DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubar O.; Berman, L; Chu, Y.S.
2012-04-04
Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less
Perspectives of synchrotron radiation sources with superconductivity
NASA Astrophysics Data System (ADS)
Tanaka, Takashi
2007-10-01
The synchrotron radiation source is a magnetic device to generate a periodic magnetic field where a relativistic electron moves along a periodic trajectory and emits light called synchrotron radiation (SR), which has been used as a scientific probe for many years in various fields. Although permanent magnets (PMs) are usually used to generate the magnetic field in the SR source because of their cost-effectiveness and availability, a large number of SR sources with superconductors have been constructed for special uses, i.e., to obtain a strong magnetic field over 3 T, which cannot be achieved by using PMs alone. Most of these SR sources are composed of electromagnets with superconducting coils made of NbTi as in commercially available superconducting magnets. For stronger magnetic field, research on application of Nb3Sn is in progress. On the other hand, utilization of high Tc superconducting bulk magnets has been recently proposed and R&Ds toward realization are being carried out. This paper reviews the currents status of the SR sources with superconductivity and describes the future perspectives.
Synchrotron Radiation Workshop (SRW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubar, O.; Elleaume, P.
2013-03-01
"Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less
Status of the Siberian synchrotron radiation center
NASA Astrophysics Data System (ADS)
Ancharov, A. I.; Baryshev, V. B.; Chernov, V. A.; Gentselev, A. N.; Goldenberg, B. G.; Kochubei, D. I.; Korchuganov, V. N.; Kulipanov, G. N.; Kuzin, M. V.; Levichev, E. B.; Mezentsev, N. A.; Mishnev, S. I.; Nikolenko, A. D.; Pindyurin, V. F.; Sheromov, M. A.; Tolochko, B. P.; Sharafutdinov, M. R.; Shmakov, A. N.; Vinokurov, N. A.; Vobly, P. D.; Zolotarev, K. V.
2005-05-01
Synchrotron radiation (SR) experiments at the Budker Institute of Nuclear Physics had been started in 1973, and from 1981 the Siberian Synchrotron Radiation Center (SSRC) had an official status as Research Center of the Russian Academy of Sciences. SSRC is the research center, which is open and free of tax for the research teams from Russia and abroad. In this report some technical information about the storage rings—SR sources of the Budker INP, the main directions of activity of SSRC, experimental stations, experimental works and users—is given. Development of the free electron lasers, new SR sources and insertion devices is described.
Optimization of air gap for two-dimensional imaging system using synchrotron radiation
NASA Astrophysics Data System (ADS)
Zeniya, Tsutomu; Takeda, Tohoru; Yu, Quanwen; Hyodo, Kazuyuki; Yuasa, Tetsuya; Aiyoshi, Yuji; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao
2000-11-01
Since synchrotron radiation (SR) has several excellent properties such as high brilliance, broad continuous energy spectrum and small divergence, we can obtain x-ray images with high contrast and high spatial resolution by using of SR. In 2D imaging using SR, air gap method is very effective to reduce the scatter contamination. However, to use air gap method, the geometrical effect of finite source size of SR must be considered because spatial resolution of image is degraded by air gap. For 2D x-ray imaging with SR, x-ray mammography was chosen to examine the effect of air gap method. We theoretically discussed the optimization of air gap distance suing effective scatter point source model proposed by Muntz, and executed experiment with a newly manufactured monochromator with asymmetrical reflection and an imaging plate.
Fundamentals of Coherent Synchrotron Radiation in Storage Rings
NASA Astrophysics Data System (ADS)
Sannibale, F.; Byrd, J. M.; Loftsdottir, A.; Martin, M. C.; Venturini, M.
2004-05-01
We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.
Analytical Study of 90Sr Betavoltaic Nuclear Battery Performance Based on p-n Junction Silicon
NASA Astrophysics Data System (ADS)
Rahastama, Swastya; Waris, Abdul
2016-08-01
Previously, an analytical calculation of 63Ni p-n junction betavoltaic battery has been published. As the basic approach, we reproduced the analytical simulation of 63Ni betavoltaic battery and then compared it to previous results using the same design of the battery. Furthermore, we calculated its maximum power output and radiation- electricity conversion efficiency using semiconductor analysis method.Then, the same method were applied to calculate and analyse the performance of 90Sr betavoltaic battery. The aim of this project is to compare the analytical perfomance results of 90Sr betavoltaic battery to 63Ni betavoltaic battery and the source activity influences to performance. Since it has a higher power density, 90Sr betavoltaic battery yields more power than 63Ni betavoltaic battery but less radiation-electricity conversion efficiency. However, beta particles emitted from 90Sr source could travel further inside the silicon corresponding to stopping range of beta particles, thus the 90Sr betavoltaic battery could be designed thicker than 63Ni betavoltaic battery to achieve higher conversion efficiency.
Synchrotron radiation imaging is a powerful tool to image brain microvasculature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan
2014-03-15
Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. Inmore » the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.« less
Synchrotron radiation imaging is a powerful tool to image brain microvasculature.
Zhang, Mengqi; Peng, Guanyun; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo
2014-03-01
Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.
NASA Astrophysics Data System (ADS)
Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu
2009-10-01
There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.
A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings
NASA Astrophysics Data System (ADS)
Sannibale, F.; Byrd, J. M.; Loftsdóttir, Á.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wüstefeld, G.; Hübers, H.-W.; Warnock, R.
2004-08-01
We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSYII storage ring. We also use this model to optimize the performance of a source for stable CSR emission.
NASA Astrophysics Data System (ADS)
Valencia-Mora, Ricardo A.; Zavala-Lagunes, Edgar; Bucio, Emilio
2016-07-01
The modification of silicone rubber films (SR) was performed by radiation-induced graft polymerization of thermosensitive poly(N-vinylcaprolactam) (PNVCL) using gamma rays from a Co-60 source. The graft polymerization was obtained by a direct radiation method with doses from 5 to 70 kGy, at monomer concentrations between 5% and 70% in toluene. Grafting was confirmed by infrared, differential scanning calorimetry, thermogravimetric analysis, and swelling studies. The lower critical solution temperature (LCST) of the grafted SR was measured by swelling and differential scanning calorimetry.
Exotic X-ray Sources from Intermediate Energy Electron Beams
NASA Astrophysics Data System (ADS)
Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.
2003-08-01
High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
Thai, Wai-ee; Wai, Bryan; Lin, Kaity; Cheng, Teresa; Heist, E. Kevin; Hoffmann, Udo; Singh, Jagmeet; Truong, Quynh A.
2012-01-01
Background Efforts to reduce radiation from cardiac computed tomography (CT) are essential. Using a prospectively triggered, high-pitch dual source CT (DSCT) protocol, we aim to determine the radiation dose and image quality (IQ) in patients undergoing pulmonary vein (PV) imaging. Methods and Results In 94 patients (61±9 years, 71% male) who underwent 128-slice DSCT (pitch 3.4), radiation dose and IQ were assessed and compared between 69 patients in sinus rhythm (SR) and 25 in atrial fibrillation (AF). Radiation dose was compared in a subset of 19 patients with prior retrospective or prospectively triggered CT PV scans without high-pitch. In a subset of 18 patients with prior magnetic resonance imaging (MRI) for PV assessment, PV anatomy and scan duration were compared to high-pitch CT. Using the high-pitch protocol, total effective radiation dose was 1.4 [1.3, 1.9] mSv, with no difference between SR and AF (1.4 vs 1.5 mSv, p=0.22). No high-pitch CT scans were non-diagnostic or had poor IQ. Radiation dose was reduced with high-pitch (1.6 mSv) compared to standard protocols (19.3 mSv, p<0.0001). This radiation dose reduction was seen with SR (1.5 vs 16.7 mSv, p<0.0001) but was more profound with AF (1.9 vs 27.7 mSv, p=0.039). There was excellent agreement of PV anatomy (kappa 0.84, p<0.0001), and a shorter CT scan duration (6 minutes) compared to MRI (41 minutes, p<0.0001). Conclusions Using a high-pitch DSCT protocol, PV imaging can be performed with minimal radiation dose, short scan acquisition, and excellent IQ in patients with SR or AF. This protocol highlights the success of new cardiac CT technology to minimize radiation exposure, giving clinicians a new low-dose imaging alternative to assess PV anatomy. PMID:22586259
Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A) Conference 2016
Pouyet, Emeline; Rose, Volker; Soriano, Carmen; ...
2017-01-25
Here, the seventh edition of the international conference on Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A 2016) was held September 6–8, 2016, at the Stock Exchange Room of The Art Institute of Chicago, USA. The conference was jointly organized by seven research laboratories and museums; more precisely, the Center for Scientific Studies in the Arts (NU-ACCESS) of Northwestern University, the Art Institute of Chicago, the Field Museum Chicago, the Advanced Photon Source (APS), the Oriental Institute Chicago, the Detroit Institute of Arts, and the Indianapolis Museum of Art, in close interaction with the SR2A International Committee. Nine yearsmore » after the organization of the first SR2A conference in Grenoble, the Art Institute hosted the second biennial interdisciplinary meeting in the US.« less
Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A) Conference 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pouyet, Emeline; Rose, Volker; Soriano, Carmen
Here, the seventh edition of the international conference on Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A 2016) was held September 6–8, 2016, at the Stock Exchange Room of The Art Institute of Chicago, USA. The conference was jointly organized by seven research laboratories and museums; more precisely, the Center for Scientific Studies in the Arts (NU-ACCESS) of Northwestern University, the Art Institute of Chicago, the Field Museum Chicago, the Advanced Photon Source (APS), the Oriental Institute Chicago, the Detroit Institute of Arts, and the Indianapolis Museum of Art, in close interaction with the SR2A International Committee. Nine yearsmore » after the organization of the first SR2A conference in Grenoble, the Art Institute hosted the second biennial interdisciplinary meeting in the US.« less
Detection of bremsstrahlung radiation of 90Sr-90Y for emergency lung counting.
Ho, A; Hakmana Witharana, S S; Jonkmans, G; Li, L; Surette, R A; Dubeau, J; Dai, X
2012-09-01
This study explores the possibility of developing a field-deployable (90)Sr detector for rapid lung counting in emergency situations. The detection of beta-emitters (90)Sr and its daughter (90)Y inside the human lung via bremsstrahlung radiation was performed using a 3″ × 3″ NaI(Tl) crystal detector and a polyethylene-encapsulated source to emulate human lung tissue. The simulation results show that this method is a viable technique for detecting (90)Sr with a minimum detectable activity (MDA) of 1.07 × 10(4) Bq, using a realistic dual-shielded detector system in a 0.25-µGy h(-1) background field for a 100-s scan. The MDA is sufficiently sensitive to meet the requirement for emergency lung counting of Type S (90)Sr intake. The experimental data were verified using Monte Carlo calculations, including an estimate for internal bremsstrahlung, and an optimisation of the detector geometry was performed. Optimisations in background reduction techniques and in the electronic acquisition systems are suggested.
WE-D-BRE-01: A Sr-90 Irradiation Device for the Study of Cutaneous Radiation Injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorand, JE; Bourland, JD; Burnett, LR
2014-06-15
Purpose: To determine dosimetric character for a custom-built Sr-90 beta irradiator designed for the study of Cutaneous Radiation Injury (CRI) in a porcine animal model. In the event of a radiological accident or terrorist event, Sr-90, a fission by-product, will likely be produced. CRI is a main concern due to the low energy and superficial penetration in tissue of beta particles from Sr-90. Seven 100 mCi plaque Sr-90 radiation sources within a custom-built irradiation device create a 40 mm diameter region of radiation-induced skin injury as part of a larger project to study the efficacy of a topical keratin-based productmore » in CRI healing. Methods: A custom-built mobile irradiation device was designed and implemented for in vivo irradiations. Gafchromic™ EBT3 radiochromic film and a PTW Markus chamber type 23343 were utilized for dosimetric characterization of the beta fluence at the surface produced by this device. Films were used to assess 2-dimensional dose distribution and percent depth dose characteristics of the radiation field. Ion chamber measurements provided dose rate data within the field. Results: The radiation field produced by the irradiation device is homogeneous with high uniformity (∼5%) and symmetry (∼3%) with a steep dose fall-off with depth from the surface. Dose rates were determined to be 3.8 Gy/min and 3.3 Gy/min for film and ion chamber measurements, respectively. A dose rate of 3.4 Gy/min was used to calculate irradiation times for in vivo irradiations. Conclusion: The custom-built irradiation device enables the use of seven Sr-90 beta sources in an array to deliver a 40 mm diameter area of homogeneous skin dose with a dose rate that is useful for research purposes and clinically relevant for the induction of CRI. Doses of 36 and 42 Gy successfully produce Grade III CRI and are used in the study of the efficacy of KeraStat™. This project has been funded in whole or in part with Federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201200007C.« less
Performance of thin CaSO4:Dy pellets for calibration of a Sr90+Y90 source
NASA Astrophysics Data System (ADS)
Oliveira, M. L.; Caldas, L. V. E.
2007-09-01
Because of the radionuclide long half-life, Sr90+Y90, plane or concave sources, utilized in brachytherapy, have to be calibrated initially by the manufacturer and then routinely while they are utilized. Plane applicators can be calibrated against a conventional extrapolation chamber, but concave sources, because of their geometry, should be calibrated using relative dosimeters, as thermoluminescent (TL) materials. Thin CaSO4:Dy pellets are produced at IPEN specially for beta radiation detection. Previous works showed the feasibility of this material in the dosimetry of Sr90+Y90 sources in a wide range of absorbed dose in air. The aim of this work was to study the usefulness of these pellets for the calibration of a Sr90+Y90 concave applicator. To reach this objective, a special phantom was designed and manufactured in PTFE with semi spherical geometry. Because of the dependence of the TL response on the mass of the pellet, the response of each pellet was normalized by its mass in order to reduce the dispersion on TL response. Important characteristics of this material were obtained in reference of a standard Sr90+Y90 source, and the pellets were calibrated against a plane applicator; then they were utilized to calibrate the concave applicator.
Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.
2017-07-01
The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.
Determination of correction factors in beta radiation beams using Monte Carlo method.
Polo, Ivón Oramas; Santos, William de Souza; Caldas, Linda V E
2018-06-15
The absorbed dose rate is the main characterization quantity for beta radiation. The extrapolation chamber is considered the primary standard instrument. To determine absorbed dose rates in beta radiation beams, it is necessary to establish several correction factors. In this work, the correction factors for the backscatter due to the collecting electrode and to the guard ring, and the correction factor for Bremsstrahlung in beta secondary standard radiation beams are presented. For this purpose, the Monte Carlo method was applied. The results obtained are considered acceptable, and they agree within the uncertainties. The differences between the backscatter factors determined by the Monte Carlo method and those of the ISO standard were 0.6%, 0.9% and 2.04% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. The differences between the Bremsstrahlung factors determined by the Monte Carlo method and those of the ISO were 0.25%, 0.6% and 1% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakata, M.; Aoyagi, S.; Ogura, T.
2007-01-19
Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less
Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies.
Modenese, Alberto; Bisegna, Fabio; Borra, Massimo; Grandi, Carlo; Gugliermetti, Franco; Militello, Andrea; Gobba, Fabriziomaria
The health risk related to an excessive exposure to solar radiation (SR) is well known. The Sun represents the main exposure source for all the frequency bands of optical radiation, that is the part of the electromagnetic spectrum ranging between 100 nm and 1 mm, including infrared (IR), ultraviolet (UV) and visible radiation. According to recent studies, outdoor workers have a relevant exposure to SR but few studies available in scientific literature have attempted to retrace a detailed history of individual exposure. We propose a new method for the evaluation of SR cumulative exposure both during work and leisure time, integrating subjective and objective data. The former is collected by means of an interviewer administrated questionnaire. The latter is available through the Internet databases for many geographical regions and through individual exposure measurements. The data is integrated into a mathematical algorithm, in order to obtain an esteem of the individual total amount of SR the subjects have been exposed to during their lives. The questionnaire has been tested for 58 voluntary subjects. Environmental exposure data through online databases has been collected for 3 different places in Italy in 2012. Individual exposure by electronic UV dosimeter has been measured in 6 fishermen. A mathematical algorithm integrating subjective and objective data has been elaborated. The method proposed may be used in epidemiological studies to evaluate specific correlations with biological effects of SR and to weigh the role of the personal and environmental factors that may increase or reduce SR exposure. Med Pr 2016;67(5):577-587. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Tunable, superconducting, surface-emitting teraherz source
Welp, Ulrich [Lisle, IL; Koshelev, Alexei E [Bolingbrook, IL; Gray, Kenneth E [Evanston, IL; Kwok, Wai-Kwong [Evanston, IL; Vlasko-Vlasov, Vitalii [Downers Grove, IL
2009-10-27
A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.
Tunable, superconducting, surface-emitting teraherz source
Welp, Ulrich; Koshelev, Alexei E.; Gray, Kenneth E.; Kwok, Wai-Kwong; Vlasko-Vlasov, Vitalii
2010-05-11
A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.
Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak
2018-02-01
Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a beta-spectrometer using PIPS technology
Courti; Goutelard; Burger; Blotin
2000-07-01
Various anthropogenic sources contribute to the inventory of long live beta-emitters in the environment. Studies have been carried out to obtain the 90Sr distribution in environment in order to estimate its impact in terms of radiation exposure to humans. The Laboratory routinely measures 90Sr by proportional counter after radiochemistry. An incomplete radiochemical separation leads to a deposit submitted to count polluted by natural beta-emitters. In order to confirm the result, 90Y (daughter of 90Sr), is extracted from the final radiochemical fraction and counted. The 90Y decreasing (T(1/2) = 2.67 days) is checked by successive counts over 64 h. The delay between the end of radiochemistry and the counting is imposed by 15 days to allow radioactive equilibrium between 90Sr and 90Y to be established. In order to remove this delay the purity of the 90Sr fraction source can be verified by beta-spectrometry. Thus, a beta-spectrometer is under development in collaboration with Canberra Semi-Conductor and Canberra Electronic. It consists in a PIPS detector where several silicon layers are combined. Initial results will be presented in this paper.
National Synchrotron Light Source II storage ring vacuum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei
2016-05-15
The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less
Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.
Donaldson, Paul M; Kelley, Chris S; Frogley, Mark D; Filik, Jacob; Wehbe, Katia; Cinque, Gianfelice
2016-02-08
In this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films. Complementary offline measurements using a mechanically chopped CW IR laser confirmed that the resonant thermal expansion IR-SR measurements were below the diffraction limit, with a spatial resolution better than 500 nm achieved at a wavelength of 6 μm, i.e. λ/12 for the samples studied. Despite achieving the highest signal to noise so far for a scanning thermal microscopy measurement under conditions approaching near-field (dictated by thermal diffusion), the IR-SR resonant photothermal expansion FT-IR spectra measured were significantly higher in signal to noise in comparison with the scanning thermal data.
Evaluation of a Silicon 90Sr Betavoltaic Power Source.
Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon
2016-12-01
Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90 Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90 Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.
Evaluation of a Silicon 90Sr Betavoltaic Power Source
Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon
2016-01-01
Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles. PMID:27905521
Evaluation of a Silicon 90Sr Betavoltaic Power Source
NASA Astrophysics Data System (ADS)
Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon
2016-12-01
Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.
National Synchrotron Light Source II storage ring vacuum systems
Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...
2016-04-05
The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less
Strong terahertz radiation from relativistic laser interaction with solid density plasmas
NASA Astrophysics Data System (ADS)
Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.
2012-06-01
We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.
NASA Astrophysics Data System (ADS)
Koffman, B. G.; Goldstein, S. L.; Kaplan, M. R.; Winckler, G.; Bory, A. J. M.; Biscaye, P.
2015-12-01
Atmospheric dust directly influences Earth's climate by altering the radiative balance and by depositing micronutrients in the surface ocean, affecting global biogeochemical cycling. In addition, mineral dust particles provide observational evidence constraining past atmospheric circulation patterns. Because dust can originate from both local and distant terrestrial sources, knowledge of dust provenance can substantially inform our understanding of past climate history, atmospheric transport pathways, and differences in aerosol characteristics between glacial and interglacial climate states. Dust provenance information from Antarctic ice cores has until now been limited to sites in East Antarctica. Here we present some of the first provenance data from West Antarctica. We use Sr-Nd isotopes to characterize dust extracted from late Holocene ice (~1000-1800 C.E.) from the Siple Dome ice core. The data form a tight array in Sr-Nd isotope space, with 87Sr/86Sr ranging between ~0.7087 and 0.7102, and ɛNd ranging between ~ -7 and -16. This combination is unique for Antarctica, with low Nd and low Sr isotope ratios compared to high-elevation East Antarctic sites, requiring a dust source from ancient (Archean to early Proterozoic) and unweathered continental crust, which mixes with young volcanic material. Both components are likely sourced from Antarctica. We also observe significant, systematic variability in Sr and Nd isotopic signatures through time, reflecting changes in the mixing ratio of these sources, and hypothesize that these changes are driven by shifts in circulation patterns. A large change occurs over about 10 years at ca. 1125 C.E. (ΔɛNd = +3 and Δ87Sr/86Sr = -0.0014). This shift coincides with changes in climate proxies in Southern Hemisphere paleoclimate records reflecting variability in the Westerlies. We therefore interpret the shift in dust provenance at Siple Dome to be related to larger-scale circulation changes. In general, the observed shifts in the particle source signatures indicate that dust transport pathways to and around the West Antarctic Ice Sheet are highly responsive to perturbations in atmospheric circulation, and can record rapid shifts in provenance.
Ablation of biological tissues by radiation of strontium vapor laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru
2015-11-17
A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablationmore » of bone tissue samples without visible thermal damage.« less
Angular behavior of synchrotron radiation harmonics.
Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T
2004-04-01
The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.
Contribution of Hanford liquid effluents to strontium-90 levels in offsite soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaquish, R.E.
1993-08-01
Strontium-90 is a major constituent of liquid effluents entering the Columbia River at the 100-N Area. The Columbia River also contains {sup 90}Sr from world-wide fallout that enters the Columbia River upstream of Hanford. Irrigation water pumped from the Columbia River can deposit {sup 90}Sr on soil where it can be taken up by farm crops. Fallout has also deposited {sup 90}Sr directly on soil by atmospheric deposition. A review of the sources of {sup 90}Sr in soil in the vicinity of Hanford indicates that about 2% can be attributed to Hanford liquid effluents. PNL measurements of {sup 90}Sr inmore » soil at a background location agree with predicted levels of fallout made by the Federal Radiation Council in 1964. Alfalfa is routinely monitored for {sup 90}Sr and is of special interest since it has concentrations higher than other farm crops. The concentrations of {sup 90}Sr in alfalfa measured in the Hanford vicinity are in the range one would expect, based on measured soil concentrations and using uptake factors from an earlier {sup 90}Sr uptake study at Hanford.« less
Ultraviolet out-of-band radiation studies in laser tin plasma sources
NASA Astrophysics Data System (ADS)
Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin
2017-11-01
Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.
Computerized tomography platform using beta rays
NASA Astrophysics Data System (ADS)
Paetkau, Owen; Parsons, Zachary; Paetkau, Mark
2017-12-01
A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.
The Strontium Filament within the Homunculus of Eta Carinae
NASA Technical Reports Server (NTRS)
Gull, Theodore R.; Hartman, H.; Zethson, T.; Johansson, S.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)
2001-01-01
During a series of HST/STIS observations of Eta Carinae and associated ejecta, we noticed a peculiar emission filament located a few arcseconds north of the central source. While bright in nebular standards, it is submerged in a sea of scattered starlight until moderately high dispersion, long-slit spectroscopy with the STIS (R- 8000) brings the emission lines out. The initial spectrum, centered on 6768A with the STIS G750M grating, led to identification of twenty lines from singly-Ionized species including [Sr II], [Fe II], [Ti II], [Ni II], [Mn II], and [Co II] (Zethson, etal., 2001, AJ 122,322). No Balmer emission is detected from this filament and the Fe II 2507,9 lines, known to be pumped by Lyman alpha radiation in other regions near the central source, are not detected. Followup observations have led to detection of hundreds more emission lines from iron group elements in neutral and singly-ionized states. Thus far all are excited by less than 10 eV. This peculiar nebular emission is thought to be due to very intense stellar radiation, stripped of uv flux shortward of Lyman alpha, bathing a neutral structure. We are systematically identifying the many lines (over 90% identified) and measuring line intensities that will then be modeled to determine excitation mechanisms, temperature and density. Two [Sr II] and two Sr II lines have now been measured. Bautista, etal. (in preparation) have modeled the strontium flux ratios and find that large radiation fluxes and/or high strontium abundances may account for the detected emission. These observations were supported by STIS GTO funding and GO funding through the STScI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Pereira, Maria da Conceicao Costa
2015-07-01
The Nuclear and Energy Research Institute - IPEN, offers post-graduate programs, namely: Nuclear Technology - Applications (TNA), Nuclear Technology - Materials (TNM), Nuclear Technology - Reactors (TNR). The Institute programs mission is to form expert technicians, physicists and engineers with a strong knowledge in their discipline to work in the nuclear area. The course: 'Theoretical Fundamentals and Practices of the Instrumentation used in Nuclear Data Acquisition' covers the use of laboratory nuclear instrumentation and the accomplishment of experiments to obtain nuclear parameters. One of these experimental exercises is object of this work: 'Study of influence of plastic scintillators to detectmore » Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources'. The use of scintillators plastic for the detection has the advantage of low cost, high mechanical strength, is not hygroscopic and can be manufactured in large volumes. This work aims to present the analysis of relative efficiency of detection of plastic scintillators of various thicknesses for beta particles and gamma radiation by the spectrum of {sup 137}Cs and {sup 90}Sr. Due to lack of resolution of the detectors plastic scintillators we worked with relative efficiency. The evaluation was done by reading deposited energy, using the software MAESTRO, for each detector thickness. For beta particles was observed an ideal thickness around 3 mm and the better photon efficiency was observed with increasing the thickness of the detector. The present experiment does not intend to establish a new technique for this subject: it solely aims student's practical exercises in nuclear properties of elements and detectors being part of the nuclear experimental course. (authors)« less
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
Review of third and next generation synchrotron light sources
NASA Astrophysics Data System (ADS)
Bilderback, Donald H.; Elleaume, Pascal; Weckert, Edgar
2005-05-01
Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century.
Diamond Light Source: status and perspectives.
Materlik, Gerhard; Rayment, Trevor; Stuart, David I
2015-03-06
Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Barium iodide and strontium iodide crystals andd scintillators implementing the same
Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold
2013-11-12
In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.
Simulation of angular and energy distributions of the PTB beta secondary standard.
Faw, R E; Simons, G G; Gianakon, T A; Bayouth, J E
1990-09-01
Calculations and measurements have been performed to assess radiation doses delivered by the PTB Secondary Standard that employs 147Pm, 204Tl, and 90Sr:90Y sources in prescribed geometries, and features "beam-flattening" filters to assure uniformity of delivered doses within a 5-cm radius of the axis from source to detector plane. Three-dimensional, coupled, electron-photon Monte Carlo calculations, accounting for transmission through the source encapsulation and backscattering from the source mounting, led to energy spectra and angular distributions of electrons penetrating the source encapsulation that were used in the representation of pseudo sources of electrons for subsequent transport through the atmosphere, filters, and detectors. Calculations were supplemented by measurements made using bare LiF TLD chips on a thick polymethyl methacrylate phantom. Measurements using the 204Tl and 90Sr:90Y sources revealed that, even in the absence of the beam-flattening filters, delivered dose rates were very uniform radially. Dosimeter response functions (TLD:skin dose ratios) were calculated and confirmed experimentally for all three beta-particle sources and for bare LiF TLDs ranging in mass thickness from 10 to 235 mg cm-2.
Determination of transmission factors in beta radiation beams.
Polo, Ivón Oramas; Caldas, Linda V E
2018-06-01
In beta emitters, in order to evaluate the absorbed dose rate at different tissue depths, it is necessary to determine the transmission factors. In this work, the transmission factors determined in beta secondary standard radiation beams are presented. For this purpose, an extrapolation chamber was used. The results obtained were considered acceptable, and they are within the uncertainties in comparison with the values provided by the source calibration certificate. The maximum differences between the results obtained in this work and those from the calibration certificate were 3.3%, 3.8% and 5.9% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radiation studies of optical and electronic components used in astronomical satellite studies
NASA Technical Reports Server (NTRS)
Becher, J.; Kernell, R. L.
1981-01-01
The synchronous orbit of the IUE carries the satellite through Earth's outer electron belt. A 40 mCi Sr90 source was used to simulate these electrons. A 5 mCi source of Co60 was used to simulate bremmstrahlung. A 10 MeV electron Linac and a 1.7 MeV electron Van de Graaf wer used to investigate the energy dependence of radiation effects and to perform radiations at a high flux rate. A 100 MeV proton cyclotron was used to simulate cosmic rays. Results are presented for three instrument systems of the IUE and measurements for specific components are reported. The three instrument systems were the ultraviolet converter, the fine error sensor (FES), and the SEC vidicon camera tube. The components were optical glasses, electronic components, silicon photodiodes, and UV window materials.
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2012-10-01
New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.
NASA Astrophysics Data System (ADS)
Christensen, J. N.; Cliff, S. S.; Vancuren, R. A.; Perry, K. D.; Depaolo, D. J.
2006-12-01
Research over the past decade has highlighted the importance of intercontinental transport and exchange of atmospheric aerosols, including soil-derived dust and industrial pollutants. Far-traveled aerosols can affect air quality, atmospheric radiative forcing and cloud formation and can be an important component in soils. Principal component analysis of elemental data for aerosols collected over California has identified a persistent Asian soil dust component that peaks with Asian dust storm events [1]. Isotopic fingerprinting can provide an additional and potentially more discriminating tool for tracing sources of dust. For example, the naturally variable isotopic compositions of Sr and Nd reflect both the geochemistry of the dust source and its pre- weathering geologic history. Sr and Nd isotopic data and chemical data have been collected for a time series of PM2.5 filter samples from Hefei, China taken from eraly April into early May, 2002. This period encompassed a series of dust storms. The sampling time frame overlapped with the 2002 Intercontinental Transport and Chemical Transformation (ITCT-2K2) experiment along the Pacific coast of North America and inland California. Highs in 87Sr/86Sr in the Hefei time series coincide with peaks in Ca and Si representing peaks in mineral particulate loading resulting from passing dust storms. Mixing diagrams combining isotopic data with chemical data identify several components; a high 87Sr/86Sr component that we identify with mineral dust (loess), and two different low 87Sr/86Sr components (local sources and marine aerosol). Using our measured isotopic composition of the "loess" standard CJ-1 [2] as representative of the pure high 87Sr/86Sr component, we calculate 24 hour average loess particulate concentrations in air which range up to 35 micrograms per cubic meter. Marine aerosol was a major component on at least one of the sampled days. The results for the Hefei samples provide a basis for our isotopic study of California mineral aerosols, including the identification and apportionment of local and far-traveled Asian dust components and their variation in time. [1]VanCuren R.A., Cliff, S.S., Perry, K.D. and Jimenez-Cruz, M. (2005) J. Geophys. Res., 110, D09S90, doi: 10.1029/2004JD004973 [2]Nishikawa, M., Hao, Q. and Morita, M. (2000) Global Environ. Res. 4, 1:103-113.
Dexmedetomidine acts as an oxidative damage prophylactic in rats exposed to ionizing radiation.
Kutanis, Dilek; Erturk, Engin; Besir, Ahmet; Demirci, Yucel; Kayir, Selcuk; Akdogan, Ali; Vanizor Kural, Birgul; Bahat, Zumrut; Canyilmaz, Emine; Kara, Hanife
2016-11-01
To investigate the effects of dexmedetomidine on oxidative injury caused by ionizing radiation. Randomized controlled experimental study. Department of radiation oncology and research laboratory of an academic hospital. Twenty-eight rats were randomized to 4 groups (n=7 per group). Group S rats were administered physiologic serum; group SR rats were administered physiologic serum and 10 Gy external ionizing radiation. Groups D100 and D200 were administered 100 and 200 μg/kg dexmedetomidine intraperitoneally, respectively, 45 minutes before ionizing radiation. Liver, kidney, lung, and thyroid tissue and serum levels of antioxidant enzymes (glutathione peroxidase [GPX], superoxide dismutase, and catalase) and oxidative metabolites (advanced oxidation protein products, malondialdehyde, and nitrate/nitrite, and serum ischemia-modified albumin) were measured 6 hours postprocedure. In group SR, IR decreased antioxidant enzyme levels and increased oxidative metabolite levels (P<.05). In plasma, antioxidant enzyme levels were higher and oxidative metabolite levels were lower in groups D100 and D200 than in group SR (P<.01). In tissues, hepatic and lung GPX levels were higher in groups D100 and D200 than in group SR (P<.001). Renal and thyroid GPX levels were higher in D200 than in group SR (P<.01). Thyroid superoxide dismutase levels were higher in groups D100 and D200 than in group SR (P<.01). Renal, lung, and thyroid catalase levels were higher in group D200 than in group SR (P<.01). Hepatic, renal, and lung advanced oxidation protein products and malondialdehyde levels were lower in groups D100 and D200 than in group SR (P<.01). Hepatic, renal, and lung nitrate/nitrite levels were lower in group D200 than in group SR (P<.05). Dexmedetomidine preserves the antioxidant enzyme levels and reduces toxic oxidant metabolites. Therefore, it can provide protection from oxidative injury caused by ionizing radiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation
NASA Astrophysics Data System (ADS)
Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.
2001-07-01
We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.
Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents
Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai
2012-01-01
Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810
The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation
NASA Astrophysics Data System (ADS)
Su, X.; Liu, C. G.; Yang, D. Y.; Wen, J.; Fu, E. G.; Zhang, J.; Chen, L. J.; Xu, D. P.; Wang, Y. Q.; Li, Y. H.
2015-11-01
The structural behavior of polycrystalline perovskite SrTiO3 under 400 keV Ne2+ ion irradiation at both liquid nitrogen (LN2) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO3 depends strongly on the irradiation temperature. At LN2 temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne2+ irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO3. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO3.
Species arboreal as a bioindicator of the environmental pollution: Analysis by SR-TXRF
NASA Astrophysics Data System (ADS)
de Vives, Ana Elisa Sirito; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Medeiros, Jean Gabriel S.; Filho, Mario Tomazello; Zucchi, Orghêda Luiza Araújo Domingues; do Nascimento Filho, Virgilio Franco; Barroso, Regina Cely
2007-08-01
This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and countrysides. The sample collection was carried out in Piracicaba city, São Paulo State, that presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicle combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ("Sibipiruna") was selected because it is often used in urban arborization. Synchrotron radiation X-ray fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and an Si(Li) detector for X-ray detection. In several samples were quantified P, K, Ca, Ti, Fe, Sr, Ba and Pb elements.
2-SR-based electrically small antenna for RFID applications
NASA Astrophysics Data System (ADS)
Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Zamora, Gerard; Martin, Ferran; Bonache, Jordi
2016-04-01
In this work, the 2-turn spiral resonator (2-SR) is proposed as an electrically small antenna for passive radio frequency identification (RFID) tags at the European ultra-high frequency (UHF) band. The radiation properties are studied in order to explore the viability of the 2-SR applied to tag antenna design. Based on analytical calculations, the radiation pattern is found to provide a cancelation of the radiation nulls. This results in a mitigation of the blind spots in the read range, which are present in typical UHF-RFID tags as an undesired feature. As a proof of concept, a passive tag of size 35 mm × 40 mm (λ 0/10 × λ 0/9) based on the 2-SR antenna is designed and fabricated. Good radiation efficiency (75 %) and a quasi-isotropic radiation pattern are obtained. The experimental tag read range for different directions is in good agreement with the simulation results. The measured read range exhibits maximum and minimum values of 6.7 and 3.5 m, respectively.
A beam radiation monitor based on CVD diamonds for SuperB
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.
2013-08-01
Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Umetani, Keiji; Doi, Toshiki; Itai, Yuji; Yu, Quanwen; Akatsuka, Takao
1999-10-01
At aortic regurgitation state, 2D synchrotron radiation (SR) coronary arteriography (CAG) with aortographic contrast injection was examined theoretically and animal experiments were performed to confirm its diagnostic ability. This system consisted of a silicon monocrystal, fluorescent plate, avalanche-type pickup tube camera, and image acquisition system. The experiment was performed at synchrotron sources in the Photon Factory of Tsukuba. The x- ray energy was adjusted to just above the iodine K-edge. Theoretical calculation described that the coronary arteries overlapping on left ventricle could not be demonstrated well with a high signal-to-noise ratio by using the aortographic CAG with SR. The canine coronary arteries without overlap over the left ventricle were demonstrated clearly, however, the image quality appear to be reduced. The coronary artery overlapping over left ventricle could not be demonstrated well, however the transient reduction of left ventricular wall motion was revealed by transient stenotic procedure of left anterior descending coronary artery.
NASA Astrophysics Data System (ADS)
Hartman, Gideon; Richards, Mike
2014-02-01
The relative contributions of bedrock and atmospheric sources to bioavailable strontium (Sr) pools in local soils was studied in Northern Israel and the Golan regions through intensive systematic sampling of modern plants and invertebrates, to produce a map of modern bioavailable strontium isotope ratios (87Sr/86Sr) for regional reconstructions of human and animal mobility patterns. The study investigates sources of variability in bioavailable 87Sr/86Sr ratios, in particular the intra-and inter-site range of variation in plant 87Sr/86Sr ratios, the range of 87Sr/86Sr ratios of plants growing on marine sedimentary versus volcanic geologies, the differences between ligneous and non-ligneous plants with varying growth and water utilization strategies, and the relative contribution of atmospheric Sr sources from different soil and vegetation types and climatic zones. Results indicate predictable variation in 87Sr/86Sr ratios. Inter- and intra-site differences in bioavailable 87Sr/86Sr ratios average of 0.00025, while the range of 87Sr/86Sr ratios measured regionally in plants and invertebrates is 0.7090 in Pleistocene calcareous sandstone and 0.7074 in mid-Pleistocene volcanic pyroclast. The 87Sr/86Sr ratios measured in plants growing on volcanic bedrock show time dependent increases in atmospheric deposition relative to bedrock weathering. The 87Sr/86Sr ratios measured in plants growing on renzina soils depends on precipitation. The spacing between bedrock 87Sr/86Sr ratios and plants is highest in wet conditions and decreases in dry conditions. The 87Sr/86Sr ratios measured in plants growing on terra rossa soils is relatively constant (0.7085) regardless of precipitation. Ligneous plants are typically closer to bedrock 87Sr/86Sr ratios than non-ligneous plants. Since the bioavailable 87Sr/86Sr ratios currently measured in the region reflect a mix of both exogenous and endogenous sources, changes in the relative contribution of exogenous sources can cause variation over time. Precipitation, the age of the bedrock and the overall Sr concentration must to be taken into consideration when interpreting geographical variation in strontium isotopes throughout a region. Because these factors can change through time, we recommend that Sr data from time periods older than the Holocene be interpreted with caution. What is the range of variation in the 87Sr/86Sr ratios of vegetation within individual sampling locales? Are there differences in the 87Sr/86Sr ratios of ligneous (woody plants) and non-ligneous (herbaceous plants) within a single sampling location? What is the range of variability in the 87Sr/86Sr ratios of plants growing on marine sedimentary and volcanic geologies? How do the relative contributions of atmospheric Sr sources vary with geology, precipitation, distance from the sea, soil type, and vegetation type. Outlining Sr variability will enable the prediction of the Sr ratio of herbivores in various ecological niches as well as the mapping of bioavailable Sr ratios for a range of pre-Holocene landscapes.In contrast to previous mapping efforts in the region (Shewan, 2004; Perry et al., 2009), this study takes a systematic approach that examines the relative contribution of atmospherically deposited Sr and local weathered bedrock Sr sources to local bioavailable 87Sr/86Sr pools. This is based on the intensive sampling of plants and herbivorous invertebrates primarily from volcanic landscapes and marine sedimentary landscapes composed by large of limestone, dolomite, chalk and marl. The repeated sampling of individual locales, and comparisons between distinct locales of the same geological outcrops were initially planned to detemine the degree of homogeneity of bioavailable 87Sr/86Sr ratios for the purpose of regional landscape mapping. This is important due to the current lack of data on microscale variation in bioavailable sources that might limit the degree of separation between different exposures.
Synchrotron Radiation Therapy from a Medical Physics point of view
NASA Astrophysics Data System (ADS)
Prezado, Y.; Adam, J. F.; Berkvens, P.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Vautrin, M.; Deman, P.; Bräuer-Krisch, E.; Renier, M.; Elleaume, H.; Estève, F.; Bravin, A.
2010-07-01
Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT). The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.
Application of whole-body personal TL dosemeters in mixed field beta-gamma radiation.
Ciupek, K; Aksamit, D; Wołoszczuk, K
2014-11-01
Application of whole-body personal TL dosemeters based on a high-sensitivity LiF:Mg,Cu,P (MCP-N) in mixed field beta-gamma radiation has been characterised. The measurements were carried out with (90)Sr/(90)Y, (85)Kr and (137)Cs point sources to calculate the energy response and linearity of the TLD response in a dose range of 0.1-30 mSv. From the result, calibration curves were obtained, enabling the readout of individual dose equivalent Hp(10) from gamma radiation and Hp(0.07) from beta radiation in mixed field beta-gamma. Limitation of the methodology and its application are presented and discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rainwater analysis by synchrotron radiation-total reflection X-ray fluorescence
NASA Astrophysics Data System (ADS)
López, María L.; Ceppi, Sergio A.; Asar, María L.; Bürgesser, Rodrigo E.; Ávila, Eldo E.
2015-11-01
Total reflection X-ray fluorescence analysis excited with synchrotron radiation was used to quantify the elemental concentration of rainwater in Córdoba, Argentina. Standard solutions with gallium as internal standard were prepared for the calibration curves. Rainwater samples of 5 μl were added to an acrylic reflector, allowed to dry, and analyzed for 200 s measuring time. The elemental concentrations of As, Ca, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sr, V, and Zn were determined. The electrical conductivity, pH, and elemental concentrations were compared to data previously reported for the soluble fraction of rainwater at different sites. A factor analysis was performed in order to determine the sources that contributed to the elemental concentration in rainwater. Anthropogenic sources were identified as traffic pollution, vehicular emissions, and metallurgical factories. The quality of rainwater was analyzed by comparing the concentrations of all the elements in rainwater samples with the WHO guideline values for drinking water. The results show the need to control the atmospheric emissions in order to preserve the quality of rainwater. SR-TXRF analysis of chemical composition of rainwater in Córdoba represents the very first contribution in the region to the knowledge of the concentration of trace metals in the soluble fraction of rainwater. These data are scarce, especially in the Southern Hemisphere.
The Use of Radiation Response (RR) in Selecting the Method of Treatment of Carcinoma Cervicis Uteri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesterman, John N.
1963-03-01
Attempts were made to determine the choice treatment of cervical squamous carcinoma (surgery, radiation, or surgery with radiation) in Stages I and II. A study of 50 patients showed good results from surgery in patients with poor radiation response (RR) and that the RR, estimated by a precise and uniform technique, will identify those patients who will not respond well to complete radiation therapy. Moreover, it will do this after a first radium application of moderate dosage, at a time when it is still possible to interrupt this therapy. A radiation dose of at least 1000 r at the cervixmore » will be followed by the maximum RR, in a good response, between the 8th and 14th (especially 10th to 12th) days. A poor RR will reach its maximum earlier than a good one, on about the 10th day after radium implantation. When deciding the definition of good RR, it was found that the radiation changes present in a count of 100 cells were seen in more than 70 cells. There is evidence that age, menopause, and hormonal status influence the radiation reaction. If poor RR is more frequently found with high estrogenic activity, young patients treated by radiation should be expected to have a worse survival rate than old. The survival rate is about 1/3) in the young patient as against 1/2 in the postmenopausal. A good sensitization response (SR) was, in most cases, followed by good RR after radiation. Of 39 patients with good SR, 34 had good RR after one application of radium. However, this correlation was absent when the SR was poor. Of 41 patients with poor SR, 18 remained poor after radiation and 23 developed good RR. Finally, this SR should not be taken alone as a guide to treatment, but all patients should be given the first radium application and the RR assessed.« less
Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei
2018-06-01
We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.
Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.; Philipp, Hugh T.; Elser, Veit
2017-01-01
Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such ‘sparse’ frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand–maximize–compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources. PMID:28808431
Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.
Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai
2016-01-01
Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.
Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes
Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai
2016-01-01
Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052
Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}
Marshall, C.D.; Payne, S.A.; Krupke, W.F.
1996-05-14
Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.
Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6
Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.
1996-01-01
Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.
Experimental study of the effects of installation on singleand counter-rotation propeller noise
NASA Technical Reports Server (NTRS)
Block, P. J. W.
1986-01-01
Measurements which are required to define the directivity and the level of propeller noise were studied. The noise radiation pattern for various single-rotation (SR) propeller and counter-rotation (CR) propeller installations were mapped. The measurements covered + or - 60 deg from the propeller disk plane and + or - 60 deg in the cross-stream direction. Configurations examined included SR and CR propellers at angle of attack and an SR pusher installation. The increases in noise that arise from an unsteady loading operation such as an SR pusher or a CR exceeded 15 dB in the forward axial direction. Most of the additional noise radiates in the axial directions for unsteady loading operations of both the SR pusher and the CR tractor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, P.; Block, H; Doiron, K
Conventional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capablemore » of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). These results suggest that SR-FTIRM plus the multivariate analyses can be used to identify spectral features associated with the molecular structure of endosperm from grains with different biodegradation kinetics, especially in relation to protein structure. The Novel synchrotron radiation-based bioanalytical technique provides a new approach for plant seed structural molecular studies at ultraspatial resolution and within intact tissue in relation to nutrient availability.« less
Redundant single event upset supression system
Hoff, James R.
2006-04-04
CMOS transistors are configured to operate as either a redundant, SEU-tolerant, positive-logic, cross-coupled Nor Gate SR-flip flop or a redundant, SEU-tolerant, negative-logic, cross-coupled Nand Gate SR-flip flop. The register can operate as a memory, and further as a memory that can overcome the effects of radiation. As an SR-flip flop, the invention can be altered into any known type of latch or flip-flop by the application of external logic, thereby extending radiation tolerance to devices previously incapable of radiation tolerance. Numerous registers can be logically connected and replicated thereby being electronically configured to operate as a redundant circuit.
Goudarzi, Maryam; Chauthe, Siddheshwar; Strawn, Steven J; Weber, Waylon M; Brenner, David J; Fornace, Albert J
2016-05-20
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; external γ irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 ((137)Cs) and Strontium-90 ((90)Sr). The multiple reaction monitoring analysis showed that, while exposure to (137)Cs and (90)Sr induced a statistically significant and persistent decrease, similar doses of external γ beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to (90)Sr and (137)Cs and to external γ beam radiation.
Goudarzi, Maryam; Chauthe, Siddheshwar; Strawn, Steven J.; Weber, Waylon M.; Brenner, David J.; Fornace, Albert J.
2016-01-01
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; X-ray irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 (137Cs) and Strontium-90 (90Sr). The multiple reaction monitoring analysis showed that, while exposure to 137Cs and 90Sr induced a statistically significant and persistent decrease, similar doses of X-ray beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to 90Sr and 137Cs and to X-ray beam radiation. PMID:27213362
Radiological considerations for the operation of the Advanced Photon Source storage ring (revised).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, H. J.
2002-05-02
This report deals with the radiological considerations of operations using 7700-MeV positron and electron beams in the storage ring (SR) tunnel. The radiological considerations addressed include the following: prompt secondary radiation (bremsstrahlung, giant resonance neutrons, medium and high energy neutrons, and muons) produced by electrons/positrons interacting in a beam stop or by particle losses in the component structures; skyshine radiation, which produces a radiation field in nearby areas and at the nearest off-site location; radioactive gases produced by neutron irradiation of air in the vicinity of a particle loss site; noxious gases (ozone and others) produced in air by themore » escaping bremsstrahlung radiation that results from absorbing particles in the components or by synchrotron radiation escaping into the tunnel; activation of the storage ring components that results in a residual radiation field in the vicinity of these materials following shutdown; potential activation of water used for cooling the magnets and other purposes in the SR tunnel; evaluation of the radiation fields due to escaping synchrotron radiation and gas bremsstrahlung. Estimated dose rates outside of the tunnel, in the early assembly area (EAA), and in the Experiment Hall for several modes of operation (including potential safety envelope beam power, normal beam power, and MCI (maximum credible incident) conditions) have been computed. Shielding in the first optics enclosure (FOE) and for the photon beamlines is discussed in ANL/APS/TB-7 (IPE 93), but additional radiological considerations for the ASD diagnostic beamlines are contained in Appendix C. Although the calculations refer to positrons, electron operation would produce essentially the same effects for the identical assumptions.« less
Perspectives on micropole undulators in synchrotron radiation technology
NASA Astrophysics Data System (ADS)
Tatchyn, Roman; Csonka, Paul; Toor, Arthur
1989-07-01
Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.
NASA Astrophysics Data System (ADS)
Gover, A.; Ianconescu, R.; Friedman, A.; Emma, C.; Musumeci, P.
2017-09-01
We outline fundamental coherent radiation processes from a charge particles beam: Spontaneous Superradiance (SR), Stimulated Superradiance (ST-SR), and in the context of undulator radiation: Tapering-Enhanced Superradiance (TES) and Tapering-Enhanced Stimulated Superradiance Amplification (TESSA). Both single bunch and periodic bunching (in phasor and spectral Fourier frequency formulations) are considered in a model of radiation mode expansion.
Changing sources of strontium to soils and ecosystems across the Hawaiian Islands
Chadwick, O.A.; Derry, L.A.; Bern, C.R.; Vitousek, P.M.
2009-01-01
Strontium isotope ratios assist ecosystem scientists in constraining the sources of alkaline earth elements, but their interpretation can be difficult because of complexities in mineral weathering and in the geographical and environmental controls on elemental additions and losses. Hawaii is a "natural laboratory" where a number of important biogeochemical variables have either limited ranges or vary in systematic ways, providing a unique opportunity to understand the impact of time, climate, and atmospheric inputs on the evolution of base cation sources to ecosystems. There are three major sources of strontium (Sr) to these ecosystems, each with distinct isotopic compositions: basalt lava, Asian dust, and rainfall. We present Sr isotope and concentration data on both bulk soil digests and NH4Ac extracts from soil profiles covering a wide range of environments and substrate ages. Bulk soil material from dry climates and/or young substrate ages with > 80????g g- 1 Sr retain basalt-like Sr isotopic signatures, whereas those with Sr concentrations < 80????g g- 1 can have isotope signatures that range from basalt-like values to the more radiogenic values associated with continental dust. Although both dust accumulation and lava weathering are time- and rainfall-dependent, the overall concentration of Sr drops with increasing leaching even as quartz and mica derived from continental dust sources increase to > 40% by mass. At elevated dust levels, lava-derived Sr is low and dust-derived Sr is the dominant control of 87Sr/86Sr in bulk soils; however, 87Sr/86Sr of NH4Ac-extractable Sr largely reflects atmospheric deposition of marine aerosol in these situations. Overall, whole-soil Sr isotope values are controlled by complex interactions between Sr provided by lava weathering but partially lost by leaching, and Sr provided by dust but held in more resistant minerals. The isotopic composition of NH4Ac-extractable Sr and of the biota is controlled by lava weathering and rainfall contribution of Sr with only minor contributions from radiogenic dust sources. ?? 2009 Elsevier B.V.
Evaluation of Shiryaev-Roberts procedure for on-line environmental radiation monitoring.
Watson, Mara M; Seliman, Ayman F; Bliznyuk, Valery N; DeVol, Timothy A
2018-04-30
Water can become contaminated as a result of a leak from a nuclear facility, such as a waste facility, or from clandestine nuclear activity. Low-level on-line radiation monitoring is needed to detect these events in real time. A Bayesian control chart method, Shiryaev-Roberts (SR) procedure, was compared with classical methods, 3-σ and cumulative sum (CUSUM), for quantifying an accumulating signal from an extractive scintillating resin flow-cell detection system. Solutions containing 0.10-5.0 Bq/L of 99 Tc, as T99cO 4 - were pumped through a flow cell packed with extractive scintillating resin used in conjunction with a Beta-RAM Model 5 HPLC detector. While T99cO 4 - accumulated on the resin, time series data were collected. Control chart methods were applied to the data using statistical algorithms developed in MATLAB. SR charts were constructed using Poisson (Poisson SR) and Gaussian (Gaussian SR) probability distributions of count data to estimate the likelihood ratio. Poisson and Gaussian SR charts required less volume of radioactive solution at a fixed concentration to exceed the control limit in most cases than 3-σ and CUSUM control charts, particularly solutions with lower activity. SR is thus the ideal control chart for low-level on-line radiation monitoring. Once the control limit was exceeded, activity concentrations were estimated from the SR control chart using the control chart slope on a semi-logarithmic plot. A linear regression fit was applied to averaged slope data for five activity concentration groupings for Poisson and Gaussian SR control charts. A correlation coefficient (R 2 ) of 0.77 for Poisson SR and 0.90 for Gaussian SR suggest this method will adequately estimate activity concentration for an unknown solution. Copyright © 2018 Elsevier Ltd. All rights reserved.
The relativistic foundations of synchrotron radiation.
Margaritondo, Giorgio; Rafelski, Johann
2017-07-01
Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.
Mechanisms of cell killing by the new anti-cancer drug SR 4233
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.
SR 4233 (3-amino-1,2,4-benzotriazine, 1,4-dioxide) is a new potential anti-cancer drug which has a highly selective toxicity to hypoxic cells. This study investigated the mechanism of cell killing by this drug. Enzymatic studies have shown that SR 4233 is reductively metabolized to SR 4317 by the tumor cell lines SCVII and HT 1080 under hypoxic conditions. Cytochrome P-450 may play a major role in the reduction in both cell lines. DT diaphorase is the second most important enzyme in reducing SR 4233. In characterizing the major cellular target for SR 4233, the author has shown that damage to cell mitochondria ismore » produced largely under aerobic conditions, whereas DNA is likely to be the major target for cell death under hypoxic conditions. Further experiments demonstrated that DNA damage was similar to that produced by ionizing radiation at equitoxic doses, and chromosome aberrations can entirely account for cell death by SR 4233 under hypoxic conditions in the low dose range. Nevertheless, chromosome breaks produced by SR 4233 are less repairable than those produced by ionizing radiation, suggesting highly localized damage in the DNA by discrete foci of SR 4233 radicals.« less
NASA Astrophysics Data System (ADS)
de Vives, Ana Elisa Sirito; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Medeiros, Jean Gabriel Silva; Filho, Mário Tomazello; Zucchi, Orghêda Luíza Araújo Domingues; Filho, Virgílio Franco do Nascimento
2006-11-01
This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, São Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ("Sibipiruna") was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.
Determining the sources of calcium for migratory songbirds using stable strontium isotopes.
Blum, Joel D; Taliaferro, E Hank; Holmes, Richard T
2001-02-01
We investigated natural variations in the stable isotopic composition of strontium (a surrogate for calcium) in the bones of a single species of breeding migratory songbird, as well as in their eggshells, egg contents, and food sources. We use this information to determine the sources of calcium to these migratory songbirds and their offspring. Samples were collected from two locations in the northeastern USA (Hubbard Brook, NH, and Downer Forest, VT.) that differed in soil geochemistry. The mean 87 Sr/ 86 Sr ratios of food items (caterpillars and snails), eggshells, and egg contents were indistinguishable within each site, but significantly different between the two sites. Mean 87 Sr/ 86 Sr ratios for the bones of adult females were significantly different between the two sites, but values were significantly lower than those of food items and eggshells at each site. Two of four adult individuals studied at each site had 87 Sr/ 86 Sr ratios lower than the entire range of values for local food sources. Mixing calculations indicate that up to 60% of skeletal strontium and calcium was derived from foods consumed in the winter grounds where lower 87 Sr/ 86 Sr ratios predominate. At each study site, the 87 Sr/ 86 Sr ratio of eggshells differed significantly between clutches, but the mean clutch 87 Sr/ 86 Sr ratios were unrelated to the skeletal 87 Sr/ 86 Sr ratio of the laying adult. These findings suggest that strontium (and hence calcium) for eggshell production in this species is derived predominantly from local food sources in breeding areas. Thus, reductions in available calcium in northern temperate ecosystems due to the influences of acid deposition could be potentially harmful to this and other species of migratory bird.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstykh, E I; Shagina, N B; Degteva, M O
2011-08-01
The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorptionmore » was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year -1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.« less
Initial application of a dual-sweep streak camera to the Duke storage ring OK-4 source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.H.; Yang, B.X.; Litvinenko, V.
1997-08-01
The visible and UV spontaneous emission radiation (SER) from the Duke OK-4 wiggler has been used with a Hamamatsu C5680 dual-sweep streak camera to characterize the stored electron beams. Particle beam energies of 270 and 500 MeV in the Duke storage ring were used in this initial application with the OK-4 adjusted to generate wavelengths from 500 nm to near 200 nm. The OK-4 magnetic system with its 68 periods provided a much stronger radiation source than a nearby bending magnet source point. Sensitivity to single-bunch, single-turn SER was shown down to 4 {mu}A beam current at {lambda} = 450more » nm. The capability of seeing second passes in the FEL resonator at a wavelength near 200 nm was used to assess the cavity length versus orbit length. These tests (besides supporting preparation for UV-visible SR FEL startups) are also relevant to possible diagnostics techniques for single-pass FEL prototype facilities.« less
Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara
2011-08-01
The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakia,G.; Burghardt, A.; Cheung, S.
2008-01-01
Assessment of bone tissue mineral density (TMD) may provide information critical to the understanding of mineralization processes and bone biomechanics. High-resolution three-dimensional assessment of TMD has recently been demonstrated using synchrotron radiation microcomputed tomography (SR{mu}CT); however, this imaging modality is relatively inaccessible due to the scarcity of SR facilities. Conventional desktop {mu}CT systems are widely available and have been used extensively to assess bone microarchitecture. However, the polychromatic source and cone-shaped beam geometry complicate assessment of TMD by conventional {mu}CT. The goal of this study was to evaluate {mu}CT-based measurement of degree and distribution of tissue mineralization in a quantitative,more » spatially resolved manner. Specifically, {mu}CT measures of bone mineral content (BMC) and TMD were compared to those obtained by SR{mu}CT and gravimetric methods. Cylinders of trabecular bone were machined from human femoral heads (n=5), vertebrae (n=5), and proximal tibiae (n=4). Cylinders were imaged in saline on a polychromatic {mu}CT system at an isotropic voxel size of 8 {mu}m. Volumes were reconstructed using beam hardening correction algorithms based on hydroxyapatite (HA)-resin wedge phantoms of 200 and 1200 mgHA/cm3. SR{mu}CT imaging was performed at an isotropic voxel size of 7.50 {mu}m at the National Synchrotron Light Source. Attenuation values were converted to HA concentration using a linear regression derived by imaging a calibration phantom. Architecture and mineralization parameters were calculated from the image data. Specimens were processed using gravimetric methods to determine ash mass and density. {mu}CT-based BMC values were not affected by altering the beam hardening correction. Volume-averaged TMD values calculated by the two corrections were significantly different (p=0.008) in high volume fraction specimens only, with the 1200 mgHA/cm3 correction resulting in a 4.7% higher TMD value. {mu}CT and SR{mu}CT provided significantly different measurements of both BMC and TMD (p<0.05). In high volume fraction specimens, {mu}CT with 1200 mgHA/cm3 correction resulted in BMC and TMD values 16.7% and 15.0% lower, respectively, than SR{mu}CT values. In low volume fraction specimens, {mu}CT with 1200 mgHA/cm3 correction resulted in BMC and TMD values 12.8% and 12.9% lower, respectively, than SR{mu}CT values. {mu}CT and SR{mu}CT values were well-correlated when volume fraction groups were considered individually (BMC R2=0.97-1.00; TMD R2=0.78-0.99). Ash mass and density were higher than the SR{mu}CT equivalents by 8.6% in high volume fraction specimens and 10.9% in low volume fraction specimens (p<0.05). BMC values calculated by tomography were highly correlated with ash mass (ash versus {mu}CT R2=0.96-1.00; ash versus SR{mu}CT R2=0.99-1.00). TMD values calculated by tomography were moderately correlated with ash density (ash versus {mu}CT R2=0.64-0.72; ash versus SR{mu}CT R2=0.64). Spatially resolved comparisons highlighted substantial geometric nonuniformity in the {mu}CT data, which were reduced (but not eliminated) using the 1200 mg HA/cm3 beam hardening correction, and did not exist in the SR{mu}CT data. This study represents the first quantitative comparison of {mu}CT mineralization evaluation against SR{mu}CT and gravimetry. Our results indicate that {mu}CT mineralization measures are underestimated but well-correlated with SR{mu}CT and gravimetric data, particularly when volume fraction groups are considered individually.« less
Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua
2018-01-01
The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the paleogeographic pattern that the north was higher (in elevation) than the south. PMID:29373592
Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua
2018-01-01
The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the paleogeographic pattern that the north was higher (in elevation) than the south.
NASA Astrophysics Data System (ADS)
Dant, James T.; Richardson, Richard B.; Nie, Linda H.
2013-05-01
Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient radiopharmaceutical for the treatment of bone metastases than 153Sm and 89Sr, if the diffusion of 219Rn to the bone marrow is insignificant.
Luminescence properties after X-ray irradiation for dosimetry
NASA Astrophysics Data System (ADS)
Hong, Duk-Geun; Kim, Myung-Jin
2016-05-01
To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.
Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C.K.
2002-06-25
Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mmmore » is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results« less
Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue
NASA Astrophysics Data System (ADS)
Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter
2012-10-01
During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.
Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?
NASA Astrophysics Data System (ADS)
Squire, Richard J.; Campbell, Ian H.; Allen, Charlotte M.; Wilson, Christopher J. L.
2006-10-01
The explosive radiation of animals on Earth during the late Early Cambrian period (˜ 530-510 Ma) coincides with the deposition of enormous volumes of continentally derived sedimentary rocks throughout Gondwana. We show here, that these quartz-rich sedimentary units, collected from five continents, display remarkably similar detrital-zircon U-Pb age-patterns and propose that they were sourced from either side of a > 8000-km-long and generally > 1000-km-wide mountain chain (the Transgondwanan Supermountain), which formed following oblique collision between East and West Gondwana, commencing at ˜ 650 Ma. The depositional system supplied by this mountain chain was > 100 km 3, which is equivalent to covering all 50 states of the USA with ˜ 10 km of sediment, and it lasted for at least 260 Myr. The enormous size of the vegetation-free mountain chain, its position close to the equator and the dramatic changes in global plate-motion in response to the cessation in continent-continent collision, together with the possible appearance of biota in the soils that promoted rapid chemical weathering, resulted in extreme erosion and sedimentation rates that are arguably the highest in the geological record. This led to an unprecedented flux of P, Fe, Sr, Ca and bicarbonate ions into the oceans. The addition of Sr was responsible for seawater 87Sr/ 86Sr building up to the highest levels in Earth's history, whereas the addition of P and Fe provided the essential nutrients that supported a bloom of primitive life that in turn provided abundant food to support the Cambrian explosion of life. The addition of Ca and bicarbonate ions increased CaCO 3 supersaturation in the oceans, which allowed species in numerous phyla to simultaneously develop skeletons.
NASA Astrophysics Data System (ADS)
Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.
2017-12-01
Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.
87Sr/86Sr ratios in basalts from islands in the Indian Ocean
Hedge, C.E.; Watkins, N.D.; Hildreth, R.A.; Doering, W.P.
1973-01-01
87Sr/86Sr ratios of basalts from islands in the Indian Ocean (0.7040) are higher than those of basalts dredged from the Mid-Indian Ocean Ridge (0.7034). The sources of the island basalts have apparently not been in equilibrium with the source of the ridge basalts for roughly 109 years. Both ridge and island basalts in the Indian Ocean are higher in 87Sr/86Sr than are rocks from similar settings in the eastern Pacific. ?? 1973.
X-ray Excitation Triggers Ytterbium Anomalous Emission in CaF2:Yb but Not in SrF2:Yb.
Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A; Seijo, Luis; Barandiarán, Zoila
2017-03-16
Materials that luminesce after excitation with ionizing radiation are extensively applied in physics, medicine, security, and industry. Lanthanide dopants are known to trigger crystal scintillation through their fast d-f emissions; the same is true for other important applications as lasers or phosphors for lighting. However, this ability can be seriously compromised by unwanted anomalous emissions often found with the most common lanthanide activators. We report high-resolution X-ray-excited optical (IR to UV) luminescence spectra of CaF 2 :Yb and SrF 2 :Yb samples excited at 8949 eV and 80 K. Ionizing radiation excites the known anomalous emission of ytterbium in the CaF 2 host but not in the SrF 2 host. Wave function-based ab initio calculations of host-to-dopant electron transfer and Yb 2+ /Yb 3+ intervalence charge transfer explain the difference. The model also explains the lack of anomalous emission in Yb-doped SrF 2 excited by VUV radiation.
Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I
2014-08-01
The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.
Synchrotron Radiation Damage Mechanism of X-Ray Mask Membranes Irradiated in Helium Environment
NASA Astrophysics Data System (ADS)
Arakawa, Tomiyuki; Okuyama, Hiroshi; Okada, Koichi; Nagasawa, Hiroyuki; Syoki, Tsutomu; Yamaguchi, Yoh-ichi
1992-12-01
The mechanism of X-ray mask membrane displacement induced by synchrotron radiation (SR) has been discussed. Silicon nitride (SiN) and silicon carbide (SiC) membranes were irradiated by SR in a 1 atm helium ambient. SR-induced displacement for both membranes was 25-97 nm (σ). Oxygen concentration in both SiN and SiC was below 0.01 in O/Si atomic ratio. Although an increase in dangling bond density of SiN was observed, no remarkable increase in spin density was detected in SiC. Moreover, the most important finding was that thin oxides were grown on the membrane surface after SR irradiation. From these results, it is considered that the oxide growth on SiC membrane surfaces, and both the oxide growth and the increase of dangling bond density in SiN play an important role in the SR-induced displacement for the X-ray mask membranes.
SR-71 Ship #1 - Ultraviolet Experiment
NASA Technical Reports Server (NTRS)
1994-01-01
NASA's SR-71 streaks into the twilight on a night/science flight from the Dryden Flight Research Center, Edwards, California. Mounted in the nose of the SR-71 was an ultraviolet video camera aimed skyward to capture images of stars, asteroids and comets. The science portion of the flight is a project of the Jet Propulsion Laboratory, Pasadena, California. Two SR-71 aircraft have been used by NASA as test beds for high-speed and high-altitude aeronautical research. One early research project flown on one of Dryden's SR-71s consisted of a proposal for a series of flights using the SR-71 as a science camera platform for the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, which operates under contract to NASA in much the way that NASA centers do. In March 1993, an upward-looking ultraviolet (UV) video camera placed in the SR-71's nosebay studied a variety of celestial objects in the ultraviolet light spectrum. The SR-71 was proposed as a test bed for the experiment because it is capable of flying at altitudes above 80,000 feet for an extended length of time. Observation of ultraviolet radiation is not possible from the Earth's surface because the atmosphere's ozone layer absorbs UV rays. Study of UV radiation is important because it is known to cause skin cancer with prolonged exposure. UV radiation is also valuable to study from an astronomical perspective. Satellite study of ultraviolet radiation is very expensive. As a result, the South West Research Institute (SWRI) in Texas developed the hypothesis of using a high-flying aircraft such as the SR-71 to conduct UV observations. The SR-71 is capable of flying above 90 percent of the Earth's atmosphere. The flight program was also designed to test the stability of the aircraft as a test bed for UV observation. A joint flight program was developed between the JPL and NASA's Ames-Dryden Flight Research Facility (redesignated the Dryden Flight Research Center, Edwards, California, in 1994) in conjunction with SWRI to test the hypothesis. Dryden modified the nosebay of the SR-71, creating an upward-observing window to carry SWRI's ultraviolet CCD camera so it could make observations. According to Dryden's SR-71 Project Manager Dave Lux, a single flight of the aircraft confirmed the aircraft's capability and stability as a test bed for UV observations. SWRI's principle investigator was Dr. Allen Stern.
2003-04-03
vacancies. The lattice of an oxygen * Permanent address - Nuclear Research Center- Negev (NRCN), Beer Sheva 9001, Israel. 41 deficient perovskite film...the film were determined by analysis of x-ray diffraction pattern using Cu K,, radiation from a Rigaku rotating anode source and a powder...thank Dr. H.S Kim, Mr. R.C.Y. Auyeung, Office of Naval Research, DARPA FAME and Nuclear Research Center- Negev . REFERENCES 1. J.S. Horwitz, D.B
NASA Astrophysics Data System (ADS)
Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo
2018-02-01
We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.
Digital methods for reducing radiation exposure during medical fluoroscopy
NASA Astrophysics Data System (ADS)
Edmonds, Ernest W.; Rowlands, John A.; Hynes, David M.; Toth, B. D.; Porter, Anthony J.
1990-07-01
There is increased concern over radiation exposure to the general population from many sources. One of the most significant sources is that received by the patient during medical diagnostic procedures, and of these, the procedure with the greatest potential hazard is fluoroscopy. The legal limit for fluoroscopy in most jurisdictions is SR per minute skin exposure rate. Fluoroscopes are often operated in excess of this figure, and in the case of interventional procedures, fluorocopy times may exceed 20 minutes. With improvements in medical technology these procedures are being performed more often, and also are being carried out on younger age groups. Radiation exposure during fluoroscopy, both to patient and operator, is therefore becoming a matter of increasing concern to regulating authorities, and it is incumbent on us to develop digital technology to minimise the radiation hazard in these procedures. This paper explores the technical options available for radiation exposure reduction, including pulsed fluoroscopy, digital noise reduction, or simple reduction in exposure rate to the x-ray image intensifier. We also discuss educational aspects of fluoroscopy which radiologists should be aware of which can be more important than the technological solutions. A "work in progress" report gives a completely new approach to the implementation of a large number of possible digital algorithms, for the investigation of clinical efficacy.
CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers.
Miyata, H; Doki, Y; Shiozaki, H; Inoue, M; Yano, M; Fujiwara, Y; Yamamoto, H; Nishioka, K; Kishi, K; Monden, M
2000-12-01
Ionized radiation leads to G1 arrest and apoptosis by a p53-dependent pathway and G2-M arrest through a p53-independent pathway. In this study, we evaluated the role of cell cycle-regulating molecules in the sensitivity of cancer cells for radiation therapy. Forty-seven patients with squamous cell carcinomas of the esophagus had undergone radiation therapy, followed by surgical resection. They were classified as sensitive to radiation (SR, 14 cases) with no residual tumor in the surgical specimen or as resistant to radiation (RR, 33 cases) with viable residual tumors. Their preradiation biopsy samples were immunohistochemically investigated for the expressions of cell cycle-related molecules, including p53, CDC25A, CDC25B, cyclin D1, cyclin B1, and Ki-67. p53 expression was negative in 71% (10 of 14) of SR and positive in 91% (30 of 33) of RR. The association was strong between high radiation sensitivity and negative p53 expression (P < 0.0001). CDC25B, which is not expressed in normal epithelium but is in the cytoplasm of esophageal cancers, was strongly expressed (2+) in 46% (6 of 14) of SR and in 6% (2 of 23) of RR. Thus, the sensitivity for radiation therapy was significantly correlated with CDC25B overexpression. With respect to CDC25A, cyclin D1, cyclin B1, and Ki-67, no statistically significant differences were found in their expressions between SR and RR tumors. p53 and CDC25B expressions showed no significant associations, and multivariate analysis revealed that both p53 and CDC25B are significant independent markers for predicting radiation sensitivity. CDC25B was revealed to be a novel predictor of radiation sensitivity in esophageal cancers. Because CDC25B is an oncogene, which affects G2-M progression, these results suggest the importance of a p53-independent G2-M checkpoint in radiation therapy.
NASA Astrophysics Data System (ADS)
Révillon, S.; Chauvel, C.; Arndt, N. T.; Pik, R.; Martineau, F.; Fourcade, S.; Marty, B.
2002-12-01
The composition of the mantle plumes that created large oceanic plateaus such as Ontong Java or the Caribbean is still poorly known. Geochemical and isotopic studies on accreted portions of the Caribbean plateau have shown that the plume source was heterogeneous and contained isotopically depleted and relatively enriched portions. A distinctive feature of samples from the Caribbean plateau is their unusual Sr isotopic compositions, which, at a given Nd isotopic ratio, are far higher than in samples from other oceanic plateaus. Sr, O and He isotopic compositions of whole rocks and magmatic minerals (clinopyroxene or olivine) separated from komatiites, gabbros and peridotites from Gorgona Island in Colombia were determined to investigate the origin of these anomalously radiogenic compositions. Sequentially leached clinopyroxenes have Sr isotopic compositions in the range 87Sr/ 86Sr=0.70271-0.70352, systematically lower than those of leached and unleached whole rocks. Oxygen isotopic ratios of clinopyroxene vary within the range δ 18O=5.18-5.35‰, similar to that recorded in oceanic island basalts. He isotopic ratios are high ( R/ Ra=8-19). The lower 87Sr/ 86Sr ratios of most of the clinopyroxenes shift the field of the Caribbean plateau in Nd-Sr isotope diagrams toward more 'normal' values, i.e. a position closer to the field defined by mid-ocean ridge basalts and oceanic-island basalts. Three clinopyroxenes have slightly higher 87Sr/ 86Sr ratios that cannot be explained by an assimilation model. The high 87Sr/ 86Sr and variations of 143Nd/ 144Nd are interpreted as a source characteristic. Trace-element ratios, however, are controlled mainly by fractionation during partial melting. We combine these isotopic data in a heterogeneous plume source model that accounts for the diversity of isotopic signatures recorded on Gorgona Island and throughout the Caribbean plateau. The heterogeneities are related to old recycled oceanic lithosphere in the plume source; the high 3He/ 4He ratios may indicate that the source material once resided in the lower mantle.
Source area and seasonal variation of dissolved Sr isotope composition in rivers of the Amazon basin
NASA Astrophysics Data System (ADS)
Santos, Roberto V.; Sondag, Francis; Cochonneau, Gerard; Lagane, Christelle; Brunet, Pierre; Hattingh, Karina; Chaves, Jeane G. S.
2014-05-01
We present dissolved Sr isotope data collected over 8 years from three main river systems from the Amazon Basin: Beni-Madeira, Solimões, Amazon, and Negro. The data show large 87Sr/86Sr ratio variations that were correlated with the water discharge and geology of the source areas of the suspended sediments. The Beni-Madeira system displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões system displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon Basin. The isotopic fluctuations in the Beni-Madeira River were observed to propagate downstream at least as far as Óbidos, in the Amazon River. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. During the raining season there is an increase in Sr isotopic ratio accompanied by a decrease in elemental Sr concentration. During the dry season, the Sr isotopic ration decreases and the elemental Sr concentration increases.
NASA Astrophysics Data System (ADS)
Betton, P. J.; Civetta, L.
1984-11-01
Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The 143Nd/ 144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the 87Sr/ 86Sr ratios display a distinctly greater range (0.70328-0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform 143Nd/ 144Nd ratios (ca. 0.5129) but varied 87Sr/ 86Sr ratios in the range 0.70427-0.70528. The Sr sbnd Nd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the "MORB-type" volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs. It is shown that the anomalous source with a high 87Sr/ 86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high 87Sr/ 86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high 87Sr/ 86Sr ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, D.M.; Coggins, T.L.; Marsh, J.
Numerous efforts are funded by US agencies (DOE, DoD, DHS) for development of novel radiation sensing and measurement systems. An effort has been undertaken to develop a flexible shielding system compatible with a variety of sources (beta, X-ray, gamma, and neutron) that can be highly characterized using conventional radiation detection and measurement systems. Sources available for use in this system include americium-beryllium (AmBe), plutonium-beryllium (PuBe), strontium-90 (Sr-90), californium-252 (Cf-252), krypton-85 (Kr-85), americium-241 (Am-241), and depleted uranium (DU). Shielding can be varied by utilization of materials that include lexan, water, oil, lead, and polyethylene. Arrangements and geometries of source(s) and shieldingmore » can produce symmetrical or asymmetrical radiation fields. The system has been developed to facilitate accurately repeatable configurations. Measurement positions are similarly capable of being accurately re-created. Stand-off measurement positions can be accurately re-established using differential global positioning system (GPS) navigation. Instruments used to characterize individual measurement locations include a variety of sodium iodide (NaI(Tl)) (3 x 3 inch, 4 x 4 x 16 inch, Fidler) and lithium iodide (LiI(Eu)) detectors (for use with multichannel analyzer software) and detectors for use with traditional hand held survey meters such as boron trifluoride (BF{sub 3}), helium-3 ({sup 3}He), and Geiger-Mueller (GM) tubes. Also available are Global Dosimetry thermoluminescent dosimeters (TLDs), CR39 neutron chips, and film badges. Data will be presented comparing measurement techniques with shielding/source configurations. The system is demonstrated to provide a highly functional process for comparison/characterization of various detector types relative to controllable radiation types and levels. Particular attention has been paid to use of neutron sources and measurements. (authors)« less
NASA Astrophysics Data System (ADS)
Hindshaw, Ruth S.; Tosca, Nicholas J.; Piotrowski, Alexander M.; Tipper, Edward T.
2018-03-01
The identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (ɛNd = -20.6 to -13.4; 87Sr / 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr / 86Sr and low ɛNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr / 86Sr and high ɛNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed end-members through time.
NASA Astrophysics Data System (ADS)
Tipple, B. J.; Valenzuela, L. O.; Ehleringer, J.
2012-12-01
Element concentrations and isotopes of human tissues are commonly used to understand how emissions and processes within urban ecosystems affect health. Thus, it is important to understand how these elements are incorporated and flow through the urban environment and are ultimately incorporated into human tissues. Here, we designed an experiment to identify the relative importance of strontium (Sr) sources (bedrock, dust, food, and water) to hair Sr isotope ratios (87Sr/86Sr). To understand the contribution of Sr to human hair, we collected hair from individuals living in Salt Lake City, Utah. In addition to sample location, we compiled information regarding age, sex, ethnicity, and dietary habits. We found a significant association between 87Sr/86Sr value of hair and collection location. There were no significant relationships between 87Sr/86Sr value of hair and age, ethnicity, or sex. We had not predicted a relationship between 87Sr/86Sr values and collection location, because of the close proximities of sites to one another (all within an 8-km radius). We found that tap water 87Sr/86Sr values across the Salt Lake Valley varied with water management practice and this variation corresponded to hair 87Sr/86Sr value. These data suggest an additional geographically controlled source of Sr may be an important contributor to the 87Sr/86Sr value of hair. These findings suggest that local water is an important source of Sr in human hair and that hair is a sensitive temporal carrier of this environmental information. These observations have important implications to future studies of humans with regard to urban ecology, human health, forensic sciences, and anthropology.
Dante soft x-ray power diagnostic for National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E.L.; Campbell, K.M.; Turner, R.E.
2004-10-01
Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic rangemore » using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted laser light plasmas.« less
Synchrotron radiation determination of elemental concentrations in coal
Chen, J.R.; Martys, N.; Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.; Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.
1984-01-01
The variations with depth of the elemental concentrations in vitrinites in a series of vitrites have been determined using radiation from the Cornell high energy synchrotron source. All of the vitrites were selected from a single drill core sample of coal from the Emery coalfield, Utah. The results are compared with similar determinations using the Heidelberg proton microprobe. The advantages and disadvantages of the two techniques are discussed. Results are reported for S, Ca, Ti, Fe, Zn, Br, and Sr. For example, it is found that Fe increases from top to bottom of the coal bed in contrast to S, which decreases from top to bottom of the bed. Other features of the two data sets are also described. ?? 1984.
Broadband near-field infrared spectroscopy with a high temperature plasma light source.
Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M
2017-08-21
Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .
NASA Astrophysics Data System (ADS)
Chubar, O.
2006-09-01
The paper describes methods of efficient calculation of spontaneous synchrotron radiation (SR) by relativistic electrons in storage rings, and propagation of this radiation through optical elements and drift spaces of beamlines, using the principles of wave optics. In addition to the SR from one electron, incoherent and coherent synchrotron radiation (CSR) emitted by electron bunches is treated. CPU-efficient CSR calculation method taking into account 6D phase space distribution of electrons in a bunch is proposed. The properties of CSR emitted by electron bunches with small longitudinal and large transverse size are studied numerically (such situation can be realized in storage rings e.g. by transverse deflection of the electron bunches in special RF cavities). It is shown that if the transverse size of a bunch is much larger than the diffraction limit for single-electron SR at a given wavelength - it affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and the longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR.
NASA Astrophysics Data System (ADS)
Szilagyi, John; Parchamy, Homaira; Masnavi, Majid; Richardson, Martin
2017-01-01
The absolute spectral irradiances of laser-plasmas produced from planar zinc targets are determined over a wavelength region of 150 to 250 nm. Strong spectral radiation is generated using 60 ns full-width-at-half-maximum, 1.0 μm wavelength laser pulses with incident laser intensities as low as ˜5 × 108 W cm-2. A typical radiation conversion efficiency of ˜2%/2πsr is measured. Numerical calculations using a comprehensive radiation-hydrodynamics model reveal the strong experimental spectra to originate mainly from 3d94s4p-3d94s2, 3d94s4d-3d94s4p, and 3d94p-3d94s, 3d94d-3d94p unresolved-transition arrays in singly and doubly ionized zinc, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Yoshiyuki; Tanaka, Yasuyuki T., E-mail: yinoue@astro.isas.jaxa.jp
The Fermi gamma-ray space telescope has revolutionized our understanding of the cosmic gamma-ray background radiation in the GeV band. However, investigation on the cosmic TeV gamma-ray background radiation still remains sparse. Here, we report the lower bound on the cosmic TeV gamma-ray background spectrum placed by the cumulative flux of individual detected extragalactic TeV sources including blazars, radio galaxies, and starburst galaxies. The current limit on the cosmic TeV gamma-ray background above 0.1 TeV is obtained as 2.8 × 10{sup −8}(E/100 GeV){sup −0.55} exp(−E/2100GeV)[GeV cm{sup −2} s{sup −1} sr{sup −1}] < E{sup 2}dN/dE < 1.1 × 10{sup −7}(E/100 GeV){sup −0.49} [GeV cm{sup −2} s{sup −1} sr{sup −1}], wheremore » the upper bound is set by requirement that the cascade flux from the cosmic TeV gamma-ray background radiation can not exceed the measured cosmic GeV gamma-ray background spectrum. Two nearby blazars, Mrk 421 and Mrk 501, explain ∼70% of the cumulative background flux at 0.8–4 TeV, while extreme blazars start to dominate at higher energies. We also provide the cumulative background flux from each population, i.e., blazars, radio galaxies, and starburst galaxies which will be the minimum requirement for their contribution to the cosmic TeV gamma-ray background radiation.« less
Staude, S.; Gob, S.; Pfaff, K.; Strobele, F.; Premo, W.R.; Markl, G.
2011-01-01
Primary and secondary barites from hydrothermal mineralizations in SW Germany were investigated, for the first time, by a combination of strontium (Sr) isotope systematics (87Sr/86Sr), Sr contents and δ34S values to distinguish fluid sources and precipitation mechanisms responsible for their formation. Barite of Permian age derived its Sr solely from crystalline basement rocks, whereas all younger barite also incorporate Sr from formation waters of the overlying sediments. In fact, most of the Sr in younger barite is leached from Lower and Middle Triassic sediments. In contrast, most of the sulfur (S) of Permian, Jurassic and northern Schwarzwald Miocene barite originated from basement rocks. The S source of Upper Rhinegraben (URG)-related Paleogene barite differs depending on geographic position: for veins of the southern URG, it is the Oligocene evaporitic sequence, while central URG mineralizations derived its S from Middle Triassic evaporites. Using Sr isotopes of barite of known age combined with estimates on the Sr contents and Sr isotopic ratios of the fluids' source rocks, we were able to quantify mixing ratios of basement-derived fluids and sedimentary formation waters for the first time. These calculations show that Jurassic barite formed by mixing of 75–95% ascending basement-derived fluids with 5–25% sedimentary formation water, but that only 20–55% of the Sr was brought by the basement-derived fluid to the depositional site. Miocene barite formed by mixing of an ascending basement-derived brine (60–70%) with 30–40% sedimentary formation waters. In this case, only 8–15% of the Sr was derived from the deep brine. This fluid-mixing calculation is an example for deposits in which the fluid source is known. This method applied to a greater number of deposits formed at different times and in various geological settings may shed light on more general causes of fluid movement in the Earth's crust and on the formation of hydrothermal ore deposits.
NASA Astrophysics Data System (ADS)
Beccaluva, L.; Bianchini, G.; Coltorti, M.; Siena, F.; Verde, M.
In this contribution new REE and Sr-Nd isotopic data carried out on Cainozoic subduction-related volcanic rocks from the western-central Mediterranean are dis- cussed within a general review of the Cainozoic orogenic magmatism of the area. These volcanic events are related to subduction processes which occurred along the Paleo-European margin at least since Eocene and migrated (trough passive sinking and slab roll-back) southeastward up to the present in the peri-Tyrrhenian margin of Italy. Orogenic rocks from Provence (34-20 Ma) are characterised by 87Sr/86Sr be- tween 0.70453 and 0.70579, and 143Nd/144Nd between 0.51292 and 0.51265, which are consistent with mantle sources modified by subduction fluids released by altered oceanic crust. Sr-Nd isotopic composition of orogenic rocks from Sardinia (32-13 Ma), show a more complex picture: some compositions with relatively low 87Sr/86Sr (<0.706) and high 143Nd/144Nd (>0.5125), are compatible with the subduction of pure oceanic crust, while compositions with very high 87Sr/86Sr (up to 0.7113) and low 143Nd/144Nd (down to 0.51219) require additional components of continental crust affinity in the mantle wedge (partial fusion of subducted terrigenous sediments?). As concerns the Aeolian volcanics (< 1.3 Ma), compositions are compatible with man- tle sources solely enriched by fluid components from subducted oceanic crust. How- ever, it is interesting to note that shoshonites from the younger series of Stromboli display distinctly higher 87Sr/86Sr (up to 0.7075) and lower 143Nd/144Nd composi- tion (down to 0.51242), thus requiring once again recycle of continental crust materials in their mantle sources. The influence of such continental crust-derived components appear to be even more important in the mantle sources of the Campania volcanics, where extreme Sr-Nd isotopic compositions are recorded (87Sr/86Sr up to 0.7097; 143Nd/144Nd down to 0.5122).
[Occupational risk related to optical radiation exposure in construction workers].
Gobba, F; Modenese, A
2012-01-01
Optical Radiation is a relevant occupational risk in construction workers, mainly as a consequence of the exposure to the ultraviolet (UV) component of solar radiation (SR). Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma, squamous cell carcinoma of the skin and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in construction workers. The role of occupational physicians in prevention is fundamental.
Imaging plates calibration to X-rays
NASA Astrophysics Data System (ADS)
Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.
2016-05-01
The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.
OSL response bleaching of BeO samples, using fluorescent light and blue LEDs
NASA Astrophysics Data System (ADS)
Groppo, D. P.; Caldas, L. V. E.
2016-07-01
The optically stimulated luminescence (OSL) is widely used as a dosimetric technique for many applications. In this work, the OSL response bleaching of BeO samples was studied. The samples were irradiated using a beta radiation source (90Sr+90Y); the bleaching treatments (fluorescent light and blue LEDs) were performed, and the results were compared. Various optical treatment time intervals were tested until reaching the complete bleaching of the OSL response. The best combination of the time interval and bleaching type was analyzed.
Li, Jing; Liu, Ruijie; Chang, Guifang; Li, Xiangyu; Chang, Ming; Liu, Yuanfa; Jin, Qingzhe; Wang, Xingguo
2015-02-01
Glucose and glycerol are useful carbon sources for the cultivation of Aurantiochytrium limacinum SR21. Glucose facilitates rapid growth and lipid synthesis, and glycerol promotes the accumulation of docosahexaenoic acid (DHA) in A. limacinum SR21. To improve the DHA productivity of A. limacinum SR21, shake flask and fed-batch cultures were performed using glucose and glycerol as mixed carbon sources (MCSs). Along with optimization of the MCSs, the best DHA yield and productivity (32.36 g/L and 337.1 mg/L/h) were obtained via fed-batch fermentation with maintenance of a constant air supply. The DHA productivity was 15.24% higher than that obtained using glucose as single carbon source (SCS). This study presents a highly efficient and economic strategy for the production of DHA by A. limacinum SR21. Copyright © 2014 Elsevier Ltd. All rights reserved.
Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.
Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki
2015-04-01
Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima.
Europium and strontium anomalies in the MORB source mantle
NASA Astrophysics Data System (ADS)
Tang, Ming; McDonough, William F.; Ash, Richard D.
2017-01-01
Lower crustal recycling depletes the continental crust of Eu and Sr and returns Eu and Sr enriched materials into the mantle (e.g., Tang et al., 2015, Geology). To test the hypothesis that the MORB source mantle balances the Eu and Sr deficits in the continental crust, we carried out high precision Eu/Eu∗ and Sr/Sr∗ measurement for 72 MORB glasses with MgO >8.5% from the Pacific, Indian, and Atlantic mid-ocean ridges. MORB glasses with MgO ⩾ 9 wt.% have a mean Eu/Eu∗ of 1.025 ± 0.025 (2 σm, n = 46) and Sr/Sr∗ of 1.242 ± 0.093 (2 σm, n = 41) and these ratios are positively correlated. These samples show both positive and negative Eu and Sr anomalies, with no correlations between Eu/Eu∗ vs. MgO or Sr/Sr∗ vs. MgO, suggesting that the anomalies are not produced by plagioclase fractionation at MgO >9 wt.% and, thus, other processes must be responsible for generating the anomalies. We term these MORB samples primitive MORBs, as they record the melt Eu/Eu∗ and Sr/Sr∗ before plagioclase fractionation. Consequently, the mean oceanic crust, including cumulates, has a bulk Eu/Eu∗ of ∼1 and 20% Sr excess. Considering that divalent Sr and Eu(II) diffuse faster than trivalent Pr, Nd, Sm, and Gd, we evaluated this kinetic effect on Sm-Eu-Gd and Pr-Sr-Nd fractionations during spinel peridotite partial melting in the MORB source mantle. Our modeling shows that the correlated Eu and Sr anomalies seen in primitive MORBs may result from disequilibrium mantle melting. Melt fractions produced during early- and late-stage melting may carry positive and negative Eu and Sr anomalies, respectively, that overlap with the ranges documented in primitive MORBs. Because the net effect of disequilibrium melting is to produce partial melts with bulk positive Eu and Sr anomalies, the MORB source mantle must have Eu/Eu∗ < 1.025 ± 0.025 (2 σm) and Sr/Sr∗ < 1.242 ± 0.093 (2 σm). Although we cannot rule out the possibility that recycled lower continental crustal materials, which have positive Eu and Sr anomalies, are partially mixed into the upper mantle (i.e., MORB source region), a significant amount of this crustal component must have been sequestered into the deep mantle, as supported by the negative 206Pb/204Pb-Eu/Eu∗ and 206Pb/204Pb-Sr/Sr∗ correlations in ocean island basalts.
Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Hong, Yunyi; Shao, Jiaxiang; He, Xin; Ma, Yingxin; Nie, Hui; Liu, Na; Xia, Weiliang; Ying, Weihai
2012-01-01
Synchrotron radiation (SR) X-ray has great potential for its applications in medical imaging and cancer treatment. In order to apply SR X-ray in clinical settings, it is necessary to elucidate the mechanisms underlying the damaging effects of SR X-ray on normal tissues, and to search for the strategies to reduce the detrimental effects of SR X-ray on normal tissues. However, so far there has been little information on these topics. In this study we used the testes of rats as a model to characterize SR X-ray-induced tissue damage, and to test our hypothesis that NAD+ administration can prevent SR X-ray-induced injury of the testes. We first determined the effects of SR X-ray at the doses of 0, 0.5, 1.3, 4 and 40 Gy on the biochemical and structural properties of the testes one day after SR X-ray exposures. We found that 40 Gy of SR X-ray induced a massive increase in double-strand DNA damage, as assessed by both immunostaining and Western blot of phosphorylated H2AX levels, which was significantly decreased by intraperitoneally (i.p.) administered NAD+ at doses of 125 and 625 mg/kg. Forty Gy of SR X-ray can also induce marked increases in abnormal cell nuclei as well as significant decreases in the cell layers of the seminiferous tubules one day after SR X-ray exposures, which were also ameliorated by the NAD+ administration. In summary, our study has shown that SR X-ray can produce both molecular and structural alterations of the testes, which can be significantly attenuated by NAD+ administration. These results have provided not only the first evidence that SR X-ray-induced tissue damage can be ameliorated by certain approaches, but also a valuable basis for elucidating the mechanisms underlying SR X-ray-induced tissue injury. PMID:22518270
NASA Astrophysics Data System (ADS)
Albert, F.; Lemos, N.; Shaw, J. L.; King, P. M.; Pollock, B. B.; Goyon, C.; Schumaker, W.; Saunders, A. M.; Marsh, K. A.; Pak, A.; Ralph, J. E.; Martins, J. L.; Amorim, L. D.; Falcone, R. W.; Glenzer, S. H.; Moody, J. D.; Joshi, C.
2018-05-01
A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019 cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108 and 1010 photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.
Khandaker, M. U.; Asaduzzaman, Kh.; Nawi, S. M.; Usman, A. R.; Amin, Y. M.; Daar, E.; Bradley, D. A.; Ahmed, H.; Okhunov, A. A.
2015-01-01
The environment of the Straits of Malacca receives pollution as a result of various industrial and anthropogenic sources, making systematic studies crucial in determining the prevailing water quality. Present study concerns concentrations of natural radionuclides and heavy metals in marine fish (Rastrelliger kanagurta) collected from the Straits of Malacca, since aquatic stock form an important source of the daily diet of the surrouding populace. Assessment was made of the concentrations of key indicator radionuclides (226Ra, 232Th, 40K) and heavy metals (As, Mn, Fe, Cr, Ni, Zn, Cu, Co, Sr, Al, Hg and Pb) together with various radiation indices linked to the consumption of seafish. The annual effective dose for all detected radionuclides for all study locations has been found to be within UNSCEAR acceptable limits as has the associated life-time cancer risk. The overall contamination of the sampled fish from heavy metals was also found to be within limits of tolerance. PMID:26075909
The European XFEL Free Electron Laser at DESY
Weise, Hans [Deutsches Elektronen-Synchrotron, Germany
2017-12-09
The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.
Khandaker, M U; Asaduzzaman, Kh; Nawi, S M; Usman, A R; Amin, Y M; Daar, E; Bradley, D A; Ahmed, H; Okhunov, A A
2015-01-01
The environment of the Straits of Malacca receives pollution as a result of various industrial and anthropogenic sources, making systematic studies crucial in determining the prevailing water quality. Present study concerns concentrations of natural radionuclides and heavy metals in marine fish (Rastrelliger kanagurta) collected from the Straits of Malacca, since aquatic stock form an important source of the daily diet of the surrounding populace. Assessment was made of the concentrations of key indicator radionuclides (226Ra, 232Th, 40K) and heavy metals (As, Mn, Fe, Cr, Ni, Zn, Cu, Co, Sr, Al, Hg and Pb) together with various radiation indices linked to the consumption of seafish. The annual effective dose for all detected radionuclides for all study locations has been found to be within UNSCEAR acceptable limits as has the associated life-time cancer risk. The overall contamination of the sampled fish from heavy metals was also found to be within limits of tolerance.
NASA Astrophysics Data System (ADS)
Freed, R.; Smith, L.; Bugai, D.
2001-12-01
In the Borschi watershed, 3 km south of the Chernobyl nuclear power plant, we have found the transfer of 90Sr in wetlands pore waters to surface waters and the subsequent flow of wetland surface waters to the stream, largely effect the concentration of 90Sr in the Borschi channel. In Borschi, we have observed that during most of the year, wetlands are the main source of 90Sr contributing to the Borschi stream and channel bottom sediments are a secondary source. Wetland pore waters have at least an order of magnitude higher concentration of 90Sr than all other surface and subsurface waters. Pore water data obtained using peepers shows the 90Sr diffusion gradient is high in near-surface wetland sediments while the 90Sr diffusion gradient is moderate to insignificant in near-surface channel sediments. Channel and wetland sediments are highly depleted in 90Sr compared with immobile nuclear fission products such as europium-154 and can account for all of the 90Sr removed by the stream since the accident. While channel sediments are largely depleted in exchangeable 90Sr, wetland sediments represent a large source of exchangeable 90Sr. Removal of 90Sr by the stream from the wetland and channel sediments is on the same order as mass loss by decay.
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.
2012-12-01
The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on aerosol filters collected in the US Virgin Islands and Tobago are similar to those of aerosols from Mali, demonstrating that the African dust isotope signal is detectable and transported as far as Central and South America. Thus, while it appears undeniable that Saharan dust reaches the Amazon Basin, its importance for overall soil fertility requires a careful assessment of the dust budget versus bedrock weathering rates for key nutrient elements.
Scutellaria radix Extract as a Natural UV Protectant for Human Skin.
Seok, Jin Kyung; Kwak, Jun Yup; Choi, Go Woon; An, Sang Mi; Kwak, Jae-Hoon; Seo, Hyeong-Ho; Suh, Hwa-Jin; Boo, Yong Chool
2016-03-01
Ultraviolet (UV) radiation induces oxidative injury and inflammation in human skin. Scutellaria radix (SR, the root of Scutellaria baicalensis Georgi) contains flavonoids with high UV absorptivity and antioxidant properties. The purpose of this study was to examine the potential use of SR extract as an additive in cosmetic products for UV protection. SR extract and its butanol (BuOH) fraction strongly absorbed UV radiation and displayed free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radials and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals. They also attenuated the UV-induced death of HaCaT cells. Sunscreen creams, with or without supplementation of SR extract BuOH fraction, were tested in vivo in human trials to evaluate potential skin irritation and determine the sun protection factor (SPF). Both sunscreen creams induced no skin irritation. A sunscreen cream containing 24% ZnO showed an SPF value of 17.8, and it increased to 22.7 when supplemented with 5% SR extract BuOH fraction. This study suggests that SR-derived materials are useful as safe cosmetic additives that provide UV protection. Copyright © 2015 John Wiley & Sons, Ltd.
GaP betavoltaic cells as a power source
NASA Technical Reports Server (NTRS)
Pool, F. S.; Stella, Paul M.; Anspaugh, B.
1991-01-01
Maximum power output for the GaP cells of this study was found to be on the order of 1 microW. This resulted from exposure to 200 and 40 KeV electrons at a flux of 2 x 10(exp 9) electrons/sq cm/s, equivalent to a 54 mCurie source. The efficiencies of the cells ranged from 5 to 9 percent for 200 and 40 KeV electrons respectively. The lower efficiency at higher energy is due to a substantial fraction of energy deposition in the substrate, further than a diffusion length from the depletion region of the cell. Radiation damage was clearly observed in GaP after exposure to 200 KeV electrons at a fluence of 2 x 10(exp 12) electrons/sq cm. No discernable damage was observed after exposure to 40 KeV electrons at the same fluence. Analysis indicates that a GaP betavoltaic system would not be practical if limited to low energy beta sources. The power available would be too low even in the ideal case. By utilizing high activity beta sources, such as Sr-90/Y-90, it may be possible to achieve performance that could be suitable for some space power applications. However, to utilize such a source the problem of radiation damage in the beta cell material must be overcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintonen, Sakari, E-mail: sakari.sintonen@aalto.fi; Suihkonen, Sami; Jussila, Henri
2014-08-28
The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and themore » SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.« less
NASA Astrophysics Data System (ADS)
Cirino, M.; Dunbar, R. B.; Tangri, N.; Mehta, A.
2014-12-01
We investigated the use of synchrotron radiation for elemental imaging within the skeleton of a Porites coral from American Samoa to explore the fine-scale structure of strontium to calcium (Sr/Ca) variability. The use of a synchrotron for coral paleoclimate analysis is relatively new. The method provides a high resolution, two-dimensional elemental map of a coral surface. The aragonitic skeleton of Porites sp. colonies has been widely used for paleoclimate reconstruction as the oxygen isotope ratio (δ18O) signal varies with both sea surface temperature (SST) and sea surface salinity (SSS). Sr/Ca has been used in previous studies in conjunction with δ18O to deconvolve SST from SSS, as Sr/Ca in the coral skeleton varies with SST, but not SSS. However, recent studies suggest that in some cases Sr/Ca variability in coral does not reliably reflect changes in SST. We sought to address this puzzle by investigating Sr/Ca variability in Porites corals at a very fine spatial scale while also demonstrating the suitability of the synchrotron as a coral analysis tool. We also considered Sr/Ca variability as it pertains to the coral's structural elements. The Stanford Linear Accelerator Center synchrotron station generates collimated x-rays in the energy range of 4500-45000 eV with beam diameters as small as 20 μm. Synchrotron imaging allows faster and higher-resolution Sr/Ca analysis than does inductively coupled plasma mass spectrometry (ICP-MS). It also is capable of mapping spatial distributions of many elements, which aids in the development of a multiproxy approach to paleoclimate reconstruction. Imaging and analysis of the Porites coral using synchrotron radiation revealed an intricate sub-seasonal Sr/Ca signal, possibly correlating to a sub-monthly resolution. This signal, which seems unrelated to SST, dominates the annual signal.
Effect of cryogenic temperature on spectroscopic and laser properties of Er,La:SrF2-CaF2 crystal
NASA Astrophysics Data System (ADS)
Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Nakladov, Andrei N.; Osiko, Vjatcheslav V.
2016-03-01
The laser and spectroscopic properties of crystal Er,La:SrF2-CaF2 at temperature range 80 - 300 K, which is appropriate for generation of radiation around 2.7 um is presented. The sample of Er,La:SrF2-CaF2 (concentration Er(0.04), La(0.12):Ca(0.77)Sr(0.07)) had plan-parallel face-polished faces without anti-reflection coatings (thickness 8.2 mm). During spectroscopy and laser experiments the Er,La:SrF2-CaF2 was attached to temperature controlled copper holder and it was placed in vacuum chamber. The transmission and emission spectra of Er,La:SrF2-CaF2 together with the fluorescence decay time were measured in dependence on temperature. The excitation of Er,La:SrF2-CaF2 was carried out by a laser diode radiation (pulse duration 5 ms, repetition rate 20 Hz, pump wavelength 973 nm). Laser resonator was hemispherical, 140 mm in length with at pumping mirror (HR @ 2.7 µm) and spherical output coupler (r = 150 mm, R = 95 % @ 2.5 - 2.8 µm). Tunability of laser at 80 K in range 2690 - 2765 nm was obtained using MgF2 birefringent filter. With decreasing temperature of sample the fluorescence lifetime of manifold 4I11/2 (upper laser level) became shorter and intensity of up-conversion radiation was increasing. The highest slope efficiency with respect to absorbed power was 2.3 % at 80 K. The maximum output of peak amplitude power was 0.3 W at 80 K, i.e. 1.5 times higher than measured this value at 300 K. The wavelength generated by Er,La:SrF2-CaF2 laser (2.7 µm) is relatively close to absorption peak of water (3 µm) and so, one of the possible usage should be in medicine and spectroscopy.
NASA Astrophysics Data System (ADS)
Wiegand, B. A.; Schwendenmann, L.
2013-04-01
SummaryA comparative study of Sr and Ca isotopes was conducted to assess solute sources and effects of biogeochemical processes on surface water and groundwater in four small tropical catchments located at La Selva Biological Station, Costa Rica. Variable concentrations of dissolved Sr2+ and Ca2+ in the catchments are related to mixing of waters from different origin. Three catchments are influenced by high-solute bedrock groundwater, while another catchment is primarily supplied by local recharge. 87Sr/86Sr ratios were employed to discriminate contributions from mineral weathering and atmospheric sources. Solutes in bedrock groundwater have a predominant geogenic origin, whereas local recharge is characterized by low-solute inputs from rainwater and minor in situ weathering releases from nutrient-depleted soils. Bedrock groundwater contributes more than 60% of dissolved Sr2+ to surface discharge in the Salto, Saltito, and Arboleda catchments, whereas the Taconazo catchment receives more than 95% of dissolved Sr2+ from rainwater. δ44/40Ca values of dissolved Ca2+ vary greatly in the catchments, mainly as a result of heterogeneous Ca isotope compositions of the contributing sources. Based on differences in δ44/40Ca values, two distinct bedrock groundwaters discharging at the Salto and the Arboleda catchments are suggested. Effects of biological processes in the plant-soil system on solute generation in the catchments are indicated by variable Ca/Sr ratios. However, these effects cannot clearly be assessed by Ca isotopes due to the strong heterogeneity of δ44/40Ca values of Ca2+ sources and high Ca2+ concentrations in bedrock groundwater.
Evaluation of Shiryaev-Roberts Procedure for On-line Environmental Radiation Monitoring
NASA Astrophysics Data System (ADS)
Watson, Mara Mae
An on-line radiation monitoring system that simultaneously concentrates and detects radioactivity is needed to detect an accidental leakage from a nuclear waste disposal facility or clandestine nuclear activity. Previous studies have shown that classical control chart methods can be applied to on-line radiation monitoring data to quickly detect these events as they occur; however, Bayesian control chart methods were not included in these studies. This work will evaluate the performance of a Bayesian control chart method, the Shiryaev-Roberts (SR) procedure, compared to classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), for use in on-line radiation monitoring of 99Tc in water using extractive scintillating resin. Measurements were collected by pumping solutions containing 0.1-5 Bq/L of 99Tc, as 99T cO4-, through a flow cell packed with extractive scintillating resin coupled to a Beta-RAM Model 5 HPLC detector. While 99T cO4- accumulated on the resin, simultaneous measurements were acquired in 10-s intervals and then re-binned to 100-s intervals. The Bayesian statistical method, Shiryaev-Roberts procedure, and classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), were applied to the data using statistical algorithms developed in MATLAB RTM. Two SR control charts were constructed using Poisson distributions and Gaussian distributions to estimate the likelihood ratio, and are referred to as Poisson SR and Gaussian SR to indicate the distribution used to calculate the statistic. The Poisson and Gaussian SR methods required as little as 28.9 mL less solution at 5 Bq/L and as much as 170 mL less solution at 0.5 Bq/L to exceed the control limit than the Shewhart 3-sigma method. The Poisson SR method needed as little as 6.20 mL less solution at 5 Bq/L and up to 125 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. The Gaussian SR and CUSUM method required comparable solution volumes for test solutions containing at least 1.5 Bq/L of 99T c. For activity concentrations less than 1.5 Bq/L, the Gaussian SR method required as much as 40.8 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. Both SR methods were able to consistently detect test solutions containing 0.1 Bq/L, unlike the Shewhart 3-sigma and CUSUM methods. Although the Poisson SR method required as much as 178 mL less solution to exceed the control limit than the Gaussian SR method, the Gaussian SR false positive of 0% was much lower than the Poisson SR false positive rate of 1.14%. A lower false positive rate made it easier to differentiate between a false positive and an increase in mean count rate caused by activity accumulating on the resin. The SR procedure is thus the ideal tool for low-level on-line radiation monitoring using extractive scintillating resin, because it needed less volume in most cases to detect an upward shift in the mean count rate than the Shewhart 3-sigma and CUSUM methods and consistently detected lower activity concentrations. The desired results for the monitoring scheme, however, need to be considered prior to choosing between the Poisson and Gaussian distribution to estimate the likelihood ratio, because each was advantageous under different circumstances. Once the control limit was exceeded, activity concentrations were estimated from the SR control chart using the slope of the control chart on a semi-logarithmic plot. Five of nine test solutions for the Poisson SR control chart produced concentration estimates within 30% of the actual value, but the worst case was 263.2% different than the actual value. The estimations for the Gaussian SR control chart were much more precise, with six of eight solutions producing estimates within 30%. Although the activity concentrations estimations were only mediocre for the Poisson SR control chart and satisfactory for the Gaussian SR control chart, these results demonstrate that a relationship exists between activity concentration and the SR control chart magnitude that can be exploited to determine the activity concentration from the SR control chart. More complex methods should be investigated to improve activity concentration estimations from the SR control charts.
Paces, James B.; Wurster, Frederic C.
2014-01-01
Near-surface physical and chemical process can strongly affect dissolved-ion concentrations and stable isotope compositions of water in wetland settings, especially under arid climate conditions. In contrast, heavy radiogenic isotopes of strontium (87Sr/86Sr) and uranium (234U/238U) remain largely unaffected and can be used to help identify unique signatures from different sources and quantify end-member mixing that would otherwise be difficult to determine. The utility of combined Sr and U isotopes are demonstrated in this study of wetland habitats on the Pahranagat National Wildlife Refuge, which depend on supply from large-volume springs north of the Refuge, and from small-volume springs and seeps within the Refuge. Water budgets from these sources have not been quantified previously. Evaporation, transpiration, seasonally variable surface flow, and water management practices complicate the use of conventional methods for determining source contributions and mixing relations. In contrast, 87Sr/86Sr and 234U/238U remain unfractionated under these conditions, and compositions at a given site remain constant. Differences in Sr- and U-isotopic signatures between individual sites can be related by simple two- or three-component mixing models. Results indicate that surface flow constituting the Refuge’s irrigation source consists of a 65:25:10 mixture of water from two distinct regionally sourced carbonate aquifer springs, and groundwater from locally sourced volcanic aquifers. Within the Refuge, contributions from the irrigation source and local groundwater are readily determined and depend on proximity to those sources as well as water management practices.
NASA Astrophysics Data System (ADS)
Paces, James B.; Wurster, Frederic C.
2014-09-01
Near-surface physical and chemical process can strongly affect dissolved-ion concentrations and stable-isotope compositions of water in wetland settings, especially under arid climate conditions. In contrast, heavy radiogenic isotopes of strontium (87Sr/86Sr) and uranium (234U/238U) remain largely unaffected and can be used to help identify unique signatures from different sources and quantify end-member mixing that would otherwise be difficult to determine. The utility of combined Sr and U isotopes are demonstrated in this study of wetland habitats on the Pahranagat National Wildlife Refuge, which depend on supply from large-volume springs north of the Refuge, and from small-volume springs and seeps within the Refuge. Water budgets from these sources have not been quantified previously. Evaporation, transpiration, seasonally variable surface flow, and water management practices complicate the use of conventional methods for determining source contributions and mixing relations. In contrast, 87Sr/86Sr and 234U/238U remain unfractionated under these conditions, and compositions at a given site remain constant. Differences in Sr- and U-isotopic signatures between individual sites can be related by simple two- or three-component mixing models. Results indicate that surface flow constituting the Refuge's irrigation source consists of a 65:25:10 mixture of water from two distinct regionally sourced carbonate-aquifer springs, and groundwater from locally sourced volcanic aquifers. Within the Refuge, contributions from the irrigation source and local groundwater are readily determined and depend on proximity to those sources as well as water management practices.
The photodegradation of cadmium yellow paints in Henri Matisse's Le Bonheur de vivre (1905-1906)
NASA Astrophysics Data System (ADS)
Mass, Jennifer L.; Opila, Robert; Buckley, Barbara; Cotte, Marine; Church, Jonathan; Mehta, Apurva
2013-04-01
Evidence for the alteration of the yellow paints in Henri Matisse's Le Bonheur de vivre (1905-1906, The Barnes Foundation) has been observed since the 1990s. The changes in this iconic work of Matisse's Fauvist period include lightening, darkening, and flaking of the yellow paints. Handheld X-ray fluorescence (XRF) and multispectral imaging surveys reveal that the degradation is confined to cadmium yellow (CdS) paints. The discoloration of cadmium yellow paints in Impressionist, Post-Impressionist and early modernist work from the 1880s through the 1920s has been ascribed to the photo-oxidative degradation of CdS. Preliminary investigations of the degraded yellow paints in this work involved Cd LIII-edge X-ray Absorption Near Edge Spectroscopy (XANES) at the Stanford Synchrotron Radiation Light Source (SSRL Menlo Park, California) and Scanning Electron Microscopy-energy dispersive X-ray analysis (SEM-EDS) at the Winterthur Museum Scientific Research and Analysis Laboratory. To determine if the visual changes in the paints did in fact indicate photo-oxidative degradation and if different chemistries could be observed for the lightened versus darkened regions, synchrotron radiation-micro Fourier Transform InfraRed (SR-μFTIR) spectroscopy, X-ray Fluorescence (SR-μXRF) mapping and micro X-ray Absorption Near Edge Spectroscopy (μXANES) mapping at the Cd LIII-edge of the altered paint cross-sections were carried out at the European synchrotron radiation facility (ESRF, Grenoble, France) beamline ID-21. The goal is to elucidate the discoloration mechanisms observed in the paint using elemental and speciation mapping. The μXANES mapping and SR-FTIR imaging showed a substantial enrichment of CdCO3 in the off-white surface crust of the faded/discolored CdS paint. This suggests that the CdCO3 is present as an insoluble photodegradation product rather than solely a paint filler or starting reagent. Additionally, oxalates and sulfates were found to be concentrated at the alteration surface.
Is the Modern Marine 87Sr/86Sr Cycle Balanced?
NASA Astrophysics Data System (ADS)
Peucker-Ehrenbrink, B.
2017-12-01
The marine 87Sr/86Sr record is one of the best-reconstructed isotope records with thousands of high quality measurements spanning the past 800 million years. It records a global signal of tectonic, biotic and climatic processes on Earth. Yet despite decades of research we still do not know whether the current marine Sr budget is in steady state. Studies of the marine 88Sr/86Sr record indicate that sources and sinks do not balance. The magnitude and isotope composition of the terrestrial inputs are being debated, and the magnitude and temporal variability of unradiogenic contributions are not well constrained. Here I provide a revised assessment of all continental sources of Sr to the ocean, including river runoff, submarine groundwater discharge (Beck et al., 2013), dissolution of riverine suspended matter in seawater and dissolution of volcanic ash deposited on the ocean (Jones et al., 2012). I contrast continental sources of Sr with estimates of marine sources of Sr to seawater, specifically high- and low-temperature submarine hydrothermal fluids, as well as diffusive diagenetic fluxes. Best current data imply that unradiogenic submarine hydrothermal inputs to seawater are insufficient to balance the flux of radiogenic continental Sr. The revised assessment of riverine contributions is based on Sr data for almost 230 rivers, an increasing amount of time-series data for such rivers, as well as river discharge and sediment flux data for more than 2000 rivers. Regional sampling biases have been corrected with the aid of digital bedrock maps, specifically along the western margin of North America, East Africa and the large drainage region of Arabia, India and SE Asia. Significant uncertainty in the chemical and isotopic compositions of runoff from Greenland and East Africa remains. The main uncertainty in the budget, however, is related to the possibility that modern rivers do not represent the pre-anthropogenic (natural) state of continental runoff (e.g. Ganges; Rahaman et al. 2011).
Temporal narrowing of neutrons produced by high-intensity short-pulse lasers
Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...
2015-07-28
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less
NASA Technical Reports Server (NTRS)
Chin, Mian
2012-01-01
We present a global model analysis of the impact of long-range transport and anthropogenic emissions on the aerosol trends in the major pollution regions in the northern hemisphere and in the Arctic in the past three decades. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze the multi-spatial and temporal scale data, including observations from Terra, Aqua, and CALIPSO satellites and from the long-term surface monitoring stations. We will analyze the source attribution (SA) and source-receptor (SR) relationships in North America, Europe, East Asia, South Asia, and the Arctic at the surface and free troposphere and establish the quantitative linkages between emissions from different source regions. We will discuss the implications for regional air quality and climate change.
NASA Astrophysics Data System (ADS)
Cherepy, N. J.; Payne, S. A.; Sturm, B. W.; O'Neal, S. P.; Seeley, Z. M.; Drury, O. B.; Haselhorst, L. K.; Rupert, B. L.; Sanner, R. D.; Thelin, P. A.; Fisher, S. E.; Hawrami, R.; Shah, K. S.; Burger, A.; Ramey, J. O.; Boatner, L. A.
2011-09-01
Recently discovered scintillators for gamma ray spectroscopy - single-crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics - offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu), offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single-crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.
Exploring actinide materials through synchrotron radiation techniques.
Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang
2014-12-10
Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, N J; Payne, S A; Sturm, B W
2011-08-30
Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI{sub 2}(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics, offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI{sub 2}(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI{sub 2}(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.
NASA Astrophysics Data System (ADS)
Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte
2004-10-01
This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants
The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galy, A.; France-Lanord, C.; Derry, L.A.
1999-07-01
Himalayan rivers have very unusual Sr characteristics and their budget cannot be achieved by simple mixing between silicate and carbonate even if carbonates are radiogenic. The authors present Sr, O, and C isotopic data from river and rain water, bedload, and bedrock samples for the western and central Nepal Himalaya and Bangladesh, including the monsoon season. Central Himalayan rivers receive Sr from several sources: carbonate and clastic Tethyan sediments, High Himalayan Crystalline (HHC) gneisses and granitoids with minor marbles, carbonates and metasediments of the Lesser Himalaya (LH), and Miocene-Recent foreland basin sediment from the Siwaliks group and the modern floodmore » plain. In the Tethyan Himalaya rivers have dissolved [Sr] {approx} 6 {micro}mol/l and {sup 87}Sr/{sup 86}Sr {approx} 0.717, with a large contribution from moderately radiogenic carbonate. Rivers draining HHC gneisses are very dilute with [Sr] {approx} 0.2 {micro}mol/l and {sup 87}Sr/{sup 86}Sr {approx} 0.74. Lesser Himalayan streams also have low [Sr] {approx} 0.4 {micro}mol/l and are highly radiogenic ({sup 87}Sr/{sup 86}Sr {ge} 0.78). Highly radiogenic carbonates of the LH do not contribute significantly to the Sr budget because they are sparse and have very low [Sr]. In large rivers exiting the Himalaya, Sr systematics can be modeled as a mixture between Tethyan rivers, where slightly radiogenic carbonates (mean {sup 87}Sr/{sup 86}Sr {approx} 0.715) are the main source of Sr, and Lesser Himalaya waters, where extremely radiogenic silicates (> 0.8) are the main source of Sr. HHC waters are less important because of their low [Sr]. Rivers draining the Siwaliks foreland basin sediments have [Sr] {approx} 4 {micro}mol/l and {sup 87}Sr/{sup 86}Sr {approx} 0.725. Weathering of silicates in the Siwaliks and the flood plain results in a probably significant radiogenic (0.72--0.74) input to the Ganges and Brahamputra (G-B), but quantification of this flux is limited by uncertainties in the hydrologic budget. The G-B in Bangladesh show strong seasonal variability with low [Sr] and high {sup 87}Sr/{sup 86}Sr during the monsoon. Sr in the Brahmaputra ranges from 0.9 {micro}mol/l and 0.722 in March to 0.3 {micro}mol/l and 0.741 in August. The authors estimate the seasonally weighted flux from the G-B to be 6.5 {times} 10{sup 8} mol/yr with {sup 87}Sr/{sup 86}Sr = 0.7295.« less
Performance of a Low Activity Beta-Sensitive SR{sup 90} Water Monitor for Fukushima
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zickefoose, J.; Bronson, F.; Ilie, G.
There are large volumes of contaminated water from the stabilization efforts at the damaged Fukushima Nuclear Power Plants. This water is being processed to remove radioactivity for eventual release to the environment. An on-line continuously operating system to confirm that the clean-up system is working properly, and to provide prompt feedback of the results is required by the system operator. While gamma emitting nuclides allow for the straight forward approach of gamma spectroscopy to identify and quantify radioactivity in water, pure beta emitting nuclides such as Sr{sup 90} pose a challenging problem. The relatively short range of beta radiation inmore » water requires optimization of the measurement geometry in terms of the source-detector distance and source-detector interface while retaining a background sensitivity low enough to meet the Minimum Detectable Concentration (MDC) of 10 Bq/kg in 180 minutes. This issue is complicated by the continuum nature of the beta spectrum which does not allow for simple nuclide identification. The use of the Monte-Carlo code MCNP to estimate system performance before prototyping vastly increases the success of the end product. Various parameters such as detector size and thickness, water chamber size, water chamber construction materials were evaluated to help choose the optimum geometry. The final design was a system consisting of two large-area (16 x 35 cm) and thin (0.15 mm) plastic scintillators placed very close to a sealed a water chamber. The size of the chamber was optimized to obtain the maximum efficiency for the nuclide being measured (Sr/Y{sup 90}) but to minimize the efficiency for possible interferences (Ru/Rh{sup 106}, Cs{sup 137}). A thin carbon fiber window was selected with adequate material and thickness to contain the water under pressure, but also thin enough (0.5 mm) to allow enough beta radiation to pass through to the active detector volume. The entire measurement geometry is then housed in a thick lead shield to reduce contributions from external sources to an acceptable level. Data acquisition is accomplished through customized application-specific software that allows for long counting times to attain a low MDC, but also simultaneously provides alarms on short averaging times to achieve a fast response to sudden changes in activity concentration. Multiple monitors are then linked to supervisory software where real time data and alarms are available for analysis in remote locations. The system also allows for remote operation of the unit; check sources, background checks, systems settings and more may be accessed remotely. Testing of the production devices has shown that we can achieve the 10 Bk/kg MDC requirement for Sr{sup 90} in equilibrium with Y{sup 90} with a count time of approximately 20 minutes. (authors)« less
The peculiarities of power terrestrial ELF emission in the Earth's ionosphere
NASA Astrophysics Data System (ADS)
Korepanov, Valery; Dudkin, Fedir; Pronenko, Vira; Chvach, Valery
2016-04-01
The near-Earth space is saturated with electromagnetic (EM) waves of terrestrial origin in a wide frequency range. The most powerful natural sources of EM emission are thunderstorms and triggered by them Schumann resonance (SR) radiation which is the narrowband EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity in frequency range about 7-100 Hz. The considerable part of the terrestrial EM emission belongs to everyday human activity which increases year by year with unpredictable consequences. At the beginning of space exploration era it was considered that high frequency EM waves freely penetrate through the Earth's ionosphere, but the terrestrial EM emission below very low frequency range is limited by ionospheric F2 layer boundary due to great EM losses in plasma. About 40 years ago the power lines harmonic radiation (multiple of 50/60 Hz) was found at satellite observations in a few kilohertz range, nevertheless the ionosphere was considered fully opaque for extremely low frequency (ELF) EM emission. However recently, in spite of theoretical estimations, the SR harmonics and power line emission (PLE) 50/60 Hz were discovered during flights of low Earth orbiting satellites C/NOFS (Simões et al., 2011) and Chibis-M (Dudkin et al., 2015) at heights 400-800 km, i.e. over F2-layer. Last results are a great challenge to the theory of ELF EM emission propagation in the Earth's ionosphere as well as for study of long-term influence of constantly increasing electric energy consumption by human civilization in the Earth's environment. We present the analysis of the space and time distribution for observed PLE and SR harmonics, their connection with power terrestrial sources of ELF emission and possible relation between measured values and ionosphere conditions. Also some electromagnetic parameters have been estimated. Simões, F. A., R. F. Pfaff, and H. T. Freudenreich (2011), Satellite observations of Schumann resonances in the Earth's ionosphere, Geophys. Res. Lett., 38, L22101, doi:10.1029/2011GL049668. Dudkin, F., V. Korepanov, D. Dudkin, V. Pilipenko, V. Pronenko, and S. Klimov (2015), Electric fi eld of the power terrestrial sources observed by microsatellite Chibis-M in the Earth ' s ionosphere in frequency range 1 - 60 Hz, Geophys. Res. Lett., 42, doi:10.1002/2015GL064595.
Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny
2015-01-01
In the following study, dose dependent effects on growth and oxidative stress induced by β-radiation were examined to gain better insights in the mode of action of β-radiation induced stress in plant species. Radiostrontium (90Sr) was used to test for β-radiation induced responses in the freshwater macrophyte Lemna minor. The accumulation pattern of 90Sr was examined for L. minor root and fronds separately over a seven-day time period and was subsequently used in a dynamic dosimetric model to calculate β-radiation dose rates. Exposing L. minor plants for seven days to a 90Sr activity concentration of 25 up to 25,000 kBq·L−1 resulted in a dose rate between 0.084 ± 0.004 and 97 ± 8 mGy·h−1. After seven days of exposure, root fresh weight showed a dose dependent decrease starting from a dose rate of 9.4 ± 0.5 mGy·h−1. Based on these data, an EDR10 value of 1.5 ± 0.4 mGy·h−1 was estimated for root fresh weight and 52 ± 17 mGy·h−1 for frond fresh weight. Different antioxidative enzymes and metabolites were further examined to analyze if β-radiation induces oxidative stress in L. minor. PMID:26198226
Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny
2015-07-07
In the following study, dose dependent effects on growth and oxidative stress induced by β-radiation were examined to gain better insights in the mode of action of β-radiation induced stress in plant species. Radiostrontium (⁹⁰Sr) was used to test for β-radiation induced responses in the freshwater macrophyte Lemna minor. The accumulation pattern of 90Sr was examined for L. minor root and fronds separately over a seven-day time period and was subsequently used in a dynamic dosimetric model to calculate β-radiation dose rates. Exposing L. minor plants for seven days to a ⁹⁰Sr activity concentration of 25 up to 25,000 kBq·L⁻¹ resulted in a dose rate between 0.084 ± 0.004 and 97 ± 8 mGy·h⁻¹. After seven days of exposure, root fresh weight showed a dose dependent decrease starting from a dose rate of 9.4 ± 0.5 mGy·h⁻¹. Based on these data, an EDR10 value of 1.5 ± 0.4 mGy·h⁻¹ was estimated for root fresh weight and 52 ± 17 mGy·h⁻¹ for frond fresh weight. Different antioxidative enzymes and metabolites were further examined to analyze if β-radiation induces oxidative stress in L. minor.
Strontium isotopic study of subsurface brines from Illinois basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
hetherington, E.A.; Stueber, A.M.; Pushkar, P.
1986-05-01
The abundance of the radiogenic isotope /sup 87/Sr in a subsurface brine can be used as a tracer of brine origin, evolution, and diagenetic effects. The authors have determined the /sup 87/Sr//sup 86/Sr ratios of over 60 oil-field waters from the Illinois basin, where brine origin is perplexing because of the absence of any significant evaporite strata. Initially, they analyzed brines from 15 petroleum-producing sandstone and carbonate units; waters from Ordovician, Silurian, Devonian, and Mississippian strata have /sup 87/Sr//sup 86/Sr ratios in the range 0.7079-0.7108. All but those from the Ste. Genevieve Limestone (middle Mississippian) are more radiogenic in /supmore » 87/Sr//sup 86/Sr than seawater values for this interval of geologic time. The detrital source of the more radiogenic /sup 87/Sr may be the New Albany Shale group, considered to be a major petroleum source rock in the basin. The /sup 87/Sr//sup 86/Sr ratios of Ste. Genevieve brines apparently evolved without a contribution from fluid-shale interaction.« less
Sr-Nd-Hf isotopic fingerprinting of transatlantic dust derived from North Africa
NASA Astrophysics Data System (ADS)
Zhao, Wancang; Balsam, William; Williams, Earle; Long, Xiaoyong; Ji, Junfeng
2018-03-01
Long-range transport of African dust plays an important role in understanding dust-climate relationships including dust source areas, dust pathways and associated atmospheric and/or oceanic processes. Clay-sized Sr-Nd-Hf isotopic compositions can be used as geochemical fingerprints to constrain dust provenance and the pathways of long-range transported mineral dust. We investigated the clay-sized Sr-Nd-Hf isotopic composition of surface samples along four transects bordering the Sahara Desert. The transects are from Mali, Niger/Benin/Togo, Egypt and Morocco. Our results show that the Mali transect on the West African Craton (WAC) produces lower εNd (εNd-mean = -16.38) and εHf (εHf-mean = -9.59) values than the other three transects. The Egyptian transect exhibits the lowest 87Sr/86Sr ratios (87Sr/86Srmean = 0.709842), the highest εHf (εHf-mean = -0.34) and εNd values of the four transects. Comparison of the clay-sized Sr-Nd-Hf isotopic values from our North African samples to transatlantic African dust collected in Barbados demonstrates that the dust's provenance is primarily the western Sahel and Sahara as well as the central Sahel. Summer emission dust is derived mainly from the western Sahel and Sahara regions. The source of transatlantic dust in spring and autumn is more varied than in the summer and includes dust not only from western areas, but also south central areas. Comparison of the Sr-Nd-Hf isotopic fingerprints between the source and sink of transatlantic dust also suggests that a northwestward shift in dust source occurs from the winter, through the spring and into the summer. The isotopic data we develop here provide another tool for discriminating changes in dust archives resulting from paleoenvironmental evolution of source regions.
NASA Astrophysics Data System (ADS)
Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.
2015-06-01
In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.
Electronic structure of α-SrB4O7: experiment and theory
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Kesler, V. G.; Zaitsev, A. I.; Molokeev, M. S.; Aleksandrovsky, A. S.; Kuzubov, A. A.; Ignatova, N. Y.
2013-02-01
The investigation of valence band structure and electronic parameters of constituent element core levels of α-SrB4O7 has been carried out with x-ray photoemission spectroscopy. Optical-quality crystal α-SrB4O7 has been grown by the Czochralski method. Detailed photoemission spectra of the element core levels have been recorded from the powder sample under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The band structure of α-SrB4O7 has been calculated by ab initio methods and compared to XPS measurements. It has been found that the band structure of α-SrB4O7 is weakly dependent on the Sr-related states.
NASA Astrophysics Data System (ADS)
Koarai, Kazuma; Kino, Yasushi; Takahashi, Atsushi; Suzuki, Toshihiko; Shimizu, Yoshinaka; Chiba, Mirei; Osaka, Ken; Sasaki, Keiichi; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Oka, Toshitaka; Sekine, Tsutomu; Fukumoto, Manabu; Shinoda, Hisashi
2016-04-01
Here we determined the 90Sr concentrations in the teeth of cattle abandoned in the evacuation area of the Fukushima-Daiichi Nuclear Power Plant (FNPP) accident. 90Sr activity concentrations in the teeth varied from 6-831 mBq (g Ca)-1 and exhibited a positive relationship with the degree of radioactive contamination that the cattle experienced. Even within an individual animal, the specific activity of 90Sr (Bq (g Sr)-1) varied depending on the development stage of the teeth during the FNPP accident: teeth that were early in development exhibited high 90Sr specific activities, while teeth that were late in development exhibited low specific activities. These findings demonstrate that 90Sr is incorporated into the teeth during tooth development; thus, tooth 90Sr activity concentrations reflect environmental 90Sr levels during tooth formation. Assessment of 90Sr in teeth could provide useful information about internal exposure to 90Sr radiation and allow for the measurement of time-course changes in the degree of environmental 90Sr pollution.
Koarai, Kazuma; Kino, Yasushi; Takahashi, Atsushi; Suzuki, Toshihiko; Shimizu, Yoshinaka; Chiba, Mirei; Osaka, Ken; Sasaki, Keiichi; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Oka, Toshitaka; Sekine, Tsutomu; Fukumoto, Manabu; Shinoda, Hisashi
2016-04-05
Here we determined the (90)Sr concentrations in the teeth of cattle abandoned in the evacuation area of the Fukushima-Daiichi Nuclear Power Plant (FNPP) accident. (90)Sr activity concentrations in the teeth varied from 6-831 mBq (g Ca)(-1) and exhibited a positive relationship with the degree of radioactive contamination that the cattle experienced. Even within an individual animal, the specific activity of (90)Sr (Bq (g Sr)(-1)) varied depending on the development stage of the teeth during the FNPP accident: teeth that were early in development exhibited high (90)Sr specific activities, while teeth that were late in development exhibited low specific activities. These findings demonstrate that (90)Sr is incorporated into the teeth during tooth development; thus, tooth (90)Sr activity concentrations reflect environmental (90)Sr levels during tooth formation. Assessment of (90)Sr in teeth could provide useful information about internal exposure to (90)Sr radiation and allow for the measurement of time-course changes in the degree of environmental (90)Sr pollution.
Koarai, Kazuma; Kino, Yasushi; Takahashi, Atsushi; Suzuki, Toshihiko; Shimizu, Yoshinaka; Chiba, Mirei; Osaka, Ken; Sasaki, Keiichi; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Oka, Toshitaka; Sekine, Tsutomu; Fukumoto, Manabu; Shinoda, Hisashi
2016-01-01
Here we determined the 90Sr concentrations in the teeth of cattle abandoned in the evacuation area of the Fukushima-Daiichi Nuclear Power Plant (FNPP) accident. 90Sr activity concentrations in the teeth varied from 6–831 mBq (g Ca)−1 and exhibited a positive relationship with the degree of radioactive contamination that the cattle experienced. Even within an individual animal, the specific activity of 90Sr (Bq (g Sr)−1) varied depending on the development stage of the teeth during the FNPP accident: teeth that were early in development exhibited high 90Sr specific activities, while teeth that were late in development exhibited low specific activities. These findings demonstrate that 90Sr is incorporated into the teeth during tooth development; thus, tooth 90Sr activity concentrations reflect environmental 90Sr levels during tooth formation. Assessment of 90Sr in teeth could provide useful information about internal exposure to 90Sr radiation and allow for the measurement of time-course changes in the degree of environmental 90Sr pollution. PMID:27045764
Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Ribeiro, Sara; Santos, José Francisco; Patinha, Carla; da Silva, Eduardo Ferreira; Soares, Rosário; Duarte, Armando C
2017-04-01
In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM 2.5 ) was sampled for 17 months at an urban location in the Western European Coast. The PM 2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope ( 87 Sr/ 86 Sr) composition. Organic matter dominates the identifiable urban PM 2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87 Sr/ 86 Sr ratios were measured on both the labile and residual PM 2.5 fractions as well as on the bulk PM 2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87 Sr/ 86 Sr ratios are comparable to that of seawater. The 87 Sr/ 86 Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period.
NASA Astrophysics Data System (ADS)
Freed, Rina
Effective stream remediation of non-point source contaminants, such as Chernobyl fallout, requires an understanding of the areas within watersheds that are contributing contamination to streams, the pathways of contaminant migration to streams, and the mechanisms controlling concentration changes in streams. From 1998--2002, the migration of 90Sr was studied in the Borschi watershed, a small (8.5 km2) catchment, three km south of the Chernobyl Nuclear Power Plant. Estimates of 90Sr depletion from soil cores (based on the ratio of 90Sr to the relatively immobile 154Eu) were used to map the effective source area that has contributed 90Sr loading into the main channel. The effective source areas include the channel bottom sediments, a wetland in the central region of the watershed, and periodically flooded soils surrounding the wetland. The estimated 90Sr leaching rate considering the effective source areas agrees with the estimate based on monitoring observations of stream water quality and flow rate in 1999--2001, 2.0% per year. In approximately 44 years, 90% of the remaining 90Sr could be removed from the effective source areas. We hypothesize that during discharge periods, the pore waters in the wetland represent the 90Sr concentration of advecting groundwater while during stagnant periods, the pore waters represent the concentration of 90Sr in equilibrium with the sediment. This proposed explanation is supported using PHREEQC in a dual porosity mode. Using independent estimates of the model parameters, the pore water concentration profiles could be successfully matched with the assumption of advective transport during the discharge period and diffusive transport of 90Sr during near-stagnant conditions. Changes in the 90Sr concentration of the Borschi stream are correlated with the elevation of the water table in the vicinity of the wetlands. The elevation of the water table is a surrogate variable for the area of submerged soil. As the area of submerged soil increases, more of the contaminant in the upper soil horizon is saturated and more 90Sr is released into the stream. In contrast to the prevailing assumption that the mechanism of 90Sr migration to streams is overland flow during storm events, over 70% of the annual flux occurs during baseflow conditions.
Early history of the moon: Implications of U-Th-Pb and Rb-Sr systematics
NASA Technical Reports Server (NTRS)
Tatsumoto, M.; Nunes, P. D.; Unruh, D. M.
1974-01-01
Anorthosite 60015 contains the lowest initial Sr-87/Sr-86 ratio (0.69884 + or - 0.00004) yet reported for a lunar sample. The initial ratio is equal to that of the achondrite Angra dos Reis and slightly higher than the lowest measured Sr-87/Sr-86 ratio for an inclusion in the C3 carbonaceous chondrite Allende. The Pb-Pb ages of both Angra dos Reis and Allende are 4.62 x 10 to the 9th power years (4.62 billion years). Thus, the initial Sr-87/Sr-86 ratio found in lunar anorthosite 60015 strongly supports the hypothesis that the age of the moon is about 4.65 b.y. The U-238/Pb-204 value estimated for the source of the excess lead in orange soil 74220 is lower than the values estimated for the sources of KREEP (600-1000), high K (300-600) and low K (100-300) basalts.
Bullen, T.D.; Bailey, S.W.
2005-01-01
Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible alternative explanations of aspects of the observed trends, the chemical buffering capacity of the forest floor-biomass pool limits their effectiveness as causal mechanisms. ?? Springer 2005.
Clark, Otavio Augusto Camara; Castro, Aldemar Araujo
2002-02-01
An unbiased systematic review (SR) should analyse as many articles as possible in order to provide the best evidence available. However, many SR use only databases with high English-language content as sources for articles. Literatura Latino Americana e do Caribe em Ciências da Saúde (LILACS) indexes 670 journals from the Latin American and Caribbean health literature but is seldom used in these SR. Our objective is to evaluate if LILACS should be used as a routine source of articles for SR. First we identified SR published in 1997 in five medical journals with a high impact factor. Then we searched LILACS for articles that could match the inclusion criteria of these SR. We also checked if the authors had already identified these articles located in LILACS. In all, 64 SR were identified. Two had already searched LILACS and were excluded. In 39 of 62 (63%) SR a LILACS search identified articles that matched the inclusion criteria. In 5 (8%) our search was inconclusive and in 18 (29%) no articles were found in LILACS. Therefore, in 71% (44/72) of cases, a LILACS search could have been useful to the authors. This proportion remains the same if we consider only the 37 SR that performed a meta-analysis. In only one case had the article identified in LILACS already been located elsewhere by the authors' strategy. LILACS is an under-explored and unique source of articles whose use can improve the quality of systematic reviews. This database should be used as a routine source to identify studies for systematic reviews.
Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.
Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng
2012-05-01
The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.
Growth and spectral-luminescent study of SrMoO4 crystals doped with Tm3+ ions
NASA Astrophysics Data System (ADS)
Dunaeva, E. E.; Zverev, P. G.; Doroshenko, M. E.; Nekhoroshikh, A. V.; Ivleva, L. I.; Osiko, V. V.
2016-03-01
SrMoO4 crystals doped with Tm3+ ions have been produced from a melt using the Czochralski method; their spectral-luminescent characteristics have been studied, and laser radiation has been generated at the wavelength of 1.94 μm using laser-diode excitation. The high absorption section at the wavelength of 795 nm, the fairly high luminescence section, the long lifetime at the upper laser level 3F4 of 1.5 ms, and a wide luminescence band allow one to hope for developing efficient tunable Tm3+: SrMoO4 crystal lasers with diode pumping in the range of 1.7-2.0 μm, which are capable of implementing SRS self-transformation of radiation into the middle IR band.
Watmough, Shaun
2018-06-01
There is increasing concern over the negative ecological impacts caused by falling calcium (Ca) concentrations in lakes, particularly in central Ontario, Canada. Forecasting regional changes in lake Ca concentrations relies on accurate estimates of mineral weathering rates that are not widely available. In this study, bulk atmospheric deposition, surface water and soil chemistry along with 87 Sr/ 86 Sr isotope measurements were used to provide regional insight into weathering controls on Ca concentrations in lakes. Regionally, Ca concentrations in 90% of 129 lakes sampled in central Ontario were <0.1 mmol L -1 and the Ca/Sr ratio in lakes increased and the K/Sr ratio decreased with increasing Sr concentration, which is indicative of greater Ca sources from calcite or apatite in the higher Ca lakes. Significant relationships between 87 Sr/ 86 Sr ratios and Ca/Sr rations in dilute acid (0.1 M HCl) soil extracts are also indicative of the presence of trace amounts of calcite or apatite in surficial soils. Within the low (<0.7 mmol L -1 ) Ca lakes, defined in this study that are considered most at risk from falling Ca concentrations, 87 Sr/ 86 Sr ratios fell within the range observed in weak acid soil extracts and were also significantly related to Ca/Na and K/Sr ratios in surface waters. There were large inconsistencies however, between Ca/Na ratios and Ca/Sr in surface waters and soil acid extracts that suggest differences in 87 Sr/ 86 Sr ratios in surface waters of the low Ca lakes do not simply reflect differences in Ca derived from non-silicate minerals in surficial soils and that that Ca sources from deeper soil or bedrock are also important contributors to surface water Ca in these low Ca lakes. Copyright © 2018 Elsevier B.V. All rights reserved.
Sr isotopic tracer study of the Samail ophiolite, Oman.
Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.
1981-01-01
Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.
Sr isotopic composition as a tracer of Ca sources in two forest ecosystems in Belgium.
NASA Astrophysics Data System (ADS)
Drouet, T.; Herbauts, J.; Demaiffe, D.
2003-04-01
The two main sources of Ca in forest ecosystem are the mineral weathering release and atmospheric inputs. We use the 87Sr/86Sr isotopic ratio (Sr is a proxy for Ca) to determine the Ca contribution from rain input in two forest ecosystems (beech stands) growing on soils formed from parent materials with distinct total Ca contents and contrasted isotopic ratios: Pleistocene loess in Central Belgium (leached brown soil) with present-day 87Sr/86Sr =0.72788 and Lower Devonian shales and sandstones in Ardennes (ochreous brown earth) with 87Sr/86Sr = 0.76913. The 87Sr/86Sr ratios and the Ca and Sr contents were measured in rainwater, vegetation (beech wood growth rings and leaves) and main soil horizons (total, labile and HCl 0.1 M soluble forms). The relative contributions of atmospheric input and soil mineral weathering to vegetation were calculated using mixing equations. Calculations based on the Sr isotope ratios of rainwater (endmember 1; 87Sr/86Sr close to seawater: 0.7090), labile soil fraction (endmember 2; 87Sr/86Sr: 0.71332 to 0.71785) and beech wood (mixing compartment) indicate that about 50 % (Central Belgium) to 35 % (Ardennes) of Ca uptake originate from atmospheric inputs. The choice of the appropriate 87Sr/86Sr ratio for the weathering endmember is however critical. The isotopic composition of the mineral source is theoretically determined by the mineralogical composition of the soil and the relative weatherability of the Sr-bearing minerals. Due to soil processes (weathering and clay illuviation), the distribution of minerals in both soil profiles is not homogeneous and varies from horizon to horizon. Which horizons are relevant and which kind of soil extract (labile soil fraction, acid soluble fraction, total soil,...) should be selected for isotopic measurement of weathering endmember, is therefore questionable. The different ways of estimation are discussed. Quantitative mineralogical reconstitutions of soil horizons and isotopic data indicate preferential weathering of plagioclase (high Sr content with low 87Sr/86Sr) rather than mica or K-feldspar (high 87Sr/86Sr). Our results emphasize the importance of the Ca atmospheric contribution to the tree mineral nutrition in these forest ecosystems. It is plausible that acid depositions associated with decreasing input of atmospheric cations (“acid rains”) could increase the depletion of soil available cation pool at a short-time scale.
Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue
2012-01-01
Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.
Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A
2015-11-01
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed doses in tooth enamel and muscle are in agreement with EPR- and FISH-based estimates within uncertainty bounds. Basically, this agreement between the estimates has confirmed the validity of external doses calculated with the TRDS.
Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui
2015-01-01
Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941
Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui
2015-07-24
Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.
Scintillation properties of a 2-inch diameter KCa0.8Sr0.2I3:Eu2+ single crystal
NASA Astrophysics Data System (ADS)
Wu, Yuntao; Lindsey, Adam C.; Loyd, Matthew; Stand, Luis; Zhuravleva, Mariya; Koschan, Merry; Melcher, Charles L.
2017-09-01
Inch-sized scintillating crystals are required for practical radiation detectors such as hand-held radio-isotope identification devices. In this work, a transparent and colorless 2-inch diameter KCa0.8Sr0.2I3: 0 . 5 mo% Eu2+ single crystal was grown by the vertical Bridgman method, and the scintillation properties of a ∅ 50 mm × 45 mm long sample were evaluated. The Eu2+ 5d1- 4 f emission under X-ray excitation is centered at 472 nm. Its scintillation decay time under 137 Cs source irradiation is 2 . 37 μs, and the absolute light output is 51,000 ± 3000 photons/MeV. The energy resolution at 662 keV was evaluated for different orientations of the crystals with respect to the PMT, and the effect of 40 K background subtraction on energy resolution was evaluated. The performance of the packaged crystal was also investigated.
Synchrotron radiation μCT and histology evaluation of bone-to-implant contact.
Neldam, Camilla Albeck; Sporring, Jon; Rack, Alexander; Lauridsen, Torsten; Hauge, Ellen-Margrethe; Jørgensen, Henrik L; Jørgensen, Niklas Rye; Feidenhansl, Robert; Pinholt, Else Marie
2017-09-01
The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial resolution, excellent signal-to-noise ratio, and contrast establish SR micro-CT as the leading imaging modality for hard X-ray microtomography. Using SR micro-CT at voxel size 5 μm in an experimental goat mandible model, no statistically significant difference was found between the different treatment modalities nor between recipient and reconstructed bone. The histological evaluation showed a statistically significant difference between BIC in reconstructed and recipient bone (p < 0.0001). Further, no statistically significant difference was found between the different treatment modalities which we found was due to large variation and subsequently due to low power. Comparing histology and SR micro-CT evaluation a bias of 5.2% was found in reconstructed area, and 15.3% in recipient bone. We conclude that for evaluation of BIC with histology and SR micro-CT, SR micro-CT cannot be proven more precise than histology for evaluation of BIC, however, with this SR micro-CT method, one histologic bone section is comparable to the 3D evaluation. Further, the two methods complement each other with knowledge on BIC in 2D and 3D. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Leung, Chi-Man; Jiao, Jiu Jimmy
2006-11-01
Previous studies indicate that the local aquifer systems in the Mid-Levels, a highly urbanized coastal area in Hong Kong, have commonly been affected by leakage from water mains. The identification of leakage locations was done by conventional water quality parameters including major and trace elements. However, these parameters may lead to ambiguous results and fail to identify leakage locations especially where the leakage is from drinking water mains because the chemical composition of drinking water is similar to that of natural groundwater. In this study, natural groundwater, seepage in the developed spaces, leakage from water mains, and parent aquifer materials were measured for strontium isotope (87Sr/86Sr) compositions to explore the feasibility of using these ratios to better constrain the seepage sources. The results show that the 87Sr/86Sr ratios of natural groundwater and leakage from water mains are distinctly different and thus, they can provide additional information on the sources of seepage in developed spaces. A classification system based on the aqueous 87Sr/86Sr ratio is proposed for seepage source identification.
Method of separation of yttrium-90 from strontium-90
Bray, Lane A.; Wester, Dennis W.
1996-01-01
A method for purifying Y-90 from a Sr-90/Y-90 "cow" wherein raw Sr-90/Y-90 source containing impurities is obtained from nuclear material reprocessing. Raw Sr-90/Y-90 source is purified to a fresh Sr-90/Y-90 source "cow" by removing impurities by addition of sodium hydroxide and by removing Cs-137 by further addition of sodium carbonate. The "cow" is set aside to allow ingrowth. An HDEHP organic extractant is obtained from a commercial supplier and further purified by saturation with Cu(II), precipitation with acetone, and washing with nitric acid. The "cow" is then dissolved in nitric acid and the purified HDEHP is washed with nitric acid and scrubbed with either nitric or hydrochloric acid. The dissolved "cow" and scrubbed HDEHP are combined in an organic extraction, separating Y-90 from Sr-90, resulting in a Sr-90/Y-90 concentration ratio of not more than 10(E-7), and a metal impurity concentration of not more than 10 ppm per curie of Y-90. The separated Y-90 may then be prepared for delivery.
Method of separation of yttrium-90 from strontium-90
Bray, L.A.; Wester, D.W.
1996-04-30
A method is described for purifying Y-90 from a Sr-90/Y-90 ``cow`` wherein raw Sr-90/Y-90 source containing impurities is obtained from nuclear material reprocessing. Raw Sr-90/Y-90 source is purified to a fresh Sr-90/Y-90 source ``cow`` by removing impurities by addition of sodium hydroxide and by removing Cs-137 by further addition of sodium carbonate. The ``cow`` is set aside to allow ingrowth. An HDEHP organic extractant is obtained from a commercial supplier and further purified by saturation with Cu(II), precipitation with acetone, and washing with nitric acid. The ``cow`` is then dissolved in nitric acid and the purified HDEHP is washed with nitric acid and scrubbed with either nitric or hydrochloric acid. The dissolved ``cow`` and scrubbed HDEHP are combined in an organic extraction, separating Y-90 from Sr-90, resulting in a Sr-90/Y-90 concentration ratio of not more than 10(E-7), and a metal impurity concentration of not more than 10 ppm per curie of Y-90. The separated Y-90 may then be prepared for delivery. 1 fig.
Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments
NASA Astrophysics Data System (ADS)
Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.
2014-12-01
Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus transported waters.
Experimental evidence for beta-decay as a source of chirality by enantiomer analysis
NASA Technical Reports Server (NTRS)
Bonner, W. A.
1984-01-01
Earlier experiments testing the Vester-Ulbricht beta-decay hypothesis for the origin of molecular chirality are reviewed, followed by descriptions of experiments involving attempted asymmetric radiolysis of DL-amino acids using quantitative gas chromotography as a probe for optical activity. The radiation sources included Sr-90-Y-90, C-14, and P-32 Bremsstrahlen, longitudinally polarized electrons from a linear accelerator and longitudinally polarized protons from a cyclotron. With the possible exception of the linear accelerator irradiations, these experiments failed to produce g.c.-detectable enantiomeric excesses, even at 50-70 percent gross radiolysis. Thus no unambiguous support for the Vester-Ulbricht hypothesis is found in any of the attempted asymmetric radiolyses performed to date. Radioracemization, a possible reason for these failures, is discussed.
NASA Astrophysics Data System (ADS)
Louvat, P.; Allegre, C. J.; Meynadier, L.
2005-12-01
The evolution of 87Sr/86Sr in the Cenozoic ocean has been the subject of famous and vivid controversies between the BLAG model1 and Raymo's one2. No clear winner! Recently the question has been worsened because recent estimates of the hydrothermal flux at ridge crest3, 4, 5 and of the low-temperature oceanic crust weathering flux6 have shown that these fluxes are not enough to balance the continental radiogenic input to give 0.70917 (present-day seawater 87Sr/86Sr). We have re-examined this problem using both Sr and Nd isotopic budgets. Seawater 143Nd/144Nd isotopic ratio varies from one ocean to another as a consequence of its short residence time. For each ocean we can calculate the Nd contributions from continental (rivers) and mantellic sources. Since ridge crests cannot be the mantle-like source for Nd, this source is identified as the island arc and OIB weathering, in agreement with the observation by Goldstein and Hemming7. This approach leads us to examine the possibility of the same island arc origin for the missing mantle-like seawater Sr. The classical approach to the budget of water entering the ocean is to consider the river water fluxes as established by hydrological survey statistics. But these fluxes are too small, as they do not include the underground water flows, which are particularly important for volcanic terrains8. A budget calculation based on mean surface area, mean water fluxes and mean Sr concentrations in rivers and springs demonstrates island arc and OIB weathering is a sufficient source of mantellic Sr to the ocean to match the seawater 87Sr/86Sr budget. This result has a fundamental consequence on the explanation of the seawater 87Sr/86Sr evolution during the Cenozoic. Indeed, when a continental collision occurs a large portion of island arcs is eliminated. Thus the increase in the contribution of radiogenic 87Sr/86Sr from continental weathering and the decrease of the mantle contribution via island arc weathering are tectonically and mandatory coupled. We can then explain quite easily the Cenozoic 87Sr/86Sr curve but also the Phanerozoic one. This model has also important consequences for the climate models of the Cenozoic. References 1 Berner R.A., Lasaga A.C., Garrels R.M., Am. J. Science 283 (1983) 641-683. 2 Raymo M., Ruddiman W.F., Nature 359 (1992) 117-122. 3 Fehn U., Green K.E., Von Herzen R.P., Cathles L.M., J. Geophys. Res. 88 (1983) 1033-1048. 4 Sleep N.H., J. Geophys. Res. 96 (1991) 2375-2387. 5 Bowers T.S., Taylor H.P., J. Geophys. Res. 90 (1985) 12583-12606. 6 Davis A., Brickle M.J., Teagle D., Earth Planet. Sci. Lett. 112 (2003) 173-187. 7 Golsdtein S., Hemming S.R., in Treatise on Geochemistry, Vol. 6, The Oceans and Marine Geochemistry (2003) editor H. Elderfield, Elsevier, 453p. 8 Rad S., Louvat P., Allègre C.J., AGU Fall Meeting (2005) session PP14.
NASA Astrophysics Data System (ADS)
Shamsaldin, A.; Lundell, M.; Diallo, I.; Ligot, L.; Chavaudra, J.; de Vathaire, F.
2000-12-01
Radium applicators and pure beta emitters have been widely used in the past to treat skin haemangioma in early childhood. A well defined relationship between the low doses received from these applicators and radiation-induced cancers requires accurate dosimetry. A human-based CT scan phantom has been used to simulate every patient and treatment condition and then to calculate the source-target distance when radium and pure beta applicators were used. The effective transmission factor ϕ(r) for the gamma spectrum emitted by the radium sources applied on the skin surface was modelled using Monte Carlo simulations. The well-known quantization approach was used to calculate gamma doses delivered from radium applicators to various anatomical points. For 32P, 90Sr/90Y applicators and 90Y needles we have used the apparent exponential attenuation equation. The dose calculation algorithm was integrated into the ICTA software (standing for a model that constructs an Individualized phantom based on CT slices and Auxological data), which has been developed for epidemiological studies of cohorts of patients who received radium and beta-treatments for skin haemangioma. The ϕ(r) values obtained for radium skin applicators are in good agreement with the available values in the first 10 cm but higher at greater distances. Gamma doses can be calculated with this algorithm at 165 anatomical points throughout the body of patients treated with radium applicators. Lung heterogeneity and air crossed by the gamma rays are considered. Comparison of absorbed doses in water from a 10 mg equivalent radium source simulated by ICTA with those measured at the Radiumhemmet, Karolinska Hospital (RAH) showed good agreement, but ICTA estimation of organ doses did not always correspond those estimated at the RAH. Beta doses from 32P, 90Sr/90Y applicators and 90Y needles are calculated up to the maximum beta range (11 mm).
Lin, Chun Che; Liu, Yun-Ping; Xiao, Zhi Ren; Wang, Yin-Kuo; Cheng, Bing-Ming; Liu, Ru-Shi
2014-06-25
Single-composition white-emitting phosphors with superior intrinsic properties upon excitation by ultraviolet light-emitting diodes are important constituents of next-generation light sources. Borate-based phosphors, such as NaSrBO3:Ce(3+) and NaCaBO3:Ce(3+), have stronger absorptions in the near-ultraviolet region as well as better chemical/physical stability than oxides. Energy transfer effects from sensitizer to activator caused by rare-earth ions are mainly found in the obtained photoluminescence spectra and lifetime. The interactive mechanisms of multiple dopants are ambiguous in most cases. We adjust the doping concentration in NaSrBO3:RE (RE = Ce(3+), Tb(3+), Mn(2+)) to study the energy transfer effects of Ce(3+) to Tb(3+) and Mn(2+) by comparing the experimental data and theoretical calculation. The vacuum-ultraviolet experimental determination of the electronic energy levels for Ce(3+) and Tb(3+) in the borate host regarding the 4f-5d and 4f-4f configurations are described. Evaluation of the Ce(3+)/Mn(2+) intensity ratios as a function of Mn(2+) concentration is based on the analysis of the luminescence dynamical process and fluorescence lifetime measurements. The results closely agree with those directly obtained from the emission spectra. Density functional calculations are performed using the generalized gradient approximation plus an on-site Coulombic interaction correction scheme to investigate the forbidden mechanism of interatomic energy transfer between the NaSrBO3:Ce(3+) and NaSrBO3:Eu(2+) systems. Results indicate that the NaSrBO3:Ce(3+), Tb(3+), and Mn(2+) phosphors can be used as a novel white-emitting component of UV radiation-excited devices.
Measuring Charge Collection Efficiency in Diamond Vertex Detectors
NASA Astrophysics Data System (ADS)
Josey, Brian; Seidel, Sally; Hoeferkamp, Martin
2011-10-01
As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.
Synchrotron radiation laboratories at the Bonn electron accelerators. a status report
NASA Astrophysics Data System (ADS)
Hormes, J.
1987-07-01
At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vives i Batlle, Jordi; Cuypers, Ann
2014-07-01
There is a need for a better understanding of biological effects of radiation exposure in non-human biota. Correct description of these effects requires a more detailed model of dosimetry than that available in current risk assessment tools, particularly for plants. In this paper, we propose a simple model for dose calculations in roots and shoots of Arabidopsis thaliana seedlings exposed to radionuclides in a hydroponic exposure setup. This model is used to compare absorbed doses for three radionuclides, (241)Am (α-radiation), (90)Sr (β-radiation) and (133)Ba (γ radiation). Using established dosimetric calculation methods, dose conversion coefficient values were determined for each organ separately based on uptake data from the different plant organs. These calculations were then compared to the DCC values obtained with the ERICA tool under equivalent geometry assumptions. When comparing with our new method, the ERICA tool appears to overestimate internal doses and underestimate external doses in the roots for all three radionuclides, though each to a different extent. These observations might help to refine dose-response relationships. The DCC values for (90)Sr in roots are shown to deviate the most. A dose-effect curve for (90)Sr β-radiation has been established on biomass and photosynthesis endpoints, but no significant dose-dependent effects are observed. This indicates the need for use of endpoints at the molecular and physiological scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shi, Guoliang; Chen, Gang; Liu, Guirong; Wang, Haiting; Tian, Yingze; Feng, Yinchang
2016-10-01
Modeled results are very important for environmental management. Unreasonable modeled result can lead to wrong strategy for air pollution management. In this work, an improved physically constrained source apportionment (PCSA) technology known as Multilinear Engine 2-species ratios (ME2-SR) was developed to the 11-h daytime and nighttime fine ambient particulate matter in urban area. Firstly, synthetic studies were carried out to explore the effectiveness of ME2-SR. The estimated source contributions were compared with the true values. The results suggest that, compared with the positive matrix factorization (PMF) model, the ME2-SR method could obtain more physically reliable outcomes, indicating that ME2-SR was effective, especially when apportioning the datasets with no unknown source. Additionally, 11-h daytime and nighttime PM2.5 samples were collected from Tianjin in China. The sources of the 11-h daytime and nighttime fine ambient particulate matter in China were identified using the new method and the PMF model. The calculated source contributions for ME2-SR for daytime PM2.5 samples are resuspended dust (38.91 μg m(-3), 26.60%), sulfate and nitrate (38.60 μg m(-3), 26.39%), vehicle exhaust and road dust (38.26 μg m(-3), 26.16%) and coal combustion (20.14 μg m(-3), 13.77%), and those for nighttime PM2.5 samples are resuspended dust (18.78 μg m(-3), 12.91%), sulfate and nitrate (41.57 μg m(-3), 28.58%), vehicle exhaust and road dust (38.39 μg m(-3), 26.39%), and coal combustion (36.76 μg m(-3), 25.27%). The comparisons of the constrained versus unconstrained outcomes clearly suggest that the physical meaning of the ME2-SR results is interpretable and reliable, not only for the specified species values but also for source contributions. The findings indicate that the ME2-SR method can be a useful tool in source apportionment studies, for air pollution management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pascolo, Lorella; Bortot, Barbara; Benseny-Cases, Nuria; Gianoncelli, Alessandra; Tosi, Giovanni; Ruozi, Barbara; Rizzardi, Clara; De Martino, Eleonora; Vandelli, Maria Angela; Severini, Giovanni Maria
2014-01-01
Poly-lactide-co-glycolide (PLGA) is one of the few polymers approved by the US Food and Drug Administration as a carrier for drug administration in humans; therefore, it is one of the most used materials in the formulation of polymeric nanoparticles (NPs) for therapeutic purposes. Because the cellular uptake of polymeric NPs is a hot topic in the nanomedicine field, the development of techniques able to ensure incontrovertible evidence of the presence of NPs in the cells plays a key role in gaining understanding of their therapeutic potential. On the strength of this premise, this article aims to evaluate the application of synchrotron radiation-based Fourier transform infrared spectroscopy (SR-FTIR) spectromicroscopy and SR X-ray fluorescence (SR-XRF) microscopy in the study of the in vitro interaction of PLGA NPs with cells. To reach this goal, we used PLGA NPs, sized around 200 nm and loaded with superparamagnetic iron oxide NPs (PLGA-IO-NPs; Fe3O4; size, 10–15 nm). After exposing human mesothelial (MeT5A) cells to PLGA-IO-NPs (0.1 mg/mL), the cells were analyzed after fixation both by SR-FTIR spectromicroscopy and SR-XRF microscopy setups. SR-FTIR-SM enabled the detection of PLGA NPs at single-cell level, allowing polymer detection inside the biological matrix by the characteristic band in the 1,700–2,000 cm−1 region. The precise PLGA IR-signature (1,750 cm−1 centered pick) also was clearly evident within an area of high amide density. SR-XRF microscopy performed on the same cells investigated under SR-FTIR microscopy allowed us to put in evidence the Fe presence in the cells and to emphasize the intracellular localization of the PLGA-IO-NPs. These findings suggest that SR-FTIR and SR-XRF techniques could be two valuable tools to follow the PLGA NPs’ fate in in vitro studies on cell cultures. PMID:24944512
NASA Astrophysics Data System (ADS)
Yu, P.; Block, H. C.; Doiron, K.
2009-01-01
Conventional "wet" chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capable of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). The molecular structure spectral analysis involved the fingerprint regions of ca. 1720-1485 cm -1 (attributed to protein amide I C dbnd O and C sbnd N stretching; amide II N sbnd H bending and C sbnd N stretching), ca. 1650-950 cm -1 (non-structural CHO starch in endosperms), and ca. 1185-800 cm -1 (attributed to total CHO C sbnd O stretching vibrations) together with agglomerative hierarchical cluster and principal component analyses. Analyses involving the protein amide I features consistently identified differences between all three grains. Other analyses involving carbohydrate features were able to differentiate between wheat and barley but failed however to differentiate between wheat and corn. These results suggest that SR-FTIRM plus the multivariate analyses can be used to identify spectral features associated with the molecular structure of endosperm from grains with different biodegradation kinetics, especially in relation to protein structure. The Novel synchrotron radiation-based bioanalytical technique provides a new approach for plant seed structural molecular studies at ultraspatial resolution and within intact tissue in relation to nutrient availability.
[Solar radiation exposure in agriculture: an underestimated risk].
Gobba, F
2012-01-01
Solar Radiation (SR) is a major occupational risk in agriculture, mainly related to its ultraviolet (UV) component. Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma and squamous cell carcinoma of the skin, and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in agriculture. The role of the Occupational Physician in prevention is fundamental.
Plane-grating flat-field soft x-ray spectrometer
NASA Astrophysics Data System (ADS)
Hague, C. F.; Underwood, J. H.; Avila, A.; Delaunay, R.; Ringuenet, H.; Marsi, M.; Sacchi, M.
2005-02-01
We describe a soft x-ray spectrometer covering the 120-800 eV range. It is intended for resonant inelastic x-ray scattering experiments performed at third generation synchrotron radiation (SR) facilities and has been developed with SOLEIL, the future French national SR source in mind. The Hettrick-Underwood principle is at the heart of the design using a combination of varied line-spacing plane grating and spherical-mirror to provide a flat-field image. It is slitless for optimum acceptance. This means the source size determines the resolving power. A spot size of ⩽5μm is planned at SOLEIL which, according to simulations, should ensure a resolving power ⩾1000 over the whole energy range. A 1024×1024 pixel charge-coupled device (CCD) with a 13μm×13μm pixel size is used. This is an improvement on the use of microchannel-plate detectors, both as concerns efficiency and spatial resolution. Additionally spectral line curvature is avoided by the use of a horizontal focusing mirror concentrating the beam in the nondispersing direction. It allows for readout using a binning mode to reduce the intrinsically large CCD readout noise. Preliminary results taken at beamlines at Elettra (Trieste) and at BESSY (Berlin) are presented.
Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption
Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang
2015-01-01
Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412
NASA Astrophysics Data System (ADS)
Chen, Long; Jiang, Jizhong; Bao, Zuben; Pan, Jian; Xu, Weibing; Zhou, Lili; Wu, Zhigang; Chen, Xu
2013-12-01
In this paper, strontium carbonate (SrCO3) and barium carbonate (BaCO3) crystals were synthesized in the presence of an organic additive-hexamethylenetetramine (HMT) using two CO2 sources. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the products. The results showed that the morphologies of orthorhombic strontianite SrCO3 transformed from branch-like to flower-like, and to capsicum-like at last, while the morphologies of BaCO3 change from fiber-like to branchlike, and to rod-like finally with an increase of the molar ratio HMT/Sr2+ and HMT/Ba2+ from 0.2 to 10 using ammonium carbonate as CO2 source. When using diethyl carbonate instead of ammonium carbonate as CO2 source, SrCO3 flowers aggregated by rods and BaCO3 shuttles were formed. The possible formation mechanisms of SrCO3 and BaCO3 crystals obtained in different conditions were also discussed.
Sr isotopic composition of Afar volcanics and its implication for mantle evolution
NASA Astrophysics Data System (ADS)
Barberi, F.; Civetta, L.; Varet, J.
1980-10-01
Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.
Sr Isotopes at the Onset of the Ice Ages at the Northern Apennines
NASA Astrophysics Data System (ADS)
Fuchs, Rita; Lazar, Boaz; Angiolini, Lucia; Crippa, Gaia; Stein, Mordechai
2017-04-01
Sr isotopes can be used to constrain the marine Sr budget. The temporal variations in the 87Sr/86Sr ratios (radiogenic Sr) have been reconstructed over the past few decades based on marine macro and micro fossils data (e.g. brachiopods and foraminifera). It is used to constrain the sources and amounts of strontium that dictate the temporal variations in oceanic Sr throughout the Phanerozoic. On the other hand, the study of processes controlling the composition stable Sr isotopes (δ88/86Sr) is very new and only limited research was conducted on this topic during the past few years. Up to date, no δ88/86Sr data are available for considerable parts of Earth's history and the contribution of the potential Sr sources to the oceans is poorly constrained. Here, we set to examine the behavior of radiogenic and stable Sr isotopes in the marine environment of the northern Apennines (Italy) during the time interval of the late Pliocene to early-Middle Pleistocene - upon the onset of ice ages in the northern latitudes. We collected fossil mollusks from outcrops of the Arda and Stirone Rivers that are rich in bivalves, brachiopods, foraminifera (that were used for establishing the chronostratigraphy of the sections) and other genera. Ecological and sedimentological analysis of the section suggest a normal marine environment of depth range of several tens of meters that existed on the southern flanks of the large Po embayment. In order to evaluate the potential of the fossil assemblages in the Arda and Stirone sections to serve as reliable recorders of the marine δ88/86Sr of seawater during the desired period, we examined mineralogical and chemical properties of the fossils (e.g. distribution of trace elements like Sr and Mg in the skeletons, microstructures like secondary fillings of punctate shells in brachiopod) and measured the 87Sr/86Sr ratios. Among the species analyzed, Aequipecten opercularis (bivalve) and Glycymeris inflata (bivalve) have aragonite skeletons that show normal late Pliocene - early Pleistocene marine values of 87Sr/86Sr ratios (˜ 0.709). On the other hand, the calcite skeleton organisms from the same bed, Ostrea edulis (bivalve) and Terebratula scillae (brachiopod), show continental effect on the 87Sr/86Sr isotopes (values ranging from 0.7084 to 0.7089). It should be noted that these two groups of organisms have also different life styles and metabolic rates. Measuring the δ88/86Sr values on the fossils with "normal" marine radiogenic Sr composition and those with continental radiogenic Sr signal may provide additional constraints on the sources and processes that affected the geochemistry of these species and yield a reliable marine δ88/86Sr value for that period.
Photon Intermediate Direct Energy Conversion Using a Strontium-90 Beta Source
NASA Astrophysics Data System (ADS)
Schott, Robert J.
This thesis covers an examination of a need for a compact, long lived power source and a proof of concept for one such design. To begin, tests were done dealing with photovoltaics and their lifetime while undergoing radiation damage from the source of interest, Strontium-90 (Sr-90). After completing these tests a system was designed, built, and ultimately tested over a range of pressures in order to test if a Photon Intermediate Direct Energy Conversion (PIDEC) system would be potentially viable. In brief, the PIDEC system tested for this thesis used two excimer gasses, Argon and Xenon, to produce photons. These gasses were excited into excimer production using a 10 mCi Sr-90 source and held in place at pressures ranging from 10-6 to 2400 psi by a pressure vessel. Photons produced were guided towards a photovoltaic by a mirror chamber lined with high efficiency aluminum mirrors. Outside of the pressure vessel a picoammeter read the current off of the photovoltaic and sent the current to a computer for data processing. Of primary interest was how the current changed based on the amount of energy captured by the gas plenum which was related to the pressure of the system. The overall efficiency of this system was low due to a non-optimized waveguide, much of the beta energy being lost beyond the gas plenum, and other factors. However, the results were sufficient to show that the process was successfully completed and making a new system to optimize for these features is warranted.
Liu, Fan; Wang, Chuan Kuan; Wang, Xing Chang
2016-08-01
Broadband vegetation indices (BVIs) derived from routine radiation measurements on eddy flux towers have the advantage of high temporal resolutions, and thus have the potential to obtain detailed information of dynamics in canopy leaf area index (LAI). Taking the temperate broadleaved deciduous forest around the Maoershan flux tower in Northeast China as a case, we investigated the controlling factors and smoothing method of four BVI time-series, i.e., broadband norma-lized difference vegetation index (NDVI B ), broadband enhanced vegetation index (EVI B ), the ratio of the near-infrared radiation reflectance to photosynthetically active radiation reflectance (SR NP ), and the ratio of the shortwave radiation reflectance to photosynthetically active radiation reflectance (SR SP ). We compared the seasonal courses of the BVIs with the LAI based on litterfall collection method. The values for each BVI were slightly different among the three calculation methods by Huemmrich, Wilson, and Jenkins, but showed similar seasonal patterns. The diurnal variations in BVIs were mainly influenced by the solar elevation and the angle between the solar elevation and slope, but the BVIs were relatively stable around 12:30. The noise of daily BVI time-series could be effectively smoothed by a threshold of clearness index (K). The seasonal courses of BVIs for each time of day around the noon had similar patterns, but their thresholds of K and the percen-tages of remaining data were different. Therefore, the daily values of BVIs might be optimized based on the smoothing and the proportion of remaining data. The NDVI B was closely correlated linearly with the LAI derived from the litterfall collection method, while the EVI B , SR NP , and SR SP had a logarithmic relationship with the LAI. The NDVI B had the advantage in tracking the seasonal dyna-mics in LAI and extrapolating LAI to a broader scale. Given that most eddy flux towers had equipped with energy balance measurements, a network of monitoring canopy LAI could be readily achieved if the reflectance of photosynthetically active radiation was measured synchronously.
Anomalous levels of 90Sr and 239,240Pu in Florida corals: Evidence of coastal processes
NASA Astrophysics Data System (ADS)
Purdy, Caroline B.; Druffel, Ellen R. M.; Livingston, Hugh D.
1989-06-01
Strontium-90, a radionuclide whose primary source is fallout from nuclear weapons testing, serves as a tritium-like tracer of ocean circulation. The historical record of 90Sr activities in the annual bands of island corals have been shown by other investigators to reflect the 90Sr concentration in surface waters at those site. Strontium-90 activities measured in annual bands in Montastrea annularis from the Florida Keys are 30-120% higher than those in corresponding peak activity years (1960-1965) of a Bermuda coral ( Diploria). The Bermuda 90Sr activity record reflects the fallout source only, whereas the additional 90Sr activity in the Florida Keys is expected to reflect a coastal runoff source as well as the fallout. The coastal circulation patterns off the northern and western edge of the Florida Current further act to concentrate and prolong the exposure of the runoff 90Sr to the corals. Six measured 239,240Pu activities in the Florida coral are 30% of 239,240Pu activities in island coral records previously reported. Since Pu is expected to be scavenged by particles in coastal waters, this decrease in 239,240Pu substantiates the importance of coastal influences in the Florida 90Sr record. Strontium-90 activities measured in subannual coral bands from 1973 to 1974 reflect seasonal changes in the 90Sr concentrations in the surface layer of the coastal waters. This may reflect Loop Current intrusion events. The seasonal and long-term coral 90Sr data presented in this paper suggests that coastal 90Sr coral time series may be very useful for documenting coastal circulation patterns.
NASA Astrophysics Data System (ADS)
Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.
2011-12-01
Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide evidence of the spatial distribution of water flowpaths feeding the streams. In addition, we are exploring the use of Sr and Ba stable isotope ratios (88Sr/86Sr, 138Ba/134Ba) as novel tracers of Sr and Ba sources in catchments. Initial results indicate that both Sr and Ba stable isotopes are fractionated by plants similarly to patterns observed globally for Ca stable isotopes. We hypothesize that while biologically-cycled Ca is efficiently retained in the organic soil-plant system, biologically-cycled Sr and especially Ba will be more easily leached by soil waters and delivered to the streams and thus their stable isotope ratios may provide an additional means to distinguish between shallow and deep water flowpaths in forested catchments.
Development and application of methods used to source prehistoric Southwestern maize: a review
Benson, Larry V.
2012-01-01
Archaeological cobs free of mineral contaminants should be used to source the soils in which they were grown. Mineral contaminants often contain much higher concentrations of metals than vegetal materials and can alter a cob’s apparent metal and heavy-isotope content. Cleaning a cob via immersion in an acid solution for more than a few minutes will result in the incongruent and sometimes complete leaching of metals, including strontium (Sr), from the cob. When using 87Sr/Sr to determine the location of potential agriculture fields, it is best to either integrate several depth-integrated soil samples or to integrate several vegetation samples from individual fields. Biologically labile Sr in semi-arid Southwestern soils largely originates from eolian source or sources and usually is not derived from underlying bedrock. Existing Sr-isotope data indicate that archaeological cobs from Aztec Ruins came from either the Mesa Verde-McElmo Dome or Totah areas, that Pueblo Bonito and Chetro Ketl cobs, from Chaco Canyon that predate A.D. 1130, probably came from the Rio Chaco corridor, and that cobs from Chaco Canyon, that postdate A.D. 1130, probably came from either the Totah or Zuni areas.
NASA Astrophysics Data System (ADS)
Shikin, A. M.; Rybkina, A. A.; Estyunin, D. A.; Sostina, D. M.; Voroshnin, V. Yu.; Klimovskikh, I. I.; Rybkin, A. G.; Surnin, Yu. A.; Kokh, K. A.; Tereshchenko, O. E.; Petaccia, L.; Di Santo, G.; Skirdkov, P. N.; Zvezdin, K. A.; Zvezdin, A. K.; Kimura, A.; Chulkov, E. V.; Krasovskii, E. E.
2018-06-01
Possibility of in-plane and out-of-plane magnetization generated by synchrotron radiation (SR) in magnetically doped and pristine topological insulators (TIs) is demonstrated and studied by angle-resolved photoemission spectroscopy. We show experimentally and by ab initio calculations how nonequal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine TIs generated by linearly polarized SR leads to the hole-generated uncompensated spin accumulation followed by the SR-induced magnetization via spin-torque effect. Moreover, the photoexcitation of the DC is asymmetric, and it varies with the photon energy. We find a relation between the photoexcitation asymmetry, the generated spin accumulation, and the induced in-plane and out-of-plane magnetic field. Experimentally the SR-generated in-plane and out-of-plane magnetization is confirmed by the k∥ shift of the DC position and by the gap opening at the Dirac point even above the Curie temperature. Theoretical predictions and estimations of the measurable physical quantities substantiate the experimental results.
Dawson, Terence J; Maloney, Shane K
2017-04-01
Not all of the solar radiation that impinges on a mammalian coat is absorbed and converted into thermal energy at the coat surface. Some is reflected back to the environment, while another portion is reflected further into the coat where it is absorbed and manifested as heat at differing levels. Substantial insulation in a coat limits the thermal impact at the skin of solar radiation, irrespective where in the coat it is absorbed. In coats with low insulation, the zone where solar radiation is absorbed may govern the consequent heat load on the skin (HL-SR). Thin summer furs of four species of kangaroo from differing climatic zones were used to determine how variation in insulation and in coat spectral and structural characteristics influence the HL-SR. Coat depth, structure, and solar reflectance varied between body regions, as well as between species. The modulation of solar radiation and resultant heat flows in these coats were measured at low (1 m s -1 ) and high (6 m s -1 ) wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum similar to solar radiation was used as a proxy for the sun. We established that coat insulation was largely determined by coat depth at natural fur lie, despite large variations in fibre density, fibre diameter, and fur mass. Higher wind speed decreased coat insulation, but depth still determined the overall level. A multiple regression analysis that included coat depth (insulation), fibre diameter, fibre density, and solar reflectance was used to determine the best predictors of HL-SR. Only depth and reflectance had significant impacts and both factors had negative weights, so, as either insulation or reflectance increased, HL-SR declined, the larger impact coming from coat reflectance. This reverses the pattern observed in deep coats where insulation dominates over effects of reflectance. Across all coats, as insulation declined, reflectance increased. An increase in reflectance in the thinnest coats was not the sole reason for the limited rise in HL-SR. Higher reflectance should increase the depth of penetrance of solar radiation, thus increasing HL-SR. But in M. antilopinus and Macropus rufus, which had the highest of coat reflectances, penetrance was relatively shallow. This effect appears due to high fibre density (M. rufus) and major modifications in the fibre structure (M. antilopinus). The differing adaptations likely relate to the habitats of these species, desert in the case of M. rufus and monsoon tropical woodland with M. antilopinus.
Crystallization dynamics and interface stability of strontium titanate thin films on silicon.
Hanzig, Florian; Hanzig, Juliane; Mehner, Erik; Richter, Carsten; Veselý, Jozef; Stöcker, Hartmut; Abendroth, Barbara; Motylenko, Mykhaylo; Klemm, Volker; Novikov, Dmitri; Meyer, Dirk C
2015-04-01
Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO 2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO 3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO 3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO 3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO 3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.
High Throughput Method of Extracting and Counting Strontium-90 in Urine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, I.; Kaminski, M.; Mertz, C.
2016-03-01
A method has been developed for the rapid extraction of Sr-90 from the urine of individuals exposed to radiation in a terrorist attack. The method employs two chromatographic ion-exchange materials: Diphonix resin and Sr resin, both of which are commercially available. The Diphonix resin reduces the alkali ion concentrations below 10 mM, and the Sr resin concentrates and decontaminates strontium-90. Experimental and calculational data are given for a variety of test conditions. On the basis of these results, a flowsheet has been developed for the rapid concentration and extraction of Sr-90 from human urine samples for subsequent beta-counting.
Ito, Hiromichi; Matsushita, Shonosuke; Hyodo, Kazuyuki; Sato, Yukio; Sakakibara, Yuzuru
2013-01-01
Owing to limitations in spatial resolution and sensitivity, it is difficult for conventional angiography to detect minute changes of perfusion in diffuse lung diseases, including pulmonary emphysema (PE). However, a high-gain avalanche rushing amorphous photoconductor (HARP) detector can give high sensitivity to synchrotron radiation (SR) angiography. SR angiography with a HARP detector provides high spatial resolution and sensitivity in addition to time resolution owing to its angiographic nature. The purpose of this study was to investigate whether this SR angiography with a HARP detector could evaluate altered microcirculation in PE. Two groups of rats were used: group PE and group C (control). Transvenous SR angiography with a HARP detector was performed and histopathological findings were compared. Peak density of contrast material in peripheral lung was lower in group PE than group C (p < 0.01). The slope of the linear regression line in scattering diagrams was also lower in group PE than C (p < 0.05). The correlation between the slope and extent of PE in histopathology showed significant negative correlation (p < 0.05, r = 0.61). SR angiography with a HARP detector made it possible to identify impaired microcirculation in PE by means of its high spatial resolution and sensitivity. PMID:23412496
Base-Level Guide for Electromagnetic Frequency Radiation
2012-12-01
hazards of EMF-producing systems and equipment, e.g., hazard of electromagnetic radiation to ordnance (HERO), and hazard ...AFRL-SA-WP-SR-2013-0003 BASE-LEVEL GUIDE FOR ELECTROMAGNETIC FREQUENCY RADIATION Matthew W. Uelen Battelle Memorial Institute...COVERED (From – To) Dec 2011 – Dec 2012 4. TITLE AND SUBTITLE Base-Level Guide for Electromagnetic Frequency Radiation 5a. CONTRACT NUMBER
Archaean lode gold deposits: the solute source problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerrich, R.
1985-01-01
On a regional scale lode gold deposits typically occur throughout the entire spectrum of greenstone belt stratigraphy. In the Abitibi Belt lode deposits are sited at the base of the volcanic cycle (Noranda), at the boundary of two volcanic cycles (Timmins) and in the stratigraphically highest groups at Kirkland Lake and Bousquet. The gold deposits are preferentially disposed along major structures apparently demarking rift zones, where extension was accommodated by listric normal faults that subsequently acted as thrusts during compression. These major structures were also sites of emplacement of trondhjemite magmas, lamprophyres and potassic basalts. From previous work Abitibi Beltmore » volcanism spans 2725 to 2703 Ma, batholith emplacement 2675 to 2685 Ma (U-Pb on zircons), and the terminal Matachewan dyke swarm which transects all major structures is 2690 +/- 93 Ma. The lode deposits have age corrected /sup 87/Sr//sup 86/Sr initials of 0.7015 to 0.7025, as well as more radiogenic Pb and higher ..mu.. relative to contemporaneous mantle Sr and Pb isotope ratios. Tourmaline, scheelite, piemontite and apatites separated from 14 deposits all possess /sup 87/Sr//sup 86/Sr 0.7015 to 0.7025. These more radiogenic values contra-indicate a direct mantle source for Sr and Pb, but rather indicate that all mineralizing fluids carry contributions from a felsic crustal source having a significant production of Rb, U and Th radiogenic daughter nuclides as well as from komatiites and tholeiites. Gold, along with an array of lithophile elements including K, Rb, Pb, Li, Sr and CO/sub 2/ were distilled from this mixed source.« less
Impact of low-dose electron irradiation on $$n^{+}p$$ silicon strip sensors
Adam, W.
2015-08-28
The response of n +p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n + strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dosemore » rate in the SiO 2 at the maximum was about 50 Gy(SiO 2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO 2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. As a result, the relevance of the measurements for the design of n +p strip sensors is discussed.« less
Fantínová, K; Fojtík, P; Malátová, I
2016-09-01
Rapid measurement techniques are required for a large-scale emergency monitoring of people. In vivo measurement of the bremsstrahlung radiation produced by incorporated pure-beta emitters can offer a rapid technique for the determination of such radionuclides in the human body. This work presents a method for the calibration of spectrometers, based on the use of UPh-02T (so-called IGOR) phantom and specific (90)Sr/(90)Y sources, which can account for recent as well as previous contaminations. The process of the whole- and partial-body counter calibration in combination with application of a Monte Carlo code offers readily extension also to other pure-beta emitters and various exposure scenarios. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Marske, J. P.; Garcia, M. O.; Pietruszka, A. J.; Norman, M. D.; Rhodes, J. M.
2006-12-01
Nearly 24 years of continuous geochemical monitoring of lavas from the current Pu'u O'o eruption allow us to probe the mantle processes beneath Kilauea Volcano in unparalleled detail. Here we present new measurements Pb, Sr, and Nd isotope ratios and major- and trace-element abundances for lavas from episode 55 (1997-2006), which marks the longest and most voluminous interval of this eruption. Pu'u O'o lavas erupted since 1985 display systematic decreases in their TiO2, K2O, P2O5 and CaO abundances (normalized to 10 wt. % MgO to correct for olivine control) due to changes in the parental magma composition. Incompatible element ratios (e.g., Ba/Nb and La/Y) also show overall temporal decreases. Earlier erupted Pu'u O'o lavas displayed the most significant decrease in incompatible element ratios with near constant SiO2 contents, and a gradual increase in 87Sr/86Sr ratios. However, episode 55 lavas record significant increases in MgO- normalized SiO2 contents and 87Sr/86Sr with nearly constant (e.g. Ba/Nb) or a slightly reversed (e.g., TiO2 and K2O) trends in incompatible element ratios and abundances. There is little variation of 206Pb/204Pb ratios in lavas (18.38-18.43) erupted since 1985. Neither a single mantle source composition nor a change in partial melting conditions alone can explain these observations. Based on the isotopic and chemical variability, we conclude that early Pu'u O'o lavas originated from two distinct mantle source components: (1) a long-term depleted component (with relatively low 87Sr/86Sr ratios) that originated within the deep source of the Hawaiian plume that characterizes the earlier part of the eruption (1985-1992), and (2) a recently depleted component (i.e. a component that was recently depleted by prior melting) with low abundances of incompatible elements became increasingly important from 1992-1997. More recently, Pu'u O'o has tapped greater proportions of a new (3) long-term less depleted component (with higher 87Sr/86Sr ratios than observed from 1985-1992) that originated within the deep source region of the plume. This third component lies within typical Pb, Sr and Nd isotopic space for Kilauea, but represents a new source composition for the Pu'u O'o eruption. The systematic geochemical evolution of Pu'u O'o lavas reflects changes in the proportions of the mantle source components tapped throughout the eruption. The rapid isotope variations (on a time scale of years) in the most recent lavas suggest the mantle source components are heterogeneous on an extremely small scale, relative to the size of Kilauea's melting region.
NASA Astrophysics Data System (ADS)
Stein, Mordechai; Almogi-Labin, Ahuva; Goldstein, Steven L.; Hemleben, Christoph; Starinsky, Abraham
2007-09-01
Strontium isotope ratios of the HCL-insoluble residue ("ISR") and foraminifera of cores from the Red Sea and Gulf of Aden are used to monitor effects of hydrothermal, fluvial and desert dust transport to these regions during the past ˜ 0.5 Ma. While the Gulf of Aden was open-ocean, during low glacial sea levels the Red Sea was a semi-isolated basin, allowing the possibility to study the effects regional versus global inputs during glacial-interglacial cycles. The ISR from the Gulf of Aden and the Red Sea display different ranges of 87Sr/ 86Sr ratios of 0.7085-0.7107 and 0.7062-0.7085, respectively. These reflect mixtures between three components: granitic, hydrothermal and loess strontium with representative 87Sr/ 86Sr of ˜ 0.711; ˜ 0.706 and ˜ 0.7085, respectively. Gulf of Aden ISR represent mixtures of the loess and "granitic" sources, while Red Sea ISR are mixtures of the loess and sea floor "hydrothermal" sources. In the Gulf of Aden, loess sources dominate during glacials, indicating intensification of the NE moonsonal wind regime, and granitic sources dominate during interglacials, reflecting wetter conditions related to an enhanced regional SW monsoon. Red Sea ISR show no clear glacial-interglacial distinction, but display a general temporal increase in 87Sr/ 86Sr ratios over the past 380 ka toward loess-like values, indicating increasing loess contributions toward the present day. The ranges of ISR 87Sr/ 86Sr ratios in the Red Sea and the Gulf of Aden were distinct prior to the last glacial period (< 60 ka), when they converge at loess values. The increasing loess signal may be due to increasing aridity in the dust source regions, or increasing accumulation and availability of loess with progressive glacial cycles. Superimposed on the Red Sea general trend are shifts to higher 87Sr/ 86Sr ratios following major climate transitions (at ˜ 10, ˜ 80, ˜ 130, ˜ 190, ˜ 240 and ˜ 330 ka BP) that coincide with sapropel episodes in the Eastern Mediterranean, which originated from the African monsoonal system and indicate enhanced wetness in the desert belt. 87Sr/ 86Sr ratios of foraminifera show a very narrow range from 0.70912 to 0.70917 over 530 ka, and in most samples are consistent with the contemporaneous global ocean. In the Red Sea, foraminifera and pteropods show slightly more variability than the Gulf of Aden. A few Red Sea samples fall slightly above the seawater trend (in Marine Isotope Stages 5 and 9) and below (during the last deglaciation), suggesting local effects that occurred when the flow of surface ocean water from the Gulf of Aden to the Red Sea was limited and the Red Sea behaved like an "amplifier basin".
Industrial Use of Synchrotron Radiation:. Love at Second Sight
NASA Astrophysics Data System (ADS)
Hormes, Josef; Warner, Jeffrey
2012-06-01
Synchrotron radiation (SR) has become one of the most valuable tools for many areas of basic and applied research. In some cases, techniques have been developed that rely completely on the specific properties of synchrotron radiation; in many other cases, using synchrotron radiation has opened completely new and exciting opportunities for conventional techniques. In this chapter, the challenges, problems, and advantages of the industrial use of synchrotron radiation will be highlighted, in an admittedly subjective way, based on the experience of the authors at various synchrotron radiation facilities. "Typical" examples of industrial use of SR will be discussed for all areas of industrial activities, i.e., production, quality control and control of regulatory requirements, and research and development. Emphasis will be put on examples from R&D as this is the most intensively used area. Because this field is much too broad for a complete review here, examples will focus on applications from just three major sectors: biotechnology, pharmaceuticals and cosmetics, and automotive and mining. Environmental research is a fourth area that will be partly covered in the section on regulatory requirements.
NASA Astrophysics Data System (ADS)
Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; de Almeida, André Pereira; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; deAlmeida, Carlos Eduardo
2011-12-01
Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.
NASA Astrophysics Data System (ADS)
Sanger, Gregory M.; Reid, Paul B.; Baker, Lionel R.
1990-11-01
Consideration is given to advanced optical fabrication, profilometry and thin films, and metrology. Particular attention is given to automation for optics manufacturing, 3D contouring on a numerically controlled grinder, laser-scanning lens configurations, a noncontact precision measurement system, novel noncontact profiler design for measuring synchrotron radiation mirrors, laser-diode technologies for in-process metrology, measurements of X-ray reflectivities of Au-coatings at several energies, platinum coating of an X-ray mirror for SR lithography, a Hilbert transform algorithm for fringe-pattern analysis, structural error sources during fabrication of the AXAF optical elements, an in-process mirror figure qualification procedure for large deformable mirrors, interferometric evaluation of lenslet arrays for 2D phase-locked laser diode sources, and manufacturing and metrology tooling for the solar-A soft X-ray telescope.
Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M
2012-03-20
Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.
The Ins and Outs of USDA Nutrient Composition
USDA-ARS?s Scientific Manuscript database
The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States, providing the foundation for most food composition databases in the public and private sectors. Sources of data used in SR include analytical studies, food manufacturer...
NASA Astrophysics Data System (ADS)
Liu, L.; Zhao, Z.; Wang, Y.; Huang, Q.
2013-12-01
The lithosphere-atmosphere- ionosphere (LAI) system formed an electromagnetic (EM) cavity that hosts the EM field excited by electric currents generated by lightning and other natural sources. There have also been numerous reports on variations of the EM field existing in LAI system prior to some significance earthquakes. We simulated the EM field in the lithosphere-ionosphere waveguide with a whole-earth model using a curvature coordinate by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and the EM wave in this 2D model. In the model we have observed the excitation of the Schumann Resonance (SR) as the background EM field generated by randomly placed electric-current impulses within the lowest 10 kilometers of the atmosphere. The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR reaching a steady state, an electric impulse is introduced in the shallow lithosphere to mimic the seismogenic process (pre-, co- and post-seismic) to assess the possible precursory effects on SR strength and frequency. The modeling results can explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events. The fundamental reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric signals from oceanic earthquake events into the LAI waveguide.
Space radiation-associated lung injury in a murine model.
Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina
2015-03-01
Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. Copyright © 2015 the American Physiological Society.
2004-03-01
relative humidity (RH), ambient temperature (Ta), solar radiation (SR), and human activity in a small, water- resistant, durable enclosure. It is fitted...temperature, SR, and human activity . The activity channel is designed to function for sleep scoring (ZGM), as well as monitoring daytime activity with the
Archean crust-mantle geochemical differentiation
NASA Astrophysics Data System (ADS)
Tilton, G. R.
Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.
Archean crust-mantle geochemical differentiation
NASA Technical Reports Server (NTRS)
Tilton, G. R.
1983-01-01
Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.
Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas
2016-01-01
Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses. PMID:26996201
The isotopic and chemical evolution of Mount St. Helens
Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.
1983-01-01
Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.
Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility
NASA Technical Reports Server (NTRS)
Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.
1977-01-01
Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.
Adaptive Sparse Representation for Source Localization with Gain/Phase Errors
Sun, Ke; Liu, Yimin; Meng, Huadong; Wang, Xiqin
2011-01-01
Sparse representation (SR) algorithms can be implemented for high-resolution direction of arrival (DOA) estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method. PMID:22163875
Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).
Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H
2017-08-01
Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.
Fast determination of ⁹⁰Sr/⁹⁰Y activity in milk by Cherenkov counting.
Tsroya, S; Dolgin, B; German, U; Pelled, O; Alfassi, Z B
2013-12-01
Cherenkov counting of the ⁹⁰Sr/⁹⁰Y pure beta emitters is an attractive method for ⁹⁰Sr activity determination, but the color quenching effect may be significant, especially for strongly colored or semi-opaque media. A quench correction method based on the external source of some liquid scintillation systems (named ESAR - external source area ratio) was proposed and checked for aqueous solutions and was proved to be effective also for urine samples. In the present work, the application of the ESAR method for fast determination of ⁹⁰Sr/⁹⁰Y activity in milk samples is described. © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported in studies on the metabolism, radiation dose, radiation effects, and toxic effects of prolonged expesure of dogs following injection of various doses 8/, Th/sup 228, and Sr/sup 90/ An imporved live dog gamma counter is described. (For preceding period see AECU 3522.) (C.H.)
Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.
Eichmann, Marion; Thomann, Benedikt
2017-09-01
Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost Cerenkov-free scintillation dosimetry of brachytherapy β-sources. © 2017 American Association of Physicists in Medicine.
Reynolds, Amanda C.; Betancourt, Julio L.; Quade, Jay; Patchett, P. Jonathan; Dean, Jeffery S.; Stein, John
2005-01-01
Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values.
Reynolds, A.C.; Betancourt, J.L.; Quade, Jay; Patchett, P.J.; Dean, J.S.; Stein, J.
2005-01-01
Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
López de Luchi, Mónica G.; Siegesmund, Siegfried; Wemmer, Klaus; Nolte, Nicole
2017-09-01
Middle Devonian granitoids intruded the Eastern Sierras Pampeanas basement ca. 600 km east of the inferred proto-Pacific margin of Gondwana along which a ca. 390 Ma collisional event developed. In the Sierra de San Luis, voluminous Middle Devonian (393-382 Ma) batholiths are composed of I- to A-type hybrid Monzonite and Granite suites. Shoshonite and subordinated high-K series, stocks, synplutonic dikes and enclaves make up the Monzonite Suite; rocks are metaluminous alkali-calcic magnesian porphyritic or equigranular monzonite, quartz monzonite, monzodiorite and scarce monzogabbro. High-K and subordinated shoshonite series metaluminous to mildly peraluminous magnesian alkali-calcic to calc-alkalic porphyritic or equigranular quartz monzonite, granodiorite, monzogranite and equigranular leucomonzogranites make up the Granite Suite plutons and batholiths. Only a small group of highly evolved granites are ferroan. SiO2 (46-62%), Cr, Ni, V, Sc, LILE, LREE, Th, Zr and variable, Sr/Y, (La/Yb)N and (Tb/Yb)N, smooth Eu/Eu*, moderate Na2O (ca 3.5), and troughs at Nb and Ta for Monzonite Suite rocks suggest an subduction-related enriched lithospheric mantle source. Sm-Nd data (TDM 0.98-1.08 Ga, εNd(380 Ma) 0.66-1.47) and 87Sr/86Sri (0.703520-0.704203) are compatible with an enriched mantle source. The metaluminous porphyritic quartz monzonite-monzogranite and the mildly peraluminous equigranular biotite monzogranites of the Granite Suite are characterized by relatively moderate Al2O3, CaO, and 87Sr/86Sri, high LILE, Cr, variable Sr/Y, (La/Yb)N and Eu/Eu* and low Rb/Sr (< 1.2) suggest a mafic source. The porphyritic monzogranite (TDM 1.20-1.28 Ga, εNd(380Ma) - 3.02 to - 3.3, 87Sr/86Sri 0.706578-0.707027) and the biotite monzogranites (TDM 1.31 Ga, εNd(380Ma) - 3.3, 87Sr/86Sri 0.707782) would share a common source. The equigranular alkali-calcic leucomonzogranites are characterized by Rb/Sr > 1.5, ASI 1.05-1.18, and Ga/Al 2.6-3.9, εNd(380 Ma) - 3.74 to - 3.95 and (87Sr/86Sr)i 0.710743-0.712955 which would point to metasedimentary or felsic igneous crustal sources. Nevertheless their TDM 1.36-1.38 Ga is considerably younger than the mean 1.8-1.6 Ga Eastern Sierras Pampeanas crustal residence age and less radiogenic. Middle Devonian magmatism would record an episode of crustal growth by enriched mantle derived magma input and variable degrees of partial melting of a lower crustal source at the waning stages of the Achalian orogeny.
Energy spectrum of multi-radiation of X-rays in a low energy Mather-type plasma focus device
NASA Astrophysics Data System (ADS)
Farzin, M. Aghamir; Reza, A. Behbahani
2014-06-01
The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu—Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu—Kα and Cu—Kβ was around 0.14 ± 0.02 (J/Sr) and 0.04 ± 0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (> 15 keV) was around 0.12 ± 0.02 (J/Sr).
Liu, Gui-Rong; Shi, Guo-Liang; Tian, Ying-Ze; Wang, Yi-Nan; Zhang, Cai-Yan; Feng, Yin-Chang
2015-01-01
An improved physically constrained source apportionment (PCSA) technology using the Multilinear Engine 2-species ratios (ME2-SR) method was proposed and applied to quantify the sources of PM10- and PM2.5-associated polycyclic aromatic hydrocarbons (PAHs) from Chengdu in winter time. Sixteen priority PAH compounds were detected with mean ΣPAH concentrations (sum of 16 PAHs) ranging from 70.65 ng/m(3) to 209.58 ng/m(3) and from 59.17 ng/m(3) to 170.64 ng/m(3) for the PM10 and PM2.5 samples, respectively. The ME2-SR and positive matrix factorization (PMF) models were employed to estimate the source contributions of PAHs, and these estimates agreed with the experimental results. For the PMF model, the highest contributor to the ΣPAHs was vehicular emission (81.69% for PM10, 82.06% for PM2.5), followed by coal combustion (12.68%, 12.11%), wood combustion (5.65%, 4.45%) and oil combustion (0.72%, 0.88%). For the ME2-SR method, the highest contributions were from diesel (43.19% for PM10, 47.17% for PM2.5) and gasoline exhaust (34.94%, 32.44%), followed by wood combustion (8.79%, 6.37%), coal combustion (12.46%, 12.37%) and oil combustion (0.80%, 1.22%). However, the PAH ratios calculated for the factors extracted by ME2-SR were closer to the values from actual source profiles, implying that the results obtained from ME2-SR might be physically constrained and satisfactory. Copyright © 2014 Elsevier B.V. All rights reserved.
High Sr/Y rocks are not all adakites!
NASA Astrophysics Data System (ADS)
Moyen, Jean-François
2010-05-01
The name of "adakite" is used to describe a far too large group of rocks, whose sole common feature is high Sr/Y and La/Yb ratios. Defining adakites only by this criterion is misleading, as the definition of this group of rocks does include many other criteria, including major elements. In itself, high (or commonly moderate!) Sr/Y ratios can be achieved via different processes: melting of a high Sr/Y (and La/Yb) source; deep melting, with abundant residual garnet; fractional crystallization or AFC; or interactions of felsic melts with the mantle, causing selective enrichment in LREE and Sr over HREE. A database of the compositions of "adakitic" rocks - including "high silica" and "low silica" adakites, "continental" adakites and Archaean adakites—was assembled. Geochemical modeling of the potential processes is used to interpret it, and reveals that (1) the genesis of high-silica adakites requires high pressure evolution (be it by melting or fractionation), in equilibrium with large amounts of garnet; (2) low-silica adakites are explained by garnet-present melting of an adakite-metasomatized mantle, i.e at depths greater than 2.5 GPa; (3) "Continental" adakites is a term encompassing a huge range of rocks, with a corresponding diversity of petrogenetic processes, and most of them are different from both low- and high- silica adakites; in fact in many cases it is a complete misnomer and the rocks studied are high-K calc-alkaline granitoids or even S-type granites; (4) Archaean adakites show a bimodal composition range, with some very high Sr/Y examples (similar to part of the TTG suite) reflecting deep melting (> 2.0 GPa) of a basaltic source with a relatively high Sr/Y, while lower Sr/Y rocks formed by shallower (1.0 GPa) melting of similar sources. Comparison with the Archaean TTG suite highlights the heterogeneity of the TTGs, whose composition spreads the whole combined range of HSA and Archaean adakites, pointing to a diversity of sources and processes contributing to the "TTG suite".
Bridgman-Stockbarger growth of SrI2:Eu2+ single crystal
NASA Astrophysics Data System (ADS)
Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.
2018-05-01
Strontium Iodide (SrI2): Europium Iodide (EuI2) was purified by Zone-refinement process. Europium doped strontium iodide (SrI2:Eu2+) single crystal was grown by modified vertical Bridgman - Stockbarger technique. Photoluminescence (PL) excitation and emission (PLE) spectra were measured for Eu2+ doped SrI2 crystal. The sharp emission was recorded at 432 nm. Scintillation properties of the SrI2:Eu2+ crystal were checked by the gamma ray spectrometer using 137Cs gamma source.
NASA Astrophysics Data System (ADS)
Goodman, M.; Carling, G. T.; Fernandez, D. P.; Rey, K.; Hale, C. A.; Nelson, S.; Hahnenberger, M.
2017-12-01
Desert playas are important dust sources globally, with potential harmful health impacts for nearby urban areas. The Wasatch Front (population >2 million) in western Utah, USA, is located directly downwind of several playas that contribute to poor air quality on dust event days. Additionally, the exposed lakebed of nearby Great Salt Lake is a growing dust source as water levels drop in response to drought and river diversions. To investigate contributions of playa dust to the Wasatch Front, we sampled dust emissions from the exposed lakebed of Great Salt Lake and seven playas in western Utah, including Sevier Dry Lake, and dust deposition at four locations stretching 160 km from south to north along the Wasatch Front, including Provo, Salt Lake City, Ogden, and Logan. The samples were analyzed for mineralogy, bulk chemistry, and 87Sr/86Sr ratios for source apportionment. The mineralogy of playa dust and Wasatch Front dust samples was dominated by quartz, feldspar, chlorite and calcite. Bulk geochemical composition was similar for all playa dust sources, with higher anthropogenic metal concentrations in the Wasatch Front. Strontium isotope (87Sr/86Sr) ratios in the carbonate fraction of the dust samples were variable in the playa dust sources, ranging from 0.7105 in Sevier Dry Lake to 0.7150 in Great Salt Lake, providing a powerful tool for apportioning dust. Based on 87Sr/86Sr mixing models, Great Salt Lake contributed 0% of the dust flux at Provo, 20% of the dust flux at Salt Lake City, and 40% of the dust flux at Ogden and Logan during Fall 2015. Contrastingly, Great Salt Lake dust was less important in Spring of 2016, contributing 0% of the dust flux at Provo and <10% of the dust flux to Salt Lake City and Logan. Two major dust events that occurred on 3 November 2015 and 23 April 2016 had similar wind and climate conditions as understood by HYSPLIT backward trajectories, meaning that seasonal variability in dust emissions is due to playa surface conditions rather than meteorologic conditions. Further sampling and analysis are needed to understand and quantify patterns in seasonal changes in dust emissions and deposition. These findings suggest that 87Sr/86Sr ratios of the carbonate fraction in dust may be useful for evaluating dust emissions from carbonate-rich playas around the world.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zeng, Zhigang; Cui, Lukai; Yin, Xuebo
2018-04-01
The East Pacific Rise (EPR) is a typical fast spreading ridge. To gain a better understanding of the magmatism under ridges, Mid Ocean Ridge Basalts (MORBs) with remarkably heterogeneous compositions are obtained from (EPR) 1°-2°S and multielement geochemical and radioisotope analyses are conducted. Results show that these MORBs have wide variation ranges in trace element concentrations and isotopic ratios. Sample 07 has low concentrations of incompatible elements, and very low 87Sr/86Sr, and high 143Nd/144Nd from 0.70213 to 0.702289 and 0.513234 to 0.513289, respectively. However, other samples show enrichment in incompatible elements to varying degrees, and medium values of 87Sr/86Sr and 143Nd/144Nd from 0.702440 to 0.702680 and 0.513086 to 0.513200, respectively. This study proposes that one depleted source and two enriched sources contribute to the formation of MORBs from EPR 1°-2°S. Samples 02 and 10 are formed by mixing between one enriched source and one depleted source, while sample 07 is crystallized from the depleted source with no mixing process involved. However, the formation of samples 06 and 11 are different, and thus further research is required to determine genesis.
Single inhalation exposure to 90SrCl2 in the beagle dog: late biological effects.
Gillett, N A; Muggenburg, B A; Boecker, B B; Griffith, W C; Hahn, F F; McClellan, R O
1987-08-01
Late-occurring biologic effects were studied in beagle dogs that were given graded levels of 90SrCl2 via single brief inhalation exposures and were subsequently observed for their life-span. Due to the soluble chemical form of the aerosol, 90Sr was rapidly translocated from lung and deposited in bone where it was subsequently retained for a long period of time. Radiation-induced lesions were confined to the bone, bone marrow, and adjacent soft tissue. Forty-five primary bone tumors occurred in 31 of 66 exposed dogs. Metastasis occurred from 21 tumors, with the lung being the most frequent site of metastasis (76%). Twenty-seven tumors were classified as different subtypes of osteosarcoma, 14 as hemangiosarcomas, 3 as fibrosarcomas, and 1 as a myxosarcoma. Four carcinomas arising from soft tissues adjacent to bone were also considered to be 90Sr induced. In contrast to bone tumors arising in beagles chronically exposed to 90Sr through ingestion, histologic lesions of radiation osteodystrophy were minimal in this study, indicating that these lesions are not a necessary precursor of osteosarcoma development. The incidences of hemangiosarcomas (31%) and telangiectatic osteosarcomas (11%) in addition to osteosarcomas suggest that the cell of origin for all of these neoplasms is a multipotent mesenchymal cell with the potential for various morphologic expressions dependent on local environmental factors.
NASA Astrophysics Data System (ADS)
Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.
2014-03-01
This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions. It appears that the (234U/238U) AR is an appropriate very important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating hydrological conditions. This study further highlights the important impact of different and independent water pathways in fractured granite controlling the different geochemical and isotopic signatures of the waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.
2016-08-15
Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.
Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses
NASA Technical Reports Server (NTRS)
Shih, C.-Y.; Nyquist, L. E.; Reese, Y.
2012-01-01
Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.
Kloppmann, W.; Leroux, L.; Bromblet, P.; Le Pogam, P.-Y.; Cooper, A. H.; Worley, N.; Guerrot, C.; Montech, A. T.; Gallas, A. M.; Aillaud, R.
2017-01-01
A lack of written sources is a serious obstacle in the reconstruction of the medieval trade of art and art materials, and in the identification of artists, workshop locations, and trade routes. We use the isotopes of sulfur, oxygen, and strontium (S, O, Sr) present in gypsum alabaster to unambiguously link ancient European source quarries and areas to alabaster artworks produced over five centuries (12th–17th) held by the Louvre museum in Paris and other European and American collections. Three principal alabaster production areas are identified, in central England, northern Spain, and a major, long-lived but little-documented alabaster trade radiating from the French Alps. The related trade routes are mostly fluvial, although terrestrial transport crossing the major river basin borders is also confirmed by historical sources. Our study also identifies recent artwork restoration using Italian alabaster and provides a robust geochemical framework for provenancing, including recognition of restoration and forgeries. PMID:29078309
Cocco, Daniele; Idir, Mourad; Morton, Daniel; ...
2018-03-20
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
Kloppmann, W; Leroux, L; Bromblet, P; Le Pogam, P-Y; Cooper, A H; Worley, N; Guerrot, C; Montech, A T; Gallas, A M; Aillaud, R
2017-11-07
A lack of written sources is a serious obstacle in the reconstruction of the medieval trade of art and art materials, and in the identification of artists, workshop locations, and trade routes. We use the isotopes of sulfur, oxygen, and strontium (S, O, Sr) present in gypsum alabaster to unambiguously link ancient European source quarries and areas to alabaster artworks produced over five centuries (12th-17th) held by the Louvre museum in Paris and other European and American collections. Three principal alabaster production areas are identified, in central England, northern Spain, and a major, long-lived but little-documented alabaster trade radiating from the French Alps. The related trade routes are mostly fluvial, although terrestrial transport crossing the major river basin borders is also confirmed by historical sources. Our study also identifies recent artwork restoration using Italian alabaster and provides a robust geochemical framework for provenancing, including recognition of restoration and forgeries. Copyright © 2017 the Author(s). Published by PNAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocco, Daniele; Idir, Mourad; Morton, Daniel
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
NASA Astrophysics Data System (ADS)
Kloppmann, W.; Leroux, L.; Bromblet, P.; Le Pogam, P.-Y.; Cooper, A. H.; Worley, N.; Guerrot, C.; Montech, A. T.; Gallas, A. M.; Aillaud, R.
2017-11-01
A lack of written sources is a serious obstacle in the reconstruction of the medieval trade of art and art materials, and in the identification of artists, workshop locations, and trade routes. We use the isotopes of sulfur, oxygen, and strontium (S, O, Sr) present in gypsum alabaster to unambiguously link ancient European source quarries and areas to alabaster artworks produced over five centuries (12th–17th) held by the Louvre museum in Paris and other European and American collections. Three principal alabaster production areas are identified, in central England, northern Spain, and a major, long-lived but little-documented alabaster trade radiating from the French Alps. The related trade routes are mostly fluvial, although terrestrial transport crossing the major river basin borders is also confirmed by historical sources. Our study also identifies recent artwork restoration using Italian alabaster and provides a robust geochemical framework for provenancing, including recognition of restoration and forgeries.
Color stable phosphors for LED lamps and methods for preparing them
Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph
2013-11-26
An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0
NASA Astrophysics Data System (ADS)
Frei, R.; Gaucher, C.; Dossing, L. N.; Sial, A. N.
2011-12-01
Strontium and carbon isotopes of marine carbonates are routinely applied for chemostratigraphic cross correlations of time-equivalent sedimentary sequences and for calibration of the compositional evolution of seawater throughout Earth's history, mainly for the purpose of reconstructing ancient climatic changes. We here present results of a new isotopic tracer system - stable chromium isotopes - applied to a late Ediacaran (Vendian) marine carbonate sequence exposed in the Calera de Recalde syncline, Arroyo del Soldado Group, Uruguay. The aim was to compare Cr isotope signatures directly to δ13C, 87Sr/86Sr and 143Nd/144Nd fluctuations in a well defined stratigraphic profile comprising sediments that were deposited during cold-warm periods accompanied by sea-level changes in response to glaciation-deglaciation at higher latitudes. The studied section is characterized by a pronounced negative (down to -3.3%) δ13C excursion in carbonates paralleled by a decrease of 87Sr/86Sr values. Chromium isotope signatures over this section also show a correlated decrease in δ53Cr (δ53Cr = [(53Cr/52Cr)sample/(53Cr/52Cr)SRM979)-1] x 1000) values from ~+0.29to -0.17% which mirrors a decrease in positively fractioned seawater signatures to slightly negative values characteristic of high-temperature magmatic sources. Linear correlations between δ53Cr and ɛNd(T=570 Ma), 87Sr/86Sr and Cr concentrations can be explained by mixing between two major input sources of Cr, Nd and Sr into the shallow seawater: 1) a source characterized by negative δ53Cr values of ~-0.2% , low 87Sr/86Sr values of ~0.707, and elevated 147Sm/144Nd values of ~0.13, recognized as a subaqueous hydrothermal dominated input source, and 2) a source characterized by positively fractionated δ53Cr values of ~+0.2%, higher 87Sr/86Sr values of ~0.708, and lower 147Sm/144Nd values of ~0.11, a source which is strongly affected by continentally derived input. Chromium isotopes provide a powerful tool for reconstructing the redox state of ancient seawater since positive values indicate that, at least locally, Neoproterozoic shallow ocean waters were sufficiently oxidized to fractionate chromium and/or that oxygen levels of the atmosphere were sufficient to transform Cr(III) into the more mobile hexavalent Cr(VI) formed during weathering processes on land. The fact that 87Sr/86Sr values, despite δ13C fluctuations, remain low (indicative of a strong hydrothermal input into the basin at his time) implies that CO2 limitation was the cause of negative δ13C and δ53Cr excursions in otherwise nutrient rich late Vendian basins, and that glaciation is only one more consequence of a tectonically driven, biologically mediated system. In such a scenario, glaciation acts as an amplifier of δ53Cr signals. These signals in marine carbonates are a sensitive tracer for redox processes in the ocean and/or on land and have the potential to contribute significantly to the reconstruction of climatic changes, particularly those that are associated with major glaciation periods in Earth's history.
NASA Astrophysics Data System (ADS)
Link, Klemens; Tommasini, Simone; Braschi, Eleonora; Conticelli, Sandro; Barifaijo, Erasmus; Tiberindwa, John V.; Foley, Stephen F.
2010-05-01
The genesis of pyroxenite nodules in Ugandan kamafugites and their possible genetic relationships is a matter of debate. In earlier studies the pyroxenites were considered either as xenoliths from pervasively metasomatized peridotite mantle (Lloyd, 1981) or as distinct paragenesises occurring as veins within the peridotitic mantle (Harte et al., 1993). In both cases the xenoliths would represent mantle material that was at least partly involved as source material for the kamafugite melts. A third alternative could be that they represent cumulates of the lavas. In any case, the nodules provide important information for understanding the generation of ultrapotassic lavas and for characterizing the rift-related lithosphere mantle as part of the initial continental rift process. Originally the ultrapotassic kamafugites were considered to be single stage partial melts of pervasively metasomatized mantle but new geochemical studies indicate a multistage development (Rosenthal et al., 2009). Nd, Hf and Os isotopes point to mixing between components derived from metasomatically influenced peridotite and mica-pyroxenite. In-situ investigation of the Sr-isotope and trace element compositions of individual minerals in a number of xenoliths allows us to constrain their genesis and relation to the host lavas. The nodules appear to originate by near-liquidus crystallization of melts derived from enriched peridotite within the cratonic lithosphere mantle. They later partially remelted to form one source of the potassium-rich kamafugites. Sr-isotopes from different domains within single mineral grains in the nodules and host lavas are used to trace the nodules' role as a potential source to lavas, and trace element measurements are used to support the conclusions. Rb/Sr- measurements from the biotites to constrain the time between nodule crystallization and eruption of the Quaternary lavas to about 3.3 Ma. This also suggests a significant increase of the geothermal gradient beneath the preceding rift within that time. Structures on microscopic scale indicate at least two different generations of mineral growth clearly related to multiphase magmatic events forming the nodules. Rare composite samples allow a correlation between the older and younger parageneses, demonstrating reaction between the older matrix pyroxenite and the younger, high-Ti melt. The relatively low (~0,13wt%) Cr2O3-contents together with the high LREE concentrations measured in the oldest observed clinopyroxenes (La~12,4 x PRIMA with La/Lu~21) as well as the lack of any other characteristic mineral relicts argue against a pervasively overprinted peridotite mantle. Comparable 87Sr/86Sr- values close to bulk earth values as well as similar 143Nd/144Nd- ratios in the nodules (0,512480-0,5122573) and the lavas (average: 0,512551) support a genetic link between the kamafugites and the nodules as suggested by experiments (Lloyd et al. 1985). Low radiogenic 87Sr/86Sr ratios in Rb-free clinopyroxene and perovskite (0,704459-0,704487) constrain initial values for the source whereas slightly more radiogenic values from cogenetic Rb-bearing biotites (0,704754- 0,704762) are the result of radioactive decay after mineral growth. The majority of the kamafugite 87Sr/86Sr values lie between the two end-members (0,704624- 0,704717). Additionally considering microscale structures showing melting processes we conclude that the nodules represent one source and that the intermediate 87Sr/86Sr values of the lavas reflect the melting of differing proportions of biotite and clinopyroxene in the source region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A
2013-01-01
Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec)more » than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.« less
Smith, J.P.; Bullen, T.D.; Brabander, D.J.; Olsen, C.R.
2009-01-01
Strontium isotope (87Sr/86Sr) profiles in sediment cores collected from two subtidal harbor slips in the lower Hudson River estuary in October 2001 exhibit regular patterns of variability with depth. Using additional evidence from sediment Ca/Sr ratios, 137Cs activity and Al, carbonate (CaCO3), and organic carbon (OCsed) concentration profiles, it can be shown that the observed variability reflects differences in the relative input and trapping of fine-grained sediment from seaward sources vs. landward sources linked to seasonal-scale changes in freshwater flow. During high flow conditions, the geochemical data indicate that most of the fine-grained sediments trapped in the estuary are newly eroded basin materials. During lower (base) flow conditions, a higher fraction of mature materials from seaward sources with higher carbonate content is trapped in the lower estuary. Results show that high-resolution, multi-geochemical tracer approaches utilizing strontium isotope ratios (87Sr/86Sr) can distinguish sediment sources and constrain seasonal scale variations in sediment trapping and accumulation in dynamic estuarine environments. Low-energy, subtidal areas such as those in this study are important sinks for metastable, short-to-medium time scale sediment accumulation. These results also show that these same areas can serve as natural recorders of physical, chemical, and biological processes that affect particle and particle-associated material dynamics over seasonal-to-yearly time scales. ?? 2009.
NASA Astrophysics Data System (ADS)
Liang, Yayun; Deng, Jun; Liu, Xuefei; Wang, Qingfei; Qin, Cheng; Li, Yan; Yang, Yi; Zhou, Mian; Jiang, Jieyan
2018-03-01
Early Cretaceous mafic dyke swarms are widely developed on Jiaodong Peninsula in the southeastern part of the North China Craton (NCC), but their petrogenesis remains enigmatic. We have examined the in-situ major element, trace element and Sr isotope compositions of the clinopyroxene phenocrysts in these dykes in order to evaluate the extent of magma mixing and source metasomatism. Depending on the type of mineral zoning, the clinopyroxene phenocrysts in our samples can be classified into two groups: Group I (reverse zoning) and Group II (no zoning). Based on core compositions, the Group I phenocrysts with obvious reverse zoning can be divided into two subgroups: Groups IA and IB. The cores of Group IA clinopyroxenes have low values of Mg#, low Al2O3 contents, high Na2O contents, and high 87Sr/86Sr ratios, and they were probably derived from newly accreted lower crust that formed through the underplating of basaltic magma. In contrast, the cores of Group IB clinopyroxenes have lower Mg# values and lower contents of Al2O3, ΣREE (total rare earth elements), and incompatible elements, but they have similar 87Sr/86Sr ratios; these cores crystallised from crust-derived andesitic-dacitic magma. Group IA and IB clinopyroxene phenocryst rims (Group I rims) all have similar compositions with higher values of Mg# and higher Al2O3, Cr and Ni contents than the cores. The rims have high 87Sr/86Sr ratios, are enriched in LREEs (light rare earth elements) and LILEs (large ion lithophile elements), and are depleted in HFSEs (high field strength elements); these characteristics indicate that all the high-Mg rims were derived from a similar magma, possibly a relatively primitive magma derived from lithospheric mantle. We suggest, therefore, that the reversely-zoned clinopyroxene phenocrysts (Group I) in the Jiaodong mafic dykes provide evidence of magma mixing between a magma derived from lithospheric mantle and crust-derived andesitic-dacitic melt alongside with the newly accreted lower crust. The Group II clinopyroxene phenocrysts, which lack zoning, display major and trace element compositions and 87Sr/86Sr ratios that are similar to those of the Group I rims, which indicates that all the high-Mg clinopyroxenes were derived from a common source in the lithospheric mantle. These high-Mg clinopyroxenes exhibit high 87Sr/86Sr ratios, high Sr contents and remarkable depletions in HFSEs, reflecting metasomatism of the mantle source by aqueous fluids derived by dehydration of the subducting slab and its marine sediments. The metasomatism of the source reveals that the lithospheric mantle beneath Jiaodong Peninsula was metasomatised by fluids from the subducting Paleo-Pacific slab. Progressive thinning of the lithosphere mantle under the NCC was induced by continuous thermo-mechanical erosion, promoting the partial melting of lithospheric mantle and generating the mafic dykes at Jiaodong. Table A2 Analytical results for the trace element standards used during LA-ICP-MS analyses of clinopyroxene phenocrysts. Table A3 Analytical results for the Sr isotope standards used during MC-ICP-MS analyses of clinopyroxene phenocrysts. Table A4 Major element contents (wt%) of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A5 Representative Sr isotopic compositions of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A6 Geochemistry of the mafic dykes on Jiaodong Peninsula. Table A7 Partition coefficients (KD) and end-member components used for REE modeling.
NASA Astrophysics Data System (ADS)
Behrens, R.
2015-03-01
The International Organization for Standardization (ISO) requires in its standard ISO 6980 that beta reference radiation fields for radiation protection be calibrated in terms of absorbed dose to tissue at a depth of 0.07 mm in a slab phantom (30 cm x 30 cm x 15 cm). However, many beta dosemeters are ring dosemeters and are, therefore, irradiated on a rod phantom (1.9 cm in diameter and 30 cm long), or they are eye dosemeters possibly irradiated on a cylinder phantom (20 cm in diameter and 20 cm high), or area dosemeters irradiated free in air with the conventional quantity value (true value) being defined in a sphere (30 cm in diameter, made of ICRU tissue (International Commission on Radiation Units and Measurements)). Therefore, the correction factors for the conventional quantity value in the rod, the cylinder, and the sphere instead of the slab (all made of ICRU tissue) were calculated for the radiation fields of 147Pm, 85Kr, 90Sr/90Y, and, 106Ru/106Rh sources of the beta secondary standard BSS 2 developed at PTB. All correction factors were calculated for 0° up to 75° (in steps of 15°) radiation incidence. The results are ready for implementation in ISO 6980-3 and have recently been (partly) implemented in the software of the BSS 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth enamel and muscle were in agreement with with EPR- and FISH-based estimates within uncertainty bounds. Basically, the agreement between the estimates has confirmed the validity of external doses calculated with the Techa River Dosimetry System.« less
NASA Astrophysics Data System (ADS)
Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard
2014-03-01
Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).
High-energy electron experiments (HEP) aboard the ERG (Arase) satellite
NASA Astrophysics Data System (ADS)
Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi
2018-05-01
This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.
Banas, A; Banas, K; Breese, M B H; Loke, J; Heng Teo, B; Lim, S K
2012-08-07
Synchrotron radiation-based Fourier transform infra-red (SR-FTIR) micro-imaging has been developed as a rapid, direct and non-destructive technique. This method, taking advantage of the high brightness and small effective source size of synchrotron light, is capable of exploring the molecular chemistry within the microstructures of microscopic particles without their destruction at high spatial resolutions. This is in contrast to traditional "wet" chemical methods, which, during processing for analysis, often caused destruction of the original samples. In the present study, we demonstrate the potential of SR-FTIR micro-imaging as an effective way to accurately identify microscopic particles deposited within latent fingerprints. These particles are present from residual amounts of materials left on a person's fingers after handling such materials. Fingerprints contaminated with various types of powders, creams, medications and high explosive materials (3-nitrooxy-2,2-bis(nitrooxymethyl)propyl nitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX), 2-methyl-1,3,5-trinitrobenzene (TNT)) deposited on various - daily used - substrates have been analysed herein without any further sample preparation. A non-destructive method for the transfer of contaminated fingerprints from hard-to-reach areas of the substrates to the place of analysis is also presented. This method could have a significant impact on forensic science and could dramatically enhance the amount of information that can be obtained from the study of fingerprints.
Batiza, Rodey; Futa, K.; Hedge, C.E.
1979-01-01
Isla Tortuga is a small isolated central volcano which is located near an actively spreading trough in the Gulf of California. The basalt lavas from Tortuga which have the highest Mg/Fe and Ni contents have trace element abundances and ratios and 87Sr/86Sr which are similar to those of mid-ocean ridge tholeiite. The major element, rare earth element and Sr abundances of fractionated tholeiite (low Mg/Fe) and tholeiitic andesite of Tortuga are consistent with an origin by closed-system fractional crystallization. This hypothesis is not supported by K, Na, Rb and Ba abundances in the lavas nor by their variable 87Sr/86Sr (0.7024-0.7035). It is proposed that the apparent decoupling of light rare earth elements, other incompatible trace elements and 87Sr/86Sr is due to contamination of some Tortuga magmas while they are fractionated in a high-level crustal magma chamber. The mantle source of least-contaminated, high Mg/Fe basalt lavas of Tortuga is similar, although not identical to the source of normal mid-ocean ridge tholeiite; significant differences exist. The reasons for these differences are not yet known. ?? 1979.
NASA Astrophysics Data System (ADS)
Hasözbek, Altug; Shyam, Badri; Siebel, Wolfgang; Schmitt, Axel; Akay, Erhan; Skinner, Lawrie
2013-04-01
Zircon (ZrSiO4) is a mineral of singular importance in the geosciences. Zircon microanalysis has greatly contributed to our understanding of key events in earth's history as certain radioactive heavy elements and their daughter products are well-preserved within the exceptionally stable inorganic matrix of the mineral. A prevailing notion in this field is that zircon, as a mineral, is predominantly a crustal mineral; this has been contested in the last few years with more reports of mantle-derived zircons (Siebel et al., 2009). Zircons enriched from different parts of the upper mantle to lower crust from Turkey (Hasozbek et al. 2010) and Germany (Siebel et al., 2009) will be presented in this study using SR-XRF mapping carried out at beamline 2-IDE at the Advanced Photon Source synchrotron facility (Argonne National Laboratory, USA). The high-resolution (5-10 µm) elemental maps were obtained with collimated and linearly polarized synchrotron radiation (10 to 17 keV) and possess the advantage of being a completely non-destructive technique. Elemental maps of various trace and rare-earth elements along the cross-section of the zircons reveal a zonation-related distribution, which may be used to reveal factors affecting the growth history and dynamics of the crystal formation. Further, abrupt changes in elemental distribution or concentration were found to correspond to faults or inclusions within the zircon crystal. If such observations are found to be applicable for a wide range of samples, elemental mapping with this technique may serve as an important qualitative diagnostic to locating µ-meter inclusions that may be challenging to identify using other techniques (ICP-MS LA, SHRIMP,…) Through these preliminary elemental profile mapping studies of crustal and mantle zircons using SR-XRF methods, we aim to highlight a relatively quick and promising analytical method that may be used to study various geological problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubeck, J., E-mail: janin.lubeck@ptb.de; Fliegauf, R.; Holfelder, I.
A novel type of ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation (SR) has been constructed and commissioned at BESSY II. This versa-tile instrument was developed by the PTB, Germany’s national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, it integrates a rotational and translational movement of several photodiodes as well as a translational movement of a beam-geometry-defining aperture system. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors suchmore » as reference-free X-Ray Fluorescence (XRF) analysis, total-reflection XRF, grazing-incidence XRF, in addition to optional X-Ray Reflectometry (XRR) measurements or polarization-dependent X-ray absorption fine structure analyses (XAFS). Samples having a size of up to (100 × 100) mm{sup 2}; can be analyzed with respect to their mass deposition, elemental, spatial or species composition. Surface contamination, nanolayer composition and thickness, depth pro-file of matrix elements or implants, nanoparticles or buried interfaces as well as molecular orientation of bonds can be accessed. Three technology transfer projects of adapted instruments have enhanced X-Ray Spectrometry (XRS) research activities within Europe at the synchrotron radiation facilities ELETTRA (IAEA) and SOLEIL (CEA/LNE-LNHB) as well as at the X-ray innovation laboratory BLiX (TU Berlin) where different laboratory sources are used. Here, smaller chamber requirements led PTB in cooperation with TU Berlin to develop a modified instrument equipped with a 7-axis manipulator: reduced freedom in the choice of experimental geometry modifications (absence of out-of-SR-plane and reference-free XRS options) has been compensated by encoder-enhanced angular accuracy for GIXRF and XRR.« less
NASA Astrophysics Data System (ADS)
Hong, W.; Moen, N.; Haley, B. A.
2013-12-01
IODP Expedition 337 was designed to understand the relationship between a deep-buried (2000 meters below seafloor) hydrocarbon reservoir off the Shimokita peninsula (Japan), and the microbial community that this carbon reservoir sustains at such depth. Understanding sources and pathways of flow of fluids that carry hydrocarbons, nutrients, and other reduced components is of particular interest to fulfilling the expedition objectives, since this migrating fluid supports microbial activity not only of the deep-seated communities but also to the shallow-dwelling organisms. To this aim, the concentration and isotopic signature of Sr can be valuable due to that it is relatively free from biogenic influence and pristine in terms of drill fluid contamination. From the pore water Sr profile, concentration gradually increases from 1500 to 2400 mbsf. The depth where highest Sr concentration is observed corresponds to the depths where couple layers of carbonate were observed. Such profile suggests an upward-migrating fluid carries Sr from those deep-seated carbonate layers (>2400 mbsf) to shallower sediments. To confirm this inference, pore water, in-situ formation fluid, and carbonate samples were analyzed for Sr isotopes to investigate the fluid source.
NASA Technical Reports Server (NTRS)
Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.;
2015-01-01
Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.
Rapid measurement of 89,90Sr radioactivity in rinse water.
Masashi, Takada; Hiroko, Enomoto; Toshikazu, Suzuki
2013-03-01
Rapid measurement of radioactivity from Sr in aqueous solutions is performed using a technique combining a strontium rad disk and a picobeta spectrometer. Identification of Sr radionuclides is accomplished in as little as 90 min in a radiation-tainted solution that contains more highly radioactive cesium. It is possible to perform triage by assessing skin exposure doses in this short time. This simple technique could be used in mobile laboratories. Sr having 1 Bq radioactivities are measured in 10 kBq Cs in aqueous solution. The radioactivity contained in rinse water used to decontaminate the feet of workers who stepped into highly contaminated water in the basement of the turbine building of Unit 3 at the Fukushima Daiichi nuclear power station was measured. The amount of Sr radioactivity in rinse water using the authors' rapid measurement technique (0.29 Bq mL) and a traditional method agree well, with 3.6% difference. Based on this agreement, this technique is confirmed to be useful for rapid measurement of Sr radioactivities.
Borg, L.E.; Clynne, M.A.; Bullen, T.D.
1997-01-01
The compositional continuum observed in primitive calc-alkaline lavas erupted from small volcanoes across the southernmost Cascade arc is produced by the introduction of a variable proportion of slab-derived fluid into the superjacent peridotite layer of the mantle wedge. Magmas derived from fluid-rich sources are erupted primarily in the forearc and are characterized by Sr and Pb enrichment (primitive mantle-normalized Sr/P > 5.5), depletions of Ta and Nb, low incompatible-element abundances, and MORB-like Sr and Pb isotopic ratios. Magmas derived from fluid-poor sources are erupted primarily in the arc axis and behind the arc, and are characterized by weak enrichment in Sr [1.0 < (Sr/P)N < 1.3], weak depletions in Ta and Nb, higher incompatible-element abundances, and OIB-like Sr, Nd, and Pb isotopic ratios. Fluxing the mantle wedge above the subducting slab with H2O-rich fluid stabilizes amphibole and enriches the wedge peridotites in incompatible elements, particularly unradiogenic Sr and Pb. The hydrated amphibole-bearing portion of the mantle wedge is downdragged beneath the forearc, where its solidus is exceeded, yielding melts that are enriched in Sr and Pb, and depleted in Ta and Nb (reflecting both high Sr and Pb relative to Ta and Nb in the fluid, and the greater compatibility of Ta and Nb in amphibole compared to other silicate phases in the wedge). A steady decrease of the fluid-contributed geochemical signature away from the trench is produced by the progressive dehydration of the downdragged portion of the mantle wedge with depth, resulting from melt extraction and increased temperature at the slab-wedge interface. Inverse correlation between incompatible-element abundances and the size of the fluid-contributed geochemical signature is generated by melting of more depleted peridotites, rather than by significant differences in the degree of melting. High-(Sr/P)N lavas of the forearc are generated by melting of a MORB-source-like peridotite that has been fluxed with a greater proportion of slab-derived fluid, and low (Sr/P)N lavas of the arc axis are produced by melting of an OIB-source-like peridotite in the presence of a smaller proportion of slab-derived fluid. This study documents the control that a slab-derived fluid can have on incompatible element and isotopic systematics of arc magmas by 1) the addition of incompatible elements to the wedge, 2) the stabilization of hydrous phases in the wedge, and 3) the lowering of peridotite solidi.
Sources of inflow and nature of redistribution of 90Sr in the salt lakes of the Crimea.
Mirzoyeva, N Yu; Arkhipova, S I; Kravchenko, N V
2018-08-01
At the first time for the period after the Chernobyl NPP accident the nature of the redistribution of the 90 Sr concentrations in components of the ecosystems of the salt lakes of the Crimea were identified and described. Concentration of 90 Sr in water of the salt lakes depends on the sources of the inflow this radionuclide into aquatic ecosystems and salinity level of lakes water. Until April 2014 the flow of the Dnieper river water through the Northern-Crimean canal was more important factor of contamination of salt lakes of the Crimea by 90 Sr, than atmospheric fallout of this radionuclide after the Chernobyl NPP accident. Concentrations of 90 Sr in water of the salt lakes of the Crimea exceeded 2.4-156.5 times its concentrations in their bottom sediments. The 90 Sr dose commitments to hydrophytes, which were sampled from the salt lakes of the Crimea have not reached values which could impact them during entire the after-accident period. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luminescence properties of Eu{sup 2+} doped SrB{sub 4}O{sub 7} phosphor for radiation dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palan, C.B., E-mail: chetanpalan27@yahoo.in; Bajaj, N.S.; Omanwar, S.K.
Highlights: • Report TL/OSL properties of SrB{sub 4}O{sub 7}:Eu{sup 2+} under beta irradiations. • OSL Sensitivity was about 33% than that of commercially available α-Al{sub 2}O{sub 3.} • TL glow peaks was appear at 305° C and TL sensitivity about 200 times higher than TLD-500. • OSL decay pattern was faster than α- Al{sub 2}O{sub 3}:C and dose response was linear nature. - Abstract: In this report, we presented the TL/OSL properties of Eu doped SrB{sub 4}O{sub 7} phosphor under β-irradiation. This phosphor was synthesized by using solid state method. The phosphor shows OSL sensitivity about 33% than that ofmore » commercially available α-Al{sub 2}O{sub 3}: C phosphor. CW-OSL curve possess two components having photoionization cross-sections 0.707 × 10{sup −17} and 18.58 × 10{sup −17} cm{sup 2} respectively and TL sensitivity about 200 times higher than TLD-500. The kinetic parameters such as activation energy, frequency factor and order of kinetics of TL curve were calculated by using peak shape method. In TL/OSL mode dose-response was almost linear in the range of measurements. The MDD was found to be 1.26 mGy with 3σ of background. Also reusability studies showed the phosphor can be reused for 10 cycles with 1% change in the OSL output. The PL spectra of SrB{sub 4}O{sub 7} showed emission in NUV region when excited with 318 nm under UV source.« less
NASA Astrophysics Data System (ADS)
Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.
2014-01-01
Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate, kimberlite-like 206Pb/204Pb and 208Pb/204Pb ratios. A multi-stage evolution of the diamond-forming fluids source can be constrained from our new isotopic data, indicating an Achaean enrichment event resulting in elevated U/Pb, Rb/Sr ratios and enrichment in LREEs. This source underwent a more recent fractionation, in the last 500 Myr that may have been related to the diamond-forming event. There is a strong correspondence between fluids with relatively unradiogenic Sr isotopes and relatively low (La, Nd, Sm)/(Nb, Zr) and (Ba, Th)/(Nb) ratios. Sr isotopic enrichment is accompanied by an increase in these ratios. The least trace element enriched and most isotopically depleted fluids are from the high-Mg carbonatitic suite. Thus, HDFs could be derived from asthenospheric mantle as low degree melts that interact to varying degrees with an ancient, metasomatized, rutile- and phlogopite bearing, sub continental lithosphere mantle. The internal heterogeneity in the Sr isotopic ratios within a single diamond suite and even within single diamonds may indicate fluid-mixing processes. Such mixing may occur during migration through preferred mantle veins and may be affected by the small-scale geochemical variability within them.
NASA Astrophysics Data System (ADS)
Kogarko, L. N.; Lahaye, Y.; Brey, G. P.
2010-03-01
The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.
Sediment provenance in the Laxmi Basin of the Arabian Sea during the last 800 kyrs
NASA Astrophysics Data System (ADS)
Khim, B. K.; Horikawa, K.; Asahara, Y.; Kim, J. E.; Ikehara, M.; Lee, J.
2017-12-01
International Ocean Discovery Program Expedition 355 conducted to drill 1109.4 m penetration at Site U1456 in the Laxmi Basin of the Arabian Sea. Four lithologic units are defined onboard at Site U1456 (Pandey et al., 2016). Unit I is 121 m long, consisting mostly of pelagic carbonates (nannofossil ooze and/or foraminifera-rich nannofossil ooze) interbedded with thin terrigenous (clay, silt, and sand) turbidite layers. The age model of Unit I was determined by the correlation of δ18O fluctuations of planktonic foraminifera (Globigerinoides ruber) to LR04 stacks, estimating 1.2 Ma. A total of 60 samples, collected in the context of magnetic susceptibility (MS) changes at a discrete interval from a composite section (Holes U1456A and U1456C) of Unit I, were analyzed to measure Nd and Sr isotopes of detrital fraction. Based on Nd and Sr isotopes, the sediment provenance in the Laxmi Basin during the last 800 kyrs was traced in response to the monsoon activity between the interglacial and glacial periods. ɛNd and 87Sr/86Sr vary in a range from -12.4 to -8.0 and from 0.712 to 0.727, respectively. The correlation between ɛNd and 87Sr/86Sr is quite linear, indicating that the sediments were provided mainly by two dominant sources. Considering the ɛNd and 87Sr/86Sr end-members of sediment sources (i.e., river sediments), the Tapi River and Narmada River are the main contributors of sediments to Site U1456 with a little influence by the modern Indus River. However, the glacial sediments from the Indus River and the Mahi River may supply an additional fraction, leading to less ɛNd and more 87Sr/86Sr at Site U1456. Judged by the sediment sources, the sediments in the Laxmi Basin are characterized by the mixture of different provenances. In addition, it should be noted that the low ɛNd and high 87Sr/86Sr values coincide largely with high MS and vice versa, irrespectively of the glacial-interglacial change. Thus, rather than the sediment provenances, ɛNd and 87Sr/86Sr values of the detrital fraction in the Laxmi Basin of the Arabian Sea have been more controlled by the sedimentary processes (pelagic, hemi-pelagic and turbidite) and depositional conditions related with the sea level changes in response to the Arabian Sea monsoon activity between the glacial and interglacial periods during the last 800 kyrs.
Upper limits to the interstellar radiation field between 775 and 1050 A
NASA Technical Reports Server (NTRS)
Paresce, F.; Bowyer, S.
1976-01-01
A 40-A resolution extreme-ultraviolet spectrometer, sensitive to radiation in the 775-1050 A band, was flown on a Black Brant VC rocket to measure the night sky brightness in this region of the electromagnetic spectrum. A weak signal above background was recorded in most channels as the spectrometer's field of view scanned the sky in the vicinity of the galactic plane from Monoceros to Andromeda. Because the earth's upper atmosphere may produce some radiation in this wavelength region, the possibility cannot be excluded that some or all of the observed signal is terrestrial in origin. However, observational upper limits can be established at the 95-per cent confidence level for the intensity of an extraterrestrial extreme ultraviolet background which ranges from 6 millionths erg/sq cm/s/sr/A at 1050 A to 4 ten-millionths erg/sq cm/s/sr/A at 775 A. These results are consistent with existing theoretical predictions.
A new Mantle Source Tapped During Episode 55 of the Pu'u O'o Eruption From Kilauea Volcano
NASA Astrophysics Data System (ADS)
Marske, J. P.; Pietruszka, A. J.; Garcia, M. O.; Rhodes, J. M.
2005-12-01
Over 22 years of continuous geochemical monitoring of lavas from the current Pu'u O'o eruption allows us to probe the mantle and crustal processes beneath Kilauea Volcano in unparalleled detail. Episode 55 (1997-present) marks the longest and most voluminous Pu'u O'o eruptive interval. Here we present new Pb, Sr, and Nd isotopic ratios and major- and trace-element abundances for the most recent lavas (1999-2005). MgO variation diagrams show that most of the major-element variations are related to olivine fractionation. However, Pu'u O'o lavas display longer-term systematic decreases in their TiO2, K2O, P2O5 and CaO abundances (at a given MgO) due to changes in the parental magma composition. Incompatible element ratios (K2O/TiO2, Nb/Y, Nb/Zr) and MgO-normalized abundances (Sr, Rb, K) in episode 55 lavas delimit the lowest values observed during the Pu'u O'o eruption. Earlier Pu'u O'o lavas displayed a temporal decrease in highly over moderately incompatible trace-element ratios, near constant SiO2 contents, and a gradual increase in 87Sr/86Sr. However, episode 55 lavas (between days 5500-6500) record an increase in MgO-normalized SiO2 contents and even higher 87Sr/86Sr with near constant incompatible trace-element ratios. Neither a single mantle source composition nor a change in partial melting conditions can explain these observations. Based on 226Ra-230Th-238U disequilibria and partial melting modeling of trace elements, we conclude that Pu'u O'o lavas originate from at least two distinct mantle source components: (1) a recently depleted component that was subsequently remelted to explain the overall decreases of incompatible major- and trace-element ratios and abundances, and (2) a compositionally and isotopically distinct mantle component that was not previously melted within the Hawaiian plume to explain the temporal increase in 87Sr/86Sr and SiO2 abundances and the flattening trend of incompatible trace-element ratios. This second component lies within typical Pb, Sr and Nd isotopic space for Kilauea, but represents a new source composition for the Pu'u O'o eruption. These results can be explained by a recent (1999) change in the size or location of Pu'u O'o's melting region, which allowed this new source to be tapped.
Single inhalation exposure to /sup 90/SrCl/sub 2/ in the beagle dog: late biological effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillett, N.A.; Muggenburg, B.A.; Boecker, B.B.
1987-08-01
Late-occurring biologic effects were studied in beagle dogs that were given graded levels of /sup 90/SrCl/sub 2/ via single brief inhalation exposures and were subsequently observed for their life-span. Due to the soluble chemical form of the aerosol, /sup 90/Sr was rapidly translocated from lung and deposited in bone where it was subsequently retained for a long period of time. Radiation-induced lesions were confined to the bone, bone marrow, and adjacent soft tissue. Forty-five primary bone tumors occurred in 31 of 66 exposed dogs. Metastasis occurred from 21 tumors, with the lung being the most frequent site of metastasis (76%).more » Twenty-seven tumors were classified as different subtypes of osteosarcoma, 14 as hemangiosarcomas, 3 as fibrosarcomas, and 1 as a myxosarcoma. Four carcinomas arising from soft tissues adjacent to bone were also considered to be /sup 90/Sr induced. In contrast to bone tumors arising in beagles chronically exposed to 90Sr through ingestion, histologic lesions of radiation osteodystrophy were minimal in this study, indicating that these lesions are not a necessary precursor of osteosarcoma development. The incidences of hemangiosarcomas (31%) and telangiectatic osteosarcomas (11%) in addition to osteosarcomas suggest that the cell of origin for all of these neoplasms is a multipotent mesenchymal cell with the potential for various morphologic expressions dependent on local environmental factors.« less
Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan
2015-01-01
Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.
New high performing scintillators: RbSr2Br5:Eu and RbSr2I5:Eu
NASA Astrophysics Data System (ADS)
Stand, L.; Zhuravleva, M.; Johnson, J.; Koschan, M.; Lukosi, E.; Melcher, C. L.
2017-11-01
We report the crystal growth and scintillation properties of two new ternary metal halide scintillators, RbSr2Br5 and RbSr2I5, activated with divalent europium. Transparent 7 mm diameter single crystals with 2.5% Eu2+ were grown in evacuated quartz ampoules via the Bridgman technique. RbSr2Br5 and RbSr2I5 have monoclinic crystal structures with densities of 4.18 g/cm3 and 4.55 g/cm3 respectively. These materials are hygroscopic and have some intrinsic radioactivity due to the presence of 87Rb. Luminescence properties typical of the 5d-4f radiative transition in Eu2+ were observed. The X-ray excited emissions consisted of singular peaks centered at 429 nm for RbSr2Br5:Eu 2.5% and 445 nm for RbSr2I4:Eu 2.5%. RbSr2Br5:Eu 2.5% had a light yield of 64,700 photons/MeV, with an energy resolution of 4.0%, and RbSr2I5:Eu 2.5% had a light yield of 90,400 ph/MeV with an energy resolution of 3.0% at 662 keV. Both crystals have an excellent proportional response over a wide range of gamma-ray energies.
Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China
NASA Astrophysics Data System (ADS)
Sun, Shanlei; Chen, Haishan; Wang, Guojie; Li, Jinjian; Mu, Mengyuan; Yan, Guixia; Xu, Bei; Huang, Jin; Wang, Jie; Zhang, Fangmin; Zhu, Siguang
2016-08-01
During 1961-2012, the regional average annual potential evapotranspiration (PET) of Southwest China (SWC) and the four subregions (named as SR1, SR2, SR3, and SR4) showed different decreases (excluding SR3); while the breakpoint analysis suggested that PET changes (i.e., sign and magnitude) have shifted. Based on a group of sensitivity experiments with Penman-Monteith equation and a new separating method, the contributions of each climate factor alone (i.e., net radiation, Rn; mean temperature, Tave; wind speed, Wnd; and vapor pressure deficit, Vpd) to PET changes were calculated. Results showed that declined Wnd in SR1, reduced Rn in SR2, SR4, and SWC, and increased Vpd in SR3 were responsible for the PET changes during 1961-2012. However, the determinant factor for each subregion and SWC varied in different segmented periods, which were identified using the breakpoint analysis. The impacts of PET shifts on SWC dryness/wetness (reflected by the 3 month Standardized Precipitation-Evapotranspiration index, SPEI-3) during 1961-2012 were then quantified. Briefly, SPEI-3 changes in SR3, SR4, and SWC had the determinant factor of PET in the first one or two period(s), and precipitation in the last period; while they were attributed to PET (precipitation) in SR1 (SR2) for each segmented period. It is found that PET and precipitation had comparable contributions to the variations in SWC dryness/wetness. Our findings have suggested that more attentions should be paid to the impacts of PET changes and shifts in future studies of dryness/wetness or drought.
NASA Astrophysics Data System (ADS)
Garcia, S.; Nyachoti, S. K.; Ma, L.; Szynkiewicz, A.; McIntosh, J. C.
2015-12-01
High salinity in the Rio Grande has led to severe reductions in crop productivity and accumulation of salts in soils. These pressing issues exist for other arid rivers worldwide. Salinity contributions to the Rio Grande have not been adequately quantified, especially from agriculture, urban activities, and geological sources. Here, we use major element concentrations and U, S, B, Sr isotopic signatures to fingerprint the salinity sources. Our study area focuses on a 200 km long stretch of the Rio Grande from Elephant Butte Reservoir, NM to El Paso, TX. River samples were collected monthly from 2014 to 2015. Irrigation drains, groundwater wells, city drains and wastewater effluents were sampled as possible anthropogenic salinity end-members. Major element chemistry, U, S and Sr isotope ratios in the Rio Grande waters suggest multiple salinity inputs from geological, agricultural, and urban sources. Natural upwelling of groundwater is significant for the Rio Grande near Elephant Butte, as suggested by high TDS values and high (234U/238U), 87Sr/86Sr, δ34S ratios. Agricultural activities (e.g. flood irrigation, groundwater pumping, fertilizer use) are extensive in the Mesilla Valley. Rio Grande waters from this region have characteristic lower (234U/238U), 87Sr/86Sr, and δ34S ratios, with possible agricultural sources from use of fertilizers and gypsum. Agricultural practices during flood irrigation also intensify evaporation of Rio Grande surface water and considerably increase water salinity. Shallow groundwater signatures were also identified at several river locations, possibly due to the artificial pumping of local groundwater for irrigation. Impacts of urban activities to river chemistry (high NO3 and B concentrations) were evident for locations downstream to Las Cruces and El Paso wastewater treatment plants, supporting the use of the B isotope as an urban salinity tracer. This study improves our understanding of human impacts on water quality and elemental cycles.
Full-orbit and backward Monte Carlo simulation of runaway electrons
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, Diego
2017-10-01
High-energy relativistic runaway electrons (RE) can be produced during magnetic disruptions due to electric fields generated during the thermal and current quench of the plasma. Understanding this problem is key for the safe operation of ITER because, if not avoided or mitigated, RE can severely damage the plasma facing components. In this presentation we report on RE simulation efforts centered in two complementary approaches: (i) Full orbit (6-D phase space) relativistic numerical simulations in general (integrable or chaotic) 3-D magnetic and electric fields, including radiation damping and collisions, using the recently developed particle-based Kinetic Orbit Runaway electron Code (KORC) and (ii) Backward Monte-Carlo (MC) simulations based on a recently developed efficient backward stochastic differential equations (BSDE) solver. Following a description of the corresponding numerical methods, we present applications to: (i) RE synchrotron radiation (SR) emission using KORC and (ii) Computation of time-dependent runaway probability distributions, RE production rates, and expected slowing-down and runaway times using BSDE. We study the dependence of these statistical observables on the electric and magnetic field, and the ion effective charge. SR is a key energy dissipation mechanism in the high-energy regime, and it is also extensively used as an experimental diagnostic of RE. Using KORC we study full orbit effects on SR and discuss a recently developed SR synthetic diagnostic that incorporates the full angular dependence of SR, and the location and basic optics of the camera. It is shown that oversimplifying the angular dependence of SR and/or ignoring orbit effects can significantly modify the shape and overestimate the amplitude of the spectra. Applications to DIII-D RE experiments are discussed.
Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge
NASA Astrophysics Data System (ADS)
Michard, A.; Montigny, R.; Schlich, R.
1986-05-01
Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.
NASA Astrophysics Data System (ADS)
Xie, Ruifang C.; Marcantonio, Franco
2012-02-01
The provenance of eolian dust supplied to deep-sea sediments has the potential to offer insights into changes in past atmospheric circulation. Specifically, measuring temporal changes in dust provenance can shed light on changes in the mean position of the Intertropical Convergence Zone (ITCZ), a region acting as a barrier separating wind-blown material derived from northern versus southern hemisphere sources. Here we have analyzed Nd, Sr, and Pb isotope ratios in the operationally-defined detrital component extracted from deep-sea sediments in the eastern equatorial Pacific (EEP) along a meridional transect at 110°W from 3°S to 7°N (ODP Leg 138, sites 848-853). Sr isotope results show that barite Sr has a significant influence on 87Sr/86Sr isotope ratios of samples in the upwelling zone of the EEP. However, sites located >3° or more away from the equator (sites 852 and 853) are believed to not be affected by barite Sr and provide useful detrital Sr signals. 208Pb/206Pb and 207Pb/206Pb ratios in all cores fall into the Pb-isotope space of five potential dust sources (Asia, North and Central/South America, Sahara, and Australia), with no distinct isotopic fingerprinting of the dominant source(s). ɛNd values were most valuable for discerning detrital source provenance, and their values at all sites, ranging from -5.46 to -3.25, were more unradiogenic for sediments deposited during the last glacial than for those deposited during the Holocene. There are distinct latitudinal trends in the ɛNd values, with more radiogenic values further south and less radiogenic values further north, excluding site 848. This distinction holds true for both Holocene and last glacial periods. For the most southerly site, 848, we invoke, for the first time, a distinct southern hemisphere Australian source as being responsible for the unradiogenic Nd isotope ratios. Both average last glacial and Holocene ɛNd values show similar sharp gradients along the transect between 5.29°N and 2.77°N, suggesting little movement of the glacial ITCZ in the EEP. However, during the deglacial, this gradient is stronger and shifted further north between 5.29°N and 7.21°N, suggesting a more northerly, possibly stronger, deglacial ITCZ.
Isotopic evolution of Mauna Loa volcano
NASA Astrophysics Data System (ADS)
Kurz, Mark D.; Kammer, David P.
1991-04-01
In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3He/ 4He ( ˜ 16-20 times atmospheric), higher 206Pb/ 204Pb ( ˜ 18.2), and lower 87Sr/ 86Sr ( ˜ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 × atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3He/ 4He ratios similar to the other young Kau basalt ( ˜ 8.5 × atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. An asthenospheric source, or variation within the plume source, is considered more likely than lithospheric sources due to the elevated 87Sr/ 86Sr ratios in the recent Kau Basalts. However, the distinct isotopic characteristics of the historical lavas are inferred to be related to lithospheric involvement in the latest stages of shield-building volcanism.
NASA Astrophysics Data System (ADS)
Ying, Jifeng; Zhou, Xinhua; Zhang, Hongfu
2004-08-01
Major and trace element and Nd-Sr isotope data of the Mesozoic Laiwu-Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu-Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/ 86Sr (0.7095-0.7106) and very low ɛNd (-18.2 to -14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd-Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.
Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.
2016-01-01
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. PMID:26732243
Differential antimutagenicity of WR-1065 added after irradiation in L5178Y cell lines
NASA Technical Reports Server (NTRS)
Evans, H. H.; Horng, M. F.; Ricanati, M.; McCoy, E. C.
1999-01-01
The purpose of this study was to determine the antimutagenicity of WR-1065 added after irradiation of cells of cell lines differing in their ability to rejoin radiation-induced DNA double-strand breaks (DSBs). The postirradiation antimutagenicity of WR-1065 at the thymidine kinase locus was demonstrated for L5178Y (LY)-S1 cells that are deficient in repair of DNA DSBs. Less postirradiation antimutagenicity of WR-1065 was observed in LY-R16 and LY-SR1 cells, which are relatively efficient in DSB repair. Postirradiation treatment with WR-1065 had only a small stimulatory effect on DSB rejoining. A 3-h incubation of irradiated LY cells with WR-1065 caused slight changes in the distribution of cells in the phases of the cell cycle that differed between LY-S1 and LY-SR1 cells. Both LY-S1 and LY-SR1 cells were protected against the cytotoxic and mutagenic effects of radiation when WR-1065 was present 30 min before and during the irradiation. We conclude that the differential postirradiation effects of WR-1065 in the LY-S1 and LY-SR1 cells are not caused by differences in cellular uptake of the radioprotector or in its radical scavenging activity. Possible mechanisms for the postirradiation antimutagenicity of WR-1065 are discussed.
Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; ...
2016-02-15
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutherback, Kevin; Birarda, Giovanni; Chen, Liang
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less
1973 environmental monitoring report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, A.P.; Ash, J.A.
1974-03-01
>Results from radiation monitoring during 1973 in the environment of the Brookhaven National Laboratory are presented. Data are included on: the gross alpha and BETA activity and content of tritium and gamma-emitting radionuclides in surface air; gross BETA activity and gamma and tritium content in atmospheric precipitation; activities and concentration of gamma emitters in liquid effiuents and ground water; gross BETA , tritium and /sup 90/Sr in effluents; gross BETA and tritl um in surface waters; /sup 90/Sr and gamma- emitting radionuclides in river ecosystem; gross alpha , gross BETA , tritium, / sup 90/Sr, and /sup 137/Cs in groundmore » and well water; /sup 137/Cs, K, /sup 131/I, and /sup 90/Sr content in area milk; and gamma-emitting radionuclides in soils and grasses. (LCL)« less
NASA Astrophysics Data System (ADS)
Alanazi, Abdulaziz; Jurewicz, Izabela; Alalawi, Amani I.; Alyahyawi, Amjad; Alsubaie, Abdullah; Hinder, Steven; Bañuls-Ciscar, Jorge; Alkhorayef, Mohammed; Bradley, D. A.
2017-11-01
World-wide, on-going intensive research is being seen in adaptation of carbon nanotubes (CNTs) for a wide variety of applications, particular interest herein being in the thermoluminescent (TL) properties of CNTs and their sensitivity towards energetic radiations. Using beta radiation delivering dose levels of a few Gy it has been observed in previous study that strain and impurity defects in CNTs give rise to significant TL yields, providing an initial measure of the extent to which electron trapping centres exist in various qualities of CNT, from super-pure to raw. This in turn points to the possibility that there may be considerable advantage in using such media for radiation dosimetry applications, including for in vivo dosimetry. CNTs also have an effective atomic number similar to that of adipose tissue, making them suitable for soft tissue dosimetry. In present investigations various single-wall carbon nanotubes (SWCNT) samples in the form of buckypaper have been irradiated to doses in the range 35-1.3 Gy, use being made of a 90Sr beta source, the response of the CNTs buckypaper with dose showing a trend towards linearity. It is shown for present production methodology for buckypaper samples that the raw SWCNT buckypaper offer the greatest sensitivity, detecting doses down to some few tens of mGy.
Performance evaluation of newly developed SrI2(Eu) scintillator
NASA Astrophysics Data System (ADS)
Takabe, M.; Kishimoto, A.; Kataoka, J.; Sakuragi, S.; Yamasaki, Y.
2016-09-01
The development of europium-doped strontium iodide (SrI2(Eu)) has attracted considerable attention, because of its excellent material properties as regards gamma-ray scintillator applications. These include its excellent energy resolution, high light output (> 80 , 000 ph / MeV), and high effective atomic number (Z=49). Here we report on the performance of ϕ 1 in×1 in SrI2(Eu) cylindrical crystals newly fabricated by Union Materials Inc. In this study, we measured the energy resolution and light output at 10 °C temperature intervals between -40 and 40 °C, using an optically coupled 2-in photomultiplier tube (PMT) (Super Bialkali, Hamamatsu). The SrI2(Eu) light output increased by 0.12%/°C as the temperature decreased. At -40 °C, we obtained the optimal energy resolution recording 2.91±0.02% full width at half maximum (FWHM) for 662 keV gamma rays measured with 137Cs. For comparison, we also measured the same crystal using both a large-area (19×19 mm2) avalanche photodiode detector (APD) and 8×8 multi-pixel photon counter (MPPC) arrays of 3×3 mm2 pixels. The energy resolutions of 2.94±0.02%, 3.14±0.06% and 3.99±0.01% were obtained using PMT, APD, and MPPC, respectively, as measured at -20 °C. We also measured the inherent background of SrI2(Eu) in a cave composed of Cu-Pb blocks with their thickness of 5-10 cm confirming that SrI2(Eu) has an extremely low inherent background radiation. In this study, we have shown that SrI2(Eu) is a promising scintillator that can be utilized for radiation measurements incorporating low-energy X-rays to high-energy gamma rays, and can thus be applied in various medical, industrial, and environmental treatment fields in the near future.
NASA Astrophysics Data System (ADS)
Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa
2016-07-01
Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The Ediacaran granites are coeval with profuse granite magmatism attributed to continental arc magmatism in northern Ribeira and Araçuaí belts. However, their evolved compositions with low mg# and dominantly peraluminous character are unlike those of magmatic arc granites, and they are more likely products of post-collisional magmatism or correspond to an inner belt of crust-derived granites.
Geochemical characterization of critical dust source regions in the American West
NASA Astrophysics Data System (ADS)
Aarons, Sarah M.; Blakowski, Molly A.; Aciego, Sarah M.; Stevenson, Emily I.; Sims, Kenneth W. W.; Scott, Sean R.; Aarons, Charles
2017-10-01
The generation, transport, and deposition of mineral dust are detectable in paleoclimate records from land, ocean, and ice, providing valuable insight into earth surface conditions and cycles on a range of timescales. Dust deposited in marine and terrestrial ecosystems can provide critical nutrients to nutrient-limited ecosystems, and variations in dust provenance can indicate changes in dust production, sources and transport pathways as a function of climate variability and land use change. Thus, temporal changes in locations of dust source areas and transport pathways have implications for understanding interactions between mineral dust, global climate, and biogeochemical cycles. This work characterizes dust from areas in the American West known for dust events and/or affected by increasing human settlement and livestock grazing during the last 150 years. Dust generation and uplift from these dust source areas depends on climate and land use practices, and the relative contribution of dust has likely changed since the expansion of industrialization and agriculture into the western United States. We present elemental and isotopic analysis of 28 potential dust source area samples analyzed using Thermal Ionization Mass Spectrometry (TIMS) for 87Sr/86Sr and 143Nd/144Nd composition and Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) for 176Hf/177Hf composition, and ICPMS for major and trace element concentrations. We find significant variability in the Sr, Nd, and Hf isotope compositions of potential source areas of dust throughout western North America, ranging from 87Sr/86Sr = 0.703699 to 0.740236, εNd = -26.6 to 2.4, and εHf = -21.7 to -0.1. We also report differences in the trace metal and phosphorus concentrations in the geologic provinces sampled. This research provides an important resource for the geochemical tracing of dust sources and sinks in western North America, and will aid in modeling the biogeochemical impacts of increased dust generation and deposition caused by higher drought frequency and human activity.
Holocene provenance shift of suspended particulate matter in the Amazon River basin
NASA Astrophysics Data System (ADS)
Höppner, Natalie; Lucassen, Friedrich; Chiessi, Cristiano M.; Sawakuchi, André O.; Kasemann, Simone A.
2018-06-01
The strontium (Sr), neodymium (Nd) and lead (Pb) isotope signatures of suspended particulate matter (SPM) in rivers reflect the radiogenic isotope signatures of the rivers' drainage basin. These signatures are not significantly affected by weathering, transport or depositional cycles, but document the sedimentary contributions of the respective sources. We report new Sr, Nd and Pb isotope ratios and element concentrations of modern SPM from the Brazilian Amazon River basin and document the past evolution of the basin by analyzing radiogenic isotopes of a marine sediment core from the slope off French Guiana archiving the last 40 kyr of Amazon River SPM, and the Holocene section of sediment cores raised between the Amazon River mouth and the slope off French Guiana. The composition of modern SPM confirms two main source areas, the Andes and the cratonic Shield. In the marine sediment core notable changes occurred during the second phase of Heinrich Stadial 1 (i.e. increased proportion of Shield rivers SPM) and during the last deglaciation (i.e. increased proportion of Madeira River SPM) together with elsewhere constant source contributions. Furthermore, we report a prominent offset in Sr and Nd isotopic composition between the average core value (εNd: -11.7 ± 0.9 (2SD), 87Sr/86Sr: 0.7229 ± 0.0016 (2SD)) and the average modern Amazon River SPM signal (εNd: -10.5 ± 0.5 (2SD), 87Sr/86Sr: 0.7213 ± 0.0036 (2SD)). We suggest that a permanent change in the Amazon River basin sediment supply during the late Holocene to a more Andean dominated SPM was responsible for the offset.
Dholabhai, Pratik P; Aguiar, Jeffery A; Misra, Amit; Uberuaga, Blas P
2014-05-21
Due to reduced dimensions and increased interfacial content, nanocomposite oxides offer improved functionalities in a wide variety of advanced technological applications, including their potential use as radiation tolerant materials. To better understand the role of interface structures in influencing the radiation damage tolerance of oxides, we have conducted atomistic calculations to elucidate the behavior of radiation-induced point defects (vacancies and interstitials) at interface steps in a model CeO2/SrTiO3 system. We find that atomic-scale steps at the interface have substantial influence on the defect behavior, which ultimately dictate the material performance in hostile irradiation environments. Distinctive steps react dissimilarly to cation and anion defects, effectively becoming biased sinks for different types of defects. Steps also attract cation interstitials, leaving behind an excess of immobile vacancies. Further, defects introduce significant structural and chemical distortions primarily at the steps. These two factors are plausible origins for the enhanced amorphization at steps seen in our recent experiments. The present work indicates that comprehensive examination of the interaction of radiation-induced point defects with the atomic-scale topology and defect structure of heterointerfaces is essential to evaluate the radiation tolerance of nanocomposites. Finally, our results have implications for other applications, such as fast ion conduction.
Nature and Significance of the High-Sr Aleutian Lavas
NASA Astrophysics Data System (ADS)
Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.
2011-12-01
Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y<30, 87Sr/86Sr=0.7031-0.7033). Western Aleutian dredge samples also include high-Sr lavas (>700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr < 0.7028). The endmember Sr-rich lavas are magnesian rhyodacites (SiO2~68%, Mg# >0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (La<7 ppm, Yb<0.4 ppm) and 87Sr/86Sr < 0.70266. The high silica and primitive (high Mg#) character of the high-Sr lavas, combined with their strongly fractionated trace element patterns and MORB-like isotopes are consistent with a source predominantly of subducted basalt and a melt residue that contained garnet. The high-Sr lavas have some characteristics of MORB fluids (low Ce/Pb and unradiogenic Pb), and their highly calc-alkaline nature implies high pre-eruptive water contents[1], but low 87Sr/86Sr indicates that their source was in MORB, not seawater-altered MORB. The high-Sr endmember is clearly present in andesites from some emergent volcanoes in the western Aleutians, and mixing arrays indicate that it may be present in all Aleutian lavas (e.g., 87Sr/86Sr vs. La/Yb or Sr/Y); however, radiogenic Pb and Sr from subducted sediment renders the high-Sr endmember isotopically invisible in most central and eastern Aleutian lavas. The geochemistry of small monogenetic sea-floor volcanoes--especially those in the back-arc--may be the best opportunity to identify the high-Sr endmember in central and eastern Aleutian locations. The existence of primitive, high-silica lavas in the western Aleutians, where the subducting plate is probably unusually hot, may also provide key observations toward an improved understanding of high-Mg# andesites and dacites from other hot-slab locations, especially in the Cascades and Central Mexico. [1] Zimmer et al., 2010, J. Petrology, v. 51, p. 2411
Impact of total ionizing dose irradiation on Pt/SrBi2Ta2O9/HfTaO/Si memory capacitors
NASA Astrophysics Data System (ADS)
Yan, S. A.; Zhao, W.; Guo, H. X.; Xiong, Y.; Tang, M. H.; Li, Z.; Xiao, Y. G.; Zhang, W. L.; Ding, H.; Chen, J. W.; Zhou, Y. C.
2015-01-01
In this work, metal-ferroelectric-insulator-semiconductor (MFIS) structure capacitors with SrBi2Ta2O9 (300 nm) as ferroelectric thin film and HfTaO (6 nm, 8 nm, 10 nm, and 12 nm) as insulating buffer layer were proposed and investigated. The prepared capacitors were fabricated and characterized before radiation and then subjected to 60Co gamma irradiation in steps of two dose levels. Significant irradiation-induced degradation of the electrical characteristics was observed. The radiation experimental results indicated that stability and reliability of as-fabricated MFIS capacitors for nonvolatile memory applications could become uncontrollable under strong irradiation dose and/or long irradiation time.
NASA Astrophysics Data System (ADS)
Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego
2017-10-01
Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.
Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans
2016-11-01
Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.
Schleife, Andre; Zhang, Xiao; Li, Qi; ...
2016-11-03
In this paper, materials for scintillator radiation detectors need to fulfill a diverse set of requirements such as radiation hardness and highly specific response to incoming radiation, rendering them a target of current materials design efforts. Even though they are amenable to cutting-edge theoretical spectroscopy techniques, surprisingly many fundamental properties of scintillator materials are still unknown or not well explored. In this work, we use first-principles approaches to thoroughly study the optical properties of four scintillator materials: NaI, LaBr 3, BaI 2, and SrI 2. By solving the Bethe–Salpeter equation for the optical polarization function we study the influence ofmore » excitonic effects on dielectric and electron-energy loss functions. This work sheds light into fundamental optical properties of these four scintillator materials and lays the ground-work for future work that is geared toward accurate modeling and computational materials design of advanced radiation detectors with unprecedented energy resolution.« less
A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering
NASA Astrophysics Data System (ADS)
Farcasiu, D. M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S. P.; Jianu, A.; Bordeanu, C.; Cracium, M. V.
1992-02-01
The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources (147Pm, 204Tl, 90Sr+90Y) the intensity of the backscattered beta particles is dependent on the following parameters: coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on.
A new Cu–cysteamine complex: structure and optical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Lun; Chen, Wei; Schatte, Gabriele
2014-06-07
Here we report the structure and optical properties of a new Cu–cysteamine complex (Cu–Cy) with a formula of Cu3Cl(SR)2 (R ¼ CH2CH2NH2). This Cu–Cy has a different structure from a previous Cu–Cy complex, in which both thio and amine groups from cysteamine bond with copper ions. Single-crystal X-ray diffraction and solid-state nuclear magnetic resonance results show that the oxidation state of copper in Cu3Cl(SR)2 is +1 rather than +2. Further, Cu3Cl(SR)2 has been observed to show intense photoluminescence and X-ray excited luminescence. More interesting is that Cu3Cl(SR)2 particles can produce singlet oxygen under irradiation by light or X-ray. This indicatesmore » that Cu3Cl(SR)2 is a new photosensitizer that can be used for deep cancer treatment as X-ray can penetrate soft tissues. All these findings mean that Cu3Cl(SR)2 is a new material with potential applications for lighting, radiation detection and cancer treatment.« less
NASA Astrophysics Data System (ADS)
Kessler, P.; Behnke, B.; Dombrowski, H.; Neumaier, S.
2017-11-01
For the upgrade of existing dosimetric early warning networks in Europe spectrometric detectors based on CeBr3, LaBr3, SrI2, and CdZnTe are investigated as possible substitutes for the current detector generation which is mainly based on gas filled detectors. The additional information on the nuclide vector which can be derived from the spectra of γ-radiation is highly useful for an appropriate response in case of a nuclear or radiological accident. The measured γ-spectra will be converted into ambient dose equivalent H* (10) using a method where the spectrum is subdivided into multiple energy bands. For each band the conversion coefficients from count rate to dose rate is determined. The derivation of these conversion coefficients is explained in this work. Both experimental and simulative approaches are investigated using quasi-mono-energetic γ-sources and synthetic spectra from Monte-Carlo simulations to determine the conversion coefficients for each detector type. Finally, precision of the obtained characterization is checked by irradiation of the detectors in different well-known photon fields with traceable dose rates.
The origin and mechanisms of salinization of the Lower Jordan River
Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.
2004-01-01
The chemical and isotopic (87Sr/86Sr, ??11B, ??34Ssulfate, ??18Owater, ??15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), ??34Ssulfate (-2???), high ??11B (???36???), ??15Nnitrate (???15???) and high ??18Owater (-2 to-3???) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr???0.70865; ??11B???25???) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl???0.2-0.5; Br/Cl???2-3??10-3; 87Sr/86Sr???0.70805; ??11B???30???; ??15Nnitrate ???17???, ??34Ssulfate=4-10???), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl???6-8??10-3; 87Sr/86Sr???0.7080; ??11B???40???; ??34Ssulfate=4-10???). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ???10% contribution of saline groundwater (Cl-=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River. ?? 2004 Elsevier Ltd.
Modelling the petrogenesis of high Rb/Sr silicic magmas
Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.
1991-01-01
Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.
TH-AB-201-06: Examining the Influence of Humidity On Reference Ion Chamber Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taank, J; McEwen, M
2016-06-15
Purpose: International dosimetry protocols require measurements made with a vented ionization chamber to be corrected for the influence of air density by using the standard temperature-pressure correction factor. The effect of humidity, on the other hand, is generally ignored with the provision that the relative humidity is between certain limits (15% to 80%). However, there is little experimental data in the published literature as to the true effect of humidity on modern reference-class ion chambers. This investigation used two different radiation beams – a Co-60 irradiator and a Sr-90 check source – to examine the effect of humidity on severalmore » versions of the standard Farmer-type ion chamber. Methods: An environmental cabinet controlled the humidity. For the Co-60 beam, the irradiation was external, whereas for the Sr-90 measurements, the source itself was placed within the cabinet. Extensive measurements were carried out to ensure that the experimental setup provided reproducible readings. Four chamber types were investigated: IBA FC65-G (×2), IBA FC65-P, PTW30013 & Exradin A19. The different wall materials provided potentially different mechanical responses (i.e., in terms of expansion/contraction) to the water content in the air. The relative humidity was varied between 8 % and 97 % and measurements were made with increasing and decreasing humidity to investigate possible hysteresis effects. Results: Measurements in Co-60 were consistent with the published data obtained with primary standard cavity chambers in ICRU Report 31. Ionization currents with Sr-90 showed no dependence with the relative humidity, within the measurement uncertainties. Very good repeatability of the ionization current was obtained over successive wet/dry cycles, no hysteresis was observed, and there was no dependence on chamber type. Conclusion: This null result is very encouraging as it indicates that humidity has no significant effect on these particular types of ionization chambers, consistent with recommendations in current megavoltage dosimetry protocols.« less
Sbonias, Evangelos
2005-01-01
Due to the fact that the existing commercial analgesic drugs are not able to reduce effectively the pain caused by the metastatic bone disease, the use of radiopharmaceuticals with avidity to selectively localize in the metastatic skeletal sites, such as strondium-89 chloride (89Sr-Cl2), rhenium-186-hydroxy ethylene diphosphonate (186Re-HEDP), and samarium-153-ethylene diamine tetramethylene (153Sm-EDTMP), is widely accepted. However this medical application may be dangerous for the occupied personnel and more for general public, if radioactive waste is not properly disposed. In the following article we try to estimate the degree and the significance of that risk. For that reason we discuss the physical properties of these radionuclides and their distribution in the body of the patient. We conclude that 89Sr is not harmful for the physician, the attending personnel or those who live with the patient, because it radiates beta-radiation, while its gamma-radiation is negligeable. The radionuclides 186Re and 153Sm besides beta-radiation, also emit a perceptible amount of gamma-radiation. It has been shown that the exposure to gamma-radiation from these radionuclides of the physician, the attending personnel or those who live with the patient is very low as compared to the internationally accepted radioprotection limits. However the environmental contamination per treatment by either of these three radionuclides is not negligeable in comparison to the national and international accepted limits. Patients that are not in good clinical condition may pose an additional contamination danger to those attending them. For limiting radiocontamination, the annual number of treatments by the above three previous radionuclides, should be considered according to the ALARA principle in relation with the correct handling of these patients, and also considering the fundamentals of radioprotection.
NASA Astrophysics Data System (ADS)
Duke, G. I.; Carlson, R. W.; Eby, G. N.
2008-12-01
Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2 (sub-group of OIB). Published ages of crustal amphibolite xenoliths from the Prairie Creek lamproite are Proterozoic (~1.32- 1.47 Ga), in keeping with isotopic evidence for crustal assimilation, including Tdm = 1.3-1.7 Ga. Published ages of lamproite (~106 Ma) indicate that these magmas intruded first, whereas carbonatites and other alkalic magmas were later (~102 to ~89 Ma). Asthenospheric upwelling first melted lithospheric mantle and crust, producing lamproitic magmas; asthenospheric magmas followed as swelling of the lithosphere ensued.
Lagad, Rupali A; Singh, Sunil K; Rai, Vinai K
2017-02-15
The increasing demand for premium priced Indian Basmati rice (Oryza sativa) in world commodity market causing fraudulent activities like adulteration, mislabelling. In order to develop authentication method for Indian Basmati rice, (87)Sr/(86)Sr ratios and REEs composition of Basmati rice, soil and water samples were determined and evaluated their ability as geographical tracer in the present study. In addition, the possible source of Sr in rice plant has also been examined. Basmati rice samples (n=82) showed (87)Sr/(86)Sr ratios in the range 0.71143-0.73448 and concentrations of 10 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb) in ppb levels. Statistical analysis showed strong correlation between (87)Sr/(86)Sr ratios of rice, silicate and carbonate fractions of soil. Good correlation and closeness of (87)Sr/(86)Sr of rice with water indicate its uptake in rice from water. Rice grown in southern Uttar Pradesh contains higher (87)Sr/(86)Sr compared to other region of Indo-Gangetic Plain due to higher (87)Sr/(86)Sr of the Ganga compared to other rivers. (87)Sr/(86)Sr ratios can be used as a tracer for differentiating Indian Basmati rice from the other country originated rice samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamashita, M.; Yoshimura, M.
2018-04-01
Photosynthetic photon flux density (PPFD: µmol m-2 s-1) is indispensable for plant physiology processes in photosynthesis. However, PPFD is seldom measured, so that PPFD has been estimated by using solar radiation (SR: W m-2) measured in world wide. In method using SR, there are two steps: first to estimate photosynthetically active radiation (PAR: W m-2) by the fraction of PAR to SR (PF) and second: to convert PAR to PPFD using the ratio of quanta to energy (Q / E: µmol J-1). PF and Q/E usually have been used as the constant values, however, recent studies point out that PF and Q / E would not be constants under various sky conditions. In this study, we use the numeric data of sky-conditions factors such cloud cover, sun appearance/hiding and relative sky brightness derived from whole-sky image processing and examine the influences of sky-conditions factors on PF and Q / E of global and diffuse PAR. Furthermore, we discuss our results by comparing with the existing methods.
Pino-Ramos, Victor H.; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio
2017-01-01
Abstract A one-step method was implemented to graft N-vinylcaprolactam (NVCL) and 4-vinylpyridine (4VP) onto silicone rubber (SR) films using gamma radiation in order to endow the silicone surface with temperature- and pH-responsiveness, and give it the ability to host and release diclofenac in a controlled manner and thus prevent bacterial adhesion. The effects of radiation conditions (e.g., dose and monomers concentration) on the grafting percentage were evaluated, and the modified films were characterized by means of FTIR-ATR, Raman spectroscopy, calorimetry techniques (DSC and TGA) and contact angle measurements. The films responsiveness to stimuli was evaluated by recording the swelling degree of pristine and modified SR in buffer solutions (critical pH point) and as a function of changes in temperature (Upper Critical Solution Temperature, UCST). The graft copolymers of SR-g-(NVCL-co-4VP) showed good cytocompatibility against fibroblast cells for prolonged times, could host diclofenac and release it in a sustained manner for up to 24 h, and exhibited bacteriostatic activity when challenged against Escherichia coli. PMID:29491777
NASA Astrophysics Data System (ADS)
Martin, Michael C.; Holman, Hoi-Ying N.; Blakely, Eleanor A.; Goth-Goldstein, Regine; McKinney, Wayne R.
2000-03-01
Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR FTIR microscopy probes intact living cells providing a composite view of all of the molecular responses and the ability to monitor the responses over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low-doses of radiation and chemicals. In this study we used high spatial-resolution SR FTIR vibrational spectromicroscopy at ALS Beamline 1.4.3 as a sensitive analytical tool to detect chemical- and radiation-induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of oxidative stresses: bleomycin, hydrogen peroxide, and X-rays. We observe spectral changes that are unique to each exogenous stressor. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio-compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.
Fu, Jian; Li, Chen; Liu, Zhenzhong
2015-10-01
Synchrotron radiation nanoscale computed tomography (SR nano-CT) is a powerful analysis tool and can be used to perform chemical identification, mapping, or speciation of carbon and other elements together with X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. In practical applications, there are often challenges for SR nano-CT due to the misaligned geometry caused by the sample stage axial vibration. It occurs quite frequently because of experimental constraints from the mechanical error of manufacturing and assembly and the thermal expansion during the time-consuming scanning. The axial vibration will lead to the structure overlap among neighboring layers and degrade imaging results by imposing artifacts into the nano-CT images. It becomes worse for samples with complicated axial structure. In this work, we analyze the influence of axial vibration on nano-CT image by partial derivative. Then, an axial vibration calibration method for SR nano-CT is developed and investigated. It is based on the cross correlation of plane integral curves of the sample at different view angles. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission X-ray microscope nano-CT setup at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The results demonstrate that the presented method can handle the stage axial vibration. It can work for random axial vibration and needs neither calibration phantom nor additional calibration scanning. It will be helpful for the development and application of synchrotron radiation nano-CT systems.
[Treatment of keratitis superficialis chronica of the dog with strontium 90].
Höcht, Stefan; Grüning, Georg; Allgoewer, Ingrid; Nausner, Martin; Brunnberg, Leo; Hinkelbein, Wolfgang
2002-02-01
Corneal pannus is a disease which, if untreated, nearly always is progressive and may lead to blindness of the affected dog. A therapeutic standard is yet to be defined. Beta-ray irradiation with Sr-90 is often recommended on a casuistic basis, but systematic studies are sparse. The aim of the present study was to evaluate efficacy and to document side effects of radiotherapy with Sr-90. 17 animals were treated. 13 of them received treatment of 15 Gy surface dose twice within 2 days with additional medical therapy with ciclosporin and prednisolon. Only the more affected eye was treated with radiation which was applied with an eye-applicator, the other eye served as control. Four animals with already advanced impairment of vision received keratectomy, afterwards radiation was applied on both sides. Medical treatment alone led to deterioration in vascularization and spread of pigmentation in eleven of 13 (85%) of the control-eyes, density of pigmentation increased in eight of 13 (62%). After radiation therapy, almost all animals showed a marked initial improvement. Even if progressive disease occurred later on, further worsening as it happened in the control-eyes could be stopped in nine resp. ten of 13 eyes (69% and 77%). All animals with keratectomy and radiotherapy regained and preserved adequate vision. Besides short-term blepharospasm, no side effects were recorded. Corneal pannus is responsive to radiation therapy with Sr-90 and long-term benefit can be achieved. Side effects are minimal. Optimal sequencing of therapy and dosage still have to be examined.
Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen
2016-03-10
Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.
2014-10-01
This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca / Na, Mg / Na, and Sr / Na ratios, but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals, and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system, and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured bedrock depleted in 234U), implying (234U/238U) AR below 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the - over time - homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs, depending on the hydrological conditions. It appears that the (234U/238U) AR are a very appropriate, important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale, because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating hydrological conditions. This study further highlights the important impact of different and independent water pathways on fractured granite controlling the different geochemical and isotopic signatures of the waters. Despite the fact that soils and vegetation cover have a great influence on the water cycle balance (evapotranspiration, drainage, runoff), the chemical compositions of waters are strongly modified by processes occurring in deep saprolite and bedrock rather than in soils along the specific water pathways.
Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties
NASA Astrophysics Data System (ADS)
Meléndez-Ortiz, H. Iván; Alvarez-Lorenzo, Carmen; Burillo, Guillermina; Magariños, Beatriz; Concheiro, Angel; Bucio, Emilio
2015-05-01
Poly(N-vinylimidazole) (PVIm) was grafted numbers onto silicone rubber (SR) with the aim of providing antimicrobial properties. The grafting was carried out by means of gamma rays using the direct method. The influence on the grafting yield of absorbed dose, monomer concentration, addition of FeSO4 salt, composition and type of solvent (H2O, MeOH, THF, and acetone) was investigated. Grafts onto SR between 10% and 90% were obtained at doses from 20 to 100 kGy and a dose rate 10.9 kGy h-1; grafting yield increased with monomer concentration and dose. The new graft copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimeter (DSC) showed glass transition at 149 and 159 °C for 38% and 88% grafting respectively. Thermogravimetry analysis (TGA) presented two decomposition temperatures for SR-g-VIm at 380 (PVIm) and 440 °C (SR). SR-g-VIm showed antibacterial activity against Pseudomonas aeruginosa.
Growth and characterization of SrI2:Eu2+ single crystal for gamma ray detector applications
NASA Astrophysics Data System (ADS)
Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.
2018-04-01
Europium activated Strontium Iodide single crystal was grown by vertical Bridgman-stockbarger technique. The melting point and freezing point of SrI2:Eu2+ crystal was analyzed by TG/DTA. The Radioluminescence emission was recorded. The scintillation measurement was carried out for the grown SrI2:Eu2+ crystal under 137Cs gamma energy source.
Geochronology of archean gneisses in the Lake Helen area, Southwestern Big Horn Mountains, Wyoming
Arth, Joseph G.; Barker, F.; Stern, T.W.
1980-01-01
The RbSr and UPb methods were used to study gneisses in the 7 1 2-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite. A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ?? 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ?? 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ?? 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source. A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ?? 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ?? 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source. ?? 1980.
Gamma-ray blazars: the combined AGILE and MAGIC views
NASA Astrophysics Data System (ADS)
Persic, M.; De Angelis, A.; Longo, F.; Tavani, M.
The large FOV of the AGILE Gamma-Ray Imaging Detector (GRID), 2.5 sr, will allow the whole sky to be surveyed once every 10 days in the 30 MeV - 50 GeV energy band down to 0.05 Crab Units. This fact gives the opportunity of performing the first flux-limited, high-energy g-ray all-sky survey. The high Galactic latitude point-source population is expected to be largely dominated by blazars. Several tens of blazars are expected to be detected by AGILE (e.g., Costamante & Ghisellini 2002), about half of which accessible to the ground-based MAGIC Cherenkov telescope. The latter can then carry out pointed observations of this subset of AGILE sources in the 50GeV - 10TeV band. Given the comparable sensitivities of AGILE/GRID and MAGIC in adjacent energy bands where the emitted radiation is produced by the same (e.g., SSC) mechanism, we expect that most of these sources can be detected by MAGIC. We expect this broadband g-ray strategy to enable discovery by MAGIC of 10-15 previously unknown TeV blazars.
Ultrabright continuously tunable terahertz-wave generation at room temperature
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-01-01
The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269
Ultrabright continuously tunable terahertz-wave generation at room temperature.
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-06-05
The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.
Satellite probes plasma processes in earth orbit
NASA Technical Reports Server (NTRS)
Christensen, Andrew B.; Reasoner, David L.
1992-01-01
The mission of the DOD/NASA Combined Release and Radiation Effects Satellite (CRRES) is to deepen understanding of the earth's near-space environment, including the radiation belts and the ionosphere; this will help spacecraft designers protect against radiation-belt particles that affect onboard electronics, solar panel arrays, and crewmembers. Attention is presently given to CRRES's study of ionospheric plasma processes through releases of Ba, Ca, Sr, and Li at altitudes of 400-36,000 km.
NASA Astrophysics Data System (ADS)
Parker, Charles Walter
This work describes the design and implementation of a high-sensitivity telescope (HST) for in situ detection and energy analysis of energetic charged particles in the Earth's radiation belts from a near-equatorial orbit that will range over geocentric distances from ≈ 2--3.5 Earth radii as part of the US Air Force's Demonstrations and Science eXperiment (DSX) mission. The HST employs a two element silicon solid state detector telescope that has a geometrical factor of 0.1 cm2 sr with a 14° field-of-view centered on the on-orbit local magnetic field vector to detect ≈ 100 particles s-1 cm-2 sr-1 in the geomagnetic bounce loss cone. The pointing direction of the HST is guaranteed by the active attitude control subsystem of the spacecraft. A novel implementation of a knife-edged baffled collimator design restricts the field-of-view and provides a sharp cutoff (≈ 103) in the angular response to all particle species with energies from ≈ 40--800 keV. The HST detectors are shielded with 5g cm-2 of aluminum followed by 3.1 g cm-2 of tungsten in all non-look directions to reduce the background fluxes incident on the detectors through the orbit (>107 particles cm -2 s-1 for electrons and protons individually) to levels that will allow the detection of the target flux in the loss cone. The HST has been extensively characterized on the ground and is capable of analyzing the energies of particles over the range of 25--850 keV with an energy resolution of 3.7keV and a noise FWHM of 15keV. The calibration has been established using 241Am and 133Ba X-ray sources and verified using additional beta- and X-ray sources and the electron beams produced by the 2 MeV Van de Graaff accelerator at the NASA Goddard Spaceflight Center's Radiation Effects Facility. The instrument's calibration has been shown to vary by less than 2% over the operational temperature range of --20 to +35°C. Electromagnetic interference testing has proven that the HST is unaffected by strong VLF fields of peak amplitude 1.5 kV.
NASA Astrophysics Data System (ADS)
Aparicio, Alfredo; Tassinari, Colombo C. G.; García, Roberto; Araña, Vicente
2010-01-01
The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/ 86Sr (around 0.703) and 143Nd/ 144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/ 144Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ( 87Sr/ 86Sr and 143Nd/ 144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.
Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths
Wolff, Brian A.; Johnson, Brett M.; Breton, Andre R.; Martinez, Patrick J.; Winkelman, Dana L.; Gillanders, Bronwyn
2012-01-01
We examined strontium isotope ratios (87Sr/86Sr) in fish otoliths to determine the origins of invasive piscivores in the Upper Colorado River Basin (UCRB, western USA). We examined 87Sr/86Sr from fishes in different reservoirs, as well as the temporal stability and interspecies variability of 87Sr/86Sr of fishes within reservoirs, determined if 87Sr/86Sr would be useful for "fingerprinting" reservoirs where invasive piscivores may have been escaping into riverine habitat of endangered fishes in the UCRB, and looked for evidence that such movement was occurring. Our results showed that in most cases 87Sr/86Sr was unique among reservoirs, overlapped among species in a given reservoir, and was temporally stable across years. We identified the likely reservoir of origin of river-caught fish in some cases, and we were also able to determine the year of possible escapement. The approach allowed us to precisely describe the 87Sr/86Sr fingerprint of reservoir fishes, trace likely origins of immigrant river fish, and exclude potential sources, enabling managers to focus control efforts more efficiently. Our results demonstrate the potential utility of 87Sr/86Sr as a site-specific and temporally stable marker for reservoir fish and its promise for tracking fish movements of invasive fishes in river-reservoir systems.
Radionuclides in the Great Lakes basin.
Ahier, B A; Tracy, B L
1995-01-01
The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2 x 10(2). Although these are hypothetical risks, they show that the radiologic impact of man-made sources is very small compared to the effects of normal background radiation. PMID:8635444
Prospects for Management of Gastrointestinal Injury Associated with the Acute Radiation Syndrome
1988-08-01
Available Copy GASTROENTEMROLOGY 1988;95:500-7 ARM~p FORCES R A01i8ftOy AESEARCH iINSTITTE SCIENTIFIC REPORT SR88-21 Prospects for Management of...radiation, metthod of exposure the iuUcosal imnune response. If the Iormal fuic- (fractiotted or sinilh), technique of blood flow tioi of this systent is
Status of photoelectrochemical production of hydrogen and electrical energy
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Walker, G. H.
1976-01-01
The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.
NASA Astrophysics Data System (ADS)
Castillo, P. R.; Hilton, D. R.; Halldorsson, S. A.; Wang, R.
2012-12-01
The ultimate source of heat and magmatism associated with continental rifting in the East African Rift System (EARS) is generally viewed to be the African Superplume, but there is continuing debate on the surface expression of this large anomalous feature, which originates in the lower mantle. Previous studies have demonstrated an insignificant role for crustal contamination thereby identifying a single mantle plume signature in Quaternary basalts from the Main Ethiopian Rift in the northern EARS. This is designated to be the Afar plume and is characterized by, e.g., 3He/4He >15 RA, 206Pb/204Pb = 19.5 and 87Sr/86Sr = 0.7035 [Rooney et al., J. Pet. 53, 2012]. In contrast, the signature of plume(s) in the southern EARS is less constrained. Rogers et al. [EPSL 176, 2000] proposed a plume in the sub-lithospheric Kenyan mantle with characteristically lower 43Nd/144Nd than the Afar plume whereas Furman [JAES 48, 2007] advocated a high μ [HIMU] plume based primarily on the high 206Pb/204Pb ratios of lavas in all areas within and south of the Turkana Depression: both models assume a 3He/4He lower than the Afar plume. Here we report the trace element and Sr-Nd-Pb isotopic composition of basaltic lavas from the Rungwe Volcanic Province (RVP) in the southern extreme of the Western Rift previously identified as a high 3He/4He locality (~15 RA; [Hilton et al., GRL 38, 2011]). Trace element analyses are within the previously reported range of lava compositions that include a relatively large lithospheric component. More importantly, we identify correlations among incompatible trace element and isotopic ratios (e.g., 3He/4He vs 206Pb/204Pb, Rb/Sr, Nb/Ta; 87Sr/86Sr vs 208Pb/204Pb). Our new results suggest the presence of a distinct, high 3He/4He mantle source beneath RVP that is more radiogenic (e.g., 206Pb/204Pb up to ~19.8; 87Sr/86Sr up to 0.7055) than the Afar mantle plume. There is also very little or no HIMU signature in RPV basalts based on their high Sr and low Nd isotopic ratios.
NASA Astrophysics Data System (ADS)
Belli, R.; Borsato, A.; Frisia, S.; Drysdale, R.; Maas, R.; Greig, A.
2017-02-01
The trace element and Sr isotope records in two coeval stalagmites characterized by different growth rates and flow regimes at Savi cave (Grotta Savi, NE Italy) reveal different sources and incorporation mechanisms for Mg and Sr. Mg is sourced primarily from dissolved cave host rock while particulate Mg derived from soil plays a subordinate role. The presence of particulate-borne Mg is inferred from the co-variation of Mg and particle-associated elements (Th, Al and Mn) which are preferentially concentrated in open columnar calcite layers. Variation in Mg concentrations corrected for particle-influenced components, the Mgc parameter, is controlled by water-rock interaction, with higher and lower Mgc during dry and wet phases, respectively. This is thought to reflect incongruent dissolution of Mg-rich phases. Correction of Sr concentrations for contributions from airborne exogenic Sr, based on 87Sr/86Sr ratios, yields the bedrock-only contribution (Src). Src variation in stalagmite calcite is influenced by speleothem growth rate and by variation of the calcite-water Sr partitioning in wet and dry phases, and only to a minor extent by incongruent dissolution of Mg-rich phases. Concentration profiles for Mgc and Srcg (corrected for growth rate effects) show inverse correlations and are inferred to show hydrological significance which is captured in a hydrological index, HI. We suggest HI provides robust information on water-rock interaction related to hydrological changes and can be utilized in both wet and semi-arid environments, provided the corrections for soil Mg and exogenic Sr can be applied with confidence. Application of the HI index allows correction of Grotta Savi oxygen isotope data, to yield a δ18Oc time series that shows when changes in moisture sources and atmospheric reorganization, or changes in moisture amount, were significant. This is especially evident during the Younger Dryas (YD). The Savi record supports the concept of a two-phase YD, marked by an increase of moisture and stronger impact of Adriatic and Mediterranean Sea influences over the northern Adriatic region from 12.3 ka onwards. Then, a large-scale atmospheric reorganization and gradual northward shift of the Polar Front caused a progressive reduction of sea influence over the region from 12.1 ka, supporting the concept of a hemispheric change.
Meneses, Anderson Alvarenga de Moura; Palheta, Dayara Bastos; Pinheiro, Christiano Jorge Gomes; Barroso, Regina Cely Rodrigues
2018-03-01
X-ray Synchrotron Radiation Micro-Computed Tomography (SR-µCT) allows a better visualization in three dimensions with a higher spatial resolution, contributing for the discovery of aspects that could not be observable through conventional radiography. The automatic segmentation of SR-µCT scans is highly valuable due to its innumerous applications in geological sciences, especially for morphology, typology, and characterization of rocks. For a great number of µCT scan slices, a manual process of segmentation would be impractical, either for the time expended and for the accuracy of results. Aiming the automatic segmentation of SR-µCT geological sample images, we applied and compared Energy Minimization via Graph Cuts (GC) algorithms and Artificial Neural Networks (ANNs), as well as the well-known K-means and Fuzzy C-Means algorithms. The Dice Similarity Coefficient (DSC), Sensitivity and Precision were the metrics used for comparison. Kruskal-Wallis and Dunn's tests were applied and the best methods were the GC algorithms and ANNs (with Levenberg-Marquardt and Bayesian Regularization). For those algorithms, an approximate Dice Similarity Coefficient of 95% was achieved. Our results confirm the possibility of usage of those algorithms for segmentation and posterior quantification of porosity of an igneous rock sample SR-µCT scan. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estimating solar radiation using NOAA/AVHRR and ground measurement data
NASA Astrophysics Data System (ADS)
Fallahi, Somayeh; Amanollahi, Jamil; Tzanis, Chris G.; Ramli, Mohammad Firuz
2018-01-01
Solar radiation (SR) data are commonly used in different areas of renewable energy research. Researchers are often compelled to predict SR at ground stations for areas with no proper equipment. The objective of this study was to test the accuracy of the artificial neural network (ANN) and multiple linear regression (MLR) models for estimating monthly average SR over Kurdistan Province, Iran. Input data of the models were two data series with similar longitude, latitude, altitude, and month (number of months) data, but there were differences between the monthly mean temperatures in the first data series obtained from AVHRR sensor of NOAA satellite (DS1) and in the second data series measured at ground stations (DS2). In order to retrieve land surface temperature (LST) from AVHRR sensor, emissivity of the area was considered and for that purpose normalized vegetation difference index (NDVI) calculated from channels 1 and 2 of AVHRR sensor was utilized. The acquired results showed that the ANN model with DS1 data input with R2 = 0.96, RMSE = 1.04, MAE = 1.1 in the training phase and R2 = 0.96, RMSE = 1.06, MAE = 1.15 in the testing phase achieved more satisfactory performance compared with MLR model. It can be concluded that ANN model with remote sensing data has the potential to predict SR in locations with no ground measurement stations.
Development and evaluation of geochemical methods for the sourcing of archaeological maize
Benson, L.V.; Taylor, Howard E.; Peterson, K.A.; Shattuck, B.D.; Ramotnik, C.A.; Stein, J.R.
2008-01-01
Strontium (Sr)-isotope values on bone from deer mice pairs from 12 field sites in the Chaco Canyon area, New Mexico, were compared with isotope values of synthetic soil waters from the same fields. The data indicate that mice obtain Sr from near-surface sources and that soil samples collected at depths ranging from 25 to 95 cm contain Sr that is more accessible to the deep roots of maize; thus, synthetic soil solutions provide better data for the sourcing of archaeological maize. However, the Sr-isotope composition of mice may be more valuable in sourcing archaeological remains of animals such as rabbit, turkey, and deer. In a separate study, five Native American maize (Zea mays L. ssp. mays) accessions grown out at New Mexico State University Agricultural Science Center, Farmington, New Mexico were used to determine if soil-water metal pairs partition systematically into cobs and kernels. The sampled maize included landraces from three Native American groups (Acoma, Hopi, Zuni) that still occupy the Four Corners area. Two cobs each were picked from 10 plants of each landrace. Partitioning of the Ba/Mn, Ba/Sr, Ca/Sr, and K/Rb metal pairs from the soil water to the cob appears to behave in a systematic fashion. In addition, 51 rare earth element (REE) pairs also appear to systematically partition from the soil water into cobs; however, the ratios of the REE dissolved in the soil waters are relatively invariant; therefore, the distribution coefficients that describe the partitioning of REE from the soil water to the cob may not apply to archeological cobs grown under chemically heterogeneous conditions. Partitioning of Ba/Rb, Ba/Sr, Mg/P, and Mn/P metal pairs from the soil water to kernels also behaves in a systematic fashion. Given that modern Native American landraces were grown under optimal environmental conditions that may not have been duplicated by prehistoric Native Americans, the distribution coefficients obtained in this study should be used with caution. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M., Jr.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.; Shurygin, A. S.
2016-01-01
The 280 picosecond 2nd Stokes Raman pulses at 1.3 μm were generated directly from the miniature diode-pumped Nd:SrMoO4 self-Raman laser. Using the 90° phase matching insensitive to the angular mismatch, the self-Raman laser allowed for the achievement of the four-wave-mixing generation of the 2nd Stokes Raman pulse directly in the active Nd:SrMoO4 crystal at stimulated Raman scattering (SRS) self-conversion of the laser radiation. The passive Cr:YAG Q-switching and nonlinear cavity dumping was used without any phase locking device.
NASA Astrophysics Data System (ADS)
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
NASA Astrophysics Data System (ADS)
Phedorin, M. A.; Bobrov, V. A.; Goldberg, E. L.; Navez, J.; Zolotaryov, K. V.; Grachev, M. A.
2000-06-01
Sediments of Lake Baikal obtained on top of the underwater Akademichesky Ridge for reconstruction of the palaeoclimates of Holocene and Upper Pleistocene were subjected to elemental analysis with three methods: (i) synchrotron radiation X-ray fluorescent analysis (SR-XFA); (ii) instrumental neutron activation analysis (INAA); (iii) induction-coupled plasma mass-spectrometry (ICP-MS). Comparison of the results obtained is accompanied by statistical tests and shows that, due to its high sensitivity, simplicity, and non-destructive nature, SR-XFA can be recommended as a method of choice in the search of geochemical signals of changing palaeoclimates.
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.
Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E
1997-04-01
In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.
NASA Astrophysics Data System (ADS)
Basiev, Tasoltan T.; Smetanin, Sergei N.; Fedin, Aleksandr V.; Shurygin, Anton S.
2010-10-01
Lasing of a miniature all-solid-state SRS laser based on a Nd3+:SrMoO4 crystal with a LiF:F2--passive Q-switch is studied. The dependences of the laser and SRS self-conversion parameters on the initial transmission of the passive Q-switch are studied experimentally and theoretically. Simulation of the lasing kinetics has shown the possibility of nonlinear cavity dumping upon highly efficient SRS self-conversion of laser radiation. An increase in the active medium length from 1 to 3mm resulted in an increase in the energy of the output 1.17-μm SRS radiation from 20 μJ to record-high 60 μJ at the absorbed multimode diode pump energy of 3.7 mJ.
NASA Astrophysics Data System (ADS)
Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi
2018-03-01
Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.
Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun
2016-06-01
Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings.
Preparation, characterization and photocatalytic activities of TiO2-SrTiO3 composites
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhu, Lianjie; Gao, Fubo; Xie, Hanjie
2017-01-01
Series of TiO2-SrTiO3 composites were synthesized by hydrothermal method, using TiO2 nanotube array as a precursor and Sr(OH)2 as a Sr source material. TiO2-SrTiO3 products with various composition were obtained by simply changing the reaction time. The as-synthesized products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were studied by means of UV-Vis absorption spectroscopy and photoluminescence (PL) spectra. Their photocatalytic activities were assessed by photodegradation of rhodamine B (RhB) solution and the photocatalytic reaction mechanism was discussed. The TiO2-SrTiO3 composites obtained at 2 h exhibits the highest activity for photodegradation of RhB.
NASA Astrophysics Data System (ADS)
Mekkaoui, Abderrahmane; Remaci-Bénaouda, Nacéra; Graïne-Tazerout, Khadidja
2017-09-01
New petrological, geochemical and Sr-Nd isotopic data of the Late Triassic and Early Jurassic Kahel Tabelbala (KT) mafic dikes (south-western Algeria) offer a unique opportunity to examine the nature of their mantle sources and their geodynamic significance. An alkaline potassic Group 1 of basaltic dikes displaying relatively high MgO, TiO2, Cr and Ni, La/YbN ∼ 15, coupled with low 87Sr/86Sri ∼ 0.7037 and relatively high ɛNd(t) ∼ +3, indicates minor olivine and clinopyroxene fractionation and the existence of a depleted mantle OIB source. Their parental magma was generated from partial melting in the garnet-lherzolite stability field. A tholeiitic Group 2 of doleritic dikes displaying low MgO, Cr and Ni contents, La/YbN ∼ 5, positive Ba, Sr and Pb anomalies, the absence of a negative Nb anomaly coupled with moderate 87Sr/86Sri ∼ 0.7044 and low ɛNd(t) ∼ 0 (BSE-like), indicates a contamination of a mantle-derived magma that experienced crystal fractionation of plagioclase and clinopyroxene. This second group, similar to the low-Ti tholeiitic basalts of the Central Atlantic Magmatic Province (CAMP), was derived from partial melting in the peridotite source within the spinel stability field. Lower Mesozoic continental rifting could have been initiated by a heterogeneous mantle plume that supplied source components beneath Daoura, in the Ougarta Range.
Sr and Nd Data for Upper Eocene Spherule Layers
NASA Technical Reports Server (NTRS)
Liu, Shaobin; Glass, B. P.; Ngo, H. H.; Papanastassiou, D. A.; Wasserburg, G. J.
2001-01-01
Sr and Nd data for clinopyroxene-bearing (cpx) spherules from three sites support conclusions that there is only one cpx spherule layer and that the source crater may be Popigai. Additional information is contained in the original extended abstract.
Misawa, K.; Tatsumoto, M.; Dalrymple, G.B.; Yanai, K.
1993-01-01
We have undertaken UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic studies on Asuka 881757, a coarse-grained basaltic lunar meteorite whose chemical composition is close to low-Ti and very low-Ti (VLT) mare basalts. The PbPb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ?? 28 Ma, which is similar to the U-Pb (3850 ?? 150 Ma) and Th-Pb (3820 ?? 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ?? 57 Ma and an initial 143Nd 144Nd value of 0.50797 ?? 10. The Rb-Sr data yield an internal isochron age of 3840 ?? 32 Ma (??(87Rb) = 1.42 ?? 10-11 yr-1) and a low initial 87Sr 86Sr ratio of 0.69910 ?? 2. The 40Ar 39Ar age spectra for a glass fragment and a maskelynitized plagioclase are relatively flat and give a weighted mean plateau age of 3798 ?? 12 Ma. We interpret these ages to indicate that the basalt crystallized from a melt 3.87 Ga ago (the Sm-Nd age) and an impact event disturbed the Rb-Sr system and completely reset the K-Ar system at 3.80 Ga. The slightly higher Pb-Pb age compared to the Sm-Nd age could be due to the secondary Pb (from terrestrial and/or lunar surface Pb contamination) that remained in the residues after acid leaching. Alternatively, the following interpretation is also possible; the meteorite crystallized at 3.94 Ga (the Pb-Pb age) and the Sm-Nd, Rb-Sr, and K-Ar systems were disturbed by an impact event at 3.80 Ga. The crystallization age obtained here is older than those reported for low-Ti basalts (3.2-3.5 Ga) and for VLT basalts (3.4 Ga), but similar to ages of some mare basalts, indicating that the basalt may have formed from a magma related to a basin-forming event (Imbrium?). The age span for VLT basalts from different sampling sites suggest that they were erupted over a wide area during an interval of at least ~500 million years. The impact event that thermally reset the K-Ar system of Asuka 881757 must have been post-Imbrium (perhaps Orientale) in age. The lead isotopic composition of Asuka 881757 is nonradiogenic compared with typical Apollo mare basalts and the estimated 238U 204Pb (??) value for the basalt source is 10 ?? 3. This source-?? value is the lowest so far measured for lunar rocks. A large positive ??{lunate}Nd value (7.4 ?? 0.5) and the time averaged 147Sm 144Nd ratio for the basalt source are similar to those for some Apollo 12, 15, and 17 basalts, suggesting a LREE-depleted mantle, which is consistent with the global magma ocean hypothesis. The U-Th-Pb, Sm-Nd, and Rb-Sr data on Asuka 881757 suggest that the basalt was derived from a low U Pb, low Rb Sr, and high Sm Nd source region, mainly composed of olivine and orthopyroxene with minor amounts of plagioclase (or clinopyroxene) and with sulfides enriched in volatile chalcophile elements. The basalt source may be deep in origin and different in chemistry from those previously estimated from studies of Apollo and Luna mare basalts, indicating heterogeneous sources for mare basalts. ?? 1993.
Role of oxygen vacancies on light emission mechanisms in SrTiO3 induced by high-energy particles
NASA Astrophysics Data System (ADS)
Crespillo, M. L.; Graham, J. T.; Agulló-López, F.; Zhang, Y.; Weber, W. J.
2017-04-01
Light emission under MeV hydrogen and oxygen ions in stoichiometric SrTiO3 are identified at temperatures of 100 K, 170 K and room-temperature. MeV ions predominately deposit their energies to electrons in SrTiO3 with energy densities orders of magnitude higher than from UV or x-ray sources but comparable to femtosecond lasers. The ionoluminescence (IL) spectra can be resolved into three main Gaussian bands at 2.0 eV, 2.5 eV and 2.8 eV, whose relative contributions strongly depend on irradiation temperature, electronic energy loss and irradiation fluence. Two main bands, observed at 2.5 eV and 2.8 eV, are intrinsic and associated with electron-hole recombination in the perfect SrTiO3 lattice. The 2.8 eV band is attributed to recombination of free (conduction) electrons with an in-gap level, possibly related to self-trapped holes. Self-trapped excitons (STEs) are considered suitable candidates for the 2.5 eV emission band, which implies a large energy relaxation in comparison to the intrinsic edge transition. The dynamics of electronic excitation, governs a rapid initial rise of the intensity; whereas, accumulated irradiation damage (competing non-radiative recombination channels) accounts for a subsequent intensity decrease. The previously invoked role of isolated oxygen vacancies for the blue luminescence (2.8 eV) does not appear consistent with the data. An increasing well-resolved band at 2.0 eV dominates at 170 K and below. It has been only previously observed in heavily strained and amorphous SrTiO3, and is, here, attributed to transitions from d(t 2g) conduction band levels to d(e g) levels below the gap. In accordance with ab initio theoretical calculations they are associated to trapped electron states in relaxed Ti3+ centers at an oxygen vacancy within distorted TiO6 octahedra. The mechanism of defect evolution monitored during real-time IL experiments is presented. In conclusion, the light emission data confirm that IL is a useful tool to investigate lattice disorder in irradiated SrTiO3.
Role of oxygen vacancies on light emission mechanisms in SrTiO 3 induced by high-energy particles
Crespillo, M. L.; Graham, J. T.; Agulló-López, F.; ...
2017-02-23
Light emission under MeV hydrogen and oxygen ions in stoichiometric SrTiO 3 are identified at temperatures of 100 K, 170 K and room-temperature. MeV ions predominately deposit their energies to electrons in SrTiO 3 with energy densities orders of magnitude higher than from UV or x-ray sources but comparable to femtosecond lasers. The ionoluminescence (IL) spectra can be resolved into three main Gaussian bands at 2.0 eV, 2.5 eV and 2.8 eV, whose relative contributions strongly depend on irradiation temperature, electronic energy loss and irradiation fluence. Two main bands, observed at 2.5 eV and 2.8 eV, are intrinsic and associatedmore » with electron–hole recombination in the perfect SrTiO 3 lattice. The 2.8 eV band is attributed to recombination of free (conduction) electrons with an in-gap level, possibly related to self-trapped holes. Self-trapped excitons (STEs) are considered suitable candidates for the 2.5 eV emission band, which implies a large energy relaxation in comparison to the intrinsic edge transition. The dynamics of electronic excitation, governs a rapid initial rise of the intensity; whereas, accumulated irradiation damage (competing non-radiative recombination channels) accounts for a subsequent intensity decrease. The previously invoked role of isolated oxygen vacancies for the blue luminescence (2.8 eV) does not appear consistent with the data. An increasing well-resolved band at 2.0 eV dominates at 170 K and below. It has been only previously observed in heavily strained and amorphous SrTiO 3, and is, here, attributed to transitions from d(t 2g) conduction band levels to d(e g) levels below the gap. In accordance with ab initio theoretical calculations they are associated to trapped electron states in relaxed Ti 3+ centers at an oxygen vacancy within distorted TiO 6 octahedra. The mechanism of defect evolution monitored during real-time IL experiments is presented. In conclusion, the light emission data confirm that IL is a useful tool to investigate lattice disorder in irradiated SrTiO 3.« less
Ramifications of codoping SrI2:Eu with isovalent and aliovalent impurities
NASA Astrophysics Data System (ADS)
Feng, Qingguo; Biswas, Koushik
2016-12-01
Eu2+ doped SrI2 is an important scintillator having applications in the field of radiation detection. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach, we report on the properties of SrI2:Eu and the influence of codoping with aliovalent (Na, Cs) and isovalent (Mg, Ca, Ba, and Sn) impurities. These codopants do not preferably bind with Eu and are expected to remain as isolated impurities in the SrI2 host. As isolated defects they display amphoteric behavior having, in most cases, significant ionization energies of the donor and acceptor levels. Furthermore, the acceptor states of Na, Cs, and Mg can bind with I-vacancy forming charge compensated donor-acceptor pairs. Such pairs may also bind additional holes or electrons similar to the isolated defects. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed.
A comparative study of photoconductivity in LaTiO3/SrTiO3 and LaAlO3/SrTiO3 2-DEG heterostructures
NASA Astrophysics Data System (ADS)
Rastogi, A.; Hossain, Z.; Budhani, R. C.
2013-02-01
Here we compare the growth temperature dependence of the response of LaTiO3/SrTiO3 and LaAlO3/SrTiO3 2D-electron gas (2-DEG) field effect structure to the optical radiation of near ultraviolet frequency and electrostatic gate field. For both the films the resistance of the channel increases significantly as growth temperature is lowered from 800 to 700 °C. These heterostructures show the photoconductivity (PC) simulated by UV light of λ ≤ 400 nm. The PC follows the stretched exponential dynamics. It is found that photo-response of the LaTiO3 films is prominent and has larger decay time constant as compare to LaAlO3 films. The effect of electric field on the photo-induced conducting state is also studied.
An experimental setup for study direct charge battery based on Sr-90
NASA Astrophysics Data System (ADS)
Özkeçeci, S.; Koç, R.
2017-02-01
In this paper we present construction and analysis of nuclear micro battery driven by Strontium 90 (Sr-90). Our design based on charge deposition on the plates of a capacitor and polarization of dielectric materials between the plates. In the construction we have used liquid Sr-90 with activity 100 mCi in cylindrical ampoule coiled up by thin film graphene as one plate and Manganase dioxide (MnO2) as other plate of the capacitor. A dielectric material (paper) is inserted between the plates. The high energetic beta particles from the Sr-90 penetrate graphene to produce ionization and then electrons are removed from graphene to dielectric material. Electrons inside the dielectric material cause polarization of dipoles. Consequently the radiation from the isotope produces an external current. We discuss effect of beta particles on dielectrics and electrodes beside advantage and disadvantage of a battery of this type.
NASA Astrophysics Data System (ADS)
Oeser, Ralf; Schuessler, Jan A.; Floor, Geerke H.; von Blanckenburg, Friedhelm
2017-04-01
The rate and degree of rock weathering controls the release, distribution, and cycling of mineral nutrients at the Earth's surface, being essential for developing and sustaining of ecosystems. Climate plays an important role as water flow and temperature determine both the biological community and activity, and also set the speed of weathering. Because of this double control by climate, the impact of biological activity on rock weathering and the feedbacks between the geosphere and the biosphere under different climatic conditions are not well understood. We explore the impact of biota on rock weathering in the four EarthShape primary study areas which are situated along the Chilean Coastal Range, featuring an outstanding vegetation gradient controlled by climate, ranging over 2000 km from hyper-arid, to temperate, to humid conditions. The study sites are within 80 km of the Pacific coast and are located in granitic lithology. Moreover, the sites were unglaciated during the last glacial maximum. However, as substrates get depleted in mineral nutrients, ecosystems are increasingly nourished by atmospheric inputs, sources, such as solutes contained in rain, dust, and volcanic ash. We aim to quantify the primary nutrient inputs to the ecosystem from these different potential sources. Radiogenic strontium (Sr) isotope ratios are a powerful tool to trace chemical weathering, soil formation, as well as cation provenance and mobility [1]. We determined 87Sr/86Sr ratios on bulk bedrock, saprolite, and soil and performed sequential extractions of the the easily bioavailable soil phases up to 2 m depth on two soil depth profiles in each of the four study sites. Our first results from the La Campana study site indicate that the radiogenic Sr isotope ratios of saprolite samples decrease from 0.70571 (n = 4) at the base of the profile to lower values of 0.70520 (n = 4) at the top of the immobile saprolite, indicating increasing biotite weathering. 87Sr/86Sr increases in the mobile soil layer to 0.70571 (n = 25). We find that atmospheric sources (87Sr/86Srseawater = 0.709234; [2]) contribute about 13 % of Sr to the soil and are a minor but not negligible fraction in comparison to weathering supply from saprolite. Furthermore, the 87Sr/86Sr ratios determined for saprolite samples are in good agreement with the values reported for the local Illapel Plutonic Complex [3]. Hence, the top-soil atmospheric inputs are potentially influencing the plant's strategies of nutrient uplift, ultimately controlled by the plants' nutrient demand as a function of climate. [1] Capo, R. C., Stewart, B. W., and Chadwick, O. A., 1998, Strontium isotopes as tracers of ecosystem processes: theory and methods: Geoderma, v. 82, no. 1-3, p. 197-225. [2] DePaolo, D. J., and Ingram, B. L., 1985, High-resolution stratigraphy with strontium isotopes: Science, v. 227, no. 4689, p. 938-941. [3] Parada, M. A., Nyström, J. O., and Levi, B., 1999, Multiple sources for the Coastal Batholith of central Chile (31-34˚ S): geochemical and Sr-Nd isotopic evidence and tectonic implications: Lithos, v. 46, no. 3, p. 505-521.
Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.
1992-01-01
The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host basalts. The EMII mantle domain may be present in the Chinese continental lithosphere just above the EMI domain of the basalt source at the lower part of the lithosphere. We argue that the ancient depleted continental lithosphere was metasomatized, imparting the EMI signature, in earlier times ( > 1000 m.y.), and U migrated upward, resulting in high Th U ratios in the lower portion of the lithosphere. Observed high Th U, Rb Sr, 87Sr 86Sr and ??208, low Sm Nd ratios, and a large negative ??Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga, support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component. We also suggest that the EMII signature may have been introduced later (less than ??? 500 Ma) by another metasomatic event during the subduction of an oceanic plate, which was partially responsible for some of the observed inter-mineral isotopic disequilibria. ?? 1992.
Fallout strontium-90 and cesium-137 in northern Alaskan ecosystems during 1959--1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Wayne C.
1973-05-01
Cycling routes, rates of transport, and resultant concentrations of the fallout radionuclides 90Sr and 137Cs in northern Alaskan ecosystems were defined during the period 1959 to 1970. Radiochemical analysis of extensive samples of biota and whole-body counting of 137Cs in Eskimo and Indian ethnic groups were related to ecological principles, especially the concept of trophic niche, which elucidated the observed patterns of radionuclide concentrations. Experiments involving Sr and Cs radioisotopes applied to natural Cladonia-- Cetraria lichen carpets yielded effective half-times of 1.O to 1.6 years for Sr and more than 10 years for Cs. Direct and indirect estimates of 131Csmore » half-times in Eskimos on a caribou meat diet were made by dietary manipulation and by relating dietary 137Cs intake and resultant change between periodic whole body counts. Effective half- times of 70 days for adults (more than 21 years old) and minors (14 to 20 years old) and of 45 days for children (less than 14 years old) were found. Suitable mathematical models were used to compute lichen forage ingestion rates of free- ranging adult caribou (4.5 to 5.0 kg dry weight per day), caribou meat ingestion rates of Anaktuvuk Pass residents (up to 2 kg wet weight per day for men), and 90Sr body burdens of Anaktuvuk Pass residents during the period 1952 to 1968 (maximum value of 8 nCi in adult males during late 1966 to early 1967). Special emphasis was made of cultural influences upon the food-gathering patterns of the native peoples studied. Culture change, especially in the form of food stamps, welfare payments, acquisition of snowmobiles, and improved housing was documented throughout the study and noticeably reduced the radionuclide accumulations. Total radiation dose rates to the Anaktuvuk Pass adult population were estimated to be about 100 mrad/year from natural sources, 60 to 140 mrad/year from 137Cs body burdens, and 20 to 130 mrad/year from 90Sr body burdens.« less
NASA Astrophysics Data System (ADS)
Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.
2011-12-01
The study of magmatism in the Trans-Mexican Volcanic Belt (TMVB) has great importance due to several features such as its obliquity with respect to the Middle American Trench and its petrological and geochemical variability, which are not common in most typical volcanic arcs. Although several papers have contributed significantly to the understanding of most important magmatic processes in this province, there are still several questions such as the characterization of magmatic sources. In the present work, we provide new stratigraphic, petrographic, geochemical and Sr, Nd and Pb isotopic data as well as some K-Ar age determinations from the Xihuingo-Chichicuautla volcanic field (XCVF), located at the eastern part of the TMVB, with the aim to identify the magmatic sources that produced the main volcanic rocks. The volcanic structures in the XCVF are divided in two main groups according to the petrographic and geochemical compositions: 1) dacitic domes, andesitic lava flows and some dacitic-rhyolitic ignimbrites and 2) scoria cones, shield volcanoes and associated lava flows of basalt to basaltic-andesite composition. Distribution of most volcanic structures is probably controlled by NE-SW fault and fractures system. This fault system was studied by other authors who established that volcanic activity started ca. 13.5 Ma ago, followed by a volcanic hiatus of ca. 10 Ma, and the late volcanic activity began ca. 3 to 1 Ma. In this work we dated 2 rock samples by K-Ar method, which yielded ages of 402 and 871 Ka, which correspond to the most recent volcanic activity in this study area. The volcanic rocks of the XCVF display compositions from basalts to rhyolites but in general all rocks show trace element patterns typical of magmatic arcs. However, we can identify two main magmatic sources: a depleted magmatic source represented by dacitic-andesitic rocks which present a LILE enrichment with respect to HFSE indicating that a magmatic source was modified by fluids derived from the subduction processes. These magmas probably suffered fractional crystallization and minor assimilation in the continental crust. Sr, Nd isotopic compositions for this first group display the most radiogenic values (87Sr/86Sr from 0.7046 to 0.7047 and ɛNd from 2.2 to 2.8). The second source for the basaltic-andesite and basalt could be associated with an enriched mantle. These rocks present a minor LILE enrichment with respect to HSFE, and Sr and Nd isotopic values less radiogenic than the felsic rocks of the first group (87Sr/86Sr from 0.7040 to 0.7045 and ɛNd from 3.1 to 4.8). According to these evidences we can establish that the magmas emplaced in the study area were produced from a heterogeneous mantle source with complex magmatic processes combined with different interaction degrees between the magmas and continental crust.
Development status of EUV sources for use in beta-tools and high-volume chip manufacturing tools
NASA Astrophysics Data System (ADS)
Stamm, U.; Kleinschmidt, J.; Bolshukhin, D.; Brudermann, J.; Hergenhan, G.; Korobotchko, V.; Nikolaus, B.; Schürmann, M. C.; Schriever, G.; Ziener, C.; Borisov, V. M.
2006-03-01
In the paper we give an update about the development status of gas discharge produced plasma (GDPP) EUV sources at XTREME technologies. Already in 2003 first commercial prototypes of xenon GDPP sources of the type XTS 13-35 based on the Z-pinch with 35 W power in 2π sr have been delivered and integrated into micro-exposure tools from Exitech, UK. The micro-exposure tools with these sources have been installed in industry in 2004. The first tool has made more than 100 million pulses without visible degradation of the source collector optics. For the next generation of full-field exposure tools (we call it Beta-tools) we develop GDPP sources with power of > 10 W in intermediate focus. Also these sources use xenon as fuel which has the advantage of not introducing additional contaminations. Here we describe basic performance of these sources as well as aspects of collector integration and debris mitigation and optics lifetime. To achieve source performance data required for high volume chip manufacturing we consider tin as fuel for the source because of its higher conversion efficiency compared to xenon. While we had earlier reported an output power of 400 W in 2π sr from a tin source we could reach meanwhile 800 W in 2π sr from the source in burst operation. Provided a high power collector is available with a realistic collector module efficiency of between 9% and 15 % these data would support 70-120 W power in intermediate focus. However, we do not expect that the required duty cycle and the required electrode lifetimes can be met with this standing electrode design Z-pinch approach. To overcome lifetime and duty cycle limitations we have investigated GDPP sources with tin fuel and rotating disk electrodes. Currently we can generate more than 200 W in 2π sr with these sources at 4 kHz repetition rate. To achieve 180 W power in intermediate focus which is the recent requirement of some exposure tool manufacturers this type of source needs to operate at 21-28 kHz repetition rate which may be not possible by various reasons. In order to make operation at reasonable repetition rates with sufficient power possible we have investigated various new excitation concepts of the rotating disk electrode configurations. With one of the concepts pulse energies above 170 mJ in 2π sr could be demonstrated. This approach promises to support 180 W intermediate focus power at repetition rates in the range between 7 and 10 kHz. It will be developed to the next power level in the following phase of XTREME technologies' high volume manufacturing source development program.
NASA Astrophysics Data System (ADS)
Martin, E. E.; Pugh, E.; Kamenov, G. D.; MacLeod, K. G.
2014-12-01
Seawater Nd isotopes from fossil fish teeth in Campanian to Paleogene calcareous claystone on Demerara Rise in the tropical North Atlantic record a change from epsilon Nd values of -17 to -11 during the late Maastrichtian. This shift has been identified in three different Ocean Drilling Program (ODP) sites that span from 600 to 1500 m paleodepths (ODP sites 1259, 1260 and 1261) and has been interpreted as a transition from a warm saline intermediate water mass formed on the South American margin, referred to as Demerara Bottom Water, to a source from the North Atlantic. A study of corresponding detrital Sr, Nd and Pb isotopes was undertaken to confirm the isotopic values derived from fish teeth record water mass compositions rather than diagenesis or boundary exchange. Several leaching procedures designed to remove Fe-Mn oxide coatings and the seawater signature they carry from the detrital fractions were tested. Sr isotopic data indicate a 0.02 M hydroxylamine hydrochloride (HH) leach was ineffective at removing the Fe-Mn oxides whereas a 1.0 M HH leach produced detrital Sr isotopic values that were consistent for all three sites and plotted farther from the seawater value. Detrital isotopic results can be divided into three intervals: 1) 73 - 66 Ma, when DBW is present, 2) 66 - 61 Ma, during the transition to North Atlantic sources, and 3) <61 Ma, when North Atlantic sources appear to dominate. During interval 1, detrital Nd isotopes increase gradually, while Sr and Pb isotopic ratios are relatively constant. Leading into interval 2, detrital Nd isotopes are fairly constant while there is a stepwise increase in Sr and Pb isotopes. Leading into interval 3, there is a large increase in Nd and decrease in Sr isotopes and a slight decrease in Pb isotopes. The subtle differences in the timing of changes in fish teeth and detrital Nd isotopes suggest the seawater signal is responding to changes in water mass rather than changes in sediment composition (boundary exchange). The timing of the changes in detrital inputs indicates changes in provenance may correlate with the rearrangement of the currents transporting sediment to the region associated with the transition from a water mass sourced from the tropics to a more northern source.
Isotopic imprints of mountaintop mining contaminants.
Vengosh, Avner; Lindberg, T Ty; Merola, Brittany R; Ruhl, Laura; Warner, Nathaniel R; White, Alissa; Dwyer, Gary S; Di Giulio, Richard T
2013-09-03
Mountaintop mining (MTM) is the primary procedure for surface coal exploration within the central Appalachian region of the eastern United States, and it is known to contaminate streams in local watersheds. In this study, we measured the chemical and isotopic compositions of water samples from MTM-impacted tributaries and streams in the Mud River watershed in West Virginia. We systematically document the isotopic compositions of three major constituents: sulfur isotopes in sulfate (δ(34)SSO4), carbon isotopes in dissolved inorganic carbon (δ(13)CDIC), and strontium isotopes ((87)Sr/(86)Sr). The data show that δ(34)SSO4, δ(13)CDIC, Sr/Ca, and (87)Sr/(86)Sr measured in saline- and selenium-rich MTM impacted tributaries are distinguishable from those of the surface water upstream of mining impacts. These tracers can therefore be used to delineate and quantify the impact of MTM in watersheds. High Sr/Ca and low (87)Sr/(86)Sr characterize tributaries that originated from active MTM areas, while tributaries from reclaimed MTM areas had low Sr/Ca and high (87)Sr/(86)Sr. Leaching experiments of rocks from the watershed show that pyrite oxidation and carbonate dissolution control the solute chemistry with distinct (87)Sr/(86)Sr ratios characterizing different rock sources. We propose that MTM operations that access the deeper Kanawha Formation generate residual mined rocks in valley fills from which effluents with distinctive (87)Sr/(86)Sr and Sr/Ca imprints affect the quality of the Appalachian watersheds.
An overview on the research of Sr2IrO4-based system probed by X-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Cheng, Jie; Zhu, Chaomin; Ma, Jingyuan; Wang, Yu; Liu, Shengli
2018-03-01
Investigations of materials with 5d transition metal ions have opened up new paradigms in condensed-matter physics because of their large spin-orbit coupling (SOC) interactions. The typical compound is Sr2IrO4, which attracted much attention due to its similarities to the parent compound of high-Tc cuprate superconductor La2CuO4. Theoretical calculations predicted that the unconventional superconductivity can occur in carrier doped-Sr2IrO4 system. Until now, hundreds of experimental methods were devoted to investigate the carrier doping effect on Sr2IrO4. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) made great contributions to the local lattice and electronic structure, and also the intimate relationship between the local structure and physical properties induced by carrier doping. The aim of this review is a short introduction to the progress of research on Sr2IrO4-based system probed by the unique technique — XAS, including the strength of the SOC, valence changes upon doping and even local lattice structure with atomic level for this Sr2IrO4-based family.
Development of a 3D-Printed Collimated 90Sr Beta Source
NASA Astrophysics Data System (ADS)
Daniel, Byron; NuDot Collaboration
2017-09-01
Collimated beta particle sources based on 90Sr are common calibration sources for atomic decay detector research and development. Due to the short attenuation length of beta particles in matter, the exact geometry of a collimator can drastically change the rate and energy of beta particles exiting the source. 3D printing allows for the quick and easy prototyping of collimators with custom geometries. I will describe the development of a collimator that interfaces directly to a quartz cuvette for the characterization of liquid scintillator cocktails. Future work will include developing a source for the NuDot detector which aims to reconstruct MeV electrons using the separation of Cherenkov and scintillation light. MIT Summer Research Program.
NASA Astrophysics Data System (ADS)
Koshelev, Alexei
2013-03-01
Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.
DEEP, SHALLOW AND EYE LENS DOSES FROM 106Ru/106Rh-A COMPARSION.
Kumar, Munish; Bakshi, A K; Rakesh, R B; Ratna, P; Kulkarni, M S; Datta, D
2017-11-01
106Ru/106Rh is unique amongst other commonly used beta sources such as 147Pm, 85Kr, 204Tl, 32P, natU and 90Sr/90Y in the sense that it is capable of simultaneously delivering shallow/skin, eye lens and deep/whole body doses (WBDs) and they differ from each other substantially. In view of this, the investigation of various quantities defined for individual monitoring is possible and this makes 106Ru/106Rh beta source, a classical example in radiation protection and dosimetry. This led us to estimate skin, eye lens and WBDs for 106Ru/106Rh beta source. Optically stimulated luminescence based ultra-thin α-Al2O3:C disc dosimeters were used in the present study. Typical values (relative) of the eye lens and whole body/deep doses with respective to the skin dose (100%) were experimentally measured as ~66 ± 4.6% and 17 ± 3.9%, respectively. The study shows that 106Ru/106Rh beta source is capable of delivering even WBD which is not the case with other beta sources. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius
2002-01-01
Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.
Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva
2018-03-01
A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.
Early history of the moon: Implications of U-Th-Pb and Rb-Sr systematics
NASA Technical Reports Server (NTRS)
Tatsumoto, M.; Numes, P. D.; Unruh, D. M.
1977-01-01
Anorthosite 60015 contains the lowest initial Sr-87/Sr-86 ratio yet reported for a lunar sample. The initial ratio is equal to that of the achondrite Angra dos Reis and slightly higher than the lowest measured Sr-87/Sr-86 ratio for an inclusion in the C3 carbonaceous chondrite Allende. The Pb-Pb ages of both Angra does Reis and Allende are 4.62 X 10 to the ninth power yr. Thus, the initial Sr/87/Sr-86 ratio found in lunar anorthosite 60015 strongly supports the hypothesis that the age of the Moon is about 4.65 b.y. The U-238/Pb-204 value estimated for the source of the excess lead in "orange soil" 74220 is approximately 35 and lower than the values estimated for the sources of KREEP (600-1000), high-K (300-600), and low-K (100-300) basalts. From these and other physical, chemical and petrographic results it was hypothesized that (1) the moon formed approximately 4.65 b.y. ago; (2) a global-scale gravitational differentiation occurred at the beginning of lunar history; and (3) the differentiation resulted in a radical chemical and mineralogical zoning in which the U-238/Pb-204 ratios increased toward the surface, with the exception of the low U-238/Pb-204 surficial anorthositic layer which "floated" at the beginning of the differentiation relative to the denser pyroxene-rich material.
Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems
NASA Astrophysics Data System (ADS)
Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.
2015-06-01
Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.
Stuckless, J.S.; Futa, Kiyoto
1987-01-01
Available data indicate that postorogenic granites tend to be older in the southern part of the Arabian Shield. This suggests that plutonism started in the south and progressed to the north. Initial 87Sr/86Sr values also form a regional pattern. These ratios tend to be higher in the eastern part of the Arabian Shield, and suggest one source of continental affinity to the east and one of oceanic affinity to the west. The distribution of initial strontium isotope ratios does not clearly discriminate between the various models for Shield evolution; however, a sedimentary source region of mixed end members seems more compatible with the data pattern than models based on discrete boundaries between unrelated accreted blocks.
Sm-Nd and Rb-Sr Ages for MIL 05035: Implications for Surface and Mantle Sources
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.
2007-01-01
The Sm-Nd and Rb-Sr ages and also the initial Nd and Sr isotopic compositions of MIL 05035 are the same as those of A-881757. Comparing the radiometric ages of these meteorites to lunar surface ages as modeled from crater size-frequency distributions as well as the TiO2 abundances and initial Sr-isotopic compositions of other basalts places their likely place of origin as within the Australe or Humboldtianum basins. If so, a fundamental west-east lunar asymmetry in compositional and isotopic parameters that likely is due to the PKT is implied.
NASA Astrophysics Data System (ADS)
Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.
Tolstykh, Evgenia I; Shagina, Natalia B; Degteva, Marina O
2014-08-01
The unique contamination of the Techa River (Southern Urals, Russia) in the 1950s by long-lived (90)Sr allows investigation of the accumulation of bone-seeking elements in humans. This study is based on information compiled at the Urals Research Center for Radiation Medicine (Chelyabinsk, Russia) over a long period of time. It includes the results of in vivo measurements of (90)Sr-body burden with a whole body counter (WBC), data on personal medical examinations and residence and family histories. Data on 185 women from two Techa riverside villages Muslyumovo and Brodokalmak were selected. The settlements differ in terms of (90)Sr diet intake (higher in Muslyumovo than in Brodokalmak) and ethnicity (residents were mainly Slavs in Brodokalmak and Turkic in Muslyumovo). Results of a total of 555 WBC measurements performed in 1974-1997 were available for the women studied; maximum measured values reached 40 kBq/body. The women from each settlement were subdivided into three groups according to their childbearing history: pregnancy and lactation occurred (1) during the period of maximal (90)Sr intake (1950-1951); (2) after the period of maximal intake and (3) before this period or women who were childless. An increase was found in accumulation of (90)Sr in maternal skeleton during pregnancy and lactation (group 1) by a factor of 1.5-2 in comparison with non-pregnant, non-lactating women. This result was found in both Muslyumovo and Brodokalmak samples. An increase in accumulation of toxic elements in pregnant/lactating women is associated with increased radiation/toxic doses and risk for the women's health.
NASA Astrophysics Data System (ADS)
Marks, N.; Schiffman, P.; Yin, Q.; Zierenberg, R.
2005-12-01
Ultrabasic springs within the Franciscan Complex of the California Coast Range have been intensely investigated by geochemists and geobiologists. Springs located in Sonoma County in an area historically known as The Cedars are of particular interest to scientists exploring Martian analogues (Johnson et al. 2004) or investigating serpentinization processes (Barnes and O'Neil, 1969; Barnes et al. 1972). Laser ablation and solution phase multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) were used to obtain 87Sr/86Sr isotope ratios in fluid, travertine and serpentinite samples collected at the Cedars. 87Sr/86Sr isotopic ratios in the serpentinizing springs range from 0.70926 to 0.70955; the Mg2+-HCO3- type stream water has an isotopic ratio of 0.70848. The 87Sr/86Sr ratio in the travertines ranges from 0.70931 to 0.70966. The mean 87Sr/86Sr ratio of the travertine (0.7094) is far more radiogenic than typical mantle values of 0.703 to 0.705, indicating that the peridotite is an unlikely source of the radiogenic Sr. Similarly, the measured ratio is much higher than the expected Sr isotope ratio of seawater that might be trapped in Jurassic Franciscan Sediments or oceanic crust. Strontium leached from Franciscan sediments themselves should reflect a Sierran or Klamath source with expected values in the range of 0.705 to 0.706. Indeed the measured isotope ratios even exceed modern seawater values. The observed radiogenic values suggest the presence of older, potassium (and rubidium)-rich rocks within the fluid flow path. Alternatively, the presence of clay minerals that readily substitute Sr for Ca may well account for the radiogenic strontium signal. It is possible that the serpentinization observed at The Cedars initiated along a ridge flank and the Sr isotopic chemistry reflects the site of initiation. The radiogenic strontium in these springs may result from fluid interaction with seafloor sediments deposited along the flank of a slow spreading ridge. If this is the case, it may be possible to use 87Sr/86Sr to determine the location of serpentinization initiation (Gruau et al, 1998). Such a revelation might provide insight into the geochemical processes associated with mid-ocean ridge flank serpentinization at sites like Lost City (Kelley et al., 2005). The implications of this correlation could provide information about the preservation of geochemical systems through obduction of ophiolitic sequences and provide insights into ridge flank hydrothermal and serpentinizing processes.
Exposure assessment of aluminum arc welding radiation.
Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong
2007-10-01
The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.
Gamma-Radiation Background Onboard Russian Orbital Stations
NASA Astrophysics Data System (ADS)
Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Krivov, S. V.; Moiseev, A. A.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.; Yurkin, Yn. T.
Large manned space flight missions have several advantages for carrying out astrophysical and cosmic ray experiments, including the ability to install heavy instruments with large dimensions, increased electrical power and telemetry capacity, and the operation of fixed instruments by qualified personnel (astronauts). The main disadvantage in the use of heavy orbital stations for these experiments is the high level of background radiation generated by the interaction of station material with primary cosmic rays, high energy particles that exist in the magnetosphere of Earth, and albedo radiation from Earth. In some cases, additional radiation may originate from man-made radiation sources installed at the stations. For many years MEPhI have maintained experiments onboard manned Russian space flight missions to study primary gamma-rays at two energy intervals: 0.1 - 8 MeV and 30-600 MeV and electrons with energy more than 30 MeV. During these experiments significant time was spent investigating high energy background radiation onboard the stations. To measure 30-600 MeV gamma-rays, the gas-Cherenkov-scintillation telescope Elena was used. The angular view of this telescope was 10 deg, with a geometrical factor of 0.5 cm2sr. This telescope was operated onboard the orbital stations Salyut-6 and Salyut-7. Usually these stations were operated together with the space missions Soyuz and Progress. For background measurements, cosmonauts installed the telescope at various locations on Salyut, Soyuz and Progress, and oriented it in various directions respectively to the station's axes. During these experiments, the orbital stations were not oriented.
Similar sediment provenance of low and high arsenic aquifers in Bangladesh
NASA Astrophysics Data System (ADS)
Zheng, Y.; Yang, Q.; Li, S.; Hemming, S. R.; Zhang, Y.; Rasbury, T.; Hemming, G.
2017-12-01
Geogenic arsenic (As) in drinking water, especially in groundwater, is estimated to have affected the health of over 100 million people worldwide, with nearly half of the total at risk population in Bangladesh. Sluggish flow and reducing biogeochemical environment in sedimentary aquifers have been shown as the primary controls for the release of As from sediment to the shallower groundwater in the Holocene aquifer. In contrast, deeper groundwater in the Pleistocene aquifer is depleted in groundwater As and sediment-extractable As. This study assesses the origin of the sediment in two aquifers of Bangladesh that contain distinctly different As levels to ascertain whether the source of the sediment is a factor in this difference through measurements of detrital mica Ar-Ar age, detrital zircon U-Pb age, as well as sediment silicate Sr and Nd isotopes. Whole rock geochemical data were also used to illuminate the extent of chemical weathering. Detrital mica 40Ar/39Ar cooling ages and detrital zircon U-Pb ages show no statistical difference between high-As Holocene sediment and low-As Pleistocene sediment, but suggest an aquifer sediment source of both the Brahmaputra and the Ganges rivers. Silicate 87Sr/86Sr and 143Nd/144Nd further depict a major sediment source from the Brahmaputra river, which is supported by a two end member mixing model using 87Sr/86Sr and Sr concentrations. Pleistocene and Holocene sediments show little difference in weathering of mobile elements including As, while coarser sediments and a longer history of the Pleistocene aquifer suggest that sorting and flushing play more important roles in regulating the contrast of As occurrence between these two aquifers.
Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Back, N L; Eder, D C
2007-12-10
The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less
Exploring Hominin and Non-hominin Primate Dental Fossil Remains with Neutron Microtomography
NASA Astrophysics Data System (ADS)
Zanolli, Clément; Schillinger, Burkhard; Beaudet, Amélie; Kullmer, Ottmar; Macchiarelli, Roberto; Mancini, Lucia; Schrenk, Friedemann; Tuniz, Claudio; Vodopivec, Vladimira
Fossil dental remains are an archive of unique information for paleobiological studies. Computed microtomography based on X-ray microfocus sources (X-μCT) and Synchrotron Radiation (SR-μCT) allow subtle quantification at the micron and sub-micron scale of the meso- and microstructural signature imprinted in the mineralized tissues, such as enamel and dentine, through high-resolution ;virtual histology;. Nonetheless, depending on the degree of alterations undergone during fossilization, X-ray analyses of tooth tissues do not always provide distinct imaging contrasts, thus preventing the extraction of essential morphological and anatomical details. We illustrate here by three examples the successful application of neutron microtomography (n-μCT) in cases where X-rays have previously failed to deliver contrasts between dental tissues of fossilized specimen.
Aarkrog, A; Dahlgaard, H; Nielsen, S P
1999-09-30
The waters around Greenland have received radioactive contamination from three major sources: Global fallout, discharges from the nuclear fuel reprocessing plant Sellafield in the UK, and the Chernobyl accident in the Former Soviet Union (FSU). The global fallout peaked in the early 1960s. The radiologically most important radionuclides from this source are 90Sr and 137Cs. The input of global fallout to arctic waters was direct deposition from the atmosphere and indirect delivery through river run off and advection from the Atlantic Ocean via the north-east Atlantic current system. The waterborne discharges from Sellafield which were at their peak between 1974 and 1981 contributed primarily 137Cs, although some 90Sr was also discharged. The Chernobyl accident in 1986 was characterised by its substantial atmospheric release of radiocaesium (134Cs and 137Cs). Other sources may, however, also have contributed to the radioactivity in the Greenland waters. Examples include La Hague, France, and radioactive discharges to the great Siberian rivers (Ob, Yenisey and Lena) from nuclear activities in the Former Soviet Union or the local fallout from the Novaya Zemlya nuclear weapons test site. Dumping of nuclear waste in the Kara and Barents Seas may be another, although minor source. From measurements in Greenland waters carried out since 1962 the transport of radionuclides with the East Greenland Current is calculated and compared with the estimated inputs of 90Sr and 137Cs to the Arctic Ocean. This study focus on 90Sr and 137Cs because the longest time series are available for these two radionuclides.
Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan
NASA Astrophysics Data System (ADS)
Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng
2017-10-01
Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.
NASA Astrophysics Data System (ADS)
Mushtak, V. C.
2009-12-01
Observations of electromagnetic fields in the Schumann resonance (SR) frequency range (5 to 40 Hz) contain information about both the major source of the electromagnetic radiation (repeatedly confirmed to be global lightning activity) and the source-to-observer propagation medium (the Earth-ionosphere waveguide). While the electromagnetic signatures from individual lightning discharges provide preferable experimental material for exploring the medium, the properties of the world-wide lightning process are best reflected in background spectral SR observations. In the latter, electromagnetic contributions from thousands of lightning discharges are accumulated in intervals of about 10-15 minutes - long enough to present a statistically significant (and so theoretically treatable) ensemble of individual flashes, and short enough to reflect the spatial-temporal dynamics of global lightning activity. Thanks to the small (well below 1 dB/Mm) attenuation in the SR range and the accumulated nature of background SR observations, the latter present globally integrated information about lightning activity not available via other (satellite, meteorological) techniques. The most interesting characteristics to be extracted in an inversion procedure are the rates of vertical charge moment change (and their temporal variations) in the major global lightning “chimneys”. The success of such a procedure depends critically on the accuracy of the propagation theory (used to carry out “direct” calculations for the inversion) and the quality of experimental material. Due to the nature of the problem, both factors - the accuracy and the quality - can only be estimated indirectly, which requires specific approaches to assure that the estimates are realistic and more importantly, that the factors could be improved. For the first factor, simulations show that the widely exploited theory of propagation in a uniform (spherically symmetrical) waveguide provides unacceptable (up to several tens of percent) errors when used to extract the rates of charge moment change in the major “chimneys”. A comparative analysis carried out on the basis of a more accurate two-dimensional telegraph equation (TDTE) technique shows that the above inaccuracy results mainly from neglecting the major non-uniformity of the Earth-ionosphere waveguide due to the electrodynamic contrast between its day- and nighttime hemispheres. To estimate improve the quality of observations, several approaches are presented. Generally, the approaches are based on dividing the observation interval into shorter (10-sec) segments and collecting their Fourier transforms via an “accept/reject” criterion dependent on both the statistics of the segments’ energy contents within the given interval and the observational history. Such a procedure allows the removal of “bad” segments contaminated by either cultural interference or local lightning activity, instead of rejecting the whole interval as a “bad” one. Several criteria are presented, their efficiencies demonstrated, compared, and tested on actual SR observations from various stations for various seasons and times; the effect of using improved (rectified) SR data in an actual multi-station inversion procedure is demonstrated.
Effects of urbanization on groundwater evolution in an urbanizing watershed
NASA Astrophysics Data System (ADS)
Reyes, D.; Banner, J. L.; Bendik, N.
2011-12-01
The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and high Na and Cl. This is consistent with large inputs of municipal water. The other five springs located in urban portions have low 87Sr/86Sr, low concentrations of Ca and HCO3, and high concentrations of Na and Cl. This is reflects a process other than an input of municipal water. Groundwater interaction with soils generally results in higher Na concentrations relative to Ca. 87Sr/86Sr values in this scenario may increase or decrease, depending on the Sr isotope variability of the local soils. Alternatively, precipitation of calcite from groundwater would decrease the concentration of Ca without necessarily decreasing 87Sr/86Sr values. The results suggest more anthropogenic water in urban springs than rural springs. These data serve to identify sources of spring recharge, including better constraints on the location(s) of urban leakage.
The survival-reproduction association becomes stronger when conditions are good.
Robert, Alexandre; Bolton, Mark; Jiguet, Frédéric; Bried, Joël
2015-11-07
Positive covariations between survival and reproductive performance (S-R covariation) are generally interpreted in the context of fixed or dynamic demographic heterogeneity (i.e. persistent differences between individuals, or dynamic variation in resource acquisition), but the processes underlying covariations are still unknown. We used multi-event modelling to investigate how environmental and individual features influence S-R covariation patterns in a long-lived seabird, the Monteiro's storm petrel (Oceanodroma monteiroi). Our analysis reveals that a strong positive association between individual breeding success and subsequent survival occurs only when conditions are favourable to reproduction (in favourable years, in high-quality nests and in nest-faithful breeders). This finding reflects differences in the main causes of breeding failure and mortality under favourable and unfavourable conditions, which in turn lead to distinct patterns of S-R covariation. We suggest, in particular, that resource-related sources of demographic heterogeneity do not generate a strong S-R covariation, in contrast with hidden and unpredictable sources of variation. © 2015 The Author(s).
Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc
Hedge, C.E.; Lewis, J.F.
1971-01-01
Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.
Yang, Jianji J; Cohen, Aaron M; Cohen, Aaron; McDonagh, Marian S
2008-11-06
Automatic document classification can be valuable in increasing the efficiency in updating systematic reviews (SR). In order for the machine learning process to work well, it is critical to create and maintain high-quality training datasets consisting of expert SR inclusion/exclusion decisions. This task can be laborious, especially when the number of topics is large and source data format is inconsistent.To approach this problem, we build an automated system to streamline the required steps, from initial notification of update in source annotation files to loading the data warehouse, along with a web interface to monitor the status of each topic. In our current collection of 26 SR topics, we were able to standardize almost all of the relevance judgments and recovered PMIDs for over 80% of all articles. Of those PMIDs, over 99% were correct in a manual random sample study. Our system performs an essential function in creating training and evaluation data sets for SR text mining research.
Yang, Jianji J.; Cohen, Aaron M.; McDonagh, Marian S.
2008-01-01
Automatic document classification can be valuable in increasing the efficiency in updating systematic reviews (SR). In order for the machine learning process to work well, it is critical to create and maintain high-quality training datasets consisting of expert SR inclusion/exclusion decisions. This task can be laborious, especially when the number of topics is large and source data format is inconsistent. To approach this problem, we build an automated system to streamline the required steps, from initial notification of update in source annotation files to loading the data warehouse, along with a web interface to monitor the status of each topic. In our current collection of 26 SR topics, we were able to standardize almost all of the relevance judgments and recovered PMIDs for over 80% of all articles. Of those PMIDs, over 99% were correct in a manual random sample study. Our system performs an essential function in creating training and evaluation datasets for SR text mining research. PMID:18999194
Luminescence properties of Na2Sr2Al2PO4Cl9:Sm3+ phosphor
NASA Astrophysics Data System (ADS)
Tamboli, Sumedha; Shahare, D. I.; Dhoble, S. J.
2018-04-01
A series of Sm3+ ions doped Na2Sr2Al2PO4Cl9 phosphors were synthesized via solid state synthesis method. Photoluminescence (PL) emission spectra were obtained by keeping excitation wavelength at 406 nm. Emission spectra show three emission peaks at 563 nm, 595 nm and 644 nm. The CIE chromaticity diagram shows emission colour of the phosphor in the orange-red region of the visible spectrum, indicating that the phosphor may be useful in preparing orange light-emitting diodes. Na2Sr2Al2PO4Cl9:Sm3+ phosphors were irradiated by γ-rays from a 60Co source and β-rays from a 90Sr source. Their thermoluminescence (TL) glow curves were obtained by Nucleonix 1009I TL reader. TL Trapping parameters such as activation energy of trapped electrons and order of kinetics were obtained by using Chen's peak shape method, Glow curve fitting method and initial rise method.
Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source
NASA Astrophysics Data System (ADS)
Fujii, Hayato; Setiadi, Agung; Kuwahara, Yuji; Akai-Kasaya, Megumi
2017-09-01
Stochastic resonance (SR) is an intrinsic noise usage system for small-signal sensing found in various living creatures. The noise-enhanced signal transmission and detection system, which is probabilistic but consumes low power, has not been used in modern electronics. We demonstrated SR in a summing network based on a single-walled carbon nanotube (SWNT) device that detects small subthreshold signals with very low current flow. The nonlinear current-voltage characteristics of this SWNT device, which incorporated Cr electrodes, were used as the threshold level of signal detection. The adsorption of redox-active polyoxometalate molecules on SWNTs generated additional noise, which was utilized as a self-noise source. To form a summing network SR device, a large number of SWNTs were aligned parallel to each other between the electrodes, which increased the signal detection ability. The functional capabilities of the present small-size summing network SR device, which rely on dense nanomaterials and exploit intrinsic spontaneous noise at room temperature, offer a glimpse of future bio-inspired electronic devices.
NASA Astrophysics Data System (ADS)
Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.
2017-07-01
We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.
Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.
Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred
2011-01-01
It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Taylor, Sean; Samokhvalov, Alexander
2017-03-01
Alkaline earth metal titanates are broad bandgap semiconductors with applications in electronic devices, as catalysts, photocatalysts, sorbents, and sensors. Strontium titanate SrTiO3 is of interest in electronic devices, sensors, in the photocatalytic hydrogen generation, as catalyst and sorbent. Both photocatalysis and operation of electronic devices rely upon the pathways of relaxation of excited charge in the semiconductor, including relaxation through the midgap states. We report characterization of nanocrystalline SrTiO3 at room temperature by "conventional" vs. synchronous luminescence spectroscopy and complementary methods. We determined energies of radiative transitions in the visible range through the two midgap states in the nanocrystalline SrTiO3. Further, adsorption and desorption of vapor of water as "probe molecule" for midgap states in the nanocrystalline SrTiO3 was studied, for the first time, by luminescence spectroscopy under ambient conditions. Emission of visible light from the nanocrystalline SrTiO3 is significantly increased upon desorption of water and decreased (quenched) upon adsorption of water vapor, due to interactions with the surface midgap states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plummer, J. R.; Immel, D. M.; Serrato, M. G.
2015-11-18
The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less
Multiwavelength Polarization of Rotation-Powered Pulsars
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Kalapotharakos, Constantinos
2017-01-01
Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron-positron pairs and gamma-ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180deg, PA swings for emission outside the light cylinder (LC)‚ as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%-60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and gamma-ray spectral components would indicate that CR is the gamma-ray emission mechanism.
Multiwavelength Polarization of Rotation-powered Pulsars
NASA Astrophysics Data System (ADS)
Harding, Alice K.; Kalapotharakos, Constantinos
2017-05-01
Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron-positron pairs and γ-ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%-60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ-ray spectral components would indicate that CR is the γ-ray emission mechanism.
Multiwavelength Polarization of Rotation-powered Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Alice K.; Kalapotharakos, Constantinos
Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron–positron pairs and γ -ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved andmore » phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%–60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ -ray spectral components would indicate that CR is the γ -ray emission mechanism.« less
NASA Astrophysics Data System (ADS)
Reiche, I.; Radtke, M.; Berger, A.; Görner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.
2006-05-01
New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606 1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm2. Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is together with external micro-proton-induced X-ray emission the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection.
Secchi, Valeria; Franchi, Stefano; Santi, Marta; Vladescu, Alina; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Dettin, Monica; Zamuner, Annj; Iucci, Giovanna; Battocchio, Chiara
2018-03-07
In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH₂ that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.
NASA Astrophysics Data System (ADS)
Bompard, Nicolas; Matter, Juerg; Teagle, Damon
2016-04-01
The peridotite aquifer in Wadi Tayin, Sultanate of Oman, is a perfect example of natural carbonation of ultramafic rocks. In situ mineral carbonation is considered the most safest and permanent option of CO2 Capture and Sequestration (CCS). However, the process itself is yet to be characterised and a better understanding of the mechanisms involved in natural mineral carbonation is needed before geo-engineering it. We used the 87Sr/86Sr system to follow the water-rock interactions along the groundwater flowpath in the peridotite aquifer and to determine the sources of divalent cations (Mg2+, Ca2+) required for mineral carbonation. The Sr-isotope data of groundwater show that the aquifer rocks are the main source for divalent cations (Mg2+, Ca2+ and Sr2+) and secondary carbonates are their main sink. The groundwater 87Sr/86Sr ratio evolves with its pH: from 87Sr/86Sr = 0.7087 (n=3) to 0.7082 (n=8) between pH 7 and 8, and from 0.7086 (n=6) at pH 9 to 0.07075 (n=9) at pH 11. This evolution seems to support a two-step model for the water-rock interactions in the peridotite aquifer. From pH 7 to 8, secondary Ca-carbonate precipitation buffers the pH rise resulting from peridotite serpentinisation. From pH 9 to 11, peridotite serpentinisation drives the pH to alkaline condition. The change from a Mg-rich to a Ca-rich groundwater at pH 9 seems to confirm the two-step model.
NASA Astrophysics Data System (ADS)
Vara, M. A.; DeLong, K. L.; Herrmann, A. D.; Ouellette, G., Jr.; Richey, J. N.
2017-12-01
Coral Sr/Ca is a robust proxy of sea surface temperature (SST); however, discrepancies in the Sr/Ca-SST relationship among colonies of the same species may reduce confidence in absolute temperature reconstructions. Furthermore, terrestrial carbonate weathering can provide local sources of Sr and/or Ca to coastal waters that may disrupt the temperature-based coral Sr/Ca signal. Thus other trace metal SST proxies have been suggested to circumvent these issues (Li/Ca, Li/Mg, and Sr-U). Coral Ba/Ca has been used as a proxy for runoff and coastal upwelling, and therefore may be used to identify intervals when these processes overprint the Sr/Ca-SST signal. This study tests multiple coral SST proxies using reproducibility assessments to determine the best performing SST proxy. We conduct these assessments with cores recovered in 1991 by the U.S. Geological Survey from five Orbicella faveolata colonies from three reefs offshore of Veracruz, Mexico (19.06°N, 96.93°W) in water depths varying from 3 to 12 m. Previous studies found micromilling the complex skeletal structure of O. faveolata challenging and that monthly resolution may not recover full seasonal cycles. We use a laser ablation inductively coupled plasma mass spectrometer to simultaneously sample this coral's structure at weekly intervals spanning 8 years for Li/Ca, Li/Mg, Sr-U, Sr/Ca, and Ba/Ca. Here we found coral Li/Ca means and seasonal variations are similar among colonies thus this proxy may capture absolute temperature and SST variability. Similar to previous research with Porites corals, Li/Ca in these O. faveolata corals decreases with increases in SST with similar slopes and intercepts. During the last 10 years of these corals' lives, coral Sr/Ca analysis reveals a mean shift among colonies suggesting an external source could have disrupted the Sr/Ca signal, possibly seasonal runoff and/or winter upwelling common to Veracruz waters. Coral Ba/Ca analyses reveals elevated values in winters that coincide with increases in coral Sr/Ca in the deeper colony suggesting upwelling is occurring at that location. However, the coral Ba/Ca does not coincide with increase coral Sr/Ca in the shallower coral indicating no direct influence from runoff. Coral Li/Mg and Sr-U do not show substantial seasonal variations as expected with a coral-SST proxy.
NASA Astrophysics Data System (ADS)
Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.
2014-09-01
Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source region and together with 87Sr/86Srinitial ranging from 0.705656 to 0.706980 suggest two stage contamination of parent magma which is much similar to that of Poladpur, Toranmal, Mhow, Chikaldara flows. Ba/Y versus 87Sr/86Sr and Nb/Y versus Rb/Y variations show an Ambenali-Poladpur contamination trend for the Linga basalts thereby suggesting the role of upper continental granitic crust as the contaminant of these flows through magma-crust interaction during melt migration. The lava flows of Linga are geochemically correlatable with the Poladpur flows of southwestern and Toranmal flows of northern Deccan and show genetic coherence with the basalts of Jabalpur, Seoni, Chakhla-Delakhari of eastern Deccan.
Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa
2016-08-01
Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungbauer, M.; Hühn, S.; Moshnyaga, V.
2014-12-22
We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO{sub 3}){sub n} (n = ∞, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO{sub 3}(001) substrates by means of a sequential deposition of Sr-O/Ti-O{sub 2} atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2–4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidlymore » decreases and saturates after 5–6 repetitions of the SrO(SrTiO{sub 3}){sub 4} block at the level of 2.4%. This identifies the SrTiO{sub 3} substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy.« less
Bu, Hongmei; Wang, Weibo; Song, Xianfang; Zhang, Quanfa
2015-09-01
Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.
Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints
NASA Astrophysics Data System (ADS)
Murray, Natalie A.; McManus, James; Palmer, Martin R.; Haley, Brian; Manners, Hayley
2018-05-01
We present sediment pore fluid and sediment solid phase results obtained during IODP Expedition 340 from seven sites located within the Grenada Basin of the southern Lesser Antilles Volcanic Arc region. These sites are generally characterized as being low in organic carbon content and rich in calcium carbonate and volcanogenic material. In addition to the typical reactions related to organic matter diagenesis, pore fluid chemistry indicates that the diagenetic reactions fall within two broad categories; (1) reactions related to chemical exchange with volcanogenic material and (2) reactions related to carbonate dissolution, precipitation, or recrystallization. For locations dominated by reaction with volcanogenic material, these sites exhibit increases in dissolved Ca with coeval decreases in Mg. We interpret this behavior as being driven by sediment-water exchange reactions from the alteration of volcanic material that is dispersed throughout the sediment package, which likely result in formation of Mg-rich secondary authigenic clays. In contrast to this behavior, sediment sequences that exhibit decreases in Ca, Mg, Mn, and Sr with depth suggest that carbonate precipitation is an active diagenetic process affecting solute distributions. The distributions of pore fluid 87Sr/86Sr reflect these competitive diagenetic reactions between volcanic material and carbonate, which are inferred by the major cation distributions. From one site where we have solid phase 87Sr/86Sr (site U1396), the carbonate fraction is found to be generally consistent with the contemporaneous seawater isotope values. However, the 87Sr/86Sr of the non-carbonate fraction ranges from 0.7074 to 0.7052, and these values likely represent a mixture of local arc volcanic sources and trans-Atlantic eolian sources. Even at this site where there is clear evidence for diagenesis of volcanogenic material, carbonate diagenesis appears to buffer pore fluid 87Sr/86Sr from the larger changes that might be expected given the high abundance of tephra in these sediments. Part of this carbonate buffering, at this site as well as throughout the region, derives from the fact that the Sr concentration in the non-carbonate fraction is generally low (<200 ppm), whereas the carbonate fraction has Sr concentrations approaching ∼1000 ppm.
Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?
NASA Astrophysics Data System (ADS)
Farmer, G.
2011-12-01
Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred in Archean mantle lithosphere. Given the correlation between increasing Sr/Y and decreasing 87Sr/86Sr in the basaltic andesites, one possible trigger mechanism for lithospheric mantle melting is the influx into the thick Archean mantle keel of slab fluids (possibly including high Sr/Y slab melts) derived from oceanic lithosphere underthrust beneath this region in the Late Cretaceous. In this case, the Sliderock Mountain Volcano could, in fact, represent an example of continental interior "arc" magmatism.
NASA Astrophysics Data System (ADS)
Beier, Christoph; Stracke, Andreas; Haase, Karsten M.
2007-07-01
The island of São Miguel, Azores consists of four large volcanic systems that exhibit a large systematic intra-island Sr-Nd-Pb-Hf isotope and trace element variability. The westernmost Sete Cidades volcano has moderately enriched Sr-Nd-Pb-Hf isotope ratios. In contrast, lavas from the easternmost Nordeste volcano have unusually high Sr and Pb and low Nd and Hf isotope ratios suggesting a long-term evolution with high Rb/Sr, U/Pb, Th/Pb, Th/U and low Sm/Nd and Lu/Hf parent-daughter ratios. They have trace element concentrations similar to those of the HIMU islands, with the exception of notably higher alkali element (Cs, Rb, K, Ba) and Th concentrations. The time-integrated parent-daughter element evolution of both the Sete Cidades and Nordeste source matches the incompatibility sequence commonly observed during mantle melting and consequently suggests that the mantle source enrichment is caused by a basaltic melt, either as a metasomatic agent or as recycled oceanic crust. Our calculations show that a metasomatic model involving a small degree basaltic melt is able to explain the isotopic enrichment but, invariably, produces far too enriched trace element signatures. We therefore favour a simple recycling model. The trace element and isotopic signatures of the Sete Cidades lavas are consistent with the presence of ancient recycled oceanic crust that has experienced some Pb loss during sub-arc alteration. The coherent correlation of the parent-daughter ratios (e.g. Rb/Sr, Th/U, U/Pb) and incompatible element ratios (e.g. Nb/Zr, Ba/Rb, La/Nb) with the isotope ratios in lavas from the entire island suggest that the Sete Cidades and Nordeste source share a similar genetic origin. The more enriched trace element and isotopic variations of Nordeste can be reproduced by recycled oceanic crust in the Nordeste source that contains small amounts of evolved lavas (˜ 1-2%), possibly from a subducted seamount. The rare occurrence of enriched source signatures comparable to Nordeste may be taken as circumstantial evidence that stirring processes in the Earth's mantle are not able to homogenise material within the size of seamounts over timescales of mantle recycling.
NASA Astrophysics Data System (ADS)
Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.
1995-05-01
Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.
Wang, R; Li, X A
2001-02-01
The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.
Strontium biokinetic model for the pregnant woman and fetus: application to Techa River studies.
Shagina, N B; Fell, T P; Tolstykh, E I; Harrison, J D; Degteva, M O
2015-09-01
A biokinetic model for strontium (Sr) for the pregnant woman and fetus (Sr-PWF model) has been developed for use in the quantification of doses from internal radiation exposures following maternal ingestion of Sr radioisotopes before or during pregnancy. The model relates in particular to the population of the Techa River villages exposed to significant amounts of ingested Sr radioisotopes as a result of releases of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. The biokinetic model for Sr metabolism in the pregnant woman was based on a biokinetic model for the adult female modified to account for changes in mineral metabolism during pregnancy. The model for non-pregnant females of all ages was developed earlier with the use of extensive data on (90)Sr-body measurements in the Techa Riverside residents. To determine changes in model parameter values to take account of changing mineral metabolism during pregnancy, data from longitudinal studies of calcium homeostasis during human pregnancy were analysed and applied. Exchanges between maternal and fetal circulations and retention in fetal skeleton and soft tissues were modelled as adaptations of previously published models, taking account of data on Sr and calcium (Ca) metabolism obtained in Russia (Southern Urals and Moscow) relating to dietary calcium intakes, calcium contents in maternal and fetal skeletons and strontium transfer to the fetus. The model was validated using independent data on (90)Sr in the fetal skeleton from global fallout as well as unique data on (90)Sr-body burden in mothers and their still-born children for Techa River residents. While the Sr-PWF model has been developed specifically for ingestion of Sr isotopes by Techa River residents, it is also more widely applicable to maternal ingestion of Sr radioisotopes at different times before and during pregnancy and different ages of pregnant women in a general population.
Hafnium isotope results from mid-ocean ridges and Kerguelen.
Patchett, P.J.
1983-01-01
176Hf/177Hf ratios are presented for oceanic volcanic rocks representing both extremes of the range of mantle Hf-Nd-Sr isotopic variation. Hf from critical mid-ocean ridge basalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/Sr-Sm/Nd-Lu/Hf fractionation relationships. At the other extreme of mantle isotopic compositions, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of Hf-Nd-Sr isotopic relatonships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean-island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation.-G.R.
Hafnium isotope results from mid-ocean ridges and Kerguelen
Jonathan, Patchett P.
1983-01-01
176Hf/177Hf ratios are presented for oceanic volcanics representing both extremes of the range of mantle HfNdSr isotopic variation. Hf from critical mid-ocean ridgebasalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/SrSm/NdLu/Hf fractionation relationships. At the other extreme of mantle isotopic composition, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of HfNdSr c relationships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation. ?? 1983.
NASA Astrophysics Data System (ADS)
Bebout, G. E.; King, R. L.; Moriguti, T.; Nakamura, E.
2004-12-01
Paramount to our ability to decipher the behavior of fluids and melts within the mantle wedge and the overall subduction system are the chemical compositions of rocks adjacent to the slab-mantle interface. Profound metamorphic and metasomatic alteration of pre-subduction lithologies to form melange along the slab-mantle interface may yield rock types inheriting mixed chemical compositions of diverse pre-subduction lithologies. Early work on melange geochemistry indicates competitive effects between mechanical mixing, metasomatism by fluids or melts, and mineral stabilities imposed by the resulting bulk composition. We have explored the Sr-Nd-Pb isotope geochemistry of low- to high-grade melange zones in the Catalina Schist, CA, to address this crucial missing component in studies of subduction-zone mass flux. The Catalina Schist contains lawsonite-albite (LA), lawsonite-blueschist (LB), and amphibolite (AM) facies melange zones, all with mineralogy dominated by talc, chlorite, and Na-Ca amphiboles, with additional minerals such as micas, rutile, zircon, and apatite stabilized based on bulk sample chemistry. Major element compositions vary, from strongly ultramafic in the AM melange, to more crustal-like compositions (i.e., more reminiscent of basaltic to sedimentary protoliths) for LA and LB melange. However, initial Sr and Nd isotope ratios for all grades of melange are essentially indistinguishable, displaying a wide variation from 87Sr/86Sr=0.703-0.709 and ɛ Nd= +15 to -15. Covariations are generally negative, similar to that of the mantle array, but with some samples extending to higher Sr ratios at constant ɛ Nd that probably reflect inheritance of seawater Sr. No clear mixing relationships between 87Sr/86Sr and 1/Sr exist, suggesting either localized buffering of Sr isotope ratios or that mixing relations are obscured by secondary devolatilization. However, a clear mixing trend for Nd indicates two end-members, one a high-concentration, positive ɛ Nd source (AOC?), the other with low-concentration and negative ɛ Nd (devolatilized sediments?). Likewise, initial Pb isotope ratios for all grades of melange form a single array independent of rock type or inferred protolith. Melange matrix of the Catalina Schist preserves initial 206Pb/204Pb of 18.95-19.59, 207Pb/204Pb of 15.61-15.68, and 208Pb/204Pb of 37.85-39.05. Such elevated Pb ratios are typical of subducting oceanic sediments, but not of MORB-like oceanic crust or peridotites of the depleted mantle. The similarity of these initial ratios suggests pervasive alteration of Pb isotope signatures within diverse rock types by fluids during subduction. As Pb concentrations decline from LA/LB to AM melange, this suggests devolatilization of Pb from the ultramafic AM melange will transfer crustal-like Pb isotope ratios. Sr-Nd-Pb isotope systematics for arc volcanic rocks are commonly used as indicators of fluid sources from the subducting slab to the arc magma source region. Our results suggest such an assumption is extremely dangerous, as hybridization processes common to melange zones are more likely to occur along the slab-mantle interface than is preservation of a pre-subduction section. Such metamorphic mediation and buffering of "slab" compositions is essentially unknown, yet our data support an interpretation where these processes impart a fundamental control on the chemistry of fluids passed to the mantle wedge.
The Dissolved Ca Isotope Composition of Himalayan-Tibetan Waters
NASA Astrophysics Data System (ADS)
Tipper, E. T.; Galy, A.; Bickle, M. J.
2004-12-01
Determining the relative proportions of carbonate versus silicate weathering in the Himalaya is important for understanding the long-term atmospheric CO2 budget and the marine Sr isotope record. 87Sr/86Sr is not a straightforward proxy of carbonate to silicate weathering in the Himalaya and up to 50% of the dissolved Ca may be removed by the precipitation of secondary calcite. Ca isotopes have the potential to constrain the relative inputs of carbonates to silicates and incongruent dissolution processes in the weathering environment. Ca is the major cation carried by rivers. Thirty four Himalayan rock and water samples from the Nepal Himalaya and Tibet have been analysed for 44/42Ca and 43/42Ca on a Nu-Instruments Multiple Collector -ICP-MS. Unlike the 44/40Ca ratio the 44/42Ca is not susceptible to excess 40Ca production from the decay of K. All samples lie on a single mass fractionation line. There is a total range of 0.4 \\permil variation in \\delta44Ca with values from 0.63 \\permil - 0.21 \\permil relative to the SRM915a standard. This is comparable to that already reported with \\delta44/40Ca for small catchments and global rivers. Small first order catchments from each of the main lithotectonic units of the Himalaya have been analysed to examine the effect of lithology on dissolved Ca isotopic composition. In agreement with previous studies elsewhere there is little correlation between source rock and dissolved composition for small rivers spanning a range of source rock from limestone to various silicates and covering a vegetation range from temperate semi-desert to jungle. \\delta44Ca is not correlated with 87Sr/86Sr or Na/Ca ratios confirming that source rock composition is not the dominant control on the observed range in \\delta44Ca. A time-series has been examined for the Marsyandi River, central Nepal. In spite of significant systematic variations in major element chemistry including Ca concentration and 87Sr/86Sr the variations in \\delta44Ca are limited to 0.16 \\permil. Either there is only a single isotopic source of Ca or the \\delta44Ca is controlled by incongruent dissolution processes. The most important incongruent process to affect the Ca budget is the precipitation of pedogenic carbonate. Such incongruent processes should be detectable in the Ca-isotope budget.
Development of a percutaneous penetration predictive model by SR-FTIR.
Jungman, E; Laugel, C; Rutledge, D N; Dumas, P; Baillet-Guffroy, A
2013-01-30
This work focused on developing a new evaluation criterion of percutaneous penetration, in complement to Log Pow and MW and based on high spatial resolution Fourier transformed infrared (FTIR) microspectroscopy with a synchrotron source (SR-FTIR). Classic Franz cell experiments were run and after 22 h molecule distribution in skin was determined either by HPLC or by SR-FTIR. HPLC data served as reference. HPLC and SR-FTIR results were compared and a new predictive criterion based from SR-FTIR results, named S(index), was determined using a multi-block data analysis technique (ComDim). A predictive cartography of the distribution of molecules in the skin was built and compared to OECD predictive cartography. This new criterion S(index) and the cartography using SR-FTIR/HPLC results provides relevant information for risk analysis regarding prediction of percutaneous penetration and could be used to build a new mathematical model. Copyright © 2012 Elsevier B.V. All rights reserved.
Orphan strontium-87 in abyssal peridotites: daddy was a granite.
Snow, J E; Hart, S R; Dick, H J
1993-12-17
The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.
Orphan Strontium-87 in Abyssal Peridotites: Daddy Was a Granite
NASA Astrophysics Data System (ADS)
Snow, Jonathan E.; Hart, Stanley R.; Dick, Henry J. B.
1993-12-01
The 87Sr/86Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," 87Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan 87Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan 87Sr is most likely introduced by infiltration of low-temperature (<200^circC) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan 87Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.
Ionizing radiation regulates cardiac Ca handling via increased ROS and activated CaMKII.
Sag, Can M; Wolff, Hendrik A; Neumann, Kay; Opiela, Marie-Kristin; Zhang, Juqian; Steuer, Felicia; Sowa, Thomas; Gupta, Shamindra; Schirmer, Markus; Hünlich, Mark; Rave-Fränk, Margret; Hess, Clemens F; Anderson, Mark E; Shah, Ajay M; Christiansen, Hans; Maier, Lars S
2013-11-01
Ionizing radiation (IR) is an integral part of modern multimodal anti-cancer therapies. IR involves the formation of reactive oxygen species (ROS) in targeted tissues. This is associated with subsequent cardiac dysfunction when applied during chest radiotherapy. We hypothesized that IR (i.e., ROS)-dependently impaired cardiac myocytes' Ca handling might contribute to IR-dependent cardiocellular dysfunction. Isolated ventricular mouse myocytes and the mediastinal area of anaesthetized mice (that included the heart) were exposed to graded doses of irradiation (sham 4 and 20 Gy) and investigated acutely (after ~1 h) as well as chronically (after ~1 week). IR induced a dose-dependent effect on myocytes' systolic function with acutely increased, but chronically decreased Ca transient amplitudes, which was associated with an acutely unaltered but chronically decreased sarcoplasmic reticulum (SR) Ca load. Likewise, in vivo echocardiography of anaesthetized mice revealed acutely enhanced left ventricular contractility (strain analysis) that declined after 1 week. Irradiated myocytes showed persistently increased diastolic SR Ca leakage, which was acutely compensated by an increase in SR Ca reuptake. This was reversed in the chronic setting in the face of slowed relaxation kinetics. As underlying cause, acutely increased ROS levels were identified to activate Ca/calmodulin-dependent protein kinase II (CaMKII). Accordingly, CaMKII-, but not PKA-dependent phosphorylation sites of the SR Ca release channels (RyR2, at Ser-2814) and phospholamban (at Thr-17) were found to be hyperphosphorylated following IR. Conversely, ROS-scavenging as well as CaMKII-inhibition significantly attenuated CaMKII-activation, disturbed Ca handling, and subsequent cellular dysfunction upon irradiation. Targeted cardiac irradiation induces a biphasic effect on cardiac myocytes Ca handling that is associated with chronic cardiocellular dysfunction. This appears to be mediated by increased oxidative stress and persistently activated CaMKII. Our findings suggest impaired cardiac myocytes Ca handling as a so far unknown mediator of IR-dependent cardiac damage that might be of relevance for radiation-induced cardiac dysfunction.
NASA Astrophysics Data System (ADS)
English, N. B.; Reynolds, A. C.; Quade, J.; Betancourt, J. L.
2006-12-01
We describe the spatial and temporal patterns of timber acquisition by great house builders in Chaco Canyon, New Mexico. The 87Sr/86Sr ratios from annually-dated, architectural logs in 10^{th} to 12^{th} century structures are compared to the 87Sr/86Sr of modern tree stands from the surrounding mountains. Although not a stable isotope system, the long half-life of the 87Sr parent (87Rb, t1/2 = 48.8 Ga) yields a stable isotope system on the timescales used to determine the geographic origin of ecosystem resources. The small mass difference among strontium's isotopes eliminates measurable biologic or kinetic fractionation at earth surface conditions. Strontium tracer studies, however, do require distinct end-member ratios to be feasible. Strontium isotopes, alone or in combination with other isotopes, provide a simple way to study and trace the geographic origin of ecosystem resources. Over the 150 km-wide Chaco Basin, 87Sr/86Sr ratios of modern trees range from 0.7055 to 0.7192. 87Sr/86Sr ratios from this and other studies show that during great house construction Chaco Canyon was provisioned with plant materials that came from more than 75 km away in all directions. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, (2) spruce (Picea sp.) and fir (Abies sp.) architectural beams from the high crests of the Chuska and San Mateo Mountains to the west and south, and (3) ponderosa pine (Pinus ponderosa) from the low slopes of the La Platas and San Juan Mountains to the north, the San Pedro Mountains to the east, the Chuska and San Mateo Mountains and nearby mesas. There are no systematic patterns in spruce/fir or ponderosa provenance by great house (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo) or by time, suggesting the use of stockpiles from a few preferred sources from the beginning of large scale construction in or around Chaco Canyon. This is contrary to the view that Chacoan's travelled further for timber as nearby stands of timber were depleted. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic footprint of the larger Chacoan system. While our study addresses ancient resource procurement patterns, the strontium method is suitable for many modern studies including ecological and forensic applications.
Marchionni, Sara; Braschi, Eleonora; Tommasini, Simone; Bollati, Andrea; Cifelli, Francesca; Mulinacci, Nadia; Mattei, Massimo; Conticelli, Sandro
2013-07-17
The radiogenic isotopic compositions of inorganic heavy elements such as Sr, Nd, and Pb of the food chain may constitute a reliable geographic fingerprint, their isotopic ratios being inherited by the geological substratum of the territory of production. The Sr isotope composition of geomaterials (i.e., rocks and soils) is largely variable, and it depends upon the age of the rocks and their nature (e.g., genesis, composition). In this study we developed a high-precision analytical procedure for determining Sr isotopes in wines at comparable uncertainty levels of geological data. With the aim of verifying the possibility of using Sr isotope in wine as a reliable tracer for geographic provenance, we performed Sr isotope analyses of 45 bottled wines from four different geographical localities of the Italian peninsula. Their Sr isotope composition has been compared with that of rocks from the substrata (i.e., rocks) of their vineyards. In addition wines from the same winemaker but different vintage years have been analyzed to verify the constancy with time of the (87)Sr/(86)Sr. Sr isotope compositions have been determined by solid source thermal ionization mass spectrometry following purification of Sr in a clean laboratory. (87)Sr/(86)Sr of the analyzed wines is correlated with the isotopic values of the geological substratum of the vineyards, showing little or no variation within the same vineyard and among different vintages. Large (87)Sr/(86)Sr variation is observed among wines from the different geographical areas, reinforcing the link with the geological substratum of the production territory. This makes Sr isotopes a robust geochemical tool for tracing the geographic authenticity and provenance of wine.
Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico
English, N.B.; Betancourt, J.L.; Dean, J.S.; Quade, Jay
2001-01-01
Between A.D. 900 and 1150, more than 200,000 conifer trees were used to build the prehistoric great houses of Chaco Canyon, New Mexico, in what is now a treeless landscape. More than one-fifth of these timbers were spruce (Picea) or fir (Abies) that were hand-carried from isolated mountaintops 75-100 km away. Because strontium from local dust, water, and underlying bedrock is incorporated by trees, specific logging sites can be identified by comparing 87Sr/86Sr ratios in construction beams from different ruins and building periods to ratios in living trees from the surrounding mountains. 87Sr/86Sr ratios show that the beams came from both the Chuska and San Mateo (Mount Taylor) mountains, but not from the San Pedro Mountains, which are equally close. Incorporation of logs from two sources in the same room, great house, and year suggest stockpiling and intercommunity collaboration at Chaco Canyon. The use of trees from both the Chuska and San Mateo mountains, but not from the San Pedro Mountains, as early as A.D. 974 suggests that selection of timber sources was driven more by regional socioeconomic ties than by a simple model of resource depletion with distance and time.
Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico.
English, N B; Betancourt, J L; Dean, J S; Quade, J
2001-10-09
Between A.D. 900 and 1150, more than 200,000 conifer trees were used to build the prehistoric great houses of Chaco Canyon, New Mexico, in what is now a treeless landscape. More than one-fifth of these timbers were spruce (Picea) or fir (Abies) that were hand-carried from isolated mountaintops 75-100 km away. Because strontium from local dust, water, and underlying bedrock is incorporated by trees, specific logging sites can be identified by comparing (87)Sr/(86)Sr ratios in construction beams from different ruins and building periods to ratios in living trees from the surrounding mountains. (87)Sr/(86)Sr ratios show that the beams came from both the Chuska and San Mateo (Mount Taylor) mountains, but not from the San Pedro Mountains, which are equally close. Incorporation of logs from two sources in the same room, great house, and year suggest stockpiling and intercommunity collaboration at Chaco Canyon. The use of trees from both the Chuska and San Mateo mountains, but not from the San Pedro Mountains, as early as A.D. 974 suggests that selection of timber sources was driven more by regional socioeconomic ties than by a simple model of resource depletion with distance and time.
Hissler, Christophe; Stille, Peter; Krein, Andreas; Geagea, Majdi Lahd; Perrone, Thierry; Probst, Jean-Luc; Hoffmann, Lucien
2008-11-01
Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production.
NASA Astrophysics Data System (ADS)
Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai
2013-09-01
Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.
Monte Carlo simulations for the space radiation superconducting shield project (SR2S).
Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R
2016-02-01
Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Li, Guohao; Wei, Wei; Shao, Xia; Nie, Lei; Wang, Hailin; Yan, Xiao; Zhang, Rui
2018-05-01
In China, volatile organic compound (VOC) control directives have been continuously released and implemented for important sources and regions to tackle air pollution. The corresponding control requirements were based on VOC emission amounts (EA), but never considered the significant differentiation of VOC species in terms of atmospheric chemical reactivity. This will adversely influence the effect of VOC reduction on air quality improvement. Therefore, this study attempted to develop a comprehensive classification method for typical VOC sources in the Beijing-Tianjin-Hebei region (BTH), by combining the VOC emission amounts with the chemical reactivities of VOC species. Firstly, we obtained the VOC chemical profiles by measuring 5 key sources in the BTH region and referencing another 10 key sources, and estimated the ozone formation potential (OFP) per ton VOC emission for these sources by using the maximum incremental reactivity (MIR) index as the characteristic of source reactivity (SR). Then, we applied the data normalization method to respectively convert EA and SR to normalized EA (NEA) and normalized SR (NSR) for various sources in the BTH region. Finally, the control index (CI) was calculated, and these sources were further classified into four grades based on the normalized CI (NCI). The study results showed that in the BTH region, furniture coating, automobile coating, and road vehicles are characterized by high NCI and need to be given more attention; however, the petro-chemical industry, which was designated as an important control source by air quality managers, has a lower NCI. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.
2015-12-01
Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and nutrient sources in the highly depleted surface soils of tropical oceanic islands.
5 Ma of plume source evolution in the Niihau - Kauai - North Arch magmas, Hawaii
NASA Astrophysics Data System (ADS)
Beguelin, P.; Bizimis, M.; McIntosh, E. C.; Cousens, B.; Clague, D. A.
2017-12-01
The Hawaiian islands of Kauai, Niihau and Kaula form a 200 km wide platform across the plume track and record the longest activity record of Hawaiian volcanism ( > 5Ma) [1]. We present new Hf and high precision Pb (MC-ICP-MS with Tl addition) isotope data on 56 previously characterized [2] shield, post-shield and rejuvenated stage lavas from Kauai and Niihau, and on rejuvenated lavas from the North Arch volcanic field, 250 km NE of Kauai. These samples cover nearly the full eruptive history of Kauai and Niihau, and complete an across-plume transect of rejuvenated volcanism, along with published Kaula values [3]. In Nd-Hf-Sr-Pb isotope spaces [2], shield and post-shield lavas from Kauai and Niihau partially overlap the Koolau shield lavas (KSDP, Oahu [4]). Rejuvenated lavas from Kauai and Niihau show a 3 ɛNd units variability and overlap North Arch at a common depleted composition at ɛNd 9 and ɛHf 14. Kauai rejuvenated lavas in part overlap shield and post-shield lavas in Nd-Hf, but extend to lower ɛHf values for a given 87Sr/86Sr and ɛNd. In contrast Niihau rejuvenated lavas have higher ɛHf for a given ɛNd and 87Sr/86Sr compared to all Hawaiian shield lavas. The Niihau data cannot be explained by contribution of a proximal shield stage plume source (e.g. Niihau or Kauai). Instead it is consistent with mixing between a depleted mantle source and an enriched component with high Nd/Hf, Sr/Hf ratios, akin to a carbonatite with low ɛHf and ɛNd, and with their trace element systematics [5] . ICP-MS Pb isotope data for rejuvenated lavas from Kaula, Niihau, Kauai, and North Arch form three distinct arrays, confirming heterogeneity in the rejuvenated source. Our data is consistent with the presence of an enriched, Koolau-like component in the source of shield, post-shield and rejuvenated volcanism in Kauai and Niihau. The rejuvenated sources are heterogeneous across the plume, with the most isotopically depleted values seen in the distal North Arch volcanic field. [1] Garcia et al. (2016) GCA 185 278-301. [2] Cousens & Clague (2015) J. of Pet., egv045 [3] Bizimis et al. (2013) G3, 14(10), 4458-4478. [4] Salters et al. (2006) Contrib. to Min. and Pet. 151(3), 297-312. [5] Dixon et al. (2008) G3 9(9).
NASA Astrophysics Data System (ADS)
Zitek, Andreas; Tchaikovsky, Anastassiya; Irrgeher, Johanna; Waidbacher, Herwig; Prohaska, Thomas
2014-05-01
Isoscapes - spatially distributed isotope patterns across landscapes - are increasingly used as important basis for ecological studies. The natural variation of the isotopic abundances in a studied area bears the potential to be used as natural tracer for studying e.g. migrations of animals or prey-predator relations. The 87Sr/86Sr ratio is one important tracer, since it is known to provide a direct relation of biological samples to geologically distinct regions, as Sr isotopes are incorporated into living tissues as a proxy for calcium and taken up from the environment without any significant fractionation. Although until now the focus has been mainly set on terrestrial systems, maps for aquatic systems are increasingly being established. Here we present the first 87Sr/86Sr aquatic isoscape of the Danube catchment, the second largest river catchment in Europe, from near its source starting at river km 2581 in Germany down to its mouth to river km 107 in Romania. The total length of the river Danube is 2780 km draining a catchment area 801 463 km2 (10 % of the European continent). The major purpose of this study was to assess the potential of the 87Sr/86Sr isotope ratio to be used as tool for studying fish migrations at different scales in the entire Danube catchment. Within the Joint Danube Research 3 (JDS 3), the biggest scientific multi-disciplinary river expedition of the World in 2013 aiming at the assessment of the ecological status and degree of human alterations along the river Danube, water samples were taken at 68 pre-defined sites along the course of the river Danube including the major tributaries as a basis to create the so called 'Isoscape of the Danube catchment'. The determination of 87Sr/86Sr isotope ratio in river water was performed by multicollector-sector field-inductively coupled plasma-mass spectrometry (MC-SF-ICP-MS). The JDS 3 data were combined with existing data from prior studies conducted within the Austrian part of the Danube catchment. Finally, the dominating geological formations in the catchment upstream of the sampling site were determined using ArcGIS. Analyses of water samples yielded several 'Isozones' along the course of the Danube, indicating diverse geological conditions. Studying migration phenomena of fish using natural isotopic marks in hard parts is especially possible between these 'Isozones'. In geologically similar regions with little differences in the 87Sr/86Sr isotope ratio, element distributions or artificial marking methods (tagging, spiking) can be used complementarily. A significant positive relationship between the 87Sr/86Sr ratio in river water and the proportion of siliceous geological formations in the catchment was found. Moreover, the 87Sr/86Sr isotope ratio along the Austrian part of the Danube and its tributaries proved to be stable between seasons. The strong relation of the geology of a catchment to the 87Sr/86Sr isotope ratios in river water provides the possibility to predict the 87Sr/86Sr ratios in river water by the dominating geology in river catchments, for an estimation of the general applicability of the 87Sr/86Sr ratio in European rivers to fish ecological questions.
Isotopic composition of Pb and Th in interplinian volcanics from Somma-Vesuvius volcano, Italy
Cortini, M.; Ayuso, R.A.; de Vivo, B.; Holden, P.; Somma, R.
2004-01-01
We present a detailed isotopic study of volcanic rocks emitted from Somma-Vesuvius volcano during three periods of interplinian activity: "Protohistoric" (3550 y B.P. to 79 A.D.), "Ancient Historic" (79 to 472 A.D.) and "Medieval" (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source. The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions of Sr and Nd. We suggest that reactions between magmas and fluids transported Pb and U, but not Sr. These data show that isotope mixing in the mantle is active at different times and scales. ?? Springer-Verlag 2004.
NASA Technical Reports Server (NTRS)
Rankenburg, K.; Brandon, A. D.; Norman, M. D.
2007-01-01
Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1 to 2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991+/-14 Ma, with an initial Sr-87/Sr-88 at the time of crystallization of 0.699836+/-0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992+/-85 (initial Epsilon Nd-143 = +2.9+/-0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated Sm-147/Nd-144 source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.
Construction and performance of a high-temperature-superconductor composite bolometer
NASA Technical Reports Server (NTRS)
Brasunas, J. C.; Moseley, S. H.; Lakew, B.; Ono, R. H.; Mcdonald, D. G.
1989-01-01
A high-Tc superconducting bolometer has been constructed using a YBa2Cu3O(x) thin-film meander line 20 microns wide and 76,000 microns long, deposited on a SrTiO3 substrate. Radiation is absorbed by a thin film of Bi with well-characterized absorption properties deposited on a Si substrate in contact with the SrTiO3. At 1.8 Hz the measured bolometer response to a 500-K blackbody is 5.2 V/W (820 V/W extrapolated to dc). The impact of apparent nonohmic behavior at the transition is discussed, as are ways of reducing the observed 1/f noise. The response time is 32 s and is dominated by the heat capacity of the SrTiO3 substrate.
Naitow, Hisashi; Matsuura, Yoshinori; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Tanaka, Rie; Tanaka, Tomoyuki; Sugahara, Michihiro; Kobayashi, Jun; Nango, Eriko; Iwata, So; Kunishima, Naoki
2017-08-01
Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.
The dynamic micro computed tomography at SSRF
NASA Astrophysics Data System (ADS)
Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.
2018-05-01
Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.
NASA Astrophysics Data System (ADS)
Vukadinovic, Danilo; Nicholls, Ian A.
1989-09-01
Selected major and trace elements, rare earth element (REE) and 87Sr /86Sr data are presented for arc basalts from Gunung Slamet volcano, Java, Indonesia. On the basis of stratigraphy, trace element content, Zr/Nb, and 87Sr /86Sr ratios, Slamet basalts can be broadly categorized into high abundance magma (HAM) and low abundance magma (LAM) types. Provided the quantities of 'immobile' trace elements (in aqueous systems) such as Nb, Hf and Zr in the mantle wedge and ensuing magmas are unaffected by additions from subducted lithosphere or overlying arc crust, a model may be developed whereby LAM are generated by higher degrees of melting in the mantle wedge (13%) compared to HAM (7%). Hf/Nb or Zr/Nb ratio systematics indicate that prior to metasomatism by the underlying lithosphere, the Slamet mantle wedge was similar in chemical character to transitional-MORB source mantle. Conversely, examination of immobile/mobile incompatible trace element ratios (IMITER) provide clues to the nature of the metasomatizing agent, most likely derived from the subducted slab (basalts and sediments). HAM have constant IMITER ( e.g.Nb/U, Zr/K), whereas LAM show a negative correlation between IMITER and 87Sr /86Sr . Metasomatism of the mantle wedge was modelled by interaction with either a slab-derived-melt or -aqueous fluid. Yb/Sr and 87Sr /86Sr ratios from Slamet basalts and oceanic sediments suggest that 'bulk' mixing of the latter into the mantle wedge is unlikely. Instead, sediments probably interact with overlying mantle in the same way that subducted basalts do-either as melts or fluids. In the case of slab-derived melts mixing with 'pristine' mantle, good agreement with back-calculated values for HAM and LAM sources can be achieved only if a residual phase such as rutile persists in the subducting lithosphere. In the case of fluids, excellent agreement with back-calculated values is obtained for all elements except heavy REE. It is tentatively suggested that aqueous slab-derived fluids, relatively rich in mobile incompatible elements, are the probable metasomatizing agent responsible for the chemical characteristics, particularly low IMITER, of Slamet and other island arc basalts (IAB). Because the mobilities/solubilities of Sr in high pressure and temperature fluids are poorly known, the modelled subduction fluids are not necessarily efficient at raising 87Sr /86Sr in the overlying mantle wedge. As a result, positive correlations between e.g.Ba/La vs. 87Sr /86Sr need not be observed in arc suites, especially if the relative mobilities of Sr, Ba, and La are dependent upon intensive parameters during metasomatism. Assimilation of arc crust by uprising magmas (up to ~14% of crustal Sr) can account for the range of 87Sr /86Sr in HAM. However, calculating the amounts of arc crustal assimilation by uprising magmas is poorly constrained since such modelling is highly dependent upon previous estimates of the degree of metasomatism undergone by the mantle wedge.
Quantitative analysis of vacuum-ultraviolet radiation from nanosecond laser-zinc interaction
NASA Astrophysics Data System (ADS)
Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin
2018-07-01
The paper reports measurements of the vacuum-ultraviolet spectral irradiances of a flat zinc target over a wavelength region of 124-164 nm generated by 10 and 60 ns duration low-intensities, 5 ×109 - 3 ×1010 W cm-2, 1.06 μm wavelength laser pulses. Maximum radiation conversion efficiencies of 2.5%/2πsr and 0.8%/2πsr were measured for 60 and 10 ns laser pulses at the intensities of 5 ×109 and 1.4 ×1010 W cm-2, respectively. Atomic structure calculations using a relativistic configuration-interaction, flexible atomic code and a developed non-local thermodynamic equilibrium population kinetics model in comparison to the experimental spectra detected by the Seya-Namioka type monochromator reveal the strong broadband experimental emission originates mainly from 3d94p-3d94s, 3d94d-3d94p and 3d84p-3d84s, 3d84d-3d84p unresolved-transition arrays of double and triple ionized zinc, respectively. Two-dimensional radiation-hydrodynamics code is used to investigate time-space plasma evolution and spectral radiation of a 10 ns full-width-at-half-maximum Gaussian laser pulse-zinc interaction.
NASA Astrophysics Data System (ADS)
Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.
2014-12-01
87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.
Femtosecond Beam Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uesaka, Mitsuru
2004-12-07
Short particle beam science has been promoted by electron linac and radiation chemistry up to picoseconds. Recently, table-top TW laser enables several kinds of short particle beams and pump-and-probe analyses. 4th generation SR sources aim to generation and application of about 100 fs X-ray. Thus, femtosecond beam science has become one of the important field in advanced accelerator concepts. By using electron linac with photoinjector, about 200 fs single bunch and 3 fs multi-bunches are available. Tens femtoseconds monoenergetic electron bunch is expected by laser plasma cathode. Concerning the electron bunch diagnosis, we have seen remarkable progress in streak camera,more » coherent radiation spectroscopy, fluctuation method and E/O crystal method. Picosecond time-resolved pump-and-probe analysis by synchronizing electron linac and laser is now possible, but the timing jitter and drift due to several fluctuations in electronic devices and environment are still in picoseconds. On the other hand, the synchronization between laser and secondary beam is done passively by an optical beam-splitter in the system based on one TW laser. Therefore, the timing jitter and drift do not intrinsically exist there. The author believes that the femtosecond time-resolved pump-and-probe analysis must be initiated by the laser plasma beam sources. As to the applications, picosecond time-resolved system by electron photoinjector/linac and femtosecond laser are operating in more than 5 facilities for radiation chemistry in the world. Ti:Sapphire-laser-based repetitive pump-and-probe analysis started by time-resolved X-ray diffraction to visualize the atomic motion. Nd:Glass-laser-based single-shot analysis was performed to visualize the laser ablation via the single-shot ion imaging. The author expects that protein dynamics and ultrafast nuclear physics would be the next interesting targets. Monograph titled 'Femtosecond Beam Science' is published by Imperial College Press/World Scientific in 2004.« less
NASA Astrophysics Data System (ADS)
Bizimis, Michael; Salters, Vincent J. M.; Garcia, Michael O.; Norman, Marc D.
2013-10-01
Rejuvenated volcanism refers to the reemergence of volcanism after a hiatus of 0.5-2 Ma following the voluminous shield building stage of Hawaiian volcanoes. The composition of the rejuvenated source and its distribution relative to the center of the plume provide important constraints on the origin of rejuvenated volcanism. Near-contemporaneous lavas from the Kaula-Niihau-Kauai ridge and the North Arch volcanic field that are aligned approximately orthogonally to the plume track can constrain the lateral geochemical heterogeneity and distribution of the rejuvenated source across the volcanic chain. Nephelinites, phonolites and pyroxenite xenoliths from Kaula Island have radiogenic Hf, Nd and unradiogenic Sr isotope compositions consistent with a time-integrated depleted mantle source. The pyroxenites and nephelinites extend to the lowest 208Pb/204Pb reported in Hawaiian rocks. These data, along with new Pb isotope data from pyroxenites from the Salt Lake Crater (Oahu) redefine the composition of the depleted end-member of the Hawaiian rejuvenated source at 208Pb/204Pb=37.35±0.05, 206Pb/204Pb = 17.75±0.03, ɛNd = 9-10, ɛHf ˜16-17 and 87Sr/88Sr <0.70305. The revised isotope composition also suggests that this depleted component may contribute to LOA and KEA trend shield stage Hawaiian lavas, consistent with the rejuvenated source being part of the Hawaiian plume and not entrained upper mantle. The isotope systematics of rejuvenated magmas along the Kaula-Niihau-Kauai-North Arch transect are consistent with a larger proportion of the rejuvenated depleted component in the periphery of the plume track rather than along its axis.
CMOS sensor as charged particles and ionizing radiation detector
NASA Astrophysics Data System (ADS)
Cruz-Zaragoza, E.; Piña López, I.
2015-01-01
This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained.
NASA Astrophysics Data System (ADS)
Cosentino, N. J.; Jordan, T. E.; Derry, L. A.; Morgan, J. P.
2015-12-01
An elevation-dependent relationship of the 87Sr/86Sr ratio of Holocene surface accumulations of sulfate salts is demonstrated for a continental margin hyperarid setting. In the Atacama Desert of northern Chile, gypsum and anhydrite of multiple origins exist widely on superficial materials that originated during the last 10,000 years. An important source of calcium sulfate is from offshore-generated stratocumulus clouds that are advected onto the continent, where they generate fog that transfers water droplets to the ground surface which, upon evaporation, leaves calcium sulfate crystals. Meteorological measurements of the cloud base and top altitudes average ˜400 m and ˜1100 m above sea level (masl), respectively. The seawater ratio of 87Sr/86Sr (0.70917) is distinctively higher than that reported for weathered mean Andean rock (less than 0.70750). Samples of 28 modern surface salt accumulations for locations between 200 and 2950 masl and between ˜19°30' and ˜21°30'S verify that 87Sr/86Sr varies as a function of site altitude. Sites below 1075 masl and above 225 masl display calcium sulfate 87Sr/86Sr of mean value 0.70807 ± 0.00004, while the ratio outside this altitudinal domain is 0.70746 ± 0.00010. Thus, the 87Sr/86Sr ratio of Holocene salt accumulations differentiates two altitudinal domains.
Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes
Ingram, B.L.; Hein, J.R.; Farmer, G.L.
1990-01-01
87Sr 86Sr ratios, trace element and REE compositions, and textural characteristics were determined for three hydrogenetic Fe-Mn crusts, one hydrothermal deposit, and two mixed hydrothermalhydrogenetic crusts from the Pacific. The Sr isotope data are compared to the Sr seawater curve for the Cenozoic to determine the ages and growth rates of the crusts. The 87Sr 86Sr in the crusts does not increase monotonically with depth as expected if the Sr were solely derived from seawater and perfectly preserved since deposition. This indicates post-depositional exchange of Sr or heterogeneous sources for the Sr originally contained in the crusts. Textures of hydrogenetic crusts generally correlate with Sr isotopic variations. The highest porosity intervals commonly exhibit the highest 87Sr 86Sr ratios, indicating exchange with younger seawater. Intervals with the lowest porosity commonly have lower 87Sr 86Sr and may preserve the original Sr isotopic ratios. Minimum ages of crust growth inception were calculated from dense, low porosity intervals. Growth of the hydrogenetic crusts began at or after 23 Ma, although their substrates are Cretaceous. Estimated average growth rates of the three hydrogenetic crusts vary between 0.9 and 2.7 mm/Ma, consistent with published rates determined by other techniques. Within the Marshall Islands crust, growth rates for individual layers varied greatly between 1.0 and 5.4 mm/Ma. For one crust, very low 87Sr 86Sr ratios occurred in detrital-rich intervals. Hydrothermal Fe-Mn oxide from the active Lau Basin back-arc spreading axis (Valu Fa Ridge) has an 87Sr 86Sr ratio with a predominantly seawater signature ( 87Sr 86Sr 0.709196), indicating a maximum age of 0.9 Ma. One crust from an off-axis seamount west of Gorda Ridge may have begun precipitating hydrogenetically at 0.5 Ma (0.709211), and had increasing hydrothermal or volcanic input in the top half of the crust, indicated by a significantly lower 87Sr 86Sr ratio (0.709052). ?? 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A.J.; Marshall, C.D.; Schaffers, K.I.
Ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F (S-FAP) has been shown to be a useful material for diode pumping, since it displays high gain, low loss, and a long radiative lifetime. One of the issues with S-FAP is that it has a relatively narrow absorption bandwidth ({approximately}5 nm) at 900 nm, the diode-pumping wavelength, while the diode`s output bandwidth can be large ({approximately}10 nm). By changing the host slightly, the absorption feature can be broadened to better match the pump bandwidth. Four mixed crystal boules of Yb{sup 3+}:Sr{sub 5{minus}x}Ba{sub x}(PO{sub 4}){sub 3}F were grown by the Czochralski method with x = 0.25,more » 0.5, 1, and 2. The bandwidth of the 900-nm absorption feature was found to grow with increasing barium concentration from 4.7 nm to a maximum of 15.9 nm. Emission spectra showed a similar bandwidth increase with barium content from 4.9 nm to a maximum of 10 nm. Emission cross sections for these materials were deduced by the methods of reciprocity, the Einstein method, and small-signal gain. The absorption feature`s homogeneity was probed using a tunable pump source which qualitatively showed that the barium-broadened lines were at least partly inhomogeneous. Each of these materials lased with a variety of output couplers. This family of materials was found to provide suitable laser hosts where a broader absorption and/or emission bandwidth is desired.« less
Stable Isotopes of Sr and Pb as Tracers of Sources of Airborne Particulate Matter in Kyrgyzstan
ConclusionsElemental concentrations were higher at the LIDAR site compared to the Bishkek site. Also, concentrations were higher during dust than non-dust events at both sites.The Sr isotopic ratios suggest dust from another region, such as from Western China, Africa, or Middle E...
Who provided maize to Chaco Canyon after the mid-12th-century drought?
Benson, Larry V.
2010-01-01
Between A.D. 1181 and 1200, in the early part of a climatically wet period, corn was imported to Chaco Canyon from a region outside the Chaco Halo (defined in this paper as the region between the base of the Chuska Mountains and Raton Wells). Strontium-isotope (87Sr/86Sr) analyses of 12 corn cobs dating to this period match 87Sr/86Sr ratios from five potential source areas, including: the Zuni region, the Mesa Verde-McElmo Dome area, the Totah, the Defiance Plateau, and Lobo Mesa. The latter two areas were eliminated from consideration as possible sources of corn in that they appear to have been unpopulated during the time period of interest. Therefore, it appears that the corn cobs were imported from the Zuni region, the Mesa Verde-McElmo Dome area, or the Totah area during a time when the climate was relatively wet and when a surplus of corn was produced in regions outside Chaco Canyon. Based on proximity to and cultural affiliation with Chaco Canyon, it is hypothesized that the corn probably was imported from the Totah.
Color centers inside crystallic active media
NASA Astrophysics Data System (ADS)
Mierczyk, Zygmunt; Kaczmarek, Slawomir M.; Kopczynski, Krzysztof
1995-03-01
This paper presents research results on color centers induced by radiation of a xenon lamp in non doped crystals of yttrium aluminum garnet Y3Al5O12 (YAG), strontium- lanthanum aluminate SrLaAlO4 (SLAO), strontium-lanthanum gallate SrLaGa3O7 (SLGO), and in doped crystals: Nd:YAG, Cr, Tm, Ho:YAG (CTH:YAG), Nd:SLAO and Nd:SLGO. In all these investigated crystals under the influence of intensive exposure by xenon lamp radiation additional bands connected with centers O-2, O2 and centers F came up near the short-wave absorption edge. In the case of doped crystals the observed processes are much more complicated. In crystals CTH:YAG the greatest perturbations in relation to basic state are present at the short-wave absorption edge, as well as on areas of absorption bands of ions Cr+3 and Tm+3 conditioning the sensibilization process of ions Ho+3. These spectral structure disturbances essentially influence the efficiency of this process, as proven during generating investigations. In the case of SrLaGa3O7:Nd+3 under the influence of exposure substantial changes of absorption spectrum occurred on spectral areas 346 divided by 368 nm, 429 divided by 441 nm and 450 divided by 490 nm. Those changes have an irreversible character. They disappear not before the plate is being held at oxidizing atmosphere. Investigations of laser rods Nd:SLGO, CTH:YAG, and Nd:YAG in a free generation demonstrated that the color centers of these crystals are induced by pomp radiation from the spectral area up to 450 nm.
NASA Astrophysics Data System (ADS)
Tonarini, Sonia; Armienti, Pietro; D'Orazio, Massimo; Innocenti, Fabrizio
2001-11-01
New whole-rock B, Sr, Nd isotope ratios and 87Sr/ 86Sr on clinopyroxenes have been collected to study the enrichment of fluid mobile elements (FMEs) observed in Mt. Etna volcanics. Etna volcano, one of the most active in the world, is located in an extremely complex tectonic context at the boundary between colliding African and European plates. The analytical work focuses on current (1974-1998) and historic (1851-1971) eruptive activity, including some key prehistoric lavas, in order to interpret the secular shift of its geochemical signature to more alkaline compositions. Boron is used as a tool to unravel the role of fluids in the genesis of magmas, revealing far-reaching consequences, beyond the case study of Mt. Etna. Small variations are observed in δ 11B (-3.5 to -8.0‰), 87Sr/ 86Sr (0.70323-0.70370), and 143Nd/ 144Nd (0.51293-0.51287). Moreover, temporal evolution to higher δ 11B and 87Sr/ 86Sr, and to lower 143Nd/ 144Nd, is observed in the current activity, defining a regular trend. Sr isotopic equilibrium between whole-rock and clinopyroxene pairs indicates the successive introduction of three distinct magma types into the Etna plumbing system over time; these are characterized by differing degrees of FME enrichment. In addition, certain lavas exhibit evidence for country rock assimilation, magma-fluid interaction, or magma mixing in the shallow feeding system; at times these processes apparently lowered magmatic δ 11B and/or induced Sr isotopic disequilibrium between whole rock and clinopyroxene. The regular increase of δ 11B values is correlated with Nb/FME and 87Sr/ 86Sr ratios; these correlations are consistent with simple mixing between the mantle source and aqueous fluids derived from nearby Ionian slab. The best fit of Mt. Etna data is obtained using an enriched-MORB mantle source and a fluid phase with δ 11B of about -2‰ and 87Sr/ 86Sr of 0.708. We argue that the slab window generated by differential roll-back of subducting Ionian lithosphere (with respect to Sicily) allows the upwelling of asthenosphere from below the subduction system and provides a suitable path of rise for subduction-related fluids. The increasing geochemical signature of fluid mobile elements enrichment to Mt. Etna lavas is considered a consequence of the progressive opening of slab window through time.
Shishkina, E A; Lyubashevskii, N M; Tolstykh, E I; Ignatiev, E A; Betenekova, T A; Nikiforov, S V
2001-09-01
A mathematical model for calculation of the 90Sr absorbed doses in dental tissues is presented. The results of the Monte-Carlo calculations are compared to the data obtained by EPR measurements of dental tissues. Radiometric measurements of the 90Sr concentrations. TLD and EPR dosimetry investigations were performed in animal (dog) study. The importance of the irregular 90Sr distribution in the dentine for absorbed dose formation has been shown. The dominant dose formation factors (main source-tissues) were identified for the crown dentine and enamel. The model has shown agreement with experimental data which allows to determine further directions of the human tooth model development.
Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...
2015-05-01
Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Queenie; Liverpool Hospital, Sydney, NSW; Hee, Leia
Purpose: To evaluate 2-dimensional strain imaging (SI) for the detection of subclinical myocardial dysfunction during and after radiation therapy (RT). Methods and Materials: Forty women with left-sided breast cancer, undergoing only adjuvant RT to the left chest, were prospectively recruited. Standard echocardiography and SI were performed at baseline, during RT, and 6 weeks after RT. Strain (S) and strain rate (Sr) parameters were measured in the longitudinal, circumferential, and radial planes. Correlation of change in global longitudinal strain (GLS % and Δ change) and the volume of heart receiving 30 Gy (V30) and mean heart dose (MHD) were examined. Results: Leftmore » ventricular ejection fraction was unchanged; however, longitudinal systolic S and Sr and radial S were significantly reduced during RT and remained reduced at 6 weeks after treatment [longitudinal S (%) −20.44 ± 2.66 baseline vs −18.60 ± 2.70* during RT vs −18.34 ± 2.86* at 6 weeks after RT; longitudinal Sr (s{sup −1}) −1.19 ± 0.21 vs −1.06 ± 0.18* vs −1.06 ± 0.16*; radial S (%) 56.66 ± 18.57 vs 46.93 ± 14.56* vs 49.22 ± 15.81*; *P<.05 vs baseline]. Diastolic Sr were only reduced 6 weeks after RT [longitudinal E Sr (s{sup −1}) 1.47 ± 0.32 vs 1.29 ± 0.27*; longitudinal A Sr (s{sup −1}) 1.19 ± 0.31 vs 1.03 ± 0.24*; *P<.05 vs baseline], whereas circumferential strain was preserved throughout. A modest correlation between S and Sr and V30 and MHD was observed (GLS Δ change and V30 ρ = 0.314, P=.05; GLS % change and V30 ρ = 0.288, P=.076; GLS Δ change and MHD ρ = 0.348, P=.03; GLS % change and MHD ρ = 0.346, P=.031). Conclusions: Subclinical myocardial dysfunction was detected by 2-dimensional SI during RT, with changes persisting 6 weeks after treatment, though long-term effects remain unknown. Additionally, a modest correlation between strain reduction and radiation dose was observed.« less
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Borg, A.; Ellis, W.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-07-01
Photoemission measurements on single crystals of La-doped 2212 (Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ) superconductors were carried out utilizing both synchrotron and Al K α (1486.6 eV) radiation. A quantitative analysis of the photoemission data in comparison with similar data for the undoped 2212 material indicates that the La atoms preferentially occupy the Sr sites in the SrO layer next to the BiO plane. Evidence of alternation of the electronic environment of the Bi atoms is found in the Bi 5d core level spectra which show a shoulder at ≈ 1.2 eV higher binding energy, presumably due to the partial substitution of trivalent La ions (La 3+) for divalent Sr ions (Sr 2+). As for the undoped 2212 material, the photoemission spectra reveal a clear Fermi level cut-off at room temperature, single component O ls core level emission, and a Cu 2p satellite to main line intensity ratio of 0.4.
Emery, Matthew V; Stark, Robert J; Murchie, Tyler J; Elford, Spencer; Schwarcz, Henry P; Prowse, Tracy L
2018-04-18
We obtained the oxygen and strontium isotope composition of teeth from Roman period (1st to 4th century CE) inhabitants buried in the Vagnari cemetery (Southern Italy), and present the first strontium isotope variation map of the Italian peninsula using previously published data sets and new strontium data. We test the hypothesis that the Vagnari population was predominantly composed of local individuals, instead of migrants originating from abroad. We analyzed the oxygen ( 18 O/ 16 O) and strontium ( 87 Sr/ 86 Sr) isotope composition of 43 teeth. We also report the 87 Sr/ 86 Sr composition of an additional 13 molars, 87 Sr/ 86 Sr values from fauna (n = 10), and soil (n = 5) samples local to the area around Vagnari. The 87 Sr/ 86 Sr variation map of Italy uses 87 Sr/ 86 Sr values obtained from previously published data sources from across Italy (n = 199). Converted tooth carbonate (δ 18 O DW ) and 87 Sr/ 86 Sr data indicate that the majority of individuals buried at Vagnari were local to the region. ArcGIS bounded Inverse Distance Weighting (IDW) interpolation of the pan-Italian 87 Sr/ 86 Sr data set approximates the expected 87 Sr/ 86 Sr range of Italy's geological substratum, producing the first strontium map of the Italian peninsula. Results suggest that only 7% of individuals buried at Vagnari were born elsewhere and migrated to Vagnari, while the remaining individuals were either local to Vagnari (58%), or from the southern Italian peninsula (34%). Our results are consistent with the suggestion that Roman Imperial lower-class populations in southern Italy sustained their numbers through local reproduction measures, and not through large-scale immigration from outside the Italian peninsula. © 2018 Wiley Periodicals, Inc.
Thermodynamically stable diatomic dications: The cases of SrO2+ and SrH2+
NASA Astrophysics Data System (ADS)
Gonçalves dos Santos, Levi; Franzreb, Klaus; Ornellas, Fernando R.
2018-03-01
A high level theoretical investigation of the low-lying electronic states of the diatomic dications SrO2+ and SrH2+ is presented for the first time along with experimental results of their mass spectra where they were detected. A global and reliable picture of the potential energy curves of the electronic states and the associated spectroscopic parameters provide quantitative results attesting to the thermodynamic stability of both species. Inclusion of spin-orbit interactions does not significantly change the energetic characterization. For SrO2+, the ground (X 3Σ-) and first excited (A 3Π, Te = 3971 cm-1) states are bound (De) by 15.94 kcal mol-1 and 4.71 kcal mol-1, respectively. Transition probabilities (Av'v″) have been evaluated and radiative lifetimes estimated for the vibrational states of A 3Π (v'), and transition probabilities are expected to be diagonally dominant and fall in the far-IR region of the spectrum. For the singlet states a 1Δ, b 1Π, c 1Σ+, and d 1Σ+, transition probabilities have also been calculated for all symmetry allowed transitions and the radiative lifetimes evaluated for selected vibrational states of the upper levels. The transitions associated with the band systems d 1Σ+-b 1Π and d 1Σ+-c 1Σ+, although falling in the yellow region of the spectrum, with overlapping bands, are expected to show quite distinct intensities since the transition moment associated with d 1Σ+-c 1Σ+ is much larger. For singlet transitions, the prediction of relative intensities using the Franck-Condon approximation fails in most of the cases. For SrH2+, only the ground state is bound (De = 6.54 kcal mol-1); with an equilibrium distance of 5.117 a0, the associated spectroscopic parameters (ωe, ωexe, Be) turned out to be (518.9, 32.77, 2.3227) in cm-1. For both species, dipole moment functions illustrate the variation of the molecular polarity with the internuclear distance.
Gao, Ying; Xu, Dan; Zhao, Lei; Sun, Yeqing
2017-01-01
Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under both conditions, the ced-1 mutation favored DNA repair under SF and apoptosis under SR. Notably, 37 miRNAs were predicted to be involved in the DDR. Our study indicates that, the dys-1 mutation reduced the transcriptional response to SF, and the ced-1 mutation increased the response to SR, when compared with the wild type C. elegans. Although some effects were due to radiosensitivity, microgravity, depending on the dystrophin, exerts predominant effects on transcription in C. elegans during short-duration spaceflight. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.
2016-12-01
The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes most susceptible to climate change (such as arctic, coastal, and high-elevation zones).
Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi
2014-09-02
Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.
East Asian origin of central Greenland last glacial dust: just one possible scenario?
NASA Astrophysics Data System (ADS)
Újvári, Gábor; Stevens, Thomas; Svensson, Anders; Klötzli, Urs Stephan; Manning, Christina; Németh, Tibor; Kovács, János
2016-04-01
Dust in Greenland ice cores is used to reconstruct the activity of dust emitting regions and atmospheric circulation for the last glacial period. However, the source dust material to Greenland over this period is the subject of considerable uncertainty. Here we use new clay mineral and Sr-Nd isotopic data from eleven loess samples collected around the Northern Hemisphere and compare the 87Sr/86Sr and 143Nd/144Nd isotopic signatures of fine (<10 μm) separates to existing Greenland ice core dust data (GISP2, GRIP; [1]; [2]). Smectite contents and kaolinite/chlorite (K/C) ratios allow exclusion of continental US dust emitting regions as potential sources, because of the very high (>3.6) K/C ratios and extremely high (>~70%) smectite contents. At the same time, Sr-Nd isotopic compositions demonstrate that ice core dust isotopic compositions can be explained by East Asian (Chinese loess) and/or Central/East Central European dust contributions. Central/East Central European loess Sr-Nd isotopic compositions overlap most with ice core dust, while the Sr isotopic signature of Chinese loess is slightly more radiogenic. Nevertheless, an admixture of 90‒10 % from Chinese loess and circum-Pacific volcanic material would also account for the Sr‒Nd isotopic ratios of central Greenland LGM dust. At the same time, sourcing of ice core dust from Alaska, continental US and NE Siberia seems less likely based on Sr and Nd isotopic signatures. The data demonstrate that currently no unique source discrimination for Greenland dust is possible using both published and our new data [3]. Thus, there is a need to identify more diagnostic tracers. Based on initial Hf isotope analyses of fine separates of three loess samples (continental US, Central Europe, China), an apparent dependence of Hf isotopic signatures on the relative proportions of radiogenic clay minerals (primarily illite) was found, as these fine dust fractions are apparently zircon-free. The observed difference between major potential source regions in 176Hf/177Hf that reach several ɛHf units and the first order clay mineralogy dependence of Hf isotopic signatures means there is strong potential for distinguishing between the two hypothesized Greenland dust sources using Hf isotopes [3]. [1] Biscaye P.E., Grousset F.E., Revel M., Van der Gaast S., Zielinski G.A., Vaars A., Kukla G. (1997). Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. Journal of Geophysical Research 102, 26765-26781. [2] Svensson A., Biscaye P.E., Grousset F.E. (2000) Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research 105, 4637-4656. [3] Újvári G., Stevens T., Svensson A., Klötzli U.S., Manning, C., Németh T., Kovács J., Sweeney M.R., Gocke M., Wiesenberg G.L.B., Markovic S.B., Zech M. (in press). Two possible source regions for Central Greenland last glacial dust. Geophysical Research Letters, doi: 10.1002/2015GL066153.
Geochemical evolution of Kohala Volcano, Hawaii
Lanphere, M.A.; Frey, F.A.
1987-01-01
Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source. ?? 1987 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Sena, G.; Nogueira, L. P.; Braz, D.; Colaço, M. V.; Azambuja, P.; Gonzalez, M. S.; Tromba, G.; Mantuano, A.; Costa, F. N.; Barroso, R. C.
2018-05-01
Synchrotron radiation phase-contrast microtomography (SR-PHC-CT) has become an important tool in studies of insects, mainly Rhodinius prolixus, the insect vector of Chagas disease. A previous work has shown that SR-PHC-CT is an excellent technique in studies about the ecdysis process of R.prolixus head. The term ecdysis refers to the set of behaviors by which an insect extracts itself from an old exoskeleton. The exoskeleton formation is indispensable for the evolutionary success of insect species, so failure to complete ecdysis will, in most cases result in death, making this process an excellent target in the search for new insect pest management strategies. Understanding the behavior of the ecdysis process is fundamental for the non-proliferation of Chagas disease. Despite it has been possible to identify the moulting process in the first work, main structures of the R.prolixus head could not be identified. In this work, it was developed a staining protocol which enabled the identification of these important structures using Iodine at SYRMEP beamline of ELETTRA. In the 3D images, it was possible to segment essential structures in the process of ecdysis. These structures have never been presented previously in the moulting period with SR-PHC-CT.
Franchi, Stefano; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Zamuner, Annj
2018-01-01
In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization. PMID:29518968
Gopala; Rao, G P
2018-02-01
Phytoplasma suspected symptoms of phyllody, witches' broom, leaf yellowing, stunting and little leaf were observed in Chrysanthemum morifolium, Bougainvillea glabra, Jasminum sambac and Callistephus chinensis during survey of flower nurseries and experimental ornamental fields at Delhi, Maharashtra, Tamil Nadu and Karnataka from 2014 to 2016. Pleomorphic bodies typical to phytoplasma structures were observed in the phloem sieve elements of ultrathin sections of all the four symptomatic ornamental plants (stem tissue) in transmission electron microscope. Amplification of 1.8 and 1.2 kb phytoplasma DNA products was observed in all the four test plants in PCR assays using universal primer pairs P1/P7 followed by nested primer pair R16F2n/R16R2, respectively. Pairwise sequence comparison, phylogeny and virtual RFLP analysis of 16S rDNA sequences confirmed the association of two phytoplasma subgroups (16SrI-B and 16SrII-D) in four ornamental plant species. ' Ca. P. aurantifolia ' subgroup D (16SrII-D) was found associated with chrysanthemum phyllody and leaf yellowing at Delhi and Tamil Nadu, bougainvillea little leaf and yellowing at Delhi and Chinese aster phyllody at Bengaluru, Karnataka. However, jasmine little leaf and yellowing at Bengaluru, Karnataka and chrysanthemum stunting at Pune were found to be associated with ' Ca . P. asteris ' subgroup B-related strains (16SrI-B). The identification of 16SrII-D subgroup phytoplasma infecting bougainvillea and 16SrI-B subgroup infecting jasmine are the new reports to the world. Besides weed species, Cannabis sativa showing witches' broom in jasmine fields at Bengaluru and Parthenium hysterophorus showing witches' broom symptoms in chrysanthemum fields at Delhi were identified to be caused by phytoplasma strains classified under subgroups 16SrI-B and 16SrII-D, respectively, by PCR assays and 16Sr DNA sequence comparison analysis. Among the three major leafhopper species identified, only Hishimonas phycitis was identified positive for 16SrI-B and 16SrII-D subgroups of phytoplasmas from chrysanthemum fields at Delhi and jasmine fields at Bengaluru, respectively. The identity of similar phytoplasma strains infecting ornamental species in leafhopper and the weed species in the present study suggested that H. phycitis and weeds may act as potential natural sources for secondary spread of the identified phytoplasma strains.
NASA Astrophysics Data System (ADS)
Negrel, Ph; Pauwels, H.
2003-04-01
Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Sr- and S-isotope data as well as major ions, from shallow and deep groundwater in three granite and Brioverian "schist" areas of the Armorican Massif (NW France) with intensive agriculture covering large parts are presented. The stable-isotope signatures of the waters plot close to the general meteoric-water line, reflecting a meteoric origin and the lack of significant evaporation or water-rock interaction. The water chemistry from the different catchments shows large variation in the major-element contents. Plotting Na, Mg, NO_3, K, SO_4 and Sr vs. Cl contents concentrations reflect agricultural input from hog and livestock farming and fertilizer applications, with local sewage-effluent influence, although some water samples are clearly unpolluted. The δ34S(SO_4) is controlled by several potential sources (atmospheric sulphate, pyrite-derived sulphates, fertilizer sulphates). Some δ18O and δ34S values are expected to increase through sulphate reduction, with higher effect on δ34S for the dissimilatory processes and on δ18O for assimilatory processes. The range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are related to agricultural practises. As in granite-gneiss watersheds in France, 87Sr/86Sr ratios range from 0.71265 to 0.72009. The relationship between 87Sr/86Sr and Mg/Sr ratios defines the different end-members (rain, agricultural practise, water-rock interaction) both in the three Brittany catchments and elsewhere in France such as the Margeride mountains (S Massif Central), the Hérault watershed (S France), the Morvan (SE Paris Basin), the Cantal (E Massif Central) and the Vosges massif (NE France). Sr-isotope tracing defines and identifies the relative signature of groundwater circulation in alterite and underlying weathered-fissured and fractured bedrock.
Estoppey, Nicolas; Schopfer, Adrien; Fong, Camille; Delémont, Olivier; De Alencastro, Luiz F; Esseiva, Pierre
2016-12-01
This study firstly aims to assess the field performances of low density polyethylene (LDPE) and silicone rubber (SR) samplers for the monitoring of polychlorinated biphenyls (PCBs) in water regarding the uptake, the sampling rate (R S ) estimated by using performance reference compounds (PRCs) and the time-weighted average (TWA) concentrations. The second aim is to evaluate the efficiency of these samplers to investigate PCB sources (localization and imputation steps) using methods with and without PRCs to correct for the impact of water velocity on the uptake. Samplers spiked with PRCs were deployed in the outfalls of two PCB sources and at 8 river sites situated upstream and downstream of the outfalls. After 6weeks, the uptake of PCBs in the linear phase was equivalent in LDPE and SR but 5 times lower in LDPE for PCBs approaching equilibrium. PRC-based R S and water velocity (0.08 to 1.21ms -1 ) were well correlated in river (LDPE: R 2 =0.91, SR: R 2 =0.96) but not in outfalls (higher turbulences and potential release of PRCs to air). TWA concentrations obtained with SR were slightly higher than those obtained with LDPE (factor 1.4 to 2.6 in river) likely because of uncertainty in sampler-water partition coefficient values. Concentrations obtained through filtration and extraction of water samples (203L) were 1.6 and 5.1 times higher than TWA concentrations obtained with SR and LDPE samplers, respectively. PCB sources could efficiently be localized when PRCs were used (increases of PCB loads in river) but the impact of high differences of water velocity was overcorrected (leading sometimes to false positives and negatives). Increases of PCB loads in the river could not be entirely imputed to the investigated sources (underestimation of PCBs contributing to the load increases). A method without PRCs (relationship between uptake and water velocity) appeared to be a good complementary method for LDPE. Copyright © 2016. Published by Elsevier B.V.
Böhlke, John Karl; Kistler, R. W.
1986-01-01
Gold-bearing quartz veins occur in and near major fault zones in deformed oceanic and island-arc rocks west of the main outcrop of the Sierra Nevada composite batholith. Veins typically occupy minor reverse faults that crosscut blueschist to amphibolite-grade metamorphic rocks whose metamorphic ages range from early Paleozoic to Jurassic. Vein micas and carbonate-quartz-mica assemblages that formed by hydrothermal metasomatism of ultramafic wall rocks in the Alleghany, Grass Valley, Washington, and Mother Lode districts yield concordant K-Ar and Rb-Sr ages. The dated veins are significantly younger than prograde metamorphism, penetrative deformation, and accretion of their host rocks to the continental margin. New and previously published mineralization ages from 13 localities in the Sierra foothills range from about 140 to 110 m.y. ago, with mean and median between 120 and 115 m.y. The age relations suggest that mineralizing fluids were set in motion by deep magmatic activity related to the resumption of east-dipping subduction along the western margin of North America following the Late Jurassic Nevadan collision event.CO 2 -bearing fluids responsible for metasomatism and much of the vein mica, carbonate, albite, and quartz deposition in several northern mines were isotopically heavy (delta 18 O [asymp] 8-14ppm; delta D between about -10 and -50ppm) and do not resemble seawater, magmatic, or meteoric waters. Metasomatic and vein-filling mica, dolomite, magnesite, and quartz in altered ultramafic rocks generally formed from fluids with similar Sr and O isotope ratios at a given locality. Consistent quartz-mica delta 18 O fractionations (delta 18 O (sub Q-M) = 4.5-4.9ppm) from various localities imply uniform equilibration temperatures, probably between 300 degrees and 350 degrees C. On a local (mine) scale, fluids responsible for both carbonate alteration of mafic and ultramafic wall rocks and albitic alteration of felsic and pelitic rocks had similar Sr isotope ratios.Samples from three veins in the central Alleghany district fit a 115.7 + or - 3-m.y. Rb-Sr isochron with a ( 87 Sr/ 86 Sr) i value of approximately 0.7119. Inferred 87 Sr/ 86 Sr ratios of metasomatic fluids from mines in different parts of the foothills region vary considerably (0.704-0.718), suggesting that Sr was derived from sources ranging from "western assemblage" Mesozoic ophiolitic or arc volcanic rocks to early Paleozoic continent-derived clastic rocks of the Shoo Fly Complex. Systematic geographic variations in both Sr and O isotopes can be rationalized by assuming extensive fluid interaction with rocks similar to the ones that are exposed within a few kilometers of the veins, but the ultimate sources of the fluids, and of Au and other constituents, may be independent of these. Isotopically lighter (meteoric?) fluids deposited some late quartz overgrowths and occupied secondary fluid inclusions in earlier vein quartz.
NASA Astrophysics Data System (ADS)
Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav
2015-04-01
The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15 October 2014. The Chibis-M electric sensor has a small 0.42 m tip-to-tip base and was developed in Lviv Centre of Institute for Space Research, Ukraine. The sensor provides the measurement of one electric field component, which is perpendicular to the orbital plane, in the frequency range of 0.1-40,000 Hz with the noise spectral density 0.8-0.04 (μV/m)/Hz0.5 (in the band 1-100 Hz the noise is 0.2-0.04 (μV/m)/Hz0.5). We present the space distribution of the observed PLE and SR harmonics in the latitude range ±52o and connection of the PLE sources with the high-voltage overhead power lines. The electric field data have been analyzed for all Chibis-M operating time (~ 2.5 years). The fact of PLE and SR detection by LEO satellites C/NOFS and Chibis-M suggests that the model of the transionospheric ELF EM field propagation should be refined.
Kennedy, Martin J; Hedin, Lars O; Derry, Louis A
2002-07-23
An experimental tracer addition of (84)Sr to an unpolluted temperate forest site in southern Chile, as well as the natural variation of (87)Sr/(86)Sr within plants and soils, indicates that mechanisms in shallow soil organic horizons are of key importance for retaining and recycling atmospheric cation inputs at scales of decades or less. The dominant tree species Nothofagus nitida feeds nearly exclusively (>90%) on cations of atmospheric origin, despite strong variations in tree size and location in the forest landscape. Our results illustrate that (i) unpolluted temperate forests can become nutritionally decoupled from deeper weathering processes, virtually functioning as atmospherically fed ecosystems, and (ii) base cation turnover times are considerably more rapid than previously recognized in the plant available pool of soil. These results challenge the prevalent paradigm that plants largely feed on rock-derived cations and have important implications for understanding sensitivity of forests to air pollution.
NASA Astrophysics Data System (ADS)
Lathrop, Alison S.; Blum, Joel D.; Chamberlain, C. Page
1994-05-01
We have investigated the Sr and O isotope systematics of granitoid and metasedimentary samples from the Central Main Terrane (CMT) of New England. Granitoid samples were taken from interior and contact zones within the Acadian-aged (approximately 410 m.y.), synmetamorphic and syntectonic Kinsman Quartz Monzonite (KQM), which is a member of the New Hampshire Plutonic Series. Metasedimentary samples were taken from Silurian and Devonian formations hosting the KQM. Initial Sr isotope ratios (Sr(sub i) and delta O-18 values for the KQM range from 0.70799 to 0.71246 and 7.6% to 12.9%, respectively, and Sr(sub i) and delta O-18 values of the metasedimentary rocks range from 0.70770 to 0.75008 and 6.2% to 14.1%, respectively. We observe a linear and slightly positive correlation between Sr(sub i) and delta O-18 for interior KQM samples that can be duplicated by a mixing curve calculated for metasedimentary endmembers, whereas the Sr(sub i) and delta O-18 values of contact KQM samples cluster near the Sr(sub i) and delta O-18 values of the metasedimentary rocks with which they are in contact. Mixing calculations provide no evidence for a measurable primitive mantle component in either interior or contact KQM samples, and we conclude that the Sr-O isotopic composition of the KQM is most likely a reflection of isotopic heterogeneities inherited from a complex package of midcrustal metasedimentary source rocks. We propose that the KQM is the product of midcrustal partial melting that was initiated due to excess thermal energy from the decay of anomalously high concentrations of heat-producing elements in Silurian source rocks within the CMT. Because we see no isotopic evidence for a lower-crustal or mantle component in the KQM, we suggest that midcrustal anatexis may have occurred as a closed-system process, requiring no accompanying mantle-derived magma or above normal mantle heat flow.
Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes
NASA Astrophysics Data System (ADS)
Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling
2017-10-01
Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values, whereas high Pb* and 87Sr/86Sr eclogites have mantle-like δ26Mg values, suggesting that the two fluid components have diverse influences on the Mg isotopic systematics of these eclogites. The LILE-rich fluid component, possibly derived from mica-group minerals, contains a considerable amount of isotopically heavy Mg that has shifted the δ26Mg of the eclogites towards higher values. By contrast, the 87Sr/86Sr- and Pb-rich fluid component, most likely released from epidote-group minerals in metasediments, has little Mg so as not to modify the Mg isotopic composition of the eclogites. In addition, the influence of talc-derived fluid might be evident in a very few eclogites that have low Rb/Sr and Ba/Pb but slightly heavier Mg isotopic compositions. These findings represent an important step toward a broad understanding of the Mg isotope geochemistry in subduction zones, and contributing to understanding why island arc basalts have averagely heavier Mg isotopic compositions than the normal mantle.
Energy response of diamond sensor to beta radiation.
Tchouaso, Modeste Tchakoua; Kasiwattanawut, Haruetai; Prelas, Mark A
2018-04-26
This paper demonstrates the ability of diamond sensors to respond to beta radiation. A Chemical Vapor Deposition (CVD) single crystal diamond was used in this work. The diamond crystal has a dimension of 4.5×4.5 by 0.5 mm thick. Metal contacts were fabricated on both sides of the diamond using titanium and palladium metals with thicknesses of 50 nm and 150 nm, respectively. The energy response of the diamond sensor was experimentally measured using three beta isotopes that cover the entire range of beta energy: 147 Pm, a weak beta radiation with a maximum energy of 0.225 MeV, 2 ° 4 Tl, a medium energy beta radiation with a maximum energy of 0.763 MeV, and 9 °Sr/ 9 °Y, with both a medium energy beta radiation with a maximum energy of 0.546 MeV, and a high energy beta radiation with a maximum energy of 2.274 MeV. The beta measurements indicate that diamond sensors are sensitive to beta radiation and are suitable for beta spectroscopy. This is important in estimating dose since diamond is tissue equivalent, and the absorbed dose is easily determined from the energy and the mass of the active volume. The high energy betas from 2 ° 4 Tl and 90 Sr/ 90 Y penetrates the sensor without depositing sufficient energy in the active area because their range is larger than the thickness of sensor. The sensitivity of the detector is limited because of its small volume and can be improved by combining smaller area sensors since growing large size diamond is currently a challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lind, O.C.; Salbu, B.; Janssens, K.
2007-07-10
Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low [239]Pu/[235]U (0.62-0.78) and [240]Pu/[239]Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-raymore » analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence ({micro}-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 {micro}m sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy ({micro}-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO[2] with the presence ofU[3][8]) and Pu ((III)/(IV), (V)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.« less
NASA Astrophysics Data System (ADS)
Újvári, Gábor; Wegner, Wencke; Klötzli, Urs; Horschinegg, Monika; Hippler, Dorothee
2018-01-01
Combined Sr-Nd-Hf isotopic data of two reference materials (AGV-1/BCR2) and 50, 10, and 5 mg aliquots of carbonate-free fine grain (<10 μm) separates of three loess samples (Central Europe/NUS, China/BEI, USA/JUD) are presented. Good agreement between measured and reference Sr-Nd-Hf isotopic compositions (ICs) demonstrate that robust isotopic ratios can be obtained from 5 to 10 mg size rock samples using the ion exchange/mass spectrometry techniques applied. While 87Sr/86Sr ratios of dust aluminosilicate fractions are affected by even small changes in pretreatments, Nd isotopic ratios are found to be insensitive to acid leaching, grain-size or weathering effects. However, the Nd isotopic tracer is sometimes inconclusive in dust source fingerprinting (BEI and NUS both close to ɛNd(0) -10). Hafnium isotopic values (<10 μm fractions) are homogenous for NUS, while highly variable for BEI. This heterogeneity and vertical arrays of Hf isotopic data suggest zircon depletion effects toward the clay fractions (<2 μm). Monte Carlo simulations demonstrate that the Hf IC of the dust <10 μm fraction is influenced by both the abundance of zircons present and maturity of crustal rocks supplying this heavy mineral, while the <2 μm fraction is almost unaffected. Thus, ɛHf(0) variations in the clay fraction are largely controlled by the Hf IC of clays/heavy minerals having high Lu/Hf and radiogenic 176Hf/177Hf IC. Future work should be focused on Hf IC of both the <10 and <2 μm fractions of dust from potential source areas to gain more insight into the origin of last glacial dust in Greenland ice cores.
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-09-01
Angle-resolved photoemission studies of single-crystalline La-doped Bi-Sr-Ca-Cu- 90-K superconductors (Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ) were performed utilizing synchrotron radiation covering the photon energy range 10-40 eV. The data conclusively reveal a dispersionless character of the valence-band states as a function of the wave-vector component parallel to the c axis, in agreement with the predictions of band calculations. Band effects are evident from both intensity modulations of the spectral features in the valence band and from energy dispersions as a function of the wave vector component lying in the basal a-b plane.
NASA Technical Reports Server (NTRS)
Sellers, P. J.
1987-01-01
The ability of satellite sensor systems to estimate area-averaged canopy photosynthetic and transpirative properties is evaluated. The near linear relationship between the simple ratio (SR) and normalized difference (ND) and the surface biophysical properties of canopy photosynthetically active radiation (PAR) absorption, photosynthesis, and bulk stomatal resistance is studied. The models utilized to illustrate the processes of canopy reflectance, photosynthesis, and resistance are described. The dependence of SR, the absorbed fraction of PAR, and canopy photosynthesis and resistance on total leaf area index is analyzed. It is noted that the SR and ND vegetation indices and vegetation-dependent qualities are near-linearly related due to the proportion of leaf scattering coefficient in visible and near IR wavelength regions. The data reveal that satellite sensor systems are useful for the estimation of photosynthesis and transpirative properties.
NASA Astrophysics Data System (ADS)
Cai, G.
2013-12-01
*Guanqiang Cai caiguanqiang@sina.com Guangzhou Marine Geological Survey, Guangzhou, 510760, P.R. China As the largest marginal sea in the western pacific, the South China Sea (SCS) receives large amount of terrigenous material annually through numerous rivers from surrounding continents and islands, which make it as the good place for the study of source to sink process. Yet few studies put emphasis on the northwestern continental shelf and slope in the SCS, even though most of the detrital materials derived from the Red River and Hainan Island are deposited in this area, and northwestern shelf plays a significant role in directly linking the South China, the Indochina and the South China Sea and thus controlling the source to sink process of terrestrial sediment. We presented the clay mineral and Sr-Nd isotopic composition of fine-grained fraction for sediments from northwestern SCS, in order to identify sediment source and transportation. The results show that the clay mineral of northwestern SCS sediments are mainly illite (30%~59%), smectite (20%~40%) and kaolinite (8%~35%), with minor chlorite. The illite chemical index varies between 0.19 and 0.75 with an average of 0.49, indicating an intensive hydrolysis in the source region. The 87Sr/86Sr ratios of sediments range from 0.716288 to 0.734416 (average of 0.724659), and ɛ Nd(0) values range from -10.31 to -11.62 (average of -10.93), which suggest that the source rocks of these sediments are derived from continental crust. The Hainan Island is an important source for sediments deposited in the nearshore and western shelf, especially for illite, kaolinite and smectite clay minerals. Furthermore, the relatively high contents of kaolinite and smectite in sediments from eastern shelf and southern slope of Hainan Island are also controlled by the supply of terrigenous materials from Hainan, which cannot be resulted from sedimentary differentiation of the Pearl and Red river sediments. And the correlation analysis between smectite and Sr-Nd isotopic ratios imply that the smectite in sediments mainly come from chemical weathering products of old continental crust, rather than volcanic rocks of Luzon island.
Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island
NASA Astrophysics Data System (ADS)
Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.
2017-12-01
Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.
NASA Astrophysics Data System (ADS)
Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan
2016-03-01
The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).
Technological developments for strontium-90 determination using AMS
NASA Astrophysics Data System (ADS)
Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Matsunaka, Tetsuya; Takahashi, Tsutomu; Shibayama, Nao; Izumi, Daiki; Kinoshita, Norikazu; Matsuzaki, Hiroyuki
2015-10-01
Accelerator mass spectrometry (AMS) is one of method used for 90Sr determination. It would enable rapid 90Sr measurements from environmental samples such as water, soil, and milk. However, routine analysis of 90Sr using AMS has not yet been achieved because of difficulties associated with isobaric separation and production of intense negative ion beams characterized by currents from hundreds of nanoamperes to several microamperes. We have developed a rapid procedure for preparing samples with optimum compositions for use with AMS, which enables production of intense Sr beam currents from an ion source. Samples of SrF2 were prepared from a standard Sr solution and agricultural soil. The time required to prepare a SrF2 sample from a soil sample was 10 h. Negative 88SrF3- ions were successfully extracted at 500 nA from mixed samples of SrF2 and PbF2. In the present work, negative ions of 90Zr, included as an impurity, were accelerated with a tandem accelerator operated at a terminal voltage of 5 MV. Ions characterized by a charge state of 6+ were channeled into a gas counter. An atomic ratio of 90Zr/88Sr of 3 × 10-8 was estimated for the soil sample. No signal was detected from the assay of PbF2, which was pressed in an aluminum cathode, for a mass number of 90. PbF2 revealed good performance in the production of negative SrF3- molecular ion beams and detection of 90Sr with a gas counter.
Thermoluminescence properties of Eu-doped and Eu/Dy-codoped Sr2 Al2 SiO7 phosphors.
Jadhaw, Akhilesh; Sonwane, Vivek D; Gour, Anubha S; Jha, Piyush
2017-11-01
We report the thermoluminescence properties of Sr 1.96 Al 2 SiO 7 :Eu 0.04 and Sr 1.92 Al 2 SiO 7 :Eu 0.04 Dy 0.04 phosphors. These phosphors were prepared by a high-temperature solid-state reaction method. The prepared phosphors were characterized by X-ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60 Co source was used for γ-irradiation. The effect of heating rate and UV-exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ- and UV-irradiation on thermoluminescence studies was also examined. Copyright © 2017 John Wiley & Sons, Ltd.
Worldwide deposition of strontium-90 through 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monetti, M.A.
1996-03-01
Strontium-90 results from the Environmental Measurements Laboratory`s (EML) Global Fallout Program (GFP) are presented for the years 1987 through 1990. Quarterly {sup 90}Sr deposition results for the 66 sampling locations of EML`s GFP were generally low, indicating that there was no significant release of fission products into the atmosphere during this period. The global {sup 90}Sr deposition during these 4 years was lower than it has been for any similar period since this program began in 1958. Since there was no major atmospheric source of {sup 90}Sr during this period, the global cumulative deposit of {sup 90}Sr continued to decreasemore » by radioactive decay to a 27 year low of 311.4 Pbq.« less
NASA Astrophysics Data System (ADS)
Mitra, A.; Dey, S.
2017-12-01
Paleoarchean era is marked as an active period of continental crust genesis. A large part of the paleoarchean crust is made up of grey sodic granitoids collectively referred as Tonalite Trondjhemite Granodiorite (TTG). Generation and evolution of TTGs are still highly debated, though researchers agree on their generation through partial melting of hydrated basalt at garnet or amphibole stability field. Discrete remnants of paleoarchean TTGs are exposed in several parts of the Singhbhum craton, eastern India. Our study exhibits occurrence of two different types of TTGs based on REE pattern in a chondrite normalized REE diagram. Accordingly, TTGs have been grouped into two different types, namely (1) High HREE TTG [low SiO2; high HREE avg. (Gd/Er)n=2.23; less fractionated REE avg. (La/Yb)n=27.9 and relatively low Sr/Y avg. Sr/Y=53.59] and Low HREE TTG [high SiO2; depleted HREE avg. (Gd/Er)n=3.23; steeply fractionated REE avg. (La/Yb)n=46.11 and relatively high Sr/Y avg. Sr/Y= 95.49]. The two types of TTGs mainly differ in pressure sensitive signatures like Sr/Y and (La/Yb)n ratio. Considering the major element composition both the types are consistent with a low-K mafic source. This indicates, melting occurred at different crustal levels from a same/similar source. Moderate Al2O3, high Sr contents coupled with depleted HREE and Y are linked to the presence of garnet in either residual or fractionating phase. However, HREE variation is controlled by the amount of Garnet retained in the restite. Thus, in spite of melting of the source rock in garnet stability field, only the minor change in depth of melting and in turn different amount of retention of garnet in the source caused the difference in HREE pattern. Zircon saturation temperature (TZr) calculated on the basis of whole rock Zr concentration ranges from 735˚C to 760 ˚C (avg. 749˚C) for high HREE TTG and 750 ˚C to 802˚C (avg. 773˚C) for low HREE TTG. Absence of zircon xenocryst depicts zircon undersaturated melt, thus calculated TZr provides minimum estimate of the real magma temperature. High temperature magmas (Low HREE) formed at deeper level retained more garnet in source compare to low temperature magma (High HREE). Hence, temperature difference in TTG magmas is consistent with differences in REE pattern and grouping of TTGs, considering a normal geothermal gradient.
NASA Astrophysics Data System (ADS)
Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Cartigny, Pierre
2010-01-01
Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665-667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ˜ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid-rock interaction and to immiscibility processes. Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient incompatible element-enriched parts of the lithospheric mantle while the trigger for releasing this fluid source was probably carbonatitic/kimberlitic melts derived from greater depths. We suggest that phlogopite mica was an integral part of the enriched lithospheric fluid source and that breakdown of this mica releases K and radiogenic Sr into a fluid phase. The resulting fluids operate as a major metasomatic agent in the sub-continental lithospheric mantle as reflected by the isotopic composition and trace element patterns of G10 garnets.
Jin, Qi; Pehrson, Steen; Jacobsen, Peter Karl; Chen, Xu
2015-11-01
The objectives of this study were to assess the procedural outcomes of persistent and long-standing persistent atrial fibrillation (PsAF and L-PsAF) ablation guided by remote magnetic navigation (RMN), and to detect factors predicting acute restoration of sinus rhythm (SR) by ablation with RMN. A total of 313 patients (275 male, age 59 ± 9.5 years) with PsAF (187/313) or L-PsAF (126/313) undergoing ablation using RMN were included. Patients' disease history, pulmonary venous anatomy, left atrial (LA) volume, procedure time, mapping plus ablation time, radiofrequency (RF) ablation time, fluoroscopy time, radiation dose, and complications were assessed. Stepwise regression was used to predict which variable could best predict acute restoration from AF to SR by ablation. Compared to PsAF, procedure time and RF ablation time were significantly increased in patients with L-PsAF (P = 0.01 and P < 0.001, respectively). No major complications occurred during the procedures in either PsAF or L-PsAF patients. Fifty five of 313 patients converted directly to SR by ablation. Compared to L-PsAF, the rate of SR restoration was significantly higher in PsAF (21 vs 12%, P = 0.03). Stepwise regression analysis showed LA volume was the primary parameter affecting SR restoration (P = 0.01). The LA volume of patients without direct SR restoration by ablation was 24% greater than that of patients with SR restoration (P < 0.001). Catheter ablation using RMN is a safe and effective method for PsAF and L-PsAF. LA volume could be a predictor of direct restoration of SR from sustaining AF by ablation using RMN.
Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957–2011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstykh, Evgenia I.; Peremyslova, Lyudmila M.; Degteva, Marina O.
The East Urals Radioactive Trace (EURT) was formed after a chemical explosion in the radioactive waste-storage facility of the Mayak Production Association in 1957 (Southern Urals, Russia) and resulted in an activity dispersion of 7.4 × 10 16 Bq into the atmosphere. Internal exposure due to ingestion of radionuclides with local foodstuffs was the main factor of public exposure at the EURT. The EURT cohort, combining residents of most contaminated settlements, was formed for epidemiological study at the Urals Research Center for Radiation Medicine, Russia (URCRM). For the purpose of improvement of radionuclide intake estimates for cohort members, the followingmore » data sets collected in URCRM were used: (1) Total β-activity and radiochemical measurements of 90Sr in local foodstuffs over all of the period of interest (1958–2011; n = 2200), which were used for relative 90Sr intake estimations. (2) 90Sr measurements in human bones and whole body ( n = 338); these data were used for average 90Sr intake derivations using an age- and gender-dependent Sr-biokinetic model. Non-strontium radionuclide intakes were evaluated on the basis of 90Sr intake data and the radionuclide composition of contaminated foodstuffs. Validation of radionuclide intakes during the first years after the accident was first carried out using measurements of the feces β-activity of EURT residents ( n = 148). The comparison of experimental and reconstructed values of feces β-activity shows good agreement. 90Sr intakes for residents of settlements evacuated 7–14 days after the accident were also obtained from 90Sr measurements in human bone and whole body. Furthermore, the results of radionuclide intake reconstruction will be used to estimate the internal doses for the members of the EURT cohort.« less
Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957–2011)
Tolstykh, Evgenia I.; Peremyslova, Lyudmila M.; Degteva, Marina O.; ...
2017-01-19
The East Urals Radioactive Trace (EURT) was formed after a chemical explosion in the radioactive waste-storage facility of the Mayak Production Association in 1957 (Southern Urals, Russia) and resulted in an activity dispersion of 7.4 × 10 16 Bq into the atmosphere. Internal exposure due to ingestion of radionuclides with local foodstuffs was the main factor of public exposure at the EURT. The EURT cohort, combining residents of most contaminated settlements, was formed for epidemiological study at the Urals Research Center for Radiation Medicine, Russia (URCRM). For the purpose of improvement of radionuclide intake estimates for cohort members, the followingmore » data sets collected in URCRM were used: (1) Total β-activity and radiochemical measurements of 90Sr in local foodstuffs over all of the period of interest (1958–2011; n = 2200), which were used for relative 90Sr intake estimations. (2) 90Sr measurements in human bones and whole body ( n = 338); these data were used for average 90Sr intake derivations using an age- and gender-dependent Sr-biokinetic model. Non-strontium radionuclide intakes were evaluated on the basis of 90Sr intake data and the radionuclide composition of contaminated foodstuffs. Validation of radionuclide intakes during the first years after the accident was first carried out using measurements of the feces β-activity of EURT residents ( n = 148). The comparison of experimental and reconstructed values of feces β-activity shows good agreement. 90Sr intakes for residents of settlements evacuated 7–14 days after the accident were also obtained from 90Sr measurements in human bone and whole body. Furthermore, the results of radionuclide intake reconstruction will be used to estimate the internal doses for the members of the EURT cohort.« less
Kashparova, Elena; Levchuk, Sviatoslav; Morozova, Valeriia; Kashparov, Valery
2018-06-04
The assessment of the fluctuating asymmetry based on measurement of the parameters of left and right parts of silver birch (Betula pendula (L.) Roth.) leaves and relative sizes of pairs of Scots pine (Pinus sylvestris L.) needles from the Chernobyl Exclusion Zone (ChEZ) was carried out. Twelve samples of both birch leaves and pairs of needles were collected from 10 trees at 5 sites in the Chernobyl Exclusion Zone and also at one control site located outside the ChEZ. Values of gamma dose rate in the air varied between the sites from 0.1 to 40 μGy h -1 . Activity concentrations of 90 Sr and 137 Cs in the birch leaves varied over the range of 0.9÷2460 kBq kg -1 and 0.1÷339 kBq·kg -1 (DW), respectively. In addition to the above, in the Scots pine needles, these ranges were 0.7 ÷1970 kBq kg -1 f for 90 Sr and 0.1÷78 kBq kg -1 (DW) for 137 Cs. From the values of the radionuclides activity concentrations in the plants, the internal dose rate is estimated to be in the range of 0.1 ÷ 274 μGy h -1 . The main sources of the internal dose rate were radiation of 90 Sr and 90 Y. Indices of fluctuating asymmetry of silver birch leaves and Scots pine needles varied over the range of 0.048 ± 0.007 ÷ 0.060 ± 0.009 and 0.014 ± 0.002 ÷ 0.018 ± 0.002, respectively, and did not statistically differ for all experimental sites. The indices also did not depend on the external or internal dose rate of ionizing radiation for plants. The above findings seem to be consistent with other research effort in terms of understanding the response of organisms to chronic pollutant exposure and the long-term effects of large scale nuclear accidents. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankowiak, A.; Wille, K.; /Dortmund U. /SLAC
2011-08-25
For a synchrotron radiation source it is necessary to operate a monitoring system to determine the beam position with high resolution and accuracy with respect to the axis of the quadrupole magnets. In this paper the present closed orbit measurement system of the DELTA SR-Facility, concerning the hardware setup, data processing and the calibration methods, will be presented. The results of the calibration measurements and the recent operating experience will be discussed. These results show, that the system is close to the design resolution. But the BPM offsets with respect to the magnetic center of the quadrupole magnets turn outmore » to be not acceptable. For some BPMs they are in the order of several 100 micro m. Therefore it was decided to install a beam based BPM calibration system in the near future . This system should allow to determine the BPM offsets relative to the center of the quadrupole magnets for all 40 BPMs. It is planned to install a system in order to change the focussing strength of each quadrupole individually either in a static or dynamic way.« less
NASA Astrophysics Data System (ADS)
McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen
2017-01-01
Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.
Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand
NASA Astrophysics Data System (ADS)
van der Meer, Q. H. A.; Waight, T. E.; Scott, J. M.; Münker, C.
2017-07-01
Continental intraplate magmas with isotopic affinities similar to HIMU are identified worldwide. Involvement of an asthenospheric HIMU or HIMU-like source is contested because the characteristic radiogenic Pb compositions coupled with unradiogenic Sr and intermediate Nd and Hf compositions can also result from in-situ ingrowth in metasomatised lithospheric mantle. Sr-Nd-Pb-Hf isotopic compositions of late Cretaceous lamprophyre dikes from Westland, New Zealand, provide new insights into the formation of a HIMU-like alkaline intraplate magmatic province under the Zealandia continent. The oldest (102-100 Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i) = 18.6, 207Pb/204Pb(i) = 15.62, 208Pb/204Pb(i) = 38.6, 87Sr/86Sr(i) = 0.7063-0.7074, εNd(i) = -2.1 - +0.1 and εHf(i) = -0.2 - +2.3) and are interpreted as melts originating from subduction-modified lithosphere. Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92-84 Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i) = 18.7 to 19.4, 207Pb/204Pb(i) = 15.60 to 15.65, 208Pb/204Pb(i) = 38.6 to 39.4, 87Sr/86Sr(i) = 0.7031 to 0.7068, εNd(i) = +4.5 to +8.0 and εHf(i) = +5.1 to +8.0. Melt compositions point to an amphibole-bearing spinel facies lithospheric mantle source enriched by metasomatism that introduced, amongst many elements, U + Th which lead to rapid ingrowth to HIMU-like compositions. Importantly, this HIMU-like source enrichment appears to have completely originated from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98-82 Ma) occurred outboard of Gondwana's former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i) ≈ 20.5, 207Pb/204Pb(i) ≈ 15.7, 208Pb/204Pb(i) ≈ 40.0, εNd(i) ≈ 4.5 and εHf(i) ≈ 4.0). In contrast to the inboard HIMU-like magmas, the radiogenic 207Pb/204Pb and relatively unradiogenic Nd and Hf require an ancient enriched source component. This magmatism is interpreted to represent melting of a fossilised HIMU source that resided under the Hikurangi Plateau. These genetically distinct but isotopically similar intraplate reservoirs were separated by the down-going slab under Gondwana's former active margin. Ancient HIMU magmatism was locally replaced by the young HIMU-like type which became dominant across Zealandia during the Late Cretaceous. Our research suggests that the sources for alkaline intraplate magmas with compositions similar to ocean island basalts can be formed either with or without the involvement of a plume-derived component.
Using Expert Sources in Breaking Science Stories: A Comparison of Magazine Types.
ERIC Educational Resources Information Center
Martin, Shannon E.
1991-01-01
Examines the number and kind of sources certain magazines included in articles about science. Finds that science magazines did not use expert sources more often or even carry proportionately more breaking science news than did business and news magazines. (SR)
NASA Astrophysics Data System (ADS)
Rao, Wenbo; Han, Guilin; Tan, Hongbing; Jin, Ke; Wang, Shuai; Chen, Tangqing
2017-09-01
The major ions and Sr isotopes in rainwater have been studied during 2013-2015 on the Alxa Desert Plateau in order to identify the source of rainwater chemistry and to assess air quality in the desert area of northern China. The pH and EC values of rainwater vary from 6.7 to 8.1 and from 35 to 1237 μS cm- 1, respectively, at the two meteorological stations (AYQ and YBL) in the Alxa Desert Plateau. Ca2 +, SO42 -, Na+ and Cl- are the dominant ions in rainwater, possessing > 85% of total ions. The mean daily wet deposition fluxes of soluble ions are 8709 μeq/m2/d at YBL and 5459 μeq/m2/d at AYQ, approaching the values at Xi'an, Beijing, Guangzhou, and Chengdu. Statistical analysis shows that SO42 - and NO3- in rainwater were mainly from anthropogenic sources while Ca2 + and K+ originated from terrestrial sources. Cl- was mainly from seawater sources, and Na+ was partly from mineral weathering. Major ions are well correlated with each other in rainwater, revealing that substances of various origins were synchronously carried into the atmosphere by wind. By using Sr isotope techniques, three main end-members controlling base cations of rainwater are identified: silicates, carbonates and seawater. Based on the analyses of acid-soluble fractions of desert soils, local soil dust could be the most important source of base cations in rainwater whereas the effect of the anthropogenic sources could be neglected.
1990-01-01
SR90-5 Trehalose Dimycolate Enhances Survival of Fission Neutron-Irradiated Mice and Kiebsiella pneumoniae-Challenged Irradiated Mice 1’ 2 D. (. M...doses kines and immunomodulators of nonspecific resistance to of fission neutron radiation is increased when trehalose dimycol- infection might have... trehalose day before exposure to radiation. TDM in an emulsion of squa- dimycolate (TDM) have been shown to be effective in in- lene. Tween 80, and saline
NASA Astrophysics Data System (ADS)
Waight, Tod E.; Tørnqvist, Jakob B.
2018-05-01
Plagioclase crystals in andesites from the Cabo De Gata region show generally radiogenic Sr isotope compositions and consistent core to rim increases in 87Sr/86Sr that are indicative of open system processes in the lithosphere and crustal contamination during crystallization. High-grade metamorphic rocks of the Alpujárride and Nevado-Filábride complexes represent the most likely crustal contaminants. The plagioclases are characterized by subtly zoned and resorbed calcic cores (An73-86). These cores also have radiogenic 87Sr/86Sr (0.7127-0.7129), although typically less radiogenic than plagioclase rims, groundmass plagioclase and whole rock compositions (up to 87Sr/86Sr = 0.7135). These cores are interpreted to represent early crystallization of plagioclase from hydrous melts emplaced into the lower crust. The parental melts to these andesites must therefore have already inherited their radiogenic Sr isotope compositions prior to entering the lower crust and before the onset of crystallization of plagioclase, which is inconsistent with previous models suggesting that the generally radiogenic nature of Sr in these volcanics reflects large amounts of crustal contamination. Instead, the isotope systematics are consistent with models invoked significant addition of a subducted sediment component to the mantle source. The high-An% plagioclase cores are characterized by resorption textures, which are consistent with dissolution during rapid decompression and/or devolatisation during magma migration from the lower crust into upper crustal magma chambers.
Recent Advances in Source Localisation Using Range Measurements
2015-10-01
Range Weighted SR- LS ............................................................................................ 5 GEOLOCATION USING SEMIDEFINITE... LS ) and the squared range least squares (SR- LS ) [3]. The R- LS -based formulation is of great interest and has been known for its optimal performance...to efficiently compute an R- LS position estimate. A number of optimization tools may be applied to globally solve the R- LS problem and are usually
Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus
Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng
2015-01-01
Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus. PMID:26538085
Some aspects of SR beamline alignment
NASA Astrophysics Data System (ADS)
Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.
2011-09-01
Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.
Comparing the imaging performance of computed super resolution and magnification tomosynthesis
NASA Astrophysics Data System (ADS)
Maidment, Tristan D.; Vent, Trevor L.; Ferris, William S.; Wurtele, David E.; Acciavatti, Raymond J.; Maidment, Andrew D. A.
2017-03-01
Computed super-resolution (SR) is a method of reconstructing images with pixels that are smaller than the detector element size; superior spatial resolution is achieved through the elimination of aliasing and alteration of the sampling function imposed by the reconstructed pixel aperture. By comparison, magnification mammography is a method of projection imaging that uses geometric magnification to increase spatial resolution. This study explores the development and application of magnification digital breast tomosynthesis (MDBT). Four different acquisition geometries are compared in terms of various image metrics. High-contrast spatial resolution was measured in various axes using a lead star pattern. A modified Defrise phantom was used to determine the low-frequency spatial resolution. An anthropomorphic phantom was used to simulate clinical imaging. Each experiment was conducted at three different magnifications: contact (1.04x), MAG1 (1.3x), and MAG2 (1.6x). All images were taken on our next generation tomosynthesis system, an in-house solution designed to optimize SR. It is demonstrated that both computed SR and MDBT (MAG1 and MAG2) provide improved spatial resolution over non-SR contact imaging. To achieve the highest resolution, SR and MDBT should be combined. However, MDBT is adversely affected by patient motion at higher magnifications. In addition, MDBT requires more radiation dose and delays diagnosis, since MDBT would be conducted upon recall. By comparison, SR can be conducted with the original screening data. In conclusion, this study demonstrates that computed SR and MDBT are both viable methods of imaging the breast.
New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3-δ
NASA Astrophysics Data System (ADS)
Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.
2015-02-01
Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr2O3 versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO3 ceramics and provide new insight on further improvement of the thermoelectric power factor.
Interference Effects of Radiation Emitted from Nuclear Excitons
NASA Astrophysics Data System (ADS)
Potzel, W.; van Bürck, U.; Schindelmann, P.; Hagn, H.; Smirnov, G. V.; Popov, S. L.; Gerdau, E.; Shvyd'Ko, Yu. V.; Jäschke, J.; Rüter, H. D.; Chumakov, A. I.; Rüffer, R.
2003-12-01
Interference effects in nuclear forward scattering of synchrotron radiation (NFSSR) from two spatially separated stainless-steel foils A and B mounted downstream behind each other have been investigated. Target A can be sinusoidally vibrated by high-frequency (MHz) ultrasound (US), target B is moved at a constant Doppler velocity which is large compared to the natural width of the nuclear transition. Due to this large Doppler shift radiative coupling between both targets is disrupted and the nuclear excitons in A and B develop independently in space and time after the SR pulse. As a consequence, the emission from the whole system (A&B) is dominated by the interference of the emissions from A and B. The application of US to target A is a powerful method to change the relative phasing of the emissions and thus to investigate interference effects originating from the two nuclear excitons in detail. Four distinct cases were studied: (a) If target A is kept stationary and only B is moved at large constant velocity v, the interference pattern exhibits a Quantum Beat (QB) whose period is determined by v. (b) If, in addition, target A is sinusoidally vibrated in a piston-like motion by US and the initial US phase Φ0 is locked to the SR pulse, the QB is frequency modulated by the US. The variation of the QB frequency increases with the US modulation index m. (c) In the case that Φ0 is not synchronized to the SR pulse (phase averaging over Φ0) drastic changes of the amplitude and phase reversals of the QB pattern occur in the time regions around odd multiples of half of the US period. (d) If Φ0 is not synchronized to the SR pulse and the US motion is no longer pistonlike, the NFSSR intensity has to be averaged over both Φ0 and m (amplitude) of the US motion. Surprisingly the QB interference pattern does not vanish completely but a short QB signal remains at times of the full US period even at high values of m. All NFSSR patterns investigated are interpreted and quantitatively described by the dynamical theory.
Nino, M. N.; McCutchan, E. A.; Smith, S. V.; ...
2016-02-01
82Rb is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like 201Tl and 99mTc sestamibi. High-quality β-decay data are essential to accurately appraise the total dose received by the patients. A source of 82Sr was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of 82Kr including 12 new levels, 50 new γ-ray transitions, and the determination of many new spin assignmentsmore » through angular correlations. Lastly, these new high-quality data allow a precise reappraisal of the β-decay strength function and thus the consequent dose received by patients.« less
NASA Astrophysics Data System (ADS)
Crupi, V.; Majolino, D.; Venuti, V.; Barone, G.; Mazzoleni, P.; Pezzino, A.; La Russa, M. F.; Ruffolo, S. A.; Bardelli, F.
2010-09-01
Selected decorated Renaissance ceramic fragments, found during the excavation of a Sicilian archaeological site (Caltagirone, Sicily, South Italy), have been studied by combining scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), and X-ray absorbance spectroscopy (XAS). The study was aimed at providing microchemical and microstructural characterization of the colored glazed coatings in order to elucidate the nature of the pigments in the decorative layers, and in the glaze itself. From the obtained results, the general perspective has been the identification of information to be used for a reliable recognition of the production techniques. In particular, XAS measurements, performed using synchrotron radiation (SR) as the source at the Cu K-edge, in the case of green decorations, provided structural information of the oxidation states and the local chemical environment of copper (neighboring atoms and bond distances).
NASA Astrophysics Data System (ADS)
Martelli, M.; Nuccio, P. M.; Stuart, F. M.; Burgess, R.; Ellam, R. M.; Italiano, F.
2004-08-01
A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP), Italy, is presented together with 87Sr/ 86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/ 4He=5.2 Ra and 87Sr/ 86Sr=0.7056 in south Campania, to 3He/ 4He=0.44 Ra and 87Sr/ 86Sr=0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/ 4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma-crust interaction. The 3He/ 4He- 87Sr/ 86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (˜30 Ma), can ingrowth in the mantle wedge account for the 3He/ 4He of the most radiogenic basalts.
Mixing of Marine and Terrestrial Sources of Strontium in Coastal Environments
NASA Astrophysics Data System (ADS)
Ryan, Saskia; Crowley, Quentin; Deegan, Eileen; Snoeck, Christophe
2017-04-01
87Sr/86Sr from bulk soils, soil extracts and plant material have been used to investigate and quantify the extent of marine-derived Sr in the terrestrial biosphere. Samples were collected along coastal transects and 87Sr/86Sr biosphere values (plant and soil) converge to marine values with increasing proximity to the coast. R2values indicate highly significant trends in certain regions. The National Soils Database (NSDB), TELLUS and TELLUS Border datasets, all of which are geochemical surveys have been employed to further test the extent of marine elemental contribution. Collectively these data cover all of Ireland and Northern Ireland, with varying degrees of sampling density. A strong spatial correlation exists between the Chemical Index of Alteration (CIA; (Al2O3-(CaO*+Na2O)-K2O)) in topsoil (CIA <60; 27% n = 11651) and areas of blanket peat. The enrichment of Ca and Na in these regions would suggest a significant marine geochemical contribution. Topsoil CIA can therefore be used to identify areas likely to feature significant marine inputs and identify regions where the 87Sr/86Sr budget may deviate from bedrock values.