

    The radiation aspect of reactor equipment qualification depends on a knowledge of the appropriate source term. An attempt has been made to define a realistic radiation source corresponding to the loss-of-coolant accident. This best-estimate source is based on available fission product release data from damaged fuel during an unterminated LOCA as described in the Reactor Safety Study (WASH-1400). Energy release rates as a function of time have been calculated for both betas and gamma rays. The results are significantly different from the sources specified in Regulatory Guide 1.89. Spectra corresponding to the best-estimate source have also been computed at selected cooling times.

  14. Recent progress in the transition radiation detector techniques

    NASA Technical Reports Server (NTRS)

    Yuan, L. C. L.

    1973-01-01

    A list of some of the major experimental achievements involving charged particles in the relativistic region are presented. With the emphasis mainly directed to the X-ray region, certain modes of application of the transition radiation for the identification and separation of relativistic charged particles are discussed. Some recent developments in detection techniques and improvements in detector performances are presented. Experiments were also carried out to detect the dynamic radiation, but no evidence of such an effect was observed.

  15. Ionizing radiation from hydrogen recombination strongly suppresses the lithium scattering signature in the CMB

    SciTech Connect

    Switzer, Eric R.; Hirata, Christopher M.

    2005-10-15

    It has been suggested that secondary CMB anisotropies generated by neutral lithium could open a new observational window into the universe around the redshift z{approx}400, and permit a determination of the primordial lithium abundance. The effect is due to resonant scattering in the allowed Li i doublet (2s{sup 2}S{sub 1/2}-2p{sup 2}P{sub 1/2,3/2}), so its observability depends on the formation history of neutral lithium. Here we show that the ultraviolet photons produced during hydrogen recombination are sufficient to keep lithium in the Li ii ionization stage in the relevant redshift range and suppress the neutral fraction by {approx}3 orders of magnitude from previous calculations, making the lithium signature unobservable.

  16. The optical and radiation field signatures produced by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Guo, C.; Krider, E. P.

    1982-01-01

    Typical examples of the signals that are produced by first and subsequent return strokes in cloud-to-ground lightning on a microsecond time scale are presented. Statistics on the structure of the waveforms and the radiance of the channels are given. The relationship between the light signals and the associated electric field signatures is discussed. It is shown that the initial light signal from a return stroke tends to be linear for about 15 microsec and then rises more slowly to a peak that is delayed by approximately 60 microsec from the electric field peak. It is thought that the transition between the fast linear portion and the slower rise may be due to the return stroke entering the cloud base. A small percentage of the records suggest that two different branches of the same stepped leader can initiate separate return strokes. The light pulses from cloud discharges tend to be smaller and to vary more slowly than those from return strokes.

  17. The optical and radiation field signatures produced by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Guo, C.; Krider, E. P.

    1982-01-01

    Typical examples of the signals that are produced by first and subsequent return strokes in cloud-to-ground lightning on a microsecond time scale are presented. Statistics on the structure of the waveforms and the radiance of the channels are given. The relationship between the light signals and the associated electric field signatures is discussed. It is shown that the initial light signal from a return stroke tends to be linear for about 15 microsec and then rises more slowly to a peak that is delayed by approximately 60 microsec from the electric field peak. It is thought that the transition between the fast linear portion and the slower rise may be due to the return stroke entering the cloud base. A small percentage of the records suggest that two different branches of the same stepped leader can initiate separate return strokes. The light pulses from cloud discharges tend to be smaller and to vary more slowly than those from return strokes.

  18. Radiative Signatures of Reconnection in X-ray Binary Spectral States

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Accreting black holes (BHs) in Galactic X-ray Binary (XRB) systems represent some of the main targets of space-based high-energy observatories such as NASA s RXTE, Chandra, and NuSTAR, as well as the international observatories XMM Newton, INTEGRAL, Suzaku (Astro-E), and Astro-H. The overall radiative energy output (mostly X-rays) is ultimately powered by the conversion of the gravitational potential energy of the matter falling onto a black hole and forming an accretion disk or a hot accretion flow around it. Observationally, these systems are found to cycle between a few discrete spectral states, characterized by different overall X-ray power and spectral hardness: (1) the bright thermal high-soft state, dominated by a soft (1 keV) thermal component attributed to a thin dense accretion disk with a relatively weak corona producing a power-law tail emission to at least 1 MeV; (2) the low-hard state, showing no signs of a thin accretion disk and dominated by a single hard (with index ~ -1.7) power law truncating at about 100 keV; and (3) the bright Steep Power Law state with both a standard thin disk and a powerful coronal power-law (with index about -2.5) emission extending to at least 1 MeV. Explaining the key features of these nonthermal spectra, i.e., their power law indices and high-energy cutoffs, is one of the outstanding problems in high-energy astrophysics. The hard (10keV 1MeV) X-ray emission in these states is believed to be produced by inverse-Compton scattering in relativistically-hot gas, presumably heated by magnetic reconnection processes, and forming either an accretion disk corona or the hot accretion flow itself. Since the radiative cooling time of the energetic electrons in the intense radiation fields found in these systems is very short, the observed non-thermal hard X-ray spectra should directly reflect the instantaneous energy spectra of the electrons accelerated in reconnection events. Recent advances in kinetic simulations of reconnection

  19. Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis.

    PubMed

    Reis, Eliana A G; Hagan, José E; Ribeiro, Guilherme S; Teixeira-Carvalho, Andrea; Martins-Filho, Olindo A; Montgomery, Ruth R; Shaw, Albert C; Ko, Albert I; Reis, Mitermayer G

    2013-01-01

    The role of the immune response in influencing leptospirosis clinical outcomes is not yet well understood. We hypothesized that acute-phase serum cytokine responses may play a role in disease progression, risk for death, and severe pulmonary hemorrhage syndrome (SPHS). We performed a case-control study design to compare cytokine profiles in patients with mild and severe forms of leptospirosis. Among patients hospitalized with severe disease, we compared those with fatal and nonfatal outcomes. During active outpatient and hospital-based surveillance we prospectively enrolled 172 patients, 23 with mild disease (outpatient) and 149 with severe leptospirosis (hospitalized). Circulating concentrations of pro- and anti-inflammatory cytokines at the time of patient presentation were measured using a multiplex bead array assay. Concentrations of IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17A, and TNF-α were significantly higher (P<0.05) in severe disease compared to mild disease. Among severe patients, levels of IL-6 (P<0.001), IL-8 (P = 0.0049) and IL-10 (P<0.001), were higher in fatal compared to non-fatal cases. High levels of IL-6 and IL-10 were independently associated (P<0.05) with case fatality after adjustment for age and days of symptoms. IL-6 levels were higher (P = 0.0519) among fatal cases who developed SPHS than among who did not. This study shows that severe cases of leptospirosis are differentiated from mild disease by a "cytokine storm" process, and that IL-6 and IL-10 may play an immunopathogenic role in the development of life-threatening outcomes in human leptospirosis.

  20. In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology

    PubMed Central

    Caso, Francesca; Mandelli, Maria Luisa; Henry, Maya; Gesierich, Benno; Bettcher, Brianne M.; Ogar, Jennifer; Filippi, Massimo; Comi, Giancarlo; Magnani, Giuseppe; Sidhu, Manu; Trojanowski, John Q.; Huang, Eric J.; Grinberg, Lea T.; Miller, Bruce L.; Dronkers, Nina; Seeley, William W.

    2014-01-01

    Objective: To identify early cognitive and neuroimaging features of sporadic nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA) caused by frontotemporal lobar degeneration (FTLD) subtypes. Methods: We prospectively collected clinical, neuroimaging, and neuropathologic data in 11 patients with sporadic nfvPPA with FTLD-tau (nfvPPA-tau, n = 9) or FTLD–transactive response DNA binding protein pathology of 43 kD type A (nfvPPA-TDP, n = 2). We analyzed patterns of cognitive and gray matter (GM) and white matter (WM) atrophy at presentation in the whole group and in each pathologic subtype separately. We also considered longitudinal clinical data. Results: At first evaluation, regardless of pathologic FTLD subtype, apraxia of speech (AOS) was the most common cognitive feature and atrophy involved the left posterior frontal lobe. Each pathologic subtype showed few distinctive features. At presentation, patients with nfvPPA-tau presented with mild to moderate AOS, mixed dysarthria with prominent hypokinetic features, clear agrammatism, and atrophy in the GM of the left posterior frontal regions and in left frontal WM. While speech and language deficits were prominent early, within 3 years of symptom onset, all patients with nfvPPA-tau developed significant extrapyramidal motor signs. At presentation, patients with nfvPPA-TDP had severe AOS, dysarthria with spastic features, mild agrammatism, and atrophy in left posterior frontal GM only. Selective mutism occurred early, when general neurologic examination only showed mild decrease in finger dexterity in the right hand. Conclusions: Clinical features in sporadic nfvPPA caused by FTLD subtypes relate to neurodegeneration of GM and WM in frontal motor speech and language networks. We propose that early WM atrophy in nfvPPA is suggestive of FTLD-tau pathology while early selective GM loss might be indicative of FTLD-TDP. PMID:24353332

  1. Obesity dependent metabolic signatures associated with nonalcoholic fatty liver disease progression

    PubMed Central

    Barr, J.; Caballería, J.; Martínez-Arranz, I.; Domínguez-Díez, A.; Alonso, C.; Muntané, J.; Pérez-Cormenzana, M.; García-Monzón, C.; Mayo, R.; Martín-Duce, A.; Romero-Gómez, M.; Iacono, O. Lo; Tordjman, J.; Andrade, R.J.; Pérez-Carreras, M.; Le Marchand-Brustel, Y.; Tran, A.; Fernández-Escalante, C.; Arévalo, E.; García–Unzueta, M.; Clement, K.; Crespo, J.; Gual, P.; Gómez-Fleitas, M.; Martínez-Chantar, M.L.; Castro, A.; Lu, S.C.; Vázquez-Chantada, M.; Mato, J.M.

    2012-01-01

    Our understanding of the mechanisms by which nonalcoholic fatty liver disease (NAFLD) progresses from simple steatosis to steatohepatitis (NASH) is still very limited. Despite the growing number of studies linking the disease with altered serum metabolite levels, an obstacle to the development of metabolome-based NAFLD predictors has been the lack of large cohort data from biopsy-proven patients matched for key metabolic features such as obesity. We studied 467 biopsied individuals with normal liver histology (n=90) or diagnosed with NAFLD (steatosis, n=246; NASH, n=131), randomly divided into estimation (80% of all patients) and validation (20% of all patients) groups. Qualitative determinations of 540 serum metabolite variables were performed using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS). The metabolic profile was dependent on patient body-mass index (BMI), suggesting that the NAFLD pathogenesis mechanism may be quite different depending on an individual’s level of obesity. A BMI-stratified multivariate model based on the NAFLD serum metabolic profile was used to separate patients with and without NASH. The area under the receiver operating characteristic curve was 0.87 in the estimation and 0.85 in the validation group. The cutoff (0.54) corresponding to maximum average diagnostic accuracy (0.82) predicted NASH with a sensitivity of 0.71 and a specificity of 0.92 (negative/positive predictive values = 0.82/0.84). The present data, indicating that a BMI-dependent serum metabolic profile may be able to reliably distinguish NASH from steatosis patients, have significant implications for the development of NASH biomarkers and potential novel targets for therapeutic intervention. PMID:22364559

  2. Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory

    SciTech Connect

    Holmes, D.R. Jr.; Wondrow, M.A.; Gray, J.E.; Vetter, R.J.; Fellows, J.L.; Julsrud, P.R. )

    1990-01-01

    The increased application of therapeutic interventional cardiology procedures is associated with increased radiation exposure to physicians, patients and technical personnel. New advances in imaging techniques have the potential for reducing radiation exposure. A progressive scanning video system with a standard vascular phantom has been shown to decrease entrance radiation exposure. The effect of this system on reducing actual radiation exposure to physicians and technicians was assessed from 1984 through 1987. During this time, progressive fluoroscopy was added sequentially to all four adult catheterization laboratories; no changes in shielding procedures were made. During this time, the case load per physician increased by 63% and the number of percutaneous transluminal coronary angioplasty procedures (a high radiation procedure) increased by 244%. Despite these increases in both case load and higher radiation procedures, the average radiation exposure per physician declined by 37%. During the same time, the radiation exposure for technicians decreased by 35%. Pulsed progressive fluoroscopy is effective for reducing radiation exposure to catheterization laboratory physicians and technical staff.

  3. Radiation effects in nuclear waste materials. 1998 annual progress report

    SciTech Connect

    Weber, W.J.; Corrales, L.R.; Birtcher, R.C.; Nastasi, M.

    1998-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'

  4. Progress and controversies: Radiation therapy for prostate cancer.

    PubMed

    Martin, Neil E; D'Amico, Anthony V

    2014-01-01

    Radiation therapy remains a standard treatment option for men with localized prostate cancer. Alone or in combination with androgen-deprivation therapy, it represents a curative treatment and has been shown to prolong survival in selected populations. In this article, the authors review recent advances in prostate radiation-treatment techniques, photon versus proton radiation, modification of treatment fractionation, and brachytherapy-all focusing on disease control and the impact on morbidity. Also discussed are refinements in the risk stratification of men with prostate cancer and how these are better for matching patients to appropriate treatment, particularly around combined androgen-deprivation therapy. Many of these advances have cost and treatment burden implications, which have significant repercussions given the prevalence of prostate cancer. The discussion includes approaches to improve value and future directions for research.

  5. Geomagnetic signatures of sudden ionospheric disturbances during extreme solar radiation events

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Yeh, H.-C.

    2008-12-01

    We performed a comparative study of geomagnetic variations, which are associated with sudden ionospheric disturbances (SIDs) caused by great X-class solar flares on July 14, 2000 (Bastille flare) and on October 28, 2003 (Halloween flare). Intense fluxes of solar X-rays and EUV radiation as well as solar energetic particles (SEP) were considered as sources of abundant ionization of the ionosphere and upper atmosphere. Flare-initiated SIDs are revealed as transient geomagnetic variations, which are generated by enhanced electric currents flowing mainly in the bottom-side ionosphere. Those so-called solar flare effects (SFEs) were studied by using of geomagnetic data from INTERMAGNET worldwide network of ground-based magnetometers. In subsolar region the SFE is mainly controlled by the flare X-rays and/or EUV radiation. We found that in the Halloween flare the contribution of X-rays was comparable with the EUV, but in the Bastille flare the EUV flux was dominant. The ionization at high latitudes is generated by the SEP, which energy flux is comparable and even exceeds the solar electromagnetic radiation in that region. It was shown that in the Halloween event the pattern of SFE is formed by a two-vortex current system, which is similar to the quiet day Sq current system. However, during the Bastille flare, the pattern of induced currents is quite different: the northern vortex shifts westward and southern vortex shifts eastward such that the electroject is substantially tilted relative to the geomagnetic equator. From numerical estimations we found that at middle latitudes the SEP-initiated geomagnetic effect becomes comparable with the effects of solar electromagnetic radiation. It was also shown that the SEP contribute to the SFE in the nightside hemisphere. The revealed features of the SEP impact to the ionosphere were found in a good agreement with the theory of energetic particle penetration to the bottom-side magnetosphere.

  6. Research on infrared radiation signatures of high-altitude plume based on DSMC method

    NASA Astrophysics Data System (ADS)

    Bao, Xingdong; Mao, Hongxia; Wu, Jie; Dong, Yanbing

    2016-10-01

    Exhaust plume flow field have the characteristics of high temperature, high speed and multi-species flow. Exhaust plume infrared signal are important basis of diagnosing, detecting and identifying plume spectrum. This paper focuses on the infrared radiation characteristics of high-altitude plume. The plume flows exhausted from a micro-nozzle of a low-thrust engine at high-altitude have been simulated numerically through using a DSMC method. Both the properties of plume flow at high altitude and the non-equilibrium effect related to rarefied gases are analyzed. Results are given numerically in good agreement with high-altitude plume observations. With the fields of pressure, temperature and main components of the exhaust plume as input data, the line-by line method was used to calculate the 2 5μm infrared spectral radiation properties of the plume. Different flight conditions are considered to analyze the influence on the infrared radiation characteristics. Some interesting conclusion are finally achieved.

  7. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  8. Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-02-01

    We calculate the rate for thermal production of axions and saxions via scattering of quarks, gluons, squarks, and gluinos in the primordial supersymmetric plasma. Systematic field theoretical methods such as hard thermal loop resummation are applied to obtain a finite result in a gauge-invariant way that is consistent to leading order in the strong gauge coupling. We calculate the thermally produced yield and the decoupling temperature for both axions and saxions. For the generic case in which saxion decays into axions are possible, the emitted axions can constitute extra radiation already prior to big bang nucleosynthesis and well thereafter. We update associated limits imposed by recent studies of the primordial helium-4 abundance and by precision cosmology of the cosmic microwave background and large scale structure. We show that the trend towards extra radiation seen in those studies can be explained by late decays of thermal saxions into axions and that upcoming Planck results will probe supersymmetric axion models with unprecedented sensitivity.

  9. 20 Years of Progress in Radiation Oncology: Prostate Cancer.

    PubMed

    Lanciano; Thomas; Eifel

    1997-04-01

    Carcinoma of the cervix remains of special interest to the Patterns of Care Study (PCS) because of the prominent role that radiotherapy plays in the definitive management of all stages and extents of disease. Five PCS surveys have been conducted for squamous cell cancer of the uterine cervix beginning in 1973 and repeated thereafter at 5-year intervals. The records of over 2,700 women have been reviewed for these surveys. Changes in the pretreatment investigations of cervical cancer patients have occurred during these years, with an increase in the use of computed tomography (CT) and a decrease in the use of intravenous pyelography and cystoscopy. A marked increase in the use of linear accelerators has also occurred, with 98% of all facilities having a linear accelerator as the highest energy treatment machine in the 1988 survey. There has been a change in brachytherapy prescription over the time of the surveys, with most institutions reporting point dose calculations and dose distributions instead of milligram hours. Mean point A dose has increased to approximately 80cGy, reflecting the PCS recommendations of dose intensity to the paracentral point through use of brachytherapy. The outcome for stage I and II cervical cancer has remained stable over the time of the surveys, while the results have improved for stage III disease. This improvement in survival and local control for stage III cervical cancer is due in part to the PCS, which has developed standards of treatment with the goal of radiation dose intensity. A number of patient, tumor, and treatment factors significant in multivariate analysis have been described by the PCS with large cohorts of patients. The most important treatment factors associated with a decrease in pelvic failure and improved survival are the use of brachytherapy and higher paracentral dose. A significant dose response has been described for stage III cervical cancer and optimal pelvic control has been demonstrated with point A doses

  10. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  11. Observable signatures of a black hole ejected by gravitational-radiation recoil in a galaxy merger.

    PubMed

    Loeb, Abraham

    2007-07-27

    According to recent simulations, the coalescence of two spinning black holes (BHs) could lead to a BH remnant with recoil speeds of up to thousands of km s(-1). Here we examine the circumstances resulting from a gas-rich galaxy merger under which the ejected BH would carry an accretion disk and be observable. As the initial BH binary emits gravitational radiation and its orbit tightens, a hole is opened in the disk which delays the consumption of gas prior to the eventual BH ejection. The punctured disk remains bound to the ejected BH within the region where the gas orbital velocity is larger than the ejection speed. For a approximately 10(7) M[middle dot in circle] BH the ejected disk has a characteristic size of tens of thousands of Schwarzschild radii and an accretion lifetime of approximately 10(7) yr. During that time, the ejected BH could traverse a considerable distance and appear as an off-center quasar with a feedback trail along the path it left behind.

  12. Over 20 Years of Progress in Radiation Oncology: Seminoma.

    PubMed

    Thomas

    1997-04-01

    During the past 20 years, significant changes have occurred in the management of seminoma. Survival has improved by approximately 10%, and now 97% of patients are cured. Reductions in the numbers of patients irradiated, the volumes irradiated, and the doses used should reduce morbidity. The 1973 Patterns of Care Study (PCS) and the planned new study proffer statements of consensus on optimal care and evaluate compliance with guidelines. Specific changes in investigation, including measurement of the serum tumor markers beta human choriaonic gonadotropin (betaHCG) and alphafetoprotein (AFP) and computed tomography (CT) or magnetic resonance imaging (MRI) evaluation of the retroperitoneum, better evaluate disease extent. For stage I disease, a reduction in the total dose of infradiaphragmatic irradiation to 2,500 cGy is recommended. An option for surveillance reduces unnecessary therapy in 80% and may improve fertility. The significance of disease bulk in stage II has been recognized, and treatment has been refined. The maximal radiation dose now recommended for stage II disease is 3,500 cGy. CT definition of radiation target volumes minimizes the risk of geographic miss. Prophylactic mediastinal irradiation is no longer recommended. Chemotherapy, usually now bleomycin, etoposide, and cisplatin, produces high cure rates for stage IID, III< and IV disease and has become the standard managemetn. Controversy still surrounds optimal therapy for stage IIC disease. Unresolved questions include cost benefit and quality of life issues surrounding optimal management for stage I disease, inguinal scrotal irradiation in stage I and II disease, and identification of the least toxic but effective chemotherapy for specific subgroups of patients with advanced disease.

  13. Narrow Radiative Recombination Continua: A Signature of Ions Crossing the Contact Discontinuity of Astrophysical Shocks

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Nordon, Raanan; Soker, Noam; Kastner, Joel H.; Yu, Young Sam

    2009-01-01

    X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v 1000 kilometers per second) as it collides with an earlier circumstellar slow wind (v 10 kilometers per second). In theory, the shocked fast wind (hot hubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT approximately equal to 100 eV) crossing the CD and penetrating the cold nebular gas (kT approximately equal to 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30degree3639 indicating bare C VII ions are recombining with cool electrons at kT(sub e) = 1.7 plus or minus 1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30degree3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to deltakT greater than 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be common feature of stellar wind shocks.

  14. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1993--November 30, 1994

    SciTech Connect

    Hall, E.J.; Zaider, M.

    1994-05-01

    Research at the Center for Radiological Research is a blend of physics, chemistry and biology and epitomizes the multidisciplinary approach towards understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. To an increasing extent, the focus of attention is on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights from the past year are briefly described.

  15. Radiation effects in nuclear waste materials. 1997 annual progress report

    SciTech Connect

    Weber, W.J.; Corrales, L.R.

    1997-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding at the atomic, microscopic, and macroscopic levels of radiation effects in glass and ceramics. This research will provide the underpinning science and models for evaluation and performance assessments of glass and ceramic waste forms for the immobilization and disposal of high-level tank waste, plutonium residues and scrap, and excess weapons plutonium. Studies will focus on the effects of ionization and elastic collision interactions on defect production, defect interactions, diffusion, solid-state phase transformations, and gas accumulation using actinide-containing materials, gamma irradiation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of a-decay and p-decay on nuclear waste glasses and ceramics. This program will exploit a variety of structural, optical, and spectroscopic probes to characterize the nature and behavior of the defects, defect aggregates, and phase transforma-tions. Computer simulation techniques will be used to determine defect production, calculate defect stability, defect energies, damage processes within an a-recoil cascade, and defect/gas diffusion and interactions. A number of irradiation facilities and capabilities will be used, including user facilities at several national laboratories, to study the effects of irradiation under different conditions.'

  16. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  17. Use of gamma radiation as a form of preservation of sweet potatoes. Quarterly progress report

    SciTech Connect

    Not Available

    1985-01-01

    This progress report covers: harvest and conditioning following harvest; effects of ..gamma.. radiation on the sweet potato weevil, organoleptic properties of sweet potatoes, protein content of same, and sweet potato quality (vitamins, color, texture, and carbohydrates). Evaluation of preliminary results indicate that changes should be made in irradiation procedures/conditions and analyses. (DLC)

  18. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1991--November 30, 1992

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  19. Morphologic MRI features, diffusion tensor imaging and radiation dosimetric analysis to differentiate pseudo-progression from early tumor progression.

    PubMed

    Agarwal, Ajay; Kumar, Sanath; Narang, Jayant; Schultz, Lonni; Mikkelsen, Tom; Wang, Sumei; Siddiqui, Sarmad; Poptani, Harish; Jain, Rajan

    2013-05-01

    Pseudo-progression (PsP) refers to the paradoxical increase of contrast enhancement within 12 weeks of chemo-radiation therapy in gliomas attributable to treatment effects rather than early tumor progression (ETP). This study was performed to evaluate the utility of morphologic imaging features, diffusion tensor imaging (DTI) and radiation dosimetric analysis of magnetic resonance imaging (MRI) changes in differentiating PsP from ETP. Serial MRI examinations of 163 patients treated for high-grade glioma were reviewed. 46 patients showed a recurrent or progressive enhancing lesion within 12 weeks of radiotherapy. We used an in-house modified scoring system based on 20 different morphologic features (modified VASARI features) to assess the MRI studies. DTI analyses were performed in 24 patients. MRI changes were defined as recurrent volume (Vrec) and registered with pretreatment computed tomography dataset, and the actual dose received by the Vrec during treatment was calculated using dose-volume histograms. Bidimensional product of T2-FLAIR signal abnormality and enhancing component was larger in the ETP group. DTI metrics revealed no significant difference between the two groups. There was no statistically significant difference in the location of Vrec between PsP and ETP groups. Morphologic MRI features and DTI have a limited role in differentiating between PsP and ETP. The larger sizes of the T2-FLAIR signal abnormality and the enhancing component of the lesion favor ETP. There was no correlation between the pattern of MRI changes and radiation dose distribution between PsP and ETP groups.

  20. Research progress in radiation detectors, pattern recognition programs, and radiation damage determination in DNA

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1973-01-01

    The radiological implications of statistical variations in energy deposition by ionizing radiation were investigated in the conduct of the following experiments: (1) study of the production of secondary particles generated by the passage of the primary radiation through bone and muscle; (2) the study of the ratio of nonreparable to reparable damage in DNA as a function of different energy deposition patterns generated by X rays versus heavy fast charged particles; (3) the use of electronic radiography systems for direct fluoroscopic tomography and for the synthesis of multiple planes and; (4) the determination of the characteristics of systems response to split fields having different contrast levels, and of minimum detectable contrast levels between the halves under realistic clinical situations.

  1. Recent Progress in Using Advanced Characterization and Modeling Approaches to Study Radiation Effects in Oxide Ceramics

    DOE PAGES

    Bai, Xian-Ming

    2014-10-23

    I serve as a Guest Editor for the Nuclear Materials Committee of the TMS Structural Materials Division, and coordinated the topic ‘‘Radiation Effects in Oxide Ceramics and Novel LWR Fuels" for JOM in the December 2014 issue. I selected five articles related this topic. These articles talk about some recent progress of using advanced experimental and modeling tools to study radiation effects in oxide ceramics at atomistic scale and mesoscale. In this guest editor commentary article, I summarize the novel aspects of these papers and also provide some suggestions for future research directions.

  2. A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation

    NASA Astrophysics Data System (ADS)

    Yoshimori, Masakazu; Watanabe, Masahiro; Shiogama, Hideo; Oka, Akira; Abe-Ouchi, Ayako; Ohgaito, Rumi; Kamae, Youichi

    2016-12-01

    The correct understanding of the transient response to external radiative perturbation is important for the interpretation of observed climate change, the prediction of near-future climate change, and committed warming under climate stabilization scenarios, as well as the estimation of equilibrium climate sensitivity based on observation data. It has been known for some time that the radiative damping rate per unit of global mean surface temperature increase varies with time, and this inconstancy affects the transient response. Knowledge of the equilibrium response alone is insufficient, but understanding the transient response of the global mean surface temperature has made rapid progress. The recent progress accompanies the relatively new concept of the efficacies of ocean heat uptake and forcing. The ocean heat uptake efficacy associates the temperature response induced by ocean heat uptake with equilibrium temperature response, and the efficacy of forcing compares the temperature response caused by non-CO2 forcing with that by CO2 forcing.

  3. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K

    SciTech Connect

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse; Thorne, Robert E.

    2011-09-01

    Between T = 180 and 240 K, radiation damage progresses on minute timescales when the X-rays are off, suggesting that a fraction of damage at higher temperatures may be outrun using currently available sources and detectors. Can radiation damage to protein crystals be ‘outrun’ by collecting a structural data set before damage is manifested? Recent experiments using ultra-intense pulses from a free-electron laser show that the answer is yes. Here, evidence is presented that significant reductions in global damage at temperatures above 200 K may be possible using conventional X-ray sources and current or soon-to-be available detectors. Specifically, ‘dark progression’ (an increase in damage with time after the X-rays have been turned off) was observed at temperatures between 180 and 240 K and on timescales from 200 to 1200 s. This allowed estimation of the temperature-dependent timescale for damage. The rate of dark progression is consistent with an Arrhenius law with an activation energy of 14 kJ mol{sup −1}. This is comparable to the activation energy for the solvent-coupled diffusive damage processes responsible for the rapid increase in radiation sensitivity as crystals are warmed above the glass transition near 200 K. Analysis suggests that at T = 300 K data-collection times of the order of 1 s (and longer at lower temperatures) may allow significant reductions in global radiation damage, facilitating structure solution on crystals with liquid solvent. No dark progression was observed below T = 180 K, indicating that no important damage process is slowed through this timescale window in this temperature range.

  4. Polarimetric signatures of a layer of random nonspherical discrete scatterers overlying a homogeneous half-space based on first- and second-order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Ding, Kung-Hau

    1991-01-01

    Complete polarimetric signatures of a layer of random, nonspherical discrete scatterers overlying a homogeneous half space are studied with the first- and second-order solutions of the vector radiative transfer theory. Some of the salient features of the numerical results are as follows: (1) the inclusion of the nondiagonal extinction matrix in the vector radiative transfer theory accounts for an appreciable phase difference between vv and hh polarizations, particularly for aligned scatterers; (2) the ensemble-averaged scattered Stokes vector is generally partially polarized, with the degree of polarization less than unity; (3) there generally exists a pedestal in the copolarization return when plotted as a function of ellipticity and orientation angles, which may be due to heterogeneity of scattering objects and/or multiple scattering effects; and (4) multiple scattering effects generally enhance the pedestal in copolarization return, decrease the degree of polarization, affect phase difference, and also enhance the depolarization return.

  5. Radiation damage and repair in cells and cell components. Radiation-induced repair. Progress report, 1981-1982

    SciTech Connect

    Not Available

    1982-01-01

    Progress in research on the description and interpretation of radiation-induced repair in cells is reported. It has been found that for the p-recA data induction seems to follow a model of fractional site occupancy rather than being all-or-none. Other areas investigated include: (1) the induction of the RecA-gene product; (2) the effect of uv-phage lambda infection on Rec-A protein synthesis; (3) induced uv radioresistance; (4) cold-shock effects; (5) lambda-prophage induction by x-rays and uv; (6) photoreactivation of uv-induced dimers; and (7) a comparative study of S.O.S. phenomena in various strains of E. coli. (ACR)

  6. Acute Temporal Changes of MRI-Tracked Tumor Vascular Parameters after Combined Anti-angiogenic and Radiation Treatments in a Rat Glioma Model: Identifying Signatures of Synergism.

    PubMed

    Elmghirbi, Rasha; Nagaraja, Tavarekere N; Brown, Stephen L; Panda, Swayamprava; Aryal, Madhava P; Keenan, Kelly A; Bagher-Ebadian, Hassan; Cabral, Glauber; Ewing, James R

    2017-01-01

    In this study we used magnetic resonance imaging (MRI) biomarkers to monitor the acute temporal changes in tumor vascular physiology with the aim of identifying the vascular signatures that predict response to combined anti-angiogenic and radiation treatments. Forty-three athymic rats implanted with orthotopic U-251 glioma cells were studied for approximately 21 days after implantation. Two MRI studies were performed on each animal, pre- and post-treatment, to measure tumor vascular parameters. Two animal groups received treatment comprised of Cilengitide, an anti-angiogenic agent and radiation. The first group received a subcurative regimen of Cilengitide 1 h before irradiation, while the second group received a curative regimen of Cilengitide 8 h before irradiation. Cilengitide was given as a single dose (4 mg/kg; intraperitoneal) after the pretreatment MRI study and before receiving a 20 Gy radiation dose. After irradiation, the post-treatment MRI study was performed at selected time points: 2, 4, 8 and 12 h (n = ≥5 per time point). Significant changes in vascular parameters were observed at early time points after combined treatments in both treatment groups (1 and 8 h). The temporal changes in vascular parameters in the first group (treated 1 h before exposure) resembled a previously reported pattern associated with radiation exposure alone. Conversely, in the second group (treated 8 h before exposure), all vascular parameters showed an initial response at 2-4 h postirradiation, followed by an apparent lack of response at later time points. The signature time point to define the "synergy" of Cilengitide and radiation was 4 h postirradiation. For example, 4 h after combined treatments using a 1 h separation (which followed the subcurative regimen), tumor blood flow was significantly decreased, nearly 50% below baseline (P = 0.007), whereas 4 h after combined treatments using an 8 h separation (which followed the curative regimen), tumor blood flow was only 10

  7. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K

    PubMed Central

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse; Thorne, Robert E.

    2011-01-01

    Can radiation damage to protein crystals be ‘outrun’ by collecting a structural data set before damage is manifested? Recent experiments using ultra-intense pulses from a free-electron laser show that the answer is yes. Here, evidence is presented that significant reductions in global damage at temperatures above 200 K may be possible using conventional X-ray sources and current or soon-to-be available detectors. Specifically, ‘dark progression’ (an increase in damage with time after the X-rays have been turned off) was observed at temperatures between 180 and 240 K and on timescales from 200 to 1200 s. This allowed estimation of the temperature-dependent timescale for damage. The rate of dark progression is consistent with an Arrhenius law with an activation energy of 14 kJ mol−1. This is comparable to the activation energy for the solvent-coupled diffusive damage processes responsible for the rapid increase in radiation sensitivity as crystals are warmed above the glass transition near 200 K. Analysis suggests that at T = 300 K data-collection times of the order of 1 s (and longer at lower temperatures) may allow significant reductions in global radiation damage, facilitating structure solution on crystals with liquid solvent. No dark progression was observed below T = 180 K, indicating that no important damage process is slowed through this timescale window in this temperature range. PMID:21904032

  8. Prognostic Utility of Cell Cycle Progression Score in Men With Prostate Cancer After Primary External Beam Radiation Therapy

    SciTech Connect

    Freedland, Stephen J.; Gerber, Leah; Reid, Julia; Welbourn, William; Tikishvili, Eliso; Park, Jimmy; Younus, Adib; Gutin, Alexander; Sangale, Zaina; Lanchbury, Jerry S.; Salama, Joseph K.; Stone, Steven

    2013-08-01

    Purpose: To evaluate the prognostic utility of the cell cycle progression (CCP) score, a RNA signature based on the average expression level of 31 CCP genes, for predicting biochemical recurrence (BCR) in men with prostate cancer treated with external beam radiation therapy (EBRT) as their primary curative therapy. Methods and Materials: The CCP score was derived retrospectively from diagnostic biopsy specimens of men diagnosed with prostate cancer from 1991 to 2006 (n=141). All patients were treated with definitive EBRT; approximately half of the cohort was African American. Outcome was time from EBRT to BCR using the Phoenix definition. Median follow-up for patients without BCR was 4.8 years. Association with outcome was evaluated by Cox proportional hazards survival analysis and likelihood ratio tests. Results: Of 141 patients, 19 (13%) had BCR. The median CCP score for patient samples was 0.12. In univariable analysis, CCP score significantly predicted BCR (P=.0017). The hazard ratio for BCR was 2.55 for 1-unit increase in CCP score (equivalent to a doubling of gene expression). In a multivariable analysis that included Gleason score, prostate-specific antigen, percent positive cores, and androgen deprivation therapy, the hazard ratio for CCP changed only marginally and remained significant (P=.034), indicating that CCP provides prognostic information that is not provided by standard clinical parameters. With 10-year censoring, the CCP score was associated with prostate cancer-specific mortality (P=.013). There was no evidence for interaction between CCP and any clinical variable, including ethnicity. Conclusions: Among men treated with EBRT, the CCP score significantly predicted outcome and provided greater prognostic information than was available with clinical parameters. If validated in a larger cohort, CCP score could identify high-risk men undergoing EBRT who may need more aggressive therapy.

  9. Novel trophic niches drive variable progress towards ecological speciation within an adaptive radiation of pupfishes.

    PubMed

    Martin, Christopher H; Feinstein, Laura C

    2014-04-01

    Adaptive radiation is recognized by a rapid burst of phenotypic, ecological and species diversification. However, it is unknown whether different species within an adaptive radiation evolve reproductive isolation at different rates. We compared patterns of genetic differentiation between nascent species within an adaptive radiation of Cyprinodon pupfishes using genotyping by sequencing. Similar to classic adaptive radiations, this clade exhibits rapid morphological diversification rates and two species are novel trophic specialists, a scale-eater and hard-shelled prey specialist (durophage), yet the radiation is <10 000 years old. Both specialists and an abundant generalist species all coexist in the benthic zone of lakes on San Salvador Island, Bahamas. Based on 13 912 single-nucleotide polymorphisms (SNPs), we found consistent differences in genetic differentiation between each specialist species and the generalist across seven lakes. The scale-eater showed the greatest genetic differentiation and clustered by species across lakes, whereas durophage populations often clustered with sympatric generalist populations, consistent with parallel speciation across lakes. However, we found strong evidence of admixture between durophage populations in different lakes, supporting a single origin of this species and genome-wide introgression with sympatric generalist populations. We conclude that the scale-eater is further along the speciation-with-gene-flow continuum than the durophage and suggest that different adaptive landscapes underlying these two niche environments drive variable progress towards speciation within the same habitat. Our previous measurements of fitness surfaces in these lakes support this conclusion: the scale-eating fitness peak may be more distant than the durophage peak on the complex adaptive landscape driving adaptive radiation. © 2014 John Wiley & Sons Ltd.

  10. Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization.

    PubMed

    Kim, Young-Heon; Yoo, Ki-Chun; Cui, Yan-Hong; Uddin, Nizam; Lim, Eun-Jung; Kim, Min-Jung; Nam, Seon-Young; Kim, In-Gyu; Suh, Yongjoon; Lee, Su-Jae

    2014-11-01

    Given its contribution to malignant phenotypes of cancer, tumor hypoxia has been considered as a potential therapeutic problem. In the stressful microenvironment condition, hypoxia inducible factor 1 (HIF1) is well known to mediate the transcriptional adaptation of cells to hypoxia and acts as a central player for the process of hypoxia-driven malignant cancer progression. Here, we found that irradiation causes the HIF1α protein to stabilize, even in normoxia condition through activation of p38 MAPK, thereby promoting angiogenesis in tumor microenvironment and infiltrative property of glioma cells. Notably, irradiation reduced hydroxylation of HIF1α through destabilization of prolyl hydroxylases (PHD)-2. Moreover, radiation also decreased the half-life of protein von Hippel-Lindau (pVHL), which is a specific E3 ligase for HIF1α. Of note, inhibition of p38 MAPK attenuated radiation-induced stabilization of HIF1α through destabilization of PHD-2 and pVHL. In agreement with these results, targeting of either p38 MAPK, HIF1α, pVHL or PHD-2 effectively mitigated the radiation-induced tube formation of human brain-derived micro-vessel endothelial cells (HB-MEC) and infiltration of glioma cells. Taken together, our findings suggest that targeting HIF1α in combination with ionizing radiation might increase the efficacy of radiotherapy for glioma treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker

    PubMed Central

    Goto, Yusuke; Kojima, Satoko; Nishikawa, Rika; Kurozumi, Akira; Kato, Mayuko; Enokida, Hideki; Matsushita, Ryosuke; Yamazaki, Kazuto; Ishida, Yasuo; Nakagawa, Masayuki; Naya, Yukio; Ichikawa, Tomohiko; Seki, Naohiko

    2015-01-01

    Background: Our present study of the microRNA (miRNA) expression signature in castration-resistant prostate cancer (CRPC) revealed that the clustered miRNAs microRNA-221 (miR-221) and microRNA-222 (miR-222) are significantly downregulated in cancer tissues. The aim of this study was to investigate the functional roles of miR-221 and miR-222 in prostate cancer (PCa) cells. Methods: A CRPC miRNA signature was constructed by PCR-based array methods. Functional studies of differentially expressed miRNAs were analysed using PCa cells. The association between miRNA expression and overall survival was estimated by the Kaplan–Meier method. In silico database and genome-wide gene expression analyses were performed to identify molecular targets regulated by the miR-221/222 cluster. Results: miR-221 and miR-222 were significantly downregulated in PCa and CRPC specimens. Kaplan–Meier survival curves showed that low expression of miR-222 predicted a short duration of progression to CRPC. Restoration of miR-221 or miR-222 in cancer cells revealed that both miRNAs significantly inhibited cancer cell migration and invasion. Ecm29 was directly regulated by the miR-221/222 cluster in PCa cells. Conclusions: Loss of the tumour-suppressive miR-221/222 cluster enhanced migration and invasion in PCa cells. Our data describing targets regulated by the tumour-suppressive miR-221/222 cluster provide insights into the mechanisms of PCa and CRPC progression. PMID:26325107

  12. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Annual technical progress report, [1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologies who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second year has been on measurements of (1) chromosome aberrations in patients imaged with thallium-201, (2) mutant frequencies in patients imaged with technetium-99, (3) mutant frequencies in nuclear medicine technicians and physical therapists, (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described.

  13. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Detection of Weak Radiation Involving Generation and Progress of Water Tree

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Taniguchi, Ryouichi

    It is well known that generation and progress of water tree in XLPE cable are remarkably influenced by inorganic impurities. We have investigated the behavior of them in water tree and reported the experimental results as follows: i) the anomalous increase or decrease in several kinds of inorganic elements was observed in water treed XLPE samples, ii) a distinctive relationship was found for the mass numbers for the elements, iii) the isotopic content of the elements such as Zn deviated over 6% from the natural abundance. These results suggest that water tree is concerned with unknown phenomena e.g., cold fusion or nuclear transmutation in condensed matter. In order to study the relationship between water tree and these phenomena, we attempted to detect neutron, γ-ray or X-ray involving generation and progress of water tree in XLPE samples. For the experiments weak and burst-like radiation seemed to be low energy γ-ray or X-ray was often detected by BF3 and/or CdZnTe counter. The radiation tended to be detected from the samples in which a lot of water trees were generated by supplying inorganic cations abundantly.

  15. Radiation therapy for operable breast cancer: sixty years of progress as seen through the articles published in the journal Cancer.

    PubMed

    Freedman, G M

    2008-10-01

    This review examined the 60 years of progress made in treating breast cancer from the unique perspective of the reader of Cancer, with a specific emphasis on the evolution of radiation therapy, constituting a survey of the published articles in each decade, and the standards of treatment and controversies of their times that they portray, in 3 major areas: radiation as an adjuvant therapy to mastectomy, radiation for internal mammary lymph node treatment, and radiation with breast-conserving surgery as an alternative to mastectomy.

  16. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P. E.; Martin, E.; Mõttus, M.; North, P. R. J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Verstraete, M. M.; Xie, D.

    2007-05-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to include structurally complex 3-D plant architectures with and without background topography. Here sometimes significant discrepancies were noted which effectively prevented the definition of a reliable "surrogate truth," over heterogeneous vegetation canopies, against which other RT models could then be compared. The present paper documents the outcome of the third phase of RAMI, highlighting both the significant progress that has been made in terms of model agreement since RAMI-2 and the capability of/need for RT models to accurately reproduce local estimates of radiative quantities under conditions that are reminiscent of in situ measurements. Our assessment of the self-consistency and the relative and absolute performance of 3-D Monte Carlo models in RAMI-3 supports their usage in the generation of a "surrogate truth" for all RAMI test cases. This development then leads (1) to the presentation of the "RAMI Online Model Checker" (ROMC), an open-access web-based interface to evaluate RT models automatically, and (2) to a reassessment of the role, scope, and opportunities of the RAMI project in the future.

  17. Human genetic marker for resistance to radiations and chemicals. 1998 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1998-06-01

    'The broad objective of the project is to understand the molecular basis for the response of cells to radiations and chemicals, with the pragmatic goal of being able to identify human subpopulations that are exceptionally sensitive to DNA damaging agents. The project focuses on HRAD9, a human orthologue of the fission yeast Schizosaccharomyces pombe gene rad9. S. pombe rad9::ura4+ mutant cells are highly sensitive to ionizing radiation, UV and many chemicals, such as the DNA synthesis inhibitor hydroxyurea. They also lack the ability to delay cycling transiently in S phase or in G2 following a block in DNA replication or after incurring DNA damage, respectively -i.e., they lack checkpoint controls. The attempt by mutant cells to progress through mitosis in the absence of fully intact DNA accounts at least in part for their sensitivity to DNA damaging agents. Cells bearing rad9::ura4+ also aberrantly regulate UVDE, an enzyme that participates in a secondary DNA excision repair pathway. The key role played by S. pombe rad9 in promoting resistance to chemicals and radiations suggests that the evolutionarily conserved human cognate also has important functions in mammals. The first set of aims in this proposal centers on characterizing the structure and expression of HRAD9, to assess structure/function relationships and potentially link protein activity to a specific tissue. The next set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer.'

  18. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study

    SciTech Connect

    Widlak, Piotr; Jelonek, Karol; Wojakowska, Anna; Pietrowska, Monika; Polanska, Joanna; Marczak, Łukasz; Miszczyk, Leszek; Składowski, Krzysztof

    2015-08-01

    Purpose: Ionizing radiation affects the proteome of irradiated cells and tissue, yet data concerning changes induced during radiation therapy (RT) in human blood are fragmentary and inconclusive. We aimed to identify features of serum proteome and associated processes involved in response to partial body irradiation during cancer treatment. Methods and Materials: Twenty patients with head and neck squamous cell cancer (HNSCC) and 20 patients with prostate cancer received definitive intensity modulated RT. Blood samples were collected before RT, just after RT, and 1 month after the end of RT. Complete serum proteome was analyzed in individual samples, using a shotgun liquid chromatography-tandem mass spectrometry approach which allowed identification of approximately 450 proteins. Approximately 100 unique proteins were quantified in all samples after exclusion of immunoglobulins, and statistical significance of differences among consecutive samples was assessed. Processes associated with quantified proteins and their functional interactions were predicted using gene ontology tools. Results: RT-induced changes were marked in the HNSCC patient group: 22 upregulated and 33 downregulated proteins were detected in post-RT sera. Most of the changes reversed during follow-up, yet levels of some proteins remained affected 1 month after the end of RT. RT-upregulated proteins were associated with acute phase, inflammatory response, and complement activation. RT-downregulated proteins were associated with transport and metabolism of lipids (plasma apolipoproteins) and blood coagulation. RT-induced changes were much weaker in prostate cancer patients, which corresponded to differences in acute radiation toxicity observed in both groups. Nevertheless, general patterns of RT-induced sera proteome changes were similar in both of the groups of cancer patients. Conclusions: In this pilot study, we proposed to identify a molecular signature of radiation response, based on specific

  19. Basic Fibroblast Growth Factor-2/beta3 Integrin Expression Profile: Signature of Local Progression After Chemoradiotherapy for Patients With Locally Advanced Non-Small-Cell Lung Cancer

    SciTech Connect

    Massabeau, Carole; Rouquette, Isabelle; Lauwers-Cances, Valerie; Mazieres, Julien; Bachaud, Jean-Marc; Armand, Jean-Pierre; Delisle, Marie-Bernadette; Favre, Gilles; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2009-11-01

    Purpose: No biologic signature of chemoradiotherapy sensitivity has been reported for patients with locally advanced non-small-cell lung cancer (NSCLC). We have previously demonstrated that basic fibroblast growth factor (FGF-2) and alphavbeta3 integrin pathways control tumor radioresistance. We investigated whether the expression of the proteins involved in these pathways might be associated with the response to treatment and, therefore, the clinical outcome. Methods and Materials: FGF-2, beta3 integrin, angiopoietin-2, and syndecan-1 expression was studied using immunohistochemistry performed on biopsies obtained, before any treatment, from 65 patients exclusively treated with chemoradiotherapy for locally advanced NSCLC. The response to treatment was evaluated according to the Response Evaluation Criteria in Solid Tumors criteria using computed tomography at least 6 weeks after the end of the chemoradiotherapy. Local progression-free survival, metastasis-free survival, and disease-free survival were studied using the log-rank test and Cox proportional hazard analysis. Results: Among this NSCLC biopsy population, 43.7% overexpressed beta3 integrin (beta3{sup +}), 43% FGF-2 (FGF-2{sup +}), 41.5% syndecan-1, and 59.4% angiopoietin-2. Our results showed a strong association between FGF-2 and beta3 integrin expression (p = .001). The adjusted hazard ratio of local recurrence for FGF-2{sup +}/beta3{sup +} tumors compared with FGF-2{sup -}/beta3{sup -} tumors was 6.1 (95% confidence interval, 2.6-14.6, p = .005). However, the risk of local recurrence was not increased when tumors overexpressed beta3 integrin or FGF-2 alone. Moreover, the co-expression of these two proteins was marginally associated with the response to chemoradiotherapy and metastasis-free survival. Conclusion: The results of this study have identified the combined profile FGF-2/beta3 integrin expression as a signature of local control in patients treated with chemoradiotherapy for locally advanced

  20. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  1. Age-Specific Gene Expression Signatures for Breast Tumors and Cross-Species Conserved Potential Cancer Progression Markers in Young Women

    PubMed Central

    Colak, Dilek; Nofal, Asmaa; AlBakheet, AlBandary; Nirmal, Maimoona; Jeprel, Hatim; Eldali, Abdelmoneim; AL-Tweigeri, Taher; Tulbah, Asma; Ajarim, Dahish; Malik, Osama Al; Kaya, Namik; Park, Ben H.; Bin Amer, Suad M.

    2013-01-01

    Breast cancer in young women is more aggressive with a poorer prognosis and overall survival compared to older women diagnosed with the disease. Despite recent research, the underlying biology and molecular alterations that drive the aggressive nature of breast tumors associated with breast cancer in young women have yet to be elucidated. In this study, we performed transcriptomic profile and network analyses of breast tumors arising in Middle Eastern women to identify age-specific gene signatures. Moreover, we studied molecular alterations associated with cancer progression in young women using cross-species comparative genomics approach coupled with copy number alterations (CNA) associated with breast cancers from independent studies. We identified 63 genes specific to tumors in young women that showed alterations distinct from two age cohorts of older women. The network analyses revealed potential critical regulatory roles for Myc, PI3K/Akt, NF-κB, and IL-1 in disease characteristics of breast tumors arising in young women. Cross-species comparative genomics analysis of progression from pre-invasive ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) revealed 16 genes with concomitant genomic alterations, CCNB2, UBE2C, TOP2A, CEP55, TPX2, BIRC5, KIAA0101, SHCBP1, UBE2T, PTTG1, NUSAP1, DEPDC1, HELLS, CCNB1, KIF4A, and RRM2, that may be involved in tumorigenesis and in the processes of invasion and progression of disease. Array findings were validated using qRT-PCR, immunohistochemistry, and extensive in silico analyses of independently performed microarray datasets. To our knowledge, this study provides the first comprehensive genomic analysis of breast cancer in Middle Eastern women in age-specific cohorts and potential markers for cancer progression in young women. Our data demonstrate that cancer appearing in young women contain distinct biological characteristics and deregulated signaling pathways. Moreover, our integrative genomic and cross

  2. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.

    PubMed

    Colak, Dilek; Nofal, Asmaa; Albakheet, Albandary; Nirmal, Maimoona; Jeprel, Hatim; Eldali, Abdelmoneim; Al-Tweigeri, Taher; Tulbah, Asma; Ajarim, Dahish; Malik, Osama Al; Inan, Mehmet S; Kaya, Namik; Park, Ben H; Bin Amer, Suad M

    2013-01-01

    Breast cancer in young women is more aggressive with a poorer prognosis and overall survival compared to older women diagnosed with the disease. Despite recent research, the underlying biology and molecular alterations that drive the aggressive nature of breast tumors associated with breast cancer in young women have yet to be elucidated. In this study, we performed transcriptomic profile and network analyses of breast tumors arising in Middle Eastern women to identify age-specific gene signatures. Moreover, we studied molecular alterations associated with cancer progression in young women using cross-species comparative genomics approach coupled with copy number alterations (CNA) associated with breast cancers from independent studies. We identified 63 genes specific to tumors in young women that showed alterations distinct from two age cohorts of older women. The network analyses revealed potential critical regulatory roles for Myc, PI3K/Akt, NF-κB, and IL-1 in disease characteristics of breast tumors arising in young women. Cross-species comparative genomics analysis of progression from pre-invasive ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) revealed 16 genes with concomitant genomic alterations, CCNB2, UBE2C, TOP2A, CEP55, TPX2, BIRC5, KIAA0101, SHCBP1, UBE2T, PTTG1, NUSAP1, DEPDC1, HELLS, CCNB1, KIF4A, and RRM2, that may be involved in tumorigenesis and in the processes of invasion and progression of disease. Array findings were validated using qRT-PCR, immunohistochemistry, and extensive in silico analyses of independently performed microarray datasets. To our knowledge, this study provides the first comprehensive genomic analysis of breast cancer in Middle Eastern women in age-specific cohorts and potential markers for cancer progression in young women. Our data demonstrate that cancer appearing in young women contain distinct biological characteristics and deregulated signaling pathways. Moreover, our integrative genomic and cross

  3. Solar radiation signature manifested on the spatial patterns of modeled soil moisture, vegetation, and topography using an ecohydro-geomorphic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Flores Cervantes, J. H.; Istanbulluoglu, E.; Vivoni, E. R.

    2013-12-01

    The role of solar radiation on ecohydrologic fluxes, vegetation dynamics, species composition, and landscape morphology have long been documented in field studies. However a numerical model framework to integrate a range of ecohydrologic and geomorphic processes to explore the integrated ecohydro-geomorphic landscape response have been missing. In this study, our aim is to realistically represent flood generation and solar-radiation-driven echydrologic dynamics in a landscape evolution model (LEM) to investigate how ecohydrologic differences caused by differential irradiance on opposing hillslopes manifest themselves on the organization of modeled topography, soil moisture and plant biomass. We use the CHILD LEM equipped with a spatially-distributed solar-radiation component, leading to spatial patterns of soil moisture; a vegetation dynamics component that explicitly tracks above- and below-ground biomass; and a runoff component that allows for runoff-runon processes along the landscape flow paths. Ecohydrological component has been verified using a detailed data gathered from Sevilleta National Wildlife Refuge in central New Mexico, and Walnut Gulch Experimental Watershed in southern Arizona. LEM scenarios were designed to compare the outcomes of spatially distributed versus spatially uniform solar radiation forced with a constant climate and variable uplift. Modeled spatial patterns of soil moisture confirm empirical observations at the landscape scale and other hydrologic modeling studies. The spatial variability in soil moisture is controlled by aspect prior to the wet season (North American Monsoon, NAM), and by the hydraulic connectivity of the flow network during NAM. Aspect and network connectivity signatures are also manifested on plant biomass with typically denser vegetation cover on north-facing slopes than south facing slopes. Over the long-term, CHILD gives slightly steeper and less dissected north-facing slopes more dissected south facing slopes and

  4. [Nanometer scale exciton spectroscopy and photochemistry: Dynamic imaging of DNA structure-activity relations and radiation signatures

    SciTech Connect

    Not Available

    1992-01-01

    Our aim is to investigate, on the molecular level at a spatially resolved mode of operation, structure-activity relations of DNA and their sensitivity to ionizing radiation. This entails in-vitro (and later in-vivo) ultra-resolved microscopy, spectroscopy and chemical sensing, with non-destructive probing.

  5. miRNA signature identification of retinoblastoma and the correlations between differentially expressed miRNAs during retinoblastoma progression.

    PubMed

    Yang, Yang; Mei, Qi

    2015-01-01

    Retinoblastoma (RB) is a common pediatric cancer. The study aimed to uncover the mechanisms of RB progression and identify novel therapeutic biomarkers. The miRNA expression profile GSE7072, which includes three RB samples and three healthy retina samples, was used. After data normalization using the preprocessCore package, differentially expressed miRNAs (DE-miRs) were selected by the limma package. The targets of the DE-miRs were predicted based on two databases, followed by construction of the miRNA-target network. Pathway enrichment analysis was conducted for the targets of the DE-miRNAs using DAVID. The CTD database was used to predict RB-related genes, followed by clustering analysis using the pvclust package. The correlation network of DE-miRs was established. MiRNA expression was validated in another data set, GSE41321. In total, 24 DE-miRs were identified whose targets were correlated with the cell cycle pathway. Among them, hsa-miR-373, hsa-miR-125b, and hsa-miR-181a were highlighted in the miRNA-target regulatory network; 14 DE-miRs, including hsa-miR-373, hsa-miR-125b, hsa-miR-18a, hsa-miR-25, hsa-miR-20a, and hsa-let-7 (a, b, c), were shown to distinguish RB from healthy tissue. In addition, hsa-miR-25, hsa-miR-18a, and hsa-miR-20a shared the common target BCL2L11; hsa-let-7b and hsa-miR-125b targeted the genes CDC25A, CDK6, and LIN28A. Expression of three miRNAs in GSE41321 was consistent with that in GSE7072. Several critical miRNAs were identified in RB progression. Hsa-miR-373 might regulate RB invasion and metastasis, hsa-miR-181a might involve in the CDKN1B-mediated cell cycle pathway, and hsa-miR-125b and hsa-let-7b might serve as tumor suppressors by coregulating CDK6, CDC25A, and LIN28A. The miRNAs hsa-miR-25, hsa-miR-18a, and hsa-miR-20a might exert their function by coregulating BCL2L1.

  6. A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes' B colon cancer patients.

    PubMed

    Bandrés, Eva; Malumbres, Raquel; Cubedo, Elena; Honorato, Beatriz; Zarate, Ruth; Labarga, Alberto; Gabisu, Unai; Sola, Jesus Javier; García-Foncillas, Jesus

    2007-05-01

    The benefit of postoperative adjuvant chemotherapy in patients with Dukes' B colorectal cancer is still uncertain and its routine use is not recommended. The five-year relapse rate is approximately 25-40% and the identification of patients at high risk of recurrence would represent an important strategy for the use of adjuvant chemotherapy. We retrospectively analyzed gene expression profiles in frozen tumor specimens from patients with Dukes' B colorectal cancer by using high density oligonucleotide microarrays. Our results show a subset of 48 genes differentially expressed with an associated probability <0.001 in the t-test. Another statistical procedure based on the Fisher criterion resulted in 11 genes able to separate both groups. We selected the 8 genes present in both subsets. The differential expression of five genes (CHD2, RPS5, ZNF148, BRI3 and MGC23401) in colon cancer progression was confirmed by real-time PCR in an independent set of patients of Dukes' B and C stages.

  7. Progress Towards A Dedicated Synchrotron Radiation Source For Ultrafast X-Ray Science

    NASA Astrophysics Data System (ADS)

    Lidia, Steve

    2002-03-01

    We present progress towards the design of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of <100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  8. Effects of noinionizing radiation on the central nervous system, behavior, and blood: a progress report.

    PubMed Central

    McRee, D I; Elder, J A; Gage, M I; Reiter, L W; Rosenstein, L S; Shore, M L; Galloway, W D; Adey, W R; Guy, A W

    1979-01-01

    This paper presents a progress report on the U. S. research which has been designated as collaborative research with the Soviet Union to study the biological effects of nonionizing radiation on the central nervous system, behavior, and blood. Results of investigations to study the effects of microwaves on isolated nerves, synaptic function, transmission of neural impulses, electroencephalographic recordings, behavior, and on chemical, cytochemical and immunological properties of the blood are presented. Specifically, the effects of microwave exposure on chick brain and cat spinal cords, on EEG patterns of rats, on behavioral of neonatal rats exposed during development, on behavior of adult rats, on behavior of rhesus monkeys and on the pathology, hematology, and immunology of rabbits will be reported in a summary format. Much of the information is new and has not been published previously. PMID:446443

  9. Recent progress and tests of radiation resistant impregnation materials for Nb{sub 3}Sn coils

    SciTech Connect

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-27

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  10. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  11. Selective internal radiation therapy in patients with progressive neuroendocrine liver metastases.

    PubMed

    Barbier, Charlotte Ebeling; Garske-Román, Ulrike; Sandström, Mattias; Nyman, Rickard; Granberg, Dan

    2016-07-01

    To evaluate the safety and efficacy of selective internal radiation therapy (SIRT) in patients with unresectable liver metastases from neuroendocrine tumours (NETLMs). This retrospective study included 40 patients with progressive NETLMs (22 women, 18 men, mean age 61.6 years) who underwent SIRT with (90)Y-labelled resin microspheres. Tumour response was evaluated according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST) on CT or MR images. Medical records were reviewed. In the 40 patients, 54 evaluable SIRT procedures were performed, 33 to the right liver lobe (mean activity 1.31 GBq), 13 to the left lobe (mean activity 0.85 GBq), and 8 to both lobes (mean activity 1.61 GBq). Late follow-up imaging (mean 20 months) was performed after 44 of the treatments. Objective tumour response and disease control rates were 54 % (29 of 54 treatments) and 94 % (51 treatments), respectively, at the early follow-up examination (mean 3 months) and 34 % (15 treatments) and 57 % (25 treatments), respectively at the late follow-up examination. Mean overall survival from the first SIRT was 34,8 months and survival rates at 1, 2, 3 and 5 years were 76 %, 59 %, 52 % and 35 % respectively. Adverse effects were generally mild and easily manageable, except in one patient who died from radiation-induced liver failure. Of the 45 patients, 18 (45 %) had received peptide receptor radionuclide therapy (PRRT) prior to SIRT. SIRT with (90)Y-labelled resin microspheres is a safe and effective treatment for patients with progressive NETLM, and also for those who have received prior PRRT.

  12. Locoregional Tumor Progression After Radiation Therapy Influences Overall Survival in Pediatric Patients With Neuroblastoma

    SciTech Connect

    Pai Panandiker, Atmaram S.; McGregor, Lisa; Krasin, Matthew J.; Wu Shengjie; Xiong Xiaoping; Merchant, Thomas E.

    2010-03-15

    Purpose: There is renewed attention to primary site irradiation and local control for patients with high-risk neuroblastoma (NB). We conducted a retrospective review to identify factors that might predict for locoregional tumor control and its impact on overall survival. Methods and Materials: Between July 2000 through August 2006, a total of 44 pediatric patients with NB received radiation therapy (RT) with curative intent using computed tomography (CT)-based treatment planning. The median age was 3.4 years and the median cumulative dose was 23.4 Gy. Overall survival and locoregional tumor control were measured from the start of RT to the date of death or event as determined by CT/magnetic resonance imaging/meta-iodobenzylguanidine. The influence of age at irradiation, gender, race, cumulative radiation dose, International Neuroblastoma Staging System stage, treatment protocol and resection status was determined with respect to locoregional tumor control. Results: With a median follow-up of 34 months +- 21 months, locoregional tumor progression was observed in 11 (25%) and was evenly divided between primary site and adjacent nodal/visceral site failure. The influence of locoregional control reached borderline statistical significance (p = 0.06). Age (p = 0.5), dose (p = 0.6), resection status (p = 0.7), and International Neuroblastoma Staging System stage (p = 0.08) did not influence overall survival. Conclusions: Overall survival in high-risk neuroblastoma is influenced by locoregional tumor control. Despite CT-based planning, progression in adjacent nodal/visceral sites appears to be common; this requires further investigation regarding target volume definitions, dose, and the effects of systemic therapy.

  13. Superficial Hyperthermia plus External Beam Radiation in the Palliation of Locally Progressive Chemoradiation-Resistant Breast Cancer

    PubMed Central

    Heese, Curt; Lavagnini, Pablo; Mills, Pamela; Lewis, Mark; Markman, Maurie

    2012-01-01

    Local chest wall progression of chemotherapy/radiation-resistant breast cancer can result in substantial morbidity. In this retrospective review of 39 patients in this difficult clinical setting treated at Cancer Treatment Centers of America (Eastern Regional Medical Center), approximately one-half of the population experienced meaningful short-term palliation and improvement in quality of life when managed with local superficial hyperthermia plus external beam radiation. PMID:23139665

  14. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1991--August 31, 1992

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1992-08-31

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo[a]pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described.

  15. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes.

    PubMed

    Keller, I; Wagner, C E; Greuter, L; Mwaiko, S; Selz, O M; Sivasundar, A; Wittwer, S; Seehausen, O

    2013-06-01

    Adaptive radiations are an important source of biodiversity and are often characterized by many speciation events in very short succession. It has been proposed that the high speciation rates in these radiations may be fuelled by novel genetic combinations produced in episodes of hybridization among the young species. The role of such hybridization events in the evolutionary history of a group can be investigated by comparing the genealogical relationships inferred from different subsets of loci, but such studies have thus far often been hampered by shallow genetic divergences, especially in young adaptive radiations, and the lack of genome-scale molecular data. Here, we use a genome-wide sampling of SNPs identified within restriction site-associated DNA (RAD) tags to investigate the genomic consistency of patterns of shared ancestry and adaptive divergence among five sympatric cichlid species of two genera, Pundamilia and Mbipia, which form part of the massive adaptive radiation of cichlids in the East African Lake Victoria. Species pairs differ along several axes: male nuptial colouration, feeding ecology, depth distribution, as well as the morphological traits that distinguish the two genera and more subtle morphological differences. Using outlier scan approaches, we identify signals of divergent selection between all species pairs with a number of loci showing parallel patterns in replicated contrasts either between genera or between male colour types. We then create SNP subsets that we expect to be characterized to different extents by selection history and neutral processes and describe phylogenetic and population genetic patterns across these subsets. These analyses reveal very different evolutionary histories for different regions of the genome. To explain these results, we propose at least two intergeneric hybridization events (between Mbipia spp. and Pundamilia spp.) in the evolutionary history of these five species that would have lead to the evolution

  16. Progressive glomerulosclerosis and renal failure following perinatal gamma radiation in the beagle

    SciTech Connect

    Jaenke, R.S.; Phemister, R.D.; Norrdin, R.W.

    1980-06-01

    The renal effects of whole body irradiation in the perinatal period were studied in the dog. Ninety-three dogs received a single sublethal exposure in the range of 270 to 435 R in either late gestation (55 days postcoitus) or early postnatal life (2 days postpartum) and were sacrificed at 70 days, 2, or 4 years of age. Early renal lesions in 70-day-old irradiated dogs were characterized by arrested glomerular maturation and degeneration resulting in reduced functional renal mass. Mature glomeruli exhibited mesangial proliferation. At 2 and 4 years of age, surviving irradiated dogs exhibited sever renal disease associated with progressive glomerular damage which was characterized by mesangial proliferation and compression of capillary lumina, epithelial degeneration and focal capsular adhesions, and ultimately obliterative glomerulosclerosis. Twenty-one of the 93 irradiated dogs died in renal failure before 4 years of age with advanced glomerulosclerosis. The phatogenesis of this progressive renal lesion may be related to the interaction of three specific factors. These include (1) the effect of direct radiation damage to mature kidney components; (2) the loss of outer cortical nephrons resulting in increased work load of the surviving nephrons; and (3) the effect of compensatory hypertrophy related to the loss of renal parenchyma as the rapid growth rates associated with kidney maturation.

  17. Signature control

    NASA Astrophysics Data System (ADS)

    Pyati, Vittal P.

    The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.

  18. Radiation-induced formation of 2',3'-dideoxyribonucleosides in DNA: a potential signature of low-energy electrons.

    PubMed

    Madugundu, Guru S; Park, Yeunsoo; Sanche, Léon; Wagner, J Richard

    2012-10-24

    We have identified a series of modifications of the 2'-deoxyribose moiety of DNA arising from the exposure of isolated and cellular DNA to ionizing radiation. The modifications consist of 2',3'-dideoxyribonucleoside derivatives of T, C, A, and G, as identified by enzymatic digestion and LC-MS/MS. Under dry conditions, the yield of these products was 6- to 44-fold lower than the yield of 8-oxo-7,8-dihydroguanine. We propose that 2',3'-dideoxyribonucleosides are generated from the reaction of low-energy electrons with DNA, leading to cleavage of the C3'-O bond and formation of the corresponding C3'-deoxyribose radical.

  19. Gamma scattering in condensed matter with high intensity Moessbauer radiation. Final technical progress report, January 16, 1993--January 15, 1996

    SciTech Connect

    1997-06-01

    Progress is reported on work with high intensity radiation. Moessbauer radioisotopes of exceptional high intensity have been the source of photons for most experiments. Topics include lattice dynamics, studies of glass forming liquids, and line-shape and it`s role in finding materials and nuclear parameters.

  20. Physico-chemical studies of radiation effects in cells. Progress report, February 15, 1982-February 14, 1983

    SciTech Connect

    Powers, E.L.

    1982-01-01

    Progress in studies investigating the chemical mechanisms involved in radiation-induced cellular damage is reported. Three organisms currently being tested are Bacillus megaterium, Bacillus subtilis, and Escherichia coli, silver and mercury have been used as radiosensitizers, and their interaction with DNA studied. (ACR)

  1. Physical Interpretation of the Spectral Radiative Signature in the Transition Zone Between Cloud-Free and Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Chiu, J. C.; Marshak, A.; Knyazikhin, Y.; Pilewski, P.; Wiscombe, W. J.

    2009-01-01

    One-second-resolution zenith radiance measurements from the Atmospheric Radiation Measurement program's new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a remarkable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol properties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical considerations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains unchanged.

  2. Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Appelbe, B. D.; Manke, F.; McGlinchey, K.; Niasse, N. P. L.

    2016-05-01

    We present the results of 3D simulations of indirect drive inertial confinement fusion capsules driven by the "high-foot" radiation pulse on the National Ignition Facility. The results are post-processed using a semi-deterministic ray tracing model to generate synthetic deuterium-tritium (DT) and deuterium-deuterium (DD) neutron spectra as well as primary and down scattered neutron images. Results with low-mode asymmetries are used to estimate the magnitude of anisotropy in the neutron spectra shift, width, and shape. Comparisons of primary and down scattered images highlight the lack of alignment between the neutron sources, scatter sites, and detector plane, which limits the ability to infer the ρr of the fuel from a down scattered ratio. Further calculations use high bandwidth multi-mode perturbations to induce multiple short scale length flows in the hotspot. The results indicate that the effect of fluid velocity is to produce a DT neutron spectrum with an apparently higher temperature than that inferred from the DD spectrum and which is also higher than the temperature implied by the DT to DD yield ratio.

  3. Outgoing Longwave Radiation (OLR) as signatures of pre-seismic activities before Nepal 2015 Earthquakes using onboard NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Earthquake preparation processes start almost a month before its actual occurrence. There are various tools in detecting such processes among which Outgoing Longwave Radiation (OLR) measurements is a significant one. We studied these signals before the devastating Nepal earthquake that occurred on 12 May, 2015 at 12:50 pm local time (07:05 UTC) with a Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. To study the effects of seismic activities on OLR, we used the data archived by the National Environmental Satellite Data and Information Service (NESDIS) of National Oceanic and Atmospheric Administration (NOAA) onto two degree grids for a period of more than 27 years. For the period 2005 till date, data from NOAA18 satellite is used. The data has been chosen with a temporal coverage from 8th May to 17th May, 2015 and a spatial coverage from 20 ^{o}N to 36 ^{o}N latitudes, 78 ^{o}E to 94 ^{o}E longitudes. We followed the method of 'Eddy field calculation mean' to find anomalies in daily OLR curves. We found singularities in Eddy field around the earthquake epicentre three days prior to the earthquake day and its disappearance after the event. Such intensification of Eddy field and its fading away after the shock event can be due to the large amount of energy released before the earthquake.

  4. Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions

    SciTech Connect

    Chittenden, J. P. Appelbe, B. D.; Manke, F.; McGlinchey, K.; Niasse, N. P. L.

    2016-05-15

    We present the results of 3D simulations of indirect drive inertial confinement fusion capsules driven by the “high-foot” radiation pulse on the National Ignition Facility. The results are post-processed using a semi-deterministic ray tracing model to generate synthetic deuterium-tritium (DT) and deuterium-deuterium (DD) neutron spectra as well as primary and down scattered neutron images. Results with low-mode asymmetries are used to estimate the magnitude of anisotropy in the neutron spectra shift, width, and shape. Comparisons of primary and down scattered images highlight the lack of alignment between the neutron sources, scatter sites, and detector plane, which limits the ability to infer the ρr of the fuel from a down scattered ratio. Further calculations use high bandwidth multi-mode perturbations to induce multiple short scale length flows in the hotspot. The results indicate that the effect of fluid velocity is to produce a DT neutron spectrum with an apparently higher temperature than that inferred from the DD spectrum and which is also higher than the temperature implied by the DT to DD yield ratio.

  5. Assessment of WRF microphysics schemes to simulate extreme precipitation events from the perspective of GMI radiative signatures

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Shin, D. B.; Joh, M.

    2015-12-01

    Numerical simulations of precipitation depend to a large degree on the assumed cloud microphysics schemes representing the formation, growth and fallout of cloud droplets and ice crystals. Recent studies show that assumed cloud microphysics play a major role not only in forecasting precipitation, especially in cases of extreme precipitation events, but also in the quality of the passive microwave rainfall estimation. Evaluations of the various Weather Research Forecasting (WRF) model microphysics schemes in this study are based on a method that was originally developed to construct the a-priori databases of precipitation profiles and associated brightness temperatures (TBs) for precipitation retrievals. This methodology generates three-dimensional (3D) precipitation fields by matching the GPM dual frequency radar (DPR) reflectivity profiles with those calculated from cloud resolving model (CRM)-derived hydrometeor profiles. The method eventually provides 3D simulated precipitation fields over the DPR scan swaths. That is, atmospheric and hydrometeor profiles can be generated at each DPR pixel based on CRM and DPR reflectivity profiles. The generated raining systems over DPR observation fields can be applied to any radiometers that are unaccompanied with a radar for microwave radiative calculation with consideration of each sensor's channel and field of view. Assessment of the WRF model microphysics schemes for several typhoon cases in terms of emission and scattering signals of GMI will be discussed.

  6. Searching the Inclusive Lepton + Photon + Missing E(T) + b-quark Signature for Radiative Top Quark Decay and Non-Standard-Model Processes

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton ({ell}), a photon ({gamma}), significant transverse momentum imbalance (E{sub T}), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at {radical}s = 1.96 TeV corresponding to 1.9 fb{sup -1} of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 {ell}{gamma}bE{sub T} events versus an expectation of 31.0{sub -3.5}{sup +4.1} events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, t{bar t} + {gamma}. In the data we observe 16 t{bar t}{gamma} candidate events versus an expectation from non-top-quark SM sources of 11.2{sub -2.1}{sup +2.3}. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the t{bar t} cross section to be 0.15 {+-} 0.08 pb.

  7. (Nanometer scale exciton spectroscopy and photochemistry: Dynamic imaging of DNA structure-activity relations and radiation signatures)

    SciTech Connect

    Kopelman, R.

    1991-01-01

    We have constructed a scanning near-field optical microscope. For this we developed subwavelength micropipette light sources containing photostable crystal tips. We have also developed a technique for pulling and metal coating for single mode optical fibers to give nanometer silica tips emitting polarized laser light. Clear images have been obtained of polymeric porous membranes with nanometer pore sizes of comparable quality to that of scanning electron microscopy, but without the need for a vacuum. This method is aimed at both transmission and fluorescence nanoscopy. We believe that at least one of these will be operational in the coming year. We have also made significant progress on the next stage: Scanning, Tunneling, Exciton Microscopy. This is based on direct energy transfer between the tip and the particular molecule or fluorophore in the sample. We expect this stage to be operational in the third year of the project. Preliminary near-field optical scans indicate our resolution is already in the nanometer range. 3 figs. (MHB)

  8. Radiation physics, biophysics and radiation biology. Progress report for October 1, 1979-September 30, 1980. [Lead abstract

    SciTech Connect

    Rossi, H.H.; Hall, E.J.

    1980-07-01

    Separate abstracts were prepared for 31 of the 32 papers presented in this progress report. The other paper is represented by an abstract only and deals with field shaping and recalibration of x-ray facilities.

  9. First Generation Gene Expression Signature for Early Prediction of Late Occurring Hematological Acute Radiation Syndrome in Baboons.

    PubMed

    Port, M; Herodin, F; Valente, M; Drouet, M; Lamkowski, A; Majewski, M; Abend, M

    2016-07-01

    We implemented a two-stage study to predict late occurring hematologic acute radiation syndrome (HARS) in a baboon model based on gene expression changes measured in peripheral blood within the first two days after irradiation. Eighteen baboons were irradiated to simulate different patterns of partial-body and total-body exposure, which corresponded to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. Blood samples taken before irradiation served as unexposed control (H0, n = 17). For stage I of this study, a whole genome screen (mRNA microarrays) was performed using a portion of the samples (H0, n = 5; H1-2, n = 4; H2-3, n = 5). For stage II, using the remaining samples and the more sensitive methodology, qRT-PCR, validation was performed on candidate genes that were differentially up- or down-regulated during the first two days after irradiation. Differential gene expression was defined as significant (P < 0.05) and greater than or equal to a twofold difference above a H0 classification. From approximately 20,000 genes, on average 46% appeared to be expressed. On day 1 postirradiation for H2-3, approximately 2-3 times more genes appeared up-regulated (1,418 vs. 550) or down-regulated (1,603 vs. 735) compared to H1-2. This pattern became more pronounced at day 2 while the number of differentially expressed genes decreased. The specific genes showed an enrichment of biological processes coding for immune system processes, natural killer cell activation and immune response (P = 1 × E-06 up to 9 × E-14). Based on the P values, magnitude and sustained differential gene expression over time, we selected 89 candidate genes for validation using qRT-PCR. Ultimately, 22 genes were confirmed for identification of H1-3 classifications and seven genes for identification of H2-3 classifications using qRT-PCR. For H1-3 classifications, most genes were

  10. High-LET Radiation Increases Tumor Progression in a K-Ras-Driven Model of Lung Adenocarcinoma.

    PubMed

    Asselin-Labat, Marie-Liesse; Rampersad, Rishi; Xu, Xia; Ritchie, Matthew E; Michalski, Jacob; Huang, Lingling; Onaitis, Mark W

    2017-09-27

    High-linear energy transfer (LET) radiation encountered by astronauts in space generates clustered DNA damage that is potentially oncogenic. Analysis of the impact of exposure to space radiation on cancer formation is necessary to determine the best ways to prepare astronauts for space travel so they are protected for the duration of the space mission. A mouse model of lung adenocarcinoma driven by oncogenic K-Ras was used to ascertain the effect of low- and high-LET radiation on tumor formation. We observed increased tumor progression and tumor cell proliferation after single dose or fractionated high-LET doses, which was not observed in mice exposed to low-LET radiation. Location of the tumor nodules was not affected by radiation, indicating that the cell of origin of K-Ras-driven tumors was the same in irradiated or nonirradiated mice. Gene expression analysis revealed an upregulation of genes involved in cell proliferation and DNA damage repair. This study provides evidence that exposure to a single dose or fractionated doses of high-LET radiation induces molecular and cellular changes that accelerate lung tumor growth.

  11. Acoustic radiation force on a sphere in a progressive and standing zero-order quasi-Bessel-Gauss beam.

    PubMed

    Jiang, Chen; Liu, Xiaozhou; Liu, Jiehui; Mao, Yiwei; Marston, Philip L

    2017-04-01

    By means of series expansion theory, the incident quasi-Bessel-Gauss beam is expanded using spherical harmonic functions, and the beam coefficients of the quasi-Bessel-Gauss beam are calculated. According to the theory, the acoustic radiation force function, which is the radiation force per unit energy on a unit cross-sectional surface on a sphere made of diverse materials and immersed in an ideal fluid along the propagation axis of zero-order quasi-Bessel-Gauss progressive and standing beams, is investigated. The acoustic radiation force function is calculated as a function of the spherical radius parameter ka and the half-cone angle β with different beam widths in a progressive and standing zero-order Bessel-Gauss beam. Simulation results indicate that the acoustic radiation forces with different waist radii demonstrate remarkably different features from those found in previous studies. The results are expected to be useful in potential applications such as acoustic tweezers. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Progress and Status on the Development of NASA's Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W. K.; Blattnig, S. R.; Kress, B. T.; Wiltberger, M. J.; Solomon, S. C.; Kunches, J.; Murray, J. J.

    2008-12-01

    The NASA Applied Sciences Program recently selected a project for funding through the Research Opportunities in Space and Earth Sciences (ROSES) solicitation. The project objective is to develop a nowcast prediction of air-crew radiation exposure from both background galactic cosmic rays (GCR) and solar energetic particle events (SEP) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time radiation dose predictions of biologically harmful radiation at commercial airline altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP reanalysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. In this paper we discuss the concept and design of the NAIRAS model, and present recent progress in the implementation and give examples of the model results. Specifically, we show predictions of representative annual background exposure levels and radiation exposure levels for selected SEP events during solar cycle 23, with emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure. We discuss the key uncertainties and areas that need improvement in both model and data, the timeline for project completion, and access to model results.

  13. Progress on an Updated National Solar Radiation Data Base for the United States: Preprint

    SciTech Connect

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-09-01

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In 2003, NREL undertook an NSRDB update project for the decade of 1991-2000.

  14. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  15. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  16. NREL Solar Radiation Resource Assessment Project: Status and outlook. FY 1991 annual progress report

    SciTech Connect

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL`s Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU`s), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL`s Solar Radiation Research Laboratory. 17 refs.

  17. Securing safe and informative thoracic CT examinations-Progress of radiation dose reduction techniques.

    PubMed

    Kubo, Takeshi; Ohno, Yoshiharu; Seo, Joon Beom; Yamashiro, Tsuneo; Kalender, Willi A; Lee, Chang Hyun; Lynch, David A; Kauczor, Hans-Ulrich; Hatabu, Hiroto

    2017-01-01

    The increase in the radiation exposure from CT examinations prompted the investigation on the various dose-reduction techniques. Significant dose reduction has been achieved and the level of radiation exposure of thoracic CT is expected to reach the level equivalent to several chest X-ray examinations. With more scanners with advanced dose reduction capability deployed, knowledge on the radiation dose reduction methods has become essential to clinical practice as well as academic research. This article reviews the history of dose reduction techniques, ongoing changes brought by newer technologies and areas of further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. SERI Solar Radiation Resource Assessment Project: Fiscal Year 1990 Annual Progress Report

    SciTech Connect

    Riordan, C; Maxwell, E; Stoffel, T; Rymes, M; Wilcox, S

    1991-07-01

    The purpose of the Solar Radiation Resource Project is to help meet the needs of the public, government, industry, and utilities for solar radiation data, models, and assessments as required to develop, design, deploy, and operate solar energy conversion systems. The project scientists produce information on the spatial (geographic), temporal (hourly, daily, and seasonal), and spectral (wavelength distribution) variability of solar radiation at different locations in the United States. Resources committed to the project in FY 1990 supported about four staff members, including part-time administrative support. With these resources, the staff must concentrate on solar radiation resource assessment in the United States; funds do not allow for significant efforts to respond to a common need for improved worldwide data. 34 refs., 21 figs., 6 tabs.

  19. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  20. Mechanisms for radiation damage in DNA. Progress report, June 1, 1993--May 31, 1994

    SciTech Connect

    Sevilla, M.D.

    1993-12-01

    In this project the author has proposed several mechanisms for radiation damage to DNA and its constituents, and has detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. In this years work he has completed several experiments on the role of hydration water on DNA radiation damage, continued the investigation of the localization of the initial charges and their reactions on DNA, investigated protonation reactions in DNA base anions, and employed ab initio molecular orbital theory to gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics evolved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this years work to a consideration of ionization energies of various components of the DNA deoxyribose backbone and resulting neutral sugar radicals. This information has aided the formation of new radiation models for the effect of radiation on DNA. During this fiscal year four articles have been published, four are in press, one is submitted and several more are in preparation. Four papers have been presented at scientific meetings. This years effort will include another review article on the {open_quotes}Electron Spin Resonance of Radiation Damage to DNA{close_quotes}.

  1. Radiation induced pulmonary fibrosis as a model of progressive fibrosis: Contributions of DNA damage, inflammatory response and cellular senescence genes.

    PubMed

    Beach, Tyler A; Johnston, Carl J; Groves, Angela M; Williams, Jacqueline P; Finkelstein, Jacob N

    2017-04-01

    Purpose/Aim of Study: Studies of pulmonary fibrosis (PF) have resulted in DNA damage, inflammatory response, and cellular senescence being widely hypothesized to play a role in the progression of the disease. Utilizing these aforementioned terms, genomics databases were interrogated along with the term, "pulmonary fibrosis," to identify genes common among all 4 search terms. Findings were compared to data derived from a model of radiation-induced progressive pulmonary fibrosis (RIPF) to verify that these genes are similarly expressed, supporting the use of radiation as a model for diseases involving PF, such as human idiopathic pulmonary fibrosis (IPF). In an established model of RIPF, C57BL/6J mice were exposed to 12.5 Gy thorax irradiation and sacrificed at 24 hours, 1, 4, 12, and 32 weeks following exposure, and lung tissue was compared to age-matched controls by RNA sequencing. Of 176 PF associated gene transcripts identified by database interrogation, 146 (>82%) were present in our experimental model, throughout the progression of RIPF. Analysis revealed that nearly 85% of PF gene transcripts were associated with at least 1 other search term. Furthermore, of 22 genes common to all four terms, 16 were present experimentally in RIPF. This illustrates the validity of RIPF as a model of progressive PF/IPF based on the numbers of transcripts reported in both literature and observed experimentally. Well characterized genes and proteins are implicated in this model, supporting the hypotheses that DNA damage, inflammatory response and cellular senescence are associated with the pathogenesis of PF.

  2. Progress in Projecting Solar Radiation at the Earth's Surface in Climate Models

    NASA Astrophysics Data System (ADS)

    Collins, W.; Fildier, B.; Feldman, D.

    2015-12-01

    Projecting changes in solar radiation at the Earth's surface in futureclimates is a critical input to forecast surface irradiance for solarenergy. We demonstrate the current state of the art using theensemble of opportunity assembled for the Coupled ModelIntercomparison Project (CMIP5) and the Fifth Assessment Report (AR5)of the Intergovernmental Panel on Climate Change (IPCC). The reliability of these projections depends upon the accuracy of theunderlying radiation codes, the fidelity of these codes to themeasured optical properties of key radiatively active atmosphericconstituents, and the realism of future projections of theseatmospheric constituents. These constituents include aerosols,clouds, water vapor, greenhouse gases that absorb near-infraredsunlight. Since the realism of future projections of anthropogenicaerosol species is contingent on the underlying scenario, we focus onthe other challenges in forecasting surface irradiance. Regarding accuracy, we demonstrate that current GCM shortwaveparameterizations often exhibit quite small errors relative tobenchmark radiative transfer codes. In addition, recent work hasbracketed the uncertainties in solar irradiance associated withcomplex cloud geometries. There is also an emerging consensus howcloud radiative effects will evolve in a warmer climate. However,there is evidence that current GCM codes still exhibit systematicerrors in the near-infrared water vapor bands, particularly for moistsub-tropical atmospheres. These errors will become more acute aswater vapor feedbacks, combined with global warming, increase thetotal precipitable water in the Earth's atmosphere.

  3. Spectral signature selection for mapping unvegetated soils

    NASA Technical Reports Server (NTRS)

    May, G. A.; Petersen, G. W.

    1975-01-01

    Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.

  4. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine]. Technical progress report

    SciTech Connect

    Not Available

    1989-12-31

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides.

  5. Mechanisms for radiation damage in DNA. Progress report, June 1, 1994--May 31, 1995

    SciTech Connect

    Sevilla, M.D.

    1994-11-01

    In this project we have proposed several mechanisms for radiation damage to DNA and its constituents, and have detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. The results from these various techniques have resulted in an understanding of consequences of radiation damage to DNA from the early ionization event to the production of non-radical lesions (discussed in detail in Comprehensive Report). In this year`s work we have found the hydroxyl radical in DNA`s hydration layer. This is an important result which impacts the hole transfer hypothesis and the understanding of the direct vs. indirect effect in DNA. Further we have found the first ESR evidence for sugar radicals as a result of direct radiation damage to DNA nucleotides in an aqueous environment. This is significant as it impacts the biological endpoint of radiation damage to DNA and suggests future work in DNA. Work with DNA-polypeptides show clear evidence for electron transfer to DNA from the polypeptide which we believe is a radioprotective mechanism. Our work with ab initio molecular orbital theory has gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics involved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this year`s work to new, more accurate values for the electron affinities of the DNA bases, understanding of the relative stability of all possible sugar radicals formed by hydrogen abstraction on the deoxyribose group, hydration effects on, thiol radioprotectors, and an ongoing study of radical intermediates formed from initial DNA ion radicals. During this fiscal year five articles have been published, three are in press, two are submitted and several more are in preparation.

  6. Response of a forest ecotone to ionizing radiation. Progress report, October 15, 1980-October 14, 1981

    SciTech Connect

    Murphy, P.G.; Sharitz, R.R.

    1981-06-01

    The primary objectives of this study are to determine the effects of ionizing radiation on the tree species composition of the ecotone between two forest types in northern Wisconsin and to compare the postirradiation recovery of the tree flora in the ecotone with that in the bordering forest types. Relatively distinct ecotones constitute a spatially significant portion of many second-growth forest ecosystems. Belt transects concentric to the radiation source (/sup 137/Cs) are being used to measure compositional changes in the ecotone from aspen to maple-birch forest types. Information available includes population densities by size class, importance values, and diversity values. Estimates of leaf area index and leaf litter production, by species, have also been obtained. Succession in the radiation areas is presently under study. To date, redevelopment of forest vegetation at up to 20 m from the radiation source has been slowed significantly by the vigorous colonization of heliophytes. Sampling for 1980-81 is on schedule. In all three areas competition from successional ground vegetation has continued to delay re-establishment of tree seedlings under the opened canopy at 10 m. In this regard, only the aspen area has shown any signs of recovering, having experienced an influx of red maple seedlings in 1978. Even that area, however, is still less than half preirradiation levels with respect to seedling densities. As unusually high ratio of shrub leaf litter to tree leaf litter in the 10 to 20 m area reflects the displacement of canopy species by successional shrubs. As the overall impact of the radiation stress depends on the rate of forest re-establishment, observations will continue for several more years.

  7. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  8. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  9. Response of a forest ecotone to ionizing radiation. Progress report, October 15, 1979-October 14, 1980

    SciTech Connect

    Murphy, P G; Sharitz, R R

    1980-07-01

    Compositional and structural characteristics of three forest types, including aspen dominated, maple-birch dominated, and an intervening ecotone, were studied before and after irradiation in northern Wisconsin. Irradiation occurred during the summer of 1972. By the summer of 1973 the density of viable tree seedlings at 10 m from the radiation source was substantially reduced in all three areas relative to the preirradiation densities of 1971. As of the summer of 1979, establishment of tree seedlings continued to be inhibited by the vigorous development of ground vegetation. In most respects, the ecotone has shown properties and responses to radiation intermediate to those observed in the aspen and maple-birch areas. The rate and compositional characteristics of succession in the ecotone relative to aspen and maple-birch forest types is presently under study.

  10. The AE9/AP9/SPM Next Generation Radiation Specification Models - Progress Report

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Johnston, William Robert; Huston, Stuart; Guild, Timothy

    2016-07-01

    The AE9/AP9/SPM model has now been released to the global satellite design community, with a recent update to version 1.2. We are working on incorporating new data sources, such as AZUR and NASA's Van Allen Probes, while also addressing critiques raised by the science and engineering communities. In particular, we are investigating discrepancies for protons at low altitude and electrons at geostationary altitudes. Finally, we are scoping out architectural improvements to enable features requested by industry: improved stitching between the plasma and radiation models, local time dependence in the plasma model, longitude dependence in the electron radiation model, and solar cycle variation in the low altitude protons. We provide a brief update on the status of the model, discrepancy investigations, and plans for the future.

  11. Progress towards a FLUKA based simulation tool aimed at the evaluation of space radiation environments

    NASA Astrophysics Data System (ADS)

    Andersen, V.; Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fassò, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; Lee, K.; Ottolenghi, A.; Pelliccioni, M.; Pinsky, L. S.; Ranft, J.; Roesler, S.; Sala, P. R.; Wilson, T. L.

    2004-02-01

    Goal of the NASA funded FLEUR project is to develop a simulation tool to predict the impact of radiation environments, in particular to evaluate the effect of shielding in space applications. The heart of this tool is the FLUKA Monte Carlo transport code which is traditionally used in related areas of research such as radio-protection and dosimetry, cosmic ray physics and modeling of biological effects of radiation on DNA (in connection with further external micro codes). An important aspect in this context are heavy ion nuclear interactions which at this point have been implemented in FLUKA for high and medium energies while work is proceeding to cover the low energy range. Further information is available at http://www.fluka.org and http://fleur.cern.ch

  12. Genetic variation in resistance to ionizing radiation. Technical progress report, January--December 1991

    SciTech Connect

    Ayala, F.J.

    1991-06-24

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ``null`` (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ``null`` allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

  13. Stepwise Progress in Epidermal Growth Factor Receptor/Radiation Studies for Head and Neck Cancer

    SciTech Connect

    Harari, Paul M.

    2007-10-01

    The U.S. Food and Drug Administration approval of four new epidermal growth factor receptor (EGFR) inhibitors for cancer therapy (cetuximab, panitumumab, gefitinib, and erlotinib) over the last 3 years is a remarkable milestone in oncology. Indeed, molecular inhibition of EGFR signaling represents one of the most promising current arenas for the development of molecular-targeted cancer therapies. Epidermal growth factor receptor inhibitors from both the monoclonal antibody and tyrosine kinase inhibitor class have demonstrated clinical activity in the treatment of a broad spectrum of common human malignancies. For the discipline of radiation oncology, the 2006 report of a phase III trial demonstrating a survival advantage for advanced head and neck cancer patients with the addition of weekly cetuximab during a 7-week course of radiation is particularly gratifying. Indeed, this is the first phase III trial to confirm a survival advantage with the addition of a molecular-targeted agent to radiation. Furthermore, this result seems to have been achieved with only a modest increment in overall treatment toxicity and with very high compliance to the prescribed treatment regimen. Nevertheless, much remains to be learned regarding the rational integration of EGFR inhibitors into cancer treatment regimens, as well as methods to optimize the selection of patients most likely to benefit from EGFR inhibitor strategies.

  14. The RAVAN CubeSat mission: Progress toward a new measurement of Earth outgoing radiation

    NASA Astrophysics Data System (ADS)

    Swartz, B. H.; Dyrud, L. P.; Lorentz, S. R.; Wu, D. L.; Wiscombe, W. J.; Papadakis, S.; Huang, P. M.; Smith, A.; Deglau, D.

    2014-12-01

    The Earth radiation imbalance (ERI) is the single most important quantity for predicting the course of climate change over the next century. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat mission, funded by NASA's Earth Science Technology Office, will demonstrate an affordable, accurate radiometer that directly measures Earth-leaving fluxes of total and solar-reflected radiation. The objective of RAVAN is to demonstrate that a compact spaceborne radiometer that is absolutely accurate to NIST-traceable standards can be built for low cost. The key technologies that enable a radiometer with all these attributes are: a vertically aligned carbon nanotube (VACNT) absorber and a gallium fixed-point blackbody as a built-in calibration source. VACNTs are exceedingly black and spectrally flat, making them ideal radiometer absorbers. We present results from the fabrication and calibration of the RAVAN radiometer and plans for CubeSat hosting and launch. RAVAN will help enable the development of a constellation Earth radiation budget mission that can provide the measurements needed for superior predictions of future climate change.

  15. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals. Progress report

    SciTech Connect

    Strauss, B.

    1992-07-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules the affect base substitution but also the mechanisms(s) by which additions and deletions are produced, since deletions are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA. Questions addressed include: 1. What types of base substitution mutations are induced by ionizing radiation and oxidizing radicals? 2. Are deletions and/or additions produced? 3. Is there a difference in type of mutation produced dependent on the polymerase used? Do mammalian polymerase plus their accessory factors result in different patterns of mutation. 4. What is the mechanism by which base damage is converted to mutation. Our proposal was based on utilization of an in vitro system in which mutations generated by the in vitro copying of a reporter gene sequence could be readily scored.

  16. Total scalp radiation using image-guided IMRT for progressive cutaneous T cell lymphoma.

    PubMed

    Samant, R S; Fox, G W; Gerig, L H; Montgomery, L A; Allan, D S

    2009-06-01

    Modern radiotherapy has advanced dramatically over the past decade and it is now possible to focus radiotherapy with extreme precision. This allows the radiation dose to be targeted to the area(s) of tumour while sparing adjacent normal tissues even in seemingly complicated and difficult parts of the body. The case report presented here will illustrate how it is possible to irradiate the entire scalp for extensive cutaneous T cell lymphoma while minimising radiotherapy to the underlying brain, orbits and other critical structures.

  17. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    SciTech Connect

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  18. Progress towards a more predictive model for hohlraum radiation drive and symmetry

    NASA Astrophysics Data System (ADS)

    Jones, Ogden

    2016-10-01

    The high flux model (HFM) was first developed to match emission levels observed from Au spheres illuminated symmetrically at the UR-LLE OMEGA laser. It utilizes a modern non-LTE atomic physics model and an electron thermal flux limiter of 0.15 or a non-local electron transport model. Shortly thereafter, the HFM was also found to better match the radiation drive observed through the laser entrance hole of laser-heated vacuum hohlraums on the NIF. Subsequent capsule implosion experiments driven by hohlraums filled with 1-1.6 mg/cc of He, having case-to-capsule ratios of 2.6, and pulse lengths 15-20 ns have been characterized by relatively large amounts of laser backscatter losses (up to 18% of the input laser energy). They have also utilized cross beam energy transfer (CBET) to transfer power to the lasers depositing energy near the hohlraum waist. When the HFM is applied to these experiments, the hohlraum x-ray drive is over-predicted by 20-30% during peak laser power, and the drive symmetry cannot be matched without making ad hoc corrections. More recent experiments using hohlraum fills from 0-0.6 mg/cc He, case-to-capsule ratios 3-4, and pulse lengths 6-10 ns have little or no CBET or backscatter and are in better agreement with calculations using the HFM, although discrepancies remain. Uncertainties remaining in the computational models of emissivity, laser absorption, heat transport, etc. used in our hydrodynamic codes can significantly affect predictions. In this work we test various physically-plausible adjustments or alternatives to these models in order to find a more predictive model for radiation drive in the regime with little or no backscatter or CBET. We utilize measurements of the radiation drive, shape and trajectory of the imploding shell, shape of the stagnated hot spot, and bang time in capsule implosions and spectroscopic measurements of the hohlraum plasma conditions to compare against high resolution hydrodynamic calculations using the various

  19. Improved Cloud-Radiation Parameterization for GCMs through the ARM Program. Final Progress Report

    SciTech Connect

    Kiehl, J. T.

    2004-03-31

    Climate sensitivity is an important determinant of climate change. In terms of global climate response, climate sensitivity determines the magnitude of climate change due to radiative forcings by greenhouse gases. The IPCC reports have pointed out that much of the uncertainty in climate projections can be attributed to the disparity in modeled climate sensitivity. Thus, it is imperative to understand the magnitude of climate sensitivity for a given model, and an understanding of what role physical processes play in determining the models particular climate sensitivity.

  20. An improved method for producing radiation hybrids applied to human chromosome 19. Technical progress report

    SciTech Connect

    Jackson, C.L.; Mark, H.F.L.

    1992-11-01

    Using radiation hybrids from a monochromosomal microcell hybrid containing human chromosome 19 as its only human component (PK87-19), we have initiated analysis of a panel of hybrids for markers in known locations on human chromosome 19. Also begun was a fluorescent in situ hybridization analysis of the hybrid cell lines using biotinylated total human DNA as a hybridization probe to metaphase chromosomes prepared from the hybrids cell lines. We are analyzing our panel of 94 hybrids for additional markers obtained from the literature, or the genome data base as well as to complete the analysis of any hybrids not yet scored for the markers iii the table. The hybrid panel has been tested for apolipoprotein C{sub 2} for the radiation hybrids for D19Sl77 (mfd 120), D19Sl78 (mfd 139) and for HRC (histidine rich calcium binding protein). In addition we have also analyzed for the presence of slow troponin 1 (TNNT1) and GPI (glucose phosphate isomerase).

  1. Progress Toward Rice Seed OMICS in Low-Level Gamma Radiation Environment in Iitate Village, Fukushima.

    PubMed

    Rakwal, Randeep; Hayashi, Gohei; Shibato, Junko; Deepak, Saligrama A; Gundimeda, Seetaramanjaneyulu; Simha, Upendra; Padmanaban, Arunkumar; Gupta, Ravi; Han, Sang-Ik; Kim, Sun Tae; Kubo, Akihiro; Imanaka, Tetsuji; Fukumoto, Manabu; Agrawal, Ganesh Kumar; Shioda, Seiji

    2017-09-11

    Here, we present an update on the next level of experiments studying the impact of the gamma radiation environment, created post-March, 2011 nuclear accident at Fukushima Daiichi nuclear power plant, on rice plant and its next generation - the seed. Japonica-type rice (Oryza sativa L. cv. Koshihikari) plant was exposed to low-level gamma radiation (~4 μSv/h) in the contaminated Iitate Farm field in Iitate village (Fukushima). Seeds were harvested from these plants at maturity, and serve as the treated group. For control group, seeds (cv. Koshihikari) were harvested from rice grown in clean soil in Soma city, adjacent to Iitate village, in Fukushima. Focusing on the multi-omics approach, we have investigated the dry mature rice seed transcriptome, proteome and metabolome following cultivation of rice in the radionuclide contaminated soil and compared it with the control group seed (non-radioactive field-soil environment). This update paper presents an overview of both the multi-omics approach/technologies and the first findings on how rice seed has changed or adapted its biology to the low-level radioactive environment. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Radiation

    NASA Image and Video Library

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  3. Ionizing radiation induced catalysis on metal oxide particles. 1998 annual progress report

    SciTech Connect

    Fryberger, T.; Chambers, S.A.; Daschbach, J.L.; Henderson, M.A.; Peden, C.H.F.; Su, Y.; Wang, Y.

    1998-06-01

    'High-level radioactive waste storage tanks within DOE sites contain significant amounts of organic components (solid and liquid phases) in the form of solvents, extractants, complexing agents, process chemicals, cleaning agents and a variety of miscellaneous compounds. These organics pose several safety and pretreatment concerns, particularly for the Hanford tank waste. Remediation technologies are needed that significantly reduce the amounts of problem organics without resulting in toxic or flammable gas emissions, and without requiring thermal treatments. These restrictions pose serious technological barriers for current organic destruction methods which utilize oxidation achieved by thermal or chemical activation. This project focuses on using ionizing radiation (a,b,g) to catalytically destroy organics over oxide materials through reduction/oxidation (redox) chemistry resulting from electron-hole (e{sup -}/h{sup +}) pair generation. Conceptually this process is an extension of visible and near-UV photocatalytic processes known to occur at the interfaces of narrow bandgap semiconductors in both solution and gas phases. In these processes, an electron is excited across the energy gap between the filled and empty states in the semiconductor. The excited electron does reductive chemistry and the hole (where the electron was excited from) does oxidative chemistry. The energy separation between the hole and the excited electron reflects the redox capability of the e{sup -}/h{sup +} pair, and is dictated by the energy of the absorbed photon and the bandgap of the material. The use of ionizing radiation overcomes optical transparency limitations associated with visible and near-UV illumination (g-rays penetrate much farther into a solution than UV/Vis light), and permits the use of wider bandgap materials (such as ZrO{sub 2}) which possess potentially greater redox capabilities than those with narrow bandgap materials. Experiments have been aimed at understanding the

  4. Ionizing radiation induced catalysis on metal oxide particles. 1997 annual progress report

    SciTech Connect

    Fryberger, T.A.

    1997-06-01

    'This project focuses on a novel approach for destroying organics found in high-level mixed waste prevalent at DOE sites. In this project the authors propose that organics can be destroyed by utilizing reduction/oxidation (redox) chemistry resulting from electron-hole (e{sup -}/h{sup +}) pairs generated in stable, wide bandgap semiconductors via interactions with ionizing radiation ({alpha}, {beta}, {gamma}). Conceptually this process is an extension of visible and near-UV photocatalytic processes known to occur at the interfaces of narrow bandgap semiconductors in both solution and gas phases. In these processes, an electron is excited across the energy gap between the filled and empty states in the semiconductor. The excited electron does reductive chemistry and the hole (the point from which the electron was excited) does oxidative chemistry. The energy separation between the hole and the excited electron reflects the redox capability of the e{sup -}/h{sup +} pair, and is dictated by the energy of the absorbed photon and the bandgap of the material. The use of ionizing radiation has advantages in that it (1) overcomes optical transparency limitations associated with visible and near-UV illumination (y-rays penetrate much farther into a solution than UV/Vis light), and (2) permits the use of wider bandgap materials (such as ZrO{sub 2}), which possess potentially greater redox capabilities than those with narrow bandgap materials. Planned experiments are aimed at extending the body of knowledge about e{sup -}/h{sup +} pair chemistry of semiconducting metal oxide (MO) materials by examining the influence of surface structure, defects, and dopants on the photocatalytic activity of narrow bandgap materials (TiO{sub 2}), and by expanding these studies to wider bandgap materials (ZrO{sub 2}) that are virtually unexplored in terms of their e{sup -}/h{sup +} pair chemistry. Experiments are being conducted in three areas: (1) g-radiocatalysis of reactant-colloidal metal

  5. The oncogenic action of ionizing radiation on rat skin. Final progress report, May 1, 1990--April 30, 1992

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1992-12-31

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/{mu}), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of {sup 14}C-thymidine. The return of these cells to S-phase a second time was detected by a second label ({sup 3}H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The {sup 14}C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with {sup 14}C increased after 42 hr and remained relatively constant thereafter.

  6. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  7. The investigation of electron-ion radiative and dielectronic recombination in high-temperature plasmas. Progress report for 1992--1993

    SciTech Connect

    Jacobs, V.L.

    1993-12-31

    This paper describes progress covered in the following six areas: (1) unified description of radiative and dielectronic recombination; (2) calculations of specific dielectronic satellite transitions; (3) Modeling of K{sub {alpha}} dielectronic satellite spectra; (4) effects of electron collisions and electric fields; (5) density-sensitive dielectronic satellite lines; and (6) polarization of atomic radiative emission in crossed electric and magnetic fields. Also discussed are proposed investigations and coordination with current tokamak observations.

  8. Progress on Updating the 1961-1990 National Solar Radiation Database

    NASA Technical Reports Server (NTRS)

    Renne, D.; Wilcox, S.; Marion, B.; George, R.; Myers, D.

    2003-01-01

    The 1961-1990 National Solar Radiation Data Base (NSRDB) provides a 30-year climate summary and solar characterization of 239 locations throughout the United States. Over the past several years, the National Renewable Energy Laboratory (NREL) has received numerous inquiries from a range of constituents as to whether an update of the database to include the 1990s will be developed. However, there are formidable challenges to creating an update of the serially complete station-specific database for the 1971-2000 period. During the 1990s, the National Weather Service changed its observational procedures from a human-based to an automated system, resulting in the loss of important input variables to the model used to complete the 1961-1990 NSRDB. As a result, alternative techniques are required for an update that covers the 1990s. This paper examines several alternative approaches for creating this update and describes preliminary NREL plans for implementing the update.

  9. Mixed radiation field dosimetry utilizing Nuclear Quadrupole Resonance. Technical progress report

    SciTech Connect

    Hintenlang, D.

    1991-12-31

    This project has proposed to develop a novel dosimetry system that is capable of directly evaluating the chemical/biological damage caused by neutrons, photons, or both in a single measurement. The dosimeter itself will consist of a small volume of biological equivalent material that is probed for radiation damage with Nuclear Quadrupole Resonance (NQR) techniques. NQR has previously been utilized as a sensitive probe of structural and chemical changes at the molecular level for a variety of organic compounds. The biological equivalent materials used in this study will not only have a density similar to tissue (tissue equivalent) but will have the same atomic components as tissue. This is a significant requirement if the important neutron interactions that occur in tissue are to occur in the dosimeter as well. The overall objective of this study is to investigate a methodology to perform accurate mixed-field (neutron and photon) dosimetry for biological systems.

  10. Progress on Updating the 1961-1990 National Solar Radiation Database

    NASA Technical Reports Server (NTRS)

    Renne, D.; Wilcox, S.; Marion, B.; George, R.; Myers, D.

    2003-01-01

    The 1961-1990 National Solar Radiation Data Base (NSRDB) provides a 30-year climate summary and solar characterization of 239 locations throughout the United States. Over the past several years, the National Renewable Energy Laboratory (NREL) has received numerous inquiries from a range of constituents as to whether an update of the database to include the 1990s will be developed. However, there are formidable challenges to creating an update of the serially complete station-specific database for the 1971-2000 period. During the 1990s, the National Weather Service changed its observational procedures from a human-based to an automated system, resulting in the loss of important input variables to the model used to complete the 1961-1990 NSRDB. As a result, alternative techniques are required for an update that covers the 1990s. This paper examines several alternative approaches for creating this update and describes preliminary NREL plans for implementing the update.

  11. Progress towards a more predictive model for hohlraum radiation drive and symmetry

    PubMed Central

    Jones, O. S.; Suter, L. J.; Scott, H. A.; Hansen, S. B.; Liedahl, D. A.; Mauche, C. W.; Moore, A. S.; Rosen, M. D.; Salmonson, J. D.; Turnbull, D. P.

    2017-01-01

    For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole. PMID:28611532

  12. Progress towards a more predictive model for hohlraum radiation drive and symmetry

    NASA Astrophysics Data System (ADS)

    Jones, O. S.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Farmer, W. A.; Hansen, S. B.; Liedahl, D. A.; Mauche, C. W.; Moore, A. S.; Rosen, M. D.; Salmonson, J. D.; Strozzi, D. J.; Thomas, C. A.; Turnbull, D. P.

    2017-05-01

    For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

  13. Progress towards a more predictive model for hohlraum radiation drive and symmetry.

    PubMed

    Jones, O S; Suter, L J; Scott, H A; Barrios, M A; Farmer, W A; Hansen, S B; Liedahl, D A; Mauche, C W; Moore, A S; Rosen, M D; Salmonson, J D; Strozzi, D J; Thomas, C A; Turnbull, D P

    2017-05-01

    For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

  14. Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study.

    PubMed

    Bagnoli, Marina; Canevari, Silvana; Califano, Daniela; Losito, Simona; Maio, Massimo Di; Raspagliesi, Francesco; Carcangiu, Maria Luisa; Toffoli, Giuseppe; Cecchin, Erika; Sorio, Roberto; Canzonieri, Vincenzo; Russo, Daniela; Scognamiglio, Giosué; Chiappetta, Gennaro; Baldassarre, Gustavo; Lorusso, Domenica; Scambia, Giovanni; Zannoni, Gian Franco; Savarese, Antonella; Carosi, Mariantonia; Scollo, Paolo; Breda, Enrico; Murgia, Viviana; Perrone, Francesco; Pignata, Sandro; De Cecco, Loris; Mezzanzanica, Delia

    2016-08-01

    Risk of relapse or progression remains high in the treatment of most patients with epithelial ovarian cancer, and development of a molecular predictor could be a valuable tool for stratification of patients by risk. We aimed to develop a microRNA (miRNA)-based molecular classifier that can predict risk of progression or relapse in patients with epithelial ovarian cancer. We analysed miRNA expression profiles in three cohorts of samples collected at diagnosis. We used 179 samples from a Multicenter Italian Trial in Ovarian cancer trial (cohort OC179) to develop the model and 263 samples from two cancer centres (cohort OC263) and 452 samples from The Cancer Genome Atlas epithelial ovarian cancer series (cohort OC452) to validate the model. The primary clinical endpoint was progression-free survival, and we adapted a semi-supervised prediction method to the miRNA expression profile of OC179 to identify miRNAs that predict risk of progression. We assessed the independent prognostic role of the model using multivariable analysis with a Cox regression model. We identified 35 miRNAs that predicted risk of progression or relapse and used them to create a prognostic model, the 35-miRNA-based predictor of Risk of Ovarian Cancer Relapse or progression (MiROvaR). MiROvaR was able to classify patients in OC179 into a high-risk group (89 patients; median progression-free survival 18 months [95% CI 15-22]) and a low-risk group (90 patients; median progression-free survival 38 months [24-not estimable]; hazard ratio [HR] 1·85 [1·29-2·64], p=0·00082). MiROvaR was a significant predictor of progression in the two validation sets (OC263 HR 3·16, 95% CI 2·33-4·29, p<0·0001; OC452 HR 1·39, 95% CI 1·11-1·74, p=0·0047) and maintained its independent prognostic effect when adjusted for relevant clinical covariates using multivariable analyses (OC179: adjusted HR 1·48, 95% CI 1·03-2·13, p=0·036; OC263: adjusted HR 3·09 [2·24-4·28], p<0·0001; and OC452: HR 1·41 [1·11

  15. Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression

    PubMed Central

    Biswas, Swati; Guix, Marta; Rinehart, Cammie; Dugger, Teresa C.; Chytil, Anna; Moses, Harold L.; Freeman, Michael L.; Arteaga, Carlos L.

    2007-01-01

    We investigated whether TGF-β induced by anticancer therapies accelerates tumor progression. Using the MMTV/PyVmT transgenic model of metastatic breast cancer, we show that administration of ionizing radiation or doxorubicin caused increased circulating levels of TGF-β1 as well as increased circulating tumor cells and lung metastases. These effects were abrogated by administration of a neutralizing pan–TGF-β antibody. Circulating polyomavirus middle T antigen–expressing tumor cells did not grow ex vivo in the presence of the TGF-β antibody, suggesting autocrine TGF-β is a survival signal in these cells. Radiation failed to enhance lung metastases in mice bearing tumors that lack the type II TGF-β receptor, suggesting that the increase in metastases was due, at least in part, to a direct effect of TGF-β on the cancer cells. These data implicate TGF-β induced by anticancer therapy as a prometastatic signal in tumor cells and provide a rationale for the simultaneous use of these therapies in combination with TGF-β inhibitors. PMID:17415413

  16. Strategy to Find Molecular Signatures in a Small Series of Rare Cancers: Validation for Radiation-Induced Breast and Thyroid Tumors

    PubMed Central

    Lefevre, Emilie; Benhabiles, Nora; Hofman, Paul; Schlumberger, Martin; Chevillard, Sylvie

    2011-01-01

    Methods of classification using transcriptome analysis for case-by-case tumor diagnosis could be limited by tumor heterogeneity and masked information in the gene expression profiles, especially as the number of tumors is small. We propose a new strategy, EMts_2PCA, based on: 1) The identification of a gene expression signature with a great potential for discriminating subgroups of tumors (EMts stage), which includes: a) a learning step, based on an expectation-maximization (EM) algorithm, to select sets of candidate genes whose expressions discriminate two subgroups, b) a training step to select from the sets of candidate genes those with the highest potential to classify training tumors, c) the compilation of genes selected during the training step, and standardization of their levels of expression to finalize the signature. 2) The predictive classification of independent prospective tumors, according to the two subgroups of interest, by the definition of a validation space based on a two-step principal component analysis (2PCA). The present method was evaluated by classifying three series of tumors and its robustness, in terms of tumor clustering and prediction, was further compared with that of three classification methods (Gene expression bar code, Top-scoring pair(s) and a PCA-based method). Results showed that EMts_2PCA was very efficient in tumor classification and prediction, with scores always better that those obtained by the most common methods of tumor clustering. Specifically, EMts_2PCA permitted identification of highly discriminating molecular signatures to differentiate post-Chernobyl thyroid or post-radiotherapy breast tumors from their sporadic counterparts that were previously unsuccessfully classified or classified with errors. PMID:21853153

  17. Progressive alterations of central nervous system structure and function are caused by charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, G. A.; Cns Nscor Team

    A new NASA-sponsored program project (NSCOR) has been organized to conduct the first comprehensive investigation of the response of a mammalian brain structure (mouse hippocampus) to charged-particle radiation. The NSCOR collaboration has three main goals. The first goal is to quantify the time- and dose-dependent changes in cellular composition and architecture. By using stereology on preserved brains, subsets of cells (neurons, glia, endothelia and stem cells) will be quantified out to 2 years after irradiation with accelerated protons and iron ions. To further characterize changes in vasculature architecture a polymer infusion technique will be used to produce a three-dimensional vasculature cast that then will be mapped by x-ray tomography to determine topological changes, and microscopic infarcts associated with amyloid protein deposits. The 2nd goal is to quantify hippocampal function(s). The primary measurement of function will be extracellular electrical recordings from hippocampal ``brain slices'' that reflect underlying functions such as connectivity, action potential generation & conduction, and neurotransmitter formation, secretion, and uptake. Individual nerve membrane properties will be assessed by ``patch clamp'' recordings. Two non-invasive methods will evaluate brain function and the evolution of changes with time. Electroencephalograms will map macroscopic spontaneous electrical activity while two state-of-the-art MRI magnetization sequences will visualize and quantify local oxygen utilization and white matter fiber tracts structural integrity. To quantify the brains' overall performance under stress, animals will receive a systemic shock mediated by the immune system in the form of a reaction to lipopolysaccharide. A second strategy will employ the APP23 transgenic mouse that develops the pathological changes associated with Alzheimer's disease. Measurements of irradiated mice will determine whether radiation exposure affects the latency and

  18. Interaction of radiation with matter. Research progress report, November 1, 1979-October 31, 1980

    SciTech Connect

    1980-09-01

    The mechanisms of dissipation of energy in organic and inorganic materials, and the application of the technique developed to a study of selected problems of environmental concern in the production of energy from fossil fuels were studied. In the Inorganic Phase of the work the research involves (1) measurements of cross-sections for K and L-shell ionization processes for heavy projectiles in the low velocity region, (2) experimental tests of target dependence of the effective-charge theory for light projectiles, (3) theoretical studies on the energy loss of swift particles in plasmas over a broad density and temperature range. The organic phase of the work falls into a series of closely related areas, all derived from a study of the interaction of radiation with matter. (1) New techniques for the study of small particulates (approx. 1..mu..); composition, mass (to +-1 pg) and charge (+-1 electron) can be determined. (2) External photoelectric effects as a tool in arriving at the electronic structure of organic crystals. (3) The interaction of water with charge carriers in organic crystals, producing reactive chemical species, such as Oh and HSO/sub 3/ radicals. (4) Mechanisms of interaction of air-pollutant polycyclic aromatic carcinogens with DNA and the study of the conformation of the adducts.

  19. Human genetic marker for resistance to radiations and chemicals. 1997 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1997-01-01

    'The specific aims listed in the original application will essentially be pursued as indicated. The major goal of the grant is to characterize a human homologue of the fission yeast Schizosaccharomyces pombe rad9 checkpoint control, radioresistance and chemoresistance gene, which is called HRAD9. The purpose is to gain information about the gene, including its structure and function, such that it can potentially be developed as a human genetic marker indicative of hypersensitivity to the deleterious effects associated with exposure to radiations or certain chemicals. The specific aims are divided into two major sections. The first section includes experiments designed to characterize the HRAD9 gene at the molecular level. Specifically, the genomic version of the gene will be isolated and its DNA sequence determined, in vitro mutagenesis will be used to assess structure/function relationships, and expression in cells and tissues will be examined. The second major set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer. For this aim, human HRAD9 mutants will be constructed and characterized. In addition, the status of HRAD9 in cancer cells and tissues will be assessed.'

  20. ONERA's progress in modelling and specifying the Earth's radiation belts dynamics

    NASA Astrophysics Data System (ADS)

    Maget, Vincent; Bourdarie, Sebastien; Boscher, Daniel; Lazaro, Didier; Sicard-Piet, Angelica; Grimald, Sandrine Rochel

    In the recent years, ONERA has been involved in two complementary FP7 projects: SPACECAST and MAARBLE projects. Thanks to these European grants, and to the continuous support of CNES (CRATERRE project), many improvements have been conducted in: 1) modelling the processes driving the radiation belts (boundary conditions, radial diffusion, wave-particle interactions, drop-outs modelling), 2) data analysis and, 3) data assimilation. This talk aims at presenting these improvements as well as the remaining weaknesses with comparison with recent data sets such as the Van Allen Probes observations. We will highlight what are the upcoming challenges according to us and what are the key directions to continue exploring in order to improve current specification models. SPACECAST and MAARBLE have received fundings from the European Community’s Seventh Framework Programme (FP7-SPACE-.2010-1, SP1 Cooperation, Collaborative project) under grant agreement n262468 and n284520 respectively. This paper reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained therein. The CRATERRE project has received fundings from CNES.

  1. Radiation damage and repair in cells and cell components. Progress report, 1980-1981

    SciTech Connect

    Not Available

    1981-01-01

    One aim has been to see whether, in E.coli, the various phenomena which were ascribed to the induction of the recA gene produce (p-recA) are really manifestations of one process. It was concluded that this is true for septum inhibition, Weigle-reactivation, induced inhibition of post radiation DNA degradation, and with the additional concept of a premutational lesion, for uv mutagenesis. lambda prophage induction may perhaps be brought into line with p-recA induction with the consideration of the additional secondary aspects of (a) activation of p-recA to make it enzymatically active and (b) the need to have the concentration of activated p-recA high enough to keep up with the rate of production of lambda-repressors. Revertants seem to be in more than one class and two of these can not easily be explained by the idea that p-recA contains an error-prone repair enzyme that makes errors at mutagenic lesions.

  2. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1992--June 30, 1993

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1993-06-30

    This project is concerned with the mechanisms by which polynuclear aromatic (PNA) compounds on the one hand, and ionizing radiation on the other, cause damage to DNA. PNA compounds constitute an important class of environmental pollutants derived from energy-related sources which, upon metabolic activation to diolepoxide derivatives, produce bulky PNA-DNA lesions interfere with the normal DNA replication and transcription processes, and give rise to mutations and the initiation of tumors. Chiral and other stereochemical effects play a key role in determining the biological effects of a given PNA diol epoxide and the potentially mutagenic lesions which are formed. New and efficient methods for synthesizing stereochemically pure and precisely positioned PNA diol epoxide-DNA lesions in small DNA fragments are reported here. We have elucidated the structures of three stereoisomeric benzo[a]pyrene diol epoxide-DNA adducts. How these adducts affect on DNA polymerase fidelity, transcription, and DNA repair are currently being investigated with respect to detailed structure-biological activity correlations. Spectroscopic techniques such as circular dichroism, fluorescence, and photoionization play an important role in the characterizations of the PNA adducts. A new method was developed for measuring the lifetimes as well as the energies of picosecond duration electronically excited states. Using this technique, it is proposed that short-lived (15 ps) charge-transfer (CT) states in the PNA compound tetracene are activated by a 20 ps laser pulse; an unusual external photoemission echo do to the recombination of CT states is observed 85 ps after the pulse.

  3. Signature simulation of mixed materials

    NASA Astrophysics Data System (ADS)

    Carson, Tyler D.; Salvaggio, Carl

    2015-05-01

    Soil target signatures vary due to geometry, chemical composition, and scene radiometry. Although radiative transfer models and function-fit physical models may describe certain targets in limited depth, the ability to incorporate all three signature variables is difficult. This work describes a method to simulate the transient signatures of soil by first considering scene geometry synthetically created using 3D physics engines. Through the assignment of spectral data from the Nonconventional Exploitation Factors Data System (NEFDS), the synthetic scene is represented as a physical mixture of particles. Finally, first principles radiometry is modeled using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. With DIRSIG, radiometric and sensing conditions were systematically manipulated to produce and record goniometric signatures. The implementation of this virtual goniometer allows users to examine how a target bidirectional reflectance distribution function (BRDF) will change with geometry, composition, and illumination direction. By using 3D computer graphics models, this process does not require geometric assumptions that are native to many radiative transfer models. It delivers a discrete method to circumnavigate the significant cost of time and treasure associated with hardware-based goniometric data collections.

  4. Progressive cone beam CT dose control in image-guided radiation therapy

    PubMed Central

    Yan, Hao; Zhen, Xin; Cerviño, Laura; Jiang, Steve B.; Jia, Xun

    2013-01-01

    Purpose: Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. Methods: A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction. The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. Results: In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. Conclusions: PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality. PMID:23718579

  5. Progressive Focal Gray Matter Volume Loss in a Former High School Football Player: A Possible Magnetic Resonance Imaging Volumetric Signature for Chronic Traumatic Encephalopathy.

    PubMed

    Raji, Cyrus A; Merrill, David A; Barrio, Jorge R; Omalu, Bennet; Small, Gary W

    2016-10-01

    Here a case is presented of a 51-year-old former high school football player with multiple concussions, including one episode with loss of consciousness. The patient experienced 6 years of cognitive and mood decline, and his wife corroborated increasing memory loss, attentional difficulties, and depressed mood without suicidal ideation. He had been unable to maintain full-time employment because of progressive decline. Based on his presentation, he had been previously diagnosed with attention deficit hyperactivity disorder and bipolar disorder, type II. Neuropsychological tests indicated domain-specific cognitive impairment, and longitudinal volumetric magnetic resonance imaging (MRI) of the brain showed progressive brainstem, diencephalic, and frontal lobe atrophy. This regional volume loss correlated with the increased signal seen on tau and amyloid imaging (FDDNP-PET scan) of a separate case of suspected chronic traumatic encephalopathy (CTE). Visual assessment of the MRI also showed evidence of old petechial hemorrhages in the frontal and temporal-parietal lobe white matter. This case raises the possibility of distinct quantitative and visual brain MRI findings in suspected CTE. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Significance Analysis of Prognostic Signatures

    PubMed Central

    Beck, Andrew H.; Knoblauch, Nicholas W.; Hefti, Marco M.; Kaplan, Jennifer; Schnitt, Stuart J.; Culhane, Aedin C.; Schroeder, Markus S.; Risch, Thomas; Quackenbush, John; Haibe-Kains, Benjamin

    2013-01-01

    A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that “random” gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated

  7. Effects of Concurrent Topotecan and Radiation on 6-Month Progression-Free Survival in the Primary Treatment of Glioblastoma Multiforme

    SciTech Connect

    Grabenbauer, Gerhard G. Gerber, Klaus-Dieter; Ganslandt, Oliver; Richter, Andrea M.S.; Klautke, Gunther; Birkmann, Josef; Meyer, Martin

    2009-09-01

    Purpose: To report a prospective, randomized, Phase II trial of radiotherapy with and without topotecan for the treatment of glioblastoma. Patients and Methods: Inclusion criteria were histology of glioblastoma, age <60 years, and Eastern Cooperative Oncology Group status 0-2. Patients were stratified according to recursive partitioning analysis class, center, and enzyme-inducing antiepileptic medication. Magnetic resonance imaging scans, neurologic examinations, and quality of life assessments were done every 3 months. The primary endpoint was the progression-free survival rate at 6 months (6-m-PFS). This trial was designed as an exploratory, randomized, Phase II trial with an accrual of 140 patients to detect a difference of 15-20% in 6-m-PFS. An interim analysis was scheduled after 60 patients. Median follow-up was 14 months (range, 1-50 months). Results: The 6-m-PFS was 56% and 40% for patients with and without topotecan, respectively. This benefit disappeared within 2 months. Mean (range) progression-free survival time was 8 (5-10.9) months and 6.7 (4-9.5) months for patients with and without topotecan, respectively. The corresponding 2-year-overall survival rates were 28% vs. 22% (nonsignificant difference), and mean (range) survival time was 20.7 (13.9-27.5) months vs. 18.9 (13.5-24.4) months (nonsignificant difference). Conclusions: A slight but measurable increase of 16% was detected in 6-m-PFS for patients receiving topotecan with radiation as compared with patients having radiotherapy alone. These data might support further investigations into topotecan for the treatment of glioblastoma.

  8. The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression

    PubMed Central

    Hughes, Simon; Yoshimoto, Maisa; Beheshti, Ben; Houlston, Richard S; Squire, Jeremy A; Evans, Andrew

    2006-01-01

    Background Prostate cancer (CaP) is a disease with multifactorial etiology that includes both genetic and environmental components. The knowledge of the genetic basis of CaP has increased over the past years, mainly in the pathways that underlie tumourigenesis, progression and drug resistance. The vast majority of cases of CaP are adenocarcinomas that likely develop through a pre-malignant lesion and high-grade prostatic intraepithelial neoplasia (HPIN). Histologically, CaP is a heterogeneous disease consisting of multiple, discrete foci of invasive carcinoma and HPIN that are commonly interspersed with benign glands and stroma. This admixture with benign tissue can complicate genomic analyses in CaP. Specifically, when DNA is bulk-extracted the genetic information obtained represents an average for all of the cells within the sample. Results To minimize this problem, we obtained DNA from individual foci of HPIN and CaP by laser capture microdissection (LCM). The small quantities of DNA thus obtained were then amplified by means of multiple-displacement amplification (MDA), for use in genomic DNA array comparative genomic hybridisation (gaCGH). Recurrent chromosome copy number abnormalities (CNAs) were observed in both HPIN and CaP. In HPIN, chromosomal imbalances involving chromosome 8 where common, whilst in CaP additional chromosomal changes involving chromosomes 6, 10, 13 and 16 where also frequently observed. Conclusion An overall increase in chromosomal changes was seen in CaP compared to HPIN, suggesting a universal breakdown in chromosomal stability. The accumulation of CNAs, which occurs during this process is non-random and may indicate chromosomal regions important in tumourigenesis. It is therefore likely that the alterations in copy number are part of a programmed cycle of events that promote tumour development, progression and survival. The combination of LCM, MDA and gaCGH is ideally suited for the identification of CNAs from small cell clusters and

  9. Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations.

    PubMed

    Klistorner, A; Graham, E C; Yiannikas, C; Barnett, M; Parratt, J; Garrick, R; Wang, C; You, Y; Graham, S L

    2017-08-10

    The mechanism of retinal ganglion cell and retinal nerve fiber layer loss in multiple sclerosis (MS) remains unknown. This study aimed to investigate the association between temporal retinal nerve fiber layer (tRNFL) thinning and disease activity in the brain determined by T2 lesions on magnetic resonance imaging (MRI). Fifty-five consecutive patients with relapsing-remitting MS and 25 controls were enrolled. All patients underwent annual optical coherence tomography and high-resolution MRI scans for tRNFL thickness and brain lesion volume analysis, respectively. Significant tRNFL thickness reduction was observed over the 3-year follow-up period at a relatively constant rate (1.02 μm/year). Thinning of tRNFL fibers was more prominent in younger patients (P = 0.01). The tRNFL loss was associated with new MRI lesions in the optic radiations (ORs). There was significantly greater tRNFL thinning in patients with new lesional activity in the ORs compared with patients with new lesions outside the ORs (P = 0.009). This study supports the notion that retrograde transneuronal degeneration caused by OR lesions might play a role in progressive retinal nerve fiber layer loss. In addition, the results of the study also indicate that the disease-related neurodegenerative changes in the retina start much earlier than the clinical diagnosis of MS. © 2017 EAN.

  10. Genomic signatures of divergent selection and speciation patterns in a 'natural experiment', the young parallel radiations of Nicaraguan crater lake cichlid fishes.

    PubMed

    Kautt, Andreas F; Elmer, Kathryn R; Meyer, Axel

    2012-10-01

    Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome-wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ∼ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic-benthic axis in both radiations. © 2012 Blackwell Publishing Ltd.

  11. High order statistical signatures from source-driven measurements of subcritical fissile systems

    NASA Astrophysics Data System (ADS)

    Mattingly, John Kelly

    1998-11-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements.

  12. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    PubMed

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p < 0.05). The percentage of MW-exposed cells in G1 phase was significantly higher than the percentage of control cells in G1 phase. MW radiation caused cell cycle arrest in G1 phase. These results showed that 2.1 GHz W-CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression.

  13. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.

    PubMed

    Mitri, F G; Fellah, Z E A

    2011-07-01

    Previous works investigating the radiation force of diverging spherical progressive waves incident upon spherical particles have demonstrated the direction of reversal of the force when the particle is subjected to a curved wave-front. In this communication, the analysis is extended to the case of diverging cylindrical progressive waves incident upon a rigid or a soft cylinder in a non-viscous fluid with explicit calculations for the radiation force function (which is the radiation force per unit energy density and unit cross-sectional surface) not shown in [F.G. Mitri, Ultrasonics 50 (2010) 620-627]. A closed-form solution presented previously in [F.G. Mitri, Ultrasonics 50 (2010) 620-627] is used to plot the radiation force function with particular emphasis on the difference from the results of incident plane progressive waves versus the size parameter ka (k is the wave number and a is the cylinder's radius) and the distance of the cylinder from the acoustic source r(0). Radiation force function calculations for the rigid cylinder unexpectedly reveal that under specific conditions determined by the frequency of the acoustic field, the radius of the cylinder, as well as the distance to the acoustic source, the force becomes attractive (negative force). In addition, the numerical results show that the radiation force on a rigid cylinder does not generally obey the inverse-distance law with respect to the distance from the source. These results suggest that it may be possible, under specific conditions, to pull a cylindrical structure back toward the acoustic source using progressive cylindrical diverging waves. They may also provide a means to predict the radiation force required to manipulate non-destructively a single cylindrical structure. Potential applications include the design of a new generation of acoustic tweezers operating using a single beam of progressive waves (in contrast to the traditional version of acoustical tweezers in which an acoustic standing

  14. Determination of local radiative properties in coal-fired flames. Technical progress report, September 15, 1987--September 15, 1988

    SciTech Connect

    Menguec, M.P.; Agarwal, B.; Bush, M.; Dsa, D.; Subramaniam, S.

    1988-12-31

    Recently, an extensive, in-depth review of the modeling of radiation heat transfer in combustion chambers has been prepared (Viskanta and Menguc, 1987); therefore, there is no need to repeat that material here. It is already known that the most important missing link in the prediction of radiation heat transfer in combustion systems is the lack of detailed information about the optical and physical properties of combustion products (Viskanta and Menguc, 1987). The purpose of this research is to determine the radiative properties of coal particles. Considering the uncertainty in the fundamental optical and physical properties of coal particles, such as complex index of refraction, size, size distribution, and shape, it is difficult to predict the radiative properties of particles using available analytical methods, such as Lorenz-Mie theory. For a better understanding of radiation and radiation/combustion or radiation/turbulence interactions, it is preferable to determine the radiative properties in situ.

  15. Can specific transcriptional regulators assemble a universal cancer signature?

    NASA Astrophysics Data System (ADS)

    Roy, Janine; Isik, Zerrin; Pilarsky, Christian; Schroeder, Michael

    2013-10-01

    Recently, there is a lot of interest in using biomarker signatures derived from gene expression data to predict cancer progression. We assembled signatures of 25 published datasets covering 13 types of cancers. How do these signatures compare with each other? On one hand signatures answering the same biological question should overlap, whereas signatures predicting different cancer types should differ. On the other hand, there could also be a Universal Cancer Signature that is predictive independently of the cancer type. Initially, we generate signatures for all datasets using classical approaches such as t-test and fold change and then, we explore signatures resulting from a network-based method, that applies the random surfer model of Google's PageRank algorithm. We show that the signatures as published by the authors and the signatures generated with classical methods do not overlap - not even for the same cancer type - whereas the network-based signatures strongly overlap. Selecting 10 out of 37 universal cancer genes gives the optimal prediction for all cancers thus taking a first step towards a Universal Cancer Signature. We furthermore analyze and discuss the involved genes in terms of the Hallmarks of cancer and in particular single out SP1, JUN/FOS and NFKB1 and examine their specific role in cancer progression.

  16. Gelam honey attenuated radiation-induced cell death in human diploid fibroblasts by promoting cell cycle progression and inhibiting apoptosis.

    PubMed

    Tengku Ahmad, Tengku Ahbrizal Farizal; Jaafar, Faizul; Jubri, Zakiah; Abdul Rahim, Khairuddin; Rajab, Nor Fadilah; Makpol, Suzana

    2014-03-24

    The interaction between ionizing radiation and substances in cells will induce the production of free radicals. These free radicals inflict damage to important biomolecules such as chromosomes, proteins and lipids which consequently trigger the expression of genes which are involved in protecting the cells or repair the oxidative damages. Honey has been known for its antioxidant properties and was used in medical and cosmetic products. Currently, research on honey is ongoing and diversifying. The aim of this study was to elucidate the role of Gelam honey as a radioprotector in human diploid fibroblast (HDFs) which were exposed to gamma-rays by determining the expression of genes and proteins involved in cell cycle regulation and cell death. Six groups of HDFs were studied viz. untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/ml of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma-rays at the dose rate of 0.25 Gy/min. Our findings showed that, gamma-irradiation at 1 Gy up-regulated ATM, p53, p16ink4a and cyclin D1 genes and subsequently initiated cell cycle arrest at G0/G1 phase and induced apoptosis (p < 0.05). Pre-treatment with Gelam honey however caused down regulation of these genes in irradiated HDFs while no significant changes was observed on the expression of GADD45 and PAK genes. The expression of ATM and p16 proteins was increased in irradiated HDFs but the p53 gene was translated into p73 protein which was also increased in irradiated HDFs. Gelam honey treatment however significantly decreased the expression of ATM, p73, and p16 proteins (p < 0.05) while the expression of cyclin D1 remained unchanged. Analysis on cell cycle profile showed that cells progressed to S phase with less percentage of cells in G0/G1 phase with Gelam honey treatment while apoptosis was inhibited. Gelam honey acts a radioprotector

  17. Gelam honey attenuated radiation-induced cell death in human diploid fibroblasts by promoting cell cycle progression and inhibiting apoptosis

    PubMed Central

    2014-01-01

    Background The interaction between ionizing radiation and substances in cells will induce the production of free radicals. These free radicals inflict damage to important biomolecules such as chromosomes, proteins and lipids which consequently trigger the expression of genes which are involved in protecting the cells or repair the oxidative damages. Honey has been known for its antioxidant properties and was used in medical and cosmetic products. Currently, research on honey is ongoing and diversifying. The aim of this study was to elucidate the role of Gelam honey as a radioprotector in human diploid fibroblast (HDFs) which were exposed to gamma-rays by determining the expression of genes and proteins involved in cell cycle regulation and cell death. Methods Six groups of HDFs were studied viz. untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/ml of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma-rays at the dose rate of 0.25 Gy/min. Results Our findings showed that, gamma-irradiation at 1 Gy up-regulated ATM, p53, p16ink4a and cyclin D1 genes and subsequently initiated cell cycle arrest at G0/G1 phase and induced apoptosis (p < 0.05). Pre-treatment with Gelam honey however caused down regulation of these genes in irradiated HDFs while no significant changes was observed on the expression of GADD45 and PAK genes. The expression of ATM and p16 proteins was increased in irradiated HDFs but the p53 gene was translated into p73 protein which was also increased in irradiated HDFs. Gelam honey treatment however significantly decreased the expression of ATM, p73, and p16 proteins (p < 0.05) while the expression of cyclin D1 remained unchanged. Analysis on cell cycle profile showed that cells progressed to S phase with less percentage of cells in G0/G1 phase with Gelam honey treatment while apoptosis was inhibited. Conclusion

  18. Aircraft plume signature suppression and stealth

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Gao, Jiaobo; Wang, Weina; Wang, Jilong; Xie, Junhu

    2005-01-01

    How to turning down the heat of aircraft infrared picture, how to get stealthy. To make a stealthy aircraft, designers had to consider a lot of key ingredients. This paper mainly introduces aircraft stealthy and discussed the efficiency of aircraft signature suppression. We describe testing process, measure and analyze the characteristics of aerosol scattering and absorption and present testing data of aircraft plume signature suppression. It covers the waveband from 2μm to 14μm. Another, infrared radiation temperature be minimized by a combination of temperature reduction and masking radiation temperature.

  19. Lesson 6: Signature Validation

    EPA Pesticide Factsheets

    Checklist items 13 through 17 are grouped under the Signature Validation Process, and represent CROMERR requirements that the system must satisfy as part of ensuring that electronic signatures it receives are valid.

  20. Microvesicles as a Biomarker for Tumor Progression versus Treatment Effect in Radiation/Temozolomide-Treated Glioblastoma Patients

    PubMed Central

    Koch, Cameron J.; Lustig, Robert A.; Yang, Xiang-Yang; Jenkins, Walter T.; Wolf, Ronald L.; Martinez-Lage, Maria; Desai, Arati; Williams, Dewight; Evans, Sydney M.

    2014-01-01

    The standard of care for glioblastoma (GB) is surgery followed by concurrent radiation therapy (RT) and temozolomide (TMZ) and then adjuvant TMZ. This regime is associated with increased survival but also increased occurrence of equivocal imaging findings, e.g., tumor progression (TP) versus treatment effect (TE), which is also referred to as pseudoprogression (PsP). Equivocal findings make decisions regarding further treatment difficult and often delayed. Because none of the current imaging assays have proven sensitive and specific for differentiation of TP versus TE/PsP, we investigated whether blood-derived microvesicles (MVs) would be a relevant assay. METHODS: 2.8 ml of citrated blood was collected from patients with GB at the time of their RT simulation, at the end of chemoradiation therapy (CRT), and multiple times following treatment. MVs were collected following multiple centrifugations (300g, 2500g, and 15,000g). The pellet from the final spin was analyzed using flow cytometry. A diameter of approximately 300 nm or greater and Pacific Blue–labeled Annexin V positivity were used to identify the MVs reported herein. RESULTS: We analyzed 19 blood samples from 11 patients with GB. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed TP (P = .014). CONCLUSION: These preliminary data suggest that blood analysis for MVs from GB patients receiving CRT may be useful to distinguish TE/PsP from TP. MVs may add clarity to standard imaging for decision making in patients with equivocal imaging findings. PMID:25500085

  1. Microvesicles as a Biomarker for Tumor Progression versus Treatment Effect in Radiation/Temozolomide-Treated Glioblastoma Patients.

    PubMed

    Koch, Cameron J; Lustig, Robert A; Yang, Xiang-Yang; Jenkins, Walter T; Wolf, Ronald L; Martinez-Lage, Maria; Desai, Arati; Williams, Dewight; Evans, Sydney M

    2014-12-01

    The standard of care for glioblastoma (GB) is surgery followed by concurrent radiation therapy (RT) and temozolomide (TMZ) and then adjuvant TMZ. This regime is associated with increased survival but also increased occurrence of equivocal imaging findings, e.g., tumor progression (TP) versus treatment effect (TE), which is also referred to as pseudoprogression (PsP). Equivocal findings make decisions regarding further treatment difficult and often delayed. Because none of the current imaging assays have proven sensitive and specific for differentiation of TP versus TE/PsP, we investigated whether blood-derived microvesicles (MVs) would be a relevant assay. 2.8 ml of citrated blood was collected from patients with GB at the time of their RT simulation, at the end of chemoradiation therapy (CRT), and multiple times following treatment. MVs were collected following multiple centrifugations (300g, 2500g, and 15,000g). The pellet from the final spin was analyzed using flow cytometry. A diameter of approximately 300 nm or greater and Pacific Blue-labeled Annexin V positivity were used to identify the MVs reported herein. We analyzed 19 blood samples from 11 patients with GB. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed TP (P = .014). These preliminary data suggest that blood analysis for MVs from GB patients receiving CRT may be useful to distinguish TE/PsP from TP. MVs may add clarity to standard imaging for decision making in patients with equivocal imaging findings. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  2. Detection of chemical explosives using multiple photon signatures.

    PubMed

    Loschke, K W; Dunn, W L

    2010-01-01

    A template-matching procedure is being investigated for rapid detection of improvised explosive devices at standoff distances. Photon-scattered and photon-induced positron annihilation radiation responses are being studied as a part of a signature-based radiation scanning approach. Back-streaming radiation responses, called signatures, are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosive. Experiments have been conducted that show that explosive surrogates (fertilizers) can be distinguished from several inert materials. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Polarization signatures of airborne particulates

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  4. Searching the inclusive ℓγE̸T+b-quark signature for radiative top quark decay and non-standard-model processes

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Canto, A.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Frisch, H. J.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-07-01

    We compare the inclusive production of events containing a lepton (ℓ), a photon (γ), significant transverse momentum imbalance (E̸T), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at s=1.96TeV corresponding to 1.9fb-1 of integrated luminosity taken with the CDF detector. We find 28 ℓγbE̸T events versus an expectation of 31.0-3.5+4.1 events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, t tmacr +γ. In the data we observe 16 t tmacr γ candidate events versus an expectation from SM sources of 11.2-2.1+2.3. Assuming the difference between the observed number and the predicted non-top-quark total of 6.8-2.0+2.2 is due to SM top-quark production, we estimate the t tmacr γ cross section to be 0.15±0.08pb.

  5. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  6. Progress Toward Electrostatic Radiation Shielding of Interplanetary Spacecraft: Strategies, Concepts and Technical Challenges of Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    The radiation problem is a serious obstacle to solar system exploration. Electrostatic shielding was previously dismissed as unworkable. This was based on the false assumption that radial symmetry is needed to provide isotropic protection. KSC recently demonstrated the feasibility of asymmetric, multipole electrostatic shielding. Combined with passive shielding it might solve the radiation problem

  7. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-09-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  8. The Influence of Radiation in Altering the Incidence of Mutations in Drosophila. Progress Report on the Past Twelve Months and Renewal Proposal for the Period September 15, 1960 to September 14, 1961

    DOE R&D Accomplishments Database

    Muller, H. J.

    1960-05-31

    Progress is reported in studies on the effects of radiation on the incidence of mutations in Drosophila. Results are summarized and the findings are interpreted. A list is included of papers published during the period. (C.H.)

  9. Progress Report for Annex II--Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997

    SciTech Connect

    Al-Amoudi, Anmed; Alawaji, Saleh H.; Cornwall, Chris; Mahfoodh, Mohammed bin; Marion, Bill; Maxwell, Eugene L.; Wilcox, Stephen M.

    1999-08-20

    In 1987, the United States Department of Energy (DOE) and the King Abdulaziz City for Science and Technology (KACST) signed a five-year Agreement for Cooperation in the Field of Renewable Energy Research and Development (R and D), which has been extended to 2000. Tasks include: (1) upgrade solar radiation measurements in Saudi Arabia; (2) assemble a database of concurrent solar radiation, satellite (METEOSAT), and meteorological data; (3) adapt NREL models and other software for Saudi Arabia; (4) develop procedures, algorithms, and software to estimate solar irradiance; and (5) prepare a grid of solar radiation data for preparing maps and atlases and estimating solar radiation resources and solar energy system performances at locations in Saudi Arabia.

  10. [Development and recommendations in the area of ionizing and nonionizing radiations]. Progress report, 1 September 1991--30 April 1992

    SciTech Connect

    Not Available

    1992-09-01

    This report briefly describes seven publications produced in 1991--1992 under the auspices of the National Council on Radiation Protection and Measurements. In addition current status of additional publications in preparation are outlined.

  11. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET

    PubMed Central

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D.; Story, Michael D.

    2015-01-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RASV12 (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  12. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET.

    PubMed

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D; Story, Michael D

    2015-09-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  13. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.

  14. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1992

    SciTech Connect

    Rowley, J.D.

    1992-06-01

    This project seeks to defining the chromosome segments associated with radiation induced leukemogenesis (treatment-related acute myeloid leukemia, or t-AML). Towards these goals genetic analysis of human chromosomes 5 and 7 continues to investigate correlation of treatment with balanced and unbalanced chromosomal translocations. Progress is being made in cloning the breakpoints in balanced translocations in t-AML, that is to clone the t(9;11) and t(11;19) breakpoints, to clone the t(3;21)(q26;q22) breakpoints and to determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 11 figs. 3 figs.

  15. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    PubMed

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  16. Studies of the repair of radiation-induced genetic damage in Drosophila. Annual progress report, February 1-July 1, 1983

    SciTech Connect

    Not Available

    1983-01-01

    Research progress is reported in the following areas: (1) characterization of a photo-repair deficient mutant in Drosophila; (2) the role of poly(ADPR)polymerase in Drosophila repair; and (3) service functions. (ACR)

  17. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  18. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  19. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-07-01

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  20. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    SciTech Connect

    Mitri, F. G.

    2016-07-15

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  1. Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy

    SciTech Connect

    Anscher, Mitchell S. . E-mail: anscher@radonc.duke.edu; Chen, Liguang; Rabbani, Zahid; Kang Song; Larrier, Nicole; Huang Hong; Samulski, Thaddeus V.; Dewhirst, Mark W.; Brizel, David M.; Folz, Rodney J.; Vujaskovic, Zeljko

    2005-05-01

    The ability to optimize treatments for cancer on the basis of relative risks for normal tissue injury has important implications in oncology, because higher doses of radiation might, in some diseases, improve both local control and survival. To achieve this goal, a thorough understanding of the molecular mechanisms responsible for radiation-induced toxicity will be essential. Recent research has demonstrated that ionizing radiation triggers a series of genetic and molecular events, which might lead to chronic persistent alterations in the microenvironment and an aberrant wound-healing response. Disrupted epithelial-stromal cell communication might also be important. With the application of a better understanding of fundamental biology to clinical practice, new approaches to treating and preventing normal tissue injury can focus on correcting these disturbed molecular processes.

  2. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    SciTech Connect

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  3. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  4. Radiation effects on materials in the near-field of nuclear waste repository. 1998 annual progress report

    SciTech Connect

    Wang, L.M.; Ewing, R.C.

    1998-06-01

    'Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities involve working with and within various types and levels of radiation fields. Once the nuclear waste is incorporated into a final form, radioactive decay will decrease the radiation field over geologic time scales, but the alpha-decay dose for these solids will still reach values as high as 10{sup 18} alpha-decay events/gm in periods as short as 1,000 years. This dose is well within the range for which important chemical (e.g., increased leach rate) and physical (e.g., volume expansion) changes may occur in crystalline ceramics. Release and sorption of long-lived actinides (e.g., {sup 237}Np) can provide a radiation exposure to backfill materials, and changes in important properties (e.g., cation exchange capacity) may occur. The objective of this research program is to evaluate the long term radiation effects in the materials in the near-field of a nuclear waste repository with accelerated experiments in the laboratory using energetic particles (electrons, ions and neutrons). Experiments on the microstructural evolution during irradiation of two important groups of materials, sheet silicates (e.g., clays) and zeolites (analcime), have been conducted; and studies of radiation-induced changes in chemical properties (e.g. cation exchange capacity) are underway. As of the mid-2nd year of the 3-year project, experiments on the microstructural evolution during irradiation of two important group of materials, sheet silicates (mica) and zeolites (analcime), have been conducted; and studies of radiation-induced changes in chemical properties (e.g., cation exchange capacity) are underway.'

  5. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals. Technical progress report, February 1, 1992--October 15, 1992

    SciTech Connect

    Strauss, B.S.

    1992-01-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules that affect base substitution, but also the mechanism(s) by which additions and deletions are produced, since detections are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA.

  6. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  7. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  8. Twin Signature Schemes, Revisited

    NASA Astrophysics Data System (ADS)

    Schäge, Sven

    In this paper, we revisit the twin signature scheme by Naccache, Pointcheval and Stern from CCS 2001 that is secure under the Strong RSA (SRSA) assumption and improve its efficiency in several ways. First, we present a new twin signature scheme that is based on the Strong Diffie-Hellman (SDH) assumption in bilinear groups and allows for very short signatures and key material. A big advantage of this scheme is that, in contrast to the original scheme, it does not require a computationally expensive function for mapping messages to primes. We prove this new scheme secure under adaptive chosen message attacks. Second, we present a modification that allows to significantly increase efficiency when signing long messages. This construction uses collision-resistant hash functions as its basis. As a result, our improvements make the signature length independent of the message size. Our construction deviates from the standard hash-and-sign approach in which the hash value of the message is signed in place of the message itself. We show that in the case of twin signatures, one can exploit the properties of the hash function as an integral part of the signature scheme. This improvement can be applied to both the SRSA based and SDH based twin signature scheme.

  9. Traceable Ring Signature

    NASA Astrophysics Data System (ADS)

    Fujisaki, Eiichiro; Suzuki, Koutarou

    The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.

  10. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  11. An archaeal genomic signature.

    PubMed

    Graham, D E; Overbeek, R; Olsen, G J; Woese, C R

    2000-03-28

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  12. An archaeal genomic signature

    PubMed Central

    Graham, David E.; Overbeek, Ross; Olsen, Gary J.; Woese, Carl R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal “design fabric.” Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org). PMID:10716711

  13. UV Signature Mutations †

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  14. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  15. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  16. Recent Progress at LBNL on Characterization of Laser WakefieldAccelerated Electron Bunches using Coherent Transition Radiation

    SciTech Connect

    Plateau, Guillaume R.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Matlis, Nicholas H.; Schroeder, Carl B.; van Tilborg,Jeroen; Toth, Csaba

    2007-06-25

    At LBNL, laser wakefield accelerators (LWFA) can now produce ultra-short electron bunches with energies up to 1 GeV [1]. As femtosecond electron bunches exit the plasma they radiate an intense burst in the terahertz range [2,3] via coherent transition radiation (CTR). Measuring the CTR properties allows non-invasive bunchlength diagnostics [4], a key to continuing rapid advance in LWFA technology. Experimental bunch length characterization for two different energy regimes through bolometric analysis and electro-optic (EO) sampling are presented. Measurements demonstrate both shot-to-shot stability of bunch parameters, and femtosecond synchronization between the bunch, the THz pulse, and the laser beam. In addition, this method of CTR generation provides THz pulses of very high peak power suitable for applications. Recent results reveal LWFA to be a promising intense ultrafast THz source.

  17. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo. Comprehensive progress report

    SciTech Connect

    Little, J.B.

    1983-09-01

    Work has involved the following three areas: (1) an investigation of the mechanisms of radiation carcinogenesis by studying the events involved in the process of malignant transformation of mouse 10 T-1/2 cells; (2) an investigation of the effects of promoting agents on radiation-induced transformation in vitro; and (3) an investigation of the induction of transformation by internally emitting radionuclides incorporated into cellular DNA. The latter area has been extended to include studies of mutagenesis by these radionuclides in human lymphoblasts, and molecular measurements of DNA strand breaks. During the past year, research has focused on the first area, as well as on studies of the mutagenic effects of incorporated radionuclides.

  18. [Ionizing radiation-induced DNA damage and its repair in human cells]. Progress report, [April 1, 1993--February 28, 1994

    SciTech Connect

    Not Available

    1994-07-01

    The excision of radiation-induced lesions in DNA by a DNA repair enzyme complex, namely the UvrABC nuclease complex, has been investigated. Irradiated DNA was treated with the enzyme complex. DNA fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. The results showed that a number pyrimidine- and purine-derived lesions in DNA were excised by the UvrABC nuclease complex and that the enzyme complex does not act on radiation-induced DNA lesions as a glycosylase. This means that it does not excise individual base products, but it excises oligomers containing these lesions. A number of pyrimidine-derived lesions that were no substrates for other DNA repair enzymes investigated in our laboratory were substrates for the UvrABC nuclease complex.

  19. Morphoproteomics and biomedical analytics confirm the mTORC2/Akt pathway as a resistance signature and activated ERK and STAT3 as concomitant prosurvival/antiapoptotic pathways in metastatic renal cell carcinoma (RCC) progressing on rapalogs: Pathogenesis and therapeutic options

    PubMed Central

    Brown, Robert E.; Buryanek, Jamie; Tammisetti, Varaha S.; McGuire, Mary F.; Csencsits-Smith, Keri

    2016-01-01

    Background It has been proposed that resistance to rapalog therapies in renal cell carcinoma (RCC) is due to adaptive switching from mammalian target of rapamycin complex 1 (mTORC1) to mTORC2. Objective To combine phosphoprotein staining and applied biomedical analytics to investigate resistance signatures in patients with metastatic RCC progressing on rapalog therapies. Design We applied morphoproteomic analysis to biopsy specimens from nine patients with metastatic RCC who continued to show clinical progression of their tumors while being treated with a rapalog. Results In patients who were on temsirolimus or everolimus at the time of biopsy, a moderate to strong expression of phosphorylated (p)-mTOR (Ser 2448) in the nuclear compartment with concomitant expression of p-Akt (Ser 473) confirmed the mTORC2 pathway. Concomitant moderate to strong nuclear expression of p-ERK 1/2 (Thr202/Tyr204) and p-STAT3 (Tyr705) was confirmed. Histopathologic changes of hypoxic-type coagulative necrosis in 5 cases as well as identification of insulin-like growth factor-1 receptor (IGF-1R) expression and histone methyltransferase EZH2 in all tumors studied suggested that hypoxia also contributed to the resistance signature. Biomedical analytics provided insight into therapeutic options that could target such adaptive and pathogenetic mechanisms. Conclusions Morphoproteomics and biomedical analytics confirm mTORC2/Akt as a resistance signature to rapalog therapy in metastatic RCC and demonstrate activation of the prosurvival ERK and STAT3 pathways and involvement of hypoxic pathways that contribute to pathogenesis of such adaptive resistance. These results highlight the need for a novel combinatorial therapeutic approach in metastatic RCC progressing on rapalogs. PMID:27223432

  20. Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. 1997 annual progress report

    SciTech Connect

    Liu, G.

    1997-09-01

    'This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors approach to this challenge encompasses studies in electron microscopy, laser spectroscopy, and computational modeling and simulation. During this first year of the project, efforts have focused on a-decay induced microscopic damage in crystalline orthophosphates (YPO{sub 4} and LuPO{sub 4}) that contain the short-lived a-emitting isotope {sup 244}Cm (t{sub 1/2} = 18.1 y). The samples that they studied were synthesized in 1980 and the initial {sup 244}Cm concentration was {approximately}1%. Studying these materials is of importance to nuclear waste management because of the opportunity to gain insight into accumulated radiation damage and the influence of aging on such damage. These factors are critical to the long-term performance of actual waste forms [1]. Lanthanide orthophosphates, including LuPO{sub 4} and YPO{sub 4}, have been suggested as waste forms for high level nuclear waste [2] and potential hosts for excess weapons plutonium [3,4]. The work is providing insight into the characteristics of these previously known radiation-resistant materials. They have observed loss of crystallinity (partial amorphization) as a direct consequence of prolonged exposure to intense alpha radiolysis in these materials. More importantly, the observation of microscopic cavities in these aged materials provides evidence of significant chemical decomposition that may be difficult to detect in the earlier stages of radiation damage. The preliminary results show that, in characterizing crystalline compounds as high level nuclear waste forms, chemical decomposition effects may be more important than lattice amorphization which has been the focus of many previous studies. More extensive studies, including in-situ analysis of the dynamics of thermal annealing of self-radiation induced amorphization and cavity formation, will be conducted on these aged {sup 244}Cm

  1. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  2. President Signature Onboard Curiosity

    NASA Image and Video Library

    2012-09-21

    This view of Curiosity deck shows a plaque bearing several signatures of US officials, including that of President Obama and Vice President Biden. The image was taken by the rover Mars Hand Lens Imager MAHLI.

  3. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  4. The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves.

    PubMed

    Mitri, F G; Fellah, Z E A

    2008-08-01

    Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.

  5. Molecular signature in HCV-positive lymphomas.

    PubMed

    De Re, Valli; Caggiari, Laura; Garziera, Marica; De Zorzi, Mariangela; Repetto, Ombretta

    2012-01-01

    Hepatitis C virus (HCV) is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL). Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.

  6. Measuring radiation damage dynamics by pulsed ion beam irradiation. 2015 Annual Progress Report for DOE/NE/NEET

    SciTech Connect

    Kucheyev, S. O.

    2016-03-07

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation processes in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 2, this project had the following two major milestones: (i) measurement of the temperature dependence of defect dynamics in SiC and (ii) the evaluation of the robustness of the pulsed beam method from studies of the defect generation rate. As we describe below, both of these milestones have been met.

  7. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  8. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    SciTech Connect

    Michalsky, J.; Harrison, L.

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  9. Radiation-dose estimates and hazard evaluations for inhaled airborne radionuclides. Annual progress report, July 1981-June 1982

    SciTech Connect

    Mewhinney, J.A.

    1983-06-01

    The objective was to conduct confirmatory research on aerosol characteristics and the resulting radiation dose distribution in animals following inhalation and to provide prediction of health consequences in humans due to airborne radioactivity which might be released in normal operations or under accident conditions during production of nuclear fuel composed of mixed oxides of U and Pu. Four research reports summarize the results of specific areas of research. The first paper details development of a method for determination of specific surface area of small samples of mixed oxide or pure PuO/sub 2/ particles. The second paper details the extension of the biomathematical model previously used to describe retention, distribution and excretion of Pu from these mixed oxide aerosols to include a description of Am and U components of these aerosols. The third paper summarizes the biological responses observed in radiation dose pattern studies in which dogs, monkeys and rate received inhalation exposures to either 750/sup 0/C heat treated UO/sub 2/ + PuO/sub 2/, 1750/sup 0/C heat-treated (U,Pu)O/sub 2/ or 850/sup 0/C heat-treated pure PuO/sub 2/. The fourth paper described dose-response studies in which rats were exposed to (U,Pu)O/sub 2/ or pure PuO/sub 2/. This paper updates earlier reports and summarizes the status of animals through approximately 650 days after inhalation.

  10. Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Mulvihill, M.A.; Nemeth, T.J.

    1989-01-01

    Localized exposure of the neonatal rat brain to x rays produces neuronal hypoplasia specific to the granule cell layer of the hippocampal dentate gyrus. This brain damage causes locomotor hyperactivity, slowed acquisition of passive avoidance tasks and long bouts of spontaneous turning (without reversals) in a bowl apparatus. The authors report here how these behavioral deficits change as a function of subject aging and behavioral test replications. Portions of the neonatal rat cerebral hemispheres were X-irradiated in order to selectively damage the granule cells of the dentate gyrus. Rats between the ages of 71-462 days were tested 3 separate times on each of the following 3 behavioral tests: (1) spontaneous locomotion, (2) passive avoidance acquisition, and (3) spontaneous circling in a large plastic hemisphere. Rats with radiation-induced damage to the fascia dentata exhibited long bouts of slow turns without reversals. Once they began, irradiated subjects perseverated in turning to an extent significantly greater than sham-irradiated control subjects. The hyperactivity of the irradiated animals decreased significantly as they matured. These data suggest that radiation-induced damage to the fascia dentata produces task-dependent behavioral deficits that change as a function of subject age and/or behavioral testing.

  11. Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Mulvihill, M.A.; Nemeth, T.J. )

    1989-07-01

    Localized exposure of the neonatal rat brain to X-rays produces neuronal hypoplasia specific to the granule cell layer of the hippocampal dentate gyrus. This brain damage causes locomotor hyperactivity, slowed acquisition of passive avoidance tasks and long bouts of spontaneous turning (without reversals) in a bowl apparatus. Here we report how these behavioral deficits change as a function of subject aging and behavioral test replications. Portions of the neonatal rat cerebral hemispheres were X-irradiated in order to selectively damage the granule cells of the dentate gyrus. The brains of experimental animals received a fractionated dose of X rays (13 Gy total) over postnatal days 1 to 16 and control animals were sham-irradiated. Rats between the ages of 71-462 days were tested 3 separate times on each of the following 3 behavioral tests: (1) spontaneous locomotion, (2) passive avoidance acquisition, and (3) spontaneous circling in a large plastic hemisphere. Rats with radiation-induced damage to the fascia dentata exhibited long bouts of slow turns without reversals. Once they began, irradiated subjects perseverated in turning to an extent significantly greater than sham-irradiated control subjects. This irradiation effect was significant during all test series. Moreover, in time, spontaneous perseverative turning was significantly potentiated in rats with hippocampal damage but increased only slightly in controls. Early radiation exposure produced locomotor hyperactivity in young rats. While activity levels of controls remained fairly stable throughout the course of the experiment, the hyperactivity of the irradiated animals decreased significantly as they matured.

  12. Biological dosimeter for cellular damage and repair by ionizing radiation. Final technical progress report, May 1, 1993--April 30, 1996

    SciTech Connect

    Cress, A.E.

    1998-06-30

    The authors have investigated the alteration of chromatin domains in Human T and B cells after ionizing radiation using three DNA specific dyes, Feulgen, Hoechst and 7-amino actinomycin D. Characterization and differentiation of T and B cells was accomplished using only 4 of a possible 32 image features with the CAS and Quaritex QX7 Digital Image Systems. Human B and T cells were irradiated with 1, 5 and 10 Gy and analyzed during a 1.5 hour recovery period. The chosen features detect a dose dependent change in DNA domains which can be observed as early as 1.5 hours after a 1Gv exposure. The results suggest that the ability of DNA specific dyes to stain chromatin can be used as an early sensitive indicator of DNA damage. The observed alteration of chromatin staining suggests that chromatin structure does observably change in a significant manner during a DNA repair interval. Since these alteration can be detected with DNA specific dyes that stain both AT rich, GC rich or total DNA, these data suggest that a global alteration of the chromatin is occurring after exposure to ionizing radiation.

  13. Regulation of nucleic acid and protein synthesis: a background study related to the biological effects of radiation. Progress report

    SciTech Connect

    Zamecnik, P.

    1984-01-01

    Progress is reported in the following areas in defining the varied roles of diadenosine 5', 5'''-P/sup 1/, P/sup 4/-tetraphosphate (Ap/sub 4/A) in metabolic events within the living cell: (1) Ap/sub 4/A association with a subunit of DNA polymerase ..cap alpha..; (2) studies on the unusual ordered structure of Ap/sub 4/A and of related bisnucleoside oligophosphates; (3) the utilization of technetium labeled Ap/sub 4/A as a radionuclide diagnostic reagent; and (4) the role of Ap/sub 4/A in the blood clotting mechanism. (ACR)

  14. Effects of orbit progression on the radiation exposures from solar proton fluxes in low Earth orbit under geomagnetic storm conditions.

    PubMed

    Nealy, J E; Wilson, J W; Shea, M A; Smart, D F

    1996-01-01

    The present study examines the effects of orbit progression on the exposures within a Space Station Freedom module in a 51.6-degree inclined orbit at 450 km. The storm evolution is modeled after the November 1960 event, and the solar proton flux evolution is taken from the August 1972 solar proton event. The effects of a strong magnetic shock, such as was observed during the October 1989 event, is also modeled. The statistics on hourly average storm fields for the last forty years reveal that the largest geomagnetic storms approach a Dst value of -500 nanotesla at the storm peak. Similarly, one of the largest satellite-measured proton flux (> 10 MeV) for space exposures is the event of August 1972. The effects of orbit progression (advance of the line of nodes) is examined for the above conditions to study the variation of exposures under differing times of occurrence of the solar proton peak intensity, attainment of geomagnetic storm maximum, and the location of the line of nodes of the last geomagnetically protected orbit. The impact of the inherent inhomogeneity of the space station module is examined as a limiting factor on exposure with regard to the need of additional parasitic shielding.

  15. Effects of orbit progression on the radiation exposures from solar proton fluxes in low Earth orbit under geomagnetic storm conditions

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.; Wilson, J. W.; Shea, M. A.; Smart, D. F.

    1996-01-01

    The present study examines the effects of orbit progression on the exposures within a Space Station Freedom module in a 51.6-degree inclined orbit at 450 km. The storm evolution is modeled after the November 1960 event, and the solar proton flux evolution is taken from the August 1972 solar proton event. The effects of a strong magnetic shock, such as was observed during the October 1989 event, is also modeled. The statistics on hourly average storm fields for the last forty years reveal that the largest geomagnetic storms geomagnetic storms approach a Dst value of -500 nanotesla at the storm peak. Similarly, one of the largest satellite-measured proton flux (greater than 10 MeV) for space exposures is the event of August 1972. The effects of orbit progression (advance of the line of nodes) is examined for the above conditions to study the variation of exposures under differing times of occurrence of the solar proton peak intensity, attainment of geomagnetic storm maximum, and the location of the line of nodes of the last geomagnetically protected orbit. The impact of the inherent inhomogeneity of the space station module is examined as a limiting factor on exposure with regard to the need of additional parasitic shielding.

  16. Progress in the development of two-dimensional multiwire detectors for X-ray synchrotron radiation experiments

    SciTech Connect

    Smith, G.C.; Yu, B.; Capel, M.

    1993-06-01

    A report is presented of the developments in two-dimensional, multiwire detectors for X-ray synchrotron radiation experiments, using delay line position readout. Advances have been made in methods of cathode design and fabrication, a description is given of the trade-off between position resolution and count rate capability, and the importance of low dead-time TDCs is illustrated. A detector has been operating successfully for well over a year at the time resolved, scattering station of the National Synchrotron Light Source; results are presented from this which illustrate the very good resolution (100 {mu}m FWHM), differential non-linearity ({plus_minus}4%) and absolute position stability of these devices, and the importance of low differential non-linearity for these types of experiment.

  17. Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation. Progress report, June 1, 1993--September 30, 1994

    SciTech Connect

    Edington, C.W.

    1994-11-01

    In the past sixteen months, research in all areas at RERF has continued and important progress has been made in our understanding of the late somatic and genetic effects resulting from exposure of this human population to radiation from the atomic bombs. Evidence of this productivity is emphasized by the fact that 66 papers have been published in the scientific literature over the past one and one-half years. In addition, a number of others are in press. The continued follow-up of the various RERF study cohorts is of considerable importance because greater than 50 percent of the survivors in the Life Span Study (LSS) cohort are still alive, and over 80 percent of those alive were under the age of 30 at the time of the bomb. Since evidence obtained to date indicates that individuals exposed at a young age are more sensitive to radiation than those exposed at older ages, it is important that surveillance of the RERF population continue to ascertain the late health effects that will occur in the more sensitive segment of the exposed population which is just now reaching the cancer-prone age.

  18. Positive immunohistochemical staining of gammaH2AX is associated with tumor progression in gastric cancers from radiation-exposed patients.

    PubMed

    Sentani, Kazuhiro; Oue, Naohide; Sakamoto, Naoya; Nishisaka, Takashi; Fukuhara, Toshiyuki; Matsuura, Hiroo; Yasui, Wataru

    2008-11-01

    To elucidate the mechanism of radiation-induced cancers, molecular analysis of cancers in atomic bomb (A-bomb) exposure is important. DNA double-strand breaks (DSBs) are thought to be caused by the deleterious effects of ionizing radiation, and gammaH2AX (serine 139 phosphorylated form of histone H2AX) is reported to be a significant marker for DSBs. In the present study, we performed immunohistochemical analysis of gammaH2AX in gastric cancers (GCs) from 66 exposed and 47 non-exposed patients who developed GC after the bombing. Of the 47 GCs from non-exposed patients, 6 (13%) cases showed nuclear positive staining for gammaH2AX, whereas of the 66 GCs from exposed patients, 20 (30%) cases were positive (P=0.0405). However, among stage I GC, there was no significant difference in gammaH2AX expression frequency between exposed patients and non-exposed patients. Among exposed patients, stage II-IV cases were more frequently positive for gammaH2AX than stage I cases (P=0.0197). Among GCs from non-exposed patients, gammaH2AX staining showed no significant association with Lauren's classification, depth of invasion, lymph node metastasis or TNM stage. These results suggest that the characteristics of tumor cells differ between GCs from exposed and non-exposed patients. DSBs may be involved in progression of GC in exposed patients.

  19. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines

    PubMed Central

    Kaushik, Neha; Kim, Min-Jung; Kim, Rae-Kwon; Kumar Kaushik, Nagendra; Seong, Ki Moon; Nam, Seon-Young; Lee, Su-Jae

    2017-01-01

    Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44+/CD24− population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases. PMID:28240233

  20. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines.

    PubMed

    Kaushik, Neha; Kim, Min-Jung; Kim, Rae-Kwon; Kumar Kaushik, Nagendra; Seong, Ki Moon; Nam, Seon-Young; Lee, Su-Jae

    2017-02-27

    Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44(+)/CD24(-) population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases.

  1. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  2. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  3. Genetic engineering of a radiation-resistant bacterium for biodegradation of ixed wastes. 1998 annual progress report

    SciTech Connect

    Lidstrom, M.E.

    1998-06-01

    'Because of their tolerance to very high levels of ionizing radiation, members of the genus Deinococcus have received considerable attention over the past years. The type species of the genus, Deinococcus radiodurans, has been studied extensively in several labs. Although researchers are only beginning to understand the mechanisms by which this Gram-positive bacterium is able to repair massive DNA damage after radiation dosages as high as 5 Mrad, it has become evident that its recombination machinery has several unique characteristics (1--4). The aim of the present studies is to engineer D. radiodurans into a detoxifier for bioremediation of complex waste mixtures, containing heavy metals, halo-organics and radionuclides, making use of its ability to be biologically active in environments where they will be exposed to high levels of radiation. For that purpose, the authors aim to clone and express several broad spectrum oxygenases and heavy metal resistance determinants, and test survival and activities of these strains in artificial mixtures of contaminants, designed to simulate DOE mixed waste streams. This report summarizes work after 0.5 year of a 3-year project. The initial studies have focused on the development of an insertional expression system for D. radiodurans R1. This effort has involved two parts, namely: (1) promoter analysis, and (2) development of insertion systems. Several studies have shown that the expression signals used by D. radiodurans differ considerably from those found in other bacteria. Although D. radiodurans contains a typical eubacterial RNA polymerase core enzyme (based on TBLASTN searches on the genome sequence), Escherichia coli promoters are not recognized in D. radiodurans and vice versa (5). To expand the basic understanding of the requirements for transcription, and to optimize expression of (heterologous) genes, they will follow two strategies. First, a promoter-probe vector is being developed for the selection of promoter

  4. An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.

    2017-03-01

    There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in

  5. Nature of oxygen containing radicals in radiation chemistry and photochemistry of aqueous solutions. Annual progress report, September 1979-July 1980

    SciTech Connect

    Czapski, G.

    1980-01-01

    During this year, emphasis will be given on the properties of HO/sub 2/ and O/sub 2//sup -/ and OH, mainly in their role in biological systems. We will continue to study and elucidate how O/sub 2//sup -/ reacts in biological systems. The toxicity of O/sub 2//sup -/ is quite well established but the mechanism is still obscure. One way O/sub 2//sup -/ is toxic is that OH is formed from O/sub 2//sup -/ through reduction of Fe/sup 3 +/, and subsequently the reaction of Fe/sup 2 +/ with H/sub 2/O/sub 2/ (Fenton reaction). This mechanism is sometimes called the Haber Weiss Reaction. We will study if reduction of Fe/sup 3 +/ complexes by O/sub 2//sup -/ in biological systems does catalyze the Haber Weiss reaction and if OH is formed in this mechanism. The role of oxygen, radiosensitizers in radiation damage of bacteriophages and cells will be further studied, as well as on E. coli and enzymes. Use of different mutants, such as ones with repair deficiencies, or others which are deficient in glutathione will help to elucidate the role of O/sub 2//sup -/ and O/sub 2/ toxicity. We will try to elucidate the formation and role of OH, O/sub 2//sup -/ and O/sub 2/ in these systems as well as the relative contribution of endogenous and exogenous damage, and the role of direct and indirect radiation damage to cells. As there is some doubt how and if SOD protects cells from irradiation as literature results show lots of conflict, we will try to clear this point, in studies with E. coli mutants, and adding SOD endogenously and exogenously. We also intend to study if SOD (super oxide dismutase) does react only with O/sub 2//sup -/ or also with biological peroxides (RO/sub 2/) and hydroperoxides (RO/sub 2/H). Further studies of O/sub 2//sup -/ and O/sub 2/ with various cytochromes, and hemoglobins is planned.

  6. Factor models for cancer signatures

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zura; Yu, Willie

    2016-11-01

    We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an ;overall; mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.

  7. Current signature sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  8. Current Signature Sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Mario (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  9. Improved radiation dosimetry/risk estimates to facilitate environmental management of plutonium contaminated sites. 1998 annual progress report

    SciTech Connect

    Scott, B.R.

    1998-06-01

    'The objective of this research is to evaluate distributions of possible alpha radiation doses to the lung, bone, and liver and associated health-risk distributions for plutonium (Pu) inhalation-exposure scenarios relevant to environmental management of PuO{sub 2}-contaminated sites. Currently available dosimetry/risk models do not apply to exposure scenarios where, at most, a small number of highly radioactive PuO{sub 2} particles are inhaled (stochastic exposure [SE] paradigm). For the SE paradigm, risk distributions are more relevant than point estimates of risk. The focus of the research is on the SE paradigm and on high specific activity, alpha-emitting (HSA-aE) particles such as 238 PuO{sub 2} . The scientific goal is to develop a stochastic respiratory tract dosimetry/risk computer model for evaluating the desired absorbed dose distributions and associated health-risk distributions, for Department of Energy (DOE) workers and members of the public. This report summarizes results after 1 year of a 2-year project.'

  10. Radiation effects on materials in the near-field of a nuclear waste repository. 1997 annual progress report

    SciTech Connect

    Wang, L.M.; Ewing, R.C.

    1997-11-25

    'Sheet silicates (e.g. micas and clays) are important constituents of a wide variety of geological formations such as granite, basalt, and sandstone. Sheet silicates, particularly clays such as bentonite are common materials in near-field engineered barriers in high-level nuclear waste (HLW) repositories. This is because migration of radionuclides from an underground HLW repository to the geosphere may be significantly reduced by sorption of radionuclides (e.g., Pu, U and Np) onto sheet silicates (e.g., clays and micas) that line the fractures and pores of the rocks along groundwater flowpaths. In addition to surface sorption, it has been suggested that some sheet silicates may also be able to incorporate many radionuclides, such as Cs and Sr, in the inter-layer sites of the sheet structure. However, theability of the sheet silicates to incorporate radionuclides and retard release and migration of radionuclides may be significantly affected by the near-field radiation due to the decay of fission products and actinides. for example, the unique properties of the sheet structures will be lost completely if the structure becomes amorphous due to irradiation effects. Thus, the study of irradiation effects on sheet-structures, such as structural damage and modification of chemical properties, are critical to the performance assessment of long-term repository behavior.'

  11. sigma. /sup +/ and. xi. /sup -/ radiative decay studies: Progress report for the period 1 August 1986-30 September 1987

    SciTech Connect

    McCliment, E.R.; Newsom, C.R.

    1987-01-01

    The period covered by this progress report coincides with the hardware development phase of Fermilab experiment E761, which will run in the fall of 1988 and winter of 1989. Our contribution to the hardware is a silicon strip detector system for precision measurement of the hyperon beam momentum. We started this project by building a prototype station, MARK II, and testing it extensively, first at Iowa using a radioactive source, and then at LAMPF using a test beam. The results obtained were used to design the final version of the detector station, MARK III. Three MARK-III stations, the number required for the experiment, have been built and transported to Fermilab. Two have been installed in a test beam in P-Center, and the third is awaiting installation. Data taking has just gotten underway to study noise, efficiency, alignment procedures, and tracking. We have also been engaged in analyzing three-track triggers from Fermilab experiment E715 with the aim of measuring the cascade minus magnetic moment and production polarization. To date, we have analyzed 60% of the data and obtained therefrom 100,000 fully reconstructed nonleptonic cascade decays. Of these 40,000 have the right polarization to use for a magnetic moment determination. The rest are useful for studying production polarization and systematics.

  12. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  13. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  14. Dynamic Signature Verification System Based on One Real Signature.

    PubMed

    Diaz, Moises; Fischer, Andreas; Ferrer, Miguel A; Plamondon, Rejean

    2016-12-06

    The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.

  15. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    SciTech Connect

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K.

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  16. Hyperspectral signature analysis of skin parameters

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  17. HPV status, cancer stem cell marker expression, hypoxia gene signatures and tumour volume identify good prognosis subgroups in patients with HNSCC after primary radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG).

    PubMed

    Linge, Annett; Lohaus, Fabian; Löck, Steffen; Nowak, Alexander; Gudziol, Volker; Valentini, Chiara; von Neubeck, Cläre; Jütz, Martin; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Grosu, Anca-Ligia; Abdollahi, Amir; Debus, Jürgen; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Buchholz, Frank; Aust, Daniela E; Baretton, Gustavo B; Thames, Howard D; Dubrovska, Anna; Alsner, Jan; Overgaard, Jens; Krause, Mechthild; Baumann, Michael

    2016-12-01

    To investigate the impact of the tumour volume, HPV status, cancer stem cell (CSC) marker expression and hypoxia gene signatures, as potential markers of radiobiological mechanisms of radioresistance, in a contemporary cohort of patients with locally advanced head and neck squamous cell carcinoma (HNSCC), who received primary radiochemotherapy (RCTx). For 158 patients with locally advanced HNSCC of the oral cavity, oropharynx or hypopharynx who were treated at six DKTK partner sites, the impact of tumour volume, HPV DNA, p16 overexpression, p53 expression, CSC marker expression and hypoxia-associated gene signatures on outcome of primary RCTx was retrospectively analyzed. The primary endpoint of this study was loco-regional control (LRC). Univariate Cox regression revealed a significant impact of tumour volume, p16 overexpression, and SLC3A2 and CD44 protein expression on LRC. The tumour hypoxia classification showed a significant impact only for small tumours. In multivariate analyses an independent correlation of tumour volume, SLC3A2 expression, and the 15-gene hypoxia signature with LRC was identified (CD44 protein n/a because of no event in the CD44-negative group). Logistic modelling showed that inclusion of CD44 protein expression and p16 overexpression significantly improved the performance to predict LRC at 2years compared to the model with tumour volume alone. Tumour volume, HPV status, CSC marker expression and hypoxia gene signatures are potential prognostic biomarkers for patients with locally advanced HNSCC, who were treated by primary RCTx. The study also supports that the individual tumour volumes should generally be included in biomarker studies and that panels of biomarkers are superior to individual parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Maximum likelihood signature estimation

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1975-01-01

    Maximum-likelihood estimates are discussed which are based on an unlabeled sample of observations, of unknown parameters in a mixture of normal distributions. Several successive approximation procedures for obtaining such maximum-likelihood estimates are described. These procedures, which are theoretically justified by the local contractibility of certain maps, are designed to take advantage of good initial estimates of the unknown parameters. They can be applied to the signature extension problem, in which good initial estimates of the unknown parameters are obtained from segments which are geographically near the segments from which the unlabeled samples are taken. Additional problems to which these methods are applicable include: estimation of proportions and adaptive classification (estimation of mean signatures and covariances).

  19. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  20. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, July 1992--August 1993

    SciTech Connect

    Rowley, J.D.

    1993-09-01

    Progress in identification of chromosomal transformations associated with leukemogenesis is described. In particular progress in DNA cloning of chromosomal break points in human cancer patients is described.

  1. SMAWT Signature Test

    DTIC Science & Technology

    1974-10-01

    were generally inversely proportional to the size assesments of the flash and smoke . Table 26 shows the percent of change in average judgments of...Average Time of Gunner’s View Obscuration by Smoke During Firings From the Wood Line .. .. ..... ..... ...... ..... .. 18 7. Average Obscuration Times...of Gunner’s View Obscuration by Smoke - Grass Line 19 8. Normalized Comparisons of the Relative Grades Assigned to Systems Signature Components

  2. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1994

    SciTech Connect

    Rowley, J.D.

    1994-06-01

    This comprehensive progress report provides a synopsis of major research accomplishments during the years of 1991-1994, including the technical aspects of the project. The objectives and accomplishments are as follows: 1. Defining the chromosome segments associated with radiation and chemically-induced leukemogenesis (treatment-related acute myeloid leukemia, t-AML); A. Continued genetic analysis of chromosomes 5 and 7, B. Correlation of treatment with balanced and unbalanced translocations. 2. Cloning the breakpoints in balanced translocations in t-AML; A. Clone the t(9;11) and t(11;19) breakpoints, B. Clone the t(3,21)(q26,q22) breakpoint, C. Determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 3. Compare the breakpoint junctions in patients who have the same translocations in t-AML and AML de novo. 4. Map the scaffold attachment regions in the genes that are involved in balanced translocations in t-AML. Plans for the continuation of present objectives and possible new objectives in consideration of past results are also provided.

  3. Knowledge Signatures for Information Integration

    SciTech Connect

    Thomson, Judi; Cowell, Andrew J.; Paulson, Patrick R.; Butner, R. Scott; Whiting, Mark A.

    2003-10-25

    This paper introduces the notion of a knowledge signature: a concise, ontologically-driven representation of the semantic characteristics of data. Knowledge signatures provide programmatic access to data semantics while allowing comparisons to be made across different types of data such as text, images or video, enabling efficient, automated information integration. Through observation, which determines the degree of association between data and ontological concepts, and refinement, which uses the axioms and structure of the domain ontology to place the signature more accurately within the context of the domain, knowledge signatures can be created. A comparison of such signatures for two different pieces of data results in a measure of their semantic separation. This paper discusses the definition of knowledge signatures along with the design and prototype implementation of a knowledge signature generator.

  4. Observational Signatures of Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Einaudi, G.; Ugarte-Urra, I.; Warren, H. P.; Rappazzo, A. F.; Velli, M.; Taylor, B.

    2016-12-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numericalsimulations of the fully compressible three-dimensionalmagnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection,nonlinear thermal conduction and optically thin radiation.The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands arescattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla.To connect these simulations to observations the computed numberdensities and temperatures are used to synthesize the intensities expected inemission lines typically observed with the Extreme ultraviolet Imaging Spectrometer(EIS) on Hinode. These intensities are then employed to compute differentialemission measure distributions, which are found to be very similar to those derivedfrom observations of solar active regions.

  5. Molecular signatures of ribosomal evolution.

    PubMed

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R; Luthey-Schulten, Zaida

    2008-09-16

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome.

  6. Molecular signatures of ribosomal evolution

    PubMed Central

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R.; Luthey-Schulten, Zaida

    2008-01-01

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome. PMID:18768810

  7. Secure quantum signatures: a practical quantum technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Andersson, Erika

    2016-10-01

    Modern cryptography encompasses much more than encryption of secret messages. Signature schemes are widely used to guarantee that messages cannot be forged or tampered with, for example in e-mail, software updates and electronic commerce. Messages are also transferrable, which distinguishes digital signatures from message authentication. Transferability means that messages can be forwarded; in other words, that a sender is unlikely to be able to make one recipient accept a message which is subsequently rejected by another recipient if the message is forwarded. Similar to public-key encryption, the security of commonly used signature schemes relies on the assumed computational difficulty of problems such as finding discrete logarithms or factoring large primes. With quantum computers, such assumptions would no longer be valid. Partly for this reason, it is desirable to develop signature schemes with unconditional or information-theoretic security. Quantum signature schemes are one possible solution. Similar to quantum key distribution (QKD), their unconditional security relies only on the laws of quantum mechanics. Quantum signatures can be realized with the same system components as QKD, but are so far less investigated. This talk aims to provide an introduction to quantum signatures and to review theoretical and experimental progress so far.

  8. Distinct microbiological signatures associated with triple negative breast cancer

    PubMed Central

    Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N.; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R.; Alwine, James C.; Robertson, Erle S.

    2015-01-01

    Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential. PMID:26469225

  9. Distinct microbiological signatures associated with triple negative breast cancer.

    PubMed

    Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R; Alwine, James C; Robertson, Erle S

    2015-10-15

    Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential.

  10. Modem Signature Analysis.

    DTIC Science & Technology

    1982-10-01

    RADC-TR-82-269 A. A 9 q _ ___ ___ __ 4. TITLE (and Subtitle) S . TYPE or REPORT & PERIOD COVERED] Final Technical Report MODEM SIGNATURE ANALYSIS Sep 80...Nov 81 a. PERFORMING 011G. REPORT NME N/A 7. AUTI4OR( s ) 4. CONTRACT DOR GRANT oMumEalr) Thomas V. Edwards Dr. Robert J. Dick Dr. James W. Modestino...3-7 3-2 Second NSA Data Collection System . ....... ... 3-8 3-3 Time Plot Paradyne MP-96 AGN 20 dB S /N ..... .... 3-11 3-4 Power Spectral Density

  11. Signatures of nonthermal melting

    PubMed Central

    Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.

    2015-01-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  12. Signature CERN-URSS

    SciTech Connect

    2006-01-24

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  13. Short-term androgen deprivation and PSA doubling time: their association and relationship to disease progression after radiation therapy for prostate cancer.

    PubMed

    Hanlon, Alexandra L; Horwitz, Eric M; Hanks, Gerald E; Pollack, Alan

    2004-01-01

    The goal of this study was to investigate the relationship between PSA doubling time (PSADT) and initial management of prostate cancer with short-term androgen deprivation (STAD) and the impact of these factors on disease progression after radiation therapy. Between May 1989 and October 1998, 284 patients treated with 3D-CRT experienced biochemical failure (BF) as defined under the ASTRO consensus statement. All patients had sufficient follow-up data for PSADT calculations. Linear regression was used to assess predictors of PSADT among STAD, time to biochemical failure (TTBF), Gleason Score, tumor stage, dose, posttreatment PSA nadir, pretreatment PSA, and age. A composite covariate was created from the various combinations of factors found to be predictive of PSADT. The composite covariate was then included, along with PSADT and the factors previously mentioned, in proportional hazards modeling of freedom from distant metastasis (FDM), cause-specific survival (CSS), and overall survival (OS). Fifty-four (19%) patients developed distant metastasis, 20 (7%) died of prostate cancer, and 53 (19%) died of any cause. The median PSADT was 12 months. Predictors of a longer PSADT were TTBF >12 months, Gleason Score 2-6, and STAD. An ordinal composite covariate was created with eight levels on the basis of the magnitude of observed mean PSADT within the eight possible combinations of the three dichotomized predictors. The most significant predictor of higher FDM rates in Cox modeling was the composite covariate, followed by longer PSADT, STAD, lower PSA nadir, higher RT dose, and Gleason Score 2-6. Predictors of higher CSS rates were lower nadir, longer PSADT, T1/T2ab tumors, the composite covariate, and STAD. The most significant predictor of a higher OS rate was STAD, followed by longer PSADT, younger age at diagnosis, the composite covariate, lower nadir, and T1/T2ab tumors. Longer TTBF, Gleason Score 2-6 tumors, and STAD were predictive of longer PSADT. Even after

  14. Metabolomic signature of brain cancer.

    PubMed

    Pandey, Renu; Caflisch, Laura; Lodi, Alessia; Brenner, Andrew J; Tiziani, Stefano

    2017-06-15

    Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed. © 2017 Wiley Periodicals, Inc.

  15. Transcriptional Signatures in Huntington's Disease

    PubMed Central

    2007-01-01

    While selective neuronal death has been an influential theme in Huntington's disease (HD), there is now a preponderance of evidence that significant neuronal dysfunction precedes frank neuronal death. The best evidence for neuronal dysfunction is the observation that gene expression is altered in HD brain, suggesting that transcriptional dysregulation is a central mechanism. Studies of altered gene expression began with careful observations of post-mortem human HD brain and subsequently were accelerated by the development of transgenic mouse models. The application of DNA microarray technology has spurred tremendous progress with respect to the altered transcriptional processes that occur in HD, through gene expression studies of both transgenic mouse models as well as cellular models of HD. Gene expression profiles are remarkably comparable across these models, bolstering the idea that transcriptional signatures reflect an essential feature of disease pathogenesis. Finally, gene expression studies have been applied to human HD, thus not only validating the approach of using model systems, but also solidifying the idea that altered transcription is a key mechanism in HD pathogenesis. In the future, gene expression profiling will be used as a readout in clinical trials aimed at correcting transcriptional dysregulation in Huntington's disease. PMID:17467140

  16. Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). An overview of recent progress.

    PubMed

    Ballaré, C L; Rousseau, M C; Searles, P S; Zaller, J G; Giordano, C V; Robson, T M; Caldwell, M M; Sala, O E; Scopel, A L

    2001-09-01

    The southern part of Tierra del Fuego, in the southernmost tip of South America, is covered by dense Nothofagus spp. forests and Sphagnum-dominated peat bogs, which are subjected to the influence of ozone depletion and to increased levels of solar ultraviolet-B radiation (UV-B). Over the last 5 years we have studied some of the biological impacts of solar UV-B on natural ecosystems of this region. We have addressed two general problems: (i) do the fluctuations in UV-B levels under the influence of the Antarctic ozone 'hole' have any measurable biological impact, and (ii) what are the long-term effects of solar (ambient) UV-B on the Tierra del Fuego ecosystems? In this paper, we provide an overview of the progress made during the first 4 years of the project. We highlight and discuss the following results: (1) ambient UV-B has subtle but significant inhibitory effects on the growth of herbaceous and graminoid species of this region (growth reduction < or = 12%), whereas no consistent inhibitory effects could be detected in woody perennials; (2) in the species investigated in greatest detail, Gunnera magellanica, the inhibitory effect of solar UV-B is accompanied by increased levels of DNA damage in leaf tissue, and the DNA damage density in the early spring is clearly correlated with the dose of weighted UV-B measured at ground level; (3) the herbaceous species investigated thus far show little or no acclimation responses to ambient UV-B such as increased sunscreen levels and DNA repair capacity; and (4) ambient UV-B has significant effects on heterotrophic organisms, included marked inhibitory effects on insect herbivory. The results from the experiments summarized in this review clearly indicate that UV-B influences several potentially important processes and ecological interactions in the terrestrial ecosystems of Tierra del Fuego.

  17. Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal

    PubMed Central

    Chen, Hongxin; Goodus, Matthew T; de Toledo, Sonia M; Azzam, Edouard I; Levison, Steven W

    2015-01-01

    Damage to normal human brain cells from exposure to ionizing radiation may occur during the course of radiotherapy or from accidental exposure. Delayed effects may complicate the immediate effects resulting in neurodegeneration and cognitive decline. We examined cellular and molecular changes associated with exposure of neural stem/progenitor cells (NSPs) to 137Cs γ-ray doses in the range of 0 to 8 Gy. Subventricular zone NSPs isolated from newborn mouse pups were analyzed for proliferation, self-renewal, and differentiation, shortly after irradiation. Strikingly, there was no apparent increase in the fraction of dying cells after irradiation, and the number of single cells that formed neurospheres showed no significant change from control. Upon differentiation, irradiated neural precursors did not differ in their ability to generate neurons, astrocytes, and oligodendrocytes. By contrast, progression of NSPs through the cell cycle decreased dramatically after exposure to 8 Gy (p < .001). Mice at postnatal day 10 were exposed to 8 Gy of γ rays delivered to the whole body and NSPs of the subventricular zone were analyzed using a four-color flow cytometry panel combined with ethynyl deoxyuridine incorporation. Similar flow cytometric analyses were performed on NSPs cultured as neurospheres. These studies revealed that neither the percentage of neural stem cells nor their proliferation was affected. By contrast, γ-irradiation decreased the proliferation of two classes of multipotent cells and increased the proliferation of a specific glial-restricted precursor. Altogether, these results support the conclusion that primitive neural precursors are radioresistant, but their proliferation is slowed down as a consequence of γ-ray exposure. PMID:26056396

  18. Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal.

    PubMed

    Chen, Hongxin; Goodus, Matthew T; de Toledo, Sonia M; Azzam, Edouard I; Levison, Steven W; Souayah, Nizar

    2015-01-01

    Damage to normal human brain cells from exposure to ionizing radiation may occur during the course of radiotherapy or from accidental exposure. Delayed effects may complicate the immediate effects resulting in neurodegeneration and cognitive decline. We examined cellular and molecular changes associated with exposure of neural stem/progenitor cells (NSPs) to (137)Cs γ-ray doses in the range of 0 to 8 Gy. Subventricular zone NSPs isolated from newborn mouse pups were analyzed for proliferation, self-renewal, and differentiation, shortly after irradiation. Strikingly, there was no apparent increase in the fraction of dying cells after irradiation, and the number of single cells that formed neurospheres showed no significant change from control. Upon differentiation, irradiated neural precursors did not differ in their ability to generate neurons, astrocytes, and oligodendrocytes. By contrast, progression of NSPs through the cell cycle decreased dramatically after exposure to 8 Gy (p < .001). Mice at postnatal day 10 were exposed to 8 Gy of γ rays delivered to the whole body and NSPs of the subventricular zone were analyzed using a four-color flow cytometry panel combined with ethynyl deoxyuridine incorporation. Similar flow cytometric analyses were performed on NSPs cultured as neurospheres. These studies revealed that neither the percentage of neural stem cells nor their proliferation was affected. By contrast, γ-irradiation decreased the proliferation of two classes of multipotent cells and increased the proliferation of a specific glial-restricted precursor. Altogether, these results support the conclusion that primitive neural precursors are radioresistant, but their proliferation is slowed down as a consequence of γ-ray exposure.

  19. Advanced spectral signature discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Cao, Wenjie; Samat, Alim

    2013-05-01

    This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.

  20. {sup 18}F-Choline Positron Emission Tomography/Computed Tomography–Driven High-Dose Salvage Radiation Therapy in Patients With Biochemical Progression After Radical Prostatectomy: Feasibility Study in 60 Patients

    SciTech Connect

    D'Angelillo, Rolando M.; Sciuto, Rosa; Ramella, Sara; Papalia, Rocco; Jereczek-Fossa, Barbara A.; Trodella, Luca E.; Fiore, Michele; Gallucci, Michele; Maini, Carlo L.; Trodella, Lucio

    2014-10-01

    Purpose: To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Methods and Materials: Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic {sup 18}F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up to total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Results: Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. Conclusions: At early follow-up, {sup 18}F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity.

  1. Optical signature modeling at FOI

    NASA Astrophysics Data System (ADS)

    Nelsson, C.; Hermansson, P.; Nyberg, S.; Persson, A.; Persson, R.; Sjökvist, S.; Winzell, T.

    2006-09-01

    Computer programs for prediction of optical signatures of targets and backgrounds are valuable tools for signature assessment and signature management. Simulations make it possible to study optical signatures from targets and backgrounds under conditions where measured signatures are missing or incomplete. Several applications may be identified: Increase understanding, Design and assessment of low signature concepts, Assessment of tactics, Design and assessment of sensor systems, Duel simulations of EW, and Signature awareness. FOI (the Swedish Defence Research Agency) study several methods and modeling programs for detailed physically based prediction of the optical signature of targets in backgrounds. The most important commercial optical signature prediction programs available at FOI are CAMEO-SIM, RadThermIR, and McCavity. The main tasks of the work have been: Assembly of a database of input data, Gain experience of different computer programs, In-house development of complementary algorithms and programs, and Validation and assessment of the simulation results. This paper summarizes the activities and the results obtained. Some application examples will be given as well as results from validations. The test object chosen is the MTLB which is a tracked armored vehicle. It has been used previously at FOI for research purposes and therefore measurement data is available.

  2. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  3. The Observable Signatures of GRB Cocoons

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Piran, Tsvi

    2017-01-01

    As a long gamma-ray burst (GRB) jet propagates within the stellar atmosphere it creates a cocoon composed of an outer Newtonian shocked stellar material and an inner (possibly relativistic) shocked jet. The jet deposits {10}51{--}{10}52 erg into this cocoon. This is comparable to the energies of the GRB and of the accompanying supernova, yet the cocoon’s signature has been largely ignored. The cocoon radiates a fraction of this energy as it expands, following the breakout from the star, and later as it interacts with the surrounding matter. We explore the possible signatures of this emission and outline a framework to calculate them from the conditions of the cocoon at the time of the jet breakout. The cocoon signature depends strongly on the, currently unknown, mixing between the shocked jet and shocked stellar material. With no mixing the γ-ray emission from the cocoon is so bright that it should have been already detected. The lack of such detections indicates that some mixing must take place. For partial and full mixing the expected signals are weaker than regular GRB afterglows. However, the latter are highly beamed while the former are wider. Future optical, UV, and X-ray transient searches, like LSST, ZTF, ULTRASAT, ISS-Lobster, and others, will most likely detect such signals, providing a wealth of information on the progenitors and jets of GRBs. While we focus on long GRBs, analogous (but weaker) cocoons may arise in short GRBs. Their signatures might be the most promising electromagnetic counterparts for gravitational wave signals from compact binary mergers.

  4. Correlation of Radiation Pneumonitis History Before Nivolumab with Onset of Interstitial Lung Disease and Progression-free Survival of Patients with Pre-treated Advanced Non-small Cell Lung Cancer.

    PubMed

    Tamiya, Akihiro; Tamiya, Motohiro; Nakahama, Kenji; Taniguchi, Yoshihiko; Shiroyama, Takayuki; Isa, Shun-Ichi; Inoue, Takako; Okishio, Kyoichi; Nishino, Kazumi; Kumagai, Toru; Suzuki, Hidekazu; Hirashima, Tomonori; Imamura, Fumio; Atagi, Shinji

    2017-09-01

    Nivolumab has a promising efficacy for patients with non-small-cell lung cancer (NSCLC) as second-line or later treatment, and after radiotherapy as abscopal effect. However, the effects of radiation pneumonitis history before nivolumab have not been clarified. Therefore, we retrospectively analyzed the correlation of a history of radiation pneumonitis before nivolumab with onset of interstitial lung disease (ILD) and progression-free survival (PFS) after nivolumab treatment in patients with previously treated NSCLC. A total of 201 patients treated with nivolumab were retrospectively reviewed. We collected clinical data of patients at the time of starting nivolumab and we evaluated ILD incidence and PFS in relation to patient characteristics, including radiation pneumonitis history. The median age was 68 years; 135 patients were men, 157 had a smoking history, and 153 had performance status of 0 or 1. Thirty-four patients experienced radiation pneumonitis before nivolumab, and 50 patients received radiotherapy to the chest (31 patients received curative radiotherapy). The overall median PFS was 2.8 months and the overall ILD rate was 12.4%. Higher ILD incidence was observed in the group with a history of radiation pneumonitis (26.5%) compared to the group without radiation pneumonitis (9.6%). The median PFS was 3.6 and 2.3 months, respectively. On multivariate analysis, a history of radiation pneumonitis was also significantly correlated with good PFS (p=0.023). Although increasing the risk of ILD, a history of radiation pneumonitis before nivolumab also contributes to the prolongation of PFS after nivolumab. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  6. Landsat Signature Development Program

    NASA Technical Reports Server (NTRS)

    Hall, R. N.; Mcguire, K. G.; Bland, R. A.

    1976-01-01

    The Landsat Signature Development Program, LSDP, is designed to produce an unsupervised classification of a scene from a Landsat tape. This classification is based on the clustering tendencies of the multispectral scanner data processed from the scene. The program will generate a character map that, by identifying each of the general classes of surface features extracted from the scene data with a specific line printer symbol, indicates the approximate locations and distributions of these general classes within the scene. Also provided with the character map are a number of tables each of which describes either some aspect of the spectral properties of the resultant classes, some inter-class relationship, the incidence of picture elements assigned to the various classes in the character map classification of the scene, or some significant intermediate stage in the development of the final classes.

  7. Signatures of aging revisited

    SciTech Connect

    Drell, S.; Jeanloz, R.; Cornwall, J.; Dyson, F.; Eardley, D.

    1998-03-18

    This study is a follow-on to the review made by JASON during its 1997 Summer Study of what is known about the aging of critical constituents, particularly the high explosives, metals (Pu, U), and polymers in the enduring stockpile. The JASON report (JSR-97-320) that summarized the findings was based on briefings by the three weapons labs (LANL, LLNL, SNL). They presented excellent technical analyses covering a broad range of scientific and engineering problems pertaining to determining signatures of aging. But the report also noted: `Missing, however, from the briefings and the written documents made available to us by the labs and DOE, was evidence of an adequately sharp focus and high priorities on a number of essential near-term needs of maintaining weapons in the stockpile.

  8. Signature CERN-URSS

    ScienceCinema

    None

    2016-07-12

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  9. Signatures of Reputation

    NASA Astrophysics Data System (ADS)

    Bethencourt, John; Shi, Elaine; Song, Dawn

    Reputation systems have become an increasingly important tool for highlighting quality information and filtering spam within online forums. However, the dependence of a user's reputation on their history of activities seems to preclude any possibility of anonymity. We show that useful reputation information can, in fact, coexist with strong privacy guarantees. We introduce and formalize a novel cryptographic primitive we call signatures of reputation which supports monotonic measures of reputation in a completely anonymous setting. In our system, a user can express trust in others by voting for them, collect votes to build up her own reputation, and attach a proof of her reputation to any data she publishes, all while maintaining the unlinkability of her actions.

  10. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  11. Multisensors signature prediction workbench

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.

  12. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  13. Cell short circuit, preshort signature

    NASA Technical Reports Server (NTRS)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  14. Index of Spectrum Signature Data

    DTIC Science & Technology

    1985-05-01

    Frederick Research Corporation. Alexandria. VA 163 AN/APG-030 Radar Receiver Heasureaents Electromagnetic Coapatibilitv Analysis Center, US Navv Marine ... Electromagnetic Compatibility Characteristics of the W 86 Gun Fire Control Svstem. Naval HEapons Lab, Dahlgren, VA 501 Partial Spectrum Signature...ECAC-I-IO-(SS) DEPARTMENT OF DEFENSE Electromagnetic Compatibility Analysis Center Annapolis, Maryland 21402 INDEX OF SPECTRUM SIGNATURE DATA

  15. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  16. Integral Invariant Signatures

    DTIC Science & Technology

    2004-05-01

    change under the various nui- sances of image formation and viewing geometry was appealing; it held potential for application to recognition...Springer, 1990. 29. S. Z. Li. Shape matching based on invariants. In O. M. Omidvar (ed.), editor, Progress in Neural Networks : Shape Recognition, volume 6

  17. On the signature of LINCOS

    NASA Astrophysics Data System (ADS)

    Ollongren, Alexander

    2010-12-01

    Suppose the international SETI effort yields the discovery of some signal of evidently non-natural origin. Could it contain linguistic information formulated in some kind of Lingua Cosmica? One way to get insight into this matter is to consider what specific (bio) linguistic signature( s) could be attached to a cosmic language for interstellar communication—designed by humans or an alien society having reached a level of intelligence (and technology) comparable to or surpassing ours. For this purpose, we consider in the present paper the logico-linguistic system LINCOS for ( A)CETI, developed during a number of years by the author in several papers and a monograph [1]. The system has a two-fold signature, which distinguishes it significantly from natural languages. In fact abstract and concrete signatures can be distinguished. That an abstract kind occurs is due to the manner in which abstractions of reality are represented in LINCOS-texts. They can take compound forms because the system is multi-expressive—partly due to the availability of inductive (recursive) entities. On the other hand, the concrete signature of LINCOS is related to the distribution of delimiters and predefined tokens in texts. Assigning measures to concrete signatures will be discussed elsewhere. The present contribution concentrates on the abstract signature of the language. At the same time, it is realized that an alien Lingua Cosmica might, but not necessarily needs to have this kind of signatures.

  18. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team

    2017-01-01

    Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!

  19. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  20. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Popa, Maria Elena; Krol, Maarten; Hofmann, Magdalena

    2016-04-01

    High precision measurements of molecules containing more than one heavy isotope in environmental samples are becoming available with new instrumentation and may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk isotopic composition of the molecule, which for rare heavy isotopes is approximated by the arithmetic average of the isotope ratios of single substituted atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies when the indistinguishable atoms are from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule and these anomalies have to be taken into account in data interpretation. The size of the signal is closely related to the relative standard deviation of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  1. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  2. An improved method for producing radiation hybrids applied to human chromosome 19. Technical progress report, March 1, 1991--February 28, 1992

    SciTech Connect

    Jackson, C.L.

    1992-04-01

    At the initiation of the grant we had just produced radiation hybrids from a monochromosomal microcell hybrid containing human chromosome 19 as its only human component. Radiation hybrids were produced using doses of radiation ranging from 1000--8000 rads. Lethally irradiated cells were then fused to hamster recipients (CHTG49) and selected for growth in histidinol. Approximately 240 clones were isolated and 75 clones were expanded for the isolation of DNA. This report describes in situ hybridization studies and the introduction of markers into human chromosome 19.

  3. Radiation enteritis.

    PubMed

    Harb, Ali H; Abou Fadel, Carla; Sharara, Ala I

    2014-01-01

    Radiation enteritis continues to be a major health concern in recipients of radiation therapy. The incidence of radiation enteritis is expected to continue to rise during the coming years paralleling the unprecedented use of radiotherapy in pelvic cancers. Radiation enteritis can present as either an acute or chronic syndrome. The acute form presents within hours to days of radiation exposure and typically resolves within few weeks. The chronic form may present as early as 2 months or as long as 30 years after exposure. Risk factors can be divided into patient and treatment-related factors. Chronic radiation enteritis is characterized by progressive obliterative endarteritis with exaggerated submucosal fibrosis and can manifest by stricturing, formation of fistulae, local abscesses, perforation, and bleeding. In the right clinical context, diagnosis can be confirmed by cross-sectional imaging, flexible or video capsule endoscopy. Present treatment strategies are directed primarily towards symptom relief and management of emerging complications. Recently, however, there has been a shift towards rational drug design based on improved understanding of the molecular basis of disease in an effort to limit the fibrotic process and prevent organ damage.

  4. Transition of radiative recombination channels from delocalized states to localized states in a GaInP alloy with partial atomic ordering: a direct optical signature of Mott transition?

    NASA Astrophysics Data System (ADS)

    Su, Z. C.; Ning, J. Q.; Deng, Z.; Wang, X. H.; Xu, S. J.; Wang, R. X.; Lu, S. L.; Dong, J. R.; Yang, H.

    2016-03-01

    Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices.

  5. Intrusion detection using secure signatures

    DOEpatents

    Nelson, Trent Darnel; Haile, Jedediah

    2014-09-30

    A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.

  6. Retail applications of signature verification

    NASA Astrophysics Data System (ADS)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  7. Is the progression free survival advantage of concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin in patients with advanced cervical cancer worth the additional cost? A cost-effectiveness analysis.

    PubMed

    Smith, B; Cohn, D E; Clements, A; Tierney, B J; Straughn, J M

    2013-09-01

    The objective of this study is to determine whether concurrent and adjuvant chemoradiation with gemcitabine/cisplatin is cost-effective in patients with stage IIB to IVA cervical cancer. A cost-effectiveness model compared two arms of the trial performed by Duenas-Gonzalez et al. [1]: concurrent and adjuvant chemoradiation with gemcitabine/cisplatin (RT/GC+GC) versus concurrent radiation with cisplatin (RT/C). Major adverse events (AEs) and progression free survival (PFS) rates of each arm were incorporated in the model. AEs were defined as any hospitalization including grade 4 anemia, grade 4 neutropenia, and death. Medicare data and literature review were used to estimate costs. Incremental cost-effectiveness ratios (ICERs) per progression-free life-year saved (PF-LYS) were calculated. Sensitivity analyses were performed for pertinent uncertainties. For 10,000 women with locally advanced cervical cancer, the cost of therapy and AEs was $173.9 million (M) for RT/C versus $259.8M for RT/GC+GC. There were 879 additional 3-year progression-free survivors in the RT/GC+GC arm. The ICER for RT/GC+GC was $97,799 per PF-LYS. When the rate of hospitalization was equalized to 4.3%, the ICER for RT/GC+GC exceeded $80,000. The resultant ICER when increasing PFS in the RT/GC+GC arm by 5% was $62,605 per PF-LYS. When the cost of chemotherapy was decreased by 50%, the ICER was below $50,000 at $41,774 per PF-LYS. Radiation and gemcitabine/cisplatin for patients with stage IIB to IVA cervical cancer are not cost-effective. The increased financial burden of radiation with gemcitabine/cisplatin and associated toxicities appears to outweigh the benefit of increased 3-year PFS and is primarily dependent on chemotherapy drug costs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Ballastic signature identification systems study

    NASA Technical Reports Server (NTRS)

    Reich, A.; Hine, T. L.

    1976-01-01

    The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.

  9. Color signatures in Amorsolo paintings

    NASA Astrophysics Data System (ADS)

    Soriano, Maricor N.; Palomero, Cherry May; Cruz, Larry; Yambao, Clod Marlan Krister; Dado, Julie Mae; Salvador-Campaner, Janice May

    2010-02-01

    We present the results of a two-year project aimed at capturing quantifiable color signatures of oil paintings of Fernando Amorsolo, the Philippine's first National Artists. Color signatures are found by comparing CIE xy measurements of skin color in portraits and ground, sky and foliage in landscapes. The results are compared with results of visual examination and art historical data as well as works done by Amorsolo's contemporaries and mentors.

  10. Lorentzian and signature changing branes

    SciTech Connect

    Mars, Marc; Senovilla, Jose M. M.; Vera, Rauel

    2007-08-15

    General hypersurface layers are considered in order to describe braneworlds and shell cosmologies. No restriction is placed on the causal character of the hypersurface which may thus have internal changes of signature. Strengthening the results in our previous paper [M. Mars, J. M. M. Senovilla, and R. Vera, Phys. Rev. Lett. 86, 4219 (2001).], we confirm that a good, regular, and consistent description of signature change is achieved in these brane/shells scenarios, while keeping the hypersurface and the bulk completely regular. Our formalism allows for a unified description of the traditional timelike branes/shells together with the signature changing, or pure null, ones. This allows for a detailed comparison of the results in both situations. An application to the case of hypersurface layers in static bulks is presented, leading to the general Robertson-Walker geometry on the layer--with a possible signature change. Explicit examples on anti-de Sitter bulks are then studied. The permitted behaviors in different settings (Z{sub 2}-mirror branes, asymmetric shells, signature changing branes) are analyzed in detail. We show, in particular, that (i) in asymmetric shells there is an upper bound for the energy density, and (ii) that the energy density within the brane vanishes when approaching a change of signature. The description of a signature change as a ''singularity'' seen from within the brane is considered. We also find new relations between the fundamental constants in the brane/shell, its tension, and the cosmological and gravitational constants of the bulk, independently of the existence or not of a change of signature.

  11. Time-Dependent Delayed Signatures From Energetic Photon Interrogations

    SciTech Connect

    D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell

    2006-08-01

    A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.

  12. Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors

    PubMed Central

    Ory, Catherine; Ugolin, Nicolas; Levalois, Céline; Lacroix, Ludovic; Caillou, Bernard; Bidart, Jean-Michel; Schlumberger, Martin; Diallo, Ibrahima; de Vathaire, Florent; Hofman, Paul; Santini, José; Malfoy, Bernard; Chevillard, Sylvie

    2011-01-01

    Both external and internal exposure to ionizing radiation are strong risk factors for the development of thyroid tumors. Until now, the diagnosis of radiation-induced thyroid tumors has been deduced from a network of arguments taken together with the individual history of radiation exposure. Neither the histological features nor the genetic alterations observed in these tumors have been shown to be specific fingerprints of an exposure to radiation. The aim of our work is to define ionizing radiation-related molecular specificities in a series of secondary thyroid tumors developed in the radiation field of patients treated by radiotherapy. To identify molecular markers that could represent a radiation-induction signature, we compared 25K microarray transcriptome profiles of a learning set of 28 thyroid tumors, which comprised 14 follicular thyroid adenomas (FTA) and 14 papillary thyroid carcinomas (PTC), either sporadic or consecutive to external radiotherapy in childhood. We identified a signature composed of 322 genes which discriminates radiation-induced tumors (FTA and PTC) from their sporadic counterparts. The robustness of this signature was further confirmed by blind case-by-case classification of an independent set of 29 tumors (16 FTA and 13 PTC). After the histology code break by the clinicians, 26/29 tumors were well classified regarding tumor etiology, 1 was undetermined, and 2 were misclassified. Our results help shed light on radiation-induced thyroid carcinogenesis, since specific molecular pathways are deregulated in radiation-induced tumors. PMID:21148326

  13. Forehead thermal signature extraction in lie detection.

    PubMed

    Zhu, Zhen; Tsiamyrtzis, Panagiotis; Pavlidis, Ioannis

    2007-01-01

    Previous work demonstrated that facial thermography can be successful in lie detection. In those studies the development was based on the thermal signature of the periorbital region. In the present paper a new source of psycho-physiological information is proposed: the forehead. We found that the corrugator muscle in the forehead is more active than usual, when the individual experiences sustained stress. As a result, more blood flows through the supraorbital vasculature, increasing the cutaneous forehead temperature. In order to monitor the thermal signature of the forehead's cutaneous tissue, a segmentation method based on active contours has been developed. This creates a virtual forehead probe that can monitor stress levels by measuring thermal radiation over the supraorbital vessels. Thermal videos of 38 subjects under interrogation for a mock crime scenario were used to test the new approach. The results show that the recovered forehead signal, enables 76.3% success rate in deceptive state classification. Thus, the forehead channel shows promise in lie detection.

  14. A prospective blood RNA signature for tuberculosis disease risk

    PubMed Central

    Zak, Daniel E.; Penn-Nicholson, Adam; Scriba, Thomas J.; Thompson, Ethan; Suliman, Sara; Amon, Lynn M.; Mahomed, Hassan; Erasmus, Mzwandile; Whatney, Wendy; Hussey, Gregory D.; Abrahams, Deborah; Kafaar, Fazlin; Hawkridge, Tony; Verver, Suzanne; Hughes, E. Jane; Ota, Martin; Sutherland, Jayne; Howe, Rawleigh; Dockrell, Hazel M.; Boom, W. Henry; Thiel, Bonnie; Ottenhoff, Tom H.M.; Mayanja-Kizza, Harriet; Crampin, Amelia C; Downing, Katrina; Hatherill, Mark; Valvo, Joe; Shankar, Smitha; Parida, Shreemanta K; Kaufmann, Stefan H.E.; Walzl, Gerhard; Aderem, Alan; Hanekom, Willem A.

    2016-01-01

    Background Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease may lead to interventions that impact the epidemic. Methods Healthy, M. tuberculosis infected South African adolescents were followed for 2 years; blood was collected every 6 months. A prospective signature of risk was derived from whole blood RNA-Sequencing data by comparing participants who ultimately developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. The latter participants were household contacts of adults with active pulmonary tuberculosis disease. Findings Of 6,363 adolescents screened, 46 progressors and 107 matched controls were identified. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% confidence interval, 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA-Seq and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months preceding tuberculosis. Interpretation The whole blood tuberculosis risk signature prospectively identified persons at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. Funding Bill and Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union and the South African Medical Research Council (detail at end of text). PMID:27017310

  15. [Radiobiological Human Tissue repository: progress and perspectives for solving the problems of radiation safety and health protection of personnel and population].

    PubMed

    Kirillova, E N; Romanov, S A; Loffredo, C A; Zakharova, M L; Revina, V S; Sokolova, S N; Goerlitz, D S; Zubkova, O V; Lukianova, T V; Uriadnitzkaia, T I; Pavlova, O S; Slukinova, U V; Kolosova, A V; Muksinova, K N

    2014-01-01

    Radiobiological Human Tissue repository was established in order to obtain and store biological material from Mayak PA workers occupationally exposed to ionizing (α- and/or γ-) radiation in a wide dose range, from the residents exposed to long term radiation due to radiation accidents and transfer of the samples to scientists for the purpose of studying the effects of radiation for people and their offspring. The accumulated biomaterial is the informational and research potential that form the basis for the work of the scientists in different spheres of biology and medicine. The repository comprises 5 sections: tumor and non-tumor tissues obtained in the course of autopsies, biopsies, surgeries, samples of blood and its components, of DNA, induced sputum, saliva, and other from people exposed or unexposed (control) to radiation. The biomaterial is stored in formalin, in paraffin blocks, slides, as well as in the freezers under low temperatures. All the information on the samples and the registrants (medical, dosimetry, demographic, and occupational data) was obtained and entered into the electronic database. A constantly updated website of the repository was developed in order to provide a possibility to get acquainted with the material and proceed with application for biosamples for scientists from Russia and abroad. Some data obtained in the course of scientific research works on the basis of the biomaterial from the Repository are briefly introduced in the review.

  16. Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance

    PubMed Central

    Panic, Andrej; Ketteler, Julia; Reis, Henning; Sak, Ali; Herskind, Carsten; Maier, Patrick; Rübben, Herbert; Jendrossek, Verena; Klein, Diana

    2017-01-01

    Despite good treatment results in localized prostate tumors, advanced disease stages usually have a pronounced resistance to chemotherapy and radiotherapy. The membrane protein caveolin-1 (Cav1) functions here as an important oncogene. Therefore we examined the impact of stromal Cav1 expression for tumor growth and sensitivity to ionizing radiation (IR). Silencing of Cav1 expression in PC3 cells resulted in increased tumor growth and a reduced growth delay after IR when compared to tumors generated by Cav1-expressing PC3 cells. The increased radiation resistance was associated with increasing amounts of reactive tumor stroma and a Cav1 re-expression in the malignant epithelial cells. Mimicking the human situation these results were confirmed using co-implantation of Cav1-silenced PC3 cells with Cav1-silenced or Cav1-expressing fibroblasts. Immunohistochemically analysis of irradiated tumors as well as human prostate tissue specimen confirmed that alterations in stromal-epithelial Cav1 expressions were accompanied by a more reactive Cav1-reduced tumor stroma after radiation and within advanced prostate cancer tissues which potentially mediates the resistance to radiation treatment. Conclusively, the radiation response of human prostate tumors is critically regulated by Cav1 expression in stromal fibroblasts. Loss of stromal Cav1 expression in advanced tumor stages may thus contribute to resistance of these tumors to radiotherapy. PMID:28112237

  17. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1992--October 31, 1993

    SciTech Connect

    Michalsky, J.; Harrison, L.

    1993-04-30

    The ARM goal is to help improve both longwave and shortwave models by providing improved radiometric shortwave data. These data can be used directly to test shortwave model predictions. As will be described below they can also provide inferred values for aerosol and cloud properties that are useful for longwave modeling efforts as well. The current ARM research program includes three tasks all related to the study of shortwave radiation transfer through clouds and aerosol. Two of the tasks involve the assembly of archived and new radiation and meteorological data sets; the third and dominant task has been the development and use of new shortwave radiometric sensors. Archived data from Golden, Colorado, and Albany, New York, were combined with National Weather Service ground and upper air data for testing radiation models for the era when the Earth Radiation Budget Experiment (ERBE) was operational. These data do not include optimum surface radiation measurements; consequently we are acquiring downwelling shortwave, including direct and diffuse irradiance, plus downwelling longwave, upwelling shortwave, and aerosol optical depth, at our own institution, as an additional dataset for ARM modelers.

  18. Classifying Land Cover Using Spectral Signature

    NASA Astrophysics Data System (ADS)

    Alawiye, F. S.

    2012-12-01

    Studying land cover has become increasingly important as countries try to overcome the destruction of wetlands; its impact on local climate due to seasonal variation, radiation balance, and deteriorating environmental quality. In this investigation, we have been studying the spectral signatures of the Jamaica Bay wetland area based on remotely sensed satellite input data from LANDSAT TM and ASTER. We applied various remote sensing techniques to generate classified land cover output maps. Our classifiers relied on input from both the remote sensing and in-situ spectral field data. Based upon spectral separability and data collected in the field, a supervised and unsupervised classification was carried out. First results suggest good agreement between the land cover units mapped and those observed in the field.

  19. Multi-omic network signatures of disease

    PubMed Central

    Gibbs, David L.; Gralinski, Lisa; Baric, Ralph S.; McWeeney, Shannon K.

    2013-01-01

    To better understand dynamic disease processes, integrated multi-omic methods are needed, yet comparing different types of omic data remains difficult. Integrative solutions benefit experimenters by eliminating potential biases that come with single omic analysis. We have developed the methods needed to explore whether a relationship exists between co-expression network models built from transcriptomic and proteomic data types, and whether this relationship can be used to improve the disease signature discovery process. A naïve, correlation based method is utilized for comparison. Using publicly available infectious disease time series data, we analyzed the related co-expression structure of the transcriptome and proteome in response to SARS-CoV infection in mice. Transcript and peptide expression data was filtered using quality scores and subset by taking the intersection on mapped Entrez IDs. Using this data set, independent co-expression networks were built. The networks were integrated by constructing a bipartite module graph based on module member overlap, module summary correlation, and correlation to phenotypes of interest. Compared to the module level results, the naïve approach is hindered by a lack of correlation across data types, less significant enrichment results, and little functional overlap across data types. Our module graph approach avoids these problems, resulting in an integrated omic signature of disease progression, which allows prioritization across data types for down-stream experiment planning. Integrated modules exhibited related functional enrichments and could suggest novel interactions in response to infection. These disease and platform-independent methods can be used to realize the full potential of multi-omic network signatures. The data (experiment SM001) are publically available through the NIAID Systems Virology (https://www.systemsvirology.org) and PNNL (http://omics.pnl.gov) web portals. Phenotype data is found in the

  20. Quantum path signatures in harmonic spectra from metal plasma

    SciTech Connect

    Ganeev, R. A.; Hutchison, C.; Siegel, T.; Zaier, A.; Marangos, J. P.

    2011-06-15

    We have observed the signatures of quantum trajectories while generating harmonics in metal plasmas by using a high pulse repetition rate (1-kHz) Ti:sapphire laser source. We present how focusing conditions, laser intensity, plasma concentration, and the chirp of laser radiation influence the observation of separated quantum paths. Our studies demonstrate the clear fingerprints of the separated quantum paths in the case of an ionized medium.

  1. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-02-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.

  2. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  3. Interpretation of the fluorescence signatures from vegetation

    NASA Astrophysics Data System (ADS)

    Buschmann, C.

    Vegetation emits fluorescence as part of the energy taken up by absorption %of solar radiation from UV to the visible. This fluorescence consists of light with low intensity (only few percents of the reflected light) emitted from the leaves. The fluorescence emission of a green leaf is characterized by four bands with maxima in the blue (440 nm), green (520 nm), red (690 nm) and far red (740 nm) spectral region. The intensity of fluorescence in the maxima of the emission spectrum varies depending on the following six basic parameters which must be taken into account for the interpretation of fluorescence signatures from vegetation: (a) content of the fluorophores (ferulic acid, chlorophyll a), (b) temperature of the leaf, (c) penetration of excitation light into the leaf, (d) emission of fluorescence from the leaf (re-absorption inside the leaf tissue), (e) photosynthetic activity of the leaf, (f) non-radiative decay (heat production) parallel to the fluorescence The ratios between the intensities of the maxima (F440/F690, F440/F520, F690/F740) are used as characteristic fluorescence parameter. The wide range of changes of these ratios caused by differences in the leaf tissue (aerial interspaces, variegated/homogeneous green leaves), various types of stress (UV, photoinhibition, sun exposure, heat, water deficiency, N-deficiency) and chemicals (inhibitors, fertilizers) can be explained by changes of the six basic parameters. It will be shown that the interpretation of the fluorescence signatures, in most cases, must be based on a complex consideration of more than one of the basic parameters.

  4. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    PubMed Central

    Lambros, Maria P.; Kondapalli, Lavanya; Parsa, Cyrus; Mulamalla, Hari Chandana; Orlando, Robert; Pon, Doreen; Huang, Ying; Chow, Moses S. S.

    2015-01-01

    Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors. PMID:25705238

  5. Predictive chromatin signatures in the mammalian genome

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Ren, Bing

    2009-01-01

    The DNA sequence of an organism is a blueprint of life: it harbors not only the information about proteins and other molecules produced in each cell, but also instructions on when and where such molecules are made. Chromatin, the structure of histone and DNA that has co-evolved with eukaryotic genome, also contains information that indicates the function and activity of the underlying DNA sequences. Such information exists in the form of covalent modifications to the histone proteins that comprise the nucleosome. Thanks to the development of high throughput technologies such as DNA microarrays and next generation DNA sequencing, we have begun to associate the various combinations of chromatin modification patterns with functional sequences in the human genome. Here, we review the rapid progress from descriptive observations of histone modification profiles to highly predictive models enabling use of chromatin signatures to enumerate novel functional sequences in mammalian genomes that have escaped previous detection. PMID:19808796

  6. Second Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Howard, Richard H.; Briggs, Samuel A.

    2016-12-30

    The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.

  7. Determination of the radiative of pulverized-coal particles. Technical progress report, third quarter of the third year, March 15, 1990--June 15, 1990

    SciTech Connect

    Menguec, M.P.; Dsa, D.; Manickavasagam, S.; Dutta, P.; Mahadeviah, A.

    1991-12-31

    For accurate modeling of radiative transfer in combustion systems, radiative properties of combustion products are required. It is usually difficult to calculate the properties of nonhomogeneous and irregular-shaped pulverized-coal and char particles, because of the lack of information on optical constants and unavailability of simple and accurate theoretical models. Because of this, it is preferable to determine the required properties from experiments in situ. This can be accomplished by combining optical diagnostic techniques with inverse analyses of radiative transfer problem. In this study, experiments were conducted using a CO{sub 2}-laser nephelometer to measure angular distribution of light scattered by a cold-layer of pulverized-coal particles. The data obtained from the experiments were used along with a new step-phase function approximation in a numerical inverse radiation scheme to obtain ``effective`` extinction coefficient and scattering phase function for coal particles in narrow size distributions. In addition to that, a mercury-arc-lamp monochromator system was used to obtain spectral absorption coefficient of coal particles as a function of wavelength and coal size.

  8. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  9. Temperature effects on airgun signatures

    SciTech Connect

    Langhammer, J.; Landroe, M. )

    1993-08-01

    Experiments in an 850 liter water tank were performed in order to study temperature effects on airgun signatures, and to achieve a better understanding of the physical processes that influence an airgun signature. The source was a bolt airgun with a chamber volume of 1.6 cu. in. The pressure used was 100 bar and the gun depth was 0.5 m. The water temperature in the tank was varied between 5 C and 45 C. Near-field signatures were recorded at different water temperatures. Typical signature characteristics such as the primary-to-bubble ratio and the bubble time period increased with increasing water temperature. For comparison and in order to check whether this is valid for larger guns, computer modeling of airguns with chamber volumes of 1.6 and 40 cu. in. was performed. In modeling the same behavior of the signatures with increasing water temperature can be observed. The increase in the primary-to-bubble ratio and the bubble time period with increasing water temperature can be explained by an increased mass transfer across the bubble wall.

  10. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1990--September 14, 1991

    SciTech Connect

    Harrison, L.; Michalsky, J.

    1991-03-13

    Three separate tasks are included in the first year of the project. Two involve assembling data sets useful for testing radiation models in global climate modeling (GCM) codes, and the third is concerned with the development of advance instrumentation for performing accurate spectral radiation measurements. Task 1: Three existing data sets have been merged for two locations, one in the wet northeastern US and a second in the dry western US. The data sets are meteorological data from the WBAN network, upper air data from the NCDC, and high quality solar radiation measurements from Albany, New York and Golden, Colorado. These represent test data sets for those modelers developing radiation codes for the GCM models. Task 2: Existing data are not quite adequate from a modeler`s perspective without downwelling infrared data and surface albedo, or reflectance, data. Before the deployment of the first CART site in ARM the authors are establishing this more complete set of radiation measurements at the Albany site to be operational only until CART is operational. The authors will have the site running by April 1991, which will provide about one year`s data from this location. They will coordinate their measurements with satellite overpasses, and, to the extent possible, with radiosonde releases, in order that the data set be coincident in time. Task 3: Work has concentrated on the multiple filter instrument. The mechanical, optical, and software engineering for this instrument is complete, and the first field prototype is running at the Rattlesnake Mountain Observatory (RMO) test site. This instrument is performing well, and is already delivering reliable and useful information.

  11. Physics-Based Radiometric Signature Modeling and Detection Algorithms of Landmines Using Electro-Optical Sensors

    DTIC Science & Technology

    2005-07-01

    end to the Office of Management and Budget, Paperwork Reduction Project 10704-If88), Washington, OC 20503. 1 . AGENCY USE ONLY (tLeave blank) 2 . REPORT...Signatures During Darkness ....................... 1 ) 1 4.1.4 Signatures at Dawn and Dusk ..................... 155 4.2 Case 2 : Polarimetric MWIR...234 A.4 Blackbody Radiation ........ .......................... 2 :35 B. Electro-Optic Sensors .................................. 237 B. 1

  12. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  13. Measurement of sniper infrared signatures

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2009-09-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper and background in typical scenarios has been presented. We take into consideration sniper activities in open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement class devices with high accuracy and speed. The others are microbolometer cameras with FPA detector similar to those used in real commercial counter-sniper systems. The registration was made in SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented.

  14. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  15. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  16. Evaluation of Kidney Stones with Reduced-Radiation Dose CT: Progress from 2011-2012 to 2015-2016-Not There Yet.

    PubMed

    Weisenthal, Karrin; Karthik, Priyadarshini; Shaw, Melissa; Sengupta, Debapriya; Bhargavan-Chatfield, Mythreyi; Burleson, Judy; Mustafa, Adel; Kalra, Mannudeep; Moore, Christopher

    2017-08-31

    Purpose To determine if the use of reduced-dose computed tomography (CT) for evaluation of kidney stones increased in 2015-2016 compared with that in 2011-2012, to determine variability in radiation exposure according to facility for this indication, and to establish a current average radiation dose for CT evaluation for kidney stones by querying a national dose registry. Materials and Methods This cross-sectional study was exempt from institutional review board approval. Data were obtained from the American College of Radiology dose registry for CT examinations submitted from July 2015 to June 2016. Study descriptors consistent with single-phase unenhanced CT for evaluation of kidney stones and associated RadLex® Playbook identifiers (RPIDs) were retrospectively identified. Facilities actively submitting data on kidney stone-specific CT examinations were included. Dose metrics including volumetric CT dose index, dose-length product, and size-specific dose estimate, when available, were reported, and a random effects model was run to account for clustering of CT examinations at facilities. A z-ratio was calculated to test for a significant difference between the proportion of reduced-radiation dose CT examinations (defined as those with a dose-length product of 200 mGy · cm or less) performed in 2015-2016 and the proportion performed in 2011-2012. Results Three hundred four study descriptors for kidney stone CT corresponding to data from 328 facilities that submitted 105 334 kidney stone CT examinations were identified. Reduced-dose CT examinations accounted for 8040 of 105 334 (7.6%) CT examinations, a 5.6% increase from the 1010 of 49 903 (2%) examinations in 2011-2012 (P < .001). Mean overall dose-length product was 689 mGy · cm (95% confidence interval: 667, 712), decreased from the mean of 746 mGy · cm observed in 2011-2012. Median facility dose-length product varied up to sevenfold, from less than 200 mGy · cm to greater than 1600 mGy · cm. Conclusion

  17. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  18. Ballistic Signature Identification System Study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.

  19. Use of gamma radiation as a form of preservation of sweet potatoes. Quarterly progress report, October 1, 1984-December 31, 1984

    SciTech Connect

    Not Available

    1985-04-30

    One of the radiation doses was changed from a planned level to 80 krads due to difficulties during irradiation at Georgia Tech. Equipment and supplies are still arriving slowly but we have found ways around most delays. We have also required more supplies than we originally anticipated. The data are and will be so extensive that we have asked for an extension of two months in order to have more time to sufficiently analyze it.

  20. Doppler Signatures of the Atmospheric Circulation of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.; Fortney, J. J.; Lewis, N. K.; Shabram, M.

    2011-09-01

    To date, the exotic meteorology of hot Jupiters has primarily been characterized with thermal measurements, providing only indirect clues to the wind regime. Recently, however, Snellen et al. (2010) presented high-resolution groundbased transit spectra of HD209458b containing an apparent 2 km/sec blueshift, which they interpreted as a signature of atmospheric winds flowing from dayside to nightside toward Earth along the planet's terminator. Motivated by these observations, we describe the types of Doppler signatures generated by the atmospheric circulation and show how Doppler measurements can place powerful constraints on the meteorology. We show that, depending on parameters, the atmospheric circulation--and Doppler signature--of hot Jupiters splits into two regimes. At moderate stellar insolation, the day-night thermal forcing generates fast east-west jet streams from the interaction of standing planetary-scale waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a bimodal Doppler signature exhibiting distinct, superposed blue- and redshifted velocity peaks. Under more intense stellar insolation, however, the thermal forcing is so strong that it damps these planetary-scale waves, inhibiting their ability to generate jet streams. As a result, this second regime exhibits a circulation dominated primarily by high-altitude, day-to-night airflow along both terminators rather than longitudinally symmetric jets. This causes air to flow toward Earth along most of the terminator, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art 3D circulation models including nongrey radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that HD189733b lies in the first regime while HD209458b lies in the second regime. Moreover, we show how the amplitude of the Doppler

  1. [Direct assay of radiation-induced DNA base lesions to mammalian cells]. Final progress report, September 1, 1991--November 1, 1993

    SciTech Connect

    Not Available

    1993-12-31

    We have successfully developed the GC/MS technique so that an assessment of base damage in mammalian cells can be accomplished. The technique now has a sensitivity that will allow one to perform research in the low dose region suitable for hazards evaluation. The research on the hydrated DNA molecule has been seminal in generating a better understanding of the mechanisms by which low LET radiation induces DNA damage in mammalian cells. Also reported here are (1) the methodology for hydrating and irradiating DNA has been developed, (2) the procedures for identifying and quantitating radiation-induced DNA damage by HPLC and GC/MS have been mastered, (3) an hypotheses that radiation-induced damage in closely associated water molecules can result in DNA damage which is indistinguishable from that caused by direct ionization of the DNA has been generated and supported by experimental data, and (4) mathematical expressions that relate DNA lesion formation to the important parameters in the above hypotheses have been constructed so that the predictions of the hypotheses can now be tested.

  2. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis

    PubMed Central

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality. PMID:27014632

  3. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis.

    PubMed

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality.

  4. Autophagy-related prognostic signature for breast cancer.

    PubMed

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.

  5. Invisibly Sanitizable Digital Signature Scheme

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  6. MK 66 Rocket Signature Reduction

    DTIC Science & Technology

    1982-04-01

    Indian Head, Maryland. ’The objec- tive of the study was to reduce the visible signature of the rocket motor. The rocket motor used for demonstration tests...15 6. Actual Emmiissions . . . . . . ........... . 16 7. Human Eye Adjusted Emmissions ..................... .. 16 8. Cross...altered. Additives are commonly used in gun propellants for elimination of muzzle flash. Their use in tactical rockets has been very limited, and

  7. Disaster relief through composite signatures

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve

    2012-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.

  8. Topological Signatures for Population Admixture

    USDA-ARS?s Scientific Manuscript database

    Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...

  9. Improved method of signature extraction

    NASA Technical Reports Server (NTRS)

    Christianson, D.; Gordon, M.; Kistler, R.; Kriegler, F. J.; Lampert, S.; Marshall, R. E.; Mclaughlin, R.; Smith, V.

    1977-01-01

    System promises capability of rapidly processing large amounts of data generated by currently available and planned multispectral sensors, such as those utilized on aircraft and spacecraft. Techniques developed for system, greatly decrease operator time required for signature extraction from multispectral data base.

  10. An improved method for producing radiation hybrids applied to human chromosome 19. Technical progress report, 1 March 1993--28 February 1994

    SciTech Connect

    Jackson, C.L.; Mark, H.F.L.

    1994-05-01

    Markers for which hybrids have been characterized have doubled from approximately 25 to 50 markers. Almost all new markers are microsatellite dinucleotide repeat markers. This will allow correlation of fragments of chromosome 19 in the hybrids with the genetic map. In situ hybridization is certainly one of the most direct methods of gene mapping in general and the most direct method to visualize the number of chromosome fragments in a hybrid. We have utilized fluorescent in situ hybridization (FISH) to determine the number of human fragments contained in the radiation hybrid cell lines.

  11. Energetic particle signatures of satellites and rings in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.; Stone, E. C.

    1992-01-01

    The cosmic ray system on Voyager 2 found a trapped radiation environment in Neptune's inner magnetosphere which is controlled primarily by absorption at the rings and satellite surfaces. The intensity of electrons with kinetic energies approximately greater than 1 MeV shows particularly strong and narrow signatures associated with absorption by the satellite 1989N1 at an orbital radius of 4.75 Neptune radii. Closer to the planet are several signatures of the inner satellites and rings. Absorption limits the intensity of the inner radiation belt sufficiently for the maximum intensity to occur outside the orbit of 1989N1 at a magnetic L shell of about 7. Radial profiles of the electron phase space density show that electrons diffuse inward from a source in the outer magnetosphere. Many of the inward-diffusing electrons are absorbed upon reaching a satellite orbital radius, but the finite absorption efficiency allows some of the electrons to pass by unaffected. The locations of the satellite and ring signatures also provide constraints on the nondipolar components of the planetary magnetic field.

  12. Block truncation signature coding for hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Chang, Chein-I.

    2008-08-01

    This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.

  13. A research program on radiative transfer model development in support of the ARM program. Progress report No. 2, 1 March 1991--1 April 1992

    SciTech Connect

    Clough, S.A.

    1992-05-01

    Research continued on the development of a radiative transfer model. This report discusses the revised continuum model. The water vapor continuum plays an important role in atmospheric radiative transfer providing increased opacity between spectral lines over the full spectral region from the microwave to the visible. The continuum has a significant influence on atmospheric fluxes and cooling rates. Additionally the continuum is important to the physical solution of the inverse problem, the remote sensing of atmospheric state to retrieve temperature, water vapor, surface properties and other state parameters. There are two components to the continuum: The self-broadened continuum, dependent on the square of the partial pressure of water vapor, and the foreign-broadened continuum, principally dependent on the product of the water vapor partial pressure and the total pressure. As a consequence the self broadened continuum tends to be more important in the lower atmosphere while the foreign broadened continuum tends to be more important in the mid to upper troposphere. To address this situation and to improve overall accuracy, we have embarked on the development of an improved water vapor continuum model.

  14. Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors.

    PubMed

    Ory, Catherine; Ugolin, Nicolas; Hofman, Paul; Schlumberger, Martin; Likhtarev, Illya A; Chevillard, Sylvie

    2013-11-01

    We previously identified two highly discriminating and predictive radiation-induced transcriptomic signatures by comparing series of sporadic and postradiotherapy thyroid tumors (322-gene signature), and by reanalyzing a previously published data set of sporadic and post-Chernobyl thyroid tumors (106-gene signature). The aim of the present work was (i) to compare the two signatures in terms of gene expression deregulations and molecular features/pathways, and (ii) to test the capacity of the postradiotherapy signature in classifying the post-Chernobyl series of tumors and reciprocally of the post-Chernobyl signature in classifying the postradiotherapy-induced tumors. We now explored if postradiotherapy and post-Chernobyl papillary thyroid carcinomas (PTC) display common molecular features by comparing molecular pathways deregulated in the two tumor series, and tested the potential of gene subsets of the postradiotherapy signature to classify the post-Chernobyl series (14 sporadic and 12 post-Chernobyl PTC), and reciprocally of gene subsets of the post-Chernobyl signature to classify the postradiotherapy series (15 sporadic and 12 postradiotherapy PTC), by using conventional principal component analysis. We found that the five genes common to the two signatures classified the learning/training tumors (used to search these signatures) of both the postradiotherapy (seven PTC) and the post-Chernobyl (six PTC) thyroid tumor series as compared with the sporadic tumors (seven sporadic PTC in each series). Importantly, these five genes were also effective for classifying independent series of postradiotherapy (five PTC) and post-Chernobyl (six PTC) tumors compared to independent series of sporadic tumors (eight PTC and six PTC respectively; testing tumors). Moreover, part of each postradiotherapy (32 genes) and post-Chernobyl signature (16 genes) cross-classified the respective series of thyroid tumors. Finally, several molecular pathways deregulated in post

  15. Gene expression-based prognostic signatures in lung cancer: ready for clinical use?

    PubMed

    Subramanian, Jyothi; Simon, Richard

    2010-04-07

    A substantial number of studies have reported the development of gene expression-based prognostic signatures for lung cancer. The ultimate aim of such studies should be the development of well-validated clinically useful prognostic signatures that improve therapeutic decision making beyond current practice standards. We critically reviewed published studies reporting the development of gene expression-based prognostic signatures for non-small cell lung cancer to assess the progress made toward this objective. Studies published between January 1, 2002, and February 28, 2009, were identified through a PubMed search. Following hand-screening of abstracts of the identified articles, 16 were selected as relevant. Those publications were evaluated in detail for appropriateness of the study design, statistical validation of the prognostic signature on independent datasets, presentation of results in an unbiased manner, and demonstration of medical utility for the new signature beyond that obtained using existing treatment guidelines. Based on this review, we found little evidence that any of the reported gene expression signatures are ready for clinical application. We also found serious problems in the design and analysis of many of the studies. We suggest a set of guidelines to aid the design, analysis, and evaluation of prognostic signature studies. These guidelines emphasize the importance of focused study planning to address specific medically important questions and the use of unbiased analysis methods to evaluate whether the resulting signatures provide evidence of medical utility beyond standard of care-based prognostic factors.

  16. Partially Blind Signatures Based on Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Qiu; Niu, Hui-Fang

    2012-12-01

    In a partially blind signature scheme, the signer explicitly includes pre-agreed common information in the blind signature, which can improve the availability and performance. We present a new partially blind signature scheme based on fundamental properties of quantum mechanics. In addition, we analyze the security of this scheme, and show it is not possible to forge valid partially blind signatures. Moreover, the comparisons between this scheme and those based on public-key cryptography are also discussed.

  17. Epigenetic signatures of invasive status in populations of marine invertebrates

    NASA Astrophysics Data System (ADS)

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-02-01

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.

  18. Epigenetic signatures of invasive status in populations of marine invertebrates

    PubMed Central

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-01-01

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions. PMID:28205577

  19. Epigenetic signatures of invasive status in populations of marine invertebrates.

    PubMed

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-02-16

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.

  20. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed,...

  1. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed, stamped...

  2. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  3. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  4. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  5. Studies of magnetism and exchange scattering in solids using synchroton radiation and spin-polarized photoemission. Progress report, June 1, 1982-May 31, 1983

    SciTech Connect

    Rothberg, G.M.

    1983-01-01

    Some of the experiments necessary for proving the existence of Spin Polarized EXAFS (SPEXAFS) and for establishing it as a useful techncique for studying magnetism in solids have been carried out at the Stanford Synchrotron Radiation Laboratory (SSRL) and the National Synchrotron Light Source (NSLS). Transmission EXAFS, which does not depend on electron spin, has been measured in several manganese compounds. The 3s photopeaks of Mn/sup 2 +/ in MnF/sub 2/ have been shown to display EXAFS-like oscillations. The pin dependence of these oscillations will next be studied. Observations of the 3p photopeaks of iron metal on a palladium substrate have shown anomalous intensity variations with varying photon energy. This phenomenon will also be studied further. The existence of Cooper minima in the iron 3s and 3p photoabsorption cross sections has been sought, and this investigation will continue.

  6. Event identification by acoustic signature recognition

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  7. The NASA-Sponsored Study of Cataract in Astronauts (NASCA). Relationship of Exposure to Radiation in Space and the Risk of Cataract Incidence and Progression. Report 1: Recruitment and Methodology

    NASA Technical Reports Server (NTRS)

    Chylack, Leo T.; Peterson, Leif E.; Feiveson, Alan H.; Wear, Mary; Manuel, F. Keith

    2007-01-01

    The NASA Study of Cataract in Astronauts (NASCA) is a five-year, multi-centered, investigation of lens opacification in populations of U.S. astronauts, military pilots, and ground-based (nonaviator) comparison participants. For astronauts, the explanatory variable of most interest is radiation exposure during space flight, however to properly evaluate its effect, the secondary effects of age, nutrition, general health, solar ocular exposure, and other confounding variables encountered in non-space flight must also be considered. NASCA contains an initial baseline, cross-sectional objective assessment of the severity of cortical (C), nuclear (N), and posterior subcapsular (PSC) lens opacification, and annual follow-on assessments of severity and progression of these opacities in the population of astronauts and in participants sampled from populations of military pilots and ground-based exposure controls. From these data, NASCA will estimate the degree to which space radiation affects lens opacification for astronauts and how the overall risks of each cataract type for astronauts compared with those of the other exposure control groups after adjusting for differences in age and other explanatory variables.

  8. Cancer gene expression signatures - the rise and fall?

    PubMed

    Chibon, Frederic

    2013-05-01

    A 'gene expression signature' can be defined as a single or a combined gene expression alteration with validated specificity in terms of diagnosis, prognosis or prediction of therapeutic response. Since the publication of the first signature in the late 90s, high-throughput gene expression analysis has revolutionised genetics over the last 15 years. The scientific community has used this new technology to find responses to these fundamental questions; from understanding tumour biology, to prediction of progression, and treatments to which it will respond. Nevertheless, legitimate excitement about the attractiveness of molecular technologies and the promise of discovery-based research should not overlook adherence to the rules of evidence, otherwise it may result in claims that are not meaningful and lead to disappointment. This review will thus focus on the approaches developed to answer these three fundamental questions and the results evidenced both at biological and clinical level. On looking at this huge amount of data that have become increasingly minute, and at times contradictory, we discuss how gene expression signature improve our understanding of cancer biology, our ability to predict progression and response, and finally, our capacity to treat cancers more efficiently. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  10. Signatures of a shadow biosphere.

    PubMed

    Davies, Paul C W; Benner, Steven A; Cleland, Carol E; Lineweaver, Charles H; McKay, Christopher P; Wolfe-Simon, Felisa

    2009-03-01

    Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere.

  11. Evolutionary Signatures of River Networks

    NASA Astrophysics Data System (ADS)

    Paik, K.

    2014-12-01

    River networks exhibit fractal characteristics and it has long been wondered how such regular patterns have been formed. This subject has been actively investigated mainly by two great schools of thoughts, i.e., chance and organization. Along this line, several fundamental questions have partially been addressed or remained. They include whether river networks pursue certain optimal conditions, and if so what is the ultimate optimality signature. Hydrologists have traditionally perceived this issue from fluvial-oriented perspectives. Nevertheless, geological processes can be more dominant in the formation of river networks in reality. To shed new lights on this subject, it is necessary to better understand complex feedbacks between various processes over different time scales, and eventually the emerging characteristic signature. Here, I will present highlights of earlier studies on this line and some noteworthy approaches being tried recently.

  12. Rationale and Design of a Phase I Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors.

    PubMed

    Waters, Alicia M; Johnston, James M; Reddy, Alyssa T; Fiveash, John; Madan-Swain, Avi; Kachurak, Kara; Bag, Asim K; Gillespie, G Yancey; Markert, James M; Friedman, Gregory K

    2017-02-24

    Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy; and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase I trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.

  13. Rationale and Design of a Phase 1 Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors.

    PubMed

    Waters, Alicia M; Johnston, James M; Reddy, Alyssa T; Fiveash, John; Madan-Swain, Avi; Kachurak, Kara; Bag, Asim K; Gillespie, G Yancey; Markert, James M; Friedman, Gregory K

    2017-03-01

    Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer-related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy, and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor-specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase 1 trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.

  14. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    NASA Astrophysics Data System (ADS)

    Rialland, V.; Guy, A.; Gueyffier, D.; Perez, P.; Roblin, A.; Smithson, T.

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm-1 with a step of 5 cm-1. The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed.

  15. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, July 1, 1991--June 1, 1992

    SciTech Connect

    1992-12-31

    The primary goal of this program is to achieve a more thorough understanding of the mechanisms employed by higher organisms to resist DNA damage. Concurrently this effort contributes to an improved understanding of the processes of mutagenesis and carcinogenesis in higher eukaryotes. Drosophila was initially chosen as a model organism for investigating functions that control mutagen resistance because of the ease with which one can isolate and characterize mutagen-sensitive mutants in this multicellular organism. This laboratory then went on to investigate the DNA repair defects of such mutants while others performed complementary genetic and cytogenetic studies which relate DNA repair processes to mutagenesis and chromosome stability. Currently, recombinant DNA technology is being employed to investigate the mechanisms of mutagen resistance defined by those mutants. The following two studies experienced the most significant progress during the past year: cloning and genetic characterization of the mus209 gene, and genetic and molecular analysis of the mus308 gene.

  16. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI.

    PubMed

    Chen, Xin; Wei, Xinhua; Zhang, Zhongping; Yang, Ruimeng; Zhu, Yanjie; Jiang, Xinqing

    2015-01-01

    Twenty-two patients with pathologically confirmed glioblastoma who had received concurrent CCRT with TMZ underwent conventional MRI including T1-weighted imaging(T1WI), T2-weighted imaging(T2WI), fluid attenuated inversion recovery(FLAIR)and contrast-enhanced T1WI(T1Ce). Five GLCM texture maps of contrast, energy, entropy, correlation and homogeneity were generated for each MRI series. Of the aforementioned 5 texture features, the most significant features were contrast and correlation on T2WI with areas under ROC curve of 0.883 and 0.892, respectively, and they had the same sensitivity of 75%, specificity of 100%, accuracy of 86.4%, PPV of 100% and NPV of 76.9% in differentiation true progression from pseudoprogression.

  17. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, June 1, 1989--September 1, 1990

    SciTech Connect

    1990-12-31

    The most exciting discovery made over the past year derives from an analysis of the interaction between DNA repair and P-element transposition. A powerful new system was developed for analyzing the repair of DNA double-strand breaks. A screen was completed of mutagenized autosomes obtained from two San Francisco laboratories with the recovery of several mutants that will provide the foundation for future efforts to clone repair related genes. At the same time, strong progress has been made in the cloning and characterization of the repair-related genes mei-41 and mus209. Finally, the efforts to clone the mei-9 gene have uncovered the existence of a unsuspected feature of the system used for transposon-tagging in Drosophila. This new knowledge will aid future cloning efforts as well as those of others in the field.

  18. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, 1 November 1994--1 January 1996

    SciTech Connect

    Hawley, R.S.

    1996-12-31

    The authors have recently cloned the mei-4l gene, and showed that its putative translation product is highly homologous to the ATM, MEC1, and RAD3 genes at the level of primary amino acid sequence. That this sequence similarity reflects a functional homology is suggested by three lines of evidence: (1) as is the case for the ATM gene, loss of function of mei-4l results in increased sensitivity to X-irradiation; (2) mutations in the mei-4l gene also resemble ATM mutations in that they cause high levels of chromosome breakage and genetic instability; and (3) like the ATM gene, the wild-type MEI-4l protein also plays a role in mediating the progression of the cell cycle.

  19. Infrared signature studies of aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.

    2007-10-01

    Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.

  20. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  1. Observational Signatures Of Agn Feedback Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika

    2017-06-01

    While many compelling models of AGN feedback exist, there is no clear data-driven picture of how winds are launched, how they propagate through the galaxy and what impact they have on the galactic gas. Recent work suggests that AGN luminosity plays an important role. The following described projects focus on understanding the power, reach and impact of feedback processes exerted by AGN of different power. I first describe recent efforts in our group of relating feedback signatures in powerful quasars to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history. Feedback signatures seem to be best observable in gas-rich galaxies where the coupling of the AGN-driven wind to the gas is strongest, in agreement with recent simulations. But how and where does this quenching happen? Is it accomplished through the mechanical action of jets or through nuclear winds driven by radiation pressure? Finally, I show that AGN signatures and AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of a galaxy hosting a low/intermediate-luminosity AGN. Using data from the new SDSS-IV MaNGA survey, we have developed a new AGN selection algorithm tailored to IFU data and we are uncovering a much more nuanced picture of AGN activity allowing us to discover AGN signatures at large distances from the galaxy center. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and feedback signatures related to them. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.

  2. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    SciTech Connect

    Gupta, Tejpal

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  3. Radiation Protection

    MedlinePlus

    ... EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View and download EPA radiation ...

  4. Detection of infrared stealth aircraft through their multispectral signatures

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Shao, Xiaopeng; Han, Pingli; Xiangli, Bin; Yang, Cui

    2014-09-01

    A concise band selection method employing multispectral signatures of stealth aircraft whose infrared radiation was remarkably reduced was proposed for precise target detection. The key step was to select two or more optimal bands which could clearly signify the radiation difference between the target and its background. The principle of preliminary selection was based on the differences of radiation characteristics for the two main constituents of the aircraft's plume gas, i.e., CO2 and H2O. Two narrow bands of 2.86 to 3.3 and 4.17 to 4.55 μm were finally selected after detailed analyses on contrast characteristics between the target and background. Also, the stability of the selected bands was tested under varying environments. Further simulations and calculations demonstrated that the multispectral detection method utilizing the two selected narrow bands could markedly improve the essential performances of target detection systems and increase their achievable detection distance. The stability of the aircraft's multispectral signatures enabled this target detection method to achieve excellent results.

  5. Quantum random oracle model for quantum digital signature

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Lei, Qi; Liu, Jianwei

    2016-10-01

    The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.

  6. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  7. Biological effects of ionizing radiation at the molecular, cellular, and organismal levels. Triennial progress report, October 15, 1977-October 14, 1980

    SciTech Connect

    Lange, C.S.

    1980-01-01

    Two major accomplishments have been achieved in the past three years with the support of this contract. Firstly, the original Zimm theory of rotor speed dependent DNA sedimentation has been tested quantitatively and found to be correct, i.e., T4c and T4D+ DNAs sedimented with S/sup 0//sub 20,w/ values as predicted by the equation of Zimm and Schumaker. Furthermore, the quantitative validity of the theory means that the size (M/sub r/) of a DNA sedimenting under speed-dependent conditions is not undefinable but rather can be uniquely obtained by the application of that theory to the data. Secondly, the viscoelastic recoil (GAMMA/sub 11/), or more accurately, the zero shear rate reduced recoil (GAMMA/sub 11, r, o/) has been shown to be a quantitative direct function of the number of intact (T4c) DNA molecules present (per ml) in solution. This demonstration made possible the measurement of a direct survival curve for intact DNA molecules (i.e., without double-strand breaks) after exposure to ionizing radiation. A /sub DNA/D/sub 37/ of 47.4 krads was obtained for the DNA of T4c coliphage irradiated in air as a solution of phage particles. It is noteworthy that this survival curve measures the number of intact DNA molecules, not the average number of breaks/molecule.

  8. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, October 1, 1988--June 1, 1989

    SciTech Connect

    1989-12-31

    The primary goal of this study is to achieve a more thorough understanding of the mechanisms employed by higher organisms to repair DNA damage induced by both ionizing and nonionizing radiation. These studies are also contributing to an improved understanding of the processes of mutagenesis and carcinogenesis in higher eukaryotes. The studies employ Drosophila as a model organism for investigating repair functions that are common to all higher eukaryotes. Drosophila was chosen in the early phases of this study primarily because of the ease with which one can isolate and characterize repair-deficient mutants in a metazoan organism. The laboratory has gone on to investigate the metabolic defects of such mutants while others have performed complementary genetic and cytogenetic studies which relate DNA repair processes to mutagenesis and chromosome stability. The repair studies have exploited the capacity to introduce mutant Drosophila cells into tissue culture and thereby compare repair defects directly with those of homologous human disorders. Researchers are currently employing recombinant DNA technology to investigate the mechanisms of the DNA repair pathways defined by those mutants.

  9. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  10. Predicting Electromagnetic Signatures of Gravitational Wave Sources

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel John

    This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.

  11. Accounting for correlated errors in inverse radiation transport problems.

    SciTech Connect

    Mattingly, John K.; Stork, Christopher Lyle; Thomas, Edward Victor

    2010-11-01

    Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is solved by finding the set of transport model variables that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature predicted by the hypothesized model parameters. The weights per channel are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. In the current treatment, the implicit assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. In this paper, an alternative method that accounts for correlated errors between channels is described and illustrated for inverse problems based on gamma spectroscopy.

  12. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation: Comprehensive progress report, January 1986--June 1988

    SciTech Connect

    Rowley, J.D.

    1988-06-01

    I purchased one of the few available prototypes of the pulse field gel electrophoresis (PFGE) apparatus. We used PFGE and its various modifications to map the human Abelson protooncogene (ABL) and to show that the two alternative first exons (Ia and Ib) are separated by at least 200 kilobases (kb). This has provided the first evidence that alternative splicing from exon Ib to the common splice acceptor site (exon II) could occur over such very large distances. We are actively using vertical field gel electrophoresis, a modification of PFGE, for mapping various DNA probes on chromosome 5. Another major advance has been the development of the polymerase chain reaction (PCR). We are currently using this to define the breakpoints in the BCR gene in the 9; 22 translocation in chronic myeloid leukemia (CML) and in Ph/sup 1/-positive acute lymphoblastic leukemia (ALL). I had expected to be able to describe major progress in cloning the chromosome translocation breakpoints in ANLL, and this has not occurred. Our laboratory knows how to solve the problem. We successfully cloned a new translocation breakpoint in B cell chronic lymphatic leukemia involving Nos. 14 and 19. 22 refs., 2 figs., 5 tabs.

  13. TOPICAL REVIEW: The gravitational-wave signature of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Ott, Christian D

    2009-03-01

    We review the ensemble of anticipated gravitational-wave (GW) emission processes in stellar core collapse and postbounce core-collapse supernova evolution. We discuss recent progress in the modeling of these processes and summarize most recent GW signal estimates. In addition, we present new results on the GW emission from postbounce convective overturn and protoneutron star g-mode pulsations based on axisymmetric radiation-hydrodynamic calculations. Galactic core-collapse supernovae are very rare events, but within 3 5 Mpc from Earth, the rate jumps to 1 in ~2 years. Using the set of currently available theoretical gravitational waveforms, we compute upper-limit optimal signal-to-noise ratios based on current and advanced LIGO/GEO600/VIRGO noise curves for the recent SN 2008bk which exploded at ~3.9 Mpc. While initial LIGOs cannot detect GWs emitted by core-collapse events at such a distance, we find that advanced LIGO-class detectors could put significant upper limits on the GW emission strength for such events. We study the potential occurrence of the various GW emission processes in particular supernova explosion scenarios and argue that the GW signatures of neutrino-driven, magneto-rotational, and acoustically-driven core-collapse SNe may be mutually exclusive. We suggest that even initial LIGOs could distinguish these explosion mechanisms based on the detection (or non-detection) of GWs from a galactic core-collapse supernova.

  14. Radiation physics, biophysics, and radiation biology

    SciTech Connect

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  15. Radiation sickness

    MedlinePlus

    ... to determine the amount of radiation exposure from nuclear accidents, the best signs of the severity of the ... doses of radiation, such as radiation from a nuclear power plant accident Exposure to excessive radiation for medical treatments

  16. Radiation enteritis

    MedlinePlus

    Radiation enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... Radiation therapy uses high-powered x-rays, particles, or radioactive seeds to kill cancer cells. The therapy ...

  17. Forensic handwriting examiners' expertise for signature comparison.

    PubMed

    Sita, Jodi; Found, Bryan; Rogers, Douglas K

    2002-09-01

    This paper reports on the performance of forensic document examiners (FDEs) in a signature comparison task that was designed to address the issue of expertise. The opinions of FDEs regarding 150 genuine and simulated questioned signatures were compared with a control group of non-examiners' opinions. On the question of expertise, results showed that FDEs were statistically better than the control group at accurately determining the genuineness or non-genuineness of questioned signatures. The FDE group made errors (by calling a genuine signature simulated or by calling a simulated signature genuine) in 3.4% of their opinions while 19.3% of the control group's opinions were erroneous. The FDE group gave significantly more inconclusive opinions than the control group. Analysis of FDEs' responses showed that more correct opinions were expressed regarding simulated signatures and more inconclusive opinions were made on genuine signatures. Further, when the complexity of a signature was taken into account, FDEs made more correct opinions on high complexity signatures than on signatures of lower complexity. There was a wide range of skill amongst FDEs and no significant relationship was found between the number of years FDEs had been practicing and their correct, inconclusive and error rates.

  18. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  19. Infrared signatures for remote sensing

    SciTech Connect

    McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.

    1994-04-01

    PNL`s capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm{sup {minus}1} at <10-MHz bandwidth; a Bruker Fourier-transform infrared (FTIR) spectrometer for the near- to far-infrared at 50-MHz resolution; and a stable line-tunable, 12-w cw CO{sub 2} laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at {approximately}10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl{sub 4} at 770--800 cm{sup {minus}1}. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO{sub 2} laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks.

  20. Genetic signatures of heroin addiction.

    PubMed

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-08-01

    Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study.

  1. Quantum broadcasting multiple blind signature with constant size

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Li, Zhenli

    2016-09-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  2. Quantum signatures of chimera states

    NASA Astrophysics Data System (ADS)

    Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.

    2015-12-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.

  3. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  4. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  5. Satellite signatures in SLR observations

    NASA Technical Reports Server (NTRS)

    Appleby, G. M.

    1993-01-01

    We examine the evidence for the detection of satellite-dependent signatures in the laser range observations obtained by the UK single-photon Satellite Laser Ranging (SLR) System models of the expected observation distributions from Ajisai and Lageos are developed from the published satellite spread functions and from the characteristics of the SLR System and compared with the observations. The effects of varying return strengths are discussed using the models and by experimental observations of Ajisai, during which a range of return levels from single to multiple photons is achieved. The implications of these results for system-dependent center for mass corrections are discussed.

  6. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  7. Gut microbiota signatures of longevity.

    PubMed

    Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao

    2016-09-26

    An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging.

  8. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  9. Complications of radiation therapy

    SciTech Connect

    Dalinka, M.K.; Mazzeo, V.P. Jr.

    1985-01-01

    The skeletal effects of radiation are dependent upon many variables, but the pathologic features are consistent. Radiation may cause immediate or delayed cell death, cellular injury with recovery, arrest of cellular division, or abnormal repair with neoplasia. Radiation necrosis and radiation-induced neoplasm still occur despite the use of supervoltage therapy. Complications of radiotherapy are well known and have led to more judicious use of this therapeutic modality. With few exceptions, benign bone tumors are no longer treated with irradiation. Radiation necrosis may be difficult to differentiate from sarcoma arising in irradiated bone. They both occur within the field of irradiation. Radiation necrosis often has a long latent period which is, of course, the rule in radiation-induced neoplasia. A soft tissue mass favors the diagnosis of neoplasia, while its absence suggests radiation necrosis. Lack of pain favors necrosis. Calcification may occur in radiation necrosis and does not indicate neoplasia. A lack of progression on serial roentgenograms also favors radiation necrosis. 76 references.

  10. The origin, evolution and signatures of primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ˜  10-16 Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  11. The origin, evolution and signatures of primordial magnetic fields.

    PubMed

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  12. Hyperspectral reflectance signature protocol for predicting subsurface bottom reflectance in water: in-situ and analytical methods

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Rotkiske, Tyler; Oney, Taylor

    2016-10-01

    In-situ measurement of bottom reflectance signatures and bottom features in water are used to test an analytical based irradiance model protocol. Comparisons between predicted and measured bottom reflectance signatures are obtained using measured hyperspectral remote sensing reflectance signatures, water depth and water column constituent concentrations. Analytical solutions and algorithms are used to generate synthetic signatures of different bottom types. The analytical methodology used to simulated bottom reflectance contains offset and bias that can be corrected using spectral window based corrections. Example results are demonstrated for application to coral species, submerged aquatic vegetation and a sand bottom type. Spectral windows are identified for predicting the above bottom types. Sensitivity analysis of predicted bottom reflectance signatures is conducted by varying water depth, chlorophyll, dissolved organic matter and total suspended mater concentrations. The protocol can be applied to shallow subsurface geospatial mapping using sensor based water surface reflectance based upon an analytical model solution derived from primitive radiative transfer theory.

  13. Visual signatures in video visualization.

    PubMed

    Chen, Min; Botchen, Ralf P; Hashim, Rudy R; Weiskopf, Daniel; Ertl, Thomas; Thornton, Ian M

    2006-01-01

    Video visualization is a computation process that extracts meaningful information from original video data sets and conveys the extracted information to users in appropriate visual representations. This paper presents a broad treatment of the subject, following a typical research pipeline involving concept formulation, system development, a path-finding user study, and a field trial with real application data. In particular, we have conducted a fundamental study on the visualization of motion events in videos. We have, for the first time, deployed flow visualization techniques in video visualization. We have compared the effectiveness of different abstract visual representations of videos. We have conducted a user study to examine whether users are able to learn to recognize visual signatures of motions, and to assist in the evaluation of different visualization techniques. We have applied our understanding and the developed techniques to a set of application video clips. Our study has demonstrated that video visualization is both technically feasible and cost-effective. It has provided the first set of evidence confirming that ordinary users can be accustomed to the visual features depicted in video visualizations, and can learn to recognize visual signatures of a variety of motion events.

  14. Exoplanet environments and radio signatures

    NASA Astrophysics Data System (ADS)

    Jardine, Moira

    2017-05-01

    The nature of a star's magnetic field is determined primarily by the stellar mass and rotation rate. Using spectropolarimetric techniques, we have now mapped the surface magnetic fields of some 100 stars across a wide range of these fundamental parameters. Some of the biggest surprises have been in the nature of the magnetic fields of low mass, fully convective stars. These appear to show a different type of field geometry to higher mass stars, with a larger ratio of poloidal to toroidal field. Their lower surface differential rotation also leads to a more slowly evolving coronal field and a longer timescale to form and eject the flux ropes believed to be the precursors of coronal mass ejections. Searches are ongoing for the radio signature of the interaction of exoplanets with the winds and coronal mass ejections of their parent star. For low mass stars, this is a particularly pressing issue, as the habitable zone is very close to the star and the probability of impact with a coronal mass ejection is high.In this talk I will review the current state of our knowledge of stellar magnetic field geometry, winds and coronal mass ejections and discuss how this informs searches for exoplanetary radio signatures.

  15. Research towards a systematic signature discovery process

    SciTech Connect

    Baker, Nathan A.; Barr, Jonathan L.; Bonheyo, George T.; Joslyn, Cliff A.; Krishnaswami, Kannan; Oxley, Mark; Quadrel, Richard W.; Sego, Landon H.; Tardiff, Mark F.; Wynne, Adam S.

    2013-06-04

    In its most general form, a signature is a unique or distinguishing measurement, pattern, or collection of data that identifies a phenomenon (object, action, or behavior) of interest. The discovery of signatures is an important aspect of a wide range of disciplines from basic science to national security for the rapid and efficient detection and/or prediction of phenomena. Current practice in signature discovery is typically accomplished by asking domain experts to characterize and/or model individual phenomena to identify what might compose a useful signature. What is lacking is an approach that can be applied across a broad spectrum of domains and information sources to efficiently and robustly construct candidate signatures, validate their reliability, measure their quality, and overcome the challenge of detection -- all in the face of dynamic conditions, measurement obfuscation and noisy data environments. Our research has focused on the identification of common elements of signature discovery across application domains and the synthesis of those elements into a systematic process for more robust and efficient signature development. In this way, a systematic signature discovery process lays the groundwork for leveraging knowledge obtained from signatures to a particular domain or problem area, and, more generally, to problems outside that domain. This paper presents the initial results of this research by discussing a mathematical framework for representing signatures and placing that framework in the context of a systematic signature discovery process. Additionally, the basic steps of this process are described with details about the methods available to support the different stages of signature discovery, development, and deployment.

  16. (Convertible) Undeniable Signatures Without Random Oracles

    NASA Astrophysics Data System (ADS)

    Yuen, Tsz Hon; Au, Man Ho; Liu, Joseph K.; Susilo, Willy

    We propose a convertible undeniable signature scheme without random oracles. Our construction is based on Waters' and Kurosawa and Heng's schemes that were proposed in Eurocrypt 2005. The security of our scheme is based on the CDH and the decision linear assumption. Comparing only the part of undeniable signatures, our scheme uses more standard assumptions than the existing undeniable signatures without random oracles due to Laguillamie and Vergnaud.

  17. Prognostic correlation of cell cycle progression score and Ki-67 as a predictor of aggressiveness, biochemical failure, and mortality in men with high-risk prostate cancer treated with external beam radiation therapy.

    PubMed

    López, Iván Henríquez; Parada, David; Gallardo, Pablo; Gascón, Marina; Besora, Arnau; Peña, Karla; Riu, Francesc; Arquez Pianetta, Miquel; Abuchaibe, Oscar; Torres Royò, Laura; Arenas, Meritxell

    2017-01-01

    Ki-67 is a proliferation marker in prostate cancer. A prognostic RNA signature was developed to characterize prostate cancer aggressiveness. The aim was to evaluate prognostic correlation of CCP and Ki-67 with biochemical failure (BF), and survival in high-risk prostate cancer patients (pts) treated with radiation therapy (RT). CCP score and Ki-67 were derived retrospectively from pre-treatment paraffin-embedded prostate cancer tissue of 33 men diagnosed from 2002 to 2006. CCP score was calculated as an average expression of 31 CCP genes. Ki-67 was determined by IHC. Single pathologist evaluated all tissues. Factors associated to failure and survival were analyzed. Median CCP score was 0.9 (-0-1 - 2.6). CCP 0: 1 pt; CCP 1: 19 pts; CCP 2: 13 pts. Median Ki-67 was 8.9. Ki-67 cutpoint was 15.08%. BF and DSM were observed in 21% and 9%. Ki-67 ≥ 15% predicted BF (p = 0.043). With a median follow-up of 8.4 years, 10-year BF, OS, DM and DSM for CCP 1 vs. CCP 2 was 76-71% (p = 0.83), 83-73% (p = 0.86), 89-85% (p = 0.84), and 94-78% (p = 0.66). On univariate, high Ki-67 was correlated with BF (p = 0.013), OS (p = 0.023), DM (p = 0.007), and DSM (p = 0.01). On Cox MVA, high Ki-67 had a BF trend (p = 0.063). High CCP score was not correlated with DSM. High Ki-67 significantly predicted outcome and provided prognostic information. CCP score may improve accuracy stratification. We did not provide prognostic correlation of CCP and DSM. It should be validated in a larger cohort of pts.

  18. NONTHERMAL RADIATION FROM COSMIC-RAY MODIFIED SHOCKS

    SciTech Connect

    Kang, Hyesung; Edmon, Paul P.; Jones, T. W. E-mail: pedmon@physics.umanitoba.ca

    2012-02-01

    We calculate nonthermal radiation from cosmic-ray (CR) protons and electrons accelerated at CR modified plane and spherical shocks, using time-dependent, diffusive shock acceleration (DSA) simulations that include radiative losses of CR electrons. Strong non-relativistic shocks with physical parameters relevant for young supernova remnants (SNRs) are considered in both the plane-parallel and spherically symmetric geometries, and compared at times when their dynamical and CR properties are concordant. A thermal leakage injection model and a Bohm-like diffusion coefficient are adopted. After DSA energy gains balance radiative losses, the electron spectrum at the plane shock approaches a time-asymptotic spectrum with a super-exponential cutoff above the equilibrium momentum. The postshock electron spectrum cuts off at a progressively lower momentum downstream from the shock due to the energy losses. That results in the steepening of the volume integrated electron energy spectrum by one power of the particle energy. These features evolve toward lower energies in the spherical, SNR shocks. In a CR modified shock, pion decay gamma-ray emission reveals distinct signatures of nonlinear DSA due to the concave proton momentum spectrum. Although the electron momentum spectrum has a much weaker concavity, the synchrotron spectral slope at the shock may flatten by about 0.1-0.3 between radio and X-ray bands. The slope of the volume integrated emission spectrum behaves nonlinearly around the break frequency.

  19. Secure Obfuscation for Encrypted Group Signatures

    PubMed Central

    Fan, Hongfei; Liu, Qin

    2015-01-01

    In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686

  20. Input apparatus for dynamic signature verification systems

    DOEpatents

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  1. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... recognition; (2) Cryptographic control methods, including— (i) Shared symmetric key cryptography; (ii) Public/private key (asymmetric) cryptography, also known as digital signatures; (3) Any combination of methods...

  2. An Arbitrated Quantum Signature Scheme without Entanglement*

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Peng, Dai-Yuan; Wang, Xiao-Jun

    2017-09-01

    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.

  3. Radiation Belt Dynamics

    DTIC Science & Technology

    2015-12-27

    is unlimited. 15 DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0007 TR-2016-0007 RADIATION BELT DYNAMICS Jay M. Albert, et al. 27 December 2015 Final Report APPROVED FOR... KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this

  4. Binary authentication signatures integrity standard: System file integrity for the masses

    SciTech Connect

    Bartoletti, T.; Graff, M.; Schales, D.

    1994-03-01

    Thrusted software plays a central role in computer security, yet straightforward methods for authentication of installed software are lacking in the marketplace. This paper argues for a vendor-supported standard for the generation and publication of strong digital signature for all vendor-supplied system files. Progress in the design and adoption of a proposed standard is discussed.

  5. Hyperspectral imagery for observing spectral signature change in Aspergillus flavus

    NASA Astrophysics Data System (ADS)

    DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.

    2005-11-01

    Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.

  6. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    SciTech Connect

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the seco