Science.gov

Sample records for radiation signatures progress

  1. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  2. A Methodology for Calculating Radiation Signatures

    SciTech Connect

    Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  3. NF-κB gene signature predicts prostate cancer progression

    PubMed Central

    Jin, Renjie; Yi, Yajun; Yull, Fiona E.; Blackwell, Timothy S.; Clark, Peter E.; Koyama, Tatsuki; Smith, Joseph A.; Matusik, Robert J.

    2014-01-01

    In many prostate cancer (PCa) patients, the cancer will be recurrent and eventually progress to lethal metastatic disease after primary treatment, such as surgery or radiation therapy. Therefore, it would be beneficial to better predict which patients with early-stage PCa would progress or recur after primary definitive treatment. In addition, many studies indicate that activation of NF-κB signaling correlates with PCa progression; however, the precise underlying mechanism is not fully understood. Our studies show that activation of NF-κB signaling via deletion of one allele of its inhibitor, IκBα, did not induce prostatic tumorigenesis in our mouse model. However, activation of NF-κB signaling did increase the rate of tumor progression in the Hi-Myc mouse PCa model when compared to Hi-Myc alone. Using the non-malignant NF-κB activated androgen depleted mouse prostate, a NF-κB Activated Recurrence Predictor 21 (NARP21) gene signature was generated. The NARP21 signature successfully predicted disease-specific survival and distant metastases-free survival in patients with PCa. This transgenic mouse model derived gene signature provides a useful and unique molecular profile for human PCa prognosis, which could be used on a prostatic biopsy to predict indolent versus aggressive behavior of the cancer after surgery. PMID:24686169

  4. Does radiation cause molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1997-03-01

    Several classes of genes are mutated during the progression to cancer. The oncogenes include ras, myc and c-erbB-2; suppressor genes include p53, Rb, p16, and APC; and cancer susceptibility genes include hMSH2. Germline mutations in many of these genes produce cancer syndromes such as retinoblastoma, Li-Fraumeni Sydrome, familial adenomatous polyposis, or HNPCC (hereditary non-polyposis colon cancer). Sporadic tumors frequently contain somatic mutations in the same genes. Analysis of the mutational spectrum of sporadic and inherited tumors can provide clues to etiology and insight into molecular pathogenesis. The character and distribution of mutations comprise a mutational spectrum. Mutations of the p53 tumor suppressor gene occur commonly in human cancer, and nearly 5000 have been reported to date. The p53 mutational spectrum is dominated by missense point mutations (84%) and complemented by insertions/deletions (10%) and non-sense mutations (7%). Most mutations occur within evolutionarily conserved residues within the DNA-binding domain, and the pattern of mutational hotspots provided the first clue to p53 function: it is a transcription factor that binds to a DNA consensus sequence. Elucidation of the crystal structure of the central DNA-binding domain has uncovered the significance of the mutational hotspots. These insights suggest strategies for rational drug design, for example, constructing `restoring` compounds that complete the wild type hydrogen bonds missing in the mutant p53 protein. Mutational spectrum analysis is a new tool for probing cancer etiology and pathogensis. Using current technology, the p53 tumor suppressor gene is the most informative target sequence, but the next generation of rapid sequencing technologies will expand the range of testable cancer genes and fill new mutational databases.

  5. Mutational signatures of ionizing radiation in second malignancies

    PubMed Central

    Behjati, Sam; Gundem, Gunes; Wedge, David C.; Roberts, Nicola D.; Tarpey, Patrick S.; Cooke, Susanna L.; Van Loo, Peter; Alexandrov, Ludmil B.; Ramakrishna, Manasa; Davies, Helen; Nik-Zainal, Serena; Hardy, Claire; Latimer, Calli; Raine, Keiran M.; Stebbings, Lucy; Menzies, Andy; Jones, David; Shepherd, Rebecca; Butler, Adam P.; Teague, Jon W.; Jorgensen, Mette; Khatri, Bhavisha; Pillay, Nischalan; Shlien, Adam; Futreal, P. Andrew; Badie, Christophe; Cooper, Colin S.; Eeles, Rosalind A.; Easton, Douglas; Foster, Christopher; Neal, David E.; Brewer, Daniel S.; Hamdy, Freddie; Lu, Yong-Jie; Lynch, Andrew G.; Massi, Charlie E.; Ng, Anthony; Whitaker, Hayley C.; Yu, Yongwei; Zhang, Hongwei; Bancroft, Elizabeth; Berney, Dan; Camacho, Niedzica; Corbishley, Cathy; Dadaev, Tokhir; Dennis, Nening; Dudderidge, Tim; Edwards, Sandra; Fisher, Cyril; Ghori, Jilur; Gnanapragasam, Vincent J.; Greenman, Christopher; Hawkins, Steve; Hazell, Steven; Howat, Will; Karaszi, Katalin; Kay, Jonathan; Kote-Jarai, Zsofia; Kremeyer, Barbara; Kumar, Pardeep; Lambert, Adam; Leongamornlert, Daniel; Livni, Naomi; Luxton, Hayley; Matthews, Lucy; Mayer, Erik; Merson, Susan; Nicol, David; Ogden, Christopher; O'Meara, Sarah; Pelvender, Gill; Shah, Nimish C.; Tavare, Simon; Thomas, Sarah; Thompson, Alan; Verrill, Claire; Warren, Anne; Zamora, Jorge; McDermott, Ultan; Bova, G. Steven; Richardson, Andrea L.; Flanagan, Adrienne M.; Stratton, Michael R.; Campbell, Peter J.

    2016-01-01

    Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1–100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential. PMID:27615322

  6. Integrative Metabolic Signatures for Hepatic Radiation Injury

    PubMed Central

    Su, Gang; Meng, Fan; Liu, Laibin; Mohney, Robert; Kulkarni, Shilpa; Guha, Chandan

    2015-01-01

    Background Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice. Methods Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. Results Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine). Conclusions We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney. PMID:26046990

  7. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  8. [Nanometer scale exciton spectroscopy and photochemistry: Dynamic imaging of DNA structure-activity relations and radiation signatures]. Progress report, July 25, 1991--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    Our aim is to investigate, on the molecular level at a spatially resolved mode of operation, structure-activity relations of DNA and their sensitivity to ionizing radiation. This entails in-vitro (and later in-vivo) ultra-resolved microscopy, spectroscopy and chemical sensing, with non-destructive probing.

  9. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    Detailed measurements and modeling of the spectral emission of an atmospheric pressure air plasma at temperatures up to -3400 K have been made. The cold gas injected in the plasma torch contained an estimated mole fraction of water vapor of approximately 4.5 x 10(exp -3) and an estimated carbon dioxide mole fraction of approximately 3.3 x 10(exp -4). Under these conditions, the minimum level of air plasma emission is found to be between 3.9 and 4.15 microns. Outside this narrow region, significant spectral emission is detected that can be attributed to the fundamental and overtone bands of NO and OH, and to the v(sub 3) and the (v(sub 1)+v(sub 3)) bands Of CO2. Special attention was paid to the effects of ambient air absorption in the optical path between the plasma and the detector. Excellent quantitative agreement is obtained between the measured and simulated spectra, which are both on absolute intensity scales, thus lending confidence in the radiation models incorporated into NEQAIR2-IR over the course of this research program.

  10. The signature of auroral kilometric radiation on Isis 1 ionograms

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    Auroral kilometric radiation (AKR) appears on the Isis 1 topside sounder ionograms as intense noise bands between the electron cyclotron frequency and 700 kHz. A variable gap occurs between the cyclotron frequency and the lowest AKR frequency. As Isis 1 traverses the source region, the gap narrows, and the AKR signals at higher frequencies weaken. This signature suggests that the AKR waves are generated directly in the extraordinary mode at frequencies just above the local cutoff frequency and that the radiation is initially perpendicular to the magnetic field.

  11. The Spectral Signature of Cloud Spatial Structure in Shortwave Radiation

    NASA Astrophysics Data System (ADS)

    Song, Shi

    In this thesis, we aim to systematically understand the relationship between cloud spatial structure and its radiation imprints, i.e., three-dimensional (3D) cloud effects, with the ultimate goal of deriving accurate radiative energy budget estimates from space, aircraft, or ground-based observations under spatially inhomogeneous conditions. By studying the full spectral information in the measured and modeled shortwave radiation fields of heterogeneous cloud scenes sampled during aircraft field experiments, we find evidence that cloud spatial structure reveals itself through spectral signatures in the associated irradiance and radiance fields in the near-ultraviolet and visible spectral range. The spectral signature of 3D cloud effects in irradiances is apparent as a domain- wide, consistent correlation between the magnitude and spectral dependence of net horizontal photon transport. The physical mechanism of this phenomenon is molecular scattering in conjunction with cloud heterogeneity. A simple parameterization with a single parameter epsilon is developed, which holds for individual pixels and the domain as a whole. We then investigate the impact of scene parameters on the discovered correlation and find that it is upheld for a wide range of scene conditions, although the value of epsilon varies from scene to scene. The spectral signature of 3D cloud effects in radiances manifests itself as a distinct relationship between the magnitude and spectral dependence of reflectance, which cannot be reproduced in the one-dimensional (1D) radiative transfer framework. Using the spectral signature in radiances and irradiances, it is possible to infer information on net horizontal photon transport from spectral radiance perturbations on the basis of pixel populations in sub-domains of a cloud scene. We show that two different biases need to be considered when attempting radiative closure between measured and modeled irradiance fields below inhomogeneous cloud fields: the

  12. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    PubMed

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  13. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis.

    PubMed

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-02-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers.

  14. Radiative Cooling: Principles, Progress, and Potentials.

    PubMed

    Hossain, Md Muntasir; Gu, Min

    2016-07-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state-of-the-art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated.

  15. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  16. Robust signatures of quantum radiation reaction in focused ultrashort laser pulses.

    PubMed

    Li, Jian-Xing; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2014-07-25

    Radiation-reaction effects in the interaction of an electron bunch with a superstrong focused ultrashort laser pulse are investigated in the quantum radiation-dominated regime. The angle-resolved Compton scattering spectra are calculated in laser pulses of variable duration using a semiclassical description for the radiation-dominated dynamics and a full quantum treatment for the emitted radiation. In dependence of the laser-pulse duration we find signatures of quantum radiation reaction in the radiation spectra, which are characteristic for the focused laser beam and visible in the qualitative behavior of both the angular spread and the spectral bandwidth of the radiation spectra. The signatures are robust with respect to the variation of the electron and laser-beam parameters in a large range. Qualitatively, they differ fully from those in the classical radiation-reaction regime and are measurable with presently available laser technology.

  17. Recent Progress in Search for Dark Sector Signatures

    NASA Astrophysics Data System (ADS)

    Deliyergiyev, Maksym

    2016-01-01

    Many difficulties are encountered when attempting to pinpoint a common origin for several observed astrophysical anomalies, and when assessing their tension with existing exclusion limits. These include systematic uncertainties affecting the operation of the detectors, our knowledge of their response, astrophysical uncertainties, and the broad range of particle couplings that can mediate interaction with a detector target. Particularly interesting astrophysical evidence has motivated a search for dark-photon, and focused our attention on a Hidden Valleys model with a GeV-scale dark sector that produces exciting signatures. Results from recent underground experiments are also considered. There is a `light' hidden sector (dark sector), present in many models of new physics beyond the Standard Model, which contains a colorful spectrum of new particles. Recently, it has been shown that this spectrum can give rise to unique signatures at colliders when the mass scale in the hidden sector is well below a TeV; as in Hidden Valleys, Stueckelberg extensions, and Unparticle models. These physics models produce unique signatures of collimated leptons at high energies. By studying these ephemeral particles we hope to trace the history of the Universe. Our present theories lead us to believe that there is something new just around the corner, which should be accessible at the energies made available by modern colliders.

  18. Commercial Sensory Survey Radiation Testing Progress Report

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Dolphic, Michael D.; Thorbourn, Dennis O.; Alexander, James W.; Salomon, Phil M.

    2008-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program Sensor Technology Commercial Sensor Survey task is geared toward benefiting future NASA space missions with low-cost, short-duty-cycle, visible imaging needs. Such applications could include imaging for educational outreach purposes or short surveys of spacecraft, planetary, or lunar surfaces. Under the task, inexpensive commercial grade CMOS sensors were surveyed in fiscal year 2007 (FY07) and three sensors were selected for total ionizing dose (TID) and displacement damage dose (DDD) tolerance testing. The selected sensors had to meet selection criteria chosen to support small, low-mass cameras that produce good resolution color images. These criteria are discussed in detail in [1]. This document discusses the progress of radiation testing on the Micron and OmniVision sensors selected in FY07 for radiation tolerance testing.

  19. Signatures of quantum radiation reaction in laser-electron-beam collisions

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-09-15

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations.

  20. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  1. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  2. Saliva/Pathogen Biomarker Signatures and Periodontal Disease Progression

    PubMed Central

    Kinney, J.S.; Morelli, T.; Braun, T.; Ramseier, C.A.; Herr, A.E.; Sugai, J.V.; Shelburne, C.E.; Rayburn, L.A.; Singh, A.K.; Giannobile, W.V.

    2011-01-01

    The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 44 exhibiting PDP, while 39 demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 82% of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 78% of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0002). The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745). PMID:21406610

  3. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  4. A transcriptome signature of endothelial lymphatic cells coexists with the chronic oxidative stress signature in radiation-induced post-radiotherapy breast angiosarcomas.

    PubMed

    Hadj-Hamou, Nabila-Sandra; Laé, Marick; Almeida, Anna; de la Grange, Pierre; Kirova, Youlia; Sastre-Garau, Xavier; Malfoy, Bernard

    2012-07-01

    Radiation-induced breast angiosarcomas are rare but recognized complication of breast cancer radiotherapy and are of poor prognosis. Little is known about the genetic abnormalities present in these secondary tumors. Herein, we investigated the differences in the genome and in the transcriptome that discriminate these tumors as a function of their etiology. Seven primary breast angiosarcomas and 18 secondary breast angiosarcomas arising in the irradiation field of a radiotherapy were analyzed. Copy number alterations and gene expression were analyzed using Affymetrix SNP 6.0 Array and Affymetrix Exon Arrays, respectively. We showed that two transcriptome signatures of the radiation tumorigenesis coexisted in these tumors. One was histology specific and correctly discriminated 100% of the primary tumors from the radiation-induced tumors. The deregulation of marker genes, including podoplanin (PDPN), prospero homeobox 1 (PROX-1), vascular endothelial growth factor 3 (VEGFR3) and endothelin receptor A (EDNRA), suggests that the radiation-induced breast angiosarcomas developed from radiation-stimulated lymphatic endothelial cells. None of the genes of the histology-specific signature were present in our previously published signature of the radiation tumorigenesis which shows the presence of a chronic oxidative stress in radiation-induced sarcomas of various histologies. Nevertheless, this oxidative stress signature classified correctly 88% of the breast angiosarcomas as a function of the etiology. In contrast, MYC amplification, which is observed in all radiation-induced tumors but also at a low rate in primary tumors, was not a marker of the radiation tumorigenesis.

  5. Viewing Radiation Signatures of Solar Energetic Particles in Interplanetary Space

    DTIC Science & Technology

    2009-01-01

    events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged...events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with...vol. CP858. AIP. New York, pp. 241-250, 2006. Morgan. II., Fineschi, S.. Habbal. S.R., Li. B. In situ spectroscopy of the solar corona . Astron

  6. Radiation signature on exposed cells: Relevance in dose estimation.

    PubMed

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon Fd

    2015-09-28

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.

  7. Radiation signature on exposed cells: Relevance in dose estimation

    PubMed Central

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon FD

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  8. Solving Inverse Detection Problems Using Passive Radiation Signatures

    SciTech Connect

    Favorite, Jeffrey A.; Armstrong, Jerawan C.; Vaquer, Pablo A.

    2012-08-15

    The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.

  9. Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.

    1992-01-01

    Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.

  10. A Statistical Model for Generating a Population of Unclassified Objects and Radiation Signatures Spanning Nuclear Threats

    SciTech Connect

    Nelson, K; Sokkappa, P

    2008-10-29

    This report describes an approach for generating a simulated population of plausible nuclear threat radiation signatures spanning a range of variability that could be encountered by radiation detection systems. In this approach, we develop a statistical model for generating random instances of smuggled nuclear material. The model is based on physics principles and bounding cases rather than on intelligence information or actual threat device designs. For this initial stage of work, we focus on random models using fissile material and do not address scenarios using non-fissile materials. The model has several uses. It may be used as a component in a radiation detection system performance simulation to generate threat samples for injection studies. It may also be used to generate a threat population to be used for training classification algorithms. In addition, we intend to use this model to generate an unclassified 'benchmark' threat population that can be openly shared with other organizations, including vendors, for use in radiation detection systems performance studies and algorithm development and evaluation activities. We assume that a quantity of fissile material is being smuggled into the country for final assembly and that shielding may have been placed around the fissile material. In terms of radiation signature, a nuclear weapon is basically a quantity of fissile material surrounded by various layers of shielding. Thus, our model of smuggled material is expected to span the space of potential nuclear weapon signatures as well. For computational efficiency, we use a generic 1-dimensional spherical model consisting of a fissile material core surrounded by various layers of shielding. The shielding layers and their configuration are defined such that the model can represent the potential range of attenuation and scattering that might occur. The materials in each layer and the associated parameters are selected from probability distributions that span the

  11. Progress in radiation processing of polymers

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  12. RADIATIVE DAMPING AND EMISSION SIGNATURES OF STRONG SUPERLUMINAL WAVES IN PULSAR WINDS

    SciTech Connect

    Mochol, Iwona; Kirk, John G. E-mail: john.kirk@mpi-hd.mpg.de

    2013-10-10

    We analyze the damping of strong, superluminal electromagnetic waves by radiation reaction and Compton drag in the context of pulsar winds. The associated radiation signature is found by estimating the efficiency and the characteristic radiation frequencies. Applying these estimates to the gamma-ray binary containing PSR B1259–63, we show that the GeV flare observed by the Fermi Large Area Telescope can be understood as inverse-Compton emission by particles scattering photons from the companion star, if the pulsar wind termination shock acquires a precursor of superluminal waves roughly 30 days after periastron. This requirement constrains the mass-loading factor of the wind μ=L/ N-dot mc{sup 2}, where L is the luminosity and N-dot is the rate of loss of electrons and positrons, to be roughly 6 × 10{sup 4}.

  13. MicroRNA Expression Signatures During Malignant Progression From Barrett's Esophagus.

    PubMed

    Bansal, Ajay; Gupta, Vijayalaxmi; Wang, Kenneth

    2016-06-01

    The rapid increase and poor survival of esophageal adenocarcinoma (EAC) have led to significant efforts to promote early detection. Given that the premalignant lesion of Barrett's esophagus (BE) is the major known risk factor for EAC, multiple investigators have studied biomarker signatures that can predict malignant progression of BE to EAC. MicroRNAs, a novel class of gene regulators, are small non-coding RNAs and have been associated with carcinogenesis. MicroRNAs are ideal biomarkers because of their remarkable stability in fixed tissues, a common method for collection of clinical specimens, and in blood either within exosomes or as microRNA-protein complexes. Multiple studies show potential of microRNAs as tissue and blood biomarkers for diagnosis and prognosis of EAC but the results need confirmation in prospective studies. Although head-to-head comparisons are lacking, microRNA panels require less genes than messenger RNA panels for diagnosis of EAC in BE. MicroRNA diagnostic panels will need to be compared for accuracy against global measures of genome instability that were recently shown to be good predictors of progression but require sophisticated analytic techniques. Early studies on blood microRNA panels are promising but have found microRNA markers to be inconsistent among studies. MicroRNA expression in blood is different between various microRNA sub-compartments such as exosomes and microRNA-protein complexes and could affect blood microRNA measurements. Further standardization is needed to yield consistent results. We have summarized the current understanding of the tissue and blood microRNA signatures that may predict the development and progression of EAC.

  14. Multielectron signatures in the polarization of high-order harmonic radiation

    SciTech Connect

    Zhao Zengxiu; Yuan Jianmin; Brabec, Thomas

    2007-09-15

    The polarization of high-order harmonic radiation emitted from N{sub 2} molecules interacting with a linearly polarized laser pulse is investigated theoretically. We find that the exchange effect between the recombining electron and the bound core electrons imprints a clear signature onto the high-order harmonic polarization and its dependence on the alignment angle between the molecular axis and driving laser electric field. Our analysis reveals an observable for the experimental investigation of many-electron dynamics in intense laser fields.

  15. Association between targeted somatic mutation (TSM) signatures and HGS-OvCa progression.

    PubMed

    Lindley, Robyn A; Humbert, Patrick; Larner, Cliff; Akmeemana, Eric H; Pendlebury, Christopher R R

    2016-09-01

    Evidence already exists that the activation-induced cytidine deaminase (AID/APOBEC) and the adenosine deaminase (ADAR) families of enzymes are implicated as powerful mutagens in oncogenic processes in many somatic tissues. Each deaminase is identified by the DNA or RNA nucleotide sequence ("motif") surrounding the nucleotide targeted for deamination. The primary objective of this study is to develop an in silico approach to identify nucleotide sequence changes of the target motifs of key deaminases during oncogenesis. If successful, a secondary objective is to investigate if such changes are associated with disease progression indicators that include disease stage and progression-free survival time. Using a discovery cohort of 194 high-grade serous ovarian adenocarcinoma (HGS-OvCa) exomes, the results confirm the ability of the novel in silico approach used to identify changes in the preferred target motifs for AID, APOBEC3G, APOBEC3B, and ADAR1 during oncogenesis. Using this approach, a set of new cancer-progression associated signatures (C-PASs) were identified. Furthermore, it was found that the C-PAS identified can be used to differentiate between the cohort of patients that remained progression-free for longer than 60 months, from those in which disease progressed within 60 months (sensitivity 95%, specificity 90%). The spectrum of outcomes observed here could provide a foundation for future clinical assessment of susceptibility variants in ovarian, and several other cancers as disease progresses. The ability of the in silico methodology used to identify changes in deaminase motifs during oncogenesis also suggests new links between immune system function and tumorigenesis.

  16. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    SciTech Connect

    Zhu, T; Chapman, C; Lawrence, T; Cao, Y; Tsien, C

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines

  17. Signature mutations from B. subtilis spores exposed to radiations and simulated space environments

    NASA Astrophysics Data System (ADS)

    Munakata, , Nobuo; Natsume, Toshiyuki; Konishi, Teruaki; Hieda, Kotaro; Panitz, Corinna; Horneck, Gerda

    Rifampicin-resistant mutants were collected from the spores of three B. subtilis strains, HA101 (HA, repair proficient), TKJ6312 (US, UV-repair defective) and TKJ6412 (RF, recombination deficient) grown after exposure to various radiations and simulated space environments. All of 563 mutations analyzed carried sequence changes in the N-terminal region of the rpoB gene cod-ing for the subunit β of RNA polymerase II and belonged to 56 alleles. (1) Most of spontaneous mutants from the three strains belonged to 13 single-base substitution (SBS) alleles, exceptions (<2%) being one 3 bp insertion and one tandem double substitution (TDS). (2) About 6 % and 16 % of the mutations from the HA and RF spores, respectively, exposed to ionizing radiations were complex mutations including multiple-base substitutions, insertions and deletions. Several TDS and non-tandem double substitutions (NTDS), and 3, 6, 9 and one 30 bp deletions seem to provide signatures of the exposure to ionizing radiations. (3) Except one TDS from US and one NTDS from HA spores, UV or solar exposure seemed not to leave unique footprints. (4) In space simulation experiments, the only conditions involving high vacuum consistently increased the mutation frequency, and exhibited high occurrences (>50%) of TDS. In HA spores, the al-lele r201 (CA to TT at 1460) was the most frequent, while in US spores, another allele r210 (TC to AA at 1404) was the most frequent. In conclusion, some of the conditions encountered in space environments, such as space vacuum and ionizing radiations, could produce unique mutational signatures in the rpoB gene of B. subtilis spores.

  18. Discriminating Gene Expression Signature of Radiation-Induced Thyroid Tumors after Either External Exposure or Internal Contamination

    PubMed Central

    Ory, Catherine; Ugolin, Nicolas; Schlumberger, Martin; Hofman, Paul; Chevillard, Sylvie

    2011-01-01

    Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation. PMID:24704841

  19. Progress in radiation immune thermionic integrated circuits

    SciTech Connect

    Lynn, D.K.; McCormick, J.B.

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs.

  20. Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression

    PubMed Central

    Gröger, Christian J.; Grubinger, Markus; Waldhör, Thomas; Vierlinger, Klemens; Mikulits, Wolfgang

    2012-01-01

    The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES) have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression. PMID:23251436

  1. Strong signatures of radiation reaction below the radiation-dominated regime.

    PubMed

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2009-06-26

    The influence of radiation reaction (RR) on multiphoton Thomson scattering by an electron colliding head-on with a strong laser beam is investigated in a new regime, in which the momentum transferred on average to the electron by the laser pulse approximately compensates the one initially prepared. This equilibrium is shown to be far more sensitive to the influence of RR than previously studied scenarios. As a consequence, RR can be experimentally investigated with currently available laser systems and the underlying widely discussed theoretical equations become testable for the first time.

  2. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  3. Development of a Metabolomic Radiation Signature in Urine from Patients Undergoing Total Body Irradiation

    PubMed Central

    Laiakis, Evagelia C.; Mak, Tytus D.; Anizan, Sebastien; Amundson, Sally A.; Barker, Christopher A.; Wolden, Suzanne L.; Brenner, David J.; Fornace, Albert J.

    2014-01-01

    The emergence of the threat of radiological terrorism and other radiological incidents has led to the need for development of fast, accurate and noninvasive methods for detection of radiation exposure. The purpose of this study was to extend radiation metabolomic biomarker discovery to humans, as previous studies have focused on mice. Urine was collected from patients undergoing total body irradiation at Memorial Sloan-Kettering Cancer Center prior to hematopoietic stem cell transplantation at 4–6 h postirradiation (a single dose of 1.25 Gy) and 24 h (three fractions of 1.25 Gy each). Global metabolomic profiling was obtained through analysis with ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (TOFMS). Prior to further analyses, each sample was normalized to its respective creatinine level. Statistical analysis was conducted by the nonparametric Kolmogorov-Smirnov test and the Fisher’s exact test and markers were validated against pure standards. Seven markers showed distinct differences between pre- and post-exposure samples. Of those, trimethyl-l-lysine and the carnitine conjugates acetylcarnitine, decanoylcarnitine and octanoylcarnitine play an important role in the transportation of fatty acids across mitochondria for subsequent fatty acid β-oxidation. The remaining metabolites, hypoxanthine, xanthine and uric acid are the final products of the purine catabolism pathway, and high levels of excretion have been associated with increased oxidative stress and radiation induced DNA damage. Further analysis revealed sex differences in the patterns of excretion of the markers, demonstrating that generation of a sex-specific metabolomic signature will be informative and can provide a quick and reliable assessment of individuals in a radiological scenario. This is the first radiation metabolomics study in human urine laying the foundation for the use of metabolomics in biodosimetry and providing confidence in biomarker

  4. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer

    PubMed Central

    Weichselbaum, Ralph R.; Ishwaran, Hemant; Yoon, Taewon; Nuyten, Dimitry S. A.; Baker, Samuel W.; Khodarev, Nikolai; Su, Andy W.; Shaikh, Arif Y.; Roach, Paul; Kreike, Bas; Roizman, Bernard; Bergh, Jonas; Pawitan, Yudi; van de Vijver, Marc J.; Minn, Andy J.

    2008-01-01

    Individualization of cancer management requires prognostic markers and therapy-predictive markers. Prognostic markers assess risk of disease progression independent of therapy, whereas therapy-predictive markers identify patients whose disease is sensitive or resistant to treatment. We show that an experimentally derived IFN-related DNA damage resistance signature (IRDS) is associated with resistance to chemotherapy and/or radiation across different cancer cell lines. The IRDS genes STAT1, ISG15, and IFIT1 all mediate experimental resistance. Clinical analyses reveal that IRDS(+) and IRDS(−) states exist among common human cancers. In breast cancer, a seven–gene-pair classifier predicts for efficacy of adjuvant chemotherapy and for local-regional control after radiation. By providing information on treatment sensitivity or resistance, the IRDS improves outcome prediction when combined with standard markers, risk groups, or other genomic classifiers. PMID:19001271

  5. Characterization of Ablation Product Radiation Signatures of PICA and FiberForm

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Butler, Bradley D.; Diao, Zhaojin; Panerai, Francesco; Martin, Alexandre; Bailey, Sean C. C.; Danehy, Paul M.; Splinter, Scott

    2016-01-01

    Emission spectroscopy measurements in the post-shock layer in front of low density ablative material samples of different shapes were obtained in the NASA Langley HYMETS arcjet facility. A horizontal line of measurement positions was imaged on the entrance slit of the spectrometer allowing detection of the entire stagnation line in front of the samples. The stagnation line measurements were used to compare the post-shock layer emission signatures in front of PICA and FiberForm. The emission signatures of H, NH, and OH are characteristic for pyrolysis gases and consequently were only observed in front of the PICA samples. CN and C were found in front of both materials and are mainly due to interactions of the carbon fibers with the plasma. In all tests with instrumented samples, the emission of Mn, Cr, and Ni was observed when the thermocouple temperatures reached or exceeded 1,500 K, strongly indicating erosion of the molten thermocouple tips. Temperatures in the post-shock layer were estimated from comparing the CN band emission to spectral simulation. The resulting rotational and vibrational temperatures were on the order of 7,000 to 9,000 K and close to each other indicating a plasma condition close to equilibrium. In addition to the stagnation line configurations, off-axis lines of observation were investigated to gather information about spalled particles in the flow. From a comparison of measured continuum emission with simulated Planck radiation, average particle temperatures along the measured line of observation were determined for two cases. Particle temperatures between 3,500 and 2,000 K were found. A comprehensive investigation of the entire amount of data set is ongoing.

  6. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ``biological fingerprint`` of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  7. Microwave Signatures of Melting/Refreezing Snow: Observations and Modeling Using Dense Medium Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; England, Anthony; deRoo, Roger; Hardy, Janet

    2005-01-01

    Microwave brightness temperatures of snow covered terrains can be modeled by means of the Dense Radiative Transfer Medium Theory (DMRT). In a dense medium, such as snow, the assumption of independent scattering is no longer valid and the scattering of correlated scatterers must be considered. In the DMRT, this is done considering a pair distribution function of the particles position. In the electromagnetic model, the snowpack is simulated as a homogeneous layer having effective permittivity and albedo calculated through the DMRT. In order to account for clustering of snow crystals, a model of cohesive particles can be applied, where the cohesion between the particles is described by means of a dimensionless parameters called stickiness (z), representing a measure of the inversion of the attraction of the particles. The lower the z the higher the stickiness. In this study, microwave signatures of melting and refreezing cycles of seasonal snowpacks at high altitudes are studied by means of both experimental and modeling tools. Radiometric data were collected 24 hours per day by the University of Michigan Tower Mounted Radiometer System (TMRS). The brightness temperatures collected by means of the TMRS are simulated by means of a multi-layer electromagnetic model based on the dense medium theory with the inputs to the model derived from the data collected at the snow pits and from the meteorological station. The paper is structured as follows: in the first Section the temperature profiles recorded by the meteorological station and the snow pit data are presented and analyzed; in the second Section, the characteristics of the radiometric system used to collect the brightness temperatures are reported together with the temporal behavior of the recorded brightness temperatures; in the successive Section the multi-layer DMRT-based electromagnetic model is described; in the fourth Section the comparison between modeled and measured brightness temperatures is discussed. We

  8. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  9. MicroRNA signatures associate with pathogenesis and progression of osteosarcoma

    PubMed Central

    Jones, Kevin B.; Salah, Zaidoun; Sara, Del Mare; Galasso, Marco; Gaudio, Eugenio; Nuovo, Gerard J.; Lovat, Francesca; LeBlanc, Kimberly; Palatini, Jeff; Randall, R. Lor; Volinia, Stefano; Stein, Gary S.; Croce, Carlo M.; Lian, Jane B.; Aqeilan, Rami I.

    2012-01-01

    Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a, miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy. PMID:22350417

  10. miRNA signatures associate with pathogenesis and progression of osteosarcoma.

    PubMed

    Jones, Kevin B; Salah, Zaidoun; Del Mare, Sara; Galasso, Marco; Gaudio, Eugenio; Nuovo, Gerard J; Lovat, Francesca; LeBlanc, Kimberly; Palatini, Jeff; Randall, R Lor; Volinia, Stefano; Stein, Gary S; Croce, Carlo M; Lian, Jane B; Aqeilan, Rami I

    2012-04-01

    Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a,miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy.

  11. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  12. Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression.

    PubMed

    Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E; Joshi, Virendra; Salomon, Carlos

    2017-03-07

    Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.

  13. Epithelial cells captured from ductal carcinoma in situ reveal a gene expression signature associated with progression to invasive breast cancer

    PubMed Central

    Abuázar, Carolina Sens; de Toledo Osorio, Cynthia Aparecida Bueno; Pinilla, Mabel Gigliola; da Silva, Sabrina Daniela; Camargo, Anamaria Aranha; Silva, Wilson Araujo; e Ferreira, Elisa Napolitano; Brentani, Helena Paula; Carraro, Dirce Maria

    2016-01-01

    Breast cancer biomarkers that can precisely predict the risk of progression of non-invasive ductal carcinoma in situ (DCIS) lesions to invasive disease are lacking. The identification of molecular alterations that occur during the invasion process is crucial for the discovery of drivers of transition to invasive disease and, consequently, biomarkers with clinical utility. In this study, we explored differences in gene expression in mammary epithelial cells before and after the morphological manifestation of invasion, i.e., early and late stages, respectively. In the early stage, epithelial cells were captured from both pre-invasive lesions with distinct malignant potential [pure DCIS as well as the in situ component that co-exists with invasive breast carcinoma lesions (DCIS-IBC)]; in the late stage, epithelial cells were captured from the two distinct morphological components of the same sample (in situ and invasive components). Candidate genes were identified using cDNA microarray and rapid subtractive hybridization (RaSH) cDNA libraries and validated by RT-qPCR assay using new samples from each group. These analyses revealed 26 genes, including 20 from the early and 6 from the late stage. The expression profile based on the 20 genes, marked by a preferential decrease in expression level towards invasive phenotype, discriminated the majority of DCIS samples. Thus, this study revealed a gene expression signature with the potential to predict DCIS progression and, consequently, provides opportunities to tailor treatments for DCIS patients. PMID:27708222

  14. Urinary metabolic signatures and early triage of acute radiation exposure in rat model.

    PubMed

    Zhao, Mingxiao; Lau, Kim Kt; Zhou, Xian; Wu, Jianfang; Yang, Jun; Wang, Chang

    2017-03-28

    After a large-scale radiological accident, early-response biomarkers to assess radiation exposure over a broad dose range are not only the basis of rapid radiation triage, but are also the key to the rational use of limited medical resources and to the improvement of treatment efficiency. Because of its high throughput, rapid assays and minimally invasive sample collection, metabolomics has been applied to research into radiation exposure biomarkers in recent years. Due to the complexity of radiobiological effects, most of the potential biomarkers are both dose-dependent and time-dependent. In reality, it is very difficult to find a single biomarker that is both sensitive and specific in a given radiation exposure scenario. Therefore, a multi-parameters approach for radiation exposure assessment is more realistic in real nuclear accidents. In this study, untargeted metabolomic profiling based on gas chromatography-mass spectrometry (GC-MS) and targeted amino acid profiling based on LC-MS/MS were combined to investigate early urinary metabolite responses within 48 h post-exposure in a rat model. A few of the key early-response metabolites for radiation exposure were identified, which revealed the most relevant metabolic pathways. Furthermore, a panel of potential urinary biomarkers was selected through a multi-criteria approach and applied to early triage following irradiation. Our study suggests that it is feasible to use a multi-parameters approach to triage radiation damage, and the urinary excretion levels of the relevant metabolites provide insights into radiation damage and repair.

  15. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    PubMed Central

    Iizuka, Shinji; Ishimaru, Naozumi; Kudo, Yasusei

    2014-01-01

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis. PMID:24531055

  16. Spectral Signature of Column Solar Radiation Absorption During the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). Revision

    SciTech Connect

    O'Hirok, William; Gautier, Catherine; Ricchiazzi, Paul

    1999-11-01

    Spectral and broadband shortwave radiative flux data obtained from the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) are compared with 3-D radiative transfer computations for the cloud field of October 30, 1995. Because the absorption of broadband solar radiation in the cloudy atmosphere deduced from observations and modeled differ by 135 Wm{sup -2}, we performed a consistency analysis using spectral observations and the model to integrate for wavelengths between the spectral observations. To match spectral measurements, aerosols need a reduction in both single scattering albedo (from 0.938 to 0.82) and asymmetry factor (from 0.67 to 0.61), and cloud droplets require a three-fold increase in co-albedo. Even after modifying the model inputs and microphysics the difference in total broadband absorption is still of the order of 75Wm{sup -2}. Finally, an unexplained absorber centered around 1.06 {micro}m appears in the comparison that is much too large to be explained by dimers.

  17. Best-estimate LOCA radiation signature for equipment qualification. [PWR; BWR

    SciTech Connect

    Lurie, N.A.; Bonzon, L.L.

    1980-01-01

    The radiation aspect of reactor equipment qualification depends on a knowledge of the appropriate source term. An attempt has been made to define a realistic radiation source corresponding to the loss-of-coolant accident. This best-estimate source is based on available fission product release data from damaged fuel during an unterminated LOCA as described in the Reactor Safety Study (WASH-1400). Energy release rates as a function of time have been calculated for both betas and gamma rays. The results are significantly different from the sources specified in Regulatory Guide 1.89. Spectra corresponding to the best-estimate source have also been computed at selected cooling times.

  18. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Matthews, Q.; Jirasek, A.; Lum, J. J.; Brolo, A. G.

    2011-11-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF2 > 0.6) and the R3 cell lines are radiosensitive (SF2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated

  19. The optical and radiation field signatures produced by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Guo, C.; Krider, E. P.

    1982-01-01

    Typical examples of the signals that are produced by first and subsequent return strokes in cloud-to-ground lightning on a microsecond time scale are presented. Statistics on the structure of the waveforms and the radiance of the channels are given. The relationship between the light signals and the associated electric field signatures is discussed. It is shown that the initial light signal from a return stroke tends to be linear for about 15 microsec and then rises more slowly to a peak that is delayed by approximately 60 microsec from the electric field peak. It is thought that the transition between the fast linear portion and the slower rise may be due to the return stroke entering the cloud base. A small percentage of the records suggest that two different branches of the same stepped leader can initiate separate return strokes. The light pulses from cloud discharges tend to be smaller and to vary more slowly than those from return strokes.

  20. Radiative Signatures of Reconnection in X-ray Binary Spectral States

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Accreting black holes (BHs) in Galactic X-ray Binary (XRB) systems represent some of the main targets of space-based high-energy observatories such as NASA s RXTE, Chandra, and NuSTAR, as well as the international observatories XMM Newton, INTEGRAL, Suzaku (Astro-E), and Astro-H. The overall radiative energy output (mostly X-rays) is ultimately powered by the conversion of the gravitational potential energy of the matter falling onto a black hole and forming an accretion disk or a hot accretion flow around it. Observationally, these systems are found to cycle between a few discrete spectral states, characterized by different overall X-ray power and spectral hardness: (1) the bright thermal high-soft state, dominated by a soft (1 keV) thermal component attributed to a thin dense accretion disk with a relatively weak corona producing a power-law tail emission to at least 1 MeV; (2) the low-hard state, showing no signs of a thin accretion disk and dominated by a single hard (with index ~ -1.7) power law truncating at about 100 keV; and (3) the bright Steep Power Law state with both a standard thin disk and a powerful coronal power-law (with index about -2.5) emission extending to at least 1 MeV. Explaining the key features of these nonthermal spectra, i.e., their power law indices and high-energy cutoffs, is one of the outstanding problems in high-energy astrophysics. The hard (10keV 1MeV) X-ray emission in these states is believed to be produced by inverse-Compton scattering in relativistically-hot gas, presumably heated by magnetic reconnection processes, and forming either an accretion disk corona or the hot accretion flow itself. Since the radiative cooling time of the energetic electrons in the intense radiation fields found in these systems is very short, the observed non-thermal hard X-ray spectra should directly reflect the instantaneous energy spectra of the electrons accelerated in reconnection events. Recent advances in kinetic simulations of reconnection

  1. Recent progress in the development of transition radiation detectors

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  2. Geomagnetic signatures of sudden ionospheric disturbances during extreme solar radiation events

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Yeh, H.-C.

    2008-12-01

    We performed a comparative study of geomagnetic variations, which are associated with sudden ionospheric disturbances (SIDs) caused by great X-class solar flares on July 14, 2000 (Bastille flare) and on October 28, 2003 (Halloween flare). Intense fluxes of solar X-rays and EUV radiation as well as solar energetic particles (SEP) were considered as sources of abundant ionization of the ionosphere and upper atmosphere. Flare-initiated SIDs are revealed as transient geomagnetic variations, which are generated by enhanced electric currents flowing mainly in the bottom-side ionosphere. Those so-called solar flare effects (SFEs) were studied by using of geomagnetic data from INTERMAGNET worldwide network of ground-based magnetometers. In subsolar region the SFE is mainly controlled by the flare X-rays and/or EUV radiation. We found that in the Halloween flare the contribution of X-rays was comparable with the EUV, but in the Bastille flare the EUV flux was dominant. The ionization at high latitudes is generated by the SEP, which energy flux is comparable and even exceeds the solar electromagnetic radiation in that region. It was shown that in the Halloween event the pattern of SFE is formed by a two-vortex current system, which is similar to the quiet day Sq current system. However, during the Bastille flare, the pattern of induced currents is quite different: the northern vortex shifts westward and southern vortex shifts eastward such that the electroject is substantially tilted relative to the geomagnetic equator. From numerical estimations we found that at middle latitudes the SEP-initiated geomagnetic effect becomes comparable with the effects of solar electromagnetic radiation. It was also shown that the SEP contribute to the SFE in the nightside hemisphere. The revealed features of the SEP impact to the ionosphere were found in a good agreement with the theory of energetic particle penetration to the bottom-side magnetosphere.

  3. Research on infrared radiation signatures of high-altitude plume based on DSMC method

    NASA Astrophysics Data System (ADS)

    Bao, Xingdong; Mao, Hongxia; Wu, Jie; Dong, Yanbing

    2016-10-01

    Exhaust plume flow field have the characteristics of high temperature, high speed and multi-species flow. Exhaust plume infrared signal are important basis of diagnosing, detecting and identifying plume spectrum. This paper focuses on the infrared radiation characteristics of high-altitude plume. The plume flows exhausted from a micro-nozzle of a low-thrust engine at high-altitude have been simulated numerically through using a DSMC method. Both the properties of plume flow at high altitude and the non-equilibrium effect related to rarefied gases are analyzed. Results are given numerically in good agreement with high-altitude plume observations. With the fields of pressure, temperature and main components of the exhaust plume as input data, the line-by line method was used to calculate the 2 5μm infrared spectral radiation properties of the plume. Different flight conditions are considered to analyze the influence on the infrared radiation characteristics. Some interesting conclusion are finally achieved.

  4. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  5. Progress and controversies: Radiation therapy for prostate cancer.

    PubMed

    Martin, Neil E; D'Amico, Anthony V

    2014-01-01

    Radiation therapy remains a standard treatment option for men with localized prostate cancer. Alone or in combination with androgen-deprivation therapy, it represents a curative treatment and has been shown to prolong survival in selected populations. In this article, the authors review recent advances in prostate radiation-treatment techniques, photon versus proton radiation, modification of treatment fractionation, and brachytherapy-all focusing on disease control and the impact on morbidity. Also discussed are refinements in the risk stratification of men with prostate cancer and how these are better for matching patients to appropriate treatment, particularly around combined androgen-deprivation therapy. Many of these advances have cost and treatment burden implications, which have significant repercussions given the prevalence of prostate cancer. The discussion includes approaches to improve value and future directions for research.

  6. Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-02-01

    We calculate the rate for thermal production of axions and saxions via scattering of quarks, gluons, squarks, and gluinos in the primordial supersymmetric plasma. Systematic field theoretical methods such as hard thermal loop resummation are applied to obtain a finite result in a gauge-invariant way that is consistent to leading order in the strong gauge coupling. We calculate the thermally produced yield and the decoupling temperature for both axions and saxions. For the generic case in which saxion decays into axions are possible, the emitted axions can constitute extra radiation already prior to big bang nucleosynthesis and well thereafter. We update associated limits imposed by recent studies of the primordial helium-4 abundance and by precision cosmology of the cosmic microwave background and large scale structure. We show that the trend towards extra radiation seen in those studies can be explained by late decays of thermal saxions into axions and that upcoming Planck results will probe supersymmetric axion models with unprecedented sensitivity.

  7. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  8. Narrow Radiative Recombination Continua: A Signature of Ions Crossing the Contact Discontinuity of Astrophysical Shocks

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Nordon, Raanan; Soker, Noam; Kastner, Joel H.; Yu, Young Sam

    2009-01-01

    X-rays from planetary nebulae (PNs) are believed to originate from a shock driven into the fast stellar wind (v 1000 kilometers per second) as it collides with an earlier circumstellar slow wind (v 10 kilometers per second). In theory, the shocked fast wind (hot hubble) and the ambient cold nebula can remain separated by magnetic fields along a surface referred to as the contact discontinuity (CD) that inhibits diffusion and heat conduction. The CD region is extremely difficult to probe directly owing to its small size and faint emission. This has largely left the study of CDs, stellar-shocks, and the associated micro-physics in the realm of theory. This paper presents spectroscopic evidence for ions from the hot bubble (kT approximately equal to 100 eV) crossing the CD and penetrating the cold nebular gas (kT approximately equal to 1 eV). Specifically, a narrow radiative recombination continuum (RRC) emission feature is identified in the high resolution X-ray spectrum of the PN BD+30degree3639 indicating bare C VII ions are recombining with cool electrons at kT(sub e) = 1.7 plus or minus 1.3 eV. An upper limit to the flux of the narrow RRC of H-like C VI is obtained as well. The RRCs are interpreted as due to C ions from the hot bubble of BD+30degree3639 crossing the CD into the cold nebula, where they ultimately recombine with its cool electrons. The RRC flux ratio of C VII to C VI constrains the temperature jump across the CD to deltakT greater than 80 eV, providing for the first time direct evidence for the stark temperature disparity between the two sides of an astrophysical CD, and constraining the role of magnetic fields and heat conduction accordingly. Two colliding-wind binaries are noted to have similar RRCs suggesting a temperature jump and CD crossing by ions may be common feature of stellar wind shocks.

  9. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1993--November 30, 1994

    SciTech Connect

    Hall, E.J.; Zaider, M.

    1994-05-01

    Research at the Center for Radiological Research is a blend of physics, chemistry and biology and epitomizes the multidisciplinary approach towards understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. To an increasing extent, the focus of attention is on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights from the past year are briefly described.

  10. Radiation effects in nuclear waste materials. 1997 annual progress report

    SciTech Connect

    Weber, W.J.; Corrales, L.R.

    1997-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding at the atomic, microscopic, and macroscopic levels of radiation effects in glass and ceramics. This research will provide the underpinning science and models for evaluation and performance assessments of glass and ceramic waste forms for the immobilization and disposal of high-level tank waste, plutonium residues and scrap, and excess weapons plutonium. Studies will focus on the effects of ionization and elastic collision interactions on defect production, defect interactions, diffusion, solid-state phase transformations, and gas accumulation using actinide-containing materials, gamma irradiation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of a-decay and p-decay on nuclear waste glasses and ceramics. This program will exploit a variety of structural, optical, and spectroscopic probes to characterize the nature and behavior of the defects, defect aggregates, and phase transforma-tions. Computer simulation techniques will be used to determine defect production, calculate defect stability, defect energies, damage processes within an a-recoil cascade, and defect/gas diffusion and interactions. A number of irradiation facilities and capabilities will be used, including user facilities at several national laboratories, to study the effects of irradiation under different conditions.'

  11. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  12. Use of gamma radiation as a form of preservation of sweet potatoes. Quarterly progress report

    SciTech Connect

    Not Available

    1985-01-01

    This progress report covers: harvest and conditioning following harvest; effects of ..gamma.. radiation on the sweet potato weevil, organoleptic properties of sweet potatoes, protein content of same, and sweet potato quality (vitamins, color, texture, and carbohydrates). Evaluation of preliminary results indicate that changes should be made in irradiation procedures/conditions and analyses. (DLC)

  13. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1991--November 30, 1992

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  14. Research progress in radiation detectors, pattern recognition programs, and radiation damage determination in DNA

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1973-01-01

    The radiological implications of statistical variations in energy deposition by ionizing radiation were investigated in the conduct of the following experiments: (1) study of the production of secondary particles generated by the passage of the primary radiation through bone and muscle; (2) the study of the ratio of nonreparable to reparable damage in DNA as a function of different energy deposition patterns generated by X rays versus heavy fast charged particles; (3) the use of electronic radiography systems for direct fluoroscopic tomography and for the synthesis of multiple planes and; (4) the determination of the characteristics of systems response to split fields having different contrast levels, and of minimum detectable contrast levels between the halves under realistic clinical situations.

  15. A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation

    NASA Astrophysics Data System (ADS)

    Yoshimori, Masakazu; Watanabe, Masahiro; Shiogama, Hideo; Oka, Akira; Abe-Ouchi, Ayako; Ohgaito, Rumi; Kamae, Youichi

    2016-12-01

    The correct understanding of the transient response to external radiative perturbation is important for the interpretation of observed climate change, the prediction of near-future climate change, and committed warming under climate stabilization scenarios, as well as the estimation of equilibrium climate sensitivity based on observation data. It has been known for some time that the radiative damping rate per unit of global mean surface temperature increase varies with time, and this inconstancy affects the transient response. Knowledge of the equilibrium response alone is insufficient, but understanding the transient response of the global mean surface temperature has made rapid progress. The recent progress accompanies the relatively new concept of the efficacies of ocean heat uptake and forcing. The ocean heat uptake efficacy associates the temperature response induced by ocean heat uptake with equilibrium temperature response, and the efficacy of forcing compares the temperature response caused by non-CO2 forcing with that by CO2 forcing.

  16. Polarimetric signatures of a layer of random nonspherical discrete scatterers overlying a homogeneous half-space based on first- and second-order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Ding, Kung-Hau

    1991-01-01

    Complete polarimetric signatures of a layer of random, nonspherical discrete scatterers overlying a homogeneous half space are studied with the first- and second-order solutions of the vector radiative transfer theory. Some of the salient features of the numerical results are as follows: (1) the inclusion of the nondiagonal extinction matrix in the vector radiative transfer theory accounts for an appreciable phase difference between vv and hh polarizations, particularly for aligned scatterers; (2) the ensemble-averaged scattered Stokes vector is generally partially polarized, with the degree of polarization less than unity; (3) there generally exists a pedestal in the copolarization return when plotted as a function of ellipticity and orientation angles, which may be due to heterogeneity of scattering objects and/or multiple scattering effects; and (4) multiple scattering effects generally enhance the pedestal in copolarization return, decrease the degree of polarization, affect phase difference, and also enhance the depolarization return.

  17. Acute Temporal Changes of MRI-Tracked Tumor Vascular Parameters after Combined Anti-angiogenic and Radiation Treatments in a Rat Glioma Model: Identifying Signatures of Synergism.

    PubMed

    Elmghirbi, Rasha; Nagaraja, Tavarekere N; Brown, Stephen L; Panda, Swayamprava; Aryal, Madhava P; Keenan, Kelly A; Bagher-Ebadian, Hassan; Cabral, Glauber; Ewing, James R

    2017-01-01

    In this study we used magnetic resonance imaging (MRI) biomarkers to monitor the acute temporal changes in tumor vascular physiology with the aim of identifying the vascular signatures that predict response to combined anti-angiogenic and radiation treatments. Forty-three athymic rats implanted with orthotopic U-251 glioma cells were studied for approximately 21 days after implantation. Two MRI studies were performed on each animal, pre- and post-treatment, to measure tumor vascular parameters. Two animal groups received treatment comprised of Cilengitide, an anti-angiogenic agent and radiation. The first group received a subcurative regimen of Cilengitide 1 h before irradiation, while the second group received a curative regimen of Cilengitide 8 h before irradiation. Cilengitide was given as a single dose (4 mg/kg; intraperitoneal) after the pretreatment MRI study and before receiving a 20 Gy radiation dose. After irradiation, the post-treatment MRI study was performed at selected time points: 2, 4, 8 and 12 h (n = ≥5 per time point). Significant changes in vascular parameters were observed at early time points after combined treatments in both treatment groups (1 and 8 h). The temporal changes in vascular parameters in the first group (treated 1 h before exposure) resembled a previously reported pattern associated with radiation exposure alone. Conversely, in the second group (treated 8 h before exposure), all vascular parameters showed an initial response at 2-4 h postirradiation, followed by an apparent lack of response at later time points. The signature time point to define the "synergy" of Cilengitide and radiation was 4 h postirradiation. For example, 4 h after combined treatments using a 1 h separation (which followed the subcurative regimen), tumor blood flow was significantly decreased, nearly 50% below baseline (P = 0.007), whereas 4 h after combined treatments using an 8 h separation (which followed the curative regimen), tumor blood flow was only 10

  18. Radiation damage and repair in cells and cell components. Radiation-induced repair. Progress report, 1981-1982

    SciTech Connect

    Not Available

    1982-01-01

    Progress in research on the description and interpretation of radiation-induced repair in cells is reported. It has been found that for the p-recA data induction seems to follow a model of fractional site occupancy rather than being all-or-none. Other areas investigated include: (1) the induction of the RecA-gene product; (2) the effect of uv-phage lambda infection on Rec-A protein synthesis; (3) induced uv radioresistance; (4) cold-shock effects; (5) lambda-prophage induction by x-rays and uv; (6) photoreactivation of uv-induced dimers; and (7) a comparative study of S.O.S. phenomena in various strains of E. coli. (ACR)

  19. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K

    PubMed Central

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse; Thorne, Robert E.

    2011-01-01

    Can radiation damage to protein crystals be ‘outrun’ by collecting a structural data set before damage is manifested? Recent experiments using ultra-intense pulses from a free-electron laser show that the answer is yes. Here, evidence is presented that significant reductions in global damage at temperatures above 200 K may be possible using conventional X-ray sources and current or soon-to-be available detectors. Specifically, ‘dark progression’ (an increase in damage with time after the X-rays have been turned off) was observed at temperatures between 180 and 240 K and on timescales from 200 to 1200 s. This allowed estimation of the temperature-dependent timescale for damage. The rate of dark progression is consistent with an Arrhenius law with an activation energy of 14 kJ mol−1. This is comparable to the activation energy for the solvent-coupled diffusive damage processes responsible for the rapid increase in radiation sensitivity as crystals are warmed above the glass transition near 200 K. Analysis suggests that at T = 300 K data-collection times of the order of 1 s (and longer at lower temperatures) may allow significant reductions in global radiation damage, facilitating structure solution on crystals with liquid solvent. No dark progression was observed below T = 180 K, indicating that no important damage process is slowed through this timescale window in this temperature range. PMID:21904032

  20. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker

    PubMed Central

    Goto, Yusuke; Kojima, Satoko; Nishikawa, Rika; Kurozumi, Akira; Kato, Mayuko; Enokida, Hideki; Matsushita, Ryosuke; Yamazaki, Kazuto; Ishida, Yasuo; Nakagawa, Masayuki; Naya, Yukio; Ichikawa, Tomohiko; Seki, Naohiko

    2015-01-01

    Background: Our present study of the microRNA (miRNA) expression signature in castration-resistant prostate cancer (CRPC) revealed that the clustered miRNAs microRNA-221 (miR-221) and microRNA-222 (miR-222) are significantly downregulated in cancer tissues. The aim of this study was to investigate the functional roles of miR-221 and miR-222 in prostate cancer (PCa) cells. Methods: A CRPC miRNA signature was constructed by PCR-based array methods. Functional studies of differentially expressed miRNAs were analysed using PCa cells. The association between miRNA expression and overall survival was estimated by the Kaplan–Meier method. In silico database and genome-wide gene expression analyses were performed to identify molecular targets regulated by the miR-221/222 cluster. Results: miR-221 and miR-222 were significantly downregulated in PCa and CRPC specimens. Kaplan–Meier survival curves showed that low expression of miR-222 predicted a short duration of progression to CRPC. Restoration of miR-221 or miR-222 in cancer cells revealed that both miRNAs significantly inhibited cancer cell migration and invasion. Ecm29 was directly regulated by the miR-221/222 cluster in PCa cells. Conclusions: Loss of the tumour-suppressive miR-221/222 cluster enhanced migration and invasion in PCa cells. Our data describing targets regulated by the tumour-suppressive miR-221/222 cluster provide insights into the mechanisms of PCa and CRPC progression. PMID:26325107

  1. Prognostic Utility of Cell Cycle Progression Score in Men With Prostate Cancer After Primary External Beam Radiation Therapy

    SciTech Connect

    Freedland, Stephen J.; Gerber, Leah; Reid, Julia; Welbourn, William; Tikishvili, Eliso; Park, Jimmy; Younus, Adib; Gutin, Alexander; Sangale, Zaina; Lanchbury, Jerry S.; Salama, Joseph K.; Stone, Steven

    2013-08-01

    Purpose: To evaluate the prognostic utility of the cell cycle progression (CCP) score, a RNA signature based on the average expression level of 31 CCP genes, for predicting biochemical recurrence (BCR) in men with prostate cancer treated with external beam radiation therapy (EBRT) as their primary curative therapy. Methods and Materials: The CCP score was derived retrospectively from diagnostic biopsy specimens of men diagnosed with prostate cancer from 1991 to 2006 (n=141). All patients were treated with definitive EBRT; approximately half of the cohort was African American. Outcome was time from EBRT to BCR using the Phoenix definition. Median follow-up for patients without BCR was 4.8 years. Association with outcome was evaluated by Cox proportional hazards survival analysis and likelihood ratio tests. Results: Of 141 patients, 19 (13%) had BCR. The median CCP score for patient samples was 0.12. In univariable analysis, CCP score significantly predicted BCR (P=.0017). The hazard ratio for BCR was 2.55 for 1-unit increase in CCP score (equivalent to a doubling of gene expression). In a multivariable analysis that included Gleason score, prostate-specific antigen, percent positive cores, and androgen deprivation therapy, the hazard ratio for CCP changed only marginally and remained significant (P=.034), indicating that CCP provides prognostic information that is not provided by standard clinical parameters. With 10-year censoring, the CCP score was associated with prostate cancer-specific mortality (P=.013). There was no evidence for interaction between CCP and any clinical variable, including ethnicity. Conclusions: Among men treated with EBRT, the CCP score significantly predicted outcome and provided greater prognostic information than was available with clinical parameters. If validated in a larger cohort, CCP score could identify high-risk men undergoing EBRT who may need more aggressive therapy.

  2. Genetic variation in resistance to ionizing radiation. Progress report, January--July 1990

    SciTech Connect

    Ayala, F.J.

    1990-12-31

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu, Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population of ``null`` (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The role of SOD levels in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. During the first seven months of funding we have completed a number of experiments and are proceeding with many others. We have made progress along all the research lines anticipated for the first year of this grant, as summarized in the following pages.

  3. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Annual technical progress report, [1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologies who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second year has been on measurements of (1) chromosome aberrations in patients imaged with thallium-201, (2) mutant frequencies in patients imaged with technetium-99, (3) mutant frequencies in nuclear medicine technicians and physical therapists, (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The progress in these areas is described.

  4. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications.

  5. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study

    SciTech Connect

    Widlak, Piotr; Jelonek, Karol; Wojakowska, Anna; Pietrowska, Monika; Polanska, Joanna; Marczak, Łukasz; Miszczyk, Leszek; Składowski, Krzysztof

    2015-08-01

    Purpose: Ionizing radiation affects the proteome of irradiated cells and tissue, yet data concerning changes induced during radiation therapy (RT) in human blood are fragmentary and inconclusive. We aimed to identify features of serum proteome and associated processes involved in response to partial body irradiation during cancer treatment. Methods and Materials: Twenty patients with head and neck squamous cell cancer (HNSCC) and 20 patients with prostate cancer received definitive intensity modulated RT. Blood samples were collected before RT, just after RT, and 1 month after the end of RT. Complete serum proteome was analyzed in individual samples, using a shotgun liquid chromatography-tandem mass spectrometry approach which allowed identification of approximately 450 proteins. Approximately 100 unique proteins were quantified in all samples after exclusion of immunoglobulins, and statistical significance of differences among consecutive samples was assessed. Processes associated with quantified proteins and their functional interactions were predicted using gene ontology tools. Results: RT-induced changes were marked in the HNSCC patient group: 22 upregulated and 33 downregulated proteins were detected in post-RT sera. Most of the changes reversed during follow-up, yet levels of some proteins remained affected 1 month after the end of RT. RT-upregulated proteins were associated with acute phase, inflammatory response, and complement activation. RT-downregulated proteins were associated with transport and metabolism of lipids (plasma apolipoproteins) and blood coagulation. RT-induced changes were much weaker in prostate cancer patients, which corresponded to differences in acute radiation toxicity observed in both groups. Nevertheless, general patterns of RT-induced sera proteome changes were similar in both of the groups of cancer patients. Conclusions: In this pilot study, we proposed to identify a molecular signature of radiation response, based on specific

  6. Detection of Weak Radiation Involving Generation and Progress of Water Tree

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Taniguchi, Ryouichi

    It is well known that generation and progress of water tree in XLPE cable are remarkably influenced by inorganic impurities. We have investigated the behavior of them in water tree and reported the experimental results as follows: i) the anomalous increase or decrease in several kinds of inorganic elements was observed in water treed XLPE samples, ii) a distinctive relationship was found for the mass numbers for the elements, iii) the isotopic content of the elements such as Zn deviated over 6% from the natural abundance. These results suggest that water tree is concerned with unknown phenomena e.g., cold fusion or nuclear transmutation in condensed matter. In order to study the relationship between water tree and these phenomena, we attempted to detect neutron, γ-ray or X-ray involving generation and progress of water tree in XLPE samples. For the experiments weak and burst-like radiation seemed to be low energy γ-ray or X-ray was often detected by BF3 and/or CdZnTe counter. The radiation tended to be detected from the samples in which a lot of water trees were generated by supplying inorganic cations abundantly.

  7. Basic Fibroblast Growth Factor-2/beta3 Integrin Expression Profile: Signature of Local Progression After Chemoradiotherapy for Patients With Locally Advanced Non-Small-Cell Lung Cancer

    SciTech Connect

    Massabeau, Carole; Rouquette, Isabelle; Lauwers-Cances, Valerie; Mazieres, Julien; Bachaud, Jean-Marc; Armand, Jean-Pierre; Delisle, Marie-Bernadette; Favre, Gilles; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2009-11-01

    Purpose: No biologic signature of chemoradiotherapy sensitivity has been reported for patients with locally advanced non-small-cell lung cancer (NSCLC). We have previously demonstrated that basic fibroblast growth factor (FGF-2) and alphavbeta3 integrin pathways control tumor radioresistance. We investigated whether the expression of the proteins involved in these pathways might be associated with the response to treatment and, therefore, the clinical outcome. Methods and Materials: FGF-2, beta3 integrin, angiopoietin-2, and syndecan-1 expression was studied using immunohistochemistry performed on biopsies obtained, before any treatment, from 65 patients exclusively treated with chemoradiotherapy for locally advanced NSCLC. The response to treatment was evaluated according to the Response Evaluation Criteria in Solid Tumors criteria using computed tomography at least 6 weeks after the end of the chemoradiotherapy. Local progression-free survival, metastasis-free survival, and disease-free survival were studied using the log-rank test and Cox proportional hazard analysis. Results: Among this NSCLC biopsy population, 43.7% overexpressed beta3 integrin (beta3{sup +}), 43% FGF-2 (FGF-2{sup +}), 41.5% syndecan-1, and 59.4% angiopoietin-2. Our results showed a strong association between FGF-2 and beta3 integrin expression (p = .001). The adjusted hazard ratio of local recurrence for FGF-2{sup +}/beta3{sup +} tumors compared with FGF-2{sup -}/beta3{sup -} tumors was 6.1 (95% confidence interval, 2.6-14.6, p = .005). However, the risk of local recurrence was not increased when tumors overexpressed beta3 integrin or FGF-2 alone. Moreover, the co-expression of these two proteins was marginally associated with the response to chemoradiotherapy and metastasis-free survival. Conclusion: The results of this study have identified the combined profile FGF-2/beta3 integrin expression as a signature of local control in patients treated with chemoradiotherapy for locally advanced

  8. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P. E.; Martin, E.; Mõttus, M.; North, P. R. J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Verstraete, M. M.; Xie, D.

    2007-05-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to include structurally complex 3-D plant architectures with and without background topography. Here sometimes significant discrepancies were noted which effectively prevented the definition of a reliable "surrogate truth," over heterogeneous vegetation canopies, against which other RT models could then be compared. The present paper documents the outcome of the third phase of RAMI, highlighting both the significant progress that has been made in terms of model agreement since RAMI-2 and the capability of/need for RT models to accurately reproduce local estimates of radiative quantities under conditions that are reminiscent of in situ measurements. Our assessment of the self-consistency and the relative and absolute performance of 3-D Monte Carlo models in RAMI-3 supports their usage in the generation of a "surrogate truth" for all RAMI test cases. This development then leads (1) to the presentation of the "RAMI Online Model Checker" (ROMC), an open-access web-based interface to evaluate RT models automatically, and (2) to a reassessment of the role, scope, and opportunities of the RAMI project in the future.

  9. Human genetic marker for resistance to radiations and chemicals. 1998 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1998-06-01

    'The broad objective of the project is to understand the molecular basis for the response of cells to radiations and chemicals, with the pragmatic goal of being able to identify human subpopulations that are exceptionally sensitive to DNA damaging agents. The project focuses on HRAD9, a human orthologue of the fission yeast Schizosaccharomyces pombe gene rad9. S. pombe rad9::ura4+ mutant cells are highly sensitive to ionizing radiation, UV and many chemicals, such as the DNA synthesis inhibitor hydroxyurea. They also lack the ability to delay cycling transiently in S phase or in G2 following a block in DNA replication or after incurring DNA damage, respectively -i.e., they lack checkpoint controls. The attempt by mutant cells to progress through mitosis in the absence of fully intact DNA accounts at least in part for their sensitivity to DNA damaging agents. Cells bearing rad9::ura4+ also aberrantly regulate UVDE, an enzyme that participates in a secondary DNA excision repair pathway. The key role played by S. pombe rad9 in promoting resistance to chemicals and radiations suggests that the evolutionarily conserved human cognate also has important functions in mammals. The first set of aims in this proposal centers on characterizing the structure and expression of HRAD9, to assess structure/function relationships and potentially link protein activity to a specific tissue. The next set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer.'

  10. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  11. Age-Specific Gene Expression Signatures for Breast Tumors and Cross-Species Conserved Potential Cancer Progression Markers in Young Women

    PubMed Central

    Colak, Dilek; Nofal, Asmaa; AlBakheet, AlBandary; Nirmal, Maimoona; Jeprel, Hatim; Eldali, Abdelmoneim; AL-Tweigeri, Taher; Tulbah, Asma; Ajarim, Dahish; Malik, Osama Al; Kaya, Namik; Park, Ben H.; Bin Amer, Suad M.

    2013-01-01

    Breast cancer in young women is more aggressive with a poorer prognosis and overall survival compared to older women diagnosed with the disease. Despite recent research, the underlying biology and molecular alterations that drive the aggressive nature of breast tumors associated with breast cancer in young women have yet to be elucidated. In this study, we performed transcriptomic profile and network analyses of breast tumors arising in Middle Eastern women to identify age-specific gene signatures. Moreover, we studied molecular alterations associated with cancer progression in young women using cross-species comparative genomics approach coupled with copy number alterations (CNA) associated with breast cancers from independent studies. We identified 63 genes specific to tumors in young women that showed alterations distinct from two age cohorts of older women. The network analyses revealed potential critical regulatory roles for Myc, PI3K/Akt, NF-κB, and IL-1 in disease characteristics of breast tumors arising in young women. Cross-species comparative genomics analysis of progression from pre-invasive ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) revealed 16 genes with concomitant genomic alterations, CCNB2, UBE2C, TOP2A, CEP55, TPX2, BIRC5, KIAA0101, SHCBP1, UBE2T, PTTG1, NUSAP1, DEPDC1, HELLS, CCNB1, KIF4A, and RRM2, that may be involved in tumorigenesis and in the processes of invasion and progression of disease. Array findings were validated using qRT-PCR, immunohistochemistry, and extensive in silico analyses of independently performed microarray datasets. To our knowledge, this study provides the first comprehensive genomic analysis of breast cancer in Middle Eastern women in age-specific cohorts and potential markers for cancer progression in young women. Our data demonstrate that cancer appearing in young women contain distinct biological characteristics and deregulated signaling pathways. Moreover, our integrative genomic and cross

  12. Solar radiation signature manifested on the spatial patterns of modeled soil moisture, vegetation, and topography using an ecohydro-geomorphic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Flores Cervantes, J. H.; Istanbulluoglu, E.; Vivoni, E. R.

    2013-12-01

    The role of solar radiation on ecohydrologic fluxes, vegetation dynamics, species composition, and landscape morphology have long been documented in field studies. However a numerical model framework to integrate a range of ecohydrologic and geomorphic processes to explore the integrated ecohydro-geomorphic landscape response have been missing. In this study, our aim is to realistically represent flood generation and solar-radiation-driven echydrologic dynamics in a landscape evolution model (LEM) to investigate how ecohydrologic differences caused by differential irradiance on opposing hillslopes manifest themselves on the organization of modeled topography, soil moisture and plant biomass. We use the CHILD LEM equipped with a spatially-distributed solar-radiation component, leading to spatial patterns of soil moisture; a vegetation dynamics component that explicitly tracks above- and below-ground biomass; and a runoff component that allows for runoff-runon processes along the landscape flow paths. Ecohydrological component has been verified using a detailed data gathered from Sevilleta National Wildlife Refuge in central New Mexico, and Walnut Gulch Experimental Watershed in southern Arizona. LEM scenarios were designed to compare the outcomes of spatially distributed versus spatially uniform solar radiation forced with a constant climate and variable uplift. Modeled spatial patterns of soil moisture confirm empirical observations at the landscape scale and other hydrologic modeling studies. The spatial variability in soil moisture is controlled by aspect prior to the wet season (North American Monsoon, NAM), and by the hydraulic connectivity of the flow network during NAM. Aspect and network connectivity signatures are also manifested on plant biomass with typically denser vegetation cover on north-facing slopes than south facing slopes. Over the long-term, CHILD gives slightly steeper and less dissected north-facing slopes more dissected south facing slopes and

  13. [Nanometer scale exciton spectroscopy and photochemistry: Dynamic imaging of DNA structure-activity relations and radiation signatures

    SciTech Connect

    Not Available

    1992-01-01

    Our aim is to investigate, on the molecular level at a spatially resolved mode of operation, structure-activity relations of DNA and their sensitivity to ionizing radiation. This entails in-vitro (and later in-vivo) ultra-resolved microscopy, spectroscopy and chemical sensing, with non-destructive probing.

  14. A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes' B colon cancer patients.

    PubMed

    Bandrés, Eva; Malumbres, Raquel; Cubedo, Elena; Honorato, Beatriz; Zarate, Ruth; Labarga, Alberto; Gabisu, Unai; Sola, Jesus Javier; García-Foncillas, Jesus

    2007-05-01

    The benefit of postoperative adjuvant chemotherapy in patients with Dukes' B colorectal cancer is still uncertain and its routine use is not recommended. The five-year relapse rate is approximately 25-40% and the identification of patients at high risk of recurrence would represent an important strategy for the use of adjuvant chemotherapy. We retrospectively analyzed gene expression profiles in frozen tumor specimens from patients with Dukes' B colorectal cancer by using high density oligonucleotide microarrays. Our results show a subset of 48 genes differentially expressed with an associated probability <0.001 in the t-test. Another statistical procedure based on the Fisher criterion resulted in 11 genes able to separate both groups. We selected the 8 genes present in both subsets. The differential expression of five genes (CHD2, RPS5, ZNF148, BRI3 and MGC23401) in colon cancer progression was confirmed by real-time PCR in an independent set of patients of Dukes' B and C stages.

  15. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes.

    PubMed

    Keller, I; Wagner, C E; Greuter, L; Mwaiko, S; Selz, O M; Sivasundar, A; Wittwer, S; Seehausen, O

    2013-06-01

    Adaptive radiations are an important source of biodiversity and are often characterized by many speciation events in very short succession. It has been proposed that the high speciation rates in these radiations may be fuelled by novel genetic combinations produced in episodes of hybridization among the young species. The role of such hybridization events in the evolutionary history of a group can be investigated by comparing the genealogical relationships inferred from different subsets of loci, but such studies have thus far often been hampered by shallow genetic divergences, especially in young adaptive radiations, and the lack of genome-scale molecular data. Here, we use a genome-wide sampling of SNPs identified within restriction site-associated DNA (RAD) tags to investigate the genomic consistency of patterns of shared ancestry and adaptive divergence among five sympatric cichlid species of two genera, Pundamilia and Mbipia, which form part of the massive adaptive radiation of cichlids in the East African Lake Victoria. Species pairs differ along several axes: male nuptial colouration, feeding ecology, depth distribution, as well as the morphological traits that distinguish the two genera and more subtle morphological differences. Using outlier scan approaches, we identify signals of divergent selection between all species pairs with a number of loci showing parallel patterns in replicated contrasts either between genera or between male colour types. We then create SNP subsets that we expect to be characterized to different extents by selection history and neutral processes and describe phylogenetic and population genetic patterns across these subsets. These analyses reveal very different evolutionary histories for different regions of the genome. To explain these results, we propose at least two intergeneric hybridization events (between Mbipia spp. and Pundamilia spp.) in the evolutionary history of these five species that would have lead to the evolution

  16. Acoustic radiation force on a sphere in a progressive and standing zero-order quasi-Bessel-Gauss beam.

    PubMed

    Jiang, Chen; Liu, Xiaozhou; Liu, Jiehui; Mao, Yiwei; Marston, Philip L

    2017-04-01

    By means of series expansion theory, the incident quasi-Bessel-Gauss beam is expanded using spherical harmonic functions, and the beam coefficients of the quasi-Bessel-Gauss beam are calculated. According to the theory, the acoustic radiation force function, which is the radiation force per unit energy on a unit cross-sectional surface on a sphere made of diverse materials and immersed in an ideal fluid along the propagation axis of zero-order quasi-Bessel-Gauss progressive and standing beams, is investigated. The acoustic radiation force function is calculated as a function of the spherical radius parameter ka and the half-cone angle β with different beam widths in a progressive and standing zero-order Bessel-Gauss beam. Simulation results indicate that the acoustic radiation forces with different waist radii demonstrate remarkably different features from those found in previous studies. The results are expected to be useful in potential applications such as acoustic tweezers.

  17. Signature control

    NASA Astrophysics Data System (ADS)

    Pyati, Vittal P.

    The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.

  18. Recent progress and tests of radiation resistant impregnation materials for Nb{sub 3}Sn coils

    SciTech Connect

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-27

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  19. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  20. Locoregional Tumor Progression After Radiation Therapy Influences Overall Survival in Pediatric Patients With Neuroblastoma

    SciTech Connect

    Pai Panandiker, Atmaram S.; McGregor, Lisa; Krasin, Matthew J.; Wu Shengjie; Xiong Xiaoping; Merchant, Thomas E.

    2010-03-15

    Purpose: There is renewed attention to primary site irradiation and local control for patients with high-risk neuroblastoma (NB). We conducted a retrospective review to identify factors that might predict for locoregional tumor control and its impact on overall survival. Methods and Materials: Between July 2000 through August 2006, a total of 44 pediatric patients with NB received radiation therapy (RT) with curative intent using computed tomography (CT)-based treatment planning. The median age was 3.4 years and the median cumulative dose was 23.4 Gy. Overall survival and locoregional tumor control were measured from the start of RT to the date of death or event as determined by CT/magnetic resonance imaging/meta-iodobenzylguanidine. The influence of age at irradiation, gender, race, cumulative radiation dose, International Neuroblastoma Staging System stage, treatment protocol and resection status was determined with respect to locoregional tumor control. Results: With a median follow-up of 34 months +- 21 months, locoregional tumor progression was observed in 11 (25%) and was evenly divided between primary site and adjacent nodal/visceral site failure. The influence of locoregional control reached borderline statistical significance (p = 0.06). Age (p = 0.5), dose (p = 0.6), resection status (p = 0.7), and International Neuroblastoma Staging System stage (p = 0.08) did not influence overall survival. Conclusions: Overall survival in high-risk neuroblastoma is influenced by locoregional tumor control. Despite CT-based planning, progression in adjacent nodal/visceral sites appears to be common; this requires further investigation regarding target volume definitions, dose, and the effects of systemic therapy.

  1. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1991--August 31, 1992

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1992-08-31

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo[a]pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described.

  2. Progressive glomerulosclerosis and renal failure following perinatal gamma radiation in the beagle

    SciTech Connect

    Jaenke, R.S.; Phemister, R.D.; Norrdin, R.W.

    1980-06-01

    The renal effects of whole body irradiation in the perinatal period were studied in the dog. Ninety-three dogs received a single sublethal exposure in the range of 270 to 435 R in either late gestation (55 days postcoitus) or early postnatal life (2 days postpartum) and were sacrificed at 70 days, 2, or 4 years of age. Early renal lesions in 70-day-old irradiated dogs were characterized by arrested glomerular maturation and degeneration resulting in reduced functional renal mass. Mature glomeruli exhibited mesangial proliferation. At 2 and 4 years of age, surviving irradiated dogs exhibited sever renal disease associated with progressive glomerular damage which was characterized by mesangial proliferation and compression of capillary lumina, epithelial degeneration and focal capsular adhesions, and ultimately obliterative glomerulosclerosis. Twenty-one of the 93 irradiated dogs died in renal failure before 4 years of age with advanced glomerulosclerosis. The phatogenesis of this progressive renal lesion may be related to the interaction of three specific factors. These include (1) the effect of direct radiation damage to mature kidney components; (2) the loss of outer cortical nephrons resulting in increased work load of the surviving nephrons; and (3) the effect of compensatory hypertrophy related to the loss of renal parenchyma as the rapid growth rates associated with kidney maturation.

  3. Physical Interpretation of the Spectral Radiative Signature in the Transition Zone Between Cloud-Free and Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Chiu, J. C.; Marshak, A.; Knyazikhin, Y.; Pilewski, P.; Wiscombe, W. J.

    2009-01-01

    One-second-resolution zenith radiance measurements from the Atmospheric Radiation Measurement program's new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a remarkable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol properties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical considerations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains unchanged.

  4. Physico-chemical studies of radiation effects in cells. Progress report, February 15, 1982-February 14, 1983

    SciTech Connect

    Powers, E.L.

    1982-01-01

    Progress in studies investigating the chemical mechanisms involved in radiation-induced cellular damage is reported. Three organisms currently being tested are Bacillus megaterium, Bacillus subtilis, and Escherichia coli, silver and mercury have been used as radiosensitizers, and their interaction with DNA studied. (ACR)

  5. Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Appelbe, B. D.; Manke, F.; McGlinchey, K.; Niasse, N. P. L.

    2016-05-01

    We present the results of 3D simulations of indirect drive inertial confinement fusion capsules driven by the "high-foot" radiation pulse on the National Ignition Facility. The results are post-processed using a semi-deterministic ray tracing model to generate synthetic deuterium-tritium (DT) and deuterium-deuterium (DD) neutron spectra as well as primary and down scattered neutron images. Results with low-mode asymmetries are used to estimate the magnitude of anisotropy in the neutron spectra shift, width, and shape. Comparisons of primary and down scattered images highlight the lack of alignment between the neutron sources, scatter sites, and detector plane, which limits the ability to infer the ρr of the fuel from a down scattered ratio. Further calculations use high bandwidth multi-mode perturbations to induce multiple short scale length flows in the hotspot. The results indicate that the effect of fluid velocity is to produce a DT neutron spectrum with an apparently higher temperature than that inferred from the DD spectrum and which is also higher than the temperature implied by the DT to DD yield ratio.

  6. Outgoing Longwave Radiation (OLR) as signatures of pre-seismic activities before Nepal 2015 Earthquakes using onboard NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Earthquake preparation processes start almost a month before its actual occurrence. There are various tools in detecting such processes among which Outgoing Longwave Radiation (OLR) measurements is a significant one. We studied these signals before the devastating Nepal earthquake that occurred on 12 May, 2015 at 12:50 pm local time (07:05 UTC) with a Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. To study the effects of seismic activities on OLR, we used the data archived by the National Environmental Satellite Data and Information Service (NESDIS) of National Oceanic and Atmospheric Administration (NOAA) onto two degree grids for a period of more than 27 years. For the period 2005 till date, data from NOAA18 satellite is used. The data has been chosen with a temporal coverage from 8th May to 17th May, 2015 and a spatial coverage from 20 ^{o}N to 36 ^{o}N latitudes, 78 ^{o}E to 94 ^{o}E longitudes. We followed the method of 'Eddy field calculation mean' to find anomalies in daily OLR curves. We found singularities in Eddy field around the earthquake epicentre three days prior to the earthquake day and its disappearance after the event. Such intensification of Eddy field and its fading away after the shock event can be due to the large amount of energy released before the earthquake.

  7. Assessment of WRF microphysics schemes to simulate extreme precipitation events from the perspective of GMI radiative signatures

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Shin, D. B.; Joh, M.

    2015-12-01

    Numerical simulations of precipitation depend to a large degree on the assumed cloud microphysics schemes representing the formation, growth and fallout of cloud droplets and ice crystals. Recent studies show that assumed cloud microphysics play a major role not only in forecasting precipitation, especially in cases of extreme precipitation events, but also in the quality of the passive microwave rainfall estimation. Evaluations of the various Weather Research Forecasting (WRF) model microphysics schemes in this study are based on a method that was originally developed to construct the a-priori databases of precipitation profiles and associated brightness temperatures (TBs) for precipitation retrievals. This methodology generates three-dimensional (3D) precipitation fields by matching the GPM dual frequency radar (DPR) reflectivity profiles with those calculated from cloud resolving model (CRM)-derived hydrometeor profiles. The method eventually provides 3D simulated precipitation fields over the DPR scan swaths. That is, atmospheric and hydrometeor profiles can be generated at each DPR pixel based on CRM and DPR reflectivity profiles. The generated raining systems over DPR observation fields can be applied to any radiometers that are unaccompanied with a radar for microwave radiative calculation with consideration of each sensor's channel and field of view. Assessment of the WRF model microphysics schemes for several typhoon cases in terms of emission and scattering signals of GMI will be discussed.

  8. Searching the Inclusive Lepton + Photon + Missing E(T) + b-quark Signature for Radiative Top Quark Decay and Non-Standard-Model Processes

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton ({ell}), a photon ({gamma}), significant transverse momentum imbalance (E{sub T}), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at {radical}s = 1.96 TeV corresponding to 1.9 fb{sup -1} of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 {ell}{gamma}bE{sub T} events versus an expectation of 31.0{sub -3.5}{sup +4.1} events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, t{bar t} + {gamma}. In the data we observe 16 t{bar t}{gamma} candidate events versus an expectation from non-top-quark SM sources of 11.2{sub -2.1}{sup +2.3}. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the t{bar t} cross section to be 0.15 {+-} 0.08 pb.

  9. First Generation Gene Expression Signature for Early Prediction of Late Occurring Hematological Acute Radiation Syndrome in Baboons.

    PubMed

    Port, M; Herodin, F; Valente, M; Drouet, M; Lamkowski, A; Majewski, M; Abend, M

    2016-07-01

    We implemented a two-stage study to predict late occurring hematologic acute radiation syndrome (HARS) in a baboon model based on gene expression changes measured in peripheral blood within the first two days after irradiation. Eighteen baboons were irradiated to simulate different patterns of partial-body and total-body exposure, which corresponded to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. Blood samples taken before irradiation served as unexposed control (H0, n = 17). For stage I of this study, a whole genome screen (mRNA microarrays) was performed using a portion of the samples (H0, n = 5; H1-2, n = 4; H2-3, n = 5). For stage II, using the remaining samples and the more sensitive methodology, qRT-PCR, validation was performed on candidate genes that were differentially up- or down-regulated during the first two days after irradiation. Differential gene expression was defined as significant (P < 0.05) and greater than or equal to a twofold difference above a H0 classification. From approximately 20,000 genes, on average 46% appeared to be expressed. On day 1 postirradiation for H2-3, approximately 2-3 times more genes appeared up-regulated (1,418 vs. 550) or down-regulated (1,603 vs. 735) compared to H1-2. This pattern became more pronounced at day 2 while the number of differentially expressed genes decreased. The specific genes showed an enrichment of biological processes coding for immune system processes, natural killer cell activation and immune response (P = 1 × E-06 up to 9 × E-14). Based on the P values, magnitude and sustained differential gene expression over time, we selected 89 candidate genes for validation using qRT-PCR. Ultimately, 22 genes were confirmed for identification of H1-3 classifications and seven genes for identification of H2-3 classifications using qRT-PCR. For H1-3 classifications, most genes were

  10. Radiation physics, biophysics and radiation biology. Progress report for October 1, 1979-September 30, 1980. [Lead abstract

    SciTech Connect

    Rossi, H.H.; Hall, E.J.

    1980-07-01

    Separate abstracts were prepared for 31 of the 32 papers presented in this progress report. The other paper is represented by an abstract only and deals with field shaping and recalibration of x-ray facilities.

  11. Progress on an Updated National Solar Radiation Data Base for the United States: Preprint

    SciTech Connect

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-09-01

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In 2003, NREL undertook an NSRDB update project for the decade of 1991-2000.

  12. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  13. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  14. NREL Solar Radiation Resource Assessment Project: Status and outlook. FY 1991 annual progress report

    SciTech Connect

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL`s Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU`s), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL`s Solar Radiation Research Laboratory. 17 refs.

  15. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  16. Mechanisms for radiation damage in DNA. Progress report, June 1, 1993--May 31, 1994

    SciTech Connect

    Sevilla, M.D.

    1993-12-01

    In this project the author has proposed several mechanisms for radiation damage to DNA and its constituents, and has detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. In this years work he has completed several experiments on the role of hydration water on DNA radiation damage, continued the investigation of the localization of the initial charges and their reactions on DNA, investigated protonation reactions in DNA base anions, and employed ab initio molecular orbital theory to gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics evolved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this years work to a consideration of ionization energies of various components of the DNA deoxyribose backbone and resulting neutral sugar radicals. This information has aided the formation of new radiation models for the effect of radiation on DNA. During this fiscal year four articles have been published, four are in press, one is submitted and several more are in preparation. Four papers have been presented at scientific meetings. This years effort will include another review article on the {open_quotes}Electron Spin Resonance of Radiation Damage to DNA{close_quotes}.

  17. Progress in Projecting Solar Radiation at the Earth's Surface in Climate Models

    NASA Astrophysics Data System (ADS)

    Collins, W.; Fildier, B.; Feldman, D.

    2015-12-01

    Projecting changes in solar radiation at the Earth's surface in futureclimates is a critical input to forecast surface irradiance for solarenergy. We demonstrate the current state of the art using theensemble of opportunity assembled for the Coupled ModelIntercomparison Project (CMIP5) and the Fifth Assessment Report (AR5)of the Intergovernmental Panel on Climate Change (IPCC). The reliability of these projections depends upon the accuracy of theunderlying radiation codes, the fidelity of these codes to themeasured optical properties of key radiatively active atmosphericconstituents, and the realism of future projections of theseatmospheric constituents. These constituents include aerosols,clouds, water vapor, greenhouse gases that absorb near-infraredsunlight. Since the realism of future projections of anthropogenicaerosol species is contingent on the underlying scenario, we focus onthe other challenges in forecasting surface irradiance. Regarding accuracy, we demonstrate that current GCM shortwaveparameterizations often exhibit quite small errors relative tobenchmark radiative transfer codes. In addition, recent work hasbracketed the uncertainties in solar irradiance associated withcomplex cloud geometries. There is also an emerging consensus howcloud radiative effects will evolve in a warmer climate. However,there is evidence that current GCM codes still exhibit systematicerrors in the near-infrared water vapor bands, particularly for moistsub-tropical atmospheres. These errors will become more acute aswater vapor feedbacks, combined with global warming, increase thetotal precipitable water in the Earth's atmosphere.

  18. [In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine]. Technical progress report

    SciTech Connect

    Not Available

    1989-12-31

    The overall goals of our research remains to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation in human lymphocytes. We are studying hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides.

  19. Response of a forest ecotone to ionizing radiation. Progress report, October 15, 1980-October 14, 1981

    SciTech Connect

    Murphy, P.G.; Sharitz, R.R.

    1981-06-01

    The primary objectives of this study are to determine the effects of ionizing radiation on the tree species composition of the ecotone between two forest types in northern Wisconsin and to compare the postirradiation recovery of the tree flora in the ecotone with that in the bordering forest types. Relatively distinct ecotones constitute a spatially significant portion of many second-growth forest ecosystems. Belt transects concentric to the radiation source (/sup 137/Cs) are being used to measure compositional changes in the ecotone from aspen to maple-birch forest types. Information available includes population densities by size class, importance values, and diversity values. Estimates of leaf area index and leaf litter production, by species, have also been obtained. Succession in the radiation areas is presently under study. To date, redevelopment of forest vegetation at up to 20 m from the radiation source has been slowed significantly by the vigorous colonization of heliophytes. Sampling for 1980-81 is on schedule. In all three areas competition from successional ground vegetation has continued to delay re-establishment of tree seedlings under the opened canopy at 10 m. In this regard, only the aspen area has shown any signs of recovering, having experienced an influx of red maple seedlings in 1978. Even that area, however, is still less than half preirradiation levels with respect to seedling densities. As unusually high ratio of shrub leaf litter to tree leaf litter in the 10 to 20 m area reflects the displacement of canopy species by successional shrubs. As the overall impact of the radiation stress depends on the rate of forest re-establishment, observations will continue for several more years.

  20. Mechanisms for radiation damage in DNA. Progress report, June 1, 1994--May 31, 1995

    SciTech Connect

    Sevilla, M.D.

    1994-11-01

    In this project we have proposed several mechanisms for radiation damage to DNA and its constituents, and have detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. The results from these various techniques have resulted in an understanding of consequences of radiation damage to DNA from the early ionization event to the production of non-radical lesions (discussed in detail in Comprehensive Report). In this year`s work we have found the hydroxyl radical in DNA`s hydration layer. This is an important result which impacts the hole transfer hypothesis and the understanding of the direct vs. indirect effect in DNA. Further we have found the first ESR evidence for sugar radicals as a result of direct radiation damage to DNA nucleotides in an aqueous environment. This is significant as it impacts the biological endpoint of radiation damage to DNA and suggests future work in DNA. Work with DNA-polypeptides show clear evidence for electron transfer to DNA from the polypeptide which we believe is a radioprotective mechanism. Our work with ab initio molecular orbital theory has gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics involved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this year`s work to new, more accurate values for the electron affinities of the DNA bases, understanding of the relative stability of all possible sugar radicals formed by hydrogen abstraction on the deoxyribose group, hydration effects on, thiol radioprotectors, and an ongoing study of radical intermediates formed from initial DNA ion radicals. During this fiscal year five articles have been published, three are in press, two are submitted and several more are in preparation.

  1. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  2. Progress towards a FLUKA based simulation tool aimed at the evaluation of space radiation environments

    NASA Astrophysics Data System (ADS)

    Andersen, V.; Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fassò, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; Lee, K.; Ottolenghi, A.; Pelliccioni, M.; Pinsky, L. S.; Ranft, J.; Roesler, S.; Sala, P. R.; Wilson, T. L.

    2004-02-01

    Goal of the NASA funded FLEUR project is to develop a simulation tool to predict the impact of radiation environments, in particular to evaluate the effect of shielding in space applications. The heart of this tool is the FLUKA Monte Carlo transport code which is traditionally used in related areas of research such as radio-protection and dosimetry, cosmic ray physics and modeling of biological effects of radiation on DNA (in connection with further external micro codes). An important aspect in this context are heavy ion nuclear interactions which at this point have been implemented in FLUKA for high and medium energies while work is proceeding to cover the low energy range. Further information is available at http://www.fluka.org and http://fleur.cern.ch

  3. Response of a forest ecotone to ionizing radiation. Progress report, October 15, 1979-October 14, 1980

    SciTech Connect

    Murphy, P G; Sharitz, R R

    1980-07-01

    Compositional and structural characteristics of three forest types, including aspen dominated, maple-birch dominated, and an intervening ecotone, were studied before and after irradiation in northern Wisconsin. Irradiation occurred during the summer of 1972. By the summer of 1973 the density of viable tree seedlings at 10 m from the radiation source was substantially reduced in all three areas relative to the preirradiation densities of 1971. As of the summer of 1979, establishment of tree seedlings continued to be inhibited by the vigorous development of ground vegetation. In most respects, the ecotone has shown properties and responses to radiation intermediate to those observed in the aspen and maple-birch areas. The rate and compositional characteristics of succession in the ecotone relative to aspen and maple-birch forest types is presently under study.

  4. The AE9/AP9/SPM Next Generation Radiation Specification Models - Progress Report

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Johnston, William Robert; Huston, Stuart; Guild, Timothy

    2016-07-01

    The AE9/AP9/SPM model has now been released to the global satellite design community, with a recent update to version 1.2. We are working on incorporating new data sources, such as AZUR and NASA's Van Allen Probes, while also addressing critiques raised by the science and engineering communities. In particular, we are investigating discrepancies for protons at low altitude and electrons at geostationary altitudes. Finally, we are scoping out architectural improvements to enable features requested by industry: improved stitching between the plasma and radiation models, local time dependence in the plasma model, longitude dependence in the electron radiation model, and solar cycle variation in the low altitude protons. We provide a brief update on the status of the model, discrepancy investigations, and plans for the future.

  5. Genetic variation in resistance to ionizing radiation. Technical progress report, January--December 1991

    SciTech Connect

    Ayala, F.J.

    1991-06-24

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ``null`` (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ``null`` allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

  6. Stepwise Progress in Epidermal Growth Factor Receptor/Radiation Studies for Head and Neck Cancer

    SciTech Connect

    Harari, Paul M.

    2007-10-01

    The U.S. Food and Drug Administration approval of four new epidermal growth factor receptor (EGFR) inhibitors for cancer therapy (cetuximab, panitumumab, gefitinib, and erlotinib) over the last 3 years is a remarkable milestone in oncology. Indeed, molecular inhibition of EGFR signaling represents one of the most promising current arenas for the development of molecular-targeted cancer therapies. Epidermal growth factor receptor inhibitors from both the monoclonal antibody and tyrosine kinase inhibitor class have demonstrated clinical activity in the treatment of a broad spectrum of common human malignancies. For the discipline of radiation oncology, the 2006 report of a phase III trial demonstrating a survival advantage for advanced head and neck cancer patients with the addition of weekly cetuximab during a 7-week course of radiation is particularly gratifying. Indeed, this is the first phase III trial to confirm a survival advantage with the addition of a molecular-targeted agent to radiation. Furthermore, this result seems to have been achieved with only a modest increment in overall treatment toxicity and with very high compliance to the prescribed treatment regimen. Nevertheless, much remains to be learned regarding the rational integration of EGFR inhibitors into cancer treatment regimens, as well as methods to optimize the selection of patients most likely to benefit from EGFR inhibitor strategies.

  7. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals. Progress report

    SciTech Connect

    Strauss, B.

    1992-07-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules the affect base substitution but also the mechanisms(s) by which additions and deletions are produced, since deletions are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA. Questions addressed include: 1. What types of base substitution mutations are induced by ionizing radiation and oxidizing radicals? 2. Are deletions and/or additions produced? 3. Is there a difference in type of mutation produced dependent on the polymerase used? Do mammalian polymerase plus their accessory factors result in different patterns of mutation. 4. What is the mechanism by which base damage is converted to mutation. Our proposal was based on utilization of an in vitro system in which mutations generated by the in vitro copying of a reporter gene sequence could be readily scored.

  8. The RAVAN CubeSat mission: Progress toward a new measurement of Earth outgoing radiation

    NASA Astrophysics Data System (ADS)

    Swartz, B. H.; Dyrud, L. P.; Lorentz, S. R.; Wu, D. L.; Wiscombe, W. J.; Papadakis, S.; Huang, P. M.; Smith, A.; Deglau, D.

    2014-12-01

    The Earth radiation imbalance (ERI) is the single most important quantity for predicting the course of climate change over the next century. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat mission, funded by NASA's Earth Science Technology Office, will demonstrate an affordable, accurate radiometer that directly measures Earth-leaving fluxes of total and solar-reflected radiation. The objective of RAVAN is to demonstrate that a compact spaceborne radiometer that is absolutely accurate to NIST-traceable standards can be built for low cost. The key technologies that enable a radiometer with all these attributes are: a vertically aligned carbon nanotube (VACNT) absorber and a gallium fixed-point blackbody as a built-in calibration source. VACNTs are exceedingly black and spectrally flat, making them ideal radiometer absorbers. We present results from the fabrication and calibration of the RAVAN radiometer and plans for CubeSat hosting and launch. RAVAN will help enable the development of a constellation Earth radiation budget mission that can provide the measurements needed for superior predictions of future climate change.

  9. Progress towards a more predictive model for hohlraum radiation drive and symmetry

    NASA Astrophysics Data System (ADS)

    Jones, Ogden

    2016-10-01

    The high flux model (HFM) was first developed to match emission levels observed from Au spheres illuminated symmetrically at the UR-LLE OMEGA laser. It utilizes a modern non-LTE atomic physics model and an electron thermal flux limiter of 0.15 or a non-local electron transport model. Shortly thereafter, the HFM was also found to better match the radiation drive observed through the laser entrance hole of laser-heated vacuum hohlraums on the NIF. Subsequent capsule implosion experiments driven by hohlraums filled with 1-1.6 mg/cc of He, having case-to-capsule ratios of 2.6, and pulse lengths 15-20 ns have been characterized by relatively large amounts of laser backscatter losses (up to 18% of the input laser energy). They have also utilized cross beam energy transfer (CBET) to transfer power to the lasers depositing energy near the hohlraum waist. When the HFM is applied to these experiments, the hohlraum x-ray drive is over-predicted by 20-30% during peak laser power, and the drive symmetry cannot be matched without making ad hoc corrections. More recent experiments using hohlraum fills from 0-0.6 mg/cc He, case-to-capsule ratios 3-4, and pulse lengths 6-10 ns have little or no CBET or backscatter and are in better agreement with calculations using the HFM, although discrepancies remain. Uncertainties remaining in the computational models of emissivity, laser absorption, heat transport, etc. used in our hydrodynamic codes can significantly affect predictions. In this work we test various physically-plausible adjustments or alternatives to these models in order to find a more predictive model for radiation drive in the regime with little or no backscatter or CBET. We utilize measurements of the radiation drive, shape and trajectory of the imploding shell, shape of the stagnated hot spot, and bang time in capsule implosions and spectroscopic measurements of the hohlraum plasma conditions to compare against high resolution hydrodynamic calculations using the various

  10. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    SciTech Connect

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  11. Improved Cloud-Radiation Parameterization for GCMs through the ARM Program. Final Progress Report

    SciTech Connect

    Kiehl, J. T.

    2004-03-31

    Climate sensitivity is an important determinant of climate change. In terms of global climate response, climate sensitivity determines the magnitude of climate change due to radiative forcings by greenhouse gases. The IPCC reports have pointed out that much of the uncertainty in climate projections can be attributed to the disparity in modeled climate sensitivity. Thus, it is imperative to understand the magnitude of climate sensitivity for a given model, and an understanding of what role physical processes play in determining the models particular climate sensitivity.

  12. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  13. An improved method for producing radiation hybrids applied to human chromosome 19. Technical progress report

    SciTech Connect

    Jackson, C.L.; Mark, H.F.L.

    1992-11-01

    Using radiation hybrids from a monochromosomal microcell hybrid containing human chromosome 19 as its only human component (PK87-19), we have initiated analysis of a panel of hybrids for markers in known locations on human chromosome 19. Also begun was a fluorescent in situ hybridization analysis of the hybrid cell lines using biotinylated total human DNA as a hybridization probe to metaphase chromosomes prepared from the hybrids cell lines. We are analyzing our panel of 94 hybrids for additional markers obtained from the literature, or the genome data base as well as to complete the analysis of any hybrids not yet scored for the markers iii the table. The hybrid panel has been tested for apolipoprotein C{sub 2} for the radiation hybrids for D19Sl77 (mfd 120), D19Sl78 (mfd 139) and for HRC (histidine rich calcium binding protein). In addition we have also analyzed for the presence of slow troponin 1 (TNNT1) and GPI (glucose phosphate isomerase).

  14. The investigation of electron-ion radiative and dielectronic recombination in high-temperature plasmas. Progress report for 1992--1993

    SciTech Connect

    Jacobs, V.L.

    1993-12-31

    This paper describes progress covered in the following six areas: (1) unified description of radiative and dielectronic recombination; (2) calculations of specific dielectronic satellite transitions; (3) Modeling of K{sub {alpha}} dielectronic satellite spectra; (4) effects of electron collisions and electric fields; (5) density-sensitive dielectronic satellite lines; and (6) polarization of atomic radiative emission in crossed electric and magnetic fields. Also discussed are proposed investigations and coordination with current tokamak observations.

  15. The oncogenic action of ionizing radiation on rat skin. Final progress report, May 1, 1990--April 30, 1992

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1992-12-31

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/{mu}), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of {sup 14}C-thymidine. The return of these cells to S-phase a second time was detected by a second label ({sup 3}H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The {sup 14}C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with {sup 14}C increased after 42 hr and remained relatively constant thereafter.

  16. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  17. Progress on Updating the 1961-1990 National Solar Radiation Database

    NASA Technical Reports Server (NTRS)

    Renne, D.; Wilcox, S.; Marion, B.; George, R.; Myers, D.

    2003-01-01

    The 1961-1990 National Solar Radiation Data Base (NSRDB) provides a 30-year climate summary and solar characterization of 239 locations throughout the United States. Over the past several years, the National Renewable Energy Laboratory (NREL) has received numerous inquiries from a range of constituents as to whether an update of the database to include the 1990s will be developed. However, there are formidable challenges to creating an update of the serially complete station-specific database for the 1971-2000 period. During the 1990s, the National Weather Service changed its observational procedures from a human-based to an automated system, resulting in the loss of important input variables to the model used to complete the 1961-1990 NSRDB. As a result, alternative techniques are required for an update that covers the 1990s. This paper examines several alternative approaches for creating this update and describes preliminary NREL plans for implementing the update.

  18. Significance Analysis of Prognostic Signatures

    PubMed Central

    Beck, Andrew H.; Knoblauch, Nicholas W.; Hefti, Marco M.; Kaplan, Jennifer; Schnitt, Stuart J.; Culhane, Aedin C.; Schroeder, Markus S.; Risch, Thomas; Quackenbush, John; Haibe-Kains, Benjamin

    2013-01-01

    A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that “random” gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated

  19. Progressive alterations of central nervous system structure and function are caused by charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, G. A.; Cns Nscor Team

    A new NASA-sponsored program project (NSCOR) has been organized to conduct the first comprehensive investigation of the response of a mammalian brain structure (mouse hippocampus) to charged-particle radiation. The NSCOR collaboration has three main goals. The first goal is to quantify the time- and dose-dependent changes in cellular composition and architecture. By using stereology on preserved brains, subsets of cells (neurons, glia, endothelia and stem cells) will be quantified out to 2 years after irradiation with accelerated protons and iron ions. To further characterize changes in vasculature architecture a polymer infusion technique will be used to produce a three-dimensional vasculature cast that then will be mapped by x-ray tomography to determine topological changes, and microscopic infarcts associated with amyloid protein deposits. The 2nd goal is to quantify hippocampal function(s). The primary measurement of function will be extracellular electrical recordings from hippocampal ``brain slices'' that reflect underlying functions such as connectivity, action potential generation & conduction, and neurotransmitter formation, secretion, and uptake. Individual nerve membrane properties will be assessed by ``patch clamp'' recordings. Two non-invasive methods will evaluate brain function and the evolution of changes with time. Electroencephalograms will map macroscopic spontaneous electrical activity while two state-of-the-art MRI magnetization sequences will visualize and quantify local oxygen utilization and white matter fiber tracts structural integrity. To quantify the brains' overall performance under stress, animals will receive a systemic shock mediated by the immune system in the form of a reaction to lipopolysaccharide. A second strategy will employ the APP23 transgenic mouse that develops the pathological changes associated with Alzheimer's disease. Measurements of irradiated mice will determine whether radiation exposure affects the latency and

  20. Radiation damage and repair in cells and cell components. Progress report, 1980-1981

    SciTech Connect

    Not Available

    1981-01-01

    One aim has been to see whether, in E.coli, the various phenomena which were ascribed to the induction of the recA gene produce (p-recA) are really manifestations of one process. It was concluded that this is true for septum inhibition, Weigle-reactivation, induced inhibition of post radiation DNA degradation, and with the additional concept of a premutational lesion, for uv mutagenesis. lambda prophage induction may perhaps be brought into line with p-recA induction with the consideration of the additional secondary aspects of (a) activation of p-recA to make it enzymatically active and (b) the need to have the concentration of activated p-recA high enough to keep up with the rate of production of lambda-repressors. Revertants seem to be in more than one class and two of these can not easily be explained by the idea that p-recA contains an error-prone repair enzyme that makes errors at mutagenic lesions.

  1. Interaction of radiation with matter. Research progress report, November 1, 1979-October 31, 1980

    SciTech Connect

    1980-09-01

    The mechanisms of dissipation of energy in organic and inorganic materials, and the application of the technique developed to a study of selected problems of environmental concern in the production of energy from fossil fuels were studied. In the Inorganic Phase of the work the research involves (1) measurements of cross-sections for K and L-shell ionization processes for heavy projectiles in the low velocity region, (2) experimental tests of target dependence of the effective-charge theory for light projectiles, (3) theoretical studies on the energy loss of swift particles in plasmas over a broad density and temperature range. The organic phase of the work falls into a series of closely related areas, all derived from a study of the interaction of radiation with matter. (1) New techniques for the study of small particulates (approx. 1..mu..); composition, mass (to +-1 pg) and charge (+-1 electron) can be determined. (2) External photoelectric effects as a tool in arriving at the electronic structure of organic crystals. (3) The interaction of water with charge carriers in organic crystals, producing reactive chemical species, such as Oh and HSO/sub 3/ radicals. (4) Mechanisms of interaction of air-pollutant polycyclic aromatic carcinogens with DNA and the study of the conformation of the adducts.

  2. Human genetic marker for resistance to radiations and chemicals. 1997 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1997-01-01

    'The specific aims listed in the original application will essentially be pursued as indicated. The major goal of the grant is to characterize a human homologue of the fission yeast Schizosaccharomyces pombe rad9 checkpoint control, radioresistance and chemoresistance gene, which is called HRAD9. The purpose is to gain information about the gene, including its structure and function, such that it can potentially be developed as a human genetic marker indicative of hypersensitivity to the deleterious effects associated with exposure to radiations or certain chemicals. The specific aims are divided into two major sections. The first section includes experiments designed to characterize the HRAD9 gene at the molecular level. Specifically, the genomic version of the gene will be isolated and its DNA sequence determined, in vitro mutagenesis will be used to assess structure/function relationships, and expression in cells and tissues will be examined. The second major set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer. For this aim, human HRAD9 mutants will be constructed and characterized. In addition, the status of HRAD9 in cancer cells and tissues will be assessed.'

  3. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1992--June 30, 1993

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1993-06-30

    This project is concerned with the mechanisms by which polynuclear aromatic (PNA) compounds on the one hand, and ionizing radiation on the other, cause damage to DNA. PNA compounds constitute an important class of environmental pollutants derived from energy-related sources which, upon metabolic activation to diolepoxide derivatives, produce bulky PNA-DNA lesions interfere with the normal DNA replication and transcription processes, and give rise to mutations and the initiation of tumors. Chiral and other stereochemical effects play a key role in determining the biological effects of a given PNA diol epoxide and the potentially mutagenic lesions which are formed. New and efficient methods for synthesizing stereochemically pure and precisely positioned PNA diol epoxide-DNA lesions in small DNA fragments are reported here. We have elucidated the structures of three stereoisomeric benzo[a]pyrene diol epoxide-DNA adducts. How these adducts affect on DNA polymerase fidelity, transcription, and DNA repair are currently being investigated with respect to detailed structure-biological activity correlations. Spectroscopic techniques such as circular dichroism, fluorescence, and photoionization play an important role in the characterizations of the PNA adducts. A new method was developed for measuring the lifetimes as well as the energies of picosecond duration electronically excited states. Using this technique, it is proposed that short-lived (15 ps) charge-transfer (CT) states in the PNA compound tetracene are activated by a 20 ps laser pulse; an unusual external photoemission echo do to the recombination of CT states is observed 85 ps after the pulse.

  4. Progressive cone beam CT dose control in image-guided radiation therapy

    PubMed Central

    Yan, Hao; Zhen, Xin; Cerviño, Laura; Jiang, Steve B.; Jia, Xun

    2013-01-01

    Purpose: Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. Methods: A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction. The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. Results: In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. Conclusions: PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality. PMID:23718579

  5. Effects of Concurrent Topotecan and Radiation on 6-Month Progression-Free Survival in the Primary Treatment of Glioblastoma Multiforme

    SciTech Connect

    Grabenbauer, Gerhard G. Gerber, Klaus-Dieter; Ganslandt, Oliver; Richter, Andrea M.S.; Klautke, Gunther; Birkmann, Josef; Meyer, Martin

    2009-09-01

    Purpose: To report a prospective, randomized, Phase II trial of radiotherapy with and without topotecan for the treatment of glioblastoma. Patients and Methods: Inclusion criteria were histology of glioblastoma, age <60 years, and Eastern Cooperative Oncology Group status 0-2. Patients were stratified according to recursive partitioning analysis class, center, and enzyme-inducing antiepileptic medication. Magnetic resonance imaging scans, neurologic examinations, and quality of life assessments were done every 3 months. The primary endpoint was the progression-free survival rate at 6 months (6-m-PFS). This trial was designed as an exploratory, randomized, Phase II trial with an accrual of 140 patients to detect a difference of 15-20% in 6-m-PFS. An interim analysis was scheduled after 60 patients. Median follow-up was 14 months (range, 1-50 months). Results: The 6-m-PFS was 56% and 40% for patients with and without topotecan, respectively. This benefit disappeared within 2 months. Mean (range) progression-free survival time was 8 (5-10.9) months and 6.7 (4-9.5) months for patients with and without topotecan, respectively. The corresponding 2-year-overall survival rates were 28% vs. 22% (nonsignificant difference), and mean (range) survival time was 20.7 (13.9-27.5) months vs. 18.9 (13.5-24.4) months (nonsignificant difference). Conclusions: A slight but measurable increase of 16% was detected in 6-m-PFS for patients receiving topotecan with radiation as compared with patients having radiotherapy alone. These data might support further investigations into topotecan for the treatment of glioblastoma.

  6. High order statistical signatures from source-driven measurements of subcritical fissile systems

    NASA Astrophysics Data System (ADS)

    Mattingly, John Kelly

    1998-11-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements.

  7. The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression

    PubMed Central

    Hughes, Simon; Yoshimoto, Maisa; Beheshti, Ben; Houlston, Richard S; Squire, Jeremy A; Evans, Andrew

    2006-01-01

    Background Prostate cancer (CaP) is a disease with multifactorial etiology that includes both genetic and environmental components. The knowledge of the genetic basis of CaP has increased over the past years, mainly in the pathways that underlie tumourigenesis, progression and drug resistance. The vast majority of cases of CaP are adenocarcinomas that likely develop through a pre-malignant lesion and high-grade prostatic intraepithelial neoplasia (HPIN). Histologically, CaP is a heterogeneous disease consisting of multiple, discrete foci of invasive carcinoma and HPIN that are commonly interspersed with benign glands and stroma. This admixture with benign tissue can complicate genomic analyses in CaP. Specifically, when DNA is bulk-extracted the genetic information obtained represents an average for all of the cells within the sample. Results To minimize this problem, we obtained DNA from individual foci of HPIN and CaP by laser capture microdissection (LCM). The small quantities of DNA thus obtained were then amplified by means of multiple-displacement amplification (MDA), for use in genomic DNA array comparative genomic hybridisation (gaCGH). Recurrent chromosome copy number abnormalities (CNAs) were observed in both HPIN and CaP. In HPIN, chromosomal imbalances involving chromosome 8 where common, whilst in CaP additional chromosomal changes involving chromosomes 6, 10, 13 and 16 where also frequently observed. Conclusion An overall increase in chromosomal changes was seen in CaP compared to HPIN, suggesting a universal breakdown in chromosomal stability. The accumulation of CNAs, which occurs during this process is non-random and may indicate chromosomal regions important in tumourigenesis. It is therefore likely that the alterations in copy number are part of a programmed cycle of events that promote tumour development, progression and survival. The combination of LCM, MDA and gaCGH is ideally suited for the identification of CNAs from small cell clusters and

  8. Can specific transcriptional regulators assemble a universal cancer signature?

    NASA Astrophysics Data System (ADS)

    Roy, Janine; Isik, Zerrin; Pilarsky, Christian; Schroeder, Michael

    2013-10-01

    Recently, there is a lot of interest in using biomarker signatures derived from gene expression data to predict cancer progression. We assembled signatures of 25 published datasets covering 13 types of cancers. How do these signatures compare with each other? On one hand signatures answering the same biological question should overlap, whereas signatures predicting different cancer types should differ. On the other hand, there could also be a Universal Cancer Signature that is predictive independently of the cancer type. Initially, we generate signatures for all datasets using classical approaches such as t-test and fold change and then, we explore signatures resulting from a network-based method, that applies the random surfer model of Google's PageRank algorithm. We show that the signatures as published by the authors and the signatures generated with classical methods do not overlap - not even for the same cancer type - whereas the network-based signatures strongly overlap. Selecting 10 out of 37 universal cancer genes gives the optimal prediction for all cancers thus taking a first step towards a Universal Cancer Signature. We furthermore analyze and discuss the involved genes in terms of the Hallmarks of cancer and in particular single out SP1, JUN/FOS and NFKB1 and examine their specific role in cancer progression.

  9. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    PubMed

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p < 0.05). The percentage of MW-exposed cells in G1 phase was significantly higher than the percentage of control cells in G1 phase. MW radiation caused cell cycle arrest in G1 phase. These results showed that 2.1 GHz W-CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression.

  10. Determination of local radiative properties in coal-fired flames. Technical progress report, September 15, 1987--September 15, 1988

    SciTech Connect

    Menguec, M.P.; Agarwal, B.; Bush, M.; Dsa, D.; Subramaniam, S.

    1988-12-31

    Recently, an extensive, in-depth review of the modeling of radiation heat transfer in combustion chambers has been prepared (Viskanta and Menguc, 1987); therefore, there is no need to repeat that material here. It is already known that the most important missing link in the prediction of radiation heat transfer in combustion systems is the lack of detailed information about the optical and physical properties of combustion products (Viskanta and Menguc, 1987). The purpose of this research is to determine the radiative properties of coal particles. Considering the uncertainty in the fundamental optical and physical properties of coal particles, such as complex index of refraction, size, size distribution, and shape, it is difficult to predict the radiative properties of particles using available analytical methods, such as Lorenz-Mie theory. For a better understanding of radiation and radiation/combustion or radiation/turbulence interactions, it is preferable to determine the radiative properties in situ.

  11. Polarization signatures of airborne particulates

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  12. Searching the inclusive ℓγE̸T+b-quark signature for radiative top quark decay and non-standard-model processes

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Canto, A.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Frisch, H. J.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-07-01

    We compare the inclusive production of events containing a lepton (ℓ), a photon (γ), significant transverse momentum imbalance (E̸T), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at s=1.96TeV corresponding to 1.9fb-1 of integrated luminosity taken with the CDF detector. We find 28 ℓγbE̸T events versus an expectation of 31.0-3.5+4.1 events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, t tmacr +γ. In the data we observe 16 t tmacr γ candidate events versus an expectation from SM sources of 11.2-2.1+2.3. Assuming the difference between the observed number and the predicted non-top-quark total of 6.8-2.0+2.2 is due to SM top-quark production, we estimate the t tmacr γ cross section to be 0.15±0.08pb.

  13. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-09-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  14. The Influence of Radiation in Altering the Incidence of Mutations in Drosophila. Progress Report on the Past Twelve Months and Renewal Proposal for the Period September 15, 1960 to September 14, 1961

    DOE R&D Accomplishments Database

    Muller, H. J.

    1960-05-31

    Progress is reported in studies on the effects of radiation on the incidence of mutations in Drosophila. Results are summarized and the findings are interpreted. A list is included of papers published during the period. (C.H.)

  15. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  16. Progress Toward Electrostatic Radiation Shielding of Interplanetary Spacecraft: Strategies, Concepts and Technical Challenges of Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    The radiation problem is a serious obstacle to solar system exploration. Electrostatic shielding was previously dismissed as unworkable. This was based on the false assumption that radial symmetry is needed to provide isotropic protection. KSC recently demonstrated the feasibility of asymmetric, multipole electrostatic shielding. Combined with passive shielding it might solve the radiation problem

  17. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.

  18. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  19. Progress Report for Annex II--Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997

    SciTech Connect

    Al-Amoudi, Anmed; Alawaji, Saleh H.; Cornwall, Chris; Mahfoodh, Mohammed bin; Marion, Bill; Maxwell, Eugene L.; Wilcox, Stephen M.

    1999-08-20

    In 1987, the United States Department of Energy (DOE) and the King Abdulaziz City for Science and Technology (KACST) signed a five-year Agreement for Cooperation in the Field of Renewable Energy Research and Development (R and D), which has been extended to 2000. Tasks include: (1) upgrade solar radiation measurements in Saudi Arabia; (2) assemble a database of concurrent solar radiation, satellite (METEOSAT), and meteorological data; (3) adapt NREL models and other software for Saudi Arabia; (4) develop procedures, algorithms, and software to estimate solar irradiance; and (5) prepare a grid of solar radiation data for preparing maps and atlases and estimating solar radiation resources and solar energy system performances at locations in Saudi Arabia.

  20. [Development and recommendations in the area of ionizing and nonionizing radiations]. Progress report, 1 September 1991--30 April 1992

    SciTech Connect

    Not Available

    1992-09-01

    This report briefly describes seven publications produced in 1991--1992 under the auspices of the National Council on Radiation Protection and Measurements. In addition current status of additional publications in preparation are outlined.

  1. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET

    PubMed Central

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D.; Story, Michael D.

    2015-01-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RASV12 (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  2. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    PubMed

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  3. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1992

    SciTech Connect

    Rowley, J.D.

    1992-06-01

    This project seeks to defining the chromosome segments associated with radiation induced leukemogenesis (treatment-related acute myeloid leukemia, or t-AML). Towards these goals genetic analysis of human chromosomes 5 and 7 continues to investigate correlation of treatment with balanced and unbalanced chromosomal translocations. Progress is being made in cloning the breakpoints in balanced translocations in t-AML, that is to clone the t(9;11) and t(11;19) breakpoints, to clone the t(3;21)(q26;q22) breakpoints and to determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 11 figs. 3 figs.

  4. Studies of the repair of radiation-induced genetic damage in Drosophila. Annual progress report, February 1-July 1, 1983

    SciTech Connect

    Not Available

    1983-01-01

    Research progress is reported in the following areas: (1) characterization of a photo-repair deficient mutant in Drosophila; (2) the role of poly(ADPR)polymerase in Drosophila repair; and (3) service functions. (ACR)

  5. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-07-01

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  6. UV Signature Mutations †

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  7. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  8. Twin Signature Schemes, Revisited

    NASA Astrophysics Data System (ADS)

    Schäge, Sven

    In this paper, we revisit the twin signature scheme by Naccache, Pointcheval and Stern from CCS 2001 that is secure under the Strong RSA (SRSA) assumption and improve its efficiency in several ways. First, we present a new twin signature scheme that is based on the Strong Diffie-Hellman (SDH) assumption in bilinear groups and allows for very short signatures and key material. A big advantage of this scheme is that, in contrast to the original scheme, it does not require a computationally expensive function for mapping messages to primes. We prove this new scheme secure under adaptive chosen message attacks. Second, we present a modification that allows to significantly increase efficiency when signing long messages. This construction uses collision-resistant hash functions as its basis. As a result, our improvements make the signature length independent of the message size. Our construction deviates from the standard hash-and-sign approach in which the hash value of the message is signed in place of the message itself. We show that in the case of twin signatures, one can exploit the properties of the hash function as an integral part of the signature scheme. This improvement can be applied to both the SRSA based and SDH based twin signature scheme.

  9. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    SciTech Connect

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  10. Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy

    SciTech Connect

    Anscher, Mitchell S. . E-mail: anscher@radonc.duke.edu; Chen, Liguang; Rabbani, Zahid; Kang Song; Larrier, Nicole; Huang Hong; Samulski, Thaddeus V.; Dewhirst, Mark W.; Brizel, David M.; Folz, Rodney J.; Vujaskovic, Zeljko

    2005-05-01

    The ability to optimize treatments for cancer on the basis of relative risks for normal tissue injury has important implications in oncology, because higher doses of radiation might, in some diseases, improve both local control and survival. To achieve this goal, a thorough understanding of the molecular mechanisms responsible for radiation-induced toxicity will be essential. Recent research has demonstrated that ionizing radiation triggers a series of genetic and molecular events, which might lead to chronic persistent alterations in the microenvironment and an aberrant wound-healing response. Disrupted epithelial-stromal cell communication might also be important. With the application of a better understanding of fundamental biology to clinical practice, new approaches to treating and preventing normal tissue injury can focus on correcting these disturbed molecular processes.

  11. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  12. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals. Technical progress report, February 1, 1992--October 15, 1992

    SciTech Connect

    Strauss, B.S.

    1992-01-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules that affect base substitution, but also the mechanism(s) by which additions and deletions are produced, since detections are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA.

  13. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  14. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  15. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  16. Molecular signature in HCV-positive lymphomas.

    PubMed

    De Re, Valli; Caggiari, Laura; Garziera, Marica; De Zorzi, Mariangela; Repetto, Ombretta

    2012-01-01

    Hepatitis C virus (HCV) is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL). Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.

  17. Morphoproteomics and biomedical analytics confirm the mTORC2/Akt pathway as a resistance signature and activated ERK and STAT3 as concomitant prosurvival/antiapoptotic pathways in metastatic renal cell carcinoma (RCC) progressing on rapalogs: Pathogenesis and therapeutic options

    PubMed Central

    Brown, Robert E.; Buryanek, Jamie; Tammisetti, Varaha S.; McGuire, Mary F.; Csencsits-Smith, Keri

    2016-01-01

    Background It has been proposed that resistance to rapalog therapies in renal cell carcinoma (RCC) is due to adaptive switching from mammalian target of rapamycin complex 1 (mTORC1) to mTORC2. Objective To combine phosphoprotein staining and applied biomedical analytics to investigate resistance signatures in patients with metastatic RCC progressing on rapalog therapies. Design We applied morphoproteomic analysis to biopsy specimens from nine patients with metastatic RCC who continued to show clinical progression of their tumors while being treated with a rapalog. Results In patients who were on temsirolimus or everolimus at the time of biopsy, a moderate to strong expression of phosphorylated (p)-mTOR (Ser 2448) in the nuclear compartment with concomitant expression of p-Akt (Ser 473) confirmed the mTORC2 pathway. Concomitant moderate to strong nuclear expression of p-ERK 1/2 (Thr202/Tyr204) and p-STAT3 (Tyr705) was confirmed. Histopathologic changes of hypoxic-type coagulative necrosis in 5 cases as well as identification of insulin-like growth factor-1 receptor (IGF-1R) expression and histone methyltransferase EZH2 in all tumors studied suggested that hypoxia also contributed to the resistance signature. Biomedical analytics provided insight into therapeutic options that could target such adaptive and pathogenetic mechanisms. Conclusions Morphoproteomics and biomedical analytics confirm mTORC2/Akt as a resistance signature to rapalog therapy in metastatic RCC and demonstrate activation of the prosurvival ERK and STAT3 pathways and involvement of hypoxic pathways that contribute to pathogenesis of such adaptive resistance. These results highlight the need for a novel combinatorial therapeutic approach in metastatic RCC progressing on rapalogs. PMID:27223432

  18. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  19. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  20. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo. Comprehensive progress report

    SciTech Connect

    Little, J.B.

    1983-09-01

    Work has involved the following three areas: (1) an investigation of the mechanisms of radiation carcinogenesis by studying the events involved in the process of malignant transformation of mouse 10 T-1/2 cells; (2) an investigation of the effects of promoting agents on radiation-induced transformation in vitro; and (3) an investigation of the induction of transformation by internally emitting radionuclides incorporated into cellular DNA. The latter area has been extended to include studies of mutagenesis by these radionuclides in human lymphoblasts, and molecular measurements of DNA strand breaks. During the past year, research has focused on the first area, as well as on studies of the mutagenic effects of incorporated radionuclides.

  1. [Ionizing radiation-induced DNA damage and its repair in human cells]. Progress report, [April 1, 1993--February 28, 1994

    SciTech Connect

    Not Available

    1994-07-01

    The excision of radiation-induced lesions in DNA by a DNA repair enzyme complex, namely the UvrABC nuclease complex, has been investigated. Irradiated DNA was treated with the enzyme complex. DNA fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. The results showed that a number pyrimidine- and purine-derived lesions in DNA were excised by the UvrABC nuclease complex and that the enzyme complex does not act on radiation-induced DNA lesions as a glycosylase. This means that it does not excise individual base products, but it excises oligomers containing these lesions. A number of pyrimidine-derived lesions that were no substrates for other DNA repair enzymes investigated in our laboratory were substrates for the UvrABC nuclease complex.

  2. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  3. Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. 1997 annual progress report

    SciTech Connect

    Liu, G.

    1997-09-01

    'This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors approach to this challenge encompasses studies in electron microscopy, laser spectroscopy, and computational modeling and simulation. During this first year of the project, efforts have focused on a-decay induced microscopic damage in crystalline orthophosphates (YPO{sub 4} and LuPO{sub 4}) that contain the short-lived a-emitting isotope {sup 244}Cm (t{sub 1/2} = 18.1 y). The samples that they studied were synthesized in 1980 and the initial {sup 244}Cm concentration was {approximately}1%. Studying these materials is of importance to nuclear waste management because of the opportunity to gain insight into accumulated radiation damage and the influence of aging on such damage. These factors are critical to the long-term performance of actual waste forms [1]. Lanthanide orthophosphates, including LuPO{sub 4} and YPO{sub 4}, have been suggested as waste forms for high level nuclear waste [2] and potential hosts for excess weapons plutonium [3,4]. The work is providing insight into the characteristics of these previously known radiation-resistant materials. They have observed loss of crystallinity (partial amorphization) as a direct consequence of prolonged exposure to intense alpha radiolysis in these materials. More importantly, the observation of microscopic cavities in these aged materials provides evidence of significant chemical decomposition that may be difficult to detect in the earlier stages of radiation damage. The preliminary results show that, in characterizing crystalline compounds as high level nuclear waste forms, chemical decomposition effects may be more important than lattice amorphization which has been the focus of many previous studies. More extensive studies, including in-situ analysis of the dynamics of thermal annealing of self-radiation induced amorphization and cavity formation, will be conducted on these aged {sup 244}Cm

  4. The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves.

    PubMed

    Mitri, F G; Fellah, Z E A

    2008-08-01

    Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.

  5. Measuring radiation damage dynamics by pulsed ion beam irradiation. 2015 Annual Progress Report for DOE/NE/NEET

    SciTech Connect

    Kucheyev, S. O.

    2016-03-07

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation processes in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 2, this project had the following two major milestones: (i) measurement of the temperature dependence of defect dynamics in SiC and (ii) the evaluation of the robustness of the pulsed beam method from studies of the defect generation rate. As we describe below, both of these milestones have been met.

  6. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  7. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    SciTech Connect

    Michalsky, J.; Harrison, L.

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  8. Biological dosimeter for cellular damage and repair by ionizing radiation. Final technical progress report, May 1, 1993--April 30, 1996

    SciTech Connect

    Cress, A.E.

    1998-06-30

    The authors have investigated the alteration of chromatin domains in Human T and B cells after ionizing radiation using three DNA specific dyes, Feulgen, Hoechst and 7-amino actinomycin D. Characterization and differentiation of T and B cells was accomplished using only 4 of a possible 32 image features with the CAS and Quaritex QX7 Digital Image Systems. Human B and T cells were irradiated with 1, 5 and 10 Gy and analyzed during a 1.5 hour recovery period. The chosen features detect a dose dependent change in DNA domains which can be observed as early as 1.5 hours after a 1Gv exposure. The results suggest that the ability of DNA specific dyes to stain chromatin can be used as an early sensitive indicator of DNA damage. The observed alteration of chromatin staining suggests that chromatin structure does observably change in a significant manner during a DNA repair interval. Since these alteration can be detected with DNA specific dyes that stain both AT rich, GC rich or total DNA, these data suggest that a global alteration of the chromatin is occurring after exposure to ionizing radiation.

  9. Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Mulvihill, M.A.; Nemeth, T.J.

    1989-01-01

    Localized exposure of the neonatal rat brain to x rays produces neuronal hypoplasia specific to the granule cell layer of the hippocampal dentate gyrus. This brain damage causes locomotor hyperactivity, slowed acquisition of passive avoidance tasks and long bouts of spontaneous turning (without reversals) in a bowl apparatus. The authors report here how these behavioral deficits change as a function of subject aging and behavioral test replications. Portions of the neonatal rat cerebral hemispheres were X-irradiated in order to selectively damage the granule cells of the dentate gyrus. Rats between the ages of 71-462 days were tested 3 separate times on each of the following 3 behavioral tests: (1) spontaneous locomotion, (2) passive avoidance acquisition, and (3) spontaneous circling in a large plastic hemisphere. Rats with radiation-induced damage to the fascia dentata exhibited long bouts of slow turns without reversals. Once they began, irradiated subjects perseverated in turning to an extent significantly greater than sham-irradiated control subjects. The hyperactivity of the irradiated animals decreased significantly as they matured. These data suggest that radiation-induced damage to the fascia dentata produces task-dependent behavioral deficits that change as a function of subject age and/or behavioral testing.

  10. Radiation-dose estimates and hazard evaluations for inhaled airborne radionuclides. Annual progress report, July 1981-June 1982

    SciTech Connect

    Mewhinney, J.A.

    1983-06-01

    The objective was to conduct confirmatory research on aerosol characteristics and the resulting radiation dose distribution in animals following inhalation and to provide prediction of health consequences in humans due to airborne radioactivity which might be released in normal operations or under accident conditions during production of nuclear fuel composed of mixed oxides of U and Pu. Four research reports summarize the results of specific areas of research. The first paper details development of a method for determination of specific surface area of small samples of mixed oxide or pure PuO/sub 2/ particles. The second paper details the extension of the biomathematical model previously used to describe retention, distribution and excretion of Pu from these mixed oxide aerosols to include a description of Am and U components of these aerosols. The third paper summarizes the biological responses observed in radiation dose pattern studies in which dogs, monkeys and rate received inhalation exposures to either 750/sup 0/C heat treated UO/sub 2/ + PuO/sub 2/, 1750/sup 0/C heat-treated (U,Pu)O/sub 2/ or 850/sup 0/C heat-treated pure PuO/sub 2/. The fourth paper described dose-response studies in which rats were exposed to (U,Pu)O/sub 2/ or pure PuO/sub 2/. This paper updates earlier reports and summarizes the status of animals through approximately 650 days after inhalation.

  11. Regulation of nucleic acid and protein synthesis: a background study related to the biological effects of radiation. Progress report

    SciTech Connect

    Zamecnik, P.

    1984-01-01

    Progress is reported in the following areas in defining the varied roles of diadenosine 5', 5'''-P/sup 1/, P/sup 4/-tetraphosphate (Ap/sub 4/A) in metabolic events within the living cell: (1) Ap/sub 4/A association with a subunit of DNA polymerase ..cap alpha..; (2) studies on the unusual ordered structure of Ap/sub 4/A and of related bisnucleoside oligophosphates; (3) the utilization of technetium labeled Ap/sub 4/A as a radionuclide diagnostic reagent; and (4) the role of Ap/sub 4/A in the blood clotting mechanism. (ACR)

  12. Factor models for cancer signatures

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zura; Yu, Willie

    2016-11-01

    We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an "overall" mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.

  13. Current signature sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  14. Current Signature Sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Mario (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  15. Effects of orbit progression on the radiation exposures from solar proton fluxes in low Earth orbit under geomagnetic storm conditions.

    PubMed

    Nealy, J E; Wilson, J W; Shea, M A; Smart, D F

    1996-01-01

    The present study examines the effects of orbit progression on the exposures within a Space Station Freedom module in a 51.6-degree inclined orbit at 450 km. The storm evolution is modeled after the November 1960 event, and the solar proton flux evolution is taken from the August 1972 solar proton event. The effects of a strong magnetic shock, such as was observed during the October 1989 event, is also modeled. The statistics on hourly average storm fields for the last forty years reveal that the largest geomagnetic storms approach a Dst value of -500 nanotesla at the storm peak. Similarly, one of the largest satellite-measured proton flux (> 10 MeV) for space exposures is the event of August 1972. The effects of orbit progression (advance of the line of nodes) is examined for the above conditions to study the variation of exposures under differing times of occurrence of the solar proton peak intensity, attainment of geomagnetic storm maximum, and the location of the line of nodes of the last geomagnetically protected orbit. The impact of the inherent inhomogeneity of the space station module is examined as a limiting factor on exposure with regard to the need of additional parasitic shielding.

  16. Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation. Progress report, June 1, 1993--September 30, 1994

    SciTech Connect

    Edington, C.W.

    1994-11-01

    In the past sixteen months, research in all areas at RERF has continued and important progress has been made in our understanding of the late somatic and genetic effects resulting from exposure of this human population to radiation from the atomic bombs. Evidence of this productivity is emphasized by the fact that 66 papers have been published in the scientific literature over the past one and one-half years. In addition, a number of others are in press. The continued follow-up of the various RERF study cohorts is of considerable importance because greater than 50 percent of the survivors in the Life Span Study (LSS) cohort are still alive, and over 80 percent of those alive were under the age of 30 at the time of the bomb. Since evidence obtained to date indicates that individuals exposed at a young age are more sensitive to radiation than those exposed at older ages, it is important that surveillance of the RERF population continue to ascertain the late health effects that will occur in the more sensitive segment of the exposed population which is just now reaching the cancer-prone age.

  17. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines.

    PubMed

    Kaushik, Neha; Kim, Min-Jung; Kim, Rae-Kwon; Kumar Kaushik, Nagendra; Seong, Ki Moon; Nam, Seon-Young; Lee, Su-Jae

    2017-02-27

    Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44(+)/CD24(-) population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases.

  18. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines

    PubMed Central

    Kaushik, Neha; Kim, Min-Jung; Kim, Rae-Kwon; Kumar Kaushik, Nagendra; Seong, Ki Moon; Nam, Seon-Young; Lee, Su-Jae

    2017-01-01

    Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44+/CD24− population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases. PMID:28240233

  19. Positive immunohistochemical staining of gammaH2AX is associated with tumor progression in gastric cancers from radiation-exposed patients.

    PubMed

    Sentani, Kazuhiro; Oue, Naohide; Sakamoto, Naoya; Nishisaka, Takashi; Fukuhara, Toshiyuki; Matsuura, Hiroo; Yasui, Wataru

    2008-11-01

    To elucidate the mechanism of radiation-induced cancers, molecular analysis of cancers in atomic bomb (A-bomb) exposure is important. DNA double-strand breaks (DSBs) are thought to be caused by the deleterious effects of ionizing radiation, and gammaH2AX (serine 139 phosphorylated form of histone H2AX) is reported to be a significant marker for DSBs. In the present study, we performed immunohistochemical analysis of gammaH2AX in gastric cancers (GCs) from 66 exposed and 47 non-exposed patients who developed GC after the bombing. Of the 47 GCs from non-exposed patients, 6 (13%) cases showed nuclear positive staining for gammaH2AX, whereas of the 66 GCs from exposed patients, 20 (30%) cases were positive (P=0.0405). However, among stage I GC, there was no significant difference in gammaH2AX expression frequency between exposed patients and non-exposed patients. Among exposed patients, stage II-IV cases were more frequently positive for gammaH2AX than stage I cases (P=0.0197). Among GCs from non-exposed patients, gammaH2AX staining showed no significant association with Lauren's classification, depth of invasion, lymph node metastasis or TNM stage. These results suggest that the characteristics of tumor cells differ between GCs from exposed and non-exposed patients. DSBs may be involved in progression of GC in exposed patients.

  20. Magnetic resonance and optical spectroscopic studies of radiation produced radicals: Progress report, December 1, 1985-November 30, 1988

    SciTech Connect

    Kispert, L.D.

    1988-05-01

    The role of a host lattice of carotenoids were studied in the formation of radicals and excited singlet and triplet states that are relevant to photosynthesis. Particular emphasis is being placed on determining what is special about carotenoids that natural photosynthetic systems require them as antennae as well as for protection. The host matrix was manipulated so as to understand the carotenoid function of protection, quenching, energy transfer and antenna and also the structure of carotenoid cations. To characterize their properties, we have carried out EPR, optical, molecular orbital and electrochemical studies of carotenoid cations produced chemically, electrochemically, radiolytically (x-ray irradiated freon matrices) and photolytically (solution photolysis by excimer radiation) as a function of the host matrix. 42 refs.

  1. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  2. Genetic engineering of a radiation-resistant bacterium for biodegradation of ixed wastes. 1998 annual progress report

    SciTech Connect

    Lidstrom, M.E.

    1998-06-01

    'Because of their tolerance to very high levels of ionizing radiation, members of the genus Deinococcus have received considerable attention over the past years. The type species of the genus, Deinococcus radiodurans, has been studied extensively in several labs. Although researchers are only beginning to understand the mechanisms by which this Gram-positive bacterium is able to repair massive DNA damage after radiation dosages as high as 5 Mrad, it has become evident that its recombination machinery has several unique characteristics (1--4). The aim of the present studies is to engineer D. radiodurans into a detoxifier for bioremediation of complex waste mixtures, containing heavy metals, halo-organics and radionuclides, making use of its ability to be biologically active in environments where they will be exposed to high levels of radiation. For that purpose, the authors aim to clone and express several broad spectrum oxygenases and heavy metal resistance determinants, and test survival and activities of these strains in artificial mixtures of contaminants, designed to simulate DOE mixed waste streams. This report summarizes work after 0.5 year of a 3-year project. The initial studies have focused on the development of an insertional expression system for D. radiodurans R1. This effort has involved two parts, namely: (1) promoter analysis, and (2) development of insertion systems. Several studies have shown that the expression signals used by D. radiodurans differ considerably from those found in other bacteria. Although D. radiodurans contains a typical eubacterial RNA polymerase core enzyme (based on TBLASTN searches on the genome sequence), Escherichia coli promoters are not recognized in D. radiodurans and vice versa (5). To expand the basic understanding of the requirements for transcription, and to optimize expression of (heterologous) genes, they will follow two strategies. First, a promoter-probe vector is being developed for the selection of promoter

  3. An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.

    2017-03-01

    There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in

  4. Radiation effects on materials in the near-field of a nuclear waste repository. 1997 annual progress report

    SciTech Connect

    Wang, L.M.; Ewing, R.C.

    1997-11-25

    'Sheet silicates (e.g. micas and clays) are important constituents of a wide variety of geological formations such as granite, basalt, and sandstone. Sheet silicates, particularly clays such as bentonite are common materials in near-field engineered barriers in high-level nuclear waste (HLW) repositories. This is because migration of radionuclides from an underground HLW repository to the geosphere may be significantly reduced by sorption of radionuclides (e.g., Pu, U and Np) onto sheet silicates (e.g., clays and micas) that line the fractures and pores of the rocks along groundwater flowpaths. In addition to surface sorption, it has been suggested that some sheet silicates may also be able to incorporate many radionuclides, such as Cs and Sr, in the inter-layer sites of the sheet structure. However, theability of the sheet silicates to incorporate radionuclides and retard release and migration of radionuclides may be significantly affected by the near-field radiation due to the decay of fission products and actinides. for example, the unique properties of the sheet structures will be lost completely if the structure becomes amorphous due to irradiation effects. Thus, the study of irradiation effects on sheet-structures, such as structural damage and modification of chemical properties, are critical to the performance assessment of long-term repository behavior.'

  5. Improved radiation dosimetry/risk estimates to facilitate environmental management of plutonium contaminated sites. 1998 annual progress report

    SciTech Connect

    Scott, B.R.

    1998-06-01

    'The objective of this research is to evaluate distributions of possible alpha radiation doses to the lung, bone, and liver and associated health-risk distributions for plutonium (Pu) inhalation-exposure scenarios relevant to environmental management of PuO{sub 2}-contaminated sites. Currently available dosimetry/risk models do not apply to exposure scenarios where, at most, a small number of highly radioactive PuO{sub 2} particles are inhaled (stochastic exposure [SE] paradigm). For the SE paradigm, risk distributions are more relevant than point estimates of risk. The focus of the research is on the SE paradigm and on high specific activity, alpha-emitting (HSA-aE) particles such as 238 PuO{sub 2} . The scientific goal is to develop a stochastic respiratory tract dosimetry/risk computer model for evaluating the desired absorbed dose distributions and associated health-risk distributions, for Department of Energy (DOE) workers and members of the public. This report summarizes results after 1 year of a 2-year project.'

  6. Hyperspectral signature analysis of skin parameters

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  7. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  8. SMAWT Signature Test

    DTIC Science & Technology

    1974-10-01

    were generally inversely proportional to the size assesments of the flash and smoke . Table 26 shows the percent of change in average judgments of...Average Time of Gunner’s View Obscuration by Smoke During Firings From the Wood Line .. .. ..... ..... ...... ..... .. 18 7. Average Obscuration Times...of Gunner’s View Obscuration by Smoke - Grass Line 19 8. Normalized Comparisons of the Relative Grades Assigned to Systems Signature Components

  9. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    SciTech Connect

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K.

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  10. Knowledge Signatures for Information Integration

    SciTech Connect

    Thomson, Judi; Cowell, Andrew J.; Paulson, Patrick R.; Butner, R. Scott; Whiting, Mark A.

    2003-10-25

    This paper introduces the notion of a knowledge signature: a concise, ontologically-driven representation of the semantic characteristics of data. Knowledge signatures provide programmatic access to data semantics while allowing comparisons to be made across different types of data such as text, images or video, enabling efficient, automated information integration. Through observation, which determines the degree of association between data and ontological concepts, and refinement, which uses the axioms and structure of the domain ontology to place the signature more accurately within the context of the domain, knowledge signatures can be created. A comparison of such signatures for two different pieces of data results in a measure of their semantic separation. This paper discusses the definition of knowledge signatures along with the design and prototype implementation of a knowledge signature generator.

  11. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, July 1992--August 1993

    SciTech Connect

    Rowley, J.D.

    1993-09-01

    Progress in identification of chromosomal transformations associated with leukemogenesis is described. In particular progress in DNA cloning of chromosomal break points in human cancer patients is described.

  12. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1994

    SciTech Connect

    Rowley, J.D.

    1994-06-01

    This comprehensive progress report provides a synopsis of major research accomplishments during the years of 1991-1994, including the technical aspects of the project. The objectives and accomplishments are as follows: 1. Defining the chromosome segments associated with radiation and chemically-induced leukemogenesis (treatment-related acute myeloid leukemia, t-AML); A. Continued genetic analysis of chromosomes 5 and 7, B. Correlation of treatment with balanced and unbalanced translocations. 2. Cloning the breakpoints in balanced translocations in t-AML; A. Clone the t(9;11) and t(11;19) breakpoints, B. Clone the t(3,21)(q26,q22) breakpoint, C. Determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 3. Compare the breakpoint junctions in patients who have the same translocations in t-AML and AML de novo. 4. Map the scaffold attachment regions in the genes that are involved in balanced translocations in t-AML. Plans for the continuation of present objectives and possible new objectives in consideration of past results are also provided.

  13. Secure quantum signatures: a practical quantum technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Andersson, Erika

    2016-10-01

    Modern cryptography encompasses much more than encryption of secret messages. Signature schemes are widely used to guarantee that messages cannot be forged or tampered with, for example in e-mail, software updates and electronic commerce. Messages are also transferrable, which distinguishes digital signatures from message authentication. Transferability means that messages can be forwarded; in other words, that a sender is unlikely to be able to make one recipient accept a message which is subsequently rejected by another recipient if the message is forwarded. Similar to public-key encryption, the security of commonly used signature schemes relies on the assumed computational difficulty of problems such as finding discrete logarithms or factoring large primes. With quantum computers, such assumptions would no longer be valid. Partly for this reason, it is desirable to develop signature schemes with unconditional or information-theoretic security. Quantum signature schemes are one possible solution. Similar to quantum key distribution (QKD), their unconditional security relies only on the laws of quantum mechanics. Quantum signatures can be realized with the same system components as QKD, but are so far less investigated. This talk aims to provide an introduction to quantum signatures and to review theoretical and experimental progress so far.

  14. Distinct microbiological signatures associated with triple negative breast cancer

    PubMed Central

    Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N.; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R.; Alwine, James C.; Robertson, Erle S.

    2015-01-01

    Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential. PMID:26469225

  15. Signatures of nonthermal melting

    PubMed Central

    Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.

    2015-01-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  16. Signature CERN-URSS

    SciTech Connect

    2006-01-24

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  17. Transcriptional Signatures in Huntington's Disease

    PubMed Central

    2007-01-01

    While selective neuronal death has been an influential theme in Huntington's disease (HD), there is now a preponderance of evidence that significant neuronal dysfunction precedes frank neuronal death. The best evidence for neuronal dysfunction is the observation that gene expression is altered in HD brain, suggesting that transcriptional dysregulation is a central mechanism. Studies of altered gene expression began with careful observations of post-mortem human HD brain and subsequently were accelerated by the development of transgenic mouse models. The application of DNA microarray technology has spurred tremendous progress with respect to the altered transcriptional processes that occur in HD, through gene expression studies of both transgenic mouse models as well as cellular models of HD. Gene expression profiles are remarkably comparable across these models, bolstering the idea that transcriptional signatures reflect an essential feature of disease pathogenesis. Finally, gene expression studies have been applied to human HD, thus not only validating the approach of using model systems, but also solidifying the idea that altered transcription is a key mechanism in HD pathogenesis. In the future, gene expression profiling will be used as a readout in clinical trials aimed at correcting transcriptional dysregulation in Huntington's disease. PMID:17467140

  18. Advanced spectral signature discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Cao, Wenjie; Samat, Alim

    2013-05-01

    This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.

  19. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  20. The Observable Signatures of GRB Cocoons

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Piran, Tsvi

    2017-01-01

    As a long gamma-ray burst (GRB) jet propagates within the stellar atmosphere it creates a cocoon composed of an outer Newtonian shocked stellar material and an inner (possibly relativistic) shocked jet. The jet deposits {10}51{--}{10}52 erg into this cocoon. This is comparable to the energies of the GRB and of the accompanying supernova, yet the cocoon’s signature has been largely ignored. The cocoon radiates a fraction of this energy as it expands, following the breakout from the star, and later as it interacts with the surrounding matter. We explore the possible signatures of this emission and outline a framework to calculate them from the conditions of the cocoon at the time of the jet breakout. The cocoon signature depends strongly on the, currently unknown, mixing between the shocked jet and shocked stellar material. With no mixing the γ-ray emission from the cocoon is so bright that it should have been already detected. The lack of such detections indicates that some mixing must take place. For partial and full mixing the expected signals are weaker than regular GRB afterglows. However, the latter are highly beamed while the former are wider. Future optical, UV, and X-ray transient searches, like LSST, ZTF, ULTRASAT, ISS-Lobster, and others, will most likely detect such signals, providing a wealth of information on the progenitors and jets of GRBs. While we focus on long GRBs, analogous (but weaker) cocoons may arise in short GRBs. Their signatures might be the most promising electromagnetic counterparts for gravitational wave signals from compact binary mergers.

  1. Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal.

    PubMed

    Chen, Hongxin; Goodus, Matthew T; de Toledo, Sonia M; Azzam, Edouard I; Levison, Steven W; Souayah, Nizar

    2015-01-01

    Damage to normal human brain cells from exposure to ionizing radiation may occur during the course of radiotherapy or from accidental exposure. Delayed effects may complicate the immediate effects resulting in neurodegeneration and cognitive decline. We examined cellular and molecular changes associated with exposure of neural stem/progenitor cells (NSPs) to (137)Cs γ-ray doses in the range of 0 to 8 Gy. Subventricular zone NSPs isolated from newborn mouse pups were analyzed for proliferation, self-renewal, and differentiation, shortly after irradiation. Strikingly, there was no apparent increase in the fraction of dying cells after irradiation, and the number of single cells that formed neurospheres showed no significant change from control. Upon differentiation, irradiated neural precursors did not differ in their ability to generate neurons, astrocytes, and oligodendrocytes. By contrast, progression of NSPs through the cell cycle decreased dramatically after exposure to 8 Gy (p < .001). Mice at postnatal day 10 were exposed to 8 Gy of γ rays delivered to the whole body and NSPs of the subventricular zone were analyzed using a four-color flow cytometry panel combined with ethynyl deoxyuridine incorporation. Similar flow cytometric analyses were performed on NSPs cultured as neurospheres. These studies revealed that neither the percentage of neural stem cells nor their proliferation was affected. By contrast, γ-irradiation decreased the proliferation of two classes of multipotent cells and increased the proliferation of a specific glial-restricted precursor. Altogether, these results support the conclusion that primitive neural precursors are radioresistant, but their proliferation is slowed down as a consequence of γ-ray exposure.

  2. Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). An overview of recent progress.

    PubMed

    Ballaré, C L; Rousseau, M C; Searles, P S; Zaller, J G; Giordano, C V; Robson, T M; Caldwell, M M; Sala, O E; Scopel, A L

    2001-09-01

    The southern part of Tierra del Fuego, in the southernmost tip of South America, is covered by dense Nothofagus spp. forests and Sphagnum-dominated peat bogs, which are subjected to the influence of ozone depletion and to increased levels of solar ultraviolet-B radiation (UV-B). Over the last 5 years we have studied some of the biological impacts of solar UV-B on natural ecosystems of this region. We have addressed two general problems: (i) do the fluctuations in UV-B levels under the influence of the Antarctic ozone 'hole' have any measurable biological impact, and (ii) what are the long-term effects of solar (ambient) UV-B on the Tierra del Fuego ecosystems? In this paper, we provide an overview of the progress made during the first 4 years of the project. We highlight and discuss the following results: (1) ambient UV-B has subtle but significant inhibitory effects on the growth of herbaceous and graminoid species of this region (growth reduction < or = 12%), whereas no consistent inhibitory effects could be detected in woody perennials; (2) in the species investigated in greatest detail, Gunnera magellanica, the inhibitory effect of solar UV-B is accompanied by increased levels of DNA damage in leaf tissue, and the DNA damage density in the early spring is clearly correlated with the dose of weighted UV-B measured at ground level; (3) the herbaceous species investigated thus far show little or no acclimation responses to ambient UV-B such as increased sunscreen levels and DNA repair capacity; and (4) ambient UV-B has significant effects on heterotrophic organisms, included marked inhibitory effects on insect herbivory. The results from the experiments summarized in this review clearly indicate that UV-B influences several potentially important processes and ecological interactions in the terrestrial ecosystems of Tierra del Fuego.

  3. {sup 18}F-Choline Positron Emission Tomography/Computed Tomography–Driven High-Dose Salvage Radiation Therapy in Patients With Biochemical Progression After Radical Prostatectomy: Feasibility Study in 60 Patients

    SciTech Connect

    D'Angelillo, Rolando M.; Sciuto, Rosa; Ramella, Sara; Papalia, Rocco; Jereczek-Fossa, Barbara A.; Trodella, Luca E.; Fiore, Michele; Gallucci, Michele; Maini, Carlo L.; Trodella, Lucio

    2014-10-01

    Purpose: To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Methods and Materials: Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic {sup 18}F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up to total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Results: Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. Conclusions: At early follow-up, {sup 18}F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity.

  4. Signature CERN-URSS

    ScienceCinema

    None

    2016-07-12

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  5. Signatures of aging revisited

    SciTech Connect

    Drell, S.; Jeanloz, R.; Cornwall, J.; Dyson, F.; Eardley, D.

    1998-03-18

    This study is a follow-on to the review made by JASON during its 1997 Summer Study of what is known about the aging of critical constituents, particularly the high explosives, metals (Pu, U), and polymers in the enduring stockpile. The JASON report (JSR-97-320) that summarized the findings was based on briefings by the three weapons labs (LANL, LLNL, SNL). They presented excellent technical analyses covering a broad range of scientific and engineering problems pertaining to determining signatures of aging. But the report also noted: `Missing, however, from the briefings and the written documents made available to us by the labs and DOE, was evidence of an adequately sharp focus and high priorities on a number of essential near-term needs of maintaining weapons in the stockpile.

  6. Landsat Signature Development Program

    NASA Technical Reports Server (NTRS)

    Hall, R. N.; Mcguire, K. G.; Bland, R. A.

    1976-01-01

    The Landsat Signature Development Program, LSDP, is designed to produce an unsupervised classification of a scene from a Landsat tape. This classification is based on the clustering tendencies of the multispectral scanner data processed from the scene. The program will generate a character map that, by identifying each of the general classes of surface features extracted from the scene data with a specific line printer symbol, indicates the approximate locations and distributions of these general classes within the scene. Also provided with the character map are a number of tables each of which describes either some aspect of the spectral properties of the resultant classes, some inter-class relationship, the incidence of picture elements assigned to the various classes in the character map classification of the scene, or some significant intermediate stage in the development of the final classes.

  7. Multisensors signature prediction workbench

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.

  8. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  9. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  10. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  11. Index of Spectrum Signature Data

    DTIC Science & Technology

    1985-05-01

    Frederick Research Corporation. Alexandria. VA 163 AN/APG-030 Radar Receiver Heasureaents Electromagnetic Coapatibilitv Analysis Center, US Navv Marine ... Electromagnetic Compatibility Characteristics of the W 86 Gun Fire Control Svstem. Naval HEapons Lab, Dahlgren, VA 501 Partial Spectrum Signature...ECAC-I-IO-(SS) DEPARTMENT OF DEFENSE Electromagnetic Compatibility Analysis Center Annapolis, Maryland 21402 INDEX OF SPECTRUM SIGNATURE DATA

  12. Cell short circuit, preshort signature

    NASA Technical Reports Server (NTRS)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  13. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  14. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team

    2017-01-01

    Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!

  15. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  16. Transition of radiative recombination channels from delocalized states to localized states in a GaInP alloy with partial atomic ordering: a direct optical signature of Mott transition?

    NASA Astrophysics Data System (ADS)

    Su, Z. C.; Ning, J. Q.; Deng, Z.; Wang, X. H.; Xu, S. J.; Wang, R. X.; Lu, S. L.; Dong, J. R.; Yang, H.

    2016-03-01

    Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices.

  17. Radiation enteritis.

    PubMed

    Harb, Ali H; Abou Fadel, Carla; Sharara, Ala I

    2014-01-01

    Radiation enteritis continues to be a major health concern in recipients of radiation therapy. The incidence of radiation enteritis is expected to continue to rise during the coming years paralleling the unprecedented use of radiotherapy in pelvic cancers. Radiation enteritis can present as either an acute or chronic syndrome. The acute form presents within hours to days of radiation exposure and typically resolves within few weeks. The chronic form may present as early as 2 months or as long as 30 years after exposure. Risk factors can be divided into patient and treatment-related factors. Chronic radiation enteritis is characterized by progressive obliterative endarteritis with exaggerated submucosal fibrosis and can manifest by stricturing, formation of fistulae, local abscesses, perforation, and bleeding. In the right clinical context, diagnosis can be confirmed by cross-sectional imaging, flexible or video capsule endoscopy. Present treatment strategies are directed primarily towards symptom relief and management of emerging complications. Recently, however, there has been a shift towards rational drug design based on improved understanding of the molecular basis of disease in an effort to limit the fibrotic process and prevent organ damage.

  18. Intrusion detection using secure signatures

    DOEpatents

    Nelson, Trent Darnel; Haile, Jedediah

    2014-09-30

    A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.

  19. Retail applications of signature verification

    NASA Astrophysics Data System (ADS)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  20. Ballastic signature identification systems study

    NASA Technical Reports Server (NTRS)

    Reich, A.; Hine, T. L.

    1976-01-01

    The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.

  1. An improved method for producing radiation hybrids applied to human chromosome 19. Technical progress report, March 1, 1991--February 28, 1992

    SciTech Connect

    Jackson, C.L.

    1992-04-01

    At the initiation of the grant we had just produced radiation hybrids from a monochromosomal microcell hybrid containing human chromosome 19 as its only human component. Radiation hybrids were produced using doses of radiation ranging from 1000--8000 rads. Lethally irradiated cells were then fused to hamster recipients (CHTG49) and selected for growth in histidinol. Approximately 240 clones were isolated and 75 clones were expanded for the isolation of DNA. This report describes in situ hybridization studies and the introduction of markers into human chromosome 19.

  2. Time-Dependent Delayed Signatures From Energetic Photon Interrogations

    SciTech Connect

    D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell

    2006-08-01

    A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.

  3. Classifying Land Cover Using Spectral Signature

    NASA Astrophysics Data System (ADS)

    Alawiye, F. S.

    2012-12-01

    Studying land cover has become increasingly important as countries try to overcome the destruction of wetlands; its impact on local climate due to seasonal variation, radiation balance, and deteriorating environmental quality. In this investigation, we have been studying the spectral signatures of the Jamaica Bay wetland area based on remotely sensed satellite input data from LANDSAT TM and ASTER. We applied various remote sensing techniques to generate classified land cover output maps. Our classifiers relied on input from both the remote sensing and in-situ spectral field data. Based upon spectral separability and data collected in the field, a supervised and unsupervised classification was carried out. First results suggest good agreement between the land cover units mapped and those observed in the field.

  4. Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors

    PubMed Central

    Ory, Catherine; Ugolin, Nicolas; Levalois, Céline; Lacroix, Ludovic; Caillou, Bernard; Bidart, Jean-Michel; Schlumberger, Martin; Diallo, Ibrahima; de Vathaire, Florent; Hofman, Paul; Santini, José; Malfoy, Bernard; Chevillard, Sylvie

    2011-01-01

    Both external and internal exposure to ionizing radiation are strong risk factors for the development of thyroid tumors. Until now, the diagnosis of radiation-induced thyroid tumors has been deduced from a network of arguments taken together with the individual history of radiation exposure. Neither the histological features nor the genetic alterations observed in these tumors have been shown to be specific fingerprints of an exposure to radiation. The aim of our work is to define ionizing radiation-related molecular specificities in a series of secondary thyroid tumors developed in the radiation field of patients treated by radiotherapy. To identify molecular markers that could represent a radiation-induction signature, we compared 25K microarray transcriptome profiles of a learning set of 28 thyroid tumors, which comprised 14 follicular thyroid adenomas (FTA) and 14 papillary thyroid carcinomas (PTC), either sporadic or consecutive to external radiotherapy in childhood. We identified a signature composed of 322 genes which discriminates radiation-induced tumors (FTA and PTC) from their sporadic counterparts. The robustness of this signature was further confirmed by blind case-by-case classification of an independent set of 29 tumors (16 FTA and 13 PTC). After the histology code break by the clinicians, 26/29 tumors were well classified regarding tumor etiology, 1 was undetermined, and 2 were misclassified. Our results help shed light on radiation-induced thyroid carcinogenesis, since specific molecular pathways are deregulated in radiation-induced tumors. PMID:21148326

  5. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-02-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.

  6. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  7. Quantum path signatures in harmonic spectra from metal plasma

    SciTech Connect

    Ganeev, R. A.; Hutchison, C.; Siegel, T.; Zaier, A.; Marangos, J. P.

    2011-06-15

    We have observed the signatures of quantum trajectories while generating harmonics in metal plasmas by using a high pulse repetition rate (1-kHz) Ti:sapphire laser source. We present how focusing conditions, laser intensity, plasma concentration, and the chirp of laser radiation influence the observation of separated quantum paths. Our studies demonstrate the clear fingerprints of the separated quantum paths in the case of an ionized medium.

  8. Interpretation of the fluorescence signatures from vegetation

    NASA Astrophysics Data System (ADS)

    Buschmann, C.

    Vegetation emits fluorescence as part of the energy taken up by absorption %of solar radiation from UV to the visible. This fluorescence consists of light with low intensity (only few percents of the reflected light) emitted from the leaves. The fluorescence emission of a green leaf is characterized by four bands with maxima in the blue (440 nm), green (520 nm), red (690 nm) and far red (740 nm) spectral region. The intensity of fluorescence in the maxima of the emission spectrum varies depending on the following six basic parameters which must be taken into account for the interpretation of fluorescence signatures from vegetation: (a) content of the fluorophores (ferulic acid, chlorophyll a), (b) temperature of the leaf, (c) penetration of excitation light into the leaf, (d) emission of fluorescence from the leaf (re-absorption inside the leaf tissue), (e) photosynthetic activity of the leaf, (f) non-radiative decay (heat production) parallel to the fluorescence The ratios between the intensities of the maxima (F440/F690, F440/F520, F690/F740) are used as characteristic fluorescence parameter. The wide range of changes of these ratios caused by differences in the leaf tissue (aerial interspaces, variegated/homogeneous green leaves), various types of stress (UV, photoinhibition, sun exposure, heat, water deficiency, N-deficiency) and chemicals (inhibitors, fertilizers) can be explained by changes of the six basic parameters. It will be shown that the interpretation of the fluorescence signatures, in most cases, must be based on a complex consideration of more than one of the basic parameters.

  9. Predictive chromatin signatures in the mammalian genome

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Ren, Bing

    2009-01-01

    The DNA sequence of an organism is a blueprint of life: it harbors not only the information about proteins and other molecules produced in each cell, but also instructions on when and where such molecules are made. Chromatin, the structure of histone and DNA that has co-evolved with eukaryotic genome, also contains information that indicates the function and activity of the underlying DNA sequences. Such information exists in the form of covalent modifications to the histone proteins that comprise the nucleosome. Thanks to the development of high throughput technologies such as DNA microarrays and next generation DNA sequencing, we have begun to associate the various combinations of chromatin modification patterns with functional sequences in the human genome. Here, we review the rapid progress from descriptive observations of histone modification profiles to highly predictive models enabling use of chromatin signatures to enumerate novel functional sequences in mammalian genomes that have escaped previous detection. PMID:19808796

  10. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    PubMed Central

    Lambros, Maria P.; Kondapalli, Lavanya; Parsa, Cyrus; Mulamalla, Hari Chandana; Orlando, Robert; Pon, Doreen; Huang, Ying; Chow, Moses S. S.

    2015-01-01

    Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors. PMID:25705238

  11. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  12. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1992--October 31, 1993

    SciTech Connect

    Michalsky, J.; Harrison, L.

    1993-04-30

    The ARM goal is to help improve both longwave and shortwave models by providing improved radiometric shortwave data. These data can be used directly to test shortwave model predictions. As will be described below they can also provide inferred values for aerosol and cloud properties that are useful for longwave modeling efforts as well. The current ARM research program includes three tasks all related to the study of shortwave radiation transfer through clouds and aerosol. Two of the tasks involve the assembly of archived and new radiation and meteorological data sets; the third and dominant task has been the development and use of new shortwave radiometric sensors. Archived data from Golden, Colorado, and Albany, New York, were combined with National Weather Service ground and upper air data for testing radiation models for the era when the Earth Radiation Budget Experiment (ERBE) was operational. These data do not include optimum surface radiation measurements; consequently we are acquiring downwelling shortwave, including direct and diffuse irradiance, plus downwelling longwave, upwelling shortwave, and aerosol optical depth, at our own institution, as an additional dataset for ARM modelers.

  13. Accelerated line-by-line calculations for the radiative transfer of trace gases related to climate studies. Progress report No. 1, 15 September 1993--14 September 1994

    SciTech Connect

    Clough, S.A.

    1993-11-15

    In the present study we are studying the effects of including carbon dioxide, ozone, methane, and the halocarbons in addition to water vapor in the radiating atmosphere. The study has focused on two principal issues: the effect on the spectral fluxes and cooling rates of carbon dioxide, ozone and the halocarbons at 1990 concentration levels and the change in fluxes and cooling rates as a consequence of the anticipated ten year change in the profiles of these species. For the latter study the water vapor profiles have been taken as invariant in time. The radiative line-by-line calculations using LBLRTM (Line-By-Line Radiative Transfer Model) have been performed for tropical (TRP), mid-latitude winter (MLW) and mid-latitude summer (MLS) model atmospheres. The halocarbons considered in the present study are CCl{sub 4}, CFC-11, CFC-12 and CFC-22. In addition to considering the radiative effects of carbon dioxide at 355 ppM, the assumed current level, we have also obtained results for doubled carbon dioxide at 710 ppM. An important focus of the current research effort is the effect of the ozone depletion profile on atmospheric radiative effects.

  14. Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance

    PubMed Central

    Panic, Andrej; Ketteler, Julia; Reis, Henning; Sak, Ali; Herskind, Carsten; Maier, Patrick; Rübben, Herbert; Jendrossek, Verena; Klein, Diana

    2017-01-01

    Despite good treatment results in localized prostate tumors, advanced disease stages usually have a pronounced resistance to chemotherapy and radiotherapy. The membrane protein caveolin-1 (Cav1) functions here as an important oncogene. Therefore we examined the impact of stromal Cav1 expression for tumor growth and sensitivity to ionizing radiation (IR). Silencing of Cav1 expression in PC3 cells resulted in increased tumor growth and a reduced growth delay after IR when compared to tumors generated by Cav1-expressing PC3 cells. The increased radiation resistance was associated with increasing amounts of reactive tumor stroma and a Cav1 re-expression in the malignant epithelial cells. Mimicking the human situation these results were confirmed using co-implantation of Cav1-silenced PC3 cells with Cav1-silenced or Cav1-expressing fibroblasts. Immunohistochemically analysis of irradiated tumors as well as human prostate tissue specimen confirmed that alterations in stromal-epithelial Cav1 expressions were accompanied by a more reactive Cav1-reduced tumor stroma after radiation and within advanced prostate cancer tissues which potentially mediates the resistance to radiation treatment. Conclusively, the radiation response of human prostate tumors is critically regulated by Cav1 expression in stromal fibroblasts. Loss of stromal Cav1 expression in advanced tumor stages may thus contribute to resistance of these tumors to radiotherapy. PMID:28112237

  15. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  16. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  17. Measurement of sniper infrared signatures

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2009-09-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper and background in typical scenarios has been presented. We take into consideration sniper activities in open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement class devices with high accuracy and speed. The others are microbolometer cameras with FPA detector similar to those used in real commercial counter-sniper systems. The registration was made in SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented.

  18. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  19. Ballistic Signature Identification System Study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.

  20. Determination of the radiative of pulverized-coal particles. Technical progress report, third quarter of the third year, March 15, 1990--June 15, 1990

    SciTech Connect

    Menguec, M.P.; Dsa, D.; Manickavasagam, S.; Dutta, P.; Mahadeviah, A.

    1991-12-31

    For accurate modeling of radiative transfer in combustion systems, radiative properties of combustion products are required. It is usually difficult to calculate the properties of nonhomogeneous and irregular-shaped pulverized-coal and char particles, because of the lack of information on optical constants and unavailability of simple and accurate theoretical models. Because of this, it is preferable to determine the required properties from experiments in situ. This can be accomplished by combining optical diagnostic techniques with inverse analyses of radiative transfer problem. In this study, experiments were conducted using a CO{sub 2}-laser nephelometer to measure angular distribution of light scattered by a cold-layer of pulverized-coal particles. The data obtained from the experiments were used along with a new step-phase function approximation in a numerical inverse radiation scheme to obtain ``effective`` extinction coefficient and scattering phase function for coal particles in narrow size distributions. In addition to that, a mercury-arc-lamp monochromator system was used to obtain spectral absorption coefficient of coal particles as a function of wavelength and coal size.

  1. Second Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Howard, Richard H.; Briggs, Samuel A.

    2016-12-30

    The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.

  2. Commercial Parts Radiation Testing

    DTIC Science & Technology

    2015-01-13

    AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Keith Avery 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0172 TR-2014-0172 COMMERCIAL PARTS RADIATION TESTING Craig J. Kief COSMIAC at UNM 2350 Alamo Avenue SE Suite 300...Vehicles Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE

  3. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1990--September 14, 1991

    SciTech Connect

    Harrison, L.; Michalsky, J.

    1991-03-13

    Three separate tasks are included in the first year of the project. Two involve assembling data sets useful for testing radiation models in global climate modeling (GCM) codes, and the third is concerned with the development of advance instrumentation for performing accurate spectral radiation measurements. Task 1: Three existing data sets have been merged for two locations, one in the wet northeastern US and a second in the dry western US. The data sets are meteorological data from the WBAN network, upper air data from the NCDC, and high quality solar radiation measurements from Albany, New York and Golden, Colorado. These represent test data sets for those modelers developing radiation codes for the GCM models. Task 2: Existing data are not quite adequate from a modeler`s perspective without downwelling infrared data and surface albedo, or reflectance, data. Before the deployment of the first CART site in ARM the authors are establishing this more complete set of radiation measurements at the Albany site to be operational only until CART is operational. The authors will have the site running by April 1991, which will provide about one year`s data from this location. They will coordinate their measurements with satellite overpasses, and, to the extent possible, with radiosonde releases, in order that the data set be coincident in time. Task 3: Work has concentrated on the multiple filter instrument. The mechanical, optical, and software engineering for this instrument is complete, and the first field prototype is running at the Rattlesnake Mountain Observatory (RMO) test site. This instrument is performing well, and is already delivering reliable and useful information.

  4. Autophagy-related prognostic signature for breast cancer.

    PubMed

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.

  5. Improved method of signature extraction

    NASA Technical Reports Server (NTRS)

    Christianson, D.; Gordon, M.; Kistler, R.; Kriegler, F. J.; Lampert, S.; Marshall, R. E.; Mclaughlin, R.; Smith, V.

    1977-01-01

    System promises capability of rapidly processing large amounts of data generated by currently available and planned multispectral sensors, such as those utilized on aircraft and spacecraft. Techniques developed for system, greatly decrease operator time required for signature extraction from multispectral data base.

  6. Topological Signatures for Population Admixture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...

  7. MK 66 Rocket Signature Reduction

    DTIC Science & Technology

    1982-04-01

    Indian Head, Maryland. ’The objec- tive of the study was to reduce the visible signature of the rocket motor. The rocket motor used for demonstration tests...15 6. Actual Emmiissions . . . . . . ........... . 16 7. Human Eye Adjusted Emmissions ..................... .. 16 8. Cross...altered. Additives are commonly used in gun propellants for elimination of muzzle flash. Their use in tactical rockets has been very limited, and

  8. Disaster relief through composite signatures

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve

    2012-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.

  9. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis

    PubMed Central

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality. PMID:27014632

  10. Use of gamma radiation as a form of preservation of sweet potatoes. Quarterly progress report, October 1, 1984-December 31, 1984

    SciTech Connect

    Not Available

    1985-04-30

    One of the radiation doses was changed from a planned level to 80 krads due to difficulties during irradiation at Georgia Tech. Equipment and supplies are still arriving slowly but we have found ways around most delays. We have also required more supplies than we originally anticipated. The data are and will be so extensive that we have asked for an extension of two months in order to have more time to sufficiently analyze it.

  11. [Direct assay of radiation-induced DNA base lesions to mammalian cells]. Final progress report, September 1, 1991--November 1, 1993

    SciTech Connect

    Not Available

    1993-12-31

    We have successfully developed the GC/MS technique so that an assessment of base damage in mammalian cells can be accomplished. The technique now has a sensitivity that will allow one to perform research in the low dose region suitable for hazards evaluation. The research on the hydrated DNA molecule has been seminal in generating a better understanding of the mechanisms by which low LET radiation induces DNA damage in mammalian cells. Also reported here are (1) the methodology for hydrating and irradiating DNA has been developed, (2) the procedures for identifying and quantitating radiation-induced DNA damage by HPLC and GC/MS have been mastered, (3) an hypotheses that radiation-induced damage in closely associated water molecules can result in DNA damage which is indistinguishable from that caused by direct ionization of the DNA has been generated and supported by experimental data, and (4) mathematical expressions that relate DNA lesion formation to the important parameters in the above hypotheses have been constructed so that the predictions of the hypotheses can now be tested.

  12. Block truncation signature coding for hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Chang, Chein-I.

    2008-08-01

    This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.

  13. Gene expression-based prognostic signatures in lung cancer: ready for clinical use?

    PubMed

    Subramanian, Jyothi; Simon, Richard

    2010-04-07

    A substantial number of studies have reported the development of gene expression-based prognostic signatures for lung cancer. The ultimate aim of such studies should be the development of well-validated clinically useful prognostic signatures that improve therapeutic decision making beyond current practice standards. We critically reviewed published studies reporting the development of gene expression-based prognostic signatures for non-small cell lung cancer to assess the progress made toward this objective. Studies published between January 1, 2002, and February 28, 2009, were identified through a PubMed search. Following hand-screening of abstracts of the identified articles, 16 were selected as relevant. Those publications were evaluated in detail for appropriateness of the study design, statistical validation of the prognostic signature on independent datasets, presentation of results in an unbiased manner, and demonstration of medical utility for the new signature beyond that obtained using existing treatment guidelines. Based on this review, we found little evidence that any of the reported gene expression signatures are ready for clinical application. We also found serious problems in the design and analysis of many of the studies. We suggest a set of guidelines to aid the design, analysis, and evaluation of prognostic signature studies. These guidelines emphasize the importance of focused study planning to address specific medically important questions and the use of unbiased analysis methods to evaluate whether the resulting signatures provide evidence of medical utility beyond standard of care-based prognostic factors.

  14. Energetic particle signatures of satellites and rings in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.; Stone, E. C.

    1992-01-01

    The cosmic ray system on Voyager 2 found a trapped radiation environment in Neptune's inner magnetosphere which is controlled primarily by absorption at the rings and satellite surfaces. The intensity of electrons with kinetic energies approximately greater than 1 MeV shows particularly strong and narrow signatures associated with absorption by the satellite 1989N1 at an orbital radius of 4.75 Neptune radii. Closer to the planet are several signatures of the inner satellites and rings. Absorption limits the intensity of the inner radiation belt sufficiently for the maximum intensity to occur outside the orbit of 1989N1 at a magnetic L shell of about 7. Radial profiles of the electron phase space density show that electrons diffuse inward from a source in the outer magnetosphere. Many of the inward-diffusing electrons are absorbed upon reaching a satellite orbital radius, but the finite absorption efficiency allows some of the electrons to pass by unaffected. The locations of the satellite and ring signatures also provide constraints on the nondipolar components of the planetary magnetic field.

  15. Partially Blind Signatures Based on Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Qiu; Niu, Hui-Fang

    2012-12-01

    In a partially blind signature scheme, the signer explicitly includes pre-agreed common information in the blind signature, which can improve the availability and performance. We present a new partially blind signature scheme based on fundamental properties of quantum mechanics. In addition, we analyze the security of this scheme, and show it is not possible to forge valid partially blind signatures. Moreover, the comparisons between this scheme and those based on public-key cryptography are also discussed.

  16. Epigenetic signatures of invasive status in populations of marine invertebrates

    PubMed Central

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-01-01

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions. PMID:28205577

  17. Epigenetic signatures of invasive status in populations of marine invertebrates

    NASA Astrophysics Data System (ADS)

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-02-01

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.

  18. Quantum Radiation Reaction: From Interference to Incoherence.

    PubMed

    Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger

    2016-01-29

    We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.

  19. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed,...

  20. Event identification by acoustic signature recognition

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  1. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  2. Signatures of a shadow biosphere.

    PubMed

    Davies, Paul C W; Benner, Steven A; Cleland, Carol E; Lineweaver, Charles H; McKay, Christopher P; Wolfe-Simon, Felisa

    2009-03-01

    Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere.

  3. A research program on radiative transfer model development in support of the ARM program. Progress report No. 2, 1 March 1991--1 April 1992

    SciTech Connect

    Clough, S.A.

    1992-05-01

    Research continued on the development of a radiative transfer model. This report discusses the revised continuum model. The water vapor continuum plays an important role in atmospheric radiative transfer providing increased opacity between spectral lines over the full spectral region from the microwave to the visible. The continuum has a significant influence on atmospheric fluxes and cooling rates. Additionally the continuum is important to the physical solution of the inverse problem, the remote sensing of atmospheric state to retrieve temperature, water vapor, surface properties and other state parameters. There are two components to the continuum: The self-broadened continuum, dependent on the square of the partial pressure of water vapor, and the foreign-broadened continuum, principally dependent on the product of the water vapor partial pressure and the total pressure. As a consequence the self broadened continuum tends to be more important in the lower atmosphere while the foreign broadened continuum tends to be more important in the mid to upper troposphere. To address this situation and to improve overall accuracy, we have embarked on the development of an improved water vapor continuum model.

  4. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  5. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    NASA Astrophysics Data System (ADS)

    Rialland, V.; Guy, A.; Gueyffier, D.; Perez, P.; Roblin, A.; Smithson, T.

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm-1 with a step of 5 cm-1. The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed.

  6. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  7. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  8. The NASA-Sponsored Study of Cataract in Astronauts (NASCA). Relationship of Exposure to Radiation in Space and the Risk of Cataract Incidence and Progression. Report 1: Recruitment and Methodology

    NASA Technical Reports Server (NTRS)

    Chylack, Leo T.; Peterson, Leif E.; Feiveson, Alan H.; Wear, Mary; Manuel, F. Keith

    2007-01-01

    The NASA Study of Cataract in Astronauts (NASCA) is a five-year, multi-centered, investigation of lens opacification in populations of U.S. astronauts, military pilots, and ground-based (nonaviator) comparison participants. For astronauts, the explanatory variable of most interest is radiation exposure during space flight, however to properly evaluate its effect, the secondary effects of age, nutrition, general health, solar ocular exposure, and other confounding variables encountered in non-space flight must also be considered. NASCA contains an initial baseline, cross-sectional objective assessment of the severity of cortical (C), nuclear (N), and posterior subcapsular (PSC) lens opacification, and annual follow-on assessments of severity and progression of these opacities in the population of astronauts and in participants sampled from populations of military pilots and ground-based exposure controls. From these data, NASCA will estimate the degree to which space radiation affects lens opacification for astronauts and how the overall risks of each cataract type for astronauts compared with those of the other exposure control groups after adjusting for differences in age and other explanatory variables.

  9. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  10. Studies of magnetism and exchange scattering in solids using synchroton radiation and spin-polarized photoemission. Progress report, June 1, 1982-May 31, 1983

    SciTech Connect

    Rothberg, G.M.

    1983-01-01

    Some of the experiments necessary for proving the existence of Spin Polarized EXAFS (SPEXAFS) and for establishing it as a useful techncique for studying magnetism in solids have been carried out at the Stanford Synchrotron Radiation Laboratory (SSRL) and the National Synchrotron Light Source (NSLS). Transmission EXAFS, which does not depend on electron spin, has been measured in several manganese compounds. The 3s photopeaks of Mn/sup 2 +/ in MnF/sub 2/ have been shown to display EXAFS-like oscillations. The pin dependence of these oscillations will next be studied. Observations of the 3p photopeaks of iron metal on a palladium substrate have shown anomalous intensity variations with varying photon energy. This phenomenon will also be studied further. The existence of Cooper minima in the iron 3s and 3p photoabsorption cross sections has been sought, and this investigation will continue.

  11. Rationale and Design of a Phase I Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors.

    PubMed

    Waters, Alicia M; Johnston, James M; Reddy, Alyssa T; Fiveash, John; Madan-Swain, Avi; Kachurak, Kara; Bag, Asim K; Gillespie, G Yancey; Markert, James M; Friedman, Gregory K

    2017-02-24

    Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy; and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase I trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.

  12. Rationale and Design of a Phase 1 Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors.

    PubMed

    Waters, Alicia M; Johnston, James M; Reddy, Alyssa T; Fiveash, John; Madan-Swain, Avi; Kachurak, Kara; Bag, Asim K; Gillespie, G Yancey; Markert, James M; Friedman, Gregory K

    2017-03-01

    Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer-related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy, and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor-specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase 1 trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.

  13. Predicting Electromagnetic Signatures of Gravitational Wave Sources

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel John

    This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.

  14. TOPICAL REVIEW: The gravitational-wave signature of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Ott, Christian D

    2009-03-01

    We review the ensemble of anticipated gravitational-wave (GW) emission processes in stellar core collapse and postbounce core-collapse supernova evolution. We discuss recent progress in the modeling of these processes and summarize most recent GW signal estimates. In addition, we present new results on the GW emission from postbounce convective overturn and protoneutron star g-mode pulsations based on axisymmetric radiation-hydrodynamic calculations. Galactic core-collapse supernovae are very rare events, but within 3 5 Mpc from Earth, the rate jumps to 1 in ~2 years. Using the set of currently available theoretical gravitational waveforms, we compute upper-limit optimal signal-to-noise ratios based on current and advanced LIGO/GEO600/VIRGO noise curves for the recent SN 2008bk which exploded at ~3.9 Mpc. While initial LIGOs cannot detect GWs emitted by core-collapse events at such a distance, we find that advanced LIGO-class detectors could put significant upper limits on the GW emission strength for such events. We study the potential occurrence of the various GW emission processes in particular supernova explosion scenarios and argue that the GW signatures of neutrino-driven, magneto-rotational, and acoustically-driven core-collapse SNe may be mutually exclusive. We suggest that even initial LIGOs could distinguish these explosion mechanisms based on the detection (or non-detection) of GWs from a galactic core-collapse supernova.

  15. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    SciTech Connect

    Gupta, Tejpal

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  16. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, 1 November 1994--1 January 1996

    SciTech Connect

    Hawley, R.S.

    1996-12-31

    The authors have recently cloned the mei-4l gene, and showed that its putative translation product is highly homologous to the ATM, MEC1, and RAD3 genes at the level of primary amino acid sequence. That this sequence similarity reflects a functional homology is suggested by three lines of evidence: (1) as is the case for the ATM gene, loss of function of mei-4l results in increased sensitivity to X-irradiation; (2) mutations in the mei-4l gene also resemble ATM mutations in that they cause high levels of chromosome breakage and genetic instability; and (3) like the ATM gene, the wild-type MEI-4l protein also plays a role in mediating the progression of the cell cycle.

  17. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI.

    PubMed

    Chen, Xin; Wei, Xinhua; Zhang, Zhongping; Yang, Ruimeng; Zhu, Yanjie; Jiang, Xinqing

    2015-01-01

    Twenty-two patients with pathologically confirmed glioblastoma who had received concurrent CCRT with TMZ underwent conventional MRI including T1-weighted imaging(T1WI), T2-weighted imaging(T2WI), fluid attenuated inversion recovery(FLAIR)and contrast-enhanced T1WI(T1Ce). Five GLCM texture maps of contrast, energy, entropy, correlation and homogeneity were generated for each MRI series. Of the aforementioned 5 texture features, the most significant features were contrast and correlation on T2WI with areas under ROC curve of 0.883 and 0.892, respectively, and they had the same sensitivity of 75%, specificity of 100%, accuracy of 86.4%, PPV of 100% and NPV of 76.9% in differentiation true progression from pseudoprogression.

  18. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, June 1, 1989--September 1, 1990

    SciTech Connect

    1990-12-31

    The most exciting discovery made over the past year derives from an analysis of the interaction between DNA repair and P-element transposition. A powerful new system was developed for analyzing the repair of DNA double-strand breaks. A screen was completed of mutagenized autosomes obtained from two San Francisco laboratories with the recovery of several mutants that will provide the foundation for future efforts to clone repair related genes. At the same time, strong progress has been made in the cloning and characterization of the repair-related genes mei-41 and mus209. Finally, the efforts to clone the mei-9 gene have uncovered the existence of a unsuspected feature of the system used for transposon-tagging in Drosophila. This new knowledge will aid future cloning efforts as well as those of others in the field.

  19. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, July 1, 1991--June 1, 1992

    SciTech Connect

    1992-12-31

    The primary goal of this program is to achieve a more thorough understanding of the mechanisms employed by higher organisms to resist DNA damage. Concurrently this effort contributes to an improved understanding of the processes of mutagenesis and carcinogenesis in higher eukaryotes. Drosophila was initially chosen as a model organism for investigating functions that control mutagen resistance because of the ease with which one can isolate and characterize mutagen-sensitive mutants in this multicellular organism. This laboratory then went on to investigate the DNA repair defects of such mutants while others performed complementary genetic and cytogenetic studies which relate DNA repair processes to mutagenesis and chromosome stability. Currently, recombinant DNA technology is being employed to investigate the mechanisms of mutagen resistance defined by those mutants. The following two studies experienced the most significant progress during the past year: cloning and genetic characterization of the mus209 gene, and genetic and molecular analysis of the mus308 gene.

  20. Forensic handwriting examiners' expertise for signature comparison.

    PubMed

    Sita, Jodi; Found, Bryan; Rogers, Douglas K

    2002-09-01

    This paper reports on the performance of forensic document examiners (FDEs) in a signature comparison task that was designed to address the issue of expertise. The opinions of FDEs regarding 150 genuine and simulated questioned signatures were compared with a control group of non-examiners' opinions. On the question of expertise, results showed that FDEs were statistically better than the control group at accurately determining the genuineness or non-genuineness of questioned signatures. The FDE group made errors (by calling a genuine signature simulated or by calling a simulated signature genuine) in 3.4% of their opinions while 19.3% of the control group's opinions were erroneous. The FDE group gave significantly more inconclusive opinions than the control group. Analysis of FDEs' responses showed that more correct opinions were expressed regarding simulated signatures and more inconclusive opinions were made on genuine signatures. Further, when the complexity of a signature was taken into account, FDEs made more correct opinions on high complexity signatures than on signatures of lower complexity. There was a wide range of skill amongst FDEs and no significant relationship was found between the number of years FDEs had been practicing and their correct, inconclusive and error rates.

  1. Accounting for correlated errors in inverse radiation transport problems.

    SciTech Connect

    Mattingly, John K.; Stork, Christopher Lyle; Thomas, Edward Victor

    2010-11-01

    Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is solved by finding the set of transport model variables that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature predicted by the hypothesized model parameters. The weights per channel are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. In the current treatment, the implicit assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. In this paper, an alternative method that accounts for correlated errors between channels is described and illustrated for inverse problems based on gamma spectroscopy.

  2. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  3. Genetic signatures of heroin addiction.

    PubMed

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-08-01

    Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study.

  4. Infrared signatures for remote sensing

    SciTech Connect

    McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.

    1994-04-01

    PNL`s capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm{sup {minus}1} at <10-MHz bandwidth; a Bruker Fourier-transform infrared (FTIR) spectrometer for the near- to far-infrared at 50-MHz resolution; and a stable line-tunable, 12-w cw CO{sub 2} laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at {approximately}10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl{sub 4} at 770--800 cm{sup {minus}1}. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO{sub 2} laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks.

  5. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  6. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  7. Satellite signatures in SLR observations

    NASA Technical Reports Server (NTRS)

    Appleby, G. M.

    1993-01-01

    We examine the evidence for the detection of satellite-dependent signatures in the laser range observations obtained by the UK single-photon Satellite Laser Ranging (SLR) System models of the expected observation distributions from Ajisai and Lageos are developed from the published satellite spread functions and from the characteristics of the SLR System and compared with the observations. The effects of varying return strengths are discussed using the models and by experimental observations of Ajisai, during which a range of return levels from single to multiple photons is achieved. The implications of these results for system-dependent center for mass corrections are discussed.

  8. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  9. Gut microbiota signatures of longevity.

    PubMed

    Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao

    2016-09-26

    An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging.

  10. Quantum broadcasting multiple blind signature with constant size

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Li, Zhenli

    2016-09-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  11. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  12. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, October 1, 1988--June 1, 1989

    SciTech Connect

    1989-12-31

    The primary goal of this study is to achieve a more thorough understanding of the mechanisms employed by higher organisms to repair DNA damage induced by both ionizing and nonionizing radiation. These studies are also contributing to an improved understanding of the processes of mutagenesis and carcinogenesis in higher eukaryotes. The studies employ Drosophila as a model organism for investigating repair functions that are common to all higher eukaryotes. Drosophila was chosen in the early phases of this study primarily because of the ease with which one can isolate and characterize repair-deficient mutants in a metazoan organism. The laboratory has gone on to investigate the metabolic defects of such mutants while others have performed complementary genetic and cytogenetic studies which relate DNA repair processes to mutagenesis and chromosome stability. The repair studies have exploited the capacity to introduce mutant Drosophila cells into tissue culture and thereby compare repair defects directly with those of homologous human disorders. Researchers are currently employing recombinant DNA technology to investigate the mechanisms of the DNA repair pathways defined by those mutants.

  13. Biological effects of ionizing radiation at the molecular, cellular, and organismal levels. Triennial progress report, October 15, 1977-October 14, 1980

    SciTech Connect

    Lange, C.S.

    1980-01-01

    Two major accomplishments have been achieved in the past three years with the support of this contract. Firstly, the original Zimm theory of rotor speed dependent DNA sedimentation has been tested quantitatively and found to be correct, i.e., T4c and T4D+ DNAs sedimented with S/sup 0//sub 20,w/ values as predicted by the equation of Zimm and Schumaker. Furthermore, the quantitative validity of the theory means that the size (M/sub r/) of a DNA sedimenting under speed-dependent conditions is not undefinable but rather can be uniquely obtained by the application of that theory to the data. Secondly, the viscoelastic recoil (GAMMA/sub 11/), or more accurately, the zero shear rate reduced recoil (GAMMA/sub 11, r, o/) has been shown to be a quantitative direct function of the number of intact (T4c) DNA molecules present (per ml) in solution. This demonstration made possible the measurement of a direct survival curve for intact DNA molecules (i.e., without double-strand breaks) after exposure to ionizing radiation. A /sub DNA/D/sub 37/ of 47.4 krads was obtained for the DNA of T4c coliphage irradiated in air as a solution of phage particles. It is noteworthy that this survival curve measures the number of intact DNA molecules, not the average number of breaks/molecule.

  14. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  15. Radiation physics, biophysics, and radiation biology

    SciTech Connect

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  16. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation: Comprehensive progress report, January 1986--June 1988

    SciTech Connect

    Rowley, J.D.

    1988-06-01

    I purchased one of the few available prototypes of the pulse field gel electrophoresis (PFGE) apparatus. We used PFGE and its various modifications to map the human Abelson protooncogene (ABL) and to show that the two alternative first exons (Ia and Ib) are separated by at least 200 kilobases (kb). This has provided the first evidence that alternative splicing from exon Ib to the common splice acceptor site (exon II) could occur over such very large distances. We are actively using vertical field gel electrophoresis, a modification of PFGE, for mapping various DNA probes on chromosome 5. Another major advance has been the development of the polymerase chain reaction (PCR). We are currently using this to define the breakpoints in the BCR gene in the 9; 22 translocation in chronic myeloid leukemia (CML) and in Ph/sup 1/-positive acute lymphoblastic leukemia (ALL). I had expected to be able to describe major progress in cloning the chromosome translocation breakpoints in ANLL, and this has not occurred. Our laboratory knows how to solve the problem. We successfully cloned a new translocation breakpoint in B cell chronic lymphatic leukemia involving Nos. 14 and 19. 22 refs., 2 figs., 5 tabs.

  17. Visual signatures in video visualization.

    PubMed

    Chen, Min; Botchen, Ralf P; Hashim, Rudy R; Weiskopf, Daniel; Ertl, Thomas; Thornton, Ian M

    2006-01-01

    Video visualization is a computation process that extracts meaningful information from original video data sets and conveys the extracted information to users in appropriate visual representations. This paper presents a broad treatment of the subject, following a typical research pipeline involving concept formulation, system development, a path-finding user study, and a field trial with real application data. In particular, we have conducted a fundamental study on the visualization of motion events in videos. We have, for the first time, deployed flow visualization techniques in video visualization. We have compared the effectiveness of different abstract visual representations of videos. We have conducted a user study to examine whether users are able to learn to recognize visual signatures of motions, and to assist in the evaluation of different visualization techniques. We have applied our understanding and the developed techniques to a set of application video clips. Our study has demonstrated that video visualization is both technically feasible and cost-effective. It has provided the first set of evidence confirming that ordinary users can be accustomed to the visual features depicted in video visualizations, and can learn to recognize visual signatures of a variety of motion events.

  18. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  19. The origin, evolution and signatures of primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ˜  10-16 Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  20. Hyperspectral reflectance signature protocol for predicting subsurface bottom reflectance in water: in-situ and analytical methods

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Rotkiske, Tyler; Oney, Taylor

    2016-10-01

    In-situ measurement of bottom reflectance signatures and bottom features in water are used to test an analytical based irradiance model protocol. Comparisons between predicted and measured bottom reflectance signatures are obtained using measured hyperspectral remote sensing reflectance signatures, water depth and water column constituent concentrations. Analytical solutions and algorithms are used to generate synthetic signatures of different bottom types. The analytical methodology used to simulated bottom reflectance contains offset and bias that can be corrected using spectral window based corrections. Example results are demonstrated for application to coral species, submerged aquatic vegetation and a sand bottom type. Spectral windows are identified for predicting the above bottom types. Sensitivity analysis of predicted bottom reflectance signatures is conducted by varying water depth, chlorophyll, dissolved organic matter and total suspended mater concentrations. The protocol can be applied to shallow subsurface geospatial mapping using sensor based water surface reflectance based upon an analytical model solution derived from primitive radiative transfer theory.

  1. Complications of radiation therapy

    SciTech Connect

    Dalinka, M.K.; Mazzeo, V.P. Jr.

    1985-01-01

    The skeletal effects of radiation are dependent upon many variables, but the pathologic features are consistent. Radiation may cause immediate or delayed cell death, cellular injury with recovery, arrest of cellular division, or abnormal repair with neoplasia. Radiation necrosis and radiation-induced neoplasm still occur despite the use of supervoltage therapy. Complications of radiotherapy are well known and have led to more judicious use of this therapeutic modality. With few exceptions, benign bone tumors are no longer treated with irradiation. Radiation necrosis may be difficult to differentiate from sarcoma arising in irradiated bone. They both occur within the field of irradiation. Radiation necrosis often has a long latent period which is, of course, the rule in radiation-induced neoplasia. A soft tissue mass favors the diagnosis of neoplasia, while its absence suggests radiation necrosis. Lack of pain favors necrosis. Calcification may occur in radiation necrosis and does not indicate neoplasia. A lack of progression on serial roentgenograms also favors radiation necrosis. 76 references.

  2. Secure Obfuscation for Encrypted Group Signatures

    PubMed Central

    Fan, Hongfei; Liu, Qin

    2015-01-01

    In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686

  3. Input apparatus for dynamic signature verification systems

    DOEpatents

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  4. Binary authentication signatures integrity standard: System file integrity for the masses

    SciTech Connect

    Bartoletti, T.; Graff, M.; Schales, D.

    1994-03-01

    Thrusted software plays a central role in computer security, yet straightforward methods for authentication of installed software are lacking in the marketplace. This paper argues for a vendor-supported standard for the generation and publication of strong digital signature for all vendor-supplied system files. Progress in the design and adoption of a proposed standard is discussed.

  5. Hyperspectral imagery for observing spectral signature change in Aspergillus flavus

    NASA Astrophysics Data System (ADS)

    DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.

    2005-11-01

    Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.

  6. NONTHERMAL RADIATION FROM COSMIC-RAY MODIFIED SHOCKS

    SciTech Connect

    Kang, Hyesung; Edmon, Paul P.; Jones, T. W. E-mail: pedmon@physics.umanitoba.ca

    2012-02-01

    We calculate nonthermal radiation from cosmic-ray (CR) protons and electrons accelerated at CR modified plane and spherical shocks, using time-dependent, diffusive shock acceleration (DSA) simulations that include radiative losses of CR electrons. Strong non-relativistic shocks with physical parameters relevant for young supernova remnants (SNRs) are considered in both the plane-parallel and spherically symmetric geometries, and compared at times when their dynamical and CR properties are concordant. A thermal leakage injection model and a Bohm-like diffusion coefficient are adopted. After DSA energy gains balance radiative losses, the electron spectrum at the plane shock approaches a time-asymptotic spectrum with a super-exponential cutoff above the equilibrium momentum. The postshock electron spectrum cuts off at a progressively lower momentum downstream from the shock due to the energy losses. That results in the steepening of the volume integrated electron energy spectrum by one power of the particle energy. These features evolve toward lower energies in the spherical, SNR shocks. In a CR modified shock, pion decay gamma-ray emission reveals distinct signatures of nonlinear DSA due to the concave proton momentum spectrum. Although the electron momentum spectrum has a much weaker concavity, the synchrotron spectral slope at the shock may flatten by about 0.1-0.3 between radio and X-ray bands. The slope of the volume integrated emission spectrum behaves nonlinearly around the break frequency.

  7. Identification of Multiple Hypoxia Signatures in Neuroblastoma Cell Lines by l1-l2 Regularization and Data Reduction

    PubMed Central

    Fardin, Paolo; Cornero, Andrea; Barla, Annalisa; Mosci, Sofia; Acquaviva, Massimo; Rosasco, Lorenzo; Gambini, Claudio; Verri, Alessandro; Varesio, Luigi

    2010-01-01

    Hypoxia is a condition of low oxygen tension occurring in the tumor and negatively correlated with the progression of the disease. We studied the gene expression profiles of nine neuroblastoma cell lines grown under hypoxic conditions to define gene signatures that characterize hypoxic neuroblastoma. The l1-l2 regularization applied to the entire transcriptome identified a single signature of 11 probesets discriminating the hypoxic state. We demonstrate that new hypoxia signatures, with similar discriminatory power, can be generated by a prior knowledge-based filtering in which a much smaller number of probesets, characterizing hypoxia-related biochemical pathways, are analyzed. l1-l2 regularization identified novel and robust hypoxia signatures within apoptosis, glycolysis, and oxidative phosphorylation Gene Ontology classes. We conclude that the filtering approach overcomes the noisy nature of the microarray data and allows generating robust signatures suitable for biomarker discovery and patients risk assessment in a fraction of computer time. PMID:20652058

  8. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    SciTech Connect

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  9. Radiation Belt Dynamics

    DTIC Science & Technology

    2015-12-27

    is unlimited. 15 DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0007 TR-2016-0007 RADIATION BELT DYNAMICS Jay M. Albert, et al. 27 December 2015 Final Report APPROVED FOR... KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this

  10. Active remote detection of radioactivity based on electromagnetic signatures

    SciTech Connect

    Sprangle, P.; Hafizi, B.; Milchberg, H.; Nusinovich, G.; Zigler, A.

    2014-01-15

    This paper presents a new concept for the remote detection of radioactive materials. The concept is based on the detection of electromagnetic signatures in the vicinity of radioactive material and can enable stand-off detection at distances greater than 100 m. Radioactive materials emit gamma rays, which ionize the surrounding air. The ionized electrons rapidly attach to oxygen molecules forming O{sub 2}{sup −} ions. The density of O{sub 2}{sup −} around radioactive material can be several orders of magnitude greater than background levels. The elevated population of O{sub 2}{sup −} extends several meters around the radioactive material. Electrons are easily photo-detached from O{sub 2}{sup −} ions by laser radiation. The photo-detached electrons, in the presence of laser radiation, initiate avalanche ionization which results in a rapid increase in electron density. The rise in electron density induces a frequency modulation on a probe beam, which becomes a direct spectral signature for the presence of radioactive material.

  11. Signature spectrale des grains interstellaires.

    NASA Astrophysics Data System (ADS)

    Léger, A.

    Notre connaissance de la nature des grains interstellaires reposait sur un nombre très restreint de signatures spectrales dans la courbe d'extinction du milieu interstellaire. Une information considérable est contenue dans les 40 bandes interstellaires diffuses dans le visible, mais reste inexploitée. L'interprétation récente des cinq bandes IR en émission, en terme de molécules d'hydrocarbures aromatiques polycycliques, est développée. Elle permet l'utilisation d'une information spectroscopique comparable, à elle seule, à ce sur quoi était basée jusqu'alors notre connaissance de la matière interstellaire condensée. Différentes implications de cette mise en évidence sont proposées.

  12. Metabolic Signatures of Bacterial Vaginosis

    PubMed Central

    Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.

    2015-01-01

    ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373

  13. Irma multisensor predictive signature model

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Flynn, David S.; Wellfare, Michael R.; Richards, Mike; Prestwood, Lee

    1995-06-01

    The Irma synthetic signature model was one of the first high resolution synthetic infrared (IR) target and background signature models to be developed for tactical air-to-surface weapon scenarios. Originally developed in 1980 by the Armament Directorate of the Air Force Wright Laboratory (WL/MN), the Irma model was used exclusively to generate IR scenes for smart weapons research and development. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser channel. This two channel version, Irma 3.0, was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model which supported correlated frame-to-frame imagery. This and other improvements were released in Irma 2.2. Recently, Irma 3.2, a passive IR/millimeter wave (MMW) code, was completed. Currently, upgrades are underway to include an active MMW channel. Designated Irma 4.0, this code will serve as a cornerstone of sensor fusion research in the laboratory from 6.1 concept development to 6.3 technology demonstration programs for precision guided munitions. Several significant milestones have been reached in this development process and are demonstrated. The Irma 4.0 software design has been developed and interim results are available. Irma is being developed to facilitate multi-sensor smart weapons research and development. It is currently in distribution to over 80 agencies within the U.S. Air Force, U.S. Army, U.S. Navy, ARPA, NASA, Department of Transportation, academia, and industry.

  14. A Graph Based Methodology for Temporal Signature Identification from HER.

    PubMed

    Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang

    2015-01-01

    Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches.

  15. A Graph Based Methodology for Temporal Signature Identification from EHR

    PubMed Central

    Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang

    2015-01-01

    Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches. PMID:26958267

  16. The research of a new test method about dynamic target infrared spectral signature

    NASA Astrophysics Data System (ADS)

    Wu, Jiang-hui; Gao, Jiao-bo; Chen, Qing; Luo, Yan-ling; Li, Jiang-jun; Gao, Ze-dong; Wang, Nan; Gao, Meng

    2014-11-01

    The research on infrared spectral target signature shows great military importance in the domain of IR detection Recognition, IRCM, IR image guide and ir stealth etc. The measurements of infrared spectral of tactical targets have been a direct but effective technique in providing signatures for both analysis and simulation to missile seeker designers for many years. In order to deal with the problem of dynamic target infrared spectral signature, this paper presents a new method for acquiring and testing ir spectral radiation signatures of dynamic objects, which is based on an IR imager guiding the target and acquiring the scene at the same time, a FOV chopping scan infrared spectral radiometer alternatively testing the target and its background around ir spectral signature.ir imager and spectral radiometer have the same optical axis. The raw test data was processed according to a new deal with method. Principles and data processing methods were described in detail, test error also analyzed. Field test results showed that the method described in the above is right; the test error was reduced smaller, and can better satisfy the needs of acquiring dynamic target ir spectral signature.

  17. The Pedagogic Signature of the Teaching Profession

    ERIC Educational Resources Information Center

    Kiel, Ewald; Lerche, Thomas; Kollmannsberger, Markus; Oubaid, Viktor; Weiss, Sabine

    2016-01-01

    Lee S. Shulman deplores that the field of education as a profession does not have a pedagogic signature, which he characterizes as a synthesis of cognitive, practical and moral apprenticeship. In this context, the following study has three goals: 1) In the first theoretical part, the basic problems of constructing a pedagogic signature are…

  18. 21 CFR 11.50 - Signature manifestations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.50 Signature manifestations. (a) Signed electronic... the same controls as for electronic records and shall be included as part of any human readable...

  19. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contractor's signature. 4.102 Section 4.102 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with...

  20. A Real Quantum Designated Verifier Signature Scheme

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Min; Zhou, Yi-Hua; Yang, Yu-Guang

    2015-09-01

    The effectiveness of most quantum signature schemes reported in the literature can be verified by a designated person, however, those quantum signature schemes aren't the real traditional designated verifier signature schemes, because the designated person hasn't the capability to efficiently simulate a signature which is indistinguishable from a signer, which cannot satisfy the requirements in some special environments such as E-voting, call for tenders and software licensing. For solving this problem, a real quantum designated verifier signature scheme is proposed in this paper. According to the property of unitary transformation and quantum one-way function, only a verifier designated by a signer can verify the "validity of a signature" and the designated verifier cannot prove to a third party that the signature was produced by the signer or by himself through a transcript simulation algorithm. Moreover, the quantum key distribution and quantum encryption algorithm guarantee the unconditional security of this scheme. Analysis results show that this new scheme satisfies the main security requirements of designated verifier signature scheme and the major attack strategies.

  1. Does Social Work Have a Signature Pedagogy?

    ERIC Educational Resources Information Center

    Earls Larrison, Tara; Korr, Wynne S.

    2013-01-01

    This article contributes to discourse on signature pedagogy by reconceptualizing how our pedagogies are understood and defined for social work education. We critique the view that field education is social work's signature pedagogy and consider what pedagogies are distinct about the teaching and learning of social work. Using Shulman's…

  2. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to any provisions prescribed by the Director under § 850.104— (1) An electronic communication may be... signature of an electronic communication may be deemed to satisfy any statutory or regulatory requirement... section, an electronic signature is a method of signing an electronic communication, including...

  3. Signatures of mutational processes in human cancer

    PubMed Central

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Wedge, David C.; Aparicio, Samuel A.J.R.; Behjati, Sam; Biankin, Andrew V.; Bignell, Graham R.; Bolli, Niccolo; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P.; Caldas, Carlos; Davies, Helen R.; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A.; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinsk, Marcin; Jäger, Natalie; Jones, David T.W.; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R.; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C.; Nakamura, Hiromi; Northcott, Paul A.; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V.; Puente, Xose S.; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L.; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N.; Span, Paul N.; Teague, Jon W.; Totoki, Yasushi; Tutt, Andrew N.J.; Valdés-Mas, Rafael; van Buuren, Marit M.; van ’t Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R.; Zucman-Rossi, Jessica; Futreal, P. Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M.; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M.; Campbell, Peter J.; Stratton, Michael R.

    2013-01-01

    All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy. PMID:23945592

  4. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  5. Preoperative Radiation Therapy Followed by Reexcision May Improve Local Control and Progression-Free Survival in Unplanned Excisions of Soft Tissue Sarcomas of the Extremity and Chest-Wall

    PubMed Central

    Saeed, Hina; Johnstone, Candice A.; Charlson, John A.; Hackbarth, Donald A.; Neilson, John C.

    2016-01-01

    Background. The management for unplanned excision (UE) of soft tissue sarcomas (STS) has not been established. In this study, we compare outcomes of UE versus planned excision (PE) and determine an optimal treatment for UE in STS. Methods. From 2000 to 2014 a review was performed on all patients treated with localized STS. Clinical outcomes including local recurrence-free survival (LRFS), progression-free survival (PFS), and overall survival (OS) were evaluated using the Kaplan-Meier estimate. Univariate (UVA) and multivariate (MVA) analyses were performed to determine prognostic variables. For MVA, Cox proportional hazards model was used. Results. 245 patients were included in the analysis. 14% underwent UE. Median follow-up was 2.8 years. The LR rate was 8.6%. The LR rate in UE was 35% versus 4.2% in PE patients (p < 0.0001). 2-year PFS in UE versus PE patients was 4.2 years and 9.3 years, respectively (p = 0.08). Preoperative radiation (RT) (p = 0.01) and use of any RT for UE (p = 0.003) led to improved PFS. On MVA, preoperative RT (p = 0.04) and performance status (p = 0.01) led to improved PFS. Conclusions. UEs led to decreased LC and PFS versus PE in patients with STS. The use of preoperative RT followed by reexcision improved LC and PFS in patients who had UE of their STS. PMID:27803813

  6. A generic cycling hypoxia-derived prognostic gene signature: application to breast cancer profiling

    PubMed Central

    Helleputte, Thibault; Rubio, Laila Illan; Dupont, Pierre; Feron, Olivier

    2014-01-01

    Background Temporal and local fluctuations in O2 in tumors require adaptive mechanisms to support cancer cell survival and proliferation. The transcriptome associated with cycling hypoxia (CycHyp) could thus represent a prognostic biomarker of cancer progression. Methods We exposed 20 tumor cell lines to repeated periods of hypoxia/reoxygenation to determine a transcriptomic CycHyp signature and used clinical data sets from 2,150 breast cancer patients to estimate a prognostic Cox proportional hazard model to assess its prognostic performance. Results The CycHyp prognostic potential was validated in patients independently of the receptor status of the tumors. The discriminating capacity of the CycHyp signature was further increased in the ER+ HER2- patient populations including those with a node negative status under treatment (HR=3.16) or not (HR=5.54). The CycHyp prognostic signature outperformed a signature derived from continuous hypoxia and major prognostic metagenes (P<0.001). The CycHyp signature could also identify ER+HER2 node-negative breast cancer patients at high risk based on clinicopathologic criteria but who could have been spared from chemotherapy and inversely those patients classified at low risk based but who presented a negative outcome. Conclusions The CycHyp signature is prognostic of breast cancer and offers a unique decision making tool to complement anatomopathologic evaluation. PMID:25216520

  7. Microwave Radiometric Signatures of Different Surface Types in Deserts

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Rossow, William B.; Matthews, Elaine; Marticorena, Beatrice

    1999-01-01

    In arid environments, specific microwave signatures have been observed with the Special Sensor Microwave/Imager (SSM/I). For a given diurnal change in surface skin temperature, the corresponding change in the microwave brightness temperature is smaller than expected. With the help of a 1D, time-dependent heat conduction model, this behavior is explained by microwave radiation coming from different depths in the soil, depending on the soil type and on the microwave radiation frequency. Using the eight-times daily estimates of the surface skin temperature by the International Satellite Cloud Climatology Project (ISCCP) and a simple Fresnel model, collocated month-long time series of the SSM/I brightness temperatures and the surface skin temperatures give a consistent estimate of the effective microwave emissivity and penetration depth parameters. Results are presented and analyzed for the Sahara and the Arabian Peninsula, for July and November 1992. The case of the Australian desert is also briefly mentioned. Assuming a reasonable thermal diffusivity for the soil in desert areas, the microwave radiation is estimated to come from soil layers down to depths of at least five wavelengths in some locations. Regions where the microwave radiation comes from deeper soil layers also have large microwave emissivity polarization differences and large visible reflectances, suggesting that these areas correspond to sand dune fields.

  8. Dynamic characteristics of signatures: effects of writer style on genuine and simulated signatures.

    PubMed

    Mohammed, Linton; Found, Bryan; Caligiuri, Michael; Rogers, Doug

    2015-01-01

    The aims of this study were to determine if computer-measured dynamic features (duration, size, velocity, jerk, and pen pressure) differ between genuine and simulated signatures. Sixty subjects (3 equal groups of 3 signature styles) each provided 10 naturally written (genuine) signatures. Each of these subjects then provided 15 simulations of each of three model signatures. The genuine (N = 600) and simulated (N = 2700) signatures were collected using a digitizing tablet. MovAlyzeR(®) software was used to estimate kinematic parameters for each pen stroke. Stroke duration, velocity, and pen pressure were found to discriminate between genuine and simulated signatures regardless of the simulator's own style of signature or the style of signature being simulated. However, there was a significant interaction between style and condition for size and jerk (a measure of smoothness). The results of this study, based on quantitative analysis and dynamic handwriting features, indicate that the style of the simulator's own signature and the style of signature being simulated can impact the characteristics of handwriting movements for simulations. Writer style characteristics might therefore need to be taken into consideration as potentially significant when evaluating signature features with a view to forming opinions regarding authenticity.

  9. A Molecular Signature of Proteinuria in Glomerulonephritis

    PubMed Central

    Reich, Heather N.; Tritchler, David; Cattran, Daniel C.; Eichinger, Felix; Boucherot, Anissa; Henger, Anna; Berthier, Celine C.; Nair, Viji; Cohen, Clemens D.

    2010-01-01

    Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis. PMID:20976140

  10. Aharonov-Bohm radiation

    SciTech Connect

    Jones-Smith, Katherine; Mathur, Harsh; Vachaspati, Tanmay

    2010-02-15

    A solenoid oscillating in vacuum will pair produce charged particles due to the Aharonov-Bohm (AB) interaction. We calculate the radiation pattern and power emitted for charged scalar particles. We extend the solenoid analysis to cosmic strings and find enhanced radiation from cusps and kinks on loops. We argue by analogy with the electromagnetic AB interaction that cosmic strings should emit photons due to the gravitational AB interaction of fields in the conical spacetime of a cosmic string. We calculate the emission from a kink and find that it is of similar order as emission from a cusp, but kinks are vastly more numerous than cusps and may provide a more interesting observational signature.

  11. On "A new quantum blind signature with unlinkability"

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ping; Tsai, Shang-Lun; Hwang, Tzonelih; Kao, Shih-Hung

    2017-04-01

    This article points out a security loophole in Shi et al.'s quantum blind signature scheme. By using the modification attack, a message owner can cheat a signature receiver with a fake message-signature pair without being detected.

  12. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  13. 76 FR 411 - Regulatory Guidance Concerning Electronic Signatures and Documents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Federal Motor Carrier Safety Administration Regulatory Guidance Concerning Electronic Signatures and... guidance. SUMMARY: FMCSA issues regulatory guidance concerning the use of electronic signatures and... information regarding FMCSA's acceptance of electronic signature on documents required by the Federal...

  14. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  15. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  16. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  17. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  18. Semi-automatic template matching based extraction of hyperbolic signatures in ground-penetrating radar images

    NASA Astrophysics Data System (ADS)

    Sagnard, Florence; Tarel, Jean-Philippe

    2015-04-01

    In civil engineering applications, ground-penetrating radar (GPR) is one of the main non destructive technique based on the refraction and reflection of electromagnetic waves to probe the underground and particularly detect damages (cracks, delaminations, texture changes…) and buried objects (utilities, rebars…). An UWB ground-coupled radar operating in the frequency band [0.46;4] GHz and made of bowtie slot antennas has been used because, comparing to a air-launched radar, it increases energy transfer of electromagnetic radiation in the sub-surface and penetration depth. This paper proposes an original adaptation of the generic template matching algorithm to GPR images to recognize, localize and characterize with parameters a specific pattern associated with a hyperbola signature in the two main polarizations. The processing of a radargram (Bscan) is based on four main steps. The first step consists in pre-processing and scaling. The second step uses template matching to isolate and localize individual hyperbola signatures in an environment containing unwanted reflections, noise and overlapping signatures. The algorithm supposes to generate and collect a set of reference hyperbola templates made of a small reflection pattern in the vicinity of the apex in order to further analyze multiple time signals of embedded targets in an image. The standard Euclidian distance between the template shifted and a local zone in the radargram allows to obtain a map of distances. A user-defined threshold allows to select a reduced number of zones having a high similarity measure. In a third step, each zone is analyzed to detect minimum or maximum discrete amplitudes belonging to the first arrival times of a hyperbola signature. In the fourth step, the extracted discrete data (i,j) are fitted by a parametric hyperbola modeling based on the straight ray path hypothesis and using a constraint least square criterion associated with parameter ranges, that are the position, the

  19. Radiation Therapy

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Radiation Therapy KidsHealth > For Teens > Radiation Therapy A A ... how to cope with side effects. What Is Radiation Therapy? Cancer is a disease that causes cells ...

  20. What Signatures Dominantly Associate with Gene Age?

    PubMed Central

    Yin, Hongyan; Wang, Guangyu; Ma, Lina; Yi, Soojin V.; Zhang, Zhang

    2016-01-01

    As genes originate at different evolutionary times, they harbor distinctive genomic signatures of evolutionary ages. Although previous studies have investigated different gene age-related signatures, what signatures dominantly associate with gene age remains unresolved. Here we address this question via a combined approach of comprehensive assignment of gene ages, gene family identification, and multivariate analyses. We first provide a comprehensive and improved gene age assignment by combining homolog clustering with phylogeny inference and categorize human genes into 26 age classes spanning the whole tree of life. We then explore the dominant age-related signatures based on a collection of 10 potential signatures (including gene composition, gene length, selection pressure, expression level, connectivity in protein–protein interaction network and DNA methylation). Our results show that GC content and connectivity in protein–protein interaction network (PPIN) associate dominantly with gene age. Furthermore, we investigate the heterogeneity of dominant signatures in duplicates and singletons. We find that GC content is a consistent primary factor of gene age in duplicates and singletons, whereas PPIN is more strongly associated with gene age in singletons than in duplicates. Taken together, GC content and PPIN are two dominant signatures in close association with gene age, exhibiting heterogeneity in duplicates and singletons and presumably reflecting complex differential interplays between natural selection and mutation. PMID:27609935

  1. Molecular signatures of major depression.

    PubMed

    Cai, Na; Chang, Simon; Li, Yihan; Li, Qibin; Hu, Jingchu; Liang, Jieqin; Song, Li; Kretzschmar, Warren; Gan, Xiangchao; Nicod, Jerome; Rivera, Margarita; Deng, Hong; Du, Bo; Li, Keqing; Sang, Wenhu; Gao, Jingfang; Gao, Shugui; Ha, Baowei; Ho, Hung-Yao; Hu, Chunmei; Hu, Jian; Hu, Zhenfei; Huang, Guoping; Jiang, Guoqing; Jiang, Tao; Jin, Wei; Li, Gongying; Li, Kan; Li, Yi; Li, Yingrui; Li, Youhui; Lin, Yu-Ting; Liu, Lanfen; Liu, Tiebang; Liu, Ying; Liu, Yuan; Lu, Yao; Lv, Luxian; Meng, Huaqing; Qian, Puyi; Sang, Hong; Shen, Jianhua; Shi, Jianguo; Sun, Jing; Tao, Ming; Wang, Gang; Wang, Guangbiao; Wang, Jian; Wang, Linmao; Wang, Xueyi; Wang, Xumei; Yang, Huanming; Yang, Lijun; Yin, Ye; Zhang, Jinbei; Zhang, Kerang; Sun, Ning; Zhang, Wei; Zhang, Xiuqing; Zhang, Zhen; Zhong, Hui; Breen, Gerome; Wang, Jun; Marchini, Jonathan; Chen, Yiping; Xu, Qi; Xu, Xun; Mott, Richard; Huang, Guo-Jen; Kendler, Kenneth; Flint, Jonathan

    2015-05-04

    Adversity, particularly in early life, can cause illness. Clues to the responsible mechanisms may lie with the discovery of molecular signatures of stress, some of which include alterations to an individual's somatic genome. Here, using genome sequences from 11,670 women, we observed a highly significant association between a stress-related disease, major depression, and the amount of mtDNA (p = 9.00 × 10(-42), odds ratio 1.33 [95% confidence interval [CI] = 1.29-1.37]) and telomere length (p = 2.84 × 10(-14), odds ratio 0.85 [95% CI = 0.81-0.89]). While both telomere length and mtDNA amount were associated with adverse life events, conditional regression analyses showed the molecular changes were contingent on the depressed state. We tested this hypothesis with experiments in mice, demonstrating that stress causes both molecular changes, which are partly reversible and can be elicited by the administration of corticosterone. Together, these results demonstrate that changes in the amount of mtDNA and telomere length are consequences of stress and entering a depressed state. These findings identify increased amounts of mtDNA as a molecular marker of MD and have important implications for understanding how stress causes the disease.

  2. SIRUS spectral signature analysis code

    NASA Astrophysics Data System (ADS)

    Bishop, Gary J.; Caola, Mike J.; Geatches, Rachel M.; Roberts, Nick C.

    2003-09-01

    The Advanced Technology Centre (ATC) is responsible for developing IR signature prediction capabilities for its parent body, BAE SYSTEMS. To achieve this, the SIRUS code has been developed and used on a variety of projects for well over a decade. SIRUS is capable of providing accurate IR predictions for air breathing and rocket motor propelled vehicles. SIRUS models various physical components to derive its predictions. A key component is the radiance reflected from the surface of the modeled vehicle. This is modeled by fitting parameters to the measured Bi-Directional Reflectance Function (BDRF) of the surface material(s). The ATC have successfully implemented a parameterization scheme based on the published OPTASM model, and this is described. However, inconsistencies between reflectance measurements and values calculated from the parameterized fit have led to an elliptical parameter enhancement. The implementation of this is also described. Finally, an end-to-end measurement-parameterization capability is described, based on measurements taken with SOC600 instrumentation.

  3. Molecular signatures of vaccine adjuvants.

    PubMed

    Olafsdottir, Thorunn; Lindqvist, Madelene; Harandi, Ali M

    2015-09-29

    Mass vaccination has saved millions of human lives and improved the quality of life in both developing and developed countries. The emergence of new pathogens and inadequate protection conferred by some of the existing vaccines such as vaccines for tuberculosis, influenza and pertussis especially in certain age groups have resulted in a move from empirically developed vaccines toward more pathogen tailored and rationally engineered vaccines. A deeper understanding of the interaction of innate and adaptive immunity at molecular level enables the development of vaccines that selectively target certain type of immune responses without excessive reactogenicity. Adjuvants constitute an imperative element of modern vaccines. Although a variety of candidate adjuvants have been evaluated in the past few decades, only a limited number of vaccine adjuvants are currently available for human use. A better understanding of the mode of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in shaping a desired immune response. Recent advancement in systems biology powered by the emerging cutting edge omics technology has led to the identification of molecular signatures rapidly induced after vaccination in the blood that correlate and predict a later protective immune response or vaccine safety. This can pave ways to prospectively determine the potency and safety of vaccines and adjuvants. This review is intended to highlight the importance of big data analysis in advancing our understanding of the mechanisms of actions of adjuvants to inform rational development of future human vaccines.

  4. Infrared signatures from bomb detonations

    NASA Astrophysics Data System (ADS)

    Orson, Jay A.; Bagby, William F.; Perram, Glen P.

    2003-04-01

    Remote observations of the temporal and spectral characteristics of the infrared emissions from bomb detonations have been correlated with explosion conditions. A Fourier transform interferometer was used to record spectra in the 1.6-20 μm range at spectral resolutions of 4-16 cm -1 and temporal resolutions of 0.047-0.123 s. Field observations of 56 detonation events included a set of aircraft delivered ordinance and a series of static ground detonations for a variety of bomb sizes, types and environmental conditions. The emission is well represented by a gray body with continuously decreasing temperature and characteristic decay times of 1-4 s, providing only limited variability with detonation conditions. However, the fireball size times the emissivity as a function of time can be determined from the spectra without imaging and provides a more sensitive signature. The degree of temporal overlap as a function of frequency for a pair of detonation events provides a very sensitive discriminator for explosion conditions. The temporal overlap decreases with increasing emission frequency for all the observed events, indicating more information content at higher frequencies.

  5. Molecular Signatures of Major Depression

    PubMed Central

    Cai, Na; Chang, Simon; Li, Yihan; Li, Qibin; Hu, Jingchu; Liang, Jieqin; Song, Li; Kretzschmar, Warren; Gan, Xiangchao; Nicod, Jerome; Rivera, Margarita; Deng, Hong; Du, Bo; Li, Keqing; Sang, Wenhu; Gao, Jingfang; Gao, Shugui; Ha, Baowei; Ho, Hung-Yao; Hu, Chunmei; Hu, Jian; Hu, Zhenfei; Huang, Guoping; Jiang, Guoqing; Jiang, Tao; Jin, Wei; Li, Gongying; Li, Kan; Li, Yi; Li, Yingrui; Li, Youhui; Lin, Yu-Ting; Liu, Lanfen; Liu, Tiebang; Liu, Ying; Liu, Yuan; Lu, Yao; Lv, Luxian; Meng, Huaqing; Qian, Puyi; Sang, Hong; Shen, Jianhua; Shi, Jianguo; Sun, Jing; Tao, Ming; Wang, Gang; Wang, Guangbiao; Wang, Jian; Wang, Linmao; Wang, Xueyi; Wang, Xumei; Yang, Huanming; Yang, Lijun; Yin, Ye; Zhang, Jinbei; Zhang, Kerang; Sun, Ning; Zhang, Wei; Zhang, Xiuqing; Zhang, Zhen; Zhong, Hui; Breen, Gerome; Wang, Jun; Marchini, Jonathan; Chen, Yiping; Xu, Qi; Xu, Xun; Mott, Richard; Huang, Guo-Jen; Kendler, Kenneth; Flint, Jonathan

    2015-01-01

    Summary Adversity, particularly in early life, can cause illness. Clues to the responsible mechanisms may lie with the discovery of molecular signatures of stress, some of which include alterations to an individual’s somatic genome. Here, using genome sequences from 11,670 women, we observed a highly significant association between a stress-related disease, major depression, and the amount of mtDNA (p = 9.00 × 10−42, odds ratio 1.33 [95% confidence interval [CI] = 1.29–1.37]) and telomere length (p = 2.84 × 10−14, odds ratio 0.85 [95% CI = 0.81–0.89]). While both telomere length and mtDNA amount were associated with adverse life events, conditional regression analyses showed the molecular changes were contingent on the depressed state. We tested this hypothesis with experiments in mice, demonstrating that stress causes both molecular changes, which are partly reversible and can be elicited by the administration of corticosterone. Together, these results demonstrate that changes in the amount of mtDNA and telomere length are consequences of stress and entering a depressed state. These findings identify increased amounts of mtDNA as a molecular marker of MD and have important implications for understanding how stress causes the disease. PMID:25913401

  6. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  7. Antirheumatic drugs and gene signatures.

    PubMed

    Ospelt, Caroline; Gay, Steffen

    2007-05-01

    Rheumatoid arthritis is a chronic autoimmune disease involving progressive destruction of the joints. Although a variety of antirheumatic drugs are in use, they usually only slow, and not halt, disease progression, or reverse the damage to cartilage and bone. Furthermore, treatment has to be discontinued in some cases due to toxicity and/or lack of response. By analyzing the whole transcriptome of a cell or tissue with microarray technology, a newo way of identifying treatments and discovering more about the mechanisms of known drugs has become available. This review discusses the strengths and weaknesses of microarray technology and gives an overview of gene expression studies currently performed in the field of antiheumatic therapies.

  8. Radiation Protection

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View ...

  9. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  10. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  11. Recognizing impactor signatures in the planetary record

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Gault, Donald E.

    1992-01-01

    Crater size reflects the target response to the combined effects of impactor size, density, and velocity. Isolating the effects of each variable in the cratering record is generally considered masked, if not lost, during late stages of crater modification (e.g., floor uplift and rim collapse). Important clues, however, come from the distinctive signatures of the impactor created by oblique impacts. In summary, oblique impacts allow for the identification of distinctive signatures of the impactor created during early penetration. Such signatures may further allow first-order testing of scaling relations for late crater excavation from the planetary surface record. Other aspects of this study are discussed.

  12. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  13. Remote Sensing of Body Signs and Signatures

    DTIC Science & Technology

    1985-10-01

    REMOTE SENSING OF BODY SIGNS AND SIGNATURES LPrepared For Naval Medical Research and Development Command National Naval Medical Center, Bethesda...BODY SIGNS AND SIGNATURES S~By James C. Lin and Karen H. Chan Department of Bioengineering University of Illinois at Chicago Chicago, IL 60680 Abstract...Filters Di-t lb io. I AN!ý,z.biiity Codes I’ A.IDist jor p REMOTE SENSING OF BODY SIGNS AND SIGNATURES By James C. Lin and Karen H. Chan Department

  14. Transparency in nuclear warhead dismantlement -- Limited chain of custody and warhead signatures

    SciTech Connect

    Kiernan, G.; Percival, M.; Bratcher, L.

    1996-12-31

    The goal of the US Safeguards, Transparency, and Irreversibility (STI) initiative is the development of a series of transparency measures that provide confidence that nuclear warheads are actually being dismantled and that the fissile material being removed from these dismantled weapons is not recycled into new production. A limited chain of custody (LCC) would follow a warhead from the time it is declared excess until it is actually dismantled and the fissile materials are stored. Measurement of warhead signatures is an option in LCC using radiation detection techniques to confirm that a warhead has been dismantled, without intrusive inspections within the dismantlement facility. This paper discusses LCC and warhead signatures as well as indicate first results of laboratory measurements related to warhead signatures.

  15. Pelvic radiation - discharge

    MedlinePlus

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - ...

  16. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  17. Electronic Signatures for Public Procurement across Europe

    NASA Astrophysics Data System (ADS)

    Ølnes, Jon; Andresen, Anette; Arbia, Stefano; Ernst, Markus; Hagen, Martin; Klein, Stephan; Manca, Giovanni; Rossi, Adriano; Schipplick, Frank; Tatti, Daniele; Wessolowski, Gesa; Windheuser, Jan

    The PEPPOL (Pan-European Public Procurement On-Line) project is a large scale pilot under the CIP programme of the EU, exploring electronic public procurement in a unified European market. An important element is interoperability of electronic signatures across borders, identified today as a major obstacle to cross-border procurement. PEPPOL will address use of signatures in procurement processes, in particular tendering but also post-award processes like orders and invoices. Signature policies, i.e. quality requirements and requirements on information captured in the signing process, will be developed. This as well as technical interoperability of e-signatures across Europe will finally be piloted in demonstrators starting late 2009 or early 2010.

  18. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2016-12-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  19. 15 CFR 908.16 - Signature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SUBMITTING REPORTS ON WEATHER MODIFICATION ACTIVITIES § 908.16 Signature. All reports filed with the National... or intending to conduct the weather modification activities referred to therein by such...

  20. Analysis of multispectral signatures of the shot

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Piątkowski, Tadeusz; Madura, Henryk; Bareła, Jarosław; Polakowski, Henryk

    2011-06-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper shot in typical scenarios has been presented. We take into consideration sniper activities in the open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement-class devices with high accuracy and frame rates. The registrations were simultaneously made in UV, NWIR, SWIR and LWIR spectral bands. The infrared cameras have possibilities to install optical filters for multispectral measurement. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented. LWIR imaging spectroradiometer HyperCam was also used during the laboratory measurements and field experiments. The signatures collected by HyperCam were useful for the determination of spectral characteristics of shot.

  1. Secure quantum signatures using insecure quantum channels

    NASA Astrophysics Data System (ADS)

    Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika

    2016-03-01

    Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.

  2. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  3. Irma multisensor predictive signature model

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Wellfare, Michael R.; Chenault, David B.; Talele, Sunjay E.; Blume, Bradley T.; Richards, Mike; Prestwood, Lee

    1997-06-01

    Development of target acquisition and target recognition algorithms in highly cluttered backgrounds in a variety of battlefield conditions demands a flexible, high fidelity capability for synthetic image generation. Cost effective smart weapons research and testing also requires extensive scene generation capability. The Irma software package addresses this need through a first principles, phenomenology based scene generator that enhances research into new algorithms, novel sensors, and sensor fusion approaches. Irma was one of the first high resolution synthetic infrared target and background signature models developed for tactical air-to-surface weapon scenarios. Originally developed in 1980 by the Armament Directorate of the Air Force Wright Laboratory, the Irma model was used exclusively to generate IR scenes for smart weapons research and development. in 1987, Nichols Research Corporation took over the maintenance of Irma and has since added substantial capabilities. The development of Irma has culminated in a program that includes not only passive visible, IR, and millimeter wave (MMW) channels but also active MMW and ladar channels. Each of these channels is co-registered providing the capability to develop algorithms for multi-band sensor fusion concepts and associated algorithms. In this paper, the capabilities of the latest release of Irma, Irma 4.0, will be described. A brief description of the elements of the software that are common to all channels will be provided. Each channel will be described briefly including a summary of the phenomenological effects and the sensor effects modeled in the software. Examples of Irma multi- channel imagery will be presented.

  4. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    SciTech Connect

    Zhang, Haocheng; Deng, Wei; Li, Hui; Bottcher, Markus

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.

  5. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGES

    Zhang, Haocheng; Deng, Wei; Li, Hui; ...

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  6. POLARIZATION SIGNATURES OF RELATIVISTIC MAGNETOHYDRODYNAMIC SHOCKS IN THE BLAZAR EMISSION REGION. I. FORCE-FREE HELICAL MAGNETIC FIELDS

    SciTech Connect

    Zhang, Haocheng; Deng, Wei; Li, Hui; Böttcher, Markus

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. All these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.

  7. The postprocessing of quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Ma, Jian-Feng; Cai, Xiao-Qiu

    2017-01-01

    Many novel quantum digital signature proposals have been proposed, which can effectively guarantee the information-theoretic security of the signature for a singe bit against forging and denying. Using the current basic building blocks of signing a single bit, we give a new proposal to construct an entire protocol for signing a long message. Compared with the previous work, it can improve at least 33.33% efficiency.

  8. Signature-based store checking buffer

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  9. Research Plan for Fire Signatures and Detection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.

  10. Observational signatures of linear warps in circumbinary discs

    NASA Astrophysics Data System (ADS)

    Juhász, Attila; Facchini, Stefano

    2017-01-01

    In recent years an increasing number of observational studies have hinted at the presence of warps in protoplanetary discs, however a general comprehensive description of observational diagnostics of warped discs was missing. We performed a series of 3D SPH hydrodynamic simulations and combined them with 3D radiative transfer calculations to study the observability of warps in circumbinary discs, whose plane is misaligned with respect to the orbital plane of the central binary. Our numerical hydrodynamic simulations confirm previous analytical results on the dependence of the warp structure on the viscosity and the initial misalignment between the binary and the disc. To study the observational signatures of warps we calculate images in the continuum at near-infrared and sub-millimetre wavelengths and in the pure rotational transition of CO in the sub-millimetre. Warped circumbinary discs show surface brightness asymmetry in near-infrared scattered light images as well as in optically thick gas lines at sub-millimetre wavelengths. The asymmetry is caused by self-shadowing of the disc by the inner warped regions, thus the strength of the asymmetry depends on the strength of the warp. The projected velocity field, derived from line observations, shows characteristic deviations, twists and a change in the slope of the rotation curve, from that of an unperturbed disc. In extreme cases even the direction of rotation appears to change in the disc inwards of a characteristic radius. The strength of the kinematical signatures of warps decreases with increasing inclination. The strength of all warp signatures decreases with decreasing viscosity.

  11. Possibility of observable signatures of leptonium from astrophysical sources

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Bland-Hawthorn, Joss

    2015-06-01

    The formation of positronium in our Galaxy is well measured, and has led to important and unanswered questions on the origin of the positrons. In principle it should be possible to form analogous systems from μ and τ leptons, viz. true muonium and true tauonium. However the probability of formation for these systems is greatly reduced due to the intrinsically short lifetimes of the μ and τ leptons. Likewise, the decay of the atoms is hastened by the high probability of the constituent particles decaying. Nevertheless, if sufficient numbers of μ and τ pairs are produced in high energy astrophysical environments there may be significant production of true muonium and true tauonium, despite the small probabilities. This paper addresses this possibility. We have calculated the pair production spectra of μ and τ leptons from photon-photon annihilation and electron-positron annihilation in astrophysical environments. We have computed the cross sections for radiative recombination and direct annihilation of the pairs, and the decay constants for the various allowable decays, and the wavelengths and energies of the recombination and annihilation signatures. In this way we have calculated the probabilities for the formation of true muonium and true tauonium, and the branching ratios for the various observable signatures. We have estimated the expected fluxes from accretion disks around microquasars and active galactic nuclei, and from interactions of jets with clouds and stars. We find that accretion disks around stellar mass black holes in our own Galaxy should have observable signatures at x-ray and γ -ray energies that are in principle observable with current observatories.

  12. Kinematics of Signature Writing in Healthy Aging*

    PubMed Central

    Caligiuri, Michael P.; Kim, Chi; Landy, Kelly M.

    2014-01-01

    Forensic document examiners (FDE) called upon to distinguish a genuine from a forged signature of an elderly person are often required to consider the question of age-related deterioration and whether the available exemplars reliably capture the natural effects of aging of the original writer. An understanding of the statistical relationship between advanced age and handwriting movements can reduce the uncertainty that may exist in an examiner’s approach to questioned signatures formed by elderly writers. The primary purpose of this study was to systematically examine age-related changes in signature kinematics in healthy writers. Forty-two healthy subjects between the ages of 60–91 years participated in this study. Signatures were recorded using a digitizing tablet and commercial software was used to examine the temporal and spatial stroke kinematics and pen pressure. Results indicated that vertical stroke duration and dysfluency increased with age, whereas vertical stroke amplitude and velocity decreased with age. Pen pressure decreased with age. We found that a linear model characterized the best-fit relationship between advanced age and handwriting movement parameters for signature formation. Male writers exhibited stronger age effects than female writers, especially for pen pressure and stroke dysfluency. The present study contributes to an understanding of how advanced age alters signature formation in otherwise healthy adults. PMID:24673648

  13. Chemical and Physical Signatures for Microbial Forensics

    SciTech Connect

    Cliff, John B.; Kreuzer, Helen W.; Ehrhardt, Christopher J.; Wunschel, David S.

    2012-01-03

    Chemical and physical signatures for microbial forensics John Cliff and Helen Kreuzer-Martin, eds. Humana Press Chapter 1. Introduction: Review of history and statement of need. Randy Murch, Virginia Tech Chapter 2. The Microbe: Structure, morphology, and physiology of the microbe as they relate to potential signatures of growth conditions. Joany Jackman, Johns Hopkins University Chapter 3. Science for Forensics: Special considerations for the forensic arena - quality control, sample integrity, etc. Mark Wilson (retired FBI): Western Carolina University Chapter 4. Physical signatures: Light and electron microscopy, atomic force microscopy, gravimetry etc. Joseph Michael, Sandia National Laboratory Chapter 5. Lipids: FAME, PLFA, steroids, LPS, etc. James Robertson, Federal Bureau of Investigation Chapter 6. Carbohydrates: Cell wall components, cytoplasm components, methods Alvin Fox, University of South Carolina School of Medicine David Wunschel, Pacific Northwest National Laboratory Chapter 7. Peptides: Peptides, proteins, lipoproteins David Wunschel, Pacific Northwest National Laboratory Chapter 8. Elemental content: CNOHPS (treated in passing), metals, prospective cell types John Cliff, International Atomic Energy Agency Chapter 9. Isotopic signatures: Stable isotopes C,N,H,O,S, 14C dating, potential for heavy elements. Helen Kreuzer-Martin, Pacific Northwest National Laboratory Michaele Kashgarian, Lawrence Livermore National Laboratory Chapter 10. Extracellular signatures: Cellular debris, heme, agar, headspace, spent media, etc Karen Wahl, Pacific Northwest National Laboratory Chapter 11. Data Reduction and Integrated Microbial Forensics: Statistical concepts, parametric and multivariate statistics, integrating signatures Kristin Jarman, Pacific Northwest National Laboratory

  14. Assessing the Quality of Bioforensic Signatures

    SciTech Connect

    Sego, Landon H.; Holmes, Aimee E.; Gosink, Luke J.; Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Anderson, Richard M.; Brothers, Alan J.; Corley, Courtney D.; Tardiff, Mark F.

    2013-06-04

    We present a mathematical framework for assessing the quality of signature systems in terms of fidelity, cost, risk, and utility—a method we refer to as Signature Quality Metrics (SQM). We demonstrate the SQM approach by assessing the quality of a signature system designed to predict the culture medium used to grow a microorganism. The system consists of four chemical assays designed to identify various ingredients that could be used to produce the culture medium. The analytical measurements resulting from any combination of these four assays can be used in a Bayesian network to predict the probabilities that the microorganism was grown using one of eleven culture media. We evaluated fifteen combinations of the signature system by removing one or more of the assays from the Bayes network. We demonstrated that SQM can be used to distinguish between the various combinations in terms of attributes of interest. The approach assisted in clearly identifying assays that were least informative, largely in part because they only could discriminate between very few culture media, and in particular, culture media that are rarely used. There are limitations associated with the data that were used to train and test the signature system. Consequently, our intent is not to draw formal conclusions regarding this particular bioforensic system, but rather to illustrate an analytical approach that could be useful in comparing one signature system to another.

  15. Signature extension through the application of cluster matching algorithms to determine appropriate signature transformations

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.; Rice, D. P.

    1976-01-01

    Signature extension is intended to increase the space-time range over which a set of training statistics can be used to classify data without significant loss of recognition accuracy. A first cluster matching algorithm MASC (Multiplicative and Additive Signature Correction) was developed at the Environmental Research Institute of Michigan to test the concept of using associations between training and recognition area cluster statistics to define an average signature transformation. A more recent signature extension module CROP-A (Cluster Regression Ordered on Principal Axis) has shown evidence of making significant associations between training and recognition area cluster statistics, with the clusters to be matched being selected automatically by the algorithm.

  16. Signature Simulation and Characterization of Mixed Solids in the Visible and Thermal Regimes

    NASA Astrophysics Data System (ADS)

    Carson, Tyler D.

    Solid target signatures vary due to geometry, chemical composition and scene radiometry. Although radiative transfer models and function-fit physical models may describe certain targets in limited depth, the ability to incorporate all three of these signature variables is difficult. This work describes a method to simulate the transient signatures of mixed solids and soils by first considering scene geometry that was synthetically created using 3-d physics engines. Through the assignment of spectral data from the Nonconventional Exploitation Factors Data System (NEFDS) and other libraries, synthetic scenes are represented as a chemical mixture of particles. Finally, first principles radiometry is modeled using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. With DIRSIG, radiometric and sensing conditions were systematically manipulated to produce goniometric signatures. The implementation of this virtual goniometer allows users to examine how a target bidirectional reflectance function (BRDF) and directional emissivity will change with geometry, composition and illumination direction. The tool described provides geometry flexibility that is unmatched by radiative transfer models. It delivers a discrete method to avoid the significant cost of time and treasure associated with hardware based goniometric data collections.

  17. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.

    PubMed

    Woolf, Alexander; Puchtler, Tim; Aharonovich, Igor; Zhu, Tongtong; Niu, Nan; Wang, Danqing; Oliver, Rachel; Hu, Evelyn L

    2014-09-30

    Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light-matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q ∼ 5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light-matter coupling in such systems.

  18. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures

    PubMed Central

    Thut, Gregor; Veniero, Domenica; Romei, Vincenzo; Miniussi, Carlo; Schyns, Philippe; Gross, Joachim

    2011-01-01

    Summary Background Neuronal elements underlying perception, cognition, and action exhibit distinct oscillatory phenomena, measured in humans by electro- or magnetoencephalography (EEG/MEG). So far, the correlative or causal nature of the link between brain oscillations and functions has remained elusive. A compelling demonstration of causality would primarily generate oscillatory signatures that are known to correlate with particular cognitive functions and then assess the behavioral consequences. Here, we provide the first direct evidence for causal entrainment of brain oscillations by transcranial magnetic stimulation (TMS) using concurrent EEG. Results We used rhythmic TMS bursts to directly interact with an MEG-identified parietal α-oscillator, activated by attention and linked to perception. With TMS bursts tuned to its preferred α-frequency (α-TMS), we confirmed the three main predictions of entrainment of a natural oscillator: (1) that α-oscillations are induced during α-TMS (reproducing an oscillatory signature of the stimulated parietal cortex), (2) that there is progressive enhancement of this α-activity (synchronizing the targeted, α-generator to the α-TMS train), and (3) that this depends on the pre-TMS phase of the background α-rhythm (entrainment of natural, ongoing α-oscillations). Control conditions testing different TMS burst profiles and TMS-EEG in a phantom head confirmed specificity of α-boosting to the case of synchronization between TMS train and neural oscillator. Conclusions The periodic electromagnetic force that is generated during rhythmic TMS can cause local entrainment of natural brain oscillations, emulating oscillatory signatures activated by cognitive tasks. This reveals a new mechanism of online TMS action on brain activity and can account for frequency-specific behavioral TMS effects at the level of biologically relevant rhythms. PMID:21723129

  19. The Signature of Life in Stabilized Dune Topography

    NASA Astrophysics Data System (ADS)

    Barchyn, T. E.; Hugenholtz, C.

    2012-12-01

    Life dramatically affects aeolian dunes on Earth by modifying dune morphology and immobilizing sediment. Complete immobilization (stabilization) occurs when vegetation growth shelters the surface and eliminates sediment transport (and the capacity of the dune to clear vegetation). In unidirectional dune forms stabilization is usually preceded by a period of transition dominated by pronounced morphological change (e.g., parabolic dunes). Here, we hypothesize that stabilized topography holds previously unidentified clues detailing the kinematics and behavior of vegetation during stabilization (a 'signature'). During stabilization dune ridges advance downwind and 'bulldoze' vegetation in their path. We split dune ridges into a series of wind-parallel 'dune slices' and outline how slipface vegetation could prove to be a 'tipping point' in stabilization for each dune slice. Slipface vegetation sets off a self-reinforcing stabilization feedback, simplifying our treatment and yielding two predictable behaviors: slipfaces either clear vegetation (deposition rate > vegetation deposition tolerance), or succumb to vegetation and become immobilized (deposition rate < vegetation deposition tolerance). We model slipface deposition rates through slipface geometry and show how predictable variations in classical dune forms (i) could be responsible for incipient transformation of barchan to parabolic dunes, (ii) result in a progressive stabilization feedback fundamentally inconsistent with widely used dune activity indices, and (iii) record a quantitative signature of the relative kinematics of sediment flux and vegetation growth in stabilized slipface geometries. To explore the idea in real dune fields, we extract slipface deposition rates through slipface geometry recorded in digital terrain data for three dune fields: (i) Bigstick Sand Hills, SK, Canada, (ii) White Sands, NM, USA, and (iii) Cape Cod, MA, USA. With independent estimates of sediment flux and vegetation deposition

  20. 21 CFR 11.70 - Signature/record linking.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.70 Signature/record linking. Electronic signatures and handwritten signatures executed to electronic records shall be linked to their...

  1. Subduction signature in backarc mantle?

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Snow, J. E.; Brandon, A. D.; Ohara, Y.

    2013-12-01

    Abyssal peridotites exposed during seafloor extension provide a rare glimpse into the processes occurring within the oceanic mantle. Whole rock and mineral-scale major element data from abyssal peridotites record processes intimately associated with melt-depletion and melt-rock interaction occurring just prior to exposure of the mantle at the surface. Isotopic data, however, can provide insight into the long-term evolution of the oceanic mantle. A number of studies of mantle material exposed along mid-ocean ridges have demonstrated that abyssal peridotites from Mid-Atlantic Ridge, Gakkel Ridge, and Southwest Indian Ridge commonly display a range of whole rock Os isotopic ratios (187Os/188Os = 0.118- 0.130; Brandon et al., 2000; Standish et al., 2002; Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008). The range of isotopic values in each region demonstrates that the oceanic mantle does not melt uniformly over time. Instead, anciently depleted regions (187Os/188Os ≈ 0.118) are juxtaposed against relatively fertile regions (187Os/188Os ≈ 0.130) that are isotopically similar to established primitive mantle values (187Os/188Os = 0.1296; Meisel et al. 2001). Abyssal peridotites from the Godzilla Megamullion and Chaotic Terrain in the backarc Parece Vela Basin (Philippine Sea) display a range of Os isotopic values extending to similar unradiogenic values. However, some of the backarc basin abyssal peridotites record more radiogenic 187Os/188Os values (0.135-0.170) than mid-ocean ridge peridotites. Comparable radiogenic signatures are reported only in highly weathered abyssal peridotites (187Os/188Os ≤ 0.17, Standish et al., 2002) and subduction-related volcanic arc peridotites (187Os/188Os ≤ 0.16, Brandon et al., 1996; Widom et al., 2003). In both the weathered peridotites and arc peridotites, the 187Os/188Os value is negatively correlated with Os abundance: the most radiogenic value has the lowest Os abundance (< 1 ppb) making them highly susceptible to

  2. Low power cw-laser signatures on human skin

    SciTech Connect

    Lihachev, A; Lesinsh, J; Jakovels, D; Spigulis, J

    2011-01-24

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of {approx}12 mm{sup 2}, and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of {approx}4 cm{sup 2}. The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes - 'signatures' of low power laser treatment are acquired. (application of lasers and laser-optical methods in life sciences)

  3. Searches for electromagnetic signatures of gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Soares-Santos, Marcelle

    2017-01-01

    Motivated by the exciting prospect of new wealth of information that will arise from observations of gravitational and electromagnetic radiation from the same astrophysical phenomena, our community has performed a broad range of follow-up programs for LIGO/Virgo events. In this talk, I present an overview of this effort, including results of searches for signatures of the first two LIGO-triggered binary black hole mergers in the 2015-2016 observing campaign, when multiple facilities reported searches in gamma/X-rays, optical, infra-red, and radio wavelengths. I will also discuss plans for upcoming observing campaigns and long term prospects for this exciting emerging field: multi-messenger astrophysics with gravitational waves.

  4. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  5. Efficient Unrestricted Identity-Based Aggregate Signature Scheme

    PubMed Central

    Yuan, Yumin; Zhan, Qian; Huang, Hua

    2014-01-01

    An aggregate signature scheme allows anyone to compress multiple individual signatures from various users into a single compact signature. The main objective of such a scheme is to reduce the costs on storage, communication and computation. However, among existing aggregate signature schemes in the identity-based setting, some of them fail to achieve constant-length aggregate signature or require a large amount of pairing operations which grows linearly with the number of signers, while others have some limitations on the aggregated signatures. The main challenge in building efficient aggregate signature scheme is to compress signatures into a compact, constant-length signature without any restriction. To address the above drawbacks, by using the bilinear pairings, we propose an efficient unrestricted identity-based aggregate signature. Our scheme achieves both full aggregation and constant pairing computation. We prove that our scheme has existential unforgeability under the computational Diffie-Hellman assumption. PMID:25329777

  6. Efficient unrestricted identity-based aggregate signature scheme.

    PubMed

    Yuan, Yumin; Zhan, Qian; Huang, Hua

    2014-01-01

    An aggregate signature scheme allows anyone to compress multiple individual signatures from various users into a single compact signature. The main objective of such a scheme is to reduce the costs on storage, communication and computation. However, among existing aggregate signature schemes in the identity-based setting, some of them fail to achieve constant-length aggregate signature or require a large amount of pairing operations which grows linearly with the number of signers, while others have some limitations on the aggregated signatures. The main challenge in building efficient aggregate signature scheme is to compress signatures into a compact, constant-length signature without any restriction. To address the above drawbacks, by using the bilinear pairings, we propose an efficient unrestricted identity-based aggregate signature. Our scheme achieves both full aggregation and constant pairing computation. We prove that our scheme has existential unforgeability under the computational Diffie-Hellman assumption.

  7. Irma 5.2 multi-sensor signature prediction model

    NASA Astrophysics Data System (ADS)

    Savage, James; Coker, Charles; Thai, Bea; Aboutalib, Omar; Pau, John

    2008-04-01

    The Irma synthetic signature prediction code is being developed by the Munitions Directorate of the Air Force Research Laboratory (AFRL/RW) to facilitate the research and development of multi-sensor systems. There are over 130 users within the Department of Defense, NASA, Department of Transportation, academia, and industry. Irma began as a high-resolution, physics-based Infrared (IR) target and background signature model for tactical weapon applications and has grown to include: a laser (or active) channel (1990), improved scene generator to support correlated frame-to-frame imagery (1992), and passive IR/millimeter wave (MMW) channel for a co-registered active/passive IR/MMW model (1994). Irma version 5.0 was released in 2000 and encompassed several upgrades to both the physical models and software; host support was expanded to Windows, Linux, Solaris, and SGI Irix platforms. In 2005, version 5.1 was released after extensive verification and validation of an upgraded and reengineered ladar channel. The reengineering effort then shifted focus to the Irma passive channel. Field measurements for the validation effort include both polarized and unpolarized data collection. Irma 5.2 was released in 2007 with a reengineered passive channel. This paper summarizes the capabilities of Irma and the progress toward Irma 5.3, which includes a reengineered radar channel.

  8. Cloning and detecting signature microRNAs from mammalian cells.

    PubMed

    Sun, Guihua; Li, Haitang; Rossi, John J

    2007-01-01

    MicroRNAs (miRNAs) are about 19- to 24-nucleotides long noncoding regulatory small RNAs that could silence target gene expression through base pairing to the complementary sequences in the 3' untranslated region (3'UTR) of targeted genes. They are evolutionally conserved and play an important regulatory role in embryogenesis, cell differentiation, and proliferation. They are also involved in pathogenesis and progression of some human diseases. There are about 1000 human miRNAs predicted today, and it is estimated that they could target about 30% of all human transcripts. Profiling the miRNAs that are expressed in the experimental cells became an important issue as different cells express different signature miRNAs or express the same miRNAs at different level. Small RNA cloning is a reliable way to characterize those tissue- or cell-specific signature miRNAs. This chapter describes a relatively nonlaborious polyadenylation-mediated complementary DNA (cDNA) cloning method that will identify most of the small RNAs expressed in the cells of interest. This procedure can also be used to verify bioinformatic predictions of miRNAs/small interfering RNAs (siRNAs) as well as to identify new miRNAs/siRNAs.

  9. Enhancing radiation therapy for patients with glioblastoma.

    PubMed

    Alexander, Brian M; Ligon, Keith L; Wen, Patrick Y

    2013-05-01

    Radiation therapy has been the foundation of therapy following maximal surgical resection in patients with newly diagnosed glioblastoma for decades and the primary therapy for unresected tumors. Using the standard approach with radiation and temozolomide, however, outcomes are poor, and glioblastoma remains an incurable disease with the majority of recurrences and progression within the radiation treatment field. As such, there is much interest in elucidating the mechanisms of resistance to radiation therapy and in developing novel approaches to overcoming this treatment resistance.

  10. Probing the gravitational wave signature from cosmic phase transitions at different scales

    SciTech Connect

    Krauss, Lawrence M.; Dent, James; Jones-Smith, Katherine; Mathur, Harsh

    2010-08-15

    We present a new signature by which one could potentially discriminate between a spectrum of gravitational radiation generated by a self-ordering scalar field vs that of inflation, specifically a comparison of the magnitude of a flat spectrum at frequencies probed by future direct detection experiments to the magnitude of a possible polarization signal in the cosmic microwave background radiation. In the process we clarify several issues related to the proper calculation of such modes, focusing on the effect of post-horizon-crossing evolution.

  11. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Li, Hui; Guo, Fan; Taylor, Greg

    2017-02-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  12. The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism

    PubMed Central

    Chinnaiyan, Prakash; Kensicki, Elizabeth; Bloom, Gregory; Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Eschrich, Steven; Qu, Xiaotao; Forsyth, Peter; Gillies, Robert

    2015-01-01

    Although considerable progress has been made toward understanding glioblastoma biology through large-scale genetic and protein expression analyses, little is known about the underlying metabolic alterations promoting their aggressive phenotype. We conducted global metabolomic profiling on patient-derived glioma specimens and identified specific metabolic programs differentiating low- and high-grade tumors, with the metabolic signature of glioblastoma reflecting accelerated anabolic metabolism. When coupled with transcriptional profiles, we identified the metabolic phenotype of the mesenchymal subtype to consist of accumulation of the glycolytic intermediate phosphoenolpyruvate and decreased pyruvate kinase activity. Unbiased hierarchical clustering of metabolomic profiles identified three subclasses, which we term energetic, anabolic, and phospholipid catabolism with prognostic relevance. These studies represent the first global metabolomic profiling of glioma, offering a previously undescribed window into their metabolic heterogeneity, and provide the requisite framework for strategies designed to target metabolism in this rapidly fatal malignancy. PMID:23026133

  13. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury

    PubMed Central

    Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan

    2015-01-01

    Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001

  14. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  15. Terahertz signature characterization of bio-simulants

    NASA Astrophysics Data System (ADS)

    Majewski, Alexander J.; Miller, Peter; Abreu, Rene; Grotts, Jeffrey; Globus, Tatiana; Brown, Elliott

    2005-05-01

    Collaboration with the University of Virginia (UVa) and the University of California, Santa Barbara (UCSB) has resulted in the collection of signature data in the THz region of the spectrum for ovalbumin, Bacillus Subtilis (BG) and RNA from MS2 phage. Two independent experimental measurement systems were used to characterize the bio-simulants. Prior to our efforts, only a limited signature database existed. The goal was to evaluate a larger ensemble of biological agent simulants (BG, MS2 and ovalbumin) by measuring their THz absorption spectra. UCSB used a photomixer spectrometer and UVa a Fourier Transform spectrometer to measure absorption spectra. Each group used different sample preparation techniques and made multiple measurements to provide reliable statistics. Data processing culminated in applying proprietary algorithms to develop detection filters for each simulant. Through a covariance matrix approach, the detection filters extract signatures over regions with strong absorption and ignore regions with large signature variation (noise). The discrimination capability of these filters was also tested. The probability of detection and false alarm for each simulant was analyzed by each simulant specific filter. We analyzed a limited set of Bacillus thuringiensis (BT) data (a near neighbor to BG) and were capable of discriminating between BT and BG. The signal processing and filter construction demonstrates signature specificity and filter discrimination capabilities.

  16. Shatter cones: Diagnostic impact signatures

    NASA Technical Reports Server (NTRS)

    Mchone, J. F.; Dietz, R. S.

    1988-01-01

    Uniquely fractured target rocks known as shatter cones are associated with more than one half the world's 120 or so presently known impact structures. Shatter cones are a form of tensile rock failure in which a positive conical plug separates from a negative outer cup or mold and delicate ornaments radiating from an apex are preserved on surfaces of both portions. Although distinct, shatter cones are sometimes confused with other striated geologic features such as ventifacts, stylolites, cone-in-cone, slickensides, and artificial blast plumes. Complete cones or solitary cones are rare, occurrences are usually as swarms in thoroughly fractured rock. Shatter cones may form in a zone where an expanding shock wave propagating through a target decays to form an elastic wave. Near this transition zone, the expanding primary wave may strike a pebble or other inhomogeneity whose contrasting transmission properties produce a scattered secondary wave. Interference between primary and secondary scattered waves produce conical stress fields with axes perpendicular to the plane of an advancing shock front. This model supports mechanism capable of producing such shatter cone properties as orientation, apical clasts, lithic dependence, and shock pressure zonation. Although formational mechanics are still poorly understood, shatter cones have become the simplest geologic field criterion for recognizing astroblemes (ancient terrestrial impact structures).

  17. Shatter cones: Diagnostic impact signatures

    NASA Astrophysics Data System (ADS)

    McHone, J. F.; Dietz, R. S.

    Uniquely fractured target rocks known as shatter cones are associated with more than one half the world's 120 or so presently known impact structures. Shatter cones are a form of tensile rock failure in which a positive conical plug separates from a negative outer cup or mold and delicate ornaments radiating from an apex are preserved on surfaces of both portions. Although distinct, shatter cones are sometimes confused with other striated geologic features such as ventifacts, stylolites, cone-in-cone, slickensides, and artificial blast plumes. Complete cones or solitary cones are rare, occurrences are usually as swarms in thoroughly fractured rock. Shatter cones may form in a zone where an expanding shock wave propagating through a target decays to form an elastic wave. Near this transition zone, the expanding primary wave may strike a pebble or other inhomogeneity whose contrasting transmission properties produce a scattered secondary wave. Interference between primary and secondary scattered waves produce conical stress fields with axes perpendicular to the plane of an advancing shock front. This model supports mechanism capable of producing such shatter cone properties as orientation, apical clasts, lithic dependence, and shock pressure zonation. Although formational mechanics are still poorly understood, shatter cones have become the simplest geologic field criterion for recognizing astroblemes (ancient terrestrial impact structures).

  18. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques

    PubMed Central

    Langley, Sarah R.; Willeit, Karin; Didangelos, Athanasios; Matic, Ljubica Perisic; Skroblin, Philipp; Barallobre-Barreiro, Javier; Lengquist, Mariette; Rungger, Gregor; Kapustin, Alexander; Kedenko, Ludmilla; Molenaar, Chris; Lu, Ruifang; Barwari, Temo; Suna, Gonca; Iglseder, Bernhard; Paulweber, Bernhard; Willeit, Peter; Pasterkamp, Gerard; Davies, Alun H.; Monaco, Claudia; Hedin, Ulf; Shanahan, Catherine M.; Willeit, Johann; Kiechl, Stefan

    2017-01-01

    BACKGROUND. The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the “vulnerable plaque,” necessitating an improved approach for predicting onset of symptoms. METHODS. We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS. Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION. The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING. UK: British Heart Foundation (BHF); King’s BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy’s and St

  19. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  20. Estimating physiological skin parameters from hyperspectral signatures.

    PubMed

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  1. Estimating physiological skin parameters from hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  2. Biomarker Gene Signature Discovery Integrating Network Knowledge

    PubMed Central

    Cun, Yupeng; Fröhlich, Holger

    2012-01-01

    Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches. PMID:24832044

  3. Explosives Detection: Exploitation of the Physical Signatures

    NASA Astrophysics Data System (ADS)

    Atkinson, David

    2010-10-01

    Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.

  4. A Novel Quantum Proxy Blind Signature Scheme

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Xie, Shu-Cui; Zhang, Jian-Zhong

    2017-02-01

    A novel quantum proxy blind signature scheme is proposed. In this scheme, a special type of non-maximally entangled three-qubit state is introduced as a quantum channel, which can realize perfect teleportation. The message sender U blinds his message by means of preparing two groups of non-orthogonal single-photon states. According to the original signer Charlie's delegation message, the proxy signer Alice generates a corresponding signature. The arbitrator Trent can help the receiver Bob verify the signature, and also prevent Bob from doing any damage. The above-mentioned advantages make this scheme different from some existing schemes. It is showed that our scheme has the properties of undeniability, unforgeability, blindness, untraceability. Moreover, it is free from intercept-resend attack.

  5. Nitrogen isotopic signatures in the Acapulco meteorite

    NASA Technical Reports Server (NTRS)

    Sturgeon, G.; Marti, K.

    1991-01-01

    N isotopic abundances are reported for a bulk sample of the unique meteorite Acapulco. Although the mineral chemistry indicates a high degree of recrystallization under redox conditions between those of H and E chondrites (Palme et al., 1981), the presence of two distinct N isotopic signatures shows that the carriers of these N components were not equilibrated. In stepwise pyrolysis, the larger (65 percent) N component is released mostly below 1000 C and reveals a signature of delta(N-15) = 8.9 + or - 1.2 per mil, which is within the range observed in chondrites. A second 'light' component appears above 1000 C and has a signature of delta(N-15) less than or equal to -110.5 + or - 4.0 per mil (uncorrected for spallation N-15).

  6. Quantum mechanical stabilization of Minkowski signature wormholes

    SciTech Connect

    Visser, M.

    1989-05-19

    When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.

  7. Ritual and signature in serial sexual homicide.

    PubMed

    Schlesinger, Louis B; Kassen, Martin; Mesa, V Blair; Pinizzotto, Anthony J

    2010-01-01

    Ritual and signature are fantasy-driven, repetitive crime scene behaviors that have been found to occur in serial sexual homicide. Notwithstanding numerous anecdotal case reports, ritual and signature have rarely been studied empirically. In a national sample of 38 offenders and their 162 victims, we examined behavioral and thematic consistency, as well as the evolution and uniqueness of these crime scene actions. The notion that serial sexual murderers engage in the same rituals and leave unique signatures at every scene was not supported by our data. In fact, the results suggest that the crime scene conduct of this group of offenders is fairly complex and varied. Implications of these findings for forensic assessments and criminal investigations are discussed.

  8. Orbital debris characterization with impact flash signatures

    SciTech Connect

    Ang, J.A.

    1991-12-31

    Orbital debris is recognized as a serious and growing threat to man`s utilization and exploration of space. While some information is available on the material composition of orbital debris, most measurements of orbital debris size and velocity distributions do not distinguish material type. The analysis and understanding of impact flash signatures can lead to an in-situ detector system with the ability to determine size and impact velocity distribution for orbital debris segregated by material type. This detector concept is based on an understanding of how material shock properties govern the flash signature arising from the impact of a piece of orbital debris (impactor) against a witness plate (target). Analytical results are presented that identify the most promising witness plate materials with respect to producing impact flash signatures that characterize the orbital debris material. 7 refs.

  9. Orbital debris characterization with impact flash signatures

    SciTech Connect

    Ang, J.A.

    1991-01-01

    Orbital debris is recognized as a serious and growing threat to man's utilization and exploration of space. While some information is available on the material composition of orbital debris, most measurements of orbital debris size and velocity distributions do not distinguish material type. The analysis and understanding of impact flash signatures can lead to an in-situ detector system with the ability to determine size and impact velocity distribution for orbital debris segregated by material type. This detector concept is based on an understanding of how material shock properties govern the flash signature arising from the impact of a piece of orbital debris (impactor) against a witness plate (target). Analytical results are presented that identify the most promising witness plate materials with respect to producing impact flash signatures that characterize the orbital debris material. 7 refs.

  10. Selection signatures in worldwide sheep populations.

    PubMed

    Fariello, Maria-Ines; Servin, Bertrand; Tosser-Klopp, Gwenola; Rupp, Rachel; Moreno, Carole; San Cristobal, Magali; Boitard, Simon

    2014-01-01

    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments.

  11. Selection Signatures in Worldwide Sheep Populations

    PubMed Central

    Fariello, Maria-Ines; Servin, Bertrand; Tosser-Klopp, Gwenola; Rupp, Rachel; Moreno, Carole; Cristobal, Magali San; Boitard, Simon

    2014-01-01

    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments. PMID:25126940

  12. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; Merrelli, Aronne J.; Shupe, Matthew D.; Turner, David D.

    2016-04-01

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m-2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.

  13. Improved signature prediction through coupling of ShipIR and CFD

    NASA Astrophysics Data System (ADS)

    Vaitekunas, David A.; Sideroff, Chris; Moussa, Christine

    2011-05-01

    Most existing platform signature models use semi-empirical correlations to predict flow convection on internal and external surfaces, a key element in the prediction of accurate skin signature. Although these convection algorithms are capable of predicting bulk heat transfer coefficients between each surface and the designated flow region, they are not capable of capturing local effects such as flow stagnation, flow separation, and flow history. Most computational fluid dynamics (CFD) codes lack the ability to predict changes in background solar and thermal irradiation with the environment and sun location, nor do they include multi-bounce radiative surface exchanges by default in their solvers. Existing interfaces between CFD and signature prediction typically involve a one-directional mapping of CFD predicted temperatures to the signature model. This paper describes a new functional interface between the NATO-standard ship signature model (ShipIR) and the ANSYS Fluent model, where a bi-directional mapping is used to transfer the thermal radiation predictions from ShipIR to Fluent, and after re-iteration of the CFD solution, transfer the wall and fluid temperatures back to ShipIR for further refinement of local-area heat transfer coefficients, and re-iteration of the ShipIR thermal solution. Both models converge to an RMS difference of 0.3 °C within a few successive iterations (5-6). This new functional interface is described through a detailed thermal/IR simulation of an unclassified research vessel, the Canadian Forces Auxiliary Vessel (CFAV) Quest. Future efforts to validate this new modelling approach using shipboard measurements are also discussed.

  14. An efficient and provably secure proxy signature scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhong; Liu, Xue; Gao, Shengnan

    2010-08-01

    Proxy signature is a special signature, it allows an original signer to delegate her signing capability to a proxy signer and the proxy signer can produce a signature on behalf of the original signer. At present, most of proxy signature in essence consists of two signatures. To overcome the problem, we propose a short efficient proxy signature scheme based on a certificateless signature scheme. And we show that the proposed scheme is secure in the random oracle model. The security of the scheme is related to Inverse Computational Diffie-Hellman Problem and the k-CCA problem. Comparison with Huang et.al scheme, our scheme has an advantage over Huang et.al's scheme in terms of the size of proxy signature. Since the length of proxy signature in our scheme is 160bit, it is very suitable for mobile devices.

  15. Transient thermal camouflage and heat signature control

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  16. KEA-71 Smart Current Signature Sensor (SCSS)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  17. Plasma Signatures of Radial Field Power Dropouts

    SciTech Connect

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-10-04

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and {beta} during these events.

  18. Plasma signatures of radial field power dropouts

    SciTech Connect

    Lucek, E.A.; Balogh, A.; Horbury, T.S.; McComas, D.J.

    1999-06-01

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and {beta} during these events. {copyright} {ital 1999 American Institute of Physics.}

  19. Cryptanalysis of the Quantum Group Signature Protocols

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Jia; Sun, Ying; Song, Ting-Ting; Zuo, Hui-Juan

    2013-11-01

    Recently, the researches of quantum group signature (QGS) have attracted a lot of attentions and some typical protocols have been designed for e-payment system, e-government, e-business, etc. In this paper, we analyze the security of the quantum group signature with the example of two novel protocols. It can be seen that both of them cannot be implemented securely since the arbitrator cannot solve the disputes fairly. In order to show that, some possible attack strategies, which can be used by the malicious participants, are proposed. Moreover, the further discussions of QGS are presented finally, including some insecurity factors and improved ideas.

  20. Characterization of marine macroalgae by fluorescence signatures

    NASA Technical Reports Server (NTRS)

    Topinka, J. A.; Bellows, W. Korjeff; Yentsch, C. S.

    1990-01-01

    The feasibility of distinguishing macroalgal classes by their fluorescence signatures was investigated using narrow-waveband light to excite groups of accessory pigments in brown, red, and green macroalgae and measuring fluorescence emission at 685 nm. Results obtained on 20 marine macroalgae field-collected samples showed that fluorescence excitation signatures were relatively uniform within phylogenetic classes but were substantially different for different classes. It is suggested that it may be possible to characterize the type and the abundance of subtidal macroalgae from low-flying aircraft using existing laser-induced fluorescence methodology.

  1. Enhanced Cancelable Biometrics for Online Signature Verification

    NASA Astrophysics Data System (ADS)

    Muramatsu, Daigo; Inuma, Manabu; Shikata, Junji; Otsuka, Akira

    Cancelable approaches for biometric person authentication have been studied to protect enrolled biometric data, and several algorithms have been proposed. One drawback of cancelable approaches is that the performance is inferior to that of non-cancelable approaches. In this paper, we propose a scheme to improve the performance of a cancelable approach for online signature verification. Our scheme generates two cancelable dataset from one raw dataset and uses them for verification. Preliminary experiments were performed using a distance-based online signature verification algorithm. The experimental results show that our proposed scheme is promising.

  2. Techni-Dilaton Signatures at LHC

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya; Yamawaki, Koichi

    2013-03-01

    We explore LHC discovery signatures of techni-dilaton (TD) arising as a composite pseudo Nambu-Goldstone boson (pNGB), associated with the spontaneous breaking of the approximate scale symmetry in the walking technicolor (WTC). We explicitly evaluate the TD 7 TeV LHC production cross sections times the branching ratios in terms of the TD mass MTD as an input parameter for the region 200 GeV < MTD < 1000 GeV in the typical WTC models. It turns out that the TD signatures are quite different from those of the standard model (SM) Higgs.

  3. Security problem on arbitrated quantum signature schemes

    SciTech Connect

    Choi, Jeong Woon; Chang, Ku-Young; Hong, Dowon

    2011-12-15

    Many arbitrated quantum signature schemes implemented with the help of a trusted third party have been developed up to now. In order to guarantee unconditional security, most of them take advantage of the optimal quantum one-time encryption based on Pauli operators. However, in this paper we point out that the previous schemes provide security only against a total break attack and show in fact that there exists an existential forgery attack that can validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover security against the proposed attack.

  4. Covariant change of signature in classical relativity

    NASA Astrophysics Data System (ADS)

    Ellis, G. F. R.

    1992-10-01

    This paper gives a covariant formalism enabling investigation of the possibility of change of signature in classical General Relativity, when the geometry is that of a Robertson-Walker universe. It is shown that such changes are compatible with the Einstein field equations, both in the case of a barotropic fluid and of a scalar field. A criterion is given for when such a change of signature should take place in the scalar field case. Some examples show the kind of resulting exact solutions of the field equations.

  5. Bayesian Separation of Lamb Wave Signatures

    SciTech Connect

    Kercel, SW

    2001-07-19

    A persistent problem in the analysis of Lamb wave signatures in experimental data is the fact that several different modes appear simultaneously in the signal. The modes overlap in both the frequency and time domains. Attempts to separate the overlapping Lamb wave signatures by conventional signal processing methods have been unsatisfactory. This paper reports an exciting alternative to conventional methods. Severely overlapping Lamb waves are found to be readily separable by Bayesian parameter estimation. The authors have used linear-chirped Gaussian-windowed sinusoids as models of each Lamb wave mode. The separation algorithm allows each mode to be examined individually.

  6. Transient aspects of stream interface signatures

    SciTech Connect

    Crooker, N.U.; Shodhan, S.; Forsyth, R.J.; Burton, M.E.; Gosling, J.T.; Fitzenreiter, R.J.; Lepping, R.P.

    1999-06-01

    Although stream interfaces are steady-state, corotating boundaries between slow and fast solar wind, their signatures are sometimes associated with transient features. Here the authors illustrate two modes of association: interfaces trailing interplanetary coronal mass ejections (ICMEs) at 1 AU and interfaces within ICMEs in the range 4--5 AU. The former are readily understood as boundaries between transient slow wind and steady-state fast wind, where the ICMEs add variability to the interface signatures. The latter are puzzling and may be related to evolution of interfaces.

  7. Attack and improvements of fair quantum blind signature schemes

    NASA Astrophysics Data System (ADS)

    Zou, Xiangfu; Qiu, Daowen

    2013-06-01

    Blind signature schemes allow users to obtain the signature of a message while the signer learns neither the message nor the resulting signature. Therefore, blind signatures have been used to realize cryptographic protocols providing the anonymity of some participants, such as: secure electronic payment systems and electronic voting systems. A fair blind signature is a form of blind signature which the anonymity could be removed with the help of a trusted entity, when this is required for legal reasons. Recently, a fair quantum blind signature scheme was proposed and thought to be safe. In this paper, we first point out that there exists a new attack on fair quantum blind signature schemes. The attack shows that, if any sender has intercepted any valid signature, he (she) can counterfeit a valid signature for any message and can not be traced by the counterfeited blind signature. Then, we construct a fair quantum blind signature scheme by improved the existed one. The proposed fair quantum blind signature scheme can resist the preceding attack. Furthermore, we demonstrate the security of the proposed fair quantum blind signature scheme and compare it with the other one.

  8. Space, Atmospheric, and Terrestrial Radiation Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.

    2003-01-01

    The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.

  9. Survivable pulse power space radiator

    DOEpatents

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  10. Survivable pulse power space radiator

    DOEpatents

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  11. Radiation Proctopathy

    PubMed Central

    Grodsky, Marc B.; Sidani, Shafik M.

    2015-01-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  12. Electromagnetic signatures of thin accretion disks in wormhole geometries

    SciTech Connect

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2008-10-15

    In this paper, we study the physical properties and characteristics of matter forming thin accretion disks in static and spherically symmetric wormhole spacetimes. In particular, the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained for these exotic geometries and are compared with the Schwarzschild solution. It is shown that more energy is emitted from the disk in a wormhole geometry than in the case of the Schwarzschild potential and the conversion efficiency of the accreted mass into radiation is more than a factor of 2 higher for the wormholes than for static black holes. These effects in the disk radiation are confirmed in the radial profiles of temperature corresponding to theses flux distributions, and in the emission spectrum {omega}L({omega}) of the accretion disks. We conclude that specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  13. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients

    PubMed Central

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients’ (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA. PMID:28210261

  14. A Comprehensive Gene Expression Meta-analysis Identifies Novel Immune Signatures in Rheumatoid Arthritis Patients.

    PubMed

    Afroz, Sumbul; Giddaluru, Jeevan; Vishwakarma, Sandeep; Naz, Saima; Khan, Aleem Ahmed; Khan, Nooruddin

    2017-01-01

    Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as one of the most disabling forms of arthritis. Identification of gene signatures associated with RA onset and progression would lead toward development of novel diagnostics and therapeutic interventions. This study was undertaken to identify unique gene signatures of RA patients through large-scale meta-profiling of a diverse collection of gene expression data sets. We carried out a meta-analysis of 8 publicly available RA patients' (107 RA patients and 76 healthy controls) gene expression data sets and further validated a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). We identified a robust meta-profile comprising 33 differentially expressed genes, which were consistently and significantly expressed across all the data sets. Our meta-analysis unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell samples of RA patients. Further, functional and pathway enrichment analysis reveals perturbation of several meta-genes involved in signaling pathways pertaining to inflammation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 (phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways relevant to RA including inflammasome activation, platelet aggregation, and activation, thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive inflammation during RA. In conclusion, these findings highlight the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease onset, progression and possibly lead toward the development of better diagnostic and therapeutic interventions against RA.

  15. 42 CFR 424.36 - Signature requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... personal contact between the provider, hospital, or supplier and the beneficiary (for example, a physician sent a blood sample to the provider for diagnostic tests), a representative of the provider, hospital... Part B may be signed by the entity on the beneficiary's behalf. (e) Acceptance of other signatures...

  16. The Face Signature of Fibrodysplasia Ossificans Progressiva

    PubMed Central

    Hammond, Peter; Suttie, Michael; Hennekam, Raoul C.; Allanson, Judith; Shore, Eileen M.; Kaplan, Frederick S.

    2012-01-01

    Fibrodysplasia Ossificans Progressiva (FOP) causes extensive heterotopic bone formation due to heterozygous mutations in the glycine-serine activation domain of ACVR1 (ALK2), a bone morphogenetic protein type I receptor. Anecdotal observations of facial similarity have been made by clinicians and parents, but no objective quantitative analysis of the faces of FOP patients has ever been undertaken. We delineated the common facial characteristics of 55 individuals with molecularly confirmed FOP by analysing their face signature (face shape difference normalized against age and sex matched controls) and associated face signature graphs (with face signatures as vertices and adjacency corresponding to greatest similarity). Our analysis identified 10 affected individuals whose face signature is more homogeneous than others with FOP. This distinct subgroup showed the previously identified reduced mandible as well as newly identified features: underdevelopment of the upper orbit/supra-orbital ridge; infra-orbital prominence; and, low-set ears. These findings strongly suggest that the canonical FOP mutation variably affects the postnatal morphogenesis of the normotopic cranial skeleton in the upper midface and mandible and may have important diagnostic and functional implications. PMID:22581580

  17. Tagging a monotop signature in natural SUSY

    NASA Astrophysics Data System (ADS)

    Gonçalves, Dorival; Sakurai, Kazuki; Takeuchi, Michihisa

    2017-01-01

    We study the feasibility of probing a region of natural supersymmetry where the stop and Higgsino masses are compressed. Although this region is most effectively searched for in the monojet channel, this signature is present in many other nonsupersymmetric frameworks. Therefore, another channel that carries orthogonal information is required to confirm the existence of the light stop and Higgsinos. We show that a supersymmetric version of the t t ¯H process, p p →t t˜ 1χ˜1 (2 ) 0 , can have an observably large rate when both the stop and Higgsinos are significantly light, and it leads to a distinctive monotop signature in the compressed mass region. We demonstrate that the hadronic channel of the monotop signature can effectively discriminate the signal from backgrounds by tagging a hadronic top jet. We show that the hadronic channel of the monotop signature offers a significant improvement over the leptonic channel and the sensitivity reaches mt˜1≃420 GeV at the 13 TeV LHC with 3 ab-1 luminosity.

  18. Exploring Signature Pedagogies in Undergraduate Leadership Education

    ERIC Educational Resources Information Center

    Jenkins, Daniel M.

    2012-01-01

    This research explores the instructional strategies most frequently used by leadership educators who teach academic credit-bearing undergraduate leadership studies courses through a national survey and identifies signature pedagogies within the leadership discipline. Findings from this study suggest that class discussion--whether in the form of…

  19. The Pedagogic Signature of Special Needs Education

    ERIC Educational Resources Information Center

    Weiß, Sabine; Kollmannsberger, Markus; Lerche, Thomas; Oubaid, Viktor; Kiel, Ewald

    2014-01-01

    The goal of the following study is to identify a pedagogic signature, according to LS Shulman, for working with students who have special educational needs. Special educational needs are defined as significant limitations in personal development and learning which require particular educational measures beyond regular education. The development of…

  20. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to any provisions prescribed by the Director under § 850.104— (1) An electronic communication may be... signature of an electronic communication may be deemed to satisfy any statutory or regulatory requirement... communication, including an application, claim, or notice, designation of beneficiary, or assignment that—...

  1. Signatures of black holes at the LHC

    NASA Astrophysics Data System (ADS)

    Cavaglià, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-06-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  2. Negative obstacle detection by thermal signature

    NASA Technical Reports Server (NTRS)

    Matthies, Larry; Rankin, A.

    2003-01-01

    Detecting negative obstacles (ditches, potholes, and other depressions) is one of the most difficult problems in perception for autonomous, off-road navigation. Past work has largely relied on range imagery, because that is based on the geometry of the obstacle, is largely insensitive to illumination variables, and because there have not been other reliable alternatives. However, the visible aspect of negative obstacles shrinks rapidly with range, making them impossible to detect in time to avoid them at high speed. To relive this problem, we show that the interiors of negative obstacles generally remain warmer than the surrounding terrain throughout the night, making thermal signature a stable property for night-time negative obstacle detection. Experimental results to date have achieved detection distances 45% greater by using thermal signature than by using range data alone. Thermal signature is the first known observable with potential to reveal a deep negative obstacle without actually seeing far into it. Modeling solar illumination has potential to extend the usefulness of thermal signature through daylight hours.

  3. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  4. Developing a Predictive Capability for Bioluminescence Signatures

    DTIC Science & Technology

    2011-09-30

    naval nighttime operations because the flow field associated with their motion stimulates naturally occurring plankton . In the littoral, the primary...sources of bioluminescence are dinoflagellates, common unicellular plankton that are also known to form red tides. Dinoflagellate bioluminescence is...bioluminescent signatures of some swimming fish are distinct enough to differentiate species; nocturnally foraging predators may use bioluminescent

  5. Cosmological perturbations and classical change of signature

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme

    1995-12-01

    Cosmological perturbations on a manifold admitting signature change are studied. The background solution consists in a Friedmann-Lemaître-Robertson-Walker universe filled by a constant scalar field playing the role of a cosmological constant. It is shown that no regular solution exists satisfying the junction conditions at the surface of change. The comparison with similar studies in quantum cosmology is made.

  6. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to any provisions prescribed by the Director under § 850.104— (1) An electronic communication may be... signature of an electronic communication may be deemed to satisfy any statutory or regulatory requirement... communication, including an application, claim, or notice, designation of beneficiary, or assignment that—...

  7. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to any provisions prescribed by the Director under § 850.104— (1) An electronic communication may be... signature of an electronic communication may be deemed to satisfy any statutory or regulatory requirement... communication, including an application, claim, or notice, designation of beneficiary, or assignment that—...

  8. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to any provisions prescribed by the Director under § 850.104— (1) An electronic communication may be... signature of an electronic communication may be deemed to satisfy any statutory or regulatory requirement... communication, including an application, claim, or notice, designation of beneficiary, or assignment that—...

  9. Observational signatures of self-destructive civilizations

    NASA Astrophysics Data System (ADS)

    Stevens, Adam; Forgan, Duncan; James, Jack O'malley

    2016-10-01

    We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. In some cases, the timing of the observation would prove crucial to detection, as the decay of signatures is rapid compared with humanity's communication lifetime. In others, the signatures persist on far longer timescales.

  10. Investigation of infra-red and nonequilibrium air radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.

    1995-01-01

    This report describes progress on the first year of a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this date, the radiative emission of air plasmas in the infrared has been the object of few experimental investigations, and although several infrared systems are already modeled in radiation codes such as NEQAIR, measurements are required to validate numerical predictions and indicate whether all transitions of importance are accounted for. The present program is motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Developing accurate collisional-radiative models for these excited NO states is of importance as the UV-VUV transitions of NO (beta, gamma, epsilon, beta prime, gamma prime) produce a major, if not dominant, fraction of the radiation emitted by air plasmas. During the first year of the program, research has focused on the spectral range 1.0 to 1.5 microns, as detailed in Section 2 of this report. The measurements, conducted in a 50 kW radio-frequency inductively coupled plasma torch operating on air at atmospheric pressure, extend previous shock tube investigations by Wray to a wider spectral range (1.0 to 1.5 microns vs 0.9 to 1.2 microns) and higher temperatures (7600 K in the plasma torch versus 6700 K in the shock-tube). These higher temperatures in the present experiment have made it possible to

  11. Observational signatures of binary supermassive black holes

    SciTech Connect

    Roedig, Constanze; Krolik, Julian H.; Miller, M. Coleman

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  12. Passive signatures concealed objects recorded by multispectral and hyperspectral systems in visible, infrared and terahertz range

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Kowalski, Marcin; Polakowski, Henryk; Lagueux, Philippe; Gagnon, Marc-André

    2014-06-01

    Risks to the safety of public zones (generally available for people) are related mainly to the presence of hidden dangerous objects (such as knives, guns, bombs etc.) and their usage. Modern system for the monitoring of such zones attempt to detect dangerous tools using multispectral cameras working in different spectral ranges: the visible radiation, near, medium and long range infrared and recently also in terahertz range. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 µm. An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 µm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for: two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

  13. A Translatable Predictor of Human Radiation Exposure

    PubMed Central

    Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J.; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P.

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay. PMID:25255453

  14. The effects of extrinsic motivation on signature authorship opinions in forensic signature blind trials.

    PubMed

    Dewhurst, Tahnee N; Found, Bryan; Ballantyne, Kaye N; Rogers, Doug

    2014-03-01

    Expertise studies in forensic handwriting examination involve comparisons of Forensic Handwriting Examiners' (FHEs) opinions with lay-persons on blind tests. All published studies of this type have reported real and demonstrable skill differences between the specialist and lay groups. However, critics have proposed that any difference shown may be indicative of a lack of motivation on the part of lay participants, rather than a real difference in skill. It has been suggested that qualified FHEs would be inherently more motivated to succeed in blinded validation trials, as their professional reputations could be at risk, should they perform poorly on the task provided. Furthermore, critics suggest that lay-persons would be unlikely to be highly motivated to succeed, as they would have no fear of negative consequences should they perform badly. In an effort to investigate this concern, a blind signature trial was designed and administered to forty lay-persons. Participants were required to compare known (exemplar) signatures of an individual to questioned signatures and asked to express an opinion regarding whether the writer of the known signatures wrote each of the questioned signatures. The questioned signatures comprised a mixture of genuine, disguised and simulated signatures. The forty participants were divided into two separate groupings. Group 'A' were requested to complete the trial as directed and were advised that for each correct answer they would be financially rewarded, for each incorrect answer they would be financially penalized, and for each inconclusive opinion they would receive neither penalty nor reward. Group 'B' was requested to complete the trial as directed, with no mention of financial recompense or penalty. The results of this study do not support the proposition that motivation rather than skill difference is the source of the statistical difference in opinions between individuals' results in blinded signature proficiency trials.

  15. Methods and apparatus for multi-parameter acoustic signature inspection

    DOEpatents

    Diaz, Aaron A.; Samuel, Todd J.; Valencia, Juan D.; Gervais, Kevin L.; Tucker, Brian J.; Kirihara, Leslie J.; Skorpik, James R.; Reid, Larry D.; Munley, John T.; Pappas, Richard A.; Wright, Bob W.; Panetta, Paul D.; Thompson, Jason S.

    2007-07-24

    A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.

  16. Forward secure digital signature for electronic medical records.

    PubMed

    Yu, Yao-Chang; Huang, To-Yeh; Hou, Ting-Wei

    2012-04-01

    The Technology Safeguard in Health Insurance Portability and Accountability Act (HIPAA) Title II has addressed a way to maintain the integrity and non-repudiation of Electronic Medical Record (EMR). One of the important cryptographic technologies is mentioned in the ACT is digital signature; however, the ordinary digital signature (e.g. DSA, RSA, GQ...) has an inherent weakness: if the key (certificate) is updated, than all signatures, even the ones generated before the update, are no longer trustworthy. Unfortunately, the current most frequently used digital signature schemes are categorized into the ordinary digital signature scheme; therefore, the objective of this paper is to analyze the shortcoming of using ordinary digital signatures in EMR and to propose a method to use forward secure digital signature to sign EMR to ensure that the past EMR signatures remain trustworthy while the key (certificate) is updated.

  17. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    SciTech Connect

    Torres, C.

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  18. SAR Polarimetric Signatures for Urban Targets - Polarimetric Signature Calculation and Visualization

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Sashtri, B.

    2012-08-01

    Various urban targets (land use) from Ahmedabad city were chosen, followed by generation of polarimetric signatures for each target using the developed tool. These polarimetric signatures were then studied and analyzed in detail. An attempt has been to develop a Polarimetric Signature Calculation and Visual Representation Tool assigned name "POLSIC", to generate Co-polarized and Cross polarized signatures, based on the calculation of Stokes Matrix and the backscattered power at various ellipticity and orientation angles. The input parameters required for the developed tool, are the amplitude and phase values of all the four polarizations, for each target using any quadpol radar imagery. In this study, RADARSAT-2 imagery has been used to obtain the amplitude and phase values of each target, in all four polarization states. Polarimetric signatures were generated for various urban targets using the developed tool. Vegetated land, built up in the city, built up within lake, and road were found to have an overall higher polarimetric response (backscattered power) as compared to grass lawn, fallow land and minimum in case of water body. Such Polarimetric responses were obtained due to factors like surface roughness and orientation of the target with respect to the radar look angle. The shape of the signature also indicates the scattering characteristics.

  19. Radiator technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1993-01-01

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  20. Hawking radiation

    NASA Astrophysics Data System (ADS)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  1. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  2. Signature Tracking for Optimized Nutrition and Training (STRONG)

    DTIC Science & Technology

    2014-08-01

    ii   AFRL-RH-WP-TP-2014-0038 SIGNATURE TRACKING FOR OPTIMIZED NUTRITION AND TRAINING (STRONG) Joshua Hagen Human Signatures Branch...Signature TRacking for Optimized Nutrition and TraininG (STRONG) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F 6...human performance augmentation led by multiple researchers at AFRL. Research areas include Physical Training, Nutrition /Supplementation, Signatures, and

  3. Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival.

    PubMed

    Qian, Zhongqing; Zhou, Tong; Gurguis, Christopher I; Xu, Xiaoyan; Wen, Qing; Lv, Jingzhu; Fang, Fang; Hecker, Louise; Cress, Anne E; Natarajan, Viswanathan; Jacobson, Jeffrey R; Zhang, Donna D; Garcia, Joe G N; Wang, Ting

    2015-11-24

    Nuclear factor, erythroid 2-like 2 (NFE2L2), a transcription factor also known as NF-E2-related factor 2 (Nrf2), is a key cytoprotective gene that regulates critical antioxidant and stress-responsive genes. Nrf2 has been demonstrated to be a promising therapeutic target and useful biomarker in malignant disease. We hypothesized that NFE2L2-mediated gene expression would reflect cancer severity and progression. We conducted a meta-analysis of microarray data for 240 NFE2L2-mediated genes that were enriched in tumor tissues. We then developed a risk scoring system based on NFE2L2 gene expression profiling and designated 50 tumor-associated genes as the NFE2L2-associated molecular signature (NAMS). We tested the relationship between this gene expression signature and both recurrence-free survival and overall survival in lung cancer patients. We find that NAMS predicts clinical outcome in the training cohort and in 12 out of 20 validation cohorts. Cox proportional hazard regressions indicate that NAMS is a robust prognostic gene signature, independent of other clinical and pathological factors including patient age, gender, smoking, gene alteration, MYC level, and cancer stage. NAMS is an excellent predictor of recurrence-free survival and overall survival in human lung cancer. This gene signature represents a promising prognostic biomarker in human lung cancer.

  4. Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival

    PubMed Central

    Qian, Zhongqing; Zhou, Tong; Gurguis, Christopher I.; Xu, Xiaoyan; Wen, Qing; Lv, Jingzhu; Fang, Fang; Hecker, Louise; Cress, Anne E.; Natarajan, Viswanathan; Jacobson, Jeffrey R.; Zhang, Donna D.; Garcia, Joe G. N.; Wang, Ting

    2015-01-01

    Nuclear factor, erythroid 2-like 2 (NFE2L2), a transcription factor also known as NF-E2-related factor 2 (Nrf2), is a key cytoprotective gene that regulates critical antioxidant and stress-responsive genes. Nrf2 has been demonstrated to be a promising therapeutic target and useful biomarker in malignant disease. We hypothesized that NFE2L2-mediated gene expression would reflect cancer severity and progression. We conducted a meta-analysis of microarray data for 240 NFE2L2-mediated genes that were enriched in tumor tissues. We then developed a risk scoring system based on NFE2L2 gene expression profiling and designated 50 tumor-associated genes as the NFE2L2-associated molecular signature (NAMS). We tested the relationship between this gene expression signature and both recurrence-free survival and overall survival in lung cancer patients. We find that NAMS predicts clinical outcome in the training cohort and in 12 out of 20 validation cohorts. Cox proportional hazard regressions indicate that NAMS is a robust prognostic gene signature, independent of other clinical and pathological factors including patient age, gender, smoking, gene alteration, MYC level, and cancer stage. NAMS is an excellent predictor of recurrence-free survival and overall survival in human lung cancer. This gene signature represents a promising prognostic biomarker in human lung cancer. PMID:26596768

  5. Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers

    PubMed Central

    Rogozin, Igor B.; Lada, Artem G.; Goncearenco, Alexander; Green, Michael R.; De, Subhajyoti; Nudelman, German; Panchenko, Anna R.; Koonin, Eugene V.; Pavlov, Youri I.

    2016-01-01

    Follicular lymphoma (FL) is an uncurable cancer characterized by progressive severity of relapses. We analyzed sequence context specificity of mutations in the B cells from a large cohort of FL patients. We revealed substantial excess of mutations within a novel hybrid nucleotide motif: the signature of somatic hypermutation (SHM) enzyme, Activation Induced Deaminase (AID), which overlaps the CpG methylation site. This finding implies that in FL the SHM machinery acts at genomic sites containing methylated cytosine. We identified the prevalence of this hybrid mutational signature in many other types of human cancer, suggesting that AID-mediated, CpG-methylation dependent mutagenesis is a common feature of tumorigenesis. PMID:27924834

  6. Signature Pedagogies in Support of Teachers' Professional Learning

    ERIC Educational Resources Information Center

    Parker, Melissa; Patton, Kevin; O'Sullivan, Mary

    2016-01-01

    Signature pedagogies [Shulman, L. 2005. "Signature pedagogies in the professions." "Daedalus" 134 (3): 52--59.] are a focus of teacher educators seeking to improve teaching and teacher education. The purpose of this paper is to present a preliminary common language of signature pedagogies for teacher professional development…

  7. Inverted Signature Trees and Text Searching on CD-ROMs.

    ERIC Educational Resources Information Center

    Cooper, Lorraine K. D.; Tharp, Alan L.

    1989-01-01

    Explores the new storage technology of optical data disks and introduces a data structure, the inverted signature tree, for storing data on optical data disks for efficient text searching. The inverted signature tree approach is compared to the use of text signatures and the B+ tree. (22 references) (Author/CLB)

  8. 17 CFR 1.4 - Use of electronic signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Use of electronic signatures... REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Definitions § 1.4 Use of electronic signatures. For purposes of... broker, a pool participant or a client of a commodity trading advisor, an electronic signature...

  9. 17 CFR 201.65 - Identity and signature.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Identity and signature. 201.65... of 1934 § 201.65 Identity and signature. Applications pursuant to this subpart may omit the identity, mailing address, and signature of the applicant; provided, that such identity, mailing address...

  10. 37 CFR 2.193 - Trademark correspondence and signature requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Trademark correspondence and... Correspondence in Trademark Cases § 2.193 Trademark correspondence and signature requirements. (a) Signature required. Each piece of correspondence that requires a signature must bear: (1) A handwritten...

  11. 37 CFR 2.193 - Trademark correspondence and signature requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Trademark correspondence and... Correspondence in Trademark Cases § 2.193 Trademark correspondence and signature requirements. (a) Signature required. Each piece of correspondence that requires a signature must bear: (1) A handwritten...

  12. 37 CFR 2.193 - Trademark correspondence and signature requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Trademark correspondence and... Correspondence in Trademark Cases § 2.193 Trademark correspondence and signature requirements. (a) Signature required. Each piece of correspondence that requires a signature must bear: (1) A handwritten...

  13. 37 CFR 2.193 - Trademark correspondence and signature requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Trademark correspondence and... Correspondence in Trademark Cases § 2.193 Trademark correspondence and signature requirements. (a) Signature required. Each piece of correspondence that requires a signature must bear: (1) A handwritten...

  14. Ionizing radiation and heart risks.

    PubMed

    Bhattacharya, Souparno; Asaithamby, Aroumougame

    2016-10-01

    Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.

  15. Radiation in 1.5 GeV and 12 GeV Laser Wakefield Acceleration Stages from PIC Simulations

    SciTech Connect

    Martins, J. L.; Martins, S. F.; Silva, L. O.

    2010-11-04

    A massivelly parallel post-processing radiation diagnostic for PIC codes is presented, which is then used to study the main features of the radiation from single LWFA stages (1.5 GeV and 12 GeV). This diagnostic also allows to examine radiation signatures associated with the physics of self-injection.

  16. Infra-red signature neutron detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  17. Detection of the spectroscopic signatures of explosives and their degradation products

    NASA Astrophysics Data System (ADS)

    Florian, Vivian; Cabanzo, Andrea; Baez, Bibiana; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    Detection and removal of antipersonnel and antitank landmines is a great challenge and a worldwide enviromental and humanitarian problem. Sensors tuned on the spectroscopic signature of the chemicals released from mines are a potential solution. Enviromental factors (temperature, relative humidity, rainfall precipitation, wind, sun irradiation, pressure, etc.) as well as soil characteristics (water content, compaction, porosity, chemical composition, particle size distribution, topography, vegetation, etc), have a direct impact on the fate and transport of the chemicals released from landmines. Chemicals such as TNT, DNT and their degradation products, are semi-volatile, and somewhat soluble in water. Also, they may adsorb strongly to soil particles, and are susceptible to degradation by microorganisms, light, or chemical agents. Here we show an experimental procedure to quantify the effect of the above variables on the spectroscopic signature. A number of soil tanks under controlled conditions are used to study the effect of temperature, water content, relative humidity and light radiation.

  18. A collagen-remodeling gene signature regulated by TGFβ signaling is associated with metastasis and poor survival in serous ovarian cancer

    PubMed Central

    Cheon, Dong-Joo; Tong, Yunguang; Sim, Myung-Shin; Dering, Judy; Berel, Dror; Cui, Xiaojiang; Lester, Jenny; Beach, Jessica A.; Tighiouart, Mourad; Walts, Ann E.; Karlan, Beth Y.; Orsulic, Sandra

    2013-01-01

    Purpose To elucidate molecular pathways contributing to metastatic cancer progression and poor clinical outcome in serous ovarian cancer. Experimental Design Poor survival signatures from three different serous ovarian cancer datasets were compared and a common set of genes was identified. The predictive value of this gene signature was validated in independent datasets. The expression of the signature genes was evaluated in primary, metastatic, and/or recurrent cancers using qPCR and in situ hybridization. Alterations in gene expression by TGFβ1 and functional consequences of loss of COL11A1 were evaluated using pharmacologic and knockdown approaches, respectively. Results We identified and validated a 10-gene signature (AEBP1, COL11A1, COL5A1, COL6A2, LOX, POSTN, SNAI2, THBS2, TIMP3, VCAN) that is associated with poor overall survival in patients with high-grade serous ovarian cancer. The signature genes encode extracellular matrix proteins involved in collagen remodeling. Expression of the signature genes is regulated by TGFβ1 signaling and is enriched in metastases in comparison to primary ovarian tumors. We demonstrate that levels of COL11A1, one of the signature genes, continuously increase during ovarian cancer disease progression, with the highest expression in recurrent metastases. Knockdown of COL11A1 decreases in vitro cell migration and invasion and tumor progression in mice. Conclusion Our findings suggest that collagen-remodeling genes regulated by TGFβ1 signaling promote metastasis and contribute to poor overall survival in patients with serous ovarian cancer. Our 10-gene signature has both predictive value and biological relevance and thus may be useful as a therapeutic target. PMID:24218511

  19. Radiation Therapy

    MedlinePlus

    ... can watch you during the procedure. As you go through radiation treatment, you may feel like you're all ... treatment. Avoid exposing the treated area to the sun during the weeks you're getting radiation therapy. And when the treatment's over, wear sunscreen ...

  20. Understanding Radiation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radiation is a natural energy force that has been a part of the environment since the Earth was formed. It takes various forms, none of which can be smelled, tasted, seen, heard, or felt. Nevertheless, scientists know what it is, where it comes from, how to measure and detect it, and how it affects people. Cosmic radiation from outer space and…